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A B S T R A C T   

Airborne laser scanning (ALS) assisted basal area larger than mean (BALM) estimation measures the cohort 
balance in forests and provides adequate opportunities to describe forest structure. However, a problem still 
exists that how the plot size, sample size (number of trees), and ALS point density affect the BALM estimation. We 
tackled this question by using both field and ALS data from a typical managed boreal forest area in Finland. 
Various concentric circular plots (1–15 m radii) were simulated within the actual field plots (squared) and the 
optimal plot size and sample size were selected by observing changes in the absolute correlation between BALM 
estimates and various ALS metrics. Instability in the correlation was found at the smaller concentric circular plots 
(1–5 m radii) and sample sizes (less than 6 trees) but as the plot size and sample size increased, the correlation 
followed a convex curve. The maximum correlation was found between a concentric circular plot size 11–14 m 
radii (380–615 m2 area) and sample size 50–80 trees which could be the optimal plot size and sample size for a 
reliable BALM estimation. With regards to the ALS point density, no major effects were observed on the rela-
tionship between BALM estimates and various ALS metrics unless the point density is less than at least 5 points 
m− 2. The point density of the current nationwide ALS survey is matching the minimum point density require-
ment obtained in this study and thus it is suitable for a reliable forest structural assessment.   

1. Introduction 

Forest attributes prediction from airborne laser scanning (ALS) is 
becoming more common and is increasingly being adopted for forest 
inventory. The main reasons for this are the considerable improvements 
in the accuracy of height estimation, spatial coverage, and timeliness of 
the ALS data (Maltamo et al., 2018; Almeida et al., 2019; Hauglin et al., 
2021). ALS based inventories are now a standard part of forest mea-
surement operations in several countries (Hollaus et al., 2009; Maltamo 
et al., 2014). In an ALS-based system, an onboard lidar detection and 
ranging (LIDAR) sensor is used to scan a forest from an aeroplane. The 
LIDAR sensor measures distances by emitting laser pulses and detecting 
the backscattered echoes, precisely computes the height and location of 
reflecting objects, and produces a detailed 3D point cloud of the forest 
canopy (Maltamo et al., 2005; Gaveau and Hill, 2003; Davenport et al., 

2004). This ALS-based 3D point cloud provides valuable information 
about forest vertical structures and is considered as highly effective and 
useful data for regional monitoring than the other remote sensing ap-
proaches (Maltamo et al., 2006). ALS derived metrics describe salient 
forest characteristics and are used to study various forest attributes 
including volume (Naesset, 1997), diameter at breast height (dbh) and 
vertical profiles (Maltamo et al., 2004), tree species and competition 
(Suratno et al., 2009; Pedersen et al., 2012), spatial patterns of trees 
(Pippuri et al., 2012), wildlife habitat modelling (Melin et al., 2013), 
forest structure (Valbuena et al., 2013; Adnan et al., 2017), stand age 
(Maltamo et al., 2020), and aboveground biomass and carbon stocks 
(Coomes et al., 2018; Adnan et al., 2021). 

The prediction of forest attributes from ALS can be accomplished by 
two approaches (Maltamo et al., 2014). First, the individual tree 
detection approach wherein the treetops are detected and then 
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allometric models are used to extract features and measure the desired 
forest attributes (Kaartinen et al., 2012). Second is the area-based 
approach in which ALS metrics derived from a given field plot (pre-
dictor variables) are linked with the desired forest attribute (response 
variable) from the same field plot (Packalén and Maltamo, 2006; Adnan 
et al., 2019). The accuracy of the predicted forest attributes and cost of 
LIDAR surveys depends on various ALS parameters such as platform 
altitude (Goodwin et al., 2006), maximum scan angle (Holmgren et al., 
2003), and ALS point density (points m− 2) (Næsset and Økland, 2002; 
Maltamo et al., 2006; Adnan et al., 2017). According to Næsset and 
Økland (2002), for accurate estimation of individual crown attributes in 
Scot pines (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) 
forests, an average point spacing of fewer than 1 m is not sufficient. In 
the context of volume estimation, the effect of ALS point density is very 
marginal (Maltamo et al., 2006). Similar results have been presented by 
Adnan et al. (2017) that any point density higher than at least 3 points 
m− 2 is suitable for the accurate prediction of different forest structural 
types based on the Gini coefficient of tree size inequality. This study 
tackles the issue of the point density effect on the relationship between 
the basal area larger than mean (BALM) and ALS metrics. 

Basal area larger than mean (or basal area larger than the quadratic 
mean stand diameter) is a useful forest structural indicator that mea-
sures the cohort balance in forests but has often been ignored by forest 
scientists. Gove (2004) first highlighted its usefulness in stocking guides 
which is a process of decision-making about silvicultural activities. 
BALM is easy to calculate from any forest inventory data as it is the 
accumulated basal areas of all standing trees with dbh ≥ DQMD in a plot 
(Fig. 1) or it can also be calculated from diameter frequency or basal 
area-size distribution (Gove and Patil, 1998). According to Gove (2004), 
the most appropriate quantity is the proportional BALM as given in Eq. 
(1). 

BALM =

∑
dbh≥DQMD

π
(

dbh
2

)2

B
, (1)  

where dbh is the tree diameter at breast height, DQMD is the quadratic 

mean diameter and B is the total basal area of a plot. 
BALM represents the skewness of tree diameter distribution and 

lower values of BALM denote the open canopies, for example, reversed-J 
type forest structures while higher values represent closed canopies 
dominated by mature trees (Valbuena, 2015). It is useful for evaluating 
the relative dominance of different tree layers, biomass stocking in one 
or many tree layers, or ecology of species whether they prefer single 
layer or multi-layers tree structures (Mononen et al., 2018). In growth 
modelling, BALM may have positive effects on the shade-tolerant species 
as they are able to grow in the understory vegetation but the shade- 
intolerant species are negatively affected because the stand becomes 
more crowded, they may experience more shaded conditions and their 
rate of growth may decrease (Lessard et al., 2001; Oboite and Comeau, 
2019). Valbuena et al. (2013) also characterized different forest struc-
tural types from ALS data and suggested that the proportion of basal area 
(BALM) and the Gini coefficient of tree size inequality are the two po-
tential independent bivariate descriptors that could be used to fully 
describe different forest structures and indicate symmetric or asym-
metric competition. Adnan et al. (2019) also applied BALM together 
with other forest attributes (Gini coefficient of tree size inequality, stand 
density and DQMD) and performed a bioregional forest structural type 
assessment. However, due to the diverse sizes of field plots in their 
bioregional sites, they noticed that the size of the plot could influence 
the estimation of their forest attributes. The stand density and DQMD and 
how the plot size influences these attributes are well studied (Gray, 
2003; Ruiz et al., 2014; Häbel et al., 2019) and the plot size effect on the 
values of the Gini coefficient of tree size inequality has been evaluated in 
Adnan et al. (2017). However, the effect of plot size (and sample size) on 
the relationship between BALM values and ALS metrics or an ALS- 
assisted optimal plot size and sample size selection for a reliable 
BALM estimation is still missing in the scientific literature. 

In national forest inventories (NFI), the purpose of an optimal plot 
size is to obtain results with the highest possible accuracy within a given 
fixed budget or a desired precise result at the lowest cost (Päivinen, 
1987). However, the selection of the optimal plot size also relies mainly 
on the variable of interest, the purpose of forest inventory, and other 
factors, for example, time, field measurements, and inconsistency of 
variables between plots (Henttonen and Kangas, 2015). As the size of a 
plot increases, its effect on the estimated forest attributes decreases 
(Barbeito et al., 2009). A smaller plot size has a negative effect on the 
stem diameter distribution accuracy estimated from ALS (Maltamo 
et al., 2019) while a larger plot size will increase the budget, time, and 
data collection efforts (Chytrý and Otýpková, 2003). Similarly, on some 
of the forest attributes such as biomass and volume, the larger plot sizes 
will pose an averaging effect (Gobakken and Næsset, 2008; Ruiz et al., 
2014), while on other forest attributes this averaging effect is not 
applicable, for example, forest structure and species richness (Coomes 
and Allen, 2007). In fact, if the plot size increases, the forest structural 
diversity and species richness also increase (Otypková and Chytry, 
2006). Thus, changing the observation scale could alter the estimation of 
any forest attribute including BALM, and if the size of a plot increases, 
the estimation of BALM could become more stable, but essentially the 
condition of different stands would aggregate (Coomes and Allen, 2007). 
It is also a challenging task in spatial statistics to interpret the data 
analysed at different scales (Gotway and Young, 2002). Therefore, 
optimal plot size is necessary for any forest attribute including BALM 
which should be large enough to obtain stable and reliable results but 
not larger than the required size due to the time, cost, and data collec-
tion efforts involved. 

In this study, we focus on the ALS assisted estimation of BALM which 
is an important forest structural indicator that can be used to measure 
the cohort balance in forests and separate various forest structural types. 
We address how the plot size, sample size, and point density of ALS data 
affect the relationship between BALM estimates and ALS metrics. We 
aim to select an optimal plot size for a reliable BALM estimation in the 
boreal forest and postulate that the effect of plot size would be dominant 

Fig. 1. Graphical illustration of the Basal Area Larger than Mean (BALM). The 
light grey bars represent the stem density proportion (diameter distribution), 
and the dark grey bars show their corresponding proportion of the basal area. 
BALM is the proportion of accumulated basal areas of all trees whose dbh >

DQMD (quadratic mean diameter; red vertical dotted line) (Gove, 2004). 
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as compared to the stand density and point density of ALS metrics. The 
developed methodology in this study is simple, based on simulations, 
and can easily be replicated in any forest area. 

2. Material and methods 

2.1. Study area and data collection 

This study was conducted in Kiihtelysvaara inventory area located in 
the eastern Finland (62◦31′N, 30◦10′E) (Fig. 2). The area is a typical 
managed boreal forest dominated by Scot pine (Pinus sylvestris L.) and 
Norway spruce (Picea abies (L.) Karst.) which cover 73 % and 16 % of the 
wood volume, respectively. Deciduous species such as downy birch 
(Betula pubescens Ehrh.) and silver birch (B. pendula Roth.) represent the 
remaining 11 % of wood volume (Packalén et al., 2013). The proportion 
of such managed forests in Finland is 87.4 % (approximately 20.1 
million hectares). In 2010, a field campaign was carried out from May to 
June, and data was collected in 79 square-shaped field plots (hereafter 
actual field plots) of various dimensions (20 × 20, 25 × 25, 30 × 30, the 
larger ones in sparse stand density areas). The forest stands were 
selected using stratified random sampling to represent both homoge-
neous even-sized areas and heterogeneous forest structures. Within the 
stands, the field plots were purposively selected at representative areas 
to avoid plots located at the stand borders, high cost, and efforts to 
measure all individual trees within the plot. The absolute position 
(longitude : Xtrue and latitude : Ytrue) of all individual trees with dbh > 5 
cm and height greater than 4 m were recorded from high-resolution ALS 
data using the individual tree detection method (Packalén et al., 2013). 
The locations were then verified in the field and dbh measurements were 
collected. The minimum, mean, and maximum stand density (N), DQMD 

and basal area in the study area are 467, 1298, and 3025 trees ha− 1, 10, 
17 and 29 cm and, 14, 25 and 44 m2 ha− 1, respectively (Adnan et al., 
2017). 

2.2. Designing concentric circular plots and minimum number of 
simulations within the actual field plots 

For the concentric circular plots design, the initial tasks were to 
convert the true coordinates (Xtrue, Ytrue) of all trees into relative co-
ordinates, edge correction, and sensitivity analysis to select the mini-
mum number of simulations. And then, within each actual field plot, 
concentric circular plots (with radius varying from 1 to 15 m, with 1 m 
increments) were simulated at random positions. As the coordinates and 
dbh of all trees were available, we computed the BALM from the trees 
dbh within each concentric circular plot. Similarly, the ALS data could 
also be extracted using the coordinates of the concentric circular plots 
and can later be used to compute metrics commonly used in the area- 
based approach (Packalén and Maltamo, 2006). 

For the conversion of true coordinates into relative coordinates, plot 
rotation and translation are required (Adnan et al., 2017). However, 
there was no need for the plot rotation because the edges of actual field 
plots were coinciding with the UTM grid in the study area. For plot 
translation, the origin of axes (0,0) was assigned to the southwest corner 
of the actual field plot to convert the true coordinates into relative co-
ordinates. The relative coordinates (Xrelative, Yrelative) were then obtained 
by subtracting the true coordinates of the southwest corner (XSW, YSW) 
from the true coordinates (Xtrue, Ytrue) of each individual tree. 

(Xrelative, Yrelative) = (Xtrue,Ytrue) − (XSW , YSW) (2) 

The next step was the edge correction method because ignoring the 
immediate neighbours outside the boundary could produce biased sta-
tistical results (Pommerening and Stoyan, 2006). In this study, the pe-
riodic edge correction method was applied to reduce this bias because 
Pommerening and Stoyan (2006) found it better than the other alter-
natives. It consists of replicating the same spatial pattern of trees around 
the actual field plot. Thus, concentric circular plots randomly positioned 
at the edge would also include trees located outside the boundary of the 
actual field plot (Fig. 3). 

Fig. 2. Map showing the study area (Kiihtelysvaara inventory area) and the actual field plots located in Eastern Finland (background base maps © Esri).  
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In the final step, a sensitivity analysis was applied to select minimum 
numbers of simulations (k) that could produce stable and robust BALM 
estimation. We randomly selected an actual field plot and applied 
different numbers of simulations (10, 50, 100, 500, 700, and 1000), and 
in every single simulation, a random position (Xsim, Ysim) was selected 
and BALM was computed in concentric circular plots ranging from 1 to 
15 m radii. This process was repeated for all k number of simulations. 
Then, the mean of those BALM values (BALM) and standard error of 
mean (SEM) were calculated for each concentric circular plot. 

SEM = σ
/ ̅̅̅̅

m
√

, (3)  

where σ is the standard deviation and m the sample size. 
SEM which measures the variability of BALM was used to fix the 

minimum numbers of simulations k that could produce stable BALM 
estimation. Any further increase in simulations would not considerably 
improve the results. After selecting the minimum number of simulations 
(k) using the sensitivity analysis, the process was repeated for all the 
remaining actual field plots. The random position of each simulation 
(Xsim, Ysim) was later used to extract the corresponding ALS data of the 
concentric circular plots. 

2.3. Comparing the BALM estimations 

To compare the BALM estimations, a graph was constructed that 
compared the BALM values for increasing concentric circular plot size s 
in all actual field plots. As the size s of the concentric circular plot in-
creases, the BALM value within must approach the value of the entire 
actual field plot (Adnan et al., 2017). Thus, BALM value of the entire 
actual field plot was used as a reference (BALMref ) (Zhang et al., 2022). 
The BALM value of each concentric circular plot was then subtracted 
from the BALMref to get the absolute BALM difference (BALMdiff ). This 
way it was possible to analyse the differences and directly compare all 
BALM results. 

BALMdiff = |BALM − BALMref | (4)  

2.4. ALS data collection and processing 

ALS data of the Kiihtelysvaara inventory area was collected on June 
09, 2009 from 600 to 700 m above ground level. For the data collection, 
an ATM Gemini sensor (Optech, Canada) was used, and the field of view 
and swath width were 26◦ and 320 m, respectively. The sides overlap 
between the strips was 55 %. The average point density of the ALS data 
was 11.9 points m− 2 (Packalén et al., 2013). The last echos of the data 
were interpolated into a digital terrain model (DTM) as they were 
considered as ground echoes (Axelsson, 2000) and the spatial resolution 
of the DTM was 0.5 m. The DTM was subtracted from the ALS echo 
heights to get the ALS returns above ground level. Echo heights lower 
than 0.1 m were also eliminated to avoid the terrain effect on the ALS 
metric computation because they were considered to be reflected from 
the ground surface. ALS returns of all concentric circular plots were 
clipped based on their coordinates (Xsim, Ysim) and metrics were 
computed using FUSION/LDV software of the USDA Forest Service 
(McGaughey, 2021). ALS metrics are statistics that represent various 
forest characteristics such as L-skewness, L-coefficient of variation, 
Canopy relief ratio and Kurtosis of ALS height distributions which are 
related to the tree dominance, tree size inequality, vertical forest 
structure and distinguishing between young and mature forests, 
respectively (Table 1). These ALS metrics are used as auxiliary variables 
in the ALS-assisted estimation of various forest variables (Næsset, 2002; 
Maltamo et al., 2006). 

For each concentric circular plot, we combined ALS metrics and their 
corresponding BALM values for all simulations carried out at all actual 
field plots. Then, we calculated the Pearson correlation coefficient (r) 
between BALM values and each ALS metric for increasing concentric 
circular plot size s (and the number of trees (sample size) n within). Since 
we were only interested that how ALS metrics explain the variability in 
BALM estimation regardless of whether the relationship is direct or in-
direct, we considered the absolute value of the correlation coefficient |r|. 

2.5. Criteria for optimal plot size and sample size selection 

The ALS-assisted estimation of any forest attribute in a plot and the 
sample size (number of trees n) within are essentially related to one 
another. Therefore, the relationship between predictors and response 
variables is affected by the sample size. Sample size refers either to the 
number of trees used to calculate the BALM or numbers of ALS returns 
(spatial resolution/point density) to compute the ALS metrics. Similarly, 
the sample size within a plot is also related to the actual densities of the 
stand (stand density (N; trees ha− 1) or ALS points density (d; points 
m− 2)). Thus, the sample size or number of trees (n) within the concentric 
circular plot size s is linked with the stand density (N) of the original 
field plot by, 

n = Nπs2 (5) 

A similar relationship also exists between the number of ALS returns 

Fig. 3. Simulation of concentric circular plots (1–5 m radius) at five random 
positions (for simplicity) within the actual field plot represented by the dashed 
line in the centre and surrounded by a periodic boundary (edge correction 
method). The dots represent the tree positions within the actual field plot. 

Table 1 
Description of various ALS metrics and their representative forest 
characteristics.  

Symbol/Description proxy forest characteristics Reference 

L.skew/L-skewness tree competition/ 
dominance 

(Valbuena et al., 2017; 
Adnan et al., 2021) 

L.cv/L-coefficient of 
variation 

Tree size inequality (Valbuena et al., 2017; 
Adnan et al., 2021) 

IQ, Interquartile range spread (Hawryło et al., 2017) 
AAD/Average absolute 

deviation 
open vs closed canopy (Adnan et al., 2021) 

CRR/Canopy relief 
ratio 

vertical forest structure (Adnan et al., 2017) 

Kur/Kurtosis distinguishing young and 
mature forest 

(Jones et al., 2012)  
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(p) within the same concentric circular plot size s and the ALS point 
density of the actual field plot (d) (Eq. (6)). This relationship also assures 
that the methodology can be replicated in any range of ALS point 
densities. 

p = dπs2 (6) 

Now, it is uncertain here whether the optimization should be based 
on plot size s (spatial resolution of ALS) or sample size n (point density p 
in case of ALS) or the relationship between BALM and ALS metrics is 
affected by plot size s or the number of trees n (or ALS returns p) within 
the plot size s because they both are related to one another. These re-
lationships assure that the methodology adopted here can be applied to 
any range of stand densities N or point densities d and it is valid for both 
sparse and dense stand densities or ALS point densities. Now, to evaluate 
the effect of plot size and sample size (stand density) on the relationship 
between BALM and ALS metrics, the following two criteria were 
sequentially applied and repeated for the selection of both optimal plot 
size (s*) and sample size (n*). 

Criterion i was focused on the stabilization of BALM values calculated 
from the field information itself. This criterion was achieved by 
observing the BALMdiff for an increasing plot size s or sample size n. The 
maximum value at which the estimation of BALM was considered as 
stable and representative of the total population was BALMdiff = 0.1 
relative to the mean BALM. This brings a different threshold for each 
forest area, which is good because the optimal is dependent on the BALM 
value itself. Any plot size s or sample size n which meets this criterion in 
all 79 actual field plots would be the minimum criterion for a stable 
BALM estimation. 

Criterion ii was implemented to maximise the relationship between 
BALM and ALS metrics. This was achieved by combining all pairs of 
BALM values and their corresponding ALS metrics in each concentric 
circular plot from all 79 actual field plots. Those showing the maximum 
|r| were selected as optimal plot size s* or sample size n*. There were 
more than 100 ALS metrics, we only selected the highly correlated 
metrics. These two criteria are summarised in the following Eqs. (7) and 
(8). All the above analyses were performed in R statistical software (R 
Core Team, 2021). 

s* = BALMdiff < 0.1 • BALM|max(|r|) (7)  

n* = BALMdiff < 0.1 • BALM|max(|r|) (8)  

2.6. Evaluating the effects of ALS point density 

To evaluate the effects of ALS point density on the relationship be-
tween BALM values and ALS metrics, we chose the optimal plot size s* 

decided in the previous step. First, we reduced the original point density 
of 11.9 points m− 2 to 0.50, 0.75, 1, 3, 5, 7.5, and 10 points m− 2. For this 
purpose, we identified a correct thinning factor for each desired point 
density d (Adnan et al., 2017) and applied procedures available in the 
Lastools software (RapidLasso GmbH Inc.; Isenburg, 2016). From each 
reduced point density d, new ALS metrics were computed in all k sim-
ulations and each concentric circular plot. The new ALS metrics were 
correlated with the BALM values as it was carried out for s and n and the 
effects of varying ALS point densities on the relationship were evaluated. 

3. Results 

3.1. Deciding the minimum number of simulations based on sensitivity 
analysis 

The results of the sensitivity analysis to select the minimum number 
of simulations are shown in Fig. 4. In any number of simulations (10, 50, 
100, 500, 700 and 1000), the BALM values were unstable in the smaller 
concentric circular plots, and as the size of the plot increased, the BALM 

value stabilised and approached to the value of the actual field plot 
(BALMref ) (Fig. 4a). However, the difference between different numbers 
of simulations was more visible in Fig. 4b which shows how the standard 
error of mean (SEM) decreased as the number of simulations increased. 
In the initial 10 simulations, the SEM highly fluctuated in all concentric 
circular plot sizes 1–15 m and as the number of simulations increased, 
the BALM value approached to stabilise. From 500 to 1000 number of 
simulations, the variation in SEM was very minor, particularly in the 
smaller concentric circular plots, but virtually no variation was observed 
in the higher concentric circular plots. Thus, we opted to use minimum 
k = 500 simulations in each actual field plot (79 in total) that would 
produce a stable and robust BALM estimation. 

3.2. Optimal plot size and sample size selection 

Figs. 5 and 6 show the results of the two criteria adopted to select the 
optimal plot size and sample size for a reliable BALM estimation. In 
Fig. 5a, the BALMdiff values of all 79 actual field plots are given for 
increasing concentric circular plots 1–15 m radii and their maximum 
(solid horizontal line at 0.095) and minimum (dashed horizontal lines at 

(a)

(b)

Fig. 4. Selection of minimum number of simulations based on sensitivity 
analysis. Evolution of (a) BALM and (b) the standard error of mean for 
increasing concentric circular plots (1–15 m radii) and the number of simula-
tions (10–1000). 
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0.052) threshold limits. In smaller concentric circular plots, the BALM 
values were highly unstable and not representative of the actual field 
plots (BALMref ), but as the size of the concentric circular plot increased, 
the BALM values stabilised. At the plot size s ≥ 6 m, all BALMdiff values 
were less than the maximum threshold limit (0.095), while at plot size 
s ≥ 4 m fewer plots were within the minimum threshold limit (0.052). 
We estimate that based on the threshold limits, a plot size s ≥ 6 m 
(approximately 113 m2) could be the minimum plot size to obtain a 
stable BALM estimation because any increase beyond this would not 
considerably improve the results. 

Table 2 also affirms these results because the proportion of actual 
field plots to reach stabilisation increased as the size of the concentric 
circular plot increased. For example, in the concentric circular plot size 
s = 1 m radius, only 15.2 % of actual field plots were within the required 
limit but at the concentric circular plot size s = 6 m radius, all actual 
field plots (100 %) were below the required limit of 
BALMdiff < 0.1 • BALM. Thus, concentric circular plot size s = 6 m 
radius could be the minimum plot size for a stable BALM estimation. 
With regards to the Criterion ii which shows the absolute correlation |r|
between the BALM estimation and various ALS metrics (Kur, IQ, L.cv, L. 

(a)

(b)

Fig. 5. Results of the Criterion i which show the BALMdiff in all 79 actual field plots (coloured lines) for increasing (a) concentric circular plots (1–15 m radii) and (b) 
the number of trees (sample size). The horizontal lines (solid and dashed) show the maximum and minimum BALMdiff limit imposed to obtain stable estimation while 
the vertical solid lines denote the minimum plot sizes and sample sizes for stable BALM estimation. 
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skew, AAD, and CRR) (Table 1, Fig. 6a), similar inconsistencies in the 
correlation were found in the smaller concentric circular plots due to the 
unstable estimation of BALM (Fig. 5a). This also showed the importance 
of implementing Criterion i as a prior step in which the smaller 
concentric circular plots were already dismissed. This dismissed area is 
shaded in grey colour in Fig. 6a. 

Once the BALM estimation reached stabilisation at concentric cir-
cular plot size s = 6 m radius, the correlation between BALM values and 
ALS metrics followed a particular trend. The trend was more visible in 
the highly correlated ALS metrics such as Kur, L.cv, and L.skew, and 
priority was given to these ALS metrics for the plot size optimization. 
The trend followed a convex curve, from which it was possible to select a 
maximum correlation and establish the optimal plot size for a reliable 
BALM estimation. In the trend, all ALS metrics showed a high correlation 
from concentric circular plot size 11 to 14 m radii which could be the 
optimal plot sizes (s*) for reliable ALS-assisted BALM estimation. From 
concentric circular plot size s > 14 m radius, the ALS metrics showed a 
decreasing trend, for example, in Kur, L.cv, L.skew, and CRR. In sum-
mary, the minimum plot size for reliable and robust BALM estimation 

should be at least 113 m2 (6 m radius) while the optimal plot size s* 

could be approximately 380–615 m2 area (11–14 m radii). 
The results of Criterion i and ii that how the sample size (stand den-

sity) affects the relationship between the BALM estimation and ALS 
metrics are shown in Fig. 5b and 6b. Fig. 5b shows the evolution of 
BALMdiff against the sample size (number of trees n within the concentric 
circular plots) in all 79 actual field plots and their maximum (solid 
horizontal line at 0.095) and minimum (dashed horizontal lines at 
0.052) threshold limits. We obtained similar results as Fig. 5a because 
the plot size s relates to the number of trees n (sample size) according to 
Eq. (5). The BALMdiff highly fluctuated in smaller sample sizes because 
they were not representative of the stand density N of the actual field 
plot and thus the estimation of BALM was unstable. For example, in 
concentric circular plot sizes s = 1 − 4 m radii, at least 1–3 trees were 
required to reach stabilization (BALMdiff < 0.1 • BALM) but in 84.8 %, 
36.7 %, 6.3 % and 3.6 % of the actual field plots, respectively, the 
minimum number of trees n in the 1–4 m concentric circular plots was 
less (Table 2). At the sample size n ≥ 15 trees, some plots were above the 
required limit, but at the sample size n ≥ 6 trees, the BALMdiff in all 79 
actual field plots were below the required BALMdiff < 0.1 • BALM limit 
and this could be the minimum number of trees (sample size) required 
for a stable BALM estimation in our study (Fig. 5b). However, the sample 
size also depends on the overall tree density of a stand. Areas with sparse 
stand density will require a smaller sample size and vice versa as shown 
in Fig. 7. 

To optimize the number of trees (sample size), the BALM values were 
correlated with the same ALS metrics, but this time with the increasing 
number of trees n instead of the concentric circular plot size s (Criterion 
ii). The absolute correlation |r| obtained in Fig. 6b was similar to Fig. 6a 
as they also relate to each other according to Eq. (5). Instability in the 
correlation was found for the smaller sample sizes (number of trees n) 
but as the sample size increased, the correlation followed a similar 
convex curve. Here, the optimal sample size n* could also be reliably 
determined from the highest correlation. In this case, the maximum 
absolute correlation was found between 50 and 80 trees which could be 
the optimal sample size n* for the ALS-assisted BALM estimation 
(Fig. 6b). 

3.3. ALS point density effect on the relationship between BALM and ALS 
metrics 

In the previous results, we obtained that the optimal plot size s* for 

(a)

(b)

Fig. 6. Results showing the absolute correlation |r| between BALM values and 
various ALS metrics (explanation given in Table 1) for increasing (a) concentric 
circular plots s = 1 − 15 m radii and (b) sample sizes (n = 1 − 90 average 
number of trees) (Criterion ii). The red rectangle shows the optimal plot size s* =

11 − 14 m radii for reliable BALM estimation. The corresponding area is also 
given on the upper axis. 

Table 2 
The proportion of actual field plots and the minimum number of trees required 
in each concentric circular plot to reach stabilization (Criterion i).  

The radius of 
the 
concentric 
circular plot 
(m) 

The proportion of actual field 
plots (%) reaching 
stabilisation 
(BALMdiff < 0.1 • BALM) 

Minimum 
number of 
trees required 
to reach 
stabilisation  

Average 
number of 
trees required 
to reach 
stabilisation  

1 15.2 1 1 
2 63.3 1 2 
3 93.7 2 4 
4 96.2 3 6 
5 98.7 4 10 
6 100 6 15 
7 100 7 20 
8 100 9 26 
9 100 12 33 
10 100 15 41 
11 100 18 49 
12 100 21 59 
13 100 25 69 
14 100 29 80 
15 100 33 92  
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ALS-assisted BALM estimation ranges from 11 to 14 m radii. Therefore, 
to evaluate the point density effect and facilitate direct comparison, we 
chose an optimal plot size s* = 14 m radius and employed the same ALS 
metrics as in the previous steps (Kur, IQ, L.cv, L.skew, AAD, and CRR). 
The results are presented in Fig. 8 which shows the absolute correlation 
|r| between BALM values and ALS metrics for an increasing number of 
point density d. Some irregularities have been found in the relationship 
if the point density is less than 5 points m− 2 but for higher ALS point 
densities, no major effects have been observed. Therefore, any ALS point 
density d ≥ 5 points m− 2 would be suitable for reliable BALM estimation 

using ALS. Thus, the relationship between BALM estimation and ALS 
metrics is mostly independent of the sample size (stand density) or ALS 
point density but depends on the plot size employed. 

4. Discussion 

Basal area larger than mean (BALM) is an important indicator that 
can be used to separate different forest structural types (FSTs) and 
measure the cohort balance in forests. However, this structural indicator 
was largely ignored by the scientific community until Gove (2004) 

Fig. 7. Determining the sample size under different stand densities in concentric circular plots 1–15 m using Eq. (5).  

Fig. 8. The effect of airborne laser scanning point density on the relationship between BALM and ALS metrics. The explanation of the ALS metrics is given in Table 1.  
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identified and described its importance in the prescription of silvicul-
tural activities. Valbuena et al. (2013) later hypothesized that BALM 
together with the Gini coefficient of tree size inequality are the two 
important variables for structural characterisation. Based on this 
assumption, Adnan et al. (2019) applied different forest attributes 
including BALM and conducted a bioregional forest structural hetero-
geneity assessment. Their study confirmed the assumption and found 
that the BALM together with the Gini coefficient of tree size inequality 
were superior to the stand density and quadratic mean diameter (DQMD) 
in the structural classification of forests. Lower, medium and high BALM 
values explicitly separated single-layered, multi-layered, and reversed-J 
types of forest structures, respectively. However, they also noticed that 
different plot sizes in their sites could affect the estimated values of the 
forest attributes including BALM. The effect of plot size on the stand 
density, quadratic mean diameter (DQMD) and Gini coefficient of tree size 
inequality is well documented (Gray, 2003; Ruiz et al., 2014; Adnan 
et al., 2017; Häbel et al., 2019) but the plot size effect on the BALM 
estimation is still unknown. This observation motivated the current 
study to evaluate the plot size, sample size (number of trees), and ALS 
point density effects on the relationship between BALM estimates and 
airborne laser scanning (ALS) metrics. 

A key question at this juncture is: why does it matter to choose an 
optimal plot size? For any forest attribute, optimal plot size is important 
because inoptimal plot sizes may produce unreliable results that could 
lead to imprecise decisions in forest management (Eid, 2000). Similarly, 
both smaller and larger plot sizes have their own consequences. For 
example, if the plot size is small, it affects the stem diameter distribution 
(Maltamo et al., 2019). But on the other hand, if the plot size is large, it 
increases the field measurement, time, and cost (Chytrý and Otýpková, 
2003). The selection of optimal plot size is also not straightforward, and 
it varies from one forest type to another (Häbel et al., 2019). It depends 
on various factors such as the purpose of inventory, variable of interest, 
time, field measurement, and cost (Henttonen and Kangas, 2015). 

The variance in the estimated values of a forest attribute decreases 
with the increasing size of a plot (Kukunda et al., 2019) because, in the 
smaller plot sizes, the lower number of trees n (sample size) under-
represent the tree density N of the population. This tendency can be seen 
in Fig. 5 where the BALMdiff values in a majority of the actual field plots 
were highly unstable in the smaller concentric circular plots (1–5 m 
radii) and sample sizes (n < 6 trees) due to the high variance, but as the 
plot size and sample size increased, variance decreased and the esti-
mated BALM value approached the reference value (BALMref ) of the 
actual field plot (Fig. 4). Similar results have been obtained by Johnson 
and Hixon (1952), Barbeito et al. (2009), Matos (2014), and Adnan et al. 
(2017) and it is now well established that the accuracy of the estimated 
forest attributes increases and bias decreases when the size of a plot 
increases. At the concentric circular plot size s = 6 m radius and sample 
size n = 6 trees, BALMdiff in all 79 actual field plots fell below the 
required BALMdiff < 0.1 • BALM limit and followed Criterion i that is the 
stabilisation of the BALM values. Thus, the area/spatial resolution 
covering approximately 113 m2 (6 m radius) could be the minimum plot 
size for a stable BALM estimation (Fig. 5). The minimum plot size could 
also vary according to the density of a stand, for example, sparse tree 
density stands would require a larger plot size and dense tree stands 
would comparatively require a smaller plot size (Lombardi et al., 2015). 
This variability in stand density could be adjusted according to Eq. (5) of 
this study which brings generality to our methods and the study pre-
sented here could be replicated in any forest stand density (Fig. 7). 

We were interested to maximise the relationship between BALM 
estimates and ALS metrics and obtain the most reliable results. Fig. 6 
shows the absolute correlation |r| between BALM values and various ALS 
metrics for an increasing plot size s (Fig. 6a) and sample size (number of 
trees) n (Fig. 6b). Among numerous ALS metrics, we only chose the most 
correlated ones such as Kur, IQ, L.cv, L.skew, AAD, and CRR (explanation 
given in Table 1). These chosen ALS metrics represent various aspects of 

forest structures, for example, L.skew describes the tree dominance or 
competitive condition which is very relevant to the BALM (Adnan et al., 
2019). A negative L.skew is obtained when laser pulses hit closed can-
opies represented by high BALM values because only a small portion of 
ALS pulses would penetrate, and a major portion would backscatter. On 
the other hand, the L.skew would be positive, if the canopy is open 
(lower BALM values) because a major portion of the ALS pulses would 
penetrate in this case (Valbuena et al., 2017). Therefore, either BALM 
calculated from field data or L.skew obtained directly from ALS data 
could be useful to analyse open and closed canopy forests or describe 
light availability in forest stands. Similarly, Jones et al. (2012) found 
that young and mature forests could only be discriminated by Kur which 
is again relevant to the BALM as it accumulates the proportion of basal 
areas of all trees with dbh ≥ DQMD (Eq. (1)). Now, looking at Fig. 6(a, b), 
the absolute correlation |r| between BALM and the chosen ALS metrics 
followed a convex curve. It can also be seen that the correlation at the 
smaller plot sizes and the sample sizes was unstable. This is because the 
lower sample size was not representative of the overall tree density of 
the actual field plots, and it was important to impose the first criterion 
(Criterion i). This area is shaded in grey colour in Fig. 6, which means 
that the lower plot sizes (s = 1 − 5 m radii) and sample sizes (n < 6 trees) 
are already eliminated and not suitable for a reliable BALM estimation. 
As the plot size increased, the sample size became more representative of 
the tree density of the actual field plots and thus the maximum absolute 
correlation was found in concentric circular plot sizes 11–14 m radii 
(380–615 m2 area) which could be the optimal plot sizes (s*) for the ALS- 
assisted BALM estimation. From concentric circular plot size s = 14 m 
radius onwards, the correlation showed a decreasing trend, for example, 
in Kur, L.skew, and CRR (Fig. 6a). Similarly, in sample size optimization, 
the maximum absolute correlation was found between sample size 
50–80 trees which could be the optimal sample size (n*) for a reliable 
BALM estimation using the ALS data. 

The optimal plot sizes (s* = 11 − 14 m radii or 380–615 m2 area) 
obtained in our study coincide with the recommended plot sizes ob-
tained in other studies such as 13–15 m radii for describing heteroge-
neity in old stand growth (Lombardi et al., 2015), 9–12 m radii for ALS 
assisted Gini coefficient estimation (Adnan et al., 2017; Adnan, 2020) 
and 200–400 m2 for stand-level stem diameter distribution in Finland 
(Maltamo et al., 2019). However, there are still differences with the 
routines of the current ALS forest inventory in Finland. For example, 
larger plots are employed in the young stands and thus the attributes 
measurement takes a longer time, and the total number of field plots is 
less as compared to the other stand types. 

ALS surveys usually cover large geographical areas and due to the 
rough topography and different forest conditions, the point density 
specified on the ground varies from one place to another. And when the 
adjacent strips overlap, the variation in point densities is even more 
(Gobakken and Næsset, 2008). This study was conducted in a flat area 
where the original point density (average) was 11.9 points m− 2. When 
the ALS point density effect on the BALM estimation was evaluated, no 
major effects on the relationship between BALM values and ALS metrics 
were found unless the point density d < 5 points m− 2 (Fig. 8). Similar 
results have been obtained in various other studies that the ALS point 
density has very marginal effects on the estimated forest attributes, for 
example, volume (Maltamo et al., 2006; Ruiz et al., 2014), biomass 
(Singh et al., 2015), mean tree height and stand basal area (Gobakken 
and Næsset, 2008) and the Gini coefficient of tree size inequality (Adnan 
et al., 2017). However, it must be noted that in this study, the same 
digital terrain model (DTM) based on the original point density was used 
following Maltamo et al. (2006). According to Ruiz et al. (2014), DTM 
based on sparser point density may incur some uncertainties, but Mag-
nusson (2006) found a stable and unbiased DTM up to the 0.01 points 
m− 2 thinning level. So, we proclaim that the thinned point densities 
have more prominent effects on the forest attributes than the terrain. 
The National Land Survey of Finland (NLS) is currently acquiring the 
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nationwide ALS data (second round) with a point density of approxi-
mately 5 points m− 2 and based on our results, this point density of the 
current national ALS survey is suitable for the forest structural assess-
ment. It would also provide new possibilities to monitor the forest re-
sources of the country with much better accuracy. 

5. Conclusions 

This study was conducted in a typical boreal forest in Finland to 
analyze the relationship between BALM estimates and ALS metrics and 
how the varying plot size, sample size (number of trees), and ALS point 
density affect this relationship. As the plot size determines both the 
stand and scan densities, their effects are interdependent. For a reliable 
ALS assisted BALM estimation, two criteria were implemented in this 
study that is the stabilization of the BALM estimates (Criterion i) and the 
maximization of the absolute correlation between BALM estimates and 
ALS metrics (Criterion ii). We found that the BALM estimates and their 
absolute correlation with ALS metrics were highly unstable at the 
smaller concentric circular plots (1–5 m radii) and sample sizes (>6 
trees) because the smaller concentric circular plots contained smaller 
sample sizes which underrepresented the tree density of the actual field 
plots. As the plot size increased, the sample size became more repre-
sentative of the actual field plot. At the concentric circular plot size 6 m 
radius and sample size 6 trees, the BALM estimates stabilized and fol-
lowed the first criterion which could be the minimum plot size and 
sample size for stable BALM estimation. Regarding Criterion ii, the 
maximum correlation was found between concentric circular plot size 
11–14 m radii (380–615 m2 area) and sample size 50–80 trees which 
could be the optimal plot size and sample size for ALS assisted BALM 
estimation. From the analysis of the point density effect, we concluded 
that at least 5 points m− 2 are needed for reliable BALM estimation. Any 
point density lesser than this would be unsuitable. The point density of 
the current nationwide ALS survey is also 5 points m− 2 and our results 
support that it is suitable for the forest structural assessment. Results 
presented in this study could help the forestry practitioner to develop 
more reliable stocking guides which are the decision-making process 
about silvicultural activities in forest stands and bring about better 
estimation mapping of ecological diversity at large scales using ALS 
data. 
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Coomes, D.A., Šafka, D., Shepherd, J., Dalponte, M., Holdaway, R., 2018. Airborne laser 
scanning of natural forests in New Zealand reveals the influences of wind on forest 
carbon. For. Ecosyst. 5 (1), 1–14. 

Davenport, I.J., Holden, N., Gurney, R.J., 2004. Characterizing errors in airborne laser 
altimetry data to extract soil roughness. IEEE Trans. Geosci. Remote Sens. 42 (10), 
2130–2141. 

Eid, T., 2000. Use of uncertain inventory data in forestry scenario models and 
consequential incorrect harvest decisions. Silva Fennica 34 (2), 89–100. 

Gaveau, D.L., Hill, R.A., 2003. Quantifying canopy height underestimation by laser pulse 
penetration in small-footprint airborne laser scanning data. Canad. J. Remote Sens. 
29 (5), 650–657. 

Gobakken, T., Næsset, E., 2008. Assessing effects of laser point density, ground sampling 
intensity, and field sample plot size on biophysical stand properties derived from 
airborne laser scanner data. Can. J. For. Res. 38 (5), 1095–1109. 

Goodwin, N.R., Coops, N.C., Culvenor, D.S., 2006. Assessment of forest structure with 
airborne LiDAR and the effects of platform altitude. Remote Sens. Environ. 103 (2), 
140–152. 

Gotway, C.A., Young, L.J., 2002. Combining incompatible spatial data. J. Am. Stat. 
Assoc. 97 (458), 632–648. 

Gove, J.H., 2004. Structural stocking guides: a new look at an old friend. Can. J. For. Res. 
34, 1044–1056. 

Gove, J.H., Patil, G.P., 1998. Modeling the basal area-size distribution of forest stands: a 
compatible approach. For. Sci. 44 (2), 285–297. 

Gray, A., 2003. Monitoring stand structure in mature coastal Douglas-fir forests: effect of 
plot size. For. Ecol. Manage. 175 (1–3), 1–16. 
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Otypková, Z., Chytry, M., 2006. Effects of plot size on the ordination of vegetation 
samples. J. Veg. Sci. 17, 465–472. https://doi.org/10.1111/j.1654-1103.2006. 
tb02467.x. 

Packalén, P., Maltamo, M., 2006. Predicting the plot volume by tree species using 
airborne laser scanning and aerial photographs. For. Sci. 52 (6), 611–622. 

Packalén, P., Vauhkonen, J., Kallio, E., Peuhkurinen, J., Pitkänen, J., Pippuri, I., 
Strunk, J., Maltamo, M., 2013. Predicting the spatial pattern of trees by airborne 
laser scanning. Int. J. Remote Sens. 34 (14), 5154–5165. 
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