1,541 research outputs found

    Optimizing the airborne laser scanning estimation of basal area larger than mean (BALM): An indicator of cohort balance in forests

    Get PDF
    Airborne laser scanning (ALS) assisted basal area larger than mean (BALM) estimation measures the cohort balance in forests and provides adequate opportunities to describe forest structure. However, a problem still exists that how the plot size, sample size (number of trees), and ALS point density affect the BALM estimation. We tackled this question by using both field and ALS data from a typical managed boreal forest area in Finland. Various concentric circular plots (1-15 m radii) were simulated within the actual field plots (squared) and the optimal plot size and sample size were selected by observing changes in the absolute correlation between BALM estimates and various ALS metrics. Instability in the correlation was found at the smaller concentric circular plots (1-5 m radii) and sample sizes (less than 6 trees) but as the plot size and sample size increased, the correlation followed a convex curve. The maximum correlation was found between a concentric circular plot size 11-14 m radii (380-615 m2 area) and sample size 50-80 trees which could be the optimal plot size and sample size for a reliable BALM estimation. With regards to the ALS point density, no major effects were observed on the relationship between BALM estimates and various ALS metrics unless the point density is less than at least 5 points m 2. The point density of the current nationwide ALS survey is matching the minimum point density requirement obtained in this study and thus it is suitable for a reliable forest structural assessment

    Estimation of forest variables using airborne laser scanning

    Get PDF
    Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate methods for estimation of forest variables using laser data, and to investigate the influence of laser system parameters on the estimates. All studies were carried out in hemi-boreal forest at a test area in southwestern Sweden (lat. 58°30’N, long. 13°40’ E). Forest variables were estimated using regression models. On plot level, the Root Mean Square Error (RMSE) for mean tree height estimations ranged between 6% and 11% of the average value for different datasets and methods. The RMSE for stem volume estimations ranged between 19% and 26% of the average value for different datasets and methods. On stand level (area 0.64 ha), the RMSE was 3% and 11% of the average value for mean tree height and stem volume estimations, respectively. A simulation model was used to investigate the effect of different scanning angles on laser measurement of tree height and canopy closure. The effect of different scanning angles was different within different simulated forest types, e.g., different tree species. High resolution laser data were used for detection of individual trees. In total, 71% of the field measurements were detected representing 91% of the total stem volume. Height and crown diameter of the detected trees could be estimated with a RMSE of 0.63 m and 0.61 m, respectively. The magnitude of the height estimation errors was similar to what is usually achieved using field inventory. Using different laser footprint diameters (0.26 to 3.68 m) gave similar estimation accuracies. The tree species Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were discriminated at individual tree level with an accuracy of 95%. The results in this thesis show that airborne laser scanners are useful as forest inventory tools. Forest variables can be estimated on tree level, plot level and stand level with similar accuracies as traditional field inventories

    Assessing Biodiversity in Boreal Forests with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

    Get PDF
    Forests are the most diverse terrestrial ecosystems and their biological diversity includes trees, but also other plants, animals, and micro-organisms. One-third of the forested land is in boreal zone; therefore, changes in biological diversity in boreal forests can shape biodiversity, even at global scale. Several forest attributes, including size variability, amount of dead wood, and tree species richness, can be applied in assessing biodiversity of a forest ecosystem. Remote sensing offers complimentary tool for traditional field measurements in mapping and monitoring forest biodiversity. Recent development of small unmanned aerial vehicles (UAVs) enable the detailed characterization of forest ecosystems through providing data with high spatial but also temporal resolution at reasonable costs. The objective here is to deepen the knowledge about assessment of plot-level biodiversity indicators in boreal forests with hyperspectral imagery and photogrammetric point clouds from a UAV. We applied individual tree crown approach (ITC) and semi-individual tree crown approach (semi-ITC) in estimating plot-level biodiversity indicators. Structural metrics from the photogrammetric point clouds were used together with either spectral features or vegetation indices derived from hyperspectral imagery. Biodiversity indicators like the amount of dead wood and species richness were mainly underestimated with UAV-based hyperspectral imagery and photogrammetric point clouds. Indicators of structural variability (i.e., standard deviation in diameter-at-breast height and tree height) were the most accurately estimated biodiversity indicators with relative RMSE between 24.4% and 29.3% with semi-ITC. The largest relative errors occurred for predicting deciduous trees (especially aspen and alder), partly due to their small amount within the study area. Thus, especially the structural diversity was reliably predicted by integrating the three-dimensional and spectral datasets of UAV-based point clouds and hyperspectral imaging, and can therefore be further utilized in ecological studies, such as biodiversity monitoring

    Effects of plot size, stand density, and scan density on the relationship between airborne laser scanning metrics and the gini coefficient of tree size inequality

    Get PDF
    © 2017, Canadian Science Publishing. All rights reserved. Estimation of the Gini coefficient (GC) of tree sizes using airborne laser scanning (ALS) can provide maps of forest structure across the landscape, which can support sustainable forest management. A challenge arise s in determining the optimal spatial resolution that maximizes the stability and precision of GC estimates, which in turn depends on stand density or ALS scan density. By subsampling different plot sizes within large field plots, we evaluated the optimal spatial resolution by observing changes in GC estimation and in its correlation with ALS metrics. We found that plot size had greater effects than either stand density or ALS scan density on the relationship between GC and ALS metrics. Uncertainty in GC estimates fell as plot size increased. Correlation with ALS metrics showed convex curves with maxima at 250–450m 2 , which thus was considered the optimal plot size and, consequently, the optimal spatial resolution. By thinning the density of the ALS point cloud, we deduced that at least 3 points·m −2 were needed for reliable GC estimates. Many nationwide ALS scan densities are sparser than this, so may be unreliable for GC estimation. Ours is a simple approach for evaluating the optimal spatial resolution in remote sensing estimation of any forest attribute

    The Development of Regional Forest Inventories Through Novel Means

    Get PDF
    For two decades Light Detection and Ranging (LiDAR) data has been used to develop spatially-explicit forest inventories. Data derived from LiDAR depict three-dimensional forest canopy structure and are useful for predicting forest attributes such as biomass, stem density, and species. Such enhanced forest inventories (EFIs) are useful for carbon accounting, forest management, and wildlife habitat characterization by allowing practitioners to target specific areas without extensive field work. Here in New England, LiDAR data covers nearly the entire geographical extent of the region. However, until now the region’s forest attributes have not been mapped. Developing regional inventories has traditionally been problematic because most regions – including New England – are comprised of a patchwork of datasets acquired with various specifications. These variations in specifications prohibit developing a single set of predictive models for a region. The purpose of this work is to develop a new set of modeling techniques, allowing for EFIs consisting of disparate LiDAR datasets. The work presented in the first chapter improves upon existing LiDAR modeling techniques by developing a new set of metrics for quantifying LiDAR based on ecological ii principles. These fall into five categories: canopy height, canopy complexity, individual tree attributes, crowding, and abiotic. These metrics were compared to those traditionally used, and results indicated that they are a more effective means of modeling forest attributes across multiple LiDAR datasets. In the following chapters, artificial intelligence (AI) algorithms were developed to interpret LiDAR data and make forest predictions. After settling on the optimal algorithm, we incorporated satellite spectral, disturbance, and climate data. Our results indicated that this approach dramatically outperformed the traditional modeling techniques. We then applied the AI model to the region’s LiDAR, developing 10 m resolution wall-to-wall forest inventory maps of fourteen forest attributes. We assessed error using U.S. federal inventory data, and determined that our EFIs did not differ significantly in 33, 25, and 30/38 counties when predicting biomass, percent conifer, and stem density. We were ultimately able to develop the region’s most complete and detailed forest inventories. This will allow practitioners to assess forest characteristics without the cost and effort associated with extensive field-inventories

    Using spatial optimization to create dynamic harvest blocks from LiDAR-based small interpretation units

    Get PDF
    Spatial and temporal differences in forest features occur on different scales as forest ecosystems evolve. Due to the increased capacity of remote sensing methods to detect these differences, forest planning may now consider forest compartments as transient units which may change in time and depend on the management objectives. This study presents a methodology for implementing these transient units, referred to as dynamic treatment units (DTU). LiDAR (Light Detecting and Ranging) data and field sample plots were used to estimate forest stand characteristics for 500-m2 pixels and compartments, and a set of models was developed to enable growth simulations. The DTUs were obtained by maximizing a utility function which aimed at maximizing the aggregation of harvest areas and the ending growing stock volume with even-flow cutting targets for three 10-year periods. Remote sensing techniques, modeling, simulation, and spatial optimization were combined with the aim of having an efficient methodology for assigning cutting treatments to forest stands and delineating compact harvest blocks. Pixel-based planning led to more accurate estimation of stand characteristics and more homogeneity inside the delineated harvest blocks while the compartment-based planning resulted in larger and higher area/perimeter ratio.Financial support to conduct this study was obtained from Cost Action FP1206 “EuMixFor” (through a Short Term Scientific Mission titled “Optimization applied to forest management in mixed European forests”) as well as from the 2014 Mediterranean Model Forests grant awarded by EFIMED (Mediterranean Regional Office of the European Forest Institute) and MMFN (Mediterranean Model Forest Network)

    Estimating forest stand density and structure using Bayesian individual tree detection, stochastic geometry, and distribution matching

    Get PDF
    Errors in individual tree detection and delineation affect diameter distribution predictions based on crown attributes extracted from the detected trees. We develop a methodology for circumventing these problems. The method is based on matching cumulative distribution functions of field measured tree diameter distributions and crown radii distributions extracted from airborne laser scanning data through individual tree detection presented by Vauhkonen and Mehtatalo (2015). In this study, empirical distribution functions and a monotonic, nonlinear model curve are introduced. Tree crown radius distribution produced by individual tree detection is corrected by a method taking into account that all trees cannot be detected. The evaluation is based on the ability of the developed model sequence to predict quadratic mean diameter and total basal area. The studied data consists of 36 field plots in a typical boreal managed forest area in eastern Finland. The suggested enhancements to the model sequence produce improved results in most of the test cases. Most notably, in leaveone-out cross-validation experiments the modified models improve RMSE of basal area 13% in the full data and RMSE of quadratic mean diameter and basal area 69% and 11%, respectively, in pure pine plots. Better modeling of the crown radius distribution and improved matching between crown radii and stem diameters add the operational premises of the full distribution matching.Peer reviewe

    AUTOMATED TREE-LEVEL FOREST QUANTIFICATION USING AIRBORNE LIDAR

    Get PDF
    Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree canopy layers. Using the stratification method, we modeled the occlusion of higher canopy layers with respect to point density. We also present a distributed computing approach that enables processing the massive data of an arbitrarily large forest. Lastly, we investigated using deep learning for coniferous/deciduous classification of point cloud segments representing individual tree crowns. We applied the developed methods to the University of Kentucky Robinson Forest, a natural, majorly deciduous, closed-canopy forest. 90% of overstory and 47% of understory trees were detected with false positive rates of 14% and 2% respectively. Vertical stratification improved the detection rate of understory trees to 67% at the cost of increasing their false positive rate to 12%. According to our occlusion model, a point density of about 170 pt/m² is needed to segment understory trees located in the third layer as accurately as overstory trees. Using our distributed processing method, we segmented about two million trees within a 7400-ha forest in 2.5 hours using 192 processing cores, showing a speedup of ~170. Our deep learning experiments showed high classification accuracies (~82% coniferous and ~90% deciduous) without the need to manually assemble the features. In conclusion, the methods developed are steps forward to remote, accurate quantification of large natural forests at the individual tree level

    Individual Tree Measurements From Three-Dimensional Point Clouds

    Get PDF
    This study develops and tests novel methodologies for measuring the attributes of individual trees from three-dimensional point clouds generated from an aerial platform. Recently, advancements in technology have allowed for the acquisition of very high resolution three-dimensional point clouds that can be used to map the forest in a virtual environment. These point clouds can be interpreted to produce valuable forest attributes across entire landscapes with minimal field labor, which can then aid forest managers in their planning and decision making. Biometrics derived from point clouds are often generated on a plot level, with estimates spanning many meters (rather than at the scale of individual the individual tree), a process known as area-based estimation. As the resolution of point clouds has increased however, the structural attributes of individual trees can now be distinguished and measured, which allows for tree lists including species and size metrics for individual trees. This information can be of great use to forester managers; thus, it is essential that proper methods be developed for measuring these trees. To this end, an algorithm called layer stacking, was developed to isolate points representing the shapes of individual trees from a Light Detection and Ranging (LiDAR) derived point cloud, a process called segmentation. The validity of this algorithm was assessed in a variety of forest stand types, and comparisons were made to another popular tree segmentation algorithm (i.e., watershed delineation). Results indicated that when compared to watershed delineation, layer stacking produced similar or improved detection rates in almost all forest stands, and excelled in deciduous forests, which have traditionally been challenging to segment. The algorithm was then implemented on a large scale, for individual measurements on over 200,000 trees. The species and diameter of each tree was predicted via modeling from structural and reflectance characteristics, and allometric equations were used to obtain volume and carbon content of each tree. These estimates were then compared to measurements taken in the field, and to area-based estimates. Results indicated improved accuracy of plot level basal area, volume, and carbon estimation over traditional area-based estimation, as well as moderately reliable individual tree estimates, and highly reliable species identification. Finally, because LiDAR point clouds can be expensive to acquire, point clouds generated from aerial photos via structure-from-motion (SfM) reconstruction were evaluated for their accuracy at a tree level. An analysis between tree height measurements obtained by SfM, SfM in conjunction with LiDAR, LiDAR alone, digital stereo-photo interpretation, and field measurements was conducted. Results indicated no difference between SfM in conjunction with LiDAR and LiDAR alone. We concluded that SfM represents a valid low cost means of producing a point cloud dense enough to measure individual trees. Thus, high resolution point clouds can be used to generate forest inventories containing a number of valuable biometrics, such as tree height, species, volume, biomass, and carbon mass. Such estimates may allow for the automatic development of large-scale, detailed, and precise forest inventories without the cost, effort, and safety concerns associated with extensive field inventories
    corecore