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Small groups and long memories 
promote cooperation
Alexander J. Stewart† & Joshua B. Plotkin

Complex social behaviors lie at the heart of many of the challenges facing evolutionary biology, 
sociology, economics, and beyond. For evolutionary biologists the question is often how group 
behaviors such as collective action, or decision making that accounts for memories of past experience, 
can emerge and persist in an evolving system. Evolutionary game theory provides a framework for 
formalizing these questions and admitting them to rigorous study. Here we develop such a framework 
to study the evolution of sustained collective action in multi-player public-goods games, in which 
players have arbitrarily long memories of prior rounds of play and can react to their experience in 
an arbitrary way. We construct a coordinate system for memory-m strategies in iterated n-player 
games that permits us to characterize all cooperative strategies that resist invasion by any mutant 
strategy, and stabilize cooperative behavior. We show that, especially when groups are small, longer-
memory strategies make cooperation easier to evolve, by increasing the number of ways to stabilize 
cooperation. We also explore the co-evolution of behavior and memory. We find that even when 
memory has a cost, longer-memory strategies often evolve, which in turn drives the evolution of 
cooperation, even when the benefits for cooperation are low.

Behavioral complexity is a pervasive feature of organisms that engage in social interactions. Rather then making 
the same choices all the time – always cooperate, or never cooperate – organisms behave differently depending on 
their social environment or their past experience. The need to understand behavioral complexity is at the heart 
of many important challenges facing evolutionary biology as well as the social sciences, or indeed any problem 
in which social interactions play a part. Cooperative social interactions in particular play a central role in many 
of the major evolutionary transitions, from the emergence of multi-cellular life to the development of human 
language1.

Evolutionary biologists have been successful in pinpointing biological and environmental factors that influ-
ence the emergence of cooperation in a population. The demographic and spatial structure of populations in 
particular have emerged as fundamentally important factors2–8. At the other end of the scale, the underlying 
mechanisms of cooperation – such as the genetic architectures that encode social traits, or the ability of pub-
lic goods to diffuse in the environment – also place constraints on how and to what extent cooperation will 
evolve9–13.

Despite extensive progress for simple interactions, an understanding of the evolution of cooperation when 
social interactions occur repeatedly – so that individuals can update their behavior in the light of past experience –  
and involve multiple participants simultaneously, remains elusive. Some of the most promising approaches for 
tackling this problem come from the study of iterated games14–23. In the language of game theory, behavioural 
updates in light of past experience are modelled as a strategy in an iterated multi-player game among heterog-
enous individuals. Even when we limit ourselves to a small set of relatively simple strategies in such games, the 
resulting evolutionary dynamics are often surprising and counter-intuitive. As we begin to allow for a wider 
array of ever more complex behaviors, results on the emergence of cooperation are correspondingly harder to 
pin down.

Nowhere is the complicated nature of the problem more evident than in the discussion surrounding the role 
of memory in iterated games and the evolution of cooperation22–25. On the one hand, memory can obviously be a 
powerful force for promoting cooperation if it allows players to recognize kin, or to otherwise tag different oppo-
nents26,27. Yet, such recognition is likely to be costly and complex to evolve23,28,29. On the other hand, a simpler 
form of memory that is confined to past interactions within the course of a given iterated game, so that a player’s 
strategy can take into account multiple rounds of past play, might be relatively easy to evolve and incur fewer 
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costs24,25,29. Nevertheless, the usefulness of such memory within the course of an iterated game has been called 
into question by the results of Press and Dyson18 and their generalization for multi-player games30, which show 
that a player with memory-1 can treat all of her opponents as though they too use a memory-1 strategy, regard-
less of the opponent’s actual memory capacity. Thus a memory-1 strategy that stabalizes cooperation against any 
memory-1 invader also stabalizes cooperation against any arbitrary invader19,31–34.

If we are interested in the evolution of cooperation, however, the stability of some memory-1 strategies against 
all forms of invaders is not in itself informative. Rather, as we and others have shown, what matters most for the 
maintenance of cooperation over evolutionary time is the ease with which successful cooperative strategies can 
evolve31,34,35. If the ability to recall past interactions makes cooperative strategies easier or harder to evolve, then 
memory can facilitate or impede the evolution of cooperation. The central question of this paper then, is: what 
effect does the ability to recall prior rounds of play have on the evolution of successful cooperative strategies in 
iterated multi-player games?

We study evolving populations composed of individuals playing arbitrary strategies in infinitely iterated, mul-
tiplayer games. We focus on the prospects for cooperation in public goods games, and we investigate how these 
prospects depend on the number of players that simultaneously participate in the game, on the memory capacity 
of the players, and on the total population size. We then study the co-evolution of players’ strategies alongside 
their capacity to remember prior interactions, including when such memory capacity comes at a cost. We arrive 
at a simple insight: when games involve few players and groups are small, longer memory strategies tend to evolve, 
which in turn increases the amount of cooperation that can persist. And so populations tend to progress from 
short memories and selfish behavior to long memories and cooperation.

Methods
We study the evolution of cooperation in iterated public-goods games, in which n players repeatedly choose 
whether to cooperate by contributing a cost C to a public pool, producing a public benefit B > C. In each round 
of iterated play the total benefit produced due to all player’s contributions is divided equally between all players. 
Thus, if k players choose to cooperate in a given round, each player receives a benefit Bk/n. We study finite pop-
ulations of N players engaging in infinitely iterated n-player public-goods games, using strategies with memory 
length m, meaning a player can remember how many times she and her opponents cooperated across the preced-
ing m rounds (Fig. 1).

Figure 1. Multiplayer games and memory. We study the evolution of behavior in iterated n-player public-
goods games in which players use strategies with memory capacity m. We consider a replicating population of N 
individuals who each receive a payoff from engaging in an infinitely iterated game with all possible subsets of 
(n − 1) opponents in the population. Players then reproduce according to a “copying process”, in which a player 
X copies another player’s strategy Y with a probability =→ + −

fX Y exp s S S
1

1 [ ( ) ]X Y  where SX and SY are the player’s 

respective payoffs and s scales the strength of selection. We consider the case of strong selection, such that a rare 
mutant who is at a selective disadvantage is quickly lost from the population31. We investigate the success of 
cooperative strategies as a function of group size and the length of players’ memories. We determine the 
frequency of robust cooperative strategies, which can resist invasion by any possible mutant. (Top) Depending 
on the size of the game n relative to the population N, the dynamics of public-goods games are different. In a 
two-player game, a series of pairwise interactions occur in the population at each generation (left). If the whole 
population plays the game each generation (right) all players interact simultaneously. (Bottom) Memory of past 
events results in strategies that update behavior depending on the histories of both players’ actions. This allows 
for more complex strategies, such as those that punish rare defection or reward rare cooperation.
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We focus on the evolution of sustained collective action, meaning the evolution of strategies that, when used 
by each member of the population, produce an equilibrium play with all players cooperating each round. This 
may be thought of as the best possible social outcome of the game, because it produces the maximum total public 
good. We contrast the prospects for sustained cooperation with the prospects for sustained inaction, meaning 
strategies that, when used by each member of the population, produce an equilibrium play with all players defect-
ing each round. This may be thought of as the worst possible social outcome of the game, because it results in no 
public good being produced at all.

To study the evolutionary prospects of collective action and inaction we determine the “volume of robust 
strategies” that produce sustained cooperation or defection in a repeated n-player game, in which players have 
memory m. The game is played in a well-mixed population, composed of N haploid individuals who reproduce 
according to a “copying process” based on their payoffs (Fig. 1)36. The volume of robust strategies measures how 
much cooperation or defection will evolve across many generations31. More specifically, this volume is the prob-
ability that a randomly drawn strategy that produces sustained cooperation (or defection) can resist invasion by 
all other possible strategies that do not produce sustained cooperation (or defection)19,31–34. As we have shown 
previously31, the volumes of robust strategies determine the evolutionary dynamics of cooperation and defection 
in iterated games. We confirm the utility of this approach by comparing our analytical predictions to Monte 
Carlo simulations, studying the effects of population size, group size, and memory capacity on the evolution of 
cooperation.

We begin our analysis by describing a coordinate system under which the volume of robust strategies can be 
determined analytically, for games of size n, played in populations of size N, in which strategies have memory 
length m. We use this coordinate system to completely characterize all evolutionary robust cooperating (and 
defecting) strategies, which cannot be invaded by any non-cooperating (or non-defecting) mutants, in the iter-
ated n-player public-goods game. We apply these results to make specific predictions for the effects of group size 
and of memory capacity on the evolution of collective action through sustained cooperation. Finally we explore 
the consequences of these predictions for the co-evolution of cooperation and memory capacity itself.

Beyond two-player games and memory-1 strategies. Recently, Press and Dyson introduced so-called 
zero determinant (ZD) strategies in iterated two-player games18. ZD strategies are of interest because, when a 
player unilaterally adopts such a strategy she enforces a linear relationship between her longterm payoff and that 
of her opponent, and thereby gains some measure of control over the outcome of the game37–41. Several authors 
have worked to extend the framework of Press and Dyson to multi-player games30,39 and have characterized 
multi-player ZD strategies, revealing a number of interesting properties.

Other research has expanded the framework of Press and Dyson to study all possible memory-1 strategies for 
infinitely repeated, two-player games19,31–34. This work involves developing a coordinate system for the space of 
all memory-1 strategies19 that allows us to describe a straightforward (although not necessarily linear) relation-
ship between the two players’ longterm payoffs. This relationship between players’ longterm payoffs, in turn, has 
enabled us to fully characterize all memory-1 Nash equilibria and all evolutionary robust strategies for infinitely 
repeated two-player games, played in a replicating population of N individuals19,31,32,34.

Here we generalize this body of work by developing a coordinate system for the space of memory-m strategies 
in multi-player games of size n, such that all n players’ longterm payoffs are related in a straightforward (although 
not necessarily linear) way. One essential trick that enables us to achieve this goal is to construct a mapping 
between memory-m strategies in an n-player game and memory-1 strategies in an associated n × m-player game. 
We then construct a coordinate system for the space of memory-1 strategies in multi-player games that allows 
us to easily characterize the cooperating and the defecting strategies that resist invasion. We apply these tech-
niques to the case of iterated n-player public-goods games and we precisely characterize all evolutionary robust 
memory-m strategies – i.e. those strategies that, when resident in a finite population of N players, can resist selec-
tive invasion by all other possible strategies – thereby elucidating the prospects for the evolution of cooperation 
in a very general setting.

A coordinate system for long-memory strategies in multi-player games. Our goal is to study 
the effects of group size and memory on the frequency and nature of collective action in public-goods games. 
Allowing for long-memory strategies and games with more than two players greatly expands the potential for 
behavioral complexity, because players are able to react to the behaviors of multiple opponents across multiple 
prior interactions. And so merely determining the payoffs received by players in such an iterated public-goods 
game can pose a significant challenge. In order to tackle this problem we develop a coordinate system for param-
eterizing strategies, in which the outcome of a game between multiple players using long-memory strategies can 
nonetheless be easily understood.

A player using a memory-m strategy chooses her play in each round of an iterated game in a way that depends 
on the history of plays by all n players across the preceding m rounds. In general such a strategy consists of 2n×m 
probabilities for cooperation in the present round. We write the probability for cooperation of a focal player in its 
most general form as ∈σ σ σ σ. . . −

p [0, 1], , , , n0 1 2 1
 where σi denotes the history of plays for player i. Each σi corre-

sponds to an ordered sequence of m plays for player i, with each entry taking the value c (cooperate) or d (defect). 
The 2n×m probabilities for cooperation form a basis for 

×2n m
 and constitute a system of coordinates for the space 

of memory-m strategies in n-player games. In the supporting information we describe in detail how to construct 
an alternate coordinate system of 2n×m vectors that also form a basis for 

×2n m
, and which greatly simplifies the 

analysis of long-term payoffs in iterated games. Below we describe this alternative coordinate system for the spe-
cific case of iterated public-goods games, which are the focus of this study.
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(i) Mapping memory-m to memory-1. In order to simplify our analysis of long-memory strategies we will con-
ceive of a focal player using a memory-m strategy in an n-player game as a player who instead uses a memory-1 
strategy in an associated n × m-player game. That is, we will think of an n-player game in which a focal player uses 
a memory-m strategy in terms of an equivalent n × m-player game, which is composed of n “real” players along 
with m − 1 “shadow” players associated with each real player. The shadow players play the same way that their 
associated real player did t rounds previously, for 2 ≤ t ≤ m. The focal player’s memory-m strategy is thus identical 
to a memory-1 strategy in the n × m player game, where the corresponding memory-1 strategy responds to a large 
set of “shadow” players whose actions in the immediately previous round simply encode the actions taken by the 
n real players in the preceding m rounds. This trick allows us to reduce the problem of studying long-memory 
strategies to the problem of studying memory-1 strategies, albeit with a larger number of players in the game.

All that is required is to construct strategies for the shadow players so that the state of the system across the 
preceding m rounds is correctly recreated at each round of the associated n × m-player game. This construction 
is straight forward. If the focal player played c in the last round, then we stipulate that her first shadow player will 
play c in the next round (i.e. it will copy her last move). Similarly her second shadow player will copy the last move 
of her first shadow player, and so on, up to her (m − 1)st shadow player. The same goes for the shadow players of 
each of her n − 1 opponents. In this way, all the plays of the last m rounds in the n-player game are encoded at 
each round in the associated n × m-player game.

Having transformed an arbitrary memory-m strategy in an n-player into an associated memory-1 strategy in 
an n × m-player game, we now describe a coordinate system for memory-1 strategies that allows us to derive a 
simple relation among the equilibrium payoffs to all players. We define this coordinate system for arbitrary games 
in the supporting information (section 3), and for the case of public-goods games below.

(ii) Parameterizing strategies in public-goods games. Under a public-goods game, a player who cooperates along 
with k of her opponents receives a net payoff B(k + 1)/n − C, whereas a player who defects while k of her oppo-
nents cooperate receives a net payoff Bk/n. That is, the payoff received depends on whether or not the focal player 
cooperated and on the number of her opponents that cooperated, but it does not depend on the identity of her 
cooperating opponents. Likewise, if a player has memory of the preceding m rounds of an iterated public-goods 
game, then her payoff across those rounds depends on the total number of times she cooperated and the total 
number of times her opponents cooperated, but it does not depend on the order in which different players coop-
erated nor on the identity of her cooperating opponents. Therefore, rather than studying the full space of 2n×m 
probabilities for cooperation, we can limit our analysis for iterated public-goods games to strategies that keep 
track of the total number of times a focal player cooperated, and the number of times her opponents cooperated, 
within her memory capacity. A focal player’s strategy can thus be expressed as − + × +n m m(( 1) 1) ( 1) prob-
abilities for cooperation each round, pl l,o p, where lo denotes the total of number of times the player’s opponents 
cooperated in the preceding m rounds (which number can vary between 0 and (n − 1)m) and lp denotes the total 
number of times the player herself cooperated in the preceding m rounds (which can vary between 0 and m).

Although the probabilities pl l,o p are perhaps the most natural coordinates for describing a memory-m strategy 
in an iterated n-player public-goods game, we have developed an alternative coordinate system, defined in Fig. 2, 
that simplifies the analysis of equilibrium payoffs and the evolutionary robustness of strategies. The alternative 
system of − + × +n m m(( 1) 1) ( 1) coordinates for a given player’s strategy is described by parameters 
χ φ κ Λ … Λ − ×{ , , , , , }n m m0,0 ( 1) ,  defined in Fig. 2. We impose the boundary conditions Λ = Λ =− × 0n m m0,0 ( 1) ,  

along with one other linear relationship on the Λ terms (see supporting information). Qualitatively, this coordi-
nate system describes the probability of cooperation in a given round, pl l,o p, in terms of a weighted sum of five 

Figure 2. A co-ordinate system for describing strategies in public-goods games. We consider the space of 
strategies of the form pl l,o p, such that players cooperate with a probability that depends on the number of times lo 
her opponents have cooperated and the number of times lp she has cooperated within her memory. We define 
the strategy of a focal player by coordinates χ φ κ Λ …Λ − ×{ , , , , }n m m0,0 ( 1) ,  as shown in the figure. The 
components of this coordinate system have an intuitive interpretation: the probability that a player cooperates 
depends on (1) her past tendency to cooperate, (2) a baseline tendency to cooperate (κ), (3) a tendency to 
cooperate in proportion to her own payoff (χ), (4) a tendency to punish (i.e. defect) in proportion to her 
opponents’ payoffs (φ) and (5) a contingent punishment that depends on the specific outcome of the game over 
the prior m rounds (Λ − ×n m m( 1) , ).
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components: (1) The tendency to repeat past behavior; (2) The baseline tendency to cooperate (κ); (3) The ten-
dency to cooperate in proportion to the payoff received by the focal player (χ); (4) The tendency to punish (i.e. 
defect) in proportion to the payoffs received by her opponents (ϕ) and (5) The tendency to punish in response to 
the specific outcome of the previous rounds (Λl l,o p).

The advantage of using this coordinate system is that it provides a simple relationship between the long-term 
payoff to a focal player 0, S0, and the the long-term payoffs Si of each of her opponents i in an iterated n-player 
public-goods game:
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Here the term ′ ′wl l,o p denotes the equilibrium rate at which the invading player cooperates ′lp times and his 

opponents cooperate ′lo times over the preceding m rounds, and Λ
′ ′ˆ l l,o p denotes the contingent punishment of the 

focal strategy from the point of view of a co-player (see supporting information for a derivation of 1). Λ
′ ′ˆ l l,o p is 

related in a simple way to the terms Λl l,o p, so that increasing Λl l,o p increases Λ
′ ′ˆ l l,o p (see supporting information).

Results
The effects of group size on robust cooperation. The relationship among payoffs summarized in 1 pro-
vides extensive insight into the outcome of iterated public-goods games. Of particular interest are the prospects 
for cooperation as the group size n and population size N grow. Public-goods games are well known examples 
of the collective action problem, in which increasing the number of players in a game worsens the prospects for 
cooperation42,43. Larger populations, on the other hand, tend to make it easier to evolve robust cooperation, at 
least for two-player games32. We will use 1 to explore the tradeoff between group size and population size, and the 
nature of robust cooperative behaviors that can evolve in multi-player games.

1 allows us to characterize the ability of a cooperative strategy to resist invasion by any other strategy in a 
population of size N19,31,32,34. We define a cooperative strategy as one which, when played by every member of a 
population, assures that all players cooperate at equilibrium and thus receive the payoff for mutual cooperation, 
B–C. This implies the necessary condition =− ×p 1n m m( 1) , , so that if all players cooperated in the preceding m 
rounds, a player using a cooperative strategy is guaranteed to cooperate in the next round. We call such strategies 
“cooperators” meaning that they produce sustained cooperation when resident in a population. In the alternate 
coordinate system developed above a necessary condition for sustained cooperation is κ = B–C.

Conversely, we also consider strategies that lead to collective inaction, meaning sustained defection. Such 
strategies must have =p 00,0 , which implies a necessary condition κ = 0 in the alternate coordinate system. We 
call strategies satisfying this condition “defectors” meaning that they produce sustained defection when resident 
in a population.

A rare mutant i can invade a population of size N in which a cooperative strategy is resident only if he receives 
a payoff Si that exceeds the payoff received by the resident cooperator. By considering bounds on the payoffs 
received by players (see supporting information) we have derived necessary and sufficient conditions for a coop-
erative strategy χ ϕ κ Λ …Λ

− × −ˆ ˆ{ , , , , }
n m m0,1 ( 1) , 1

 to resist selective invasion by any mutant strategy – that is, for a 
cooperative strategy to be evolutionary robust:
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Eq. 2 allows us to make a number of observations about the prospects and nature of robust cooperation. First, 
although Eq. 2 depends on the equilibrium rate of play wl l,o p, which itself depends on the strategy used by both the 
focal strategy and the co-player, because ∈w [0, 1]l l,o p  we can nonetheless choose χ φ κ Λ …Λ

− ×ˆ ˆ( , , , , )
n m m0,0 ( 1) ,

 
so as to ensure Eq. 3 is satisfied and the strategy is robust against all mutants. In particular, for a given φ,χ if we 
choose large enough values of Λ̂

l l,o p the strategy will be robust. This corresponds to ensuring contingent punish-
ment is “strong enough” so that players are able to successfully punish rare defection. Second, positive values of χ, 
corresponding to more generous strategies32, in which players tend to share the benefits of mutual cooperation, 
also make it easier for a strategy to satisfy the requirements for robust cooperation. Thus, complex strategies that 
punish rare defection and are generous to other players tend to produce robust cooperative behavior in an evolv-
ing population. Finally, we can use Eq. 2 to assess the robustness of any cooperative strategy, by calculating the 
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equilibrium rate of play against four “extremal” strategies that maximize or minimize the sum and the difference 
of the players’ scores (see SI and also39).

Eq. 2 also shows that larger values of n, corresponding to games with more players, tend to make for smaller 
volumes of robust cooperative strategies. This can be see on the left-hand side of the first inequality in 2, where 
increasing n attenuates the impact of contingent punishment on robustness. Likewise, this can also been seen on 
the right-hand side of the inequality in 2, where increasing n attenuates the impact of generosity on robustness.

The effects of group size (i.e the number of players in a given game) on the prospects for cooperation can be 
illustrated by considering two extreme cases. When the entire population takes part in a single multi-player game, 
so that n = N, then 2 implies that strategies can be robust only if χ ≥ φ. However, in order to produce a viable 
strategy χ ≤ φ is required (Fig. 2); and so the only possible way to ensure robust cooperation in this extreme case 
is to have χ = φ. The condition χ = φ gives a tit-for-tat-like strategy, and it results in unstable cooperative behavior 
in the presence of noise31. And so, in the limit of games as large as the entire population size the prospects for 
evolutionary robust cooperation are slim. However, in the contrasting case in which the population size is much 
larger than the size of the game being played, that is  N n 1, then 2 shows that a positive volume of robust 
cooperative strategies always exists, given sufficient contingent punishment Λl l,o p, even in very large games.

Understanding the expected rate of cooperation in multi-player games requires that we compare the volume of 
robust cooperative strategies to the volume of robust defecting strategies. A rare mutant i can invade a population 
in which a defecting strategy is resident only if he receives a payoff Si that exceeds the payoff received by the resi-
dent defector. The resulting necessary and sufficient conditions for the robustness of defecting strategies are then:
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Once again, we see from Eq. 3 that if we choose large enough values of Λ̂
l l,o p, resulting in stronger contingent 

punishment of rare cooperators in a population of defectors, a defecting strategy will be robust. However, in con-
trast to the case for cooperators, smaller values of χ, which for defectors corresponds to more extortionate behav-
ior, such that players try to increase their own payoff at their opponents’ expense18, makes a defecting strategy 
more likely to satisfy the requirements for robustness. Finally, while larger values of n can attenuate the effect of 
contingent punishment on robustness, they also make it easier to construct an extortionate strategy that is robust; 
and the latter effect is always stronger, so that larger games permit a greater volume of defecting strategies. 
Overall, Eq. 3 implies that increasing the number of players in each game, n, tends to increase the volume of 
robust defectors, in contrast to its effect on robust cooperators.

We confirmed our predictions for the effects of group size on the volume of robust cooperators and defectors 
by analytical calculation of robust volumes, from Eqs 2–3, and by comparison to direct simulation for the invasi-
bility of cooperators and defectors against a large range of mutant invaders (Fig. 3a). As group size increases the 
volume of robust cooperators decreases relative to the volume of robust defectors, making cooperation harder to 
evolve.

There is a simple intuition for why larger games make cooperation less robust and defection more robust: In 
public-goods games with more players, the marginal change in payoff to a player who switches from cooperation 
to defection is C − B/n, and so the incentive to defect grows as the size of the group grows. This of course is the 
group size paradox, and it is a well known phenomenon for any collective action problem42. In the limiting case 
n = N the only hope for robust cooperation is tit-for-tat-like strategies, that are capable of both sustained cooper-
ation and sustained defection, depending on their opponent’s behavior.

In general, both cooperators and defectors have positive volumes of robust strategies, provided n < N. As such, 
both cooperation and defection can evolve. Although these robust strategies cannot be selectively invaded by any 
other strategy when resident in a population, they can be neutrally replaced by a non-robust strategy of the same 
type, which can in turn be selectively invaded. As a result, there is a constant turnover between cooperation and 
defection over the course of evolution, with the relative time spent at cooperation versus defection determined by 
their relative volumes of robust strategies31,34.

Our results show that the problem of collective action is alleviated by sufficiently large population sizes. That 
is, for an arbitrarily large group size n we can always find yet larger population sizes N such that robust coopera-
tive strategies are guaranteed to exist. Moreover, increasing the population size N leads to increasing volumes of 
robust cooperative strategies and decreasing volumes of robust defecting strategies (Fig. S1).

The effects of memory on robust cooperation. We have not yet said anything about the impact of 
memory capacity on the prospects for cooperation. Indeed, the robustness conditions Eqs 2–3 do not depend 
explicitly on memory length m, as they do on group size n and on population size N. However, memory does have 
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an important impact on the efficacy of contingent punishment, Λ̂, on the left-hand sides of the inequalities in 2 
and 3. Figure 3 illustrates the impact of increasing memory m on the volume of robust cooperative and robust 
defecting strategies. Here we see the opposite pattern to the effect for group size: as memory increases, there is a 
larger volume of robust cooperation relative to robust defection.

We can develop an intuitive understanding for the effect of memory on sustained cooperation by considering 
its role in producing effective punishment. A longer memory enables a player to punish opponents who seek to 
gain an advantage through rare deviations from the social norm: that is, rare defectors in a population of coop-
erators or rare cooperators in a population of defectors. However, using a long memory to punish rare defectors 
is a more effective way to enforce cooperation than punishing rare cooperators is to enforce defection (since in 
the latter case the default behavior is to defect anyway, and so increasing the amount of “punishment” has little 
overall effect on payoff). And so as memory increases, cooperators become more robust relative to defectors, as 
2–3 and Fig. 3 show.

The change in the efficacy of punishment for rare deviants from the social norm as memory capacity increases 
is illustrated in Fig. S2, where we calculate the average Λ̂

l l,o p for randomly-drawn cooperative or defecting strate-
gies. We see that as memory capacity increases, a randomly drawn cooperator tends to engage in more effective 
punishment (larger values of Λ̂

l l,o o) whereas a randomly drawn defector tends to engage in less effective punish-
ment (smaller values of Λ̂

l l,o o). This trend explains why increasing memory capacity increases the volume of robust 
cooperators relative to defectors.

Evolution of memory. Our results on the relationship between memory capacity and the robustness of 
cooperation raise a number of interesting questions. In particular, memory of the type we have considered does 
not seem to convey a direct advantage to cooperation (or defection), because a robust cooperative (or defecting) 
strategy is robust against all possible invaders, regardless of their memory capacity. However increased memory 
can nonetheless make robust cooperation easier to evolve, because it allows for more effective contingent punish-
ment. This tends to have a stronger impact when games are small because, as described in Eqs 2–3, the impact of 
contingent punishment on robustness is attenuated by a factor N–n, and thus the effect of longer memory on the 
contributions of Λ̂ terms to robust cooperation is smaller in larger games. And so, at least when the number of 
players is relatively small, we might expect long memories to facilitate the evolution of cooperation in 
populations.

What our analysis has not yet addressed is whether memory capacity itself can adapt, and what its co-evolution 
with strategies in a population will imply for the longterm prospects of cooperation. To address this question 
we undertook evolutionary simulations, allowing heritable mutations both to a player’s strategy and also to her 
memory capacity. These simulations, illustrated in Fig. 4, confirm that (i) longer memories do indeed evolve and 
(ii) this leads to an increase in the amount of cooperation in a population (Fig. 4). In a two-player game, mem-
ory tends to increase over time, which in turn drives an increase in the frequency of cooperators and a decline 

Figure 3. The impact of group size and memory capacity on cooperation. We calculated the relative volumes 
of robust cooperation – that is, the absolute volume of robust cooperative strategies divided by the total volume 
of robust cooperators and defectors – and compared this to the relative volume of defectors (solid lines) by 
numerically integrating Eqs. 2–3. We also verified these analytic results by randomly drawing 106 cooperative 
and 106 defecting strategies and determining their success at resisting invasion from 105 random mutants 
with the same memory (points). We calculated player’s payoffs by simulating 2 × 103 rounds of a public-goods 
game. We then plotted the relative volumes of robust cooperators and robust defectors as a function of group 
size n (with fixed memory m = 1, left) and as a function of memory capacity m (with fixed group size n = 2, 
right). Increasing group size increases the relative volume of robust defection; while increasing memory length 
increases the relative volume of robust cooperation. In all calculations and simulations we used cost C = 1 and 
benefit B as indicated in the figure.
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Figure 4. Co-evolution of strategies and memory capacity. We simulated populations playing the iterated 
n-player public-goods game, proposing mutant strategies until reaching equilibrium, and then also proposing 
mutations to a player’s memory capacity m, each at rate μ/10. In these simulations all players initially have 
memory m = 1, with payoff parameters C = 1 and B = 1.2. Mutations to strategies were drawn uniformly from 
the full space of memory-m strategies. Mutations perturbing the memory m caused it to increase or decrease by 
1, with a lower bound of m = 1. Evolution was modeled according to a copying process under weak mutation31 
in a population of size N = 10 individuals. (a) When the group size is small, n = 2, defecting strategies are 
initially dominant in the population, but they are quickly replaced by cooperators as memory capacity evolves 
to higher values. (b) When group size is large, n = N = 10, defecting strategies initially dominate the population 
and they remain dominant as memory evolves. In both (a,b) the overall frequency of cooperators and defectors 
(that is, the fraction of robust cooperative (and defecting) strategies among all cooperative and (defecting) 
strategies) decline as the dimension of strategy space increases, in line with the decline in the overall volume of 
robust strategies (Fig. S4). (c) When the game size is small memory evolves rapidly to larger values, reflecting 
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in defectors. This is accompanied by a large overall increase in the population mean fitness. By contrast, when 
the group size is large, n = N, there is little evolutionary change in memory capacity and defection continues 
to be more frequent than cooperation even as strategies and memory co-evolve. In a two-player game, even 
when memory comes at a substantial cost, an intermediate level of memory evolves, and there is a corresponding 
increase in the degree of cooperation (Fig. S3).

How are we to understand why memory evolves at all in these co-evolutionary simulations? The change in 
memory capacity is puzzling, at first glance, because a longer memory conveys no direct advantage against a 
resident robust strategy – since robustness implies uninvadability by any opponent, regardless of the opponent’s 
memory capacity. The key to understanding this co-evolutionary pattern is to note that longer memories are, on 
average, better at invading non-robust strategies, due to their greater capacity for contingent punishment (Fig. S3).  
Thus, when games are sufficiently small, the neutral drift that leads to turnover between cooperation and defec-
tion31,34 also provides opportunity for longer-memory strategies to invade and fix.

Discussion
We have constructed a coordinate system that enables us to completely characterize the evolutionary robustness 
of arbitrary strategies in iterated multi-player public-goods games. This allows us to quantify the contrasting 
impacts of the number of players who engage in a game, and the memory capacity of those players on the evolu-
tion of cooperative behavior and collective action. In particular we have shown that while increasing the number 
of players in a game makes both cooperation and longer memories harder to evolve, in small groups, memory 
capacity tends to increase over time and drives the evolution of cooperative behavior.

To understand the evolution of social behavior it is not sufficient to simply determine whether particular 
types of strategies exist or not. Indeed, for repeated games, strategies that enforce any individually rational 
social norm are guaranteed to exist by the famous Folk Theorems44. The more incisive question, from an 
evolutionary viewpoint, is how often strategies of different types arise via random mutation, how often they 
reach fixation, and how long they remain fixed in the face of mutant invaders and other evolutionary forces 
such as neutral genetic drift. To address these questions we have analyzed the evolutionary robustness of 
strategies that result in sustained cooperation. We have shown that a strategy is more likely to be evolutionary 
robust if it can successfully punish defectors. We have shown that players with longer memories have access 
to a greater volume of such evolutionary robust strategies, and that, as a result, over the course of evolution 
populations that evolve longer memories are more likely to evolve cooperative behaviors. Memory of the type 
we have considered does not result in better strategies per se, but in a greater quantity of robust cooperative 
strategies.

In contrast to memory capacity, larger games favor defecting strategies over cooperating strategies, because 
larger games reduce the marginal cost to a player of switching from cooperation to defection, and make it harder 
for even long-memory players to effectively punish defectors. Thus we find in evolutionary simulations that only 
in small groups do both long-memory strategies and cooperation tend to evolve and dominate. The continued 
evolution of longer memories in small groups in our simulations is particularly striking, and reflects not the 
greater robustness of longer memory strategies, but their success as invaders.

It is important to emphasize that all of these effects of memory and group size are driven by changes in the 
volume of robust cooperative strategies. There is no single “best” strategy or memory length that evolution favors. 
Greater volumes of cooperative strategies lead to a greater degree of cooperation over the course of evolution in 
a population; and greater success as an invader among long-memory strategies leads to the evolution of longer 
memories. This is true even when memory comes at a cost, provided longer-memory strategies still enjoy increased 
success as invaders compared to shorter-memory strategies, which they often do (Fig. S3). According to the 
results of Press and Dyson18, a memory-1 player can always treat a longer-memory opponent as though he also 
has memory-1. And so when memory comes at a cost, it is always possible to construct a memory-1 strategy that 
outcompetes a longer memory strategy. This leads to opposing forces on the evolution of memory length, when 
memory comes at a cost, and complex evolutionary dynamics (Fig. S3).

How memory will evolve in natural populations depends on the genetic architecture of the organism and 
the magnitude of costs of memory22,23. Our results show that the evolution of cooperation in iterated games 
is strongly influenced by the memory capacity available to players, and therefore it cannot be adequately 
understood in general by restricting study to the space of memory-1 strategies, despite the results of Press and 
Dyson18.

A complex balance between behavior, memory, group size and environment can lead to wide variation in 
evolutionary outcomes in the presence of social interactions. Understanding this balance is vital if we are to 
understand and interpret the role of cooperative behavior in evolution. Despite the complexity of the problem, 
and the very general n-player memory-m setting we have analyzed, we have arrived at a few simple qualitative 
predictions, which may admit to testing not only in the social interactions of natural populations12 but also 
through experiments with human players45,46. Of course, the type of memory discussed here is only a small 
part of the story. We have ignored the possibility of other kinds of memory, which allow players to “tag” one 

the greater success of longer-memory strategies at invading (Fig. S3), and driving the increase in cooperative 
as compared to defecting strategies. (d) When the group size is large memory does not evolve to large values, 
reaching only m = 2 across 50,000 generations, and reflecting the decline in long-memory strategies’ success as 
invaders in larger games. (e) As cooperation increases so does the average payoff of the population, by a factor 
of 5–10 fold. (f) The lack of increase in cooperation results in a much more modest (although still appreciable) 
increase in average payoff for the population as defectors become less frequent.
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another26,27 after the completion of a game. We have ignored the role of spatial structure, of demographic 
structure, and of dispersal5. We have failed to specify the underlying mechanisms by which public-goods and 
players’ decisions are produced and executed. Accounting for all of these additional factors is an important 
challenge as researchers seek to elucidate the emergence of collective action in evolving populations and 
beyond.
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