3,396 research outputs found

    Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography

    Get PDF
    The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5–18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning

    White Matter Abnormalities in Patients with Treatment-Resistant Genetic Generalized Epilepsies.

    Get PDF
    BACKGROUND Genetic generalized epilepsies (GGEs) are associated with microstructural brain abnormalities that can be evaluated with diffusion tensor imaging (DTI). Available studies on GGEs have conflicting results. Our primary goal was to compare the white matter structure in a cohort of patients with video/EEG-confirmed GGEs to healthy controls (HCs). Our secondary goal was to assess the potential effect of age at GGE onset on the white matter structure. MATERIAL AND METHODS A convenience sample of 23 patients with well-characterized treatment-resistant GGEs (13 female) was compared to 23 HCs. All participants received MRI at 3T. DTI indices, including fractional anisotropy (FA) and mean diffusivity (MD), were compared between groups using Tract-Based Spatial Statistics (TBSS). RESULTS After controlling for differences between groups, abnormalities in DTI parameters were observed in patients with GGEs, including decreases in functional anisotropy (FA) in the hemispheric (left>right) and brain stem white matter. The examination of the effect of age at GGE onset on the white matter integrity revealed a significant negative correlation in the left parietal white matter region FA (R=-0.504; p=0.017); similar trends were observed in the white matter underlying left motor cortex (R=-0.357; p=0.103) and left posterior limb of the internal capsule (R=-0.319; p=0.148). CONCLUSIONS Our study confirms the presence of widespread white matter abnormalities in patients with GGEs and provides evidence that the age at GGE onset may have an important effect on white matter integrity

    Defining Meyer's loop-temporal lobe resections, visual field deficits and diffusion tensor tractography

    Get PDF
    Anterior temporal lobe resection is often complicated by superior quadrantic visual field deficits (VFDs). In some cases this can be severe enough to prohibit driving, even if a patient is free of seizures. These deficits are caused by damage to Meyer's loop of the optic radiation, which shows considerable heterogeneity in its anterior extent. This structure cannot be distinguished using clinical magnetic resonance imaging sequences. Diffusion tensor tractography is an advanced magnetic resonance imaging technique that enables the parcellation of white matter. Using seed voxels antero-lateral to the lateral geniculate nucleus, we applied this technique to 20 control subjects, and 21 postoperative patients. All patients had visual fields assessed with Goldmann perimetry at least three months after surgery. We measured the distance from the tip of Meyer's loop to the temporal pole and horn in all subjects. In addition, we measured the size of temporal lobe resection using postoperative T1-weighted images, and quantified VFDs. Nine patients suffered VFDs ranging from 22% to 87% of the contralateral superior quadrant. In patients, the range of distance from the tip of Meyer's loop to the temporal pole was 24–43 mm (mean 34 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –15 to +9 mm (mean 0 mm). In controls the range of distance from the tip of Meyer's loop to the temporal pole was 24–47 mm (mean 35 mm), and the range of distance from the tip of Meyer's loop to the temporal horn was –11 to +9 mm (mean 0 mm). Both quantitative and qualitative results were in accord with recent dissections of cadaveric brains, and analysis of postoperative VFDs and resection volumes. By applying a linear regression analysis we showed that both distance from the tip of Meyer's loop to the temporal pole and the size of resection were significant predictors of the postoperative VFDs. We conclude that there is considerable variation in the anterior extent of Meyer's loop. In view of this, diffusion tensor tractography of the optic radiation is a potentially useful method to assess an individual patient's risk of postoperative VFDs following anterior temporal lobe resection

    Mapping White Matter Microstructure in the One Month Human Brain

    Get PDF
    White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth

    Spherical deconvolution of multichannel diffusion MRI data with non-Gaussian noise models and spatial regularization

    Get PDF
    Spherical deconvolution (SD) methods are widely used to estimate the intra-voxel white-matter fiber orientations from diffusion MRI data. However, while some of these methods assume a zero-mean Gaussian distribution for the underlying noise, its real distribution is known to be non-Gaussian and to depend on the methodology used to combine multichannel signals. Indeed, the two prevailing methods for multichannel signal combination lead to Rician and noncentral Chi noise distributions. Here we develop a Robust and Unbiased Model-BAsed Spherical Deconvolution (RUMBA-SD) technique, intended to deal with realistic MRI noise, based on a Richardson-Lucy (RL) algorithm adapted to Rician and noncentral Chi likelihood models. To quantify the benefits of using proper noise models, RUMBA-SD was compared with dRL-SD, a well-established method based on the RL algorithm for Gaussian noise. Another aim of the study was to quantify the impact of including a total variation (TV) spatial regularization term in the estimation framework. To do this, we developed TV spatially-regularized versions of both RUMBA-SD and dRL-SD algorithms. The evaluation was performed by comparing various quality metrics on 132 three-dimensional synthetic phantoms involving different inter-fiber angles and volume fractions, which were contaminated with noise mimicking patterns generated by data processing in multichannel scanners. The results demonstrate that the inclusion of proper likelihood models leads to an increased ability to resolve fiber crossings with smaller inter-fiber angles and to better detect non-dominant fibers. The inclusion of TV regularization dramatically improved the resolution power of both techniques. The above findings were also verified in brain data

    Microstructural asymmetry of the corticospinal tracts predicts right-left differences in circle drawing skill in right-handed adolescents

    Get PDF
    Most humans show a strong preference to use their right hand, but strong preference for the right hand does not necessarily imply a strong right–left asymmetry in manual proficiency (i.e., dexterity). Here we tested the hypothesis that intra-individual asymmetry of manual proficiency would be reflected in microstructural differences between the right and left corticospinal tract (CST) in a cohort of 52 right-handed typically-developing adolescents (11–16 years). Participants were asked to fluently draw superimposed circles with their right dominant and left non-dominant hand. Temporal regularity of circle drawing movements was assessed for each hand using a digitizing tablet. Although all participants were right-handed, there was substantial inter-individual variation regarding the relative right-hand advantage for fluent circle drawing. All subjects underwent whole-brain diffusion tensor imaging at 3 Tesla. The right and left CST were defined as regions-of-interest and mean fractional anisotropy (FA) and diffusivity values were calculated for right and left CST. On average, mean FA values were higher in the left CST relative to right CST. The degree of right–left FA asymmetry showed a linear relationship with right–left asymmetry in fluent circle drawing after correction for age and gender. The higher the mean FA values were in the left dominant CST relative to the right non-dominant CST, the stronger was the relative right-hand advantage for regular circle drawing. These findings show that right–left differences in manual proficiency are highly variable in right-handed adolescents and that this variation is associated with a right-left microstructural asymmetry of the CST

    Quantitation in MRI : application to ageing and epilepsy

    No full text
    Multi-atlas propagation and label fusion techniques have recently been developed for segmenting the human brain into multiple anatomical regions. In this thesis, I investigate possible adaptations of these current state-of-the-art methods. The aim is to study ageing on the one hand, and on the other hand temporal lobe epilepsy as an example for a neurological disease. Overall effects are a confounding factor in such anatomical analyses. Intracranial volume (ICV) is often preferred to normalize for global effects as it allows to normalize for estimated maximum brain size and is hence independent of global brain volume loss, as seen in ageing and disease. I describe systematic differences in ICV measures obtained at 1.5T versus 3T, and present an automated method of measuring intracranial volume, Reverse MNI Brain Masking (RBM), based on tissue probability maps in MNI standard space. I show that this is comparable to manual measurements and robust against field strength differences. Correct and robust segmentation of target brains which show gross abnormalities, such as ventriculomegaly, is important for the study of ageing and disease. We achieved this with incorporating tissue classification information into the image registration process. The best results in elderly subjects, patients with TLE and healthy controls were achieved using a new approach using multi-atlas propagation with enhanced registration (MAPER). I then applied MAPER to the problem of automatically distinguishing patients with TLE with (TLE-HA) and without (TLE-N) hippocampal atrophy on MRI from controls, and determine the side of seizure onset. MAPER-derived structural volumes were used for a classification step consisting of selecting a set of discriminatory structures and applying support vector machine on the structural volumes as well as morphological similarity information such as volume difference obtained with spectral analysis. Acccuracies were 91-100 %, indicating that the method might be clinically useful. Finally, I used the methods developed in the previous chapters to investigate brain regional volume changes across the human lifespan in over 500 healthy subjects between 20 to 90 years of age, using data from three different scanners (2x 1.5T, 1x 3T), using the IXI database. We were able to confirm several known changes, indicating the veracity of the method. In addition, we describe the first multi-region, whole-brain database of normal ageing

    Gender Differences in White Matter Microstructure

    Get PDF
    Sexual dimorphism in human brain structure is well recognised, but little is known about gender differences in white matter microstructure. We used diffusion tensor imaging to explore differences in fractional anisotropy (FA), an index of microstructural integrity.A whole brain analysis of 135 matched subjects (90 men and 45 women) using a 1.5 T scanner. A region of interest (ROI) analysis was used to confirm those results where proximity to CSF raised the possibility of partial-volume artefact.Men had higher fractional anisotropy (FA) in cerebellar white matter and in the left superior longitudinal fasciculus; women had higher FA in the corpus callosum, confirmed by ROI.The size of the differences was substantial--of the same order as that attributed to some pathology--suggesting gender may be a potentially significant confound in unbalanced clinical studies. There are several previous reports of difference in the corpus callosum, though they disagree on the direction of difference; our findings in the cerebellum and the superior longitudinal fasciculus have not previously been noted. The higher FA in women may reflect greater efficiency of a smaller corpus callosum. The relatively increased superior longitudinal fasciculus and cerebellar FA in men may reflect their increased language lateralisation and enhanced motor development, respectively
    corecore