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 This study develops and tests novel methodologies for measuring the attributes of 

individual trees from three-dimensional point clouds generated from an aerial platform. 

Recently, advancements in technology have allowed for the acquisition of very high 

resolution three-dimensional point clouds that can be used to map the forest in a virtual 

environment. These point clouds can be interpreted to produce valuable forest attributes 

across entire landscapes with minimal field labor, which can then aid forest managers in 

their planning and decision making. 

 Biometrics derived from point clouds are often generated on a plot level, with 

estimates spanning many meters (rather than at the scale of individual the individual 

tree), a process known as area-based estimation. As the resolution of point clouds has 

increased however, the structural attributes of individual trees can now be distinguished 

and measured, which allows for tree lists including species and size metrics for individual 

trees. This information can be of great use to forester managers; thus,  it is essential that 

proper methods be developed for measuring these trees. 

 To this end, an algorithm called layer stacking, was developed to isolate points 

representing the shapes of individual trees from a Light Detection and Ranging (LiDAR) 
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derived point cloud, a process called segmentation. The validity of this algorithm was 

assessed in a variety of forest stand types, and comparisons were made to another popular 

tree segmentation algorithm (i.e., watershed delineation). Results indicated that when 

compared to watershed delineation, layer stacking produced similar or improved 

detection rates in almost all forest stands, and excelled in deciduous forests, which have 

traditionally been challenging to segment.  

 The algorithm was then implemented on a large scale, for individual 

measurements on over 200,000 trees. The species and diameter of each tree was predicted 

via modeling from structural and reflectance characteristics, and allometric equations 

were used to obtain volume and carbon content of each tree. These estimates were then 

compared to measurements taken in the field, and to area-based estimates. Results 

indicated improved accuracy of plot level basal area, volume, and carbon estimation over 

traditional area-based estimation, as well as moderately reliable individual tree estimates, 

and highly reliable species identification. 

 Finally, because LiDAR point clouds can be expensive to acquire, point clouds 

generated from aerial photos via structure-from-motion (SfM) reconstruction were 

evaluated for their accuracy at a tree level. An analysis between tree height measurements 

obtained by SfM, SfM in conjunction with LiDAR, LiDAR alone, digital stereo-photo 

interpretation, and field measurements was conducted. Results indicated no difference 

between SfM in conjunction with LiDAR and LiDAR alone. We concluded that SfM 

represents a valid low cost means of producing a point cloud dense enough to measure 

individual trees.  
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 Thus, high resolution point clouds can be used to generate forest inventories 

containing a number of valuable biometrics, such as tree height, species, volume, 

biomass, and carbon mass. Such estimates may allow for the automatic development of 

large-scale, detailed, and precise forest inventories without the cost, effort, and safety 

concerns associated with extensive field inventories.  
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CHAPTER ONE: 

LAYER STACKING: A NOVEL ALGORITHM FOR INDIVIDUAL FOREST 

TREE SEGMENTATION FROM LIDAR POINT CLOUDS 

Introduction 

 Current advances in remote sensing are improving the accuracy and scope of 

forest inventories by using high resolution three-dimensional spatial data. One of the 

most effective tools for retrieving such data is Light Detecting and Ranging (LiDAR), 

which uses laser range finding to create three-dimensional point clouds representing 

forest canopy structure. Aerial LiDAR applications for forest inventories can be divided 

into two categories. First, area-based approaches retrieve general height metrics such as 

mean point height and point height distributions. These data are used to estimate, for 

example, forest volume, biomass, and stem density through regression and other 

modeling techniques (Means et al. 2000, Næsset 2002, Maltamo et al 2004). Second, 

individual-tree-based approaches first retrieve detailed metrics from individual trees 

(often directly measuring each tree's crown attributes),  then either aggregate them to 

characterize forest attributes for larger areas, or use them in combination with area-based 

approaches (Lindberg 2010).  

Area-based approaches have been more widely employed than individual-tree 

approaches, in part because most LiDAR datasets have point densities considered too 

sparse for the identification of individual tree crowns from point clouds, a process 

referred to as segmentation. However, densities of LiDAR data collections are rapidly 

improving, with collections regularly flown at a density of ten or more pulses per square 

meter (pls/m2), making individual tree segmentation a feasible alternative to area-based 
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approaches. This opens the possibility for identifying and retrieving measurements from 

all canopy trees over large areas. Some benefits to the individual tree approach include: 

making the inventory more intuitive (i.e., closely resembling traditional field-based forest 

inventories but at much larger scales), easier classification of tree species (Vastaranta et 

al. 2009), and more precise inventories that include listed attributes of each tree.   

 Previous segmentation endeavors show promise, yet still highlight the challenge 

of isolating individual trees. For example, in a comparison across segmentation methods, 

Vauhkonen et al. (2011) reported individual tree detection rates (defined as percent of 

trees correctly detected) ranging between 40 and 80% across a variety of forest types. In a 

similar study, Kaartinen et al. (2012) reported a range between 40 and 90% with boreal 

conifers. Because of this challenge and variability, few studies have directly compared 

area-based and individual-tree approaches. Yu et al. (2010) conducted such a comparison 

and found that the two approaches produced comparable mean tree diameters, heights, 

and volumes, but concluded that the individual-tree approach may yield better results 

with improved segmentation methods.  

Several segmentation methods are currently available, the most commonly used 

being watershed delineation and its variants. This method proceeds by creating a model 

of the canopy surface (referred to as a canopy height model, CHM), which is inverted to 

reveal the local maxima ridges that delineate adjacent individual tree crowns (Soille 

1999, Chen et al. 2006, Kwak et al. 2007). The method yields favorable results in stands 

of uniform crown shapes, with distinct peaks and troughs, such as pure even-aged conifer 

stands; it performs less well when applied to more complex or interlocking crowns, such 

as those of deciduous stands (Koch et al. 2006). Although standard watershed 
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segmentation, along with other CHM-based segmentation algorithms, are unable to detect 

overtopped trees (Koch et al. 2014), several variations of watershed delineation show 

promise in detecting overtopped trees by examining the point cloud beneath the canopy 

surface (Reitberger et al. 2009, Duncanson et al. 2014).   

While watershed segmentation is currently the most popular method, others are 

sometimes applied. The local maxima method identifies the peaks of tree crowns and 

delineates a surrounding crown area by expanding outward from those peaks in a variety 

of ways, such as valley following or seeded region growing (Wulder et al. 2000, Perrson 

et al. 2002, Popescu et al. 2002, Popescu et al. 2004).The density of high points method 

introduced by Rahman and Gorte (2009) creates a model, analogous to that of a CHM 

used in watershed delineation, based on the density of points. Clustering algorithms are 

also often applied to segmentation, with k-means or hierarchical clustering being the 

most common (Morsdorf et al. 2003, Gupta et al. 2010, Lee et al. 2010). Both show 

promise for isolating individual trees; however, k-means clustering requires prior 

knowledge of the number of trees present, and hierarchical clustering requires user input 

or the same knowledge of trees present to decide a stopping point for the clustering 

process. A further limitation arises when the densest point clusters (assumed to represent 

the tree center) occur where adjacent crowns interlock.  

 We present a novel segmentation algorithm referred to as layer stacking that 

attempts to overcome several of the challenges faced by the algorithms outlined above. 

Layer stacking involves slicing the forest canopy into horizontal layers, clustering points 

within each layer, then stacking the layers to assess cluster location agreements that 

emerge among layers. The centers of areas of greater agreement are taken to represent the 
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centers of individual trees. The algorithm builds upon concepts implemented in clustering 

segmentation (Gupta et al. 2010), density of high points scanning (Rahman and Gorte 

2009), and local maxima detection algorithms (Popescu 2002). We tested the ability of of 

layer stacking to detect trees by applying it to LiDAR for which we had field-mapped and 

measured tree data representing a range of tree species compositions and structures. We 

also tested layer stacking against a commercially available watershed algorithm using 

these same plots. 

Methods 

 Study Area  

 To assess the accuracy of layer stacking, sites were needed that had a variety of 

forest stand structures and compositions as well as accurate field-measured tree heights 

and mapped locations for many individual trees. The sites we selected were located in 

Maine and New Brunswick's mixedwood Acadian Forest, which support nearly pure 

coniferous stands similar in structure to boreal forests in northern latitudes, pure 

deciduous stands similar in structure to the temperate forests of the Mid-Atlantic region, 

and various mixtures of the two. Three sites were used for algorithm verification. The 

first was the University of Maine Foundation's Penobscot Experimental Forest (PEF, at 

44.879, -68.653), chosen for the even- and uneven-aged silvicultural treatments applied 

there by the U.S. Forest Service, Northern Research Station. The second was the 

University of Maine's Cooperative Forestry Research Unit's Austin Pond (AP, at 45.199, 

-69.708) study, chosen for its even-aged silviculture. The third was the University of New 

Brunswick's Noonan Research Forest (NRF, at 45.988, -66.396), chosen for its 

mixedwood forest. 
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 Plots used for verification had previously been established at each site. Plots on 

the PEF were fixed-radius plots of either 15.9 or 20 m, plots at AP were 30 × 25 m, and 

plots at Noonan were 50 × 50 m. Plot centers were taken via GPS, and then were shifted 

a posteriori to align the trees visually with the raw LiDAR point clouds.  Trees greater 

than 11.4 cm diameter at breast height (DBH, 1.37 m) at the PEF and 10 cm DBH at AP 

and NRF were plotted spatially, with height and species also noted. Table 1.1 lists the 

attributes and background of each stand. Species composition was noted as the relative 

frequency of each tree species for plotted trees, and reported down to 5%. Plots with 

greater than 400 trees per ha were considered to be 'dense', while those with less were 

considered as 'sparse'. By this designation, the AP site had a high density of trees; 

however, the uniform tree spacing resulting from pre-commercial thinning, similar to that 

of a plantation, resulted in different algorithm performance from the other dense even-

aged plots. For this reason, this plot was placed in a separate category.  
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Table 1.1 Stand characteristics of the study area. Includes silvicultural history, species 

composition, and year measured for the 11 stands under study. Stands are grouped by 

forest type. Stand metrics were based on trees greater than or equal to 11.4 cm DBH. The 

sites included Penobscot Experimental Forest (PEF), Austin Pond (AP), and Noonan 

Research Forest (NRF). 

*Species abbreviations are as follows: Abba = Abies balsamea, Acru = Acer rubrum, Acsa = Acer saccharum, Beal = 

Betula alleghaniensis, Bepa = Betula papyrifera, Bepo = Betula poplifolia, Fram = Fraxinus americana, Frgr = 

Fraxinus grandifolia, Osvi = Ostrya virginiana, Piru = Picea Rubens, Pist = Pinus strobus, Tiam = Tilia americana, 

Tsca = Tsuga canadensis, Thoc = Thuja occidentalis 

Stand 

Identifier 

 

Density 

(trees/ha) 

Basal 

Area 

(m2/ha) 
Silvicultural 

Treatment 

         Species                       

\       Composition* 

Year 

Inventoried 

Number 

of Plots 

Dense uneven-aged conifers 

 
 

 

 

PEF-9 510 ± 37 
29.2 ± 

1.2 

Single-tree selection 

system. Last 

harvested  2010 

35% Abba, 33% 

Tsca, 14% Piru, 9% 

Acru 

2013 4 

PEF-16 509 ± 24 
25.6 ± 

2.1 

Single-tree selection 

system. Last 

harvested  2012 

39% Tsca,  

38% Abba, 

9% Piru, 7% Acru 

2011 6 

PEF-12 617 ± 27 
28.1 ± 

1.7 

Single-tree selection 

system. Last 

harvested  1995 

52% Abba, 18% 

Tsca, 14% Acru, 9% 

Piru 

2014 5 

PEF-28 564 ± 13 
22.9 ± 

2.5 

Modified diameter 

limit cutting.  Last 

harvested  1997 

43% Abba,  

18% Tsca, 

15% Acru,  

12% Piru 

2007 4 

Sparse uneven-aged conifers 

PEF-15 319 ± 12 
7.5 ±  

0.7 

Fixed diameter-limit 

cutting. Last 

harvested  2003 

39% Abba,  

26% Tsca, 

14% Piru, 9% Acru, 

5% Bepa 

2007 6 

Dense even-aged conifers 

 
 

 

PEF-23B 1434 ± 50 
30.3 ± 

2.6 

Uniform shelterwood, 

three-stage overstory 

removal 

44% Abba, 31% 

Pist, 10% Tsca, 

10% Piru 

2011 3 

PEF-29B 869 ± 29 
17.3 ± 

0.7 

Uniform shelterwood, 

three-stage overstory 

removal 

44% Piru, 25% 

Abba, 14% Pist, 5% 

Bepo 

2011 3 

Spaced even-aged conifers 

 
 

 

AP 1332 33.5 

Clearcut, followed by 

pre-commercial 

thinning in 1983 

79% Abba, 11% 

Piru 
2014 1 

Dense mixedwood 

NRF 1012 43.6 
Naturally regenerated 

following fire 

24% Thoc, 23% 

Acru, 23% Piru, 

11% Abba, 6% 

Beal, 5% Bepa 

2015 1 

Sparse even-aged deciduous 

PEF-M1 337 21.5 

Commercially thinned 

in 2011, 

reserve prior 

62% Acsa, 7% 

Acru, 7% Osvi, 5% 

Tiam, 5% Fram 

2015 1 

Dense even-aged deciduous 

PEF-M2 608 45.3 Reserve 

66% Acsa, 9% 

Fram, 7% Osvi, 5% 

Tiam, 5% Frgr 

2015 1 
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 LiDAR Acquisition 

 Three LiDAR datasets were collected. The first LiDAR acquisition took place in 

June, 2012, with NASA Goddard's LiDAR, Hyperspectral, and Thermal Imager (Cook et 

al. 2013) over the PEF at an average of 15 pls/m2, with a pulse rate of 300 Khz, an 

average footprint size of 10 cm, a 28.5 degree maximum scan angle from nadir, and an 

altitude of approximately 335 m above ground level (AGL). The second LiDAR dataset 

was acquired over the PEF and AP in October, 2013, in leaf-off conditions with a RIEGL 

LMS-Q680i at an average of 6 pls/m2, with a pulse rate of 150 Khz, an average footprint 

size of 0.17 m, a 28.5 degree maximum scan angle, and at an altitude of approximately 

600 m AGL. The two PEF datasets were combined visually by aligning easily identified 

objects. This alignment appeared valid throughout the entire dataset, and trees were not 

shadowed or distorted. Thus the final average point density was ~ 21 pls/m2 over the 

PEF, and ~ 6 pls/m2 over AP. The third LiDAR dataset was collected at the NRF under a 

leaf-off condition in late October, 2011, using the same RIEGL LMS-Q680i laser 

scanner. The mean flying altitude was 724 m AGL and the maximum scan angle was 

28.5 degrees. All LiDAR was collected at a 1550 nm wavelength. Ground points were 

classified by the provider. 

 Tree Detection 

 Before segmentation could proceed, we first had to detect the centers of all trees 

within the stands in question. Raw LiDAR data were first normalized to measure absolute 

height above ground by subtracting all points from a digital terrain model (DTM) derived 

from ground points. Individual forest stands were then separated using a pre-defined 

stand map. Each stand was segmented in its entirety including the plots within.   
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 Each stand selected for segmentation was first horizontally layered at one-m 

intervals starting at 0.5 m above the ground and continuing to the highest point (Fig. 

1.1a). Clustering algorithms were then applied to each layer. To filter out potentially 

unwanted low vegetation, the lowest three layers were first subjected to Density Based 

Scanning (DBScanning), as formulated by Ester et al. (1996). DBScanning classifies 

points into clusters based on a density and a minimum number of points per cluster as 

defined by the user. All points within clusters were thus classified as unwanted low 

vegetation and removed. All points outside of clusters were assumed to be solitary returns 

off the narrow tree boles, and were retained. 
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Figure 1.1: Workflow of the layer stacking tree detection algorithm. (a) Forest canopy is 

layered horizontally at 1-m intervals (side view). (b) Points in each layer are clustered; 

each cluster is assigned a random color (top-down view at 10m height). (c) Half-meter 

polygonal buffers are placed around each cluster. (d) Polygons from all layers are stacked 

on top of one another; areas with darker blue represent more overlap. (e) Areas of overlap 

between polygons from the different horizontal layers are rasterized and smoothed to 

produce an overlap map. Areas of increasing warmth (yellow and red) represent greater 

overlap. (f) Local maxima are detected from the overlap map, and displayed as black 

dots; these are assumed to represent the centers of trees. 

  
           

 

          Each layer was then subjected to agglomerative hierarchical clustering (Fig. 1.1b), 

utilizing the 'fastcluster' package in R (Müllner 2013), which generates a point-to-point 

distance matrix, based on horizontal Euclidean distance, and clusters the nearest points 

iteratively, repeating the process until every point is assigned to one cluster. The iteration 

at which the algorithm is terminated must be defined by the user. Had the number of trees 

been known in advance (rarely a practical option), the clustering could have been 

terminated once that number was achieved. Instead, several termination levels were 
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attempted, and a visual inspection of the resulting layers was conducted to determine 

which termination level best placed each tree into its own group. Attempts were made to 

automate the termination point based on number of points and perceived stand density, 

but large differences in canopy structure between stands made this infeasible. 

 Once points in each layer were optimally clustered, a 0.5 m polygonal buffer was 

placed around each cluster (Fig. 1.1c). This step served two purposes: first as an 

additional round of clustering because points further than 0.5 m from the main cluster, 

which may have been mistakenly placed into that cluster, were effectively separated from 

one another, and second as a means of connecting the points and vectorizing the clusters. 

When polygons overlapped in such a way as to form a complete ring around an empty 

interior, these ‘donut holes’ were filled, as they represented the centers of crowns where 

the laser could not penetrate. Each layer's polygons were then stacked (Fig. 1.1d), and a 

rasterized map of the number of overlapping polygons was generated with a resolution of 

0.5 m. 

 In the same way a Venn diagram illustrates areas where two or more groups 

coincide, the overlap map identifies areas of high density in the canopy layers, such that 

multiple polygon overlaps indicate the presence of an individual tree. Double weight on 

the overlap map was given to clusters in the top third of the canopy, as they tended to 

represent tree apices and thus were closer to the tree's center. The overlap map is 

conceptually similar to the density of high points map developed by Rahman and Gorte 

(2009), except that the nature of the clustering, as well as the weighting applied to 

clusters in the upper layers, causes the hollow centers of hard-to-penetrate conifers to be 
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filled in, thus ensuring that the center of these trees truly have the most overlaps (Fig. 

1.2). 

Figure 1.2: Comparison between layer stacking and density of high points. A density of 

high points (DHP) map is displayed on the left, while an overlap map of a thinned conifer 

stand is displayed on the right. Both are smoothed. Areas of increasing warmth (yellow 

and red) represent higher values. Several trees are circled. Note the in the DHP map the 

trees form rings, with the areas of highest point density on the outside of the tree. On the 

overlap map the 'donut hole' rings are filled and the highest third of cluster-polygons are 

given double the weight, resulting in the densest point being at the center of the tree. 

 
 

 The overlap map was then smoothed, averaging cell values in a 3 × 3 cell window 

(Fig. 1.1e). This step was needed to remove areas of varying overlap within a tree that 

might represent branches, in the same way a CHM is smoothed prior to watershed 

delineation (Koch et al 2006). Local maxima were then detected with a 1-m fixed radius 

window (Fig. 1.1f). The local maxima detected then had to be filtered for errors. Those 

that rested atop an area with few overlapping clusters were removed, as they usually 

represented trees that were of an undesirably small size. Finally, local maxima that were 

closer than 1.5 m from one another (roughly the average crown radius across all plots on 

the PEF) were combined into a single tree. This step helped to prevent trees from being 
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incorrectly separated into multiple parts, though in very dense stands with small trees, it 

was beneficial to reduce this length threshold. The remaining local maxima were 

assumed to be the centers of trees and were then used for segmentation of individual tree 

shapes. 

 Tree Segmentation 

 Once tree centers were detected, a buffer of 0.6 m was placed around each local 

maxima. Our experience with these data sets and these tree species suggested that larger 

buffers would capture parts of neighboring trees, and smaller buffers would miss the 

furthest reaches of the crown. All cluster-polygons from each layer that intersected this 

buffered core were isolated as belonging to that local maxima's tree (Fig. 1.3a).  

 

Figure 1.3: Portions of the layer stacking tree segmentation algorithm. This follows the 

tree detection steps shown in Figure 1. (a) Local maxima from the overlap map (Figure 

1f) are used to delineate cluster-polygons that belong to trees. (b) Three-dimensional 

reconstruction of each tree's crown shape. (c) Error filtering eliminates mistaken clusters. 

Note the error filtering inadvertently removed some correct layers, causing a small 

portion of the tree's crown to be omitted. 

 

 

 Our algorithm includes three post-detection error-filtering steps to remove cluster-

polygons that did not properly represent the shape of their respective tree. First, cluster-
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polygons that intersected the cores of two trees were eliminated. It was hoped that this 

step would eliminate the canopy strata above overtopped trees, at the cost of slightly 

underestimating the size of the dominant tree's crown.  Second, cluster-polygon areas so 

large as to be deemed outliers (generally greater than 2 absolute deviations when 

compared to other layers within that cluster's tree) were omitted, as these were assumed 

to represent the erroneous shapes of more than one tree. Third, cluster-polygons that only 

slightly overlapped the center of the tree, and had large areas, tended to be erroneous and 

often included parts of the neighboring tree's crown. Therefore, those cluster-polygons 

that overlapped the tree core area less than 10% and had abnormally large areas were 

removed (Fig. 1.3c). This area varied with tree height, given that taller trees could have 

larger crowns. 

 The remaining cluster-polygons associated with each tree were extruded three 

dimensionally back into their original layer so as to approximate the crown shape of each 

tree (Fig. 1.3b). The core of the tree, represented by the buffered local maxima, was also 

extruded to the height of the highest tree layer in order to ensure that points representing 

the tree bole were always captured, and not inadvertently removed in the filtering 

process. All points lying within these three-dimensional crown reconstructions (Fig. 3b) 

were then clipped out of the point cloud and assigned a unique tree identification. Three 

dimensional clipping was considerably faster with cubic features than with complex 

shapes; therefore, rectangular bounding boxes were placed around the cluster-polygons 

prior to the clip. The point clouds of each clipped tree were then combined back into one 

single point cloud for ease of verification.  
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 TIFFS Watershed Delineation 

 We tested the efficacy of layer stacking against a popular watershed tree 

segmentation algorithm implemented in the Toolbox for LiDAR data Filtering and Forest 

Studies (TIFFS, Chen 2007). Raw LiDAR from each plot was input into TIFFS, and the 

shape of each delineated crown was used to clip points representing individual trees from 

the point cloud. Default settings were used in TIFFS, with the exception being that a 0.5 

m fixed radius window was used to smooth the surface model.  

 Verification 

 Verification was conducted by comparing the two segmented point clouds, from 

the layer stacking and watershed algorithms, with locations of individually mapped trees 

from field-measured plots, which are taken as the reference for comparison. Points 

representing delineated trees from both algorithms were assigned random color values by 

tree number. Detection rates were assessed manually, tree by tree, with field measured 

trees plotted in three dimensional space as vertical columns extruded to the field 

measured height of the tree, and the LiDAR point clouds overlaid. Detection or omission 

of each tree was noted, and an overall tally of commission errors was made for each plot. 

Where multiple plots occurred in a stand, plots were summed by adding all detected and 

undetected trees in each plot together, along with commission errors, to produce a stand-

level metrics.  
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Results 

 Results in the form of detection rate and commission error for both algorithms are 

displayed in Table 1.2 for each stand and forest type. Results varied dramatically from 

one forest type to another, and each algorithm performed optimally under different forest 

conditions 



 

Table 1.2: Detection rates of layer stacking and watershed delineation. Trees detected by both the Toolbox for LiDAR Filtering and 

Forest Studies (TIFFS) watershed algorithm and by Layer Stacking is shown for each forest stand, along with detection rate (bold) and 

commission error. The sites included Penobscot Experimental Forest (PEF), Austin Pond (AP), and Noonan Research Forest (NRF). 
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  Dense Uneven-Aged Conifers 

PEF-9 164 80 99 49% 12% 90 108 55% 11% 

PEF-16 256 125 164 49% 15% 157 195 61% 15% 

PEF-12 210 99 112 47% 6% 131 157 62% 12% 

PEF-28 179 99 152 55% 30% 114 168 64% 30% 

Sparse Uneven-Aged Conifers 

PEF-15 143 112 314 78% 141% 120 261 84% 99% 

         Dense Even-Aged Conifers 

PEF-23B 343 240 488 70% 72% 220 281 64% 18% 

PEF-29B 211 152 304 72% 72 % 139 210 66% 34% 

Spaced Even-Aged Conifers 

AP 123 91 123 74% 26% 91 106 74 % 12% 

Dense Mixedwood 

NRF 253 110 154 43% 16% 134 180 53% 18% 

Sparse Even-Aged Deciduous 

PEF-M1 61 33 54 54% 34% 52 83 85% 36% 

Dense Even-Aged Deciduous 

PEF-M2 76 33 56 43% 30% 54 62 71% 10% 

1
6
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 Layer stacking detected slightly more trees than watershed delineation in all 

uneven-aged conifer stands, with a 6 - 15 % increase in detection rate, and little 

difference in commission error (Table 2). Detection rate was considerably higher in the 

sparse uneven-aged stand than the dense stands, simply because trees in the former were 

more isolated, which facilitated detection by both algorithms. Commission error was 

noticeably higher in two uneven-aged conifer stands (Table 2, stands PEF-15 and PEF-

28), possibly due to their field inventories having been conducted five years prior to the 

first LiDAR acquisition. Within those five years small trees may have grown to 11.4 cm 

or greater, allowing their detection with LiDAR and not with field data. We believe many 

of the commission errors noted for all stands and both algorithms can be attributed to the 

detection of small trees (< 11.4 cm DBH).  

 Watershed delineation yielded a slightly higher detection rate in the dense even 

aged conifer stands, detecting 6% more trees, though at the cost of considerably more 

commission errors (Table 2). These stands were of a sufficient canopy density to block 

LiDAR returns from all but the upper most canopy. As a consequence, layer stacking was 

less likely to detect areas of high overlap density throughout the lower canopy strata.  

 Both layer stacking and watershed delineation performed equally in the pre-

commercially thinned conifer stand (Table 2, AP site), which most closely resembled 

plantation-like conditions. Point cloud density was 6 pls/m2 in this stand in contrast to the 

21 pls/m2 used in the PEF. Despite this limitation, the detection rate was relatively high 

(74%) for both algorithms, likely owing to the structural homogeneity and wider spacing 

of the stand. Trees with greater horizontal spacing tended to be more easily delineated by 

both algorithms.   
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 Both algorithms performed less well in the dense mixedwood stand (Table 2, 

NRF). This stand had a highly complex vertical canopy structure, without distinct 

stratification, as well as a diverse, spatially integrated mix of tree species. There were 

numerous instances of Acer rubrum clumping (stems arising from stump sprouts), 

making both detection and segmentation difficult. Despite this difficulty, layer stacking 

had a 10% higher detection rate than watershed delineation, with a 2% increase in 

commission error. Point density was also lower in the dense mixedwood stand (NRF 

site), at only 5 pls/m2. This limitation may have contributed to the low detection rates of 

both watershed delineation and layer stacking (43 and 53% respectively, Table 2). When 

segmenting trees with a complex or uneven age structure, more LiDAR returns will likely 

yield better results, regardless of the algorithm employed. 

 The most notable difference in algorithm performance can be seen in the pure 

deciduous stand, at least in the leaf-off conditions tested here. Layer stacking had a 

detection rate 29% higher than that of watershed delineation, with nearly equal 

commission error. As noted above, watershed delineation may not perform well in 

deciduous forests with dense interlocking crowns because of a lack of distinct peaks and 

troughs. Layer stacking on the other hand, appears to perform better under these 

conditions because of increased laser penetration to the center of the tree. The 

performance of layer stacking seems to improve when laser returns off the tree bole can 

be observed at each 1-m layer.  

 Detection rates also varied by individual tree size. Figure 1.4 displays detection 

rates of both layer stacking and watershed delineation across each 1-cm diameter class 

for all trees measured. Layer stacking and watershed delineation's ability to detect small 
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trees (generally less than 18 cm DBH) was nearly equal. Trees with diameters of 18 cm 

or greater were more likely to be detected by layer stacking than by watershed 

delineation. An exception to this trend occurred in the pure deciduous stands, in which 

layer stacking's detection rate was consistently higher across all diameter classes. In these 

stands, layer stacking detected 32% more trees than did watershed delineation with 

diameters less than 18 cm, and 28% more trees with diameters greater than 18 cm. 

Figure 1.4: Detection rate displayed by stem diameter. Detection rates for both layer 

stacking and Toolbox for LiDAR data Filtering and Forest Studies (TIFFS) watershed 

algorithm are shown below by 1-cm diameter class (DBH rounded to the nearest cm) 

across all forest types. 

 
 

Discussion 

 Layer stacking shows promise as a novel method for segmentation, with improved 

detection rates over traditional watershed delineation in every stand type and composition 

we evaluated, except the dense even-aged conifers. However, layer stacking has several 

shortcomings worth noting, which could likely be improved by additional refinements. 

 First, conifers often only yield returns on the surface of their crowns, leaving a 

hollow interior. Ideally the clustering algorithm used in layer stacking corrects for this by 

grouping all peripheral crown points together, and then filling in the center. In practice, 
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however, emergent conifers (mostly Pinus strobus in the region tested) could be 

inadvertently broken into smaller pieces, as the crown perimeters provided more overlaps 

than do the tree centers. A similar problem occurs in deciduous trees in leaf-on 

conditions, as fewer laser pulses encounter the tree bole, making detection more difficult. 

One potential solution is to fly LiDAR with a high scan angle, allowing for more side 

penetration into the crown, as was done with all LiDAR here. Another solution is to 

simply fly higher density LiDAR, as more pulse returns would increase the chance of 

detecting the tree bole.   

 Second, increases in detection rate must be weighed against the computational 

inefficiency of layer stacking when compared to watershed delineation. Though 

computation time and overall efficiency were not recorded, nor were they included in our 

objectives, we note that layer stacking’s computation time increases exponentially with 

plot size or point cloud density. The greatest inefficiency stems from the hierarchical 

clustering technique used, which calculates a complete point-point distance matrix for 

each horizontal layer in the forest. Thus, for small plots, clustering was nearly 

instantaneous; however, as segmentation area increased to multiple hectares, computation 

time of the clustering algorithm slowed considerably. We believe that there are several 

improvements that can be made to the clustering algorithm's implementation. A more 

automated clustering algorithm that required no user validation and was capable of 

adapting to forest type, LiDAR density, and layer level would be a considerable 

improvement to the algorithm's efficiency and effectiveness. These improvements are 

currently being explored. 
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 Third, in terms of characterizing crown shape, both layer stacking and watershed 

delineation have room for improvement. Because watershed delineation often mistakenly 

included smaller trees within or around the crowns of primary trees, we feel it tended to 

overestimate crown size. On the other hand, layer stacking often excluded layers that 

were farthest from the tree center, which tended to underestimate crown size. The 

extensive error filtering conducted on each layer had the effect of removing abnormally 

large clusters, most of which represented the outer portions of the tree crown. When 

calibrating the error filters for layer stacking, the choice had to be made between full tree 

crowns, which may have included some erroneous layers of neighboring trees, or narrow 

crowns, which may have excluded some valid layers. Figure 2c illustrates this tradeoff. In 

the latter case, while the outside canopy envelop may have been slightly clipped, we feel 

that the shape of the extracted tree's skeletal structure is improved considerably. While 

watershed delineation extracts every point beneath a blanketed area covered by the tree's 

canopy, layer stacking selects portions of the tree at each level. Thus, trees were more 

reliably extracted beneath the surface of the canopy. Beneath the live crown, it is not 

uncommon for layer stacking to extract only the tree bole, and watershed delineation to 

extract all low lying vegetation surrounding the tree (Fig. 1.5). The extraction of the bole 

may prove useful in further analysis of the tree, such as stem diameter measurements 

(Bucksch et al. 2014) or stem form estimates.  
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Figure 1.5: Comparison of results between layer stacking and watershed delineation. The 

two trees on the left were segmented via layer stacking; same two trees on the right were 

segmented via watershed delineation. Layer stacking produced a point cloud that better 

represents the bole and lower portion of the tree, while watershed delineation segmented 

every point below the surface, including extraneous features not belonging to the tree.  

 
 

 Though tree crown position (dominant, co-dominant, intermediate, overtopped) 

was not measured in the field, inferences can be made by examining detection rate of 

each algorithm by diameter class (Figure 4). As small-diameter trees are more frequently 

overtopped in most of the uneven aged stands, it can be inferred that layer stacking's 

noted improvements in detection rate in most stands was due to enhanced detection of 

intermediate, co-dominant, and dominant trees. Watershed delineation may have had 

difficulty segmenting co-dominant and intermediate trees, which blended in to the 

watershed profile of larger adjacent trees. An exception to this occurred in deciduous 

stands, where layer stacking detected more trees in every diameter class. This finding 
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may indicate that layer stacking was better able to detect overtopped trees in these stands. 

Qualitatively, this appeared to be the case. This could be explained by the greater 

penetration noted in leaf-off deciduous trees, making the overtopped trees below them 

visible, and because the canopy above did not block the overtopped tree's signal on the 

overlap map as it would on a CHM.   

 Thus, we feel that improvement could also be made to the segmentation of 

overtopped trees. As it stands, detection rate of overtopped trees from the overlap map 

appears qualitatively high. However, many of those trees were erroneously segmented or 

filtered out in subsequent steps, and as such, the reported detection rates suffered. In the 

event that a small tree is detected on the overlap map (signified by few overlaps), it might 

be beneficial to subject it to further scrutiny, perhaps including only clusters beneath a 

certain height threshold, or attempting to identify gaps in the vertical strata representing 

the space between the overtopped and dominant tree, similarly to the method used by 

Duncanson et al. (2014) with watershed delineation.     

Conclusions 

 We developed and tested the layer-stacking algorithm in what we consider to be 

very challenging forest conditions, namely mixedwood stands with vertically complex 

crown structures, including numerous overtopped trees. Despite the areas for 

improvement discussed above, we believe that layer stacking, when applied to these 

forest types, provides a reasonable alternative to watershed delineation, currently the 

most commonly used segmentation algorithm. Improvements were noted in both 

detection rate and crown shape. Layer stacking appears to be particularly well suited for 

deciduous leaf-off data sets. We believe layer stacking contributes to the rapidly growing 
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advancements in individual-tree based approaches in the use of aerial LiDAR data, all 

hopefully leading to the increased accuracy and efficiency of forest inventories.  
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CHAPTER TWO: 

DETERMINATION OF INDIVIDUAL TREE SPECIES, DIAMETER, VOLUME, 

AND CARBON STOCK FROM AIRBORNE LIDAR FOR LARGE-SCALE 

STAND INVENTORIES IN MIXED SPECIES FORESTS 

Introduction 

 In the last two decades airborne light detection and ranging (LiDAR) has proven 

an invaluable asset for forest inventories (White et al. 2013). LiDAR creates a three-

dimensional point cloud representing forest canopy structure, and interpretation of that 

point cloud can yield information on forest attributes such as tree basal area, tree stem 

volume, and forest carbon stocks. As the technology's capabilities have increased, so too 

has the demand for more precise estimates. Such estimates could be of great value to 

modern foresters, aiding in issues that require a high degree of precision, such as 

managing complex stands or assessing carbon stocks. 

 There are currently two primary means of obtaining forest biometric data from 

LiDAR point clouds. First, and most common, is the area-based (AB) approach, which 

makes use of LiDAR point metrics such as height percentiles, maximum height, and 

mean height of points within a plot. By combining these metrics with field measurements 

from the same stands, , statistical models can be developed that predict desired attributes 

in other locations within a similar forest type (Næsset 2002). Many studies have shown 

that plot-level basal area, height (Means et al. 2000), biomass (Zolkos et al. 2013), 

volume (Naesset 1997), and tree density (Næsset  and Bjerknes 2001) can be accurately 

predicted using AB methods. These methods, however, are limited to generalized 
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estimates of plot or stand stand-level attributes, and yield no information about the 

individual trees within each plot. 

 The second method is the individual-tree-crown (ITC) approach, which segments 

a LiDAR point cloud into areas representing individual trees, and then retrieves metrics 

from each tree separately, often summing them to achieve plot or stand level estimates 

(Hyyppä and Inkinen 1999). It is not uncommon to combine this approach with the AB 

approach, using AB estimates to correct erroneous ITC estimates (Maltamo et al. 2004, 

Lindberg et al. 2010, Breidenbach et al. 2010). Since the ITC approach provides detailed 

information on each tree, it has several benefits over AB approaches: each tree's 

coordinates and attributes are made available to forest managers, tree species is easier to 

estimate (Vastaranta et al 2009), considerably less field work is required for estimates, 

and the methods behind ITC inventories often bear a greater resemblance to field based 

inventories, making them more intuitive to forest managers (Breidenbach and Astrup 

2014).  

 Despite these benefits, the ITC approach is rarely used operationally due to the 

difficulty in segmenting trees from a LiDAR point cloud.  Accuracy of plot and stand 

level estimates derived from the ITC approach are highly correlated with individual tree 

detection rates. In a comparison between ITC and AB approaches with low resolution 

LiDAR, Vastaranta et al. (2009) showed that on a plot level, ITC basal area and volume 

estimates were less reliable than AB estimates, with the former consistently producing 

underestimates presumably due to undetected trees, but that tree height and diameter 

estimates were more reliable. Similarly, Yu et al. (2010) and Vastaranta et al. (2011) 

reported little difference between the two methods, while Peuhkurinen et al. (2007) 
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achieved superior results with the ITC approach. Each study noted, however, that 

accuracy could be improved with better segmentation methods. There is therefore 

disagreement over which method yields better results, with the general consensus being 

that as LiDAR pulse density and segmentation methods improve, the increased 

information provided by the ITC approach can be of benefit for forest analytics. 

 As a consequence, much effort has been devoted to developing algorithms for 

individual tree segmentation. Current segmentation algorithms include watershed 

delineation (Chen et al. 2006), local maxima detection (Persson et al. 2002), and 

clustering (Morsdorf et al. 2003). Individual tree detection rates depend highly upon 

forest type and segmentation method used (Kaartinen et al. 2012). In a comparison of 

several segmentation methods, Vauhkonen et al. (2011) reported tree detection rates 

ranging between 40 and 80%. Many other studies have detection rates that fall within this 

range, though detection rates in deciduous forests have traditionally been considerably 

lower than coniferous ones (Koch et al. 2006, Brandtberg et al. 2003). In this paper, we 

use a newly developed  segmentation method known as layer stacking, which yields 

higher detection rates across most of the forest stand types to which it was applied, when 

compared to the popular watershed delineation algorithm (Chapter 1). Layer stacking 

produced overall detection rates between 55% and 85%, depending on forest stand type. 

Leaf-off deciduous stands consistently had the highest detection rate due to increased 

laser penetration of the canopy, while uneven aged coniferous stands had the lowest 

detection rate for the opposite reason.  

 As mentioned above, ITC has the additional benefit of potentially identifying the 

species of each segmented tree, which allows for more accurate tree attribute estimates 
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derived from species-specific allometric equations. Previous studies have explored 

species classification from LiDAR using laser return intensity (an analog for infrared 

reflectance), full waveform information, and structural characteristics (Brandtberg 2007, 

Kim et al. 2009, Korpela et al. 2010, Li et al. 2013). Other studies have paired LiDAR 

data with multispectral or hyperspectral imagery to aid in species classification and 

segmentation (Asner et al. 2008, Naidoo et al. 2012, Ørka et al. 2012). In this study, we 

identify tree species by comparing  intensity values between summer and winter LiDAR 

data sets, combined with analyses of structural and shape characteristics of each tree.  

 The objective of our study was to test a sequence of methods for obtaining 

accurate ITC estimates of species, stem diameter, stem volume, and ultimately carbon 

stock for each tree in the forest. Briefly, once trees were segmented and identified to 

species, canopy structure metrics obtained from the point clouds were used to estimate 

tree diameters. These were used, in combination with height measurements, to estimate 

stem volume and ultimately above-ground biomass for each tree, via species-specific 

allometric equations. Validation of our estimates (stem diameter, stem volume, and 

carbon content) was done at the tree, plot, and stand level. Tree and plot estimates were 

validated against field measurements, while plot and stand estimates were validated 

against AB estimates. This approach represents a complete bottom-up analysis, with 

comparison of biometrics at each level traditionally useful to forest managers. 

Throughout the process we came to several conclusions: we validated the effectiveness of 

the layer stacking algorithm for generating proper crown metrics; we evaluated the 

effectiveness of species-level predictions, concluding that it is possible to accurately 

make the distinction between coniferous and deciduous species, and possible to predict 
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conifer species with reasonable accuracy; and we illustrated that the ITC approach as 

presented here can predict volume as well or better than a common AB approach, and 

predict stem diameter and carbon stock with a reasonable degree of accuracy. 

Methods 

 Study Area 

 To assess the validity of the biomass estimates, a site was needed that had a 

variety of forest stands structures and compositions, as well as field-measured data which 

included spatial coordinates, heights, diameter at breast height (DBH, 1.37 m), canopy 

widths, and species of many individual trees. The site we selected was the University of 

Maine Foundation's Penobscot Experimental Forest, which had a wide range in 

silvicultural treatments and field data on thousands of trees. 

 Plots used for verification were fixed-area plots of either 16 or 20 m radius. The 

centers of all plots were taken via consumer grade GPS; those plots used for ITC 

validation were shifted a posteriori so that the individually mapped trees aligned with the 

LiDAR data, since a greater degree of spatial accuracy was needed. All trees greater than 

11.4 cm DBH had species, height, and DBH measured. A total of 205 plots were used for 

the AB model calibration, while a different set of 22 plots were used for validation. 

 LiDAR 

 Two LiDAR datasets were collected. The first LiDAR acquisition took place in 

June, 2012, with NASA Goddard's LiDAR, Hyperspectral, and Thermal Imager (Cook et 

al. 2013) at an average of 15 ppm, with a pulse rate of 300 Khz, an average footprint size 

of 10 cm, a 28.5 degree maximum scan angle from nadir, and an altitude of 
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approximately 335 m above ground level (NASA data). The second LiDAR dataset was 

acquired in October, 2013, in leaf-off conditions with a RIEGL LMS-Q680i at an average 

of 6 ppm, with a pulse rate of 150 Khz, an average footprint size of 0.17 m, a 28.5 degree 

maximum scan angle, and at an altitude of approximately 600 m above ground level 

(LEGEO data). The two datasets were combined visually by aligning easily identified 

objects. This alignment appeared valid throughout the entire dataset, and trees were not 

shadowed nor distorted. Thus the final average point density was ~ 21 ppm. Ground 

points were classified by the providers. Both datasets were collected at a 1550 nm 

wavelength. This combination was beneficial because it provided more structural 

information for the layer stacking algorithm and aided in species identification due to 

seasonal differences in intensity. All measurements are assumed to be from the latter 

acquisition date.  

 Individual Tree Segmentation 

 Individual tree segmentation was done via layer stacking (Chapter 1), as shown in 

Figure 1.1 and 1.2. Briefly, the algorithm proceeds by splitting the LiDAR point cloud 

into horizontal layers at 1 m intervals (Fig. 1.1a), then applying clustering algorithms to 

each layer to identify clumped points representing trees (Fig. 1.1b). The lowest three 

meters are subject to density based scanning (Ester et al. 1996) while the rest are subject 

to hierarchical agglomerative clustering (Müllner 2013). Polygons are placed around each 

cluster of points at each layer (Fig. 1.1c), and the polygons are then stacked on top of one 

another. A map of the number of overlapping polygons throughout the canopy strata is 

the created, similarly to a Venn-diagram (Fig. 1.1d). The overlap map is smoothed (Fig. 

1.1e), and local maxima are detected, and presumed to represent the centers of trees (Fig. 
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1.1f). All polygons then touching these tree centers are then assumed to be a part of that 

tree's crown (Fig. 1.2a). Erroneous polygons are then removed through a series of error 

filtering (Fig. 1.2c). Each polygon is then extruded into three-dimensional space at  its 

appropriate layer, forming the three-dimensional shape of the tree (Fig. 1.2b). Finally, all 

LiDAR points lying within this shape are clipped into separate point clouds and assigned 

a unique identifier. 

 Individual Tree Measurements 

 We tested the utility of 28 attributes of individual tree point clouds (see Table 2.1) 

for predicting tree species and stem diameter.  Attributes such as intensity and reflectance 

for each LiDAR dataset were measured for every point within each segmented tree. 

These constituted a measure of infrared albedo of the tree at a 1550 nm wavelength 

which is determined by leaf size, orientation, density, and reflectance (Korpela et al. 

2010). The calculations behind these number differed by LiDAR provider; thus, this 

measure is referred to as 'reflectance' for the NASA dataset, and 'intensity' for the 

LEGEO dataset. In addition, crown width and density histograms were constructed for 

each tree by dividing the segmented tree into 1-m height intervals and measuring 

maximum crown width and point count at each interval. These histograms were then 

analyzed by measuring skewness, kurtosis, and the mean first-order difference, the latter 

of which refers to the mean difference between successive height intervals. The location 

of the widest and densest level on the tree's histogram was also measured as a percent of 

total tree height.  
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Table 2.1: Tree measurements used for modeling. Variables used for the predictive 

models and allometric equations are listed along with a brief description. 

Designation Description 

NASA_M_Int Mean laser reflectance of each point in the tree from the NASA data. 

NASA_SD_Int The standard deviation of laser reflectance of each point in the tree from the NASA data. 

NASA_90P_Int The 90th percentile of laser reflectance of each point in the tree from the NASA data. 

NASA_Int_Kurt The kurtosis of reflectance values for each point in the tree from the NASA data. 

NASA_Int_Skew The skew of reflectance values for each point in the tree from the NASA data. 

LEGEO_M_Int Mean laser intensity of each point in the tree from the LEGEO dataset. 

LEGEO_SD_Int The standard deviation of laser intensity of each point in the tree from the LEGEO dataset. 

LEGEO_90P_Int The 90th percentile of laser intensity of each point in the tree from the LEGEO dataset. 

LEGEO_Int_Kurt The kurtosis of intensity values for each point in the tree from the LEGEO data. 

LEGEO_Int_Skew The skew of intensity values for each point in the tree from the LEGEO data. 

Widest_Loc The widest location of the tree expressed as a percentage of total height. 

Densest_Loc The densest location of the tree expressed as a percentage of total height. 

Percent_Only The percentage of single laser pulse returns in the tree. 

Pointiness 
A measure of crown pointiness, defined as the mean angle between the top point in the tree 

and the next five lowest points. 

Height The height of the highest point in the tree. 

Width_Kurt The kurtosis of a width histogram of the tree constructed from 1 m intervals 

Width_Skew The skew of a width histogram of the tree constructed from 1 m intervals. 

Width_FOD 
The mean of first order differences of a width histogram of the tree constructed from 1 m 

intervals. 

Density_Kurt The kurtosis of a density histogram of the tree constructed from 1 m intervals 

Density_Skew The skew of a density histogram of the tree constructed from 1 m intervals. 

Density_FOD 
The mean of first order differences of a density histogram of the tree constructed from 1 m 

intervals. 

Ground_Ret The density of ground returns beneath the tree's crown. 

Canopy_Projection The area of a top down convex hull of the tree's crown. 

Max_Width The largest measured width of the tree's crown from a top down view. 

Corrected_Width 
The diameter at which there is the largest increase in relative point count from a top down 

view. 

Top_Density_Kurt 
The kurtosis of a density histogram constructed from point count within concentric rings in 

a top down view of the crown. 

Top_Density_Skew 
The skew of a density histogram constructed from point count within concentric rings in a 

top down view of the crown. 

Top_Density_FOD 
The mean of first order differences of a density histogram constructed from point count 

within concentric rings in a top down view of the crown. 
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 The  pointiness of the tree’s apex was quantified as the mean angle from the 

highest point of the tree to the next five lowest points in the tree's crown. The height of 

the highest point was taken to be total tree height. Two measures of laser penetrability 

were made for each tree: the first was the percentage of single returns, defined as 

percentage of laser pulses that hit the tree and returned only one signal to the sensor, as 

opposed to several; the second was the number of ground points per meter beneath the 

tree, measured by drawing a convex hull around a top-down view of the tree and 

measuring ground point density within that hull.  

 Finally, several measures of canopy width were made. The area of the convex hull 

was taken as canopy projection area, and the maximum width of the hull was taken as 

maximum canopy width. In many instances, errant portions of neighboring trees were 

included in the tree's crown by the segmentation algorithm, causing the maximum 

measures to over predict canopy size. To correct these errors, all points within the tree 

were projected in a two-dimensional top-down view. A center point of the tree was 

calculated by determining the mean of all points. From the center, ten concentric rings 

were drawn extending outward to the furthest most point, each with equal area. A 

histogram was then constructed from point counts within each of these rings, and 

skewness, kurtosis, and mean first-order differences were calculated. The true crown 

width was estimated by using the diameter of the ring with the greatest first -order 

difference (expressed as a percentage), with rings that had less than 5% of the total points 

excluded. This location represented the width at which point density sharply increased, 

which was taken as the outer reaches of the of the tree's actual canopy (see Figure 2).  
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 Species Identification 

 Since there is a considerable amount of difference in allometry across species, 

each tree's LiDAR attributes were used to classify it into one of several species categories 

using two successive stages. The first stage separated trees as either coniferous or 

deciduous using logistic regression. The second stage separated the classified conifers 

further into four species categories representing the most prevalent trees in the study area 

(Abies balsamea, Picea rubens, Pinus strobus, and Tsuga canadensis)using random 

forest classification.  

 In order to construct the logistic regression predictive model for the decidous–

coniferous classification, 1,721 deciduous trees and 1,653 coniferous trees were selected 

from eleven forest stands. Each stand was known to be nearly purely deciduous or 

coniferous (>95%). A full model was created with each measurement from Table 1, and 

step-down regression analysis aided by the Akaike information criterion was used to 

determine the optimal model. The best-fitting model ultimately included the following 

predictive variables: NASA_Int_Skew, LEGEO_90P_Int, LEGEO_Int_Kurt, 

LEGEO_Int_Skew, Widest_loc, Percent_Only, Pointiness, Width_Kurt, Width_Skew, 

Density_Kurt, Density_Skew, Top_Density_FOD, and Ground_Ret (see Table 1 for 

explanation). The optimal threshold for classification (0.68) was determined as the 

optimal balance between sensitivity and specificity measures (Shaefer 1989). 

 The second stage of classification, that is, separating conifer species, was 

conducted using random forest regression with the randomForest package in R (Liaw and 

Wiener 2002). Random forest is a nonparametric modeling method that creates a series of 
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regression trees by splitting predictor variables. Regression trees are grown many times 

with subsets of the larger dataset, and then validated against other subsets. Results of 

each tree are weighed against one another for a prediction. The model was built using a 

total of 1444 training trees: 686 Picea rubens, 360 Pinus strobus, 316 Abies balsamea, 

and 82 Tsuga canadensis. All predictor variables listed in Table 2.1 were used in the 

model, as there was little risk of over fitting given the random forest technique.  

 Individual Tree Diameter Estimation 

 The best fitting model for predicting tree stem DBH from LiDAR data ultimately 

included the following attributes: corrected tree crown width (Corrected_width), 

skewness of the crown-width distribution (Width_Skew), tree height, and tree species 

This model had an adjusted r-squared of 0.63 and a root mean squared error (RMSE) of 

7.6 cm, or 31.6 % of the mean DBH. Diameter estimates were converted to basal areas 

for plot- and stand-level basal area validation, and they were used in conjunction with 

allometric equations to estimate volume and carbon content of individual trees. 

 Individual Tree Stem Volume 

 Estimated diameter and total height were used to calculate stem volume of each 

tree using regional taper equations developed by Kozak (2004) and refined by Li et al. 

(2012). Because these equations are species specific, weighted model averaging was used 

to combine the volume models of deciduous trees, which were not classified to species. 

Field measured relative species abundance in each stand were used to assign weights. 

Outer bark volume was used for all estimates where it applied.  
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 Individual Tree Aboveground Carbon 

 Using the above estimated stem volume, stem biomass could be obtained using 

known wood densities (Harmon et al. 2008). Branch and leaf biomass was calculated 

using regional equations developed by Young et al. (1980) based on estimated diameter. 

These values were tabulated for each tree to obtain total above-ground biomass. Finally, 

carbon content was estimated using species specific biomass-to-carbon ratios developed 

by Lamlom and Savidge (2003). In the few cases where species specific ratios were not 

available, we used a ratio of 0.5 to estimate carbon. In the case of Picea rubens, the 

carbon ratio of Picea glauca was used.  

 Post-hoc ITC Correction 

 On a plot and stand level all individual tree estimates were summed within the 

area of interest to produce estimates on a per-hectare basis. These estimates however 

showed a consistent negative bias when compared to field measurements, undoubtedly 

due to trees missed by the segmentation algorithm. We adjusted for this bias by adding 

the percentage associated with omission error to each area estimate, then subtracting the 

percentage associated with commission error in each forest type. Because this 

information is often not available without field data, and thus the correction  may not be 

practical in all circumstances, we report results without the correction (additive 

estimates), alongside results with the correction (corrected estimates). 

 Area-Based Estimation 

 Area-based metrics on the 205 plots used for model calibration were calculated 

using FUSION v3.42 (McGaughey 2009), which was developed by the U.S. Forest 
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Service Pacific Northwest Research Station.  A total of 61 predictor variables were used, 

including height and intensity measurements such as percentiles, mean, median, 

minimums, and maximums. Random forest regression was used to estimate stem volume 

(m3). Plot-level estimates were made using the whole plot, while stand-level estimates 

were based on 10 x 10 m blocks, with estimated volume associated with each block 

within the stand summed and divided by stand area. A total of 18 forest stands were used 

for calibration, encompassing a wide variety of forest stand types. Field measured data 

were collected between 2003 and 2013, making some of the measurements as much as 10 

years older than the LiDAR data, the mean collection year was 2007. To account for 

varying sampling years, all DBH and height measurements older than the LEGEO 

LiDAR were projected to 2013 using the Acadian Variant of the Forest Vegetation 

Simulator, developed by Weiskittel et al. (2012). Overall, the methods for the AB 

modeling strongly resembled those used by Hayashi et al. (2014) in the same study area. 

Trees with diameters less than 11.4 cm were removed only after this projection. “Out-of-

bag” sampling within random forest indicated that the model accounted for 85.3% of 

variation in the data. More in-depth analysis of model accuracy is discussed in the 

Results. 

 Biometric Validation 

 Validation was done on with 22 plots taken from seven stands, all measured 

within two years of the LEGEO LiDAR. Stands could be broken down into three general 

forest types: uneven-aged conifers, even-aged conifers, and uneven-aged deciduous. 

Forest attributes and silvicultural history of each stand is displayed in Table 2. All trees 

of sufficient size within these plots were mapped spatially in relation to plot center. Trees 
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were plotted in the virtual three dimensional space with the segmented LiDAR point 

cloud, and extruded to their field measured height. Plot centers were then shifted so as to 

visually align field measured trees with the LiDAR data. Field measured trees with 

obvious counterparts (N = 524) in the LiDAR were used for validation. Thus, each tree in 

the comparison had a LiDAR derived estimate and a field measured truth. Tree-level 

validation was done using simple linear regression, and equivalence tests were used to 

assess predictive accuracy. Adjusted r-squared values, RMSE, and the equivalency 

thresholds are reported for DBH, stem volume, and carbon content. 
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Table 2.2: Stand characteristics, silvicultural history, species composition, and year measured for the 11 stands under study. Stands 

are grouped by forest type. Stand metrics were based on trees greater than or equal to 11.4 cm DBH. 

*Species abbreviations are as follows: Abba = Abies balsamea, Acru = Acer rubrum, Acsa = Acer saccharum, Bepa = Betula papyrifera, Fram = Fraxinus americana,  

Frgr = Fraxinus grandifolia, Osvi = Ostrya virginiana, Piru = Picea Rubens, Pist = Pinus strobus, Tiam = Tilia americana, Tsca = Tsuga canadensis 
 

 

Stand 

Identifier 

 

Density 

(trees/ha) 

Basal Area 

(m2/ha) Silvicultural Treatment Species Composition*  

Year 

Inventoried 

Number 

of Plots 

Total Trees 

Measured 

Uneven-aged conifers 
 

 
 

  

9 510 ± 37 29.2 ± 1.2 

Single-tree selection system, 5-year 

cutting cycle. Last harvested  2010 

35% Abba, 33% Tsca, 

 14% Piru,  9% Acru 2013 4 78 

16 509 ± 24 25.6 ± 2.1 

Single-tree selection system, 5-year 

cutting cycle. Last harvested  2012 

39% Tsca, 38% Abba,  

9% Piru, 7% Acru 2011 6 123 

12 617 ± 27  28.1 ± 1.7 

Single-tree selection system, 10-year 

cutting cycle. Last harvested  1995 

52% Abba, 18% Tsca,  

14% Acru, 9% Piru 2014 4 95 

Even-aged conifers 
  

  

23B 1434 ± 50 30.3 ± 2.6 

Uniform shelterwood, three-stage 

overstory removal 

44% Abba, 31% Pist,  

10% Tsca,10% Piru 2011 3 159 

29B 869 ± 29 17.3 ± 0.7 

Uniform shelterwood, three-stage 

overstory removal 

44% Piru, 25% Abba, 

14% Pist, 5% Bepa 2011 3 76 

Uneven-aged deciduous  

M1 337 21.5 

Commercially thinned in 2011, 

reserve prior 

62% Acsa, 7% Acru, 7% Osvi  

5% Tiam, 5% Fram 2015 1 35 

M2 608 45.3 Reserve 

66% Acsa, 9% Fram,           

7% Osvi, 5% Tiam, 5% Frgr 2015 1 37 

3
9

 



 

40 
 

  Plot-level validation was done using the same 22 plots. Each LiDAR segmented 

tree whose center point lay within the plot radius was tallied. Each field measured tree 

was also tallied, whether identified in the LiDAR segmentation or not. Basal area 

(m2/ha), stem volume (m3/ha), and carbon mass (kg/ha) were calculated for each plot. 

Simple regression was once again used to assess accuracy, with adjusted r-squared and 

RMSE reported for both the additive and corrected plot level estimates. Adjusted r-

squared and RMSE in comparison to the field model were also reported for the AB 

volume estimates.  

 Finally, stand-level comparisons were made between the corrected ITC approach, 

and the AB volume estimates for 8 stands; five from the uneven-aged conifer type, two 

from the even-aged conifer type, and one from the uneven-aged deciduous type. Field 

measured basal area (averaged from several plots within each stand) ranged from 7.5 to  

33.4 m2/ha. Field measured trees per ha ranged between 319 and 1434. Volume estimates 

from all 10 x 10m blocks within each stand were tallied and compared to the summed 

volume of all segmented trees within that stand, along with the post-hoc error correction. 

As above, adjusted r-squared, RMSE, and bias is reported in the results. No field data 

were available at this level.  

Results 

 Segmentation 

 Segmentation detection rates varied by forest stand type (Table 2.3). Mean 

detection rate (defined as the percent of trees accurately detected) in uneven-aged conifer 

stands was 61%, with 17% commission error. Mean detection rate in dense even-aged 
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conifer stands was 65%, with 26% commission error. Detection was highest in deciduous 

stands, with a mean detection of 80% and a mean commission error of 23%. 

Table 2.3: Detection rate results by stand and forest type. Total number of trees are 

displayed, alongside number of trees correctly detected, detection rate, and commission 

error. Number of trees used for the tree level validation is also displayed. 

 

Stand 

Identifier 

Total 

Trees 

Measured 

Number of 

Trees 

Correctly 

Segmented 

Detection 

Rate 

Commission 

Error 

Number of 

Trees Used 

for 

Validation 

Uneven-aged conifers 

PEF-9 164 90 55% 11% 78 

PEF-16 256 157 61% 15% 123 

PEF-12 210 131 62% 12% 95 

Total 630 378 60% 13% 296 

   Even-aged conifers 

PEF-23B 343 220 64% 18% 159 

PEF-29B 211 139 66% 34% 76 

Total 554 359 65% 24% 235 

Uneven-aged deciduous 

PEF-M1 61 52 85% 36% 35 

PEF-M2 76 54 71% 10% 37 

Total 137 106 77% 28% 72 

      

 Species Identification 

 The first model, deciduous vs. coniferous classification, was assessed by 

measuring classification accuracy of 1000 deciduous and 1000 coniferous trees withheld 

prior to model building. In total 97.8 % of deciduous trees were correctly identified as 

such, while 97.5 % of coniferous trees were correctly classified, for an overall 

classification accuracy of 97.7%. We note, however, that classification of coniferous 

trees in stands that were primarily deciduous, and deciduous trees in stands that were 
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primarily coniferous had lower classification accuracy.  Table 4a displays detection rate 

and commission error of the model. 

 The second model, classifying coniferous species, was assessed using out-of-bag 

error estimation within the random forest model, which uses the bootstrapped data 

subsets to assess accuracy of each of the component models. Table 4b shows a confusion 

matrix displaying accuracy of each species' classification, along with commission and 

omission error. Tsuga canadensis had the lowest accuracy with 63% correct 

classification, likely due to the low number of training trees used. Picea rubens and Abies 

balsamea were most frequently confused with one another, with 9% Picea rubens 

mistaken for Abies balsamea, and 18% of Abies balsamea mistaken for Picea rubens. 

This misclassification is likely due to similarities in crown shape.  Pinus strobus was 

most frequently confused with Picea rubens, with 13% mistakenly classified as such. 

Overall classification accuracy of conifer species was 83%. 
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Table 2.4: Species classification confusion matrix. The matrix shows out-of-bag 

accuracy and classification error for the coniferous species classified by the random 

forest model. 

Species Picea 

rubens 

Abies 

balsamea 

Tsuga 

canadensis 

Pinus 

strobus 

Accuracy 

Picea rubens  

(n = 686) 
604 59 5 18 88% 

Abies balsamea 

(n = 316) 

58 240 9 9 76% 

Tsuga canadensis 

(n = 82) 

6 19 56 1 68% 

Pinus strobus 

(n = 360) 

45 10 3 302 84% 

 

 Tree Level Validation 

 Stem diameter estimates from the predictive diameter model were compared to 

those taken in the field for each identified tree in the LiDAR (Fig. 2.1a). Simple linear 

regression yielded an adjusted r-squared of 0.57. The model had a RMSE of 7.1 cm, or 

29% of mean. An equivalence test indicated significance (α > 0.05) between the field 

measurements and estimates at a confidence interval of 1.1 cm, or 5% of mean.  

 

 

 

 

 

 

 

 

 

https://en.wiktionary.org/wiki/%CE%B1
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Figure 2.1: Tree level comparisons between field measurements and LiDAR estimates. 

Field measurements of stem diameter at breast height (DBH), stem volume, total 

aboveground carbon, and tree height are compared to LiDAR derived estimates. The light 

grey line shows the 1:1 line, the solid is best fit. Blue dots represent trees from the dense 

even-aged coniferous stands, red dots from the dense uneven-aged coniferous stands, and 

black from the deciduous stands.

 

 Stem volume estimates incorporated both height and diameter, and as a 

consequence were slightly more prone to error. Figure 2.1b and d shows the simple linear 

regression comparing LiDAR-derived estimates and field measurements for both volume 
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and height respectively. The volume model had an adjusted r-squared of 0.51, and a 

RMSE of 0.48 m3, or 87% of mean. An equivalence test indicated significant equivalence 

at a confidence interval of 0.09 m3, or 16% of mean. 

 Finally, results of the aboveground carbon estimation are shown in Figure 2.1c. 

The comparative model had an adjusted r-squared of 0.58, and a RMSE of 85 kg of 

carbon, or 74% of mean. An equivalence test indicated significant equivalence at a 

confidence interval of 19 kg, or 16% of mean. 

 Plot Level Validation 

  As with individual tree validation, simple linear regression was used to compare 

LiDAR-derived estimates with field measurements. A regression between additive ITC 

LiDAR estimates and field measured basal area per ha and yielded an adjusted r-squared 

of 0.48, and a RMSE of 4.61 m2/ha, or 17% of mean. The additive method resulted in a 

mean negative bias across all plots of -11.4%. Corrected plot-level estimates had an 

adjusted r-squared value of 0.68 (Fig. 2.2a), and a RMSE of 3.62 m2/ha, or 14% of mean. 

Corrected plot-level estimates had a mean positive bias of 5% across all plots. 
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Figure 2.2: Plot level comparisons between field measurements, layer stacking, and area-

based estimates. (a-c) Field measured basal area, stem volume, and carbon content are 

compared to corrected individual tree crown (ITC) LiDAR estimates in each plot. (d) 

Field measured stem volume is compared to area based (AB) LiDAR estimates in each 

plot. The light grey line shows the 1:1 line, the solid is best fit. Blue dots represent trees 

from the dense even-aged coniferous stands, red dots from the dense uneven-aged 

coniferous stands, and black from the deciduous stands.

 

 Simple regression between the additive LiDAR ITC estimate and the field 

measured plot estimates of stem volume and had an adjusted r-squared of 0.69, and a 

RMSE of 47.4 m3/ha, or 20% of mean. The additive ITC volume estimates had a negative 

mean bias of 8.2% across all plots. Regression between corrected ITC volume estimates 
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and the field measures produced an r-squared of 0.85 (Fig 2.2b), and a RMSE of 34.2 

m3/ha, or 14% of mean. The corrected estimates had a positive mean bias of 8%. Plot 

level AB volume estimates were also compared to field data using simple regression. The 

adjusted r-squared of the model was 0.65, which was somewhat lower than the out-of-bag 

estimate (Fig 2.2d). The RMSE of the AB estimates was 50.75 m3/ha, or 21% of mean, 

with a positive mean bias of 14.6% across all plots. Table 2.5 shows the totals and biases 

for each of the three volume estimate approaches, alongside field measurements. 
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Table 2.5. Plot level volume estimates and biases. Field measured volume (m3/ha) are reported for each plot used in the validation 

alongside the uncorrected additive individual tree crown (ITC) LiDAR estimates, the corrected ITC LiDAR estimates, and the area 

based LiDAR estimates and their respective biases. 

Stand 

Identifier 

Plot 

Number 

Field 

Measured 

Volume 

(m3/ha) 

Additive 

ITC 

Estimate 

(m3/ha) 

Percent Bias 

From Field 

Corrected 

ITC Estimate 

(m3/ha) 

Percent Bias 

From Field 

Area 

Based 

Estimate 

Percent Bias 

From Field 

Uneven-aged Conifer 
PEF-9 14 318.0 343.8 +8% 460.1 +45% 473.6 +49% 

PEF-9 21 322.6 225.8 -30% 302.5 -6% 379.5 +18% 

PEF-9 23 223.7 160.9 -28% 215.6 -4% 208.2 -7% 

PEF-9 32 240.2 183.4 -24% 245.8 +2% 270.5 +13% 

PEF-16 11 223.5 208.4 -6% 256.3 +15% 282.3 +26% 

PEF-16 12 206.5 176.3 -15% 216.8 +5% 260.1 +26% 

PEF-16 22 243.4 243.4 -3% 291.6 +20% 264.8 +9% 

PEF-16 31 178.1 178.4 +6% 231.6 +30% 255.4 +43% 

PEF-16 34 157.4 157.4 +7% 207.4 +32% 196.8 +25% 

PEF-16 56 296.1 296.1 -30% 254.9 -14% 258.8 -13% 

PEF-12 12 309.5 250.4 -19% 315.4 +2% 240.9 -22% 

PEF-12 15 260.7 269.9 +4% 340.1 +30% 270.2 +4% 

PEF-12 32 211.0 151.0 -28% 190.3 -10% 280.2 +33% 

PEF-12 43 287.4 183.4 -36% 231.1 -20% 255.4 -14% 

Even-aged Conifer 
PEF-23B 13 210.2 193.1 -8% 227.8 +8% 196.7 -6% 

PEF-23B 22 294.7 251.4 -15% 296.7 +1% 282.2 -4% 

PEF-23B 31 217.7 205.6 -6% 242.7 +11% 219.0 +1% 

PEF-29B 11 117.4 108.1 -8% 108.1 -8% 117.8 0% 

PEF-29B 23 104.1 86.0 -17% 86.0 -17% 138.1 +33% 

PEF-29B 35 102.1 94.6 -7% 94.6 -7% 175.8 +72% 

Uneven-aged Deciduous 
PEF-M1 1 227.5 385.0 +69% 304.1 +34% 318.6 +40% 

PEF-M2 1 513.9 548.6 +7% 652.8 +27% 465.8 -9% 

4
8
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 The comparison between additive ITC estimation of carbon stocks and field 

measurements produced an adjusted r-squared of 0.66 (Fig. 2.2c), with a RMSE of 10.3 

kg/ha of carbon, or 21% of mean. The additive ITC estimates had a negative bias of 

10.3%. The corrected ITC estimates had an adjusted r-squared of 0.81, and a RMSE of 

7.61 kg/ha, 15% of mean. The corrected ITC estimates had a positive bias of 5.2%. 

 Stand Level Validation 

 At a stand level corrected ITC volume estimates were compared to AB volume 

estimates. Simple regression yielded an adjusted r-squared of 0.98, and a RMSE of 106 

m3, or 6% of mean. On average the AB estimates were 5% greater than the corrected ITC 

volume estimates. 

Discussion 

Segmentation accuracy of layer stacking was extensively tested in the study area and 

compared to a commercial watershed delineation algorithm in Chapter 1. The layer 

stacking algorithm performed exceptionally well in the deciduous stands, which is 

unusual for most ITC algorithms. Though there was room for improvement in terms of 

detection rate in both conifer stands, this must be weighed against the structural 

complexity of the uneven-aged conifer stands, and the very high density of the even-aged 

conifer stands.  

 Results of the species classification from LiDAR point clouds showed promise, 

particularly in the separation of coniferous and deciduous species. This classification 

yielded a high accuracy with the withheld data. This result was somewhat expected, as 

the difference between the two groups was apparent visually in both LiDAR datasets 
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when viewing by intensity or reflectance. This figure was slightly higher the 90.6% 

deciduous vs. coniferous accuracy reported by Kim et al. (2009) using similar methods 

with two datasets from different seasons, and on par with the 96% reported by Reitberger 

et al. (2008) who used leaf off LiDAR and analyzed waveform characteristics. We 

believe that the intensity measurements, the percent of single returns, the ground point 

density, and the tree's pointiness were the most important predictor variables (mostly 

based on p-value); the latter two have not traditionally been used in ITC analyses. 

Qualitatively, the classification appeared slightly less accurate when classifying trees 

embedded in the opposite stand type. One explanation for this could be that the deciduous 

trees used for training were all mature and shade tolerant species, while those normally 

found interspersed in a conifer stand would likely be smaller and shade intolerant species, 

having slightly different canopy characteristics. 

 The conifer species classification showed a reasonable ability to separate the 

conifer species, with an overall accuracy of 83%. Classification of Tsuga canadensis had 

the lowest accuracy, likely because of the lack of training trees available for model 

calibration. In contrast, Picea rubens  and Pinus strobus had the highest accuracy, likely 

because of the relatively large number of training trees available.  Picea rubens and Abies 

balsamea were most frequently confused with one another, likely owing to their similar 

canopy shapes. Abies balsamea, is often more pointed however, and tended to be smaller 

on the study site. Relative importance of the various predictors was estimated for the 

random forest model, revealing that height, intensity variables, percent only, and ground 

point density were the most important predictors. It was noted upon examination of 

intensity/reflectance from both LiDAR datasets that conifer species as well as different 
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deciduous species could be visually distinguished from one another, although this 

differed somewhat between the two datasets. For example, Picea rubens  was 

consistently darker than other conifers in the NASA dataset, while not being noticeably 

different in the LEGEO dataset. This could be caused by the aforementioned differences 

in the intensity/reflectance calculations or by seasonality. No studies have been 

conducted classifying the conifer species in the region of study, however, many studies 

have classified conifer species with approximately the same success. In Ontario, Li et al. 

(2013) achieved a 77% classification accuracy between the species Pinus strobus, Pinus 

banksiana, Acer saccharum, and Populus tremuloides. In Montana, Suratno et al. (2009) 

achieved accuracies between 65-95% accuracy depending on crown class between the 

species Pseudotsuga menzisii, Larix occidentalis, Pinus ponderosa, and Pinus contorta. 

While in Finland, Vauhkonen (2010) achieved an accuracy of 78% classifying Pinus 

sylvestris, Picea abies, and deciduous trees. 

 Results of the tree-level analysis indicated a moderate degree of variability in all 

three LiDAR-derived estimates (diameter, volume, and carbon) when compared to the 

field data. Given that most existing allometric equations rely on accurate DBH 

measurements, this is arguably the most critical attribute we have estimated. There are 

several ways of estimating DBH from an individual tree's point cloud. One approach is to 

model the desired attribute directly, often using height metrics similar to the AB 

approach, effectively treating each tree like a small plot (Villikka et al. 2007, Yu et al. 

2011). The alternative is to use only 'direct' measurements, and use existing allometric 

equations to then estimate the desired attribute (Vastaranta et al. 2011), a method 

preferred in some cases for its similarity to field inventories and lack of required field 
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work.  In this study we choose to model stem diameter from a measure of canopy width, 

estimated species, and tree height, all of which have well known strong correlations to 

stem diameter in the region studied (Russell and Weiskittel 2011, Rijal et al. 2012). We 

attempted to mirror field based inventories by using as many existing allometric 

equations as possible, intending to better link field LiDAR estimates, and that the 

reasoning behind each estimation would be more intuitive. The RMSE for DBH 

estimation was 7.1 cm and 28% of mean, which undoubtedly had a large effect on 

volume and carbon predictions.  

 As model estimates (such as DBH or species) were input variables of subsequent  

models, errors were likely confounded, which may explain the relatively high RMSEs for 

above-ground volume and carbon stocks (87% and 74% of the means, respectively). 

LiDAR-derived height underestimates are considered a common source of error (Hayashi 

et al. 2014), and indeed such underestimates may have contributed slightly to the above 

noted error; however, we feel that, at 21pts/m2, the LiDAR was of sufficiently high 

density to capture crown apices, suggesting that this source of error may have been 

minimal relative to others.  To this point, we did not note consistent negative biases in 

volume or carbon at the tree level that would be expected given the equations used, had 

heights been underestimated. We believe the majority of error in each of the tree 

estimates could be attributed to tree crown segmentation errors (which influenced crown 

metrics used to estimated stem DBH), such as crown edge clipping and inclusion of 

neighboring tree crowns. We suspect that more spatially uniform trees (both in terms of 

horizontal and vertical strata) and improvements to the layer stacking algorithm would 

lead to better crown delineation, and thus better estimates of stem diameter, such as those 
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made by Popescu et al. (2003) or Yu et al. (2011) who reported 18% and 10% RMSE of 

average DBH respectively. Overall, little work has been done to incorporate tree-level 

analyses of LIDAR data into operational forestry, so it remains to be seen what tolerance 

for error there may be in practice.  

 Each of the three plot-level estimates (basal area, volume, and carbon stock) had 

considerably greater accuracy when compared to the tree-level estimates. The additive 

method consistently underestimated plot attributes by an average of 8-11%, which has 

always been a challenge for the ITC approach simply due to undetected trees (Hyyppä 

and Inkinen 1999, Yu et al. 2010). Because small trees are most commonly missed in 

segmentation, Maltamo et al. (2004) attempted to correct for these omissions by using 

hypothetical diameter distributions to fill in the missing data. Others have attempted 

similar modeling approaches (REFS), which add a considerable amount of complexity to 

the predictions. We chose to correct the predictions by simply adding the percentage 

associated with omission and subtracting the percentage of commission errors. This 

approach yielded far higher r-squared values, lower RMSE, and a very low mean bias 

when compared to the uncorrected additive method. Initially this was done on a plot-by-

plot basis, as commission and omission were known for each individual plot. However, 

because these errors are rarely available, this approach was deemed impractical. Instead, 

we used the mean commission and omission for each forest type for the correction, at the 

cost of slightly reduced accuracy (by several percent) in predictions. Collecting these 

error values in generalized forest types requires little field effort, and these values could 

presumably be used at similar sites, indicating that the field effort required may be less 

than that needed for developing models for the AB approach. We note that even without 
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the aforementioned corrections, the uncorrected additive approach produced estimates of 

basal area, volume , and carbon stock (17%, 20%, and 21% RMSE, with an average 

underestimate of 11%, 8%, and 10% respectively) that may be acceptable for particular 

operational inventories.  

 The AB volume estimates were also compared to the field measurements on a plot 

level, and yielded a considerably lower r-squared, higher RMSE, and stronger bias, in 

comparison with the ITC approach. Thus, in this study, both the corrected and 

uncorrected ITC approaches produced estimates of basal area, volume, and carbon with 

greater accuracy than those from the AB approach. One possible explanation for this 

finding is the age of the training data used for the AB model calibration, which was on 

average five years older than the LiDAR data. Though growth modeling was used to 

update tree sizes to account for this five-year lag, this update admittedly introduced 

uncertainty. Curiously, the out-of-bag r-squared was considerably higher than the r-

squared from the simple regression using withheld plots, perhaps confirming a suspected 

difference between the older training and the newer validation data. A direct comparison 

between AB and corrected ITC methods yielded r-squared and RMSE values similar to 

the AB vs. field comparison, indicating that little consistent disagreement exists between 

LiDAR and the field data that may have been introduced (for example, where plot centers 

misaligned). One important contrast between the two approaches is that ITC delineation 

takes considerably more computing time than the AB approach. In this instance layer 

stacking took many times the computational effort than did the random forest prediction. 

Thus, any benefits of the ITC approach such as accuracy or tree level information, must 

be weighed against the additional computation time required.  
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 Stand level analysis indicated reasonable agreement with the AB approach. Once 

again, the AB approach produced a slight overestimate compared to the ITC approach, 

with a 5% difference on average. The ITC approach only used trees >2m distance from 

the border of the stand, so as to prevent clipping and inclusion of trees from the adjacent 

stand. Similarly, the ITC approach only included 10 x 10m blocks that were entirely 

within the stand, thus discounting blocks that were split between two stands. Although at 

a stand level both of these edge effects were likely trivial, they may help account for 

some of the difference in performance (6% RMSE) between the two approaches. Overall, 

given this level of agreement, we conclude that both the corrected ITC approach and the 

AB approach can be used interchangeably at a stand level. 

Conclusion 

 In summary, this paper demonstrates the effectiveness of the layer-stacking 

individual tree approach, for estimating some of the most important forest biometrics 

across a tree-, plot-, and stand-levels using LiDAR data. In doing so we have introduced 

several novel methods for measuring individual tree point clouds from LiDAR data. 

These include quantifying pointiness, the use of first-order differences, measuring ground 

points beneath the tree, and correcting for segmentation errors in crown width. We have 

also demonstrated species level classification using only LiDAR and illustrated a 

potential benefit of having multiple LiDAR flights from different seasons and with 

different machines for comparing intensity values. Finally, we have improved plot level 

estimates using an individual tree crown method, as compared to an area-based method, 

which indicates that the additional information derived by separating tree crowns is not 

just of value by itself at the tree level, but aids in the accuracy of larger analyses. Though 
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the benefits of individual tree methods must be weighed against increased computation 

time, we feel that as computing power continues to improve and practitioners find new 

ways of using individual tree data, the future of individual tree delineation will be a 

positive one. 
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CHAPTER THREE: 

THREE-DIMENSIONAL POINT CLOUD RECONSTRUCTUION FROM 

AERIAL PHOTOS AS A MEANS OF ESTIMATING INDIVIDUAL TREE 

HEIGHT IN CONIFER STANDS 

Introduction 

Accurate forest canopy measurements are needed for a wide range of forestry and 

ecological purposes. However, measuring and characterizing canopy structure using 

traditional methods is challenging, given the difficulty of direct measurements. Obtaining 

accurate individual tree heights in particular has long posed a challenge for forest 

inventories, regardless of the method employed. This challenge has led to estimates of 

height being derived from stem diameter at breast height, or generalized area-based 

methods describing general canopy height, both of which have innate inaccuracies.      

Individual tree heights can be obtained by a variety of inventory methods. In the 

field, devices such as clinometers or laser hypsometers are typically used (Wing et al. 

2004). In practice, the accuracy of these ground-based measures is compromised in 

closed-canopy forests where individual tree tops are difficult to discern. Further, ground-

based methods are labor intensive and are thus applied to a relatively small subsample of 

trees. From the air, digital stereo-photogrammetry is often used to estimate heights by 

quantifying the parallax between two images. High resolution photographs with precise 

overlap are required for this method, and information from only two images at a time can 

be used. Recently, airborne Light Detection And Ranging (LiDAR) has gained popularity 

for characterizing forest canopy structure, including tree heights, from a three-

dimensional point cloud (Næsset and Økland 2002). As LiDAR imagery becomes more 
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readily available, and with costs decreasing and point density increasing, it is becoming 

more widely accepted as the standard for characterizing forest canopy structure, 

particularly over large remote areas, such as Alaska (Wulder et al. 2012). 

Despite its promise as a forest inventory tool, LiDAR has several drawbacks. 

First, its accuracy strongly depends on pulse density. In order to obtain the resolution 

required to capture conifer apices (5 pulses per meter [ppm] or greater in our experience), 

flight lines currently must be close to the ground or must have considerable overlap. As 

of 2015, LiDAR imagery of this resolution tends to be cost-prohibitive for most potential 

users. Although lower resolution LiDAR is often freely available through various 

government agencies in the U.S. and Canada, this resolution (usually 1-3 ppm) may be 

too low to reliably predict individual tree heights without accounting for a negative bias 

or creating a predictive model. 

An emerging photogrammetric method known as structure-from-motion (SfM) 

may provide a cost effective alternative to LiDAR for generating a canopy surface model, 

which is a computerized height maps of the forest canopy, used to measure absolute 

height of trees above ground. The SfM method relies on readily available software that 

utilizes multiple overlapping aerial digital photographs to produce a three-dimensional 

point cloud similar in many ways to LiDAR. Like LiDAR, the images or SfM point 

clouds must be geo-referenced and aligned either using ground-truth data or other remote 

sensing utilities. Although the concepts underlying SfM have been in use since the early 

1990s, former computational restrictions have limited their widespread use. The field of 

archeology has begun using SfM to characterize three-dimensional structures ranging 

from small artifacts (Samaan et al. 2013) to entire sites (Verhoeven 2011). The field of 
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geology also has applied SfM to mapping river beds (Javernick et al. 2014) and 

topographic structure (Fonstad et al. 2013).  

To date, SfM forest applications have addressed larger-scale area based 

inventories and have been conducted in conjunction with LiDAR (White et al. 2012). 

One potential limitation in using standard LiDAR techniques to obtain area-based 

estimates from photogrammetric point clouds (Pitt et al. 2014) is that model calibration 

and intense ground sampling may be required with each new data acquisition. Canopy 

metrics used for area-based LiDAR estimates often include mean canopy height, 

minimum height, standard deviation, histogram analysis, and other characteristics that 

vary greatly depending on canopy penetration of the laser pulses. Time of day and light 

level will change the depth to which SfM point clouds can penetrate canopies, thus 

altering these metrics from one acquisition to the next. However, individual tree height 

and other direct tree measurements will be less subject to change. For example, Lisein et 

al. (2013) made limited individual tree measurements using near-infrared photographs.  

However, one known limitation of SfM is its inability to penetrate dense forest 

canopies, meaning that, unlike LiDAR, it can be difficult to produce digital elevation 

models (DEMs; i.e., ground surface topography) where bare ground is not visible. 

Accurate DEMs are needed to estimate individual tree heights by subtracting the canopy 

surface from the ground. To overcome this limitation, we have merged SfM data (point 

clouds characterizing canopy structure) with commonly available low-resolution LiDAR 

data (sufficient to derive a DEM), producing a relatively low-cost alternative to high-

resolution LiDAR-derived canopy surface models. However, in forests with rather sparse 

canopies, SfM may function as a stand-alone product, with a basic DEM being generated 
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from ground points visible through canopy interstices. To enhance our ability to derive a 

DEM from SfM point clouds, we used color infrared imagery to spectrographically filter 

out vegetation and highlight these interspersed ground points prior to more standard 

ground point classification by height filtering, which to the best of our knowledge 

represents a novel workflow.  

Our objective was to evaluate the efficacy of SfM imagery – either as a 

replacement or as a supplement to more traditional methods – for estimating tree heights 

by testing it against field-measured heights, digital stereo photo interpretation, and 

LiDAR height estimates of individual trees. Our results demonstrate that SfM shows 

promise as an additional low-cost forest inventory method, with potential to be used over 

large areas on a frequent return interval (e.g., five years), provided the terrain is flat, bare 

earth is visible, or a LiDAR DEM is used in conjuction. 

Methods 

 Efficiently meeting our objective required that we locate a site that had existing 

field-measured tree heights, high resolution aerial photographs, and LiDAR data. 

Together these data sets permitted the comparison of tree heights estimated by five 

methods: field-measured with hypsometer (henceforth FIELD), digital stereo-photo 

interpretation (DSI), LiDAR, SfM using the LiDAR DEM (SfM-LDEM), and SfM using 

a DEM derived from the SfM photographs themselves (SfM-SDEM).  

We selected a study site within the US Forests Service’s Penobscot Experimental 

Forest in central Maine, U.S.A. Ground-based height measurements had been obtained on 

dozens of 16-m fixed radius permanent plots. We selected 15 plots from four stands for 

measurement, each stand being part of a long-term study on selection harvests, and thus 
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having a multi-aged canopy structure. Stand were dominated by Picea rubens (red 

spruce), Abies balsamea (balsam fir), and Tsuga canadensis (eastern hemlock). The four 

stands spanned a range of structural characteristics, with stem densities ranging from 351 

to 558 stems ha-1 and basal areas from 7.9 to 33.6 m2 ha-1  (Table 3.1). Tree heights and 

locations (azimuth and distance from plot centers) were recorded in the field by US 

Forest Service personnel between Spring of 2011 and Summer of 2013 using Haglöf 

Vertex III ultrasonic hypsometers. 
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Table 3.1. Summary statistics for each species measured. Diameter at breast height in 

centimeters (DBH) and height in meters (Ht) by species and measurement method (SD = 

standard deviation) across each of the four stands measured. 

 Mean ± SD Min. Max. 

Abies balsamea (n=27 trees) 

Stem DBH  20.2 ± 4.0 11.7 28.2 

FIELD Ht  17.27 ± 1.89 12.37 21.06 

LiDAR Ht  16.42 ± 1.62 12.42 19.44 

SfM-LDEM Ht  15.93 ± 2.06 10.93 20.21 

SfM-SDEM Ht  15.78 ± 1.99 11.96 18.64 

DSI Ht  15.69 ± 3.69 9.08 24.99 

Tsuga canadensis (n=43 trees) 
Stem DBH  36.4 ± 4.1 12.2 58.2 

FIELD Ht  19.46 ± 3.31 10.03 24.32 

LiDAR Ht) 18.96 ± 3.19 9.48 24.24 

SfM-LDEM Ht  19.55 ± 3.43 10.67 25.50 

SfM-SDEM Ht  19.71 ± 3.63 9.78 25.02 

DSI Ht  18.86 ± 3.66 10.82 26.79 

Picea rubens  (n=39 trees) 

Stem DBH  32.1 ± 3.7 13.0 48.5 

FIELD Ht  19.74 ± 3.04 11.86 25.91 

LiDAR Ht  18.88 ± 2.90 10.64 24.56 

SfM-LDEM Ht  19.15 ± 3.08 12.34 25.45 

SfM-SDEM Ht  19.02 ± 3.40 13.07 26.01 

DSI Ht  18.87 ± 3.41 11.21 24.99 

Note: FIELD=field-measured with hypsometer, DSI=digital stereo-photo interpretation, 

SfM-LDEM=structure-from-motion (SfM) using the LiDAR DEM, SfM-SDEM=SfM 

using the SfM DEM. 

 

Color infrared aerial photos were flown covering the experimental forest in late 

2013 in leaf-off conditions. For this reason we have focused our analyses on conifers. 

Photos were taken with a Canon EOS Rebel T2i DSLR adapted for near-infrared 

acquisition, flown at an altitude of approximately 1,220 meters above ground at a 

resolution of approximately 14 cm per pixel, with 60 % endlap and 40 % sidelap. These 

photos were used for both digital stereo-photo interpretation and SfM analyses. Digital 

stereo-photo interpretation was done by a trained interpreter in ERDAS Imagine 2014 
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with the Stereo Analyst version 14.0 application (ERDAS Inc. 2014). Plots were 

analyzed individually by selecting the appropriate digital stereo-model for display within 

the Digital Stereoscope workspace, and individual heights were obtained for each 

preselected tree with the 3D Measure tool.  

LiDAR was flown in late October of 2013 in leaf-off conditions at an average 

resolution of 6 ppm. A full waveform Riegl LMS-Q680i was used with a pulse rate of 

150 Khz. Footprint size was on average 0.17 m. Altitude was approximately 600 m above 

ground. Ground points were classified by the LiDAR service provider. 

 The SfM reconstruction was processed using Agisoft Photoscan software 

(AgiSoft LLC, 2011). SfM can best be defined as a series of steps that consist of 

calibrating for the camera's lens distortion automatically, identifying common points 

within photos, determining camera positions in space based on differing orientations of 

those points, refining those positions through a bundle adjustment cost function, and then 

reconstructing fine structures between those points using somewhat more typical stereo 

methods such as semi-global matching.  

 The SfM reconstruction was geo-referenced by aligning it to the already well-

referenced LiDAR dataset using the open-source program CloudCompare (Cloud 

Compare, 2011), which automatically determines scale and transformation using an 

iterative closest-point algorithm, as well as with manual refinement where necessary. 

Over large spatial scales, the two point clouds were difficult to align, likely due to small 

inconsistencies in the photo reconstruction that multiplied with increasing distance from 

the alignment control points. Therefore, the SfM point cloud was separated into segments 

of roughly 500 m on each side to establish fresh control points. The trees measured were 
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not used in the alignment process, and attempts were made to use anthropogenic features 

(e.g., buildings, roads) for alignment before resorting to trees. 

 Because the point-cloud data (LiDAR and SfM) were measured as height above 

sea level, and thus would incorporate hills and terrain changes into elevation, they were 

normalized, creating a canopy height model so as to only measure height above ground 

(Fig. 3.1). Thus, for both the LiDAR and the combined LiDAR-SfM model (SfM-

LDEM), the digital elevation model (DEM) used to obtain absolute tree height originated 

from the LiDAR ground points. In the case of the SfM stand-alone model (SfM-SDEM), 

the DEM originated from the SfM photos alone. This DEM was generated by first 

spectrographically filtering points with high infrared reflectance to remove vegetation, 

then using a height filtering algorithm within the BCAL software package (BCAL 

LiDAR Tools, 2014), and finally interpolating with inverse distance (Streutker and Glenn 

2006). Individual tree height measurements were estimated by manually locating tree top 

in the point cloud for both the LiDAR and SfM data, with the highest point on the crown 

taken as it's apex.  
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Figure 3.1: A structure from motion point cloud (red) overlaid on top of a LiDAR point 

cloud (blue). Both point clouds have been normalized against the LiDAR-derived DEM, 

showing height above ground. Note that the two point clouds are nearly identical at the 

canopy surface; however, LiDAR penetrates the canopy and thus better depicts sub-

canopy structure and ground.  

 

 

 Height was determined for a total of 109 trees with all five measurement types. 

Digital stereo-photo manual measurement was the greatest limiting factor, as the 

interpreter could only resolve individual heights for this subset of trees. To determine if 

the five measurement methods produced similar tree heights, we first employed a linear 

mixed-model ANOVA, testing if height was influenced by measurement type, species, 

and the interaction between the two. To account for the hierarchical data structure (trees 

nested within plots, plots nested within stands), these variables were included in the 

model as random nested effects. This model initially included stem diameter as a 

covariate to account for differences in trees size among species (balsam-fir tended to be 

shorter than the others); however, this did not improve the model, and was thus left out of 

the final model. Results from this preliminary analysis revealed a significant interaction 

between species and method (P = 0.01), which precluded the testing of the main effect of 

measurement type across species, the original purpose of our study. For this reason, we 



 

66 
 

performed separate linear mixed-model ANOVAs for each of the three species, allowing 

us to examine the effect of measurement type. These ANOVAs included the random 

effects mentioned above. Post-hoc comparisons of least square means were made using 

Tukey’s test (at α= 0.05) to test for differences among measurement types.  

 In order to assess bias and precision of each measurement type we used the mean 

height of all five measurement types obtained for each tree (within a species) as a 

reference. We define bias as the mean of the differences between each observation and 

the reference, and precision as the mean of the absolute values of these differences.   

 

Results and Discussion 

 All three ANOVAs (one per species) revealed statistically significant differences 

among the measurement types (Fig. 3.2). Though results varied by species, several 

general trends emerged. For example, LiDAR and SfM-LDEM height estimates did not 

differ significantly from one another with a mean difference of 0.21 ± 1.29 m (mean ± 

SD); however, SfM-SDEM differed significantly from LiDAR for Abies balsamea, with 

SfM-SDEM 0.64 ± 1.73 m lower than LiDAR measurements. SfM-SDEM never differed 

significantly from SfM-LDEM (p < 0.05). DSI and FIELD measurements differed 

significantly for Abies balsamea and Picea rubens, with DSI underestimating height by 

an average of 0.86 ± 1.99 m in both species; FIELD produced the tallest estimates in 

these same species, and DSI consistently produced the lowest height measurements and 

the greatest variation among estimates (Table 3.1). In no instance did one single 

measurement method differ significantly from all others, nor did both SfM methods differ 

significantly from all the traditional methods. 
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Figure 3.2: Mean tree height by species and measurement method. Values with different 

letters (within a species) are significantly different (Tukey’s test at α < 0.05). Error bars 

indicate standard deviation. FIELD=field-measured with hypsometer, DSI=digital stereo-

photo interpretation, SfM-LDEM=structure-from-motion (SfM) using the LiDAR DEM, 

SfM-SDEM=SfM using the SfM DEM. 

 

  The species by measurement type interaction noted in our preliminary analysis 

may have arisen from Abies balsamea being considerably shorter than other species, 

suggesting that not all measurement types performed equally on shorter trees. 

Alternately, different canopy structures among species may have led to misidentification 

of tree apices by one or more methods.  

 The bias and precision for each measurement type and species combination can be 

seen in Table 3.2. Despite statistically significant differences among measurement types 

revealed by the ANOVAs (above), many of these differences were small enough to have 

little impact operationally. DSI had consistently high bias and low precision when 

compared to other methods tested. Bias and precision of SfM-LDEM was often on par or 

better than those of LiDAR, with directional bias not exceeding 0.28 m. Directional bias 

of the SfM-SDEM measurement method did not exceed 0.44 m.  
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Table 3.2:  Mean biases and absolute differences between measurement methods. These 

were used to assess bias and precision respectively.  

 

 

Note: FIELD=field-measured with hypsometer, DSI=digital stereo-photo interpretation, 

SfM-LDEM=structure-from-motion (SfM) using the LiDAR DEM, SfM-SDEM=SfM 

using the SfM DEM. 

 

 Precision was notably lower in the SfM-SDEM and DSI measurements, when 

compared to other methods, which may be attributable to differing canopy closure. That 

is, stands with greater canopy stratification or leaf-off deciduous trees tended to provide 

more accurate SfM-DEMs simply because more ground was visible in the photos. In 

these cases SfM alone is likely sufficient for tree height measurements. However, in 

many instances, there were sizable areas without ground points, possibly resulting in 

elevation changes being missed, thereby creating uncertainty in tree heights. Using higher 

resolution photos or photos taken closer to midday when the sun is directly illuminating 

canopy interstices would likely have improved SfM-SDEM measurements. As noted by 

White et al. (2012), an analysis of SfM efficacy in different forest types is required; this 

paper illustrates SfM's effectiveness in heterogeneous softwood stands. More work is 

 Abies balsamea              Tsuga canadensis             Picea rubens 

 

 

Method 

Bias 

(m) 

Absolute  

difference  

(m) 

Bias 

 (m) 

Absolute 

difference 

(m) 

Bias 

(m) 

Absolute 

difference 

(m) 

FIELD 1.05 ± 

1.15 

1.31 0.15 ± 

0.87 

0.07 0.60 ± 

0.79 

0.77 

LiDAR 0.20 ± 

0.74 

0.65 -0.35 ±  

0.63 

0.59 -0.25 ± 

0.87 

0.65 

SfM-LDEM -0.28 ± 

1.48 

1.10 0.24 ± 

0.61 

0.52 0.02 ± 

0.71 

0.55 

SfM-SDEM -0.44 ± 

1.49 

1.17 0.40 ±  

1.35 

1.04 -0.11± 

1.35 

1.06 

DSI -0.53 ± 

2.31 

1.77 -0.45 ± 

1.66 

1.37 -0.26 ± 

1.70 

1.34 
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needed, however, to determine the image resolution, percent canopy closure, topographic 

smoothness of the site, and flight parameters required for SfM to work effectively as a 

stand-alone product. 

In many instances, combining SfM reconstructions with a LiDAR DEM will yield 

more reliable tree height measurements, simply because LiDAR pulses penetrate the 

canopy and thus yield more ground points. In our study site, the terrain was relatively 

flat, which permitted a reasonable interpolation between sparse ground points in the SfM-

derived DEM; in rougher terrain, this interpolation may be unreliable. Existing DEMs 

can be obtained from LiDAR data that may be too coarse or too old to yield height 

measurements. Used in this manner, SfM may offer a low-cost alternative to flying 

LiDAR repeatedly or at high resolutions, as noted by Pitt et al. (2014). We note, however, 

that geo-referencing SfM to the DEM must be done with great care to ensure that scale 

has been properly assigned, since small differences in scale between the point cloud and 

DEM can accumulate over large areas. 

We note that we did not attempt to correct for camera parameters or lens 

distortion in our SfM data, which may partly explain the inconsistencies in the DEM 

mentioned above. Instead, we overcame this limitation by spatially sub-setting the SfM 

point cloud and georeferencing these subsets individually. We believe this approach is 

sufficient when analyzing point clouds at the level of individual trees or forest stands, 

given the recent advances in software. Such an approach was not necessary with the 

stand-alone SfM, because tree height was measured relative to the ground directly 

beneath it, and landscape-level inconsistencies between the SfM-SDEM and LiDAR 

DEM had no measurable impact on individual tree heights. 
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 Flight parameters needed for SfM are also considerably less restrictive than those 

of traditional aerial photos. Given SfM’s success with different camera angles in the past 

(De Reu 2013), it is likely that oblique photos taken from differing altitudes would serve 

as well, if not better, for reconstruction provided photos share enough points for semi-

global matching. Greater change in perspective would better reveal areas otherwise 

obscured in a top-down view, thereby improving reconstructions. One final benefit of 

SfM is that its point clouds are inherently colored, as opposed to LiDAR, which usually 

require color to be added afterwards from photos flown during a different acquisition, due 

to differing flight parameters between LiDAR and aerial photos. This benefit facilitates 

species and object detection by eye and by spectrographic filtering. In this instance, we 

believe the DEM generation from images was aided significantly by the near infrared 

band, which allowed us to easily remove vegetation prior to processing.  

Our findings suggest that SfM reconstructions can serve as a low-cost supplement 

to, or in some cases, replacement for, LiDAR or more traditional aerial digital stereo-

photographs in studies of forest structure. However, because SfM cannot penetrate the 

forest canopy, it cannot resolve detail on sub-canopy structures or covered ground points, 

as can LiDAR. As shown here, it can provide canopy-surface and tree-height data 

comparable to that of LiDAR. As such, it could lend itself well to the delineation of 

individual tree canopies (i.e., segmentation, see Kwak et al. 2007) using methods 

commonly applied to LiDAR point clouds. Further, because it inherently includes 

spectral information, it can be used to resolve tree species, as is done with traditional 

aerial photographs (Gougeon 1995). SfM could therefore serve as an invaluable tool with 

potential widespread usage in forest inventories and studies of forest canopy structure. 
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EPILOGUE 

Summary of Chapters 

 For many decades, forest inventories have benefited from remote sensing data. In 

recent years, thanks to technological advancements  in photogrammetry and laser range 

finding, researchers and managers have had access to forest structure data in the form of 

three-dimensional point clouds, that is, dense clusters of spatially explicit points that 

represent the structure of the forest canopy. Metrics derived from these point clouds have 

proven invaluable for estimating forest biometrics, such as biomass (Zolkos et al. 2013), 

tree density (Næsset  and Bjerknes 2001), height, and stem diameter (Means et al. 2000). 

most of these metrics, however, are of a coarse nature, and are derived from secondary 

height characteristics obtained on a per-area basis, and thus depict structure at the level of 

forest plots or stands. However, direct measurements of individual tree attributes, visually 

evident in high resolution point clouds, could be of benefit by providing tree lists which 

could then be used for more precise management, and more intuitive inventories. The 

above work establishes methods by which detailed individual tree attributes can be 

extracted from high resolution point clouds. 

 Chapter I detailed a new algorithm by which individual tree shapes can be 

isolated from a larger LiDAR point cloud, a process referred to as segmentation. Existing 

algorithms typically use the rise and fall of tree canopies on the canopy surface to detect 

the tree outline, then isolate anything within that outline. These so-called watershed 

algorithms are ineffective at isolating overtopped trees beneath a closed canopy, at 

isolating trees whose canopies are tightly interlocked (often deciduous species), and at 
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isolating the structure of a tree without including objects that lie beneath it. Because of 

these limitations, tree detection rates remain quite low even with the highest quality 

LiDAR (Vauhkone et al. 2011). The layer stacking algorithm presented in Chapter I 

(known as layer stacking), uses a series of horizontal layers to detect tree structure 

throughout the entire forest strata, rather than just the surface. Results demonstrated that 

layer stacking performed on par or better than watershed delineation in nearly every 

forest stand type examined, with the greatest improvements observed in deciduous 

stands, which have traditionally been difficult to segment. 

 Chapter II applied the layer stacking segmentation algorithm presented in Chapter 

I to the task of deriving metrics to estimate stem diameter, stem volume, aboveground 

biomass, and carbon content of each tree in the forest over 10 cm diameter. These 

estimates can then be summed to obtain plot and stand level estimates on a per-area basis. 

The process begins by classifying segmented trees by species, using several measures of 

canopy shape and infrared reflectance. Next, stem diameter was estimated using height, 

canopy width variables, and species as predictors. Estimated diameter and tree height was 

then used to estimate bole volume using local taper equations. Stem volume was 

converted to biomass from density equations, and leaf and branch biomass was estimated 

from diameter using local weight tables. Finally, biomass was converted to carbon 

content using biomass to carbon specific density equations. Each of the three metrics of 

interest (diameter, volume, and carbon stock) were compared to field values at a tree and 

plot level. Finally, the individual tree method was compared to the coarser area based 

method mentioned above. Results indicated that the extra information of measuring each 

tree lead to superior estimates on a plot level. Thus, we conclude that measuring 
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individual trees yields not only more detail, but more accuracy than traditional area based 

point cloud interpretation. 

 Finally, Chapter III evaluated a new alternative for generating dense point clouds 

from photogrammetry, known as structure-from-motion (SfM). This method of point 

cloud reconstruction is considerably more cost effective than the more traditional 

alternative, LiDAR, which has often been prohibitively expensive to foresters. Similar to 

LiDAR, most work with photogrammetric point clouds has focused on area-based 

estimates (Bohlin et al. 2012, White et al. 2013). However, with imagery of a high 

enough resolution, individual tree crowns can be observed and measured.  To illustrate 

this concept, individual tree height measurements were made using SfM alone and SfM 

in conjunction with LiDAR, and then a comparison was drawn between these and field 

measurements, LiDAR measurements, and digital stereo-photogrammetry measurements.  

Results revealed little difference between the various methods, suggesting that SfM may 

be a suitable alternative or supplement to LiDAR for forest inventories, particularly those 

that need to be flown repeatedly and at low cost.  

The Future of Point Cloud Technology 

 Technological advancements in this new field of three-dimensional measurement 

show little sign of slowing down, so the new methods presented here will be essential for 

taking full advantage of the advancements in data acquisition expected in the coming 

years. There have been several stages of development in LiDAR's history, starting with 

single profile LiDAR which measured only a two-dimensional profile, then moving to 

discrete return LiDAR which measured three dimensions but could not penetrate trees 
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and measure multiple points vertically, and finally leading to the full waveform LiDAR 

common today, which is able to detect multiple points throughout the tree canopy and 

create robust three dimensional point clouds. There is however, every indication, that we 

may be entering a new stage thanks to the advent of single-photon-LiDAR (SPL). SPL is 

an order of magnitude faster than full waveform, because while full waveform sends out 

one beam of light at a time, SPL splits the beam into many pieces and sends out at least 

100 beams at once. This is possible because a SPL detector is capable of receiving as 

little as one photon of light as a hit, and thus can be considerably faster in the collection 

of new points than full waveform LiDAR which requires a continuous stream of light to 

register a new point. The result is a point cloud of a high enough resolution to detect 

individual trees, at a fraction of the cost of traditional low resolution LiDAR.  

 Another recent development in point cloud generation is multispectral LiDAR. 

While traditional LiDAR sends out a single infrared beam of light, multispectral LiDAR 

sends out several beams at different wavelengths. One can then examine the intensity that 

each of those beams was returned at, and assign a color value to each three dimensional 

point in the point cloud. Multispectral LiDAR would help foresters in several ways: it 

would aid in segmentation since trees next to one another are often different colors, it 

would help with species identification because each species often has a unique spectral 

reflectance, and it would aid in assessing tree health, leaf area, and live crown, since 

normalized difference vegetation indices could be made for each tree at a three 

dimensional level. 

 Finally, point clouds generated from SfM will likely become more ubiquitous. 

Concurrently, SfM point clouds are best used in conjunction with a LiDAR elevation 
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model, serving as a cheap means of reassessing forest attributes rather than flying LiDAR 

again. As more public LiDAR is flown, more areas will become open to SfM analyses. 

Due to differences in SfM point clouds stemming from different flight parameters, such 

as time of day, and cloudiness, it has been difficult to apply traditional area-based 

approaches to SfM point clouds. This has made the development of regional models, like 

those developed with LiDAR, very difficult. Thus, there has been little operational use of 

SfM for forest analytics. This will likely change as scientists find new ways to interpret 

SfM point clouds, and as individual trees are measured, rather than area-based metrics.  

 Thus the future of individual tree analysis is a bright one, with multiple lines of 

technology leading to improved individual tree analytics. With each and every tree in the 

forest quantified, it will fall upon the next generation of foresters and scientists to make 

the best use of these tremendous datasets. 
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APPENDIX A 

Figure A1: Methods of tree crown measurement. An example of crown width estimation, 

which was needed to account for segmentation errors resulting in crown overestimates. 

(1) Concentric rings with equal area are constructed around the center of the tree; (2) The 

number of points within each ring is tallied; (3) The percent difference from one ring to 

the next is calculated for all rings containing at least 5% of the total point count (shown 

below the rings); (4) the radius of the ring with the sharpest percent increase in point 

count (the red ring) is taken as corrected crown radius. 
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