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Abstract 28 

The estimation of Gini Coefficient (��) of tree sizes using airborne laser scanning (ALS) can 29 

provide maps of forest structure across the landscape, which can support sustainable forest 30 

management. A challenge arises in determining the optimal spatial resolution that maximizes 31 

the stability and precision of �� estimates, which in turn depends upon stand density or ALS 32 

scan density. By subsampling different plot sizes within large field plots, we evaluated the 33 

optimal spatial resolution by observing changes in �� estimation and in its correlation with 34 

ALS metrics. We found that plot size had greater effects than either stand density or ALS 35 

scan density in the relationship between ��	and ALS metrics. Uncertainty in ��	estimates 36 

fell as plot size increased. Correlation with ALS metrics showed convex curves with maxima 37 

at 250-450 m
2
, which thus was considered the optimal plot size / spatial resolution. By 38 

thinning the density of ALS point cloud, we deduced that at least 3 points·m
-2

 are needed for 39 

reliable ��	estimates. Many nationwide ALS scan densities are sparser than this, which may 40 

be unreliable for ��	estimation. Ours is a simple approach for evaluating the optimal spatial 41 

resolution in remote sensing estimation of any forest attribute.  42 

Key words 43 

structural heterogeneity; spatial resolution optimization; sample size optimization; forest 44 

structure; LiDAR 45 

 46 
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1. Introduction 50 

1.1 The Gini Coefficient as an Indicator of Forest Structural Heterogeneity  51 

Forest structural characteristics are widely used in the development of sustainable 52 

management plans designed to protect habitats while carrying out forestry operations (Upton 53 

and Fingleton, 1985; Pommerening, 2002; Motz et al., 2010; Vihervaara et al., 2015; 54 

Valbuena et al., 2016). Management can be designed to emulate natural dynamics (Oliver and 55 

Larson, 1990; Buongiorno et al., 1994; Lähde et al., 1999; Pukkala et al., 2016), by studying 56 

how silvicultural operations affects forest structure locally (Humphrey et al., 2000; Valbuena 57 

et al., 2013a; Robles et al., 2016). 58 

Forest structure is often characterized by stem diameter distributions (O’Hara and Gersonde, 59 

2004; McElhinny et al., 2005). If a single concise indicator of size inequality is desired, there 60 

are many available, including Shannon or Simpson indices (Neumann and Starlinger, 2001; 61 

Sterba and Ledermann, 2006; O’Hara et al., 2007; Lei et al., 2009) or variance-based metrics 62 

(Staudhammer and LeMay, 2001). Recent research has highlighted the effectiveness of the 63 

Gini coefficient (i.e. ��, Gini, 1921) for assessing the structural diversity (Lexerød and Eid, 64 

2006a; O'hara et al. 2007; Duduman, 2009; Valbuena et al., 2012, 2013a). Originally 65 

developed for evaluating inequality in income distributions (e.g., Hvistendahl, 2014), �� has 66 

been applied to a variety of fields, such as healthcare (Asada, 2005) or land use (Zheng et al., 67 

2013). In plant sciences, it has been employed to evaluate size inequality (Weiner and 68 

Solbrig, 1984). It has also been applied to forest ecosystems (Weiner and Thomas, 1986), to 69 

quantify structural diversity (Knox and Peet, 1989), analyse competition (Lundqvist, 1994; 70 

Cordonnier and Kunstler, 2015), or successional stages (Valbuena et al., 2013a). Comparative 71 

studies indicate that �� is the best index for characterizing diameter distributions, providing a 72 

logical ranking of different stand types (Lexerød and Eid, 2006a; Valbuena et al., 2012), so 73 

that forest may be stratified according to their structure (Bollandsås and Næsset, 2007). It can 74 
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also be used to observe the effects of different management regimes (Bourdier et al., 2016; 75 

Pukkala et al. 2016; Valbuena et al., 2016). For these reasons, estimation of �� is the focus 76 

of this article.  77 

When used in forest science, �� evaluates size inequality of trees growing in a vicinity 78 

(Weiner, 1990).  For a patch of forest containing � trees, within which the �th and �th tree have 79 

basal areas of �� and �	 respectively,  �� is calculated as (Glasser, 1962):  80 

�� =	 �
����

∑ �
��� 	∑ |����|

�
���

�����
  (1) 81 

Therefore, �� is a statistical measure of relative dispersion, which is equivalent to half of the 82 

relative mean absolute difference (Valbuena et al, 2017: appendix A3), and it ranges between 83 

0-1, zero representing perfect equality and one being maximum inequality (Gini, 1921). 84 

Hence �� describes the shape of tree-size distributions (Valbuena et al., 2016) and is 85 

influenced by competitive interactions among trees (Cordonnier and Kunstler, 2015). 86 

Valbuena et al. (2012) demonstrated that the �� = 0.5 can be considered as a boundary 87 

between even-aged and uneven-aged stand structures. ��	values far below 0.5 indicate a 88 

unimodal “normally distributed” size structure, which are commonly found in even-aged 89 

stands that are self-thinning (e.g. Coomes and Allen, 2007). Values close to 0.5 indicate 90 

irregular size distributions (Duduman, 2009), while values much greater than 0.5 represent 91 

“reverse-J” stand structures (Valbuena et al., 2013a).  92 

1.2 Influence of Plot Size in Measurements of Forest Structure 93 

Sample plots used for measuring plant communities are usually rectangular or circular in 94 

shape (Whittaker, 1972; Kent and Coker, 1992), with a wide range of possible plot sizes from 95 

fine to coarse scales (Chytrý and Otýpková, 2003). As the effects of plot size decrease with 96 

increasing size of a plot (David and Mishriky, 1968; Barbeito et al., 2009), an optimal size 97 
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must be chosen compromising the acquisition of a field plot large enough to obtain a stable 98 

measure of forest structure, but no larger than necessary because of the costs involved 99 

(Otypková and Chytry, 2006). Structural diversity depends on the spatial resolution at which 100 

an index is evaluated (Lexerød and Eid, 2006b). Varying the scale of observation may 101 

therefore distort the information retrieved from an indicator (Chen and Crawford, 2012; 102 

Mauro et al, 2016). As plot size increases, �� estimates may be more reliable, but also 103 

fundamentally different stand conditions may aggregate (Coomes and Allen, 2007). 104 

Therefore, interpretation of data analysed at different scales remains one of the most 105 

challenging tasks in spatial statistics (Gotway and Young, 2002), as shown in the context of 106 

agriculture (Smith, 1938), sociology (Hannan, 1971), and environmental sciences (Jelinski 107 

and Wu, 1996). Also, the spatial distribution of trees has a practical effect on plot size, since 108 

clustered patterns require larger plot sizes to obtain a same degree of confidence in estimates 109 

(Upton and Fingleton, 1985; Pommerening, 2002; Kallimanis et al., 2008; Motz et al., 2010). 110 

Recently, Magnussen et al. (2016) suggested a method of upscaling to a common plot size to 111 

minimize scale effects in survey estimates, which achieved consistency among the quantiles 112 

and proportions of sampling distributions of forest attributes.  113 

1.3 Influence of ALS Scan Density in Measurements of Forest Structure 114 

Airborne laser scanning (ALS) is recognised as a highly effective tool for regional 115 

monitoring because it provides precise information about biophysical stand properties, 116 

(Gobakken et al., 2006; Gobakken and Næsset, 2008). The �� may be calculated as a 117 

descriptor of the distribution of ALS heights (Valbuena et al., 2017), or ALS metrics may be 118 

related to �� of tree sizes (Valbuena et al., 2013b). The spatial resolution of ALS data used 119 

in area-based methods has an effect on estimated values (Mascaro et al., 2011). In the context 120 

of remote sensing-assisted forest estimations, spatial resolution refers not only to the size of 121 

field plots but also to the size of pixels at which auxiliary variables are computed (Gobakken 122 
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and Næsset, 2008; Ruiz et al., 2014; Valbuena et al., 2016). In ALS-assisted estimations of 123 

�� of tree size inequality, there is a lack of knowledge on the effects of varying plot size and 124 

spatial resolution. 125 

Scan density is one of the most important aspects of ALS datasets that affects both processing 126 

and costs (Balsa-Barreiro and Lerma, 2014; Kandare et al., 2016). The importance of 127 

optimizing ALS point density lays in its trade-offs against ALS swath width, and hence costs 128 

(Baltsavias, 1999). Liu et al. (2007) observed that density reduction influenced the accuracy 129 

of digital terrain models (DTM) due to the presence of empty space intervals between points. 130 

A reduction in DTM accuracy may affect the calculation of metrics describing ALS height 131 

(Ruiz et al., 2014; Singh et al., 2015), although it would be unlikely to affect metrics 132 

describing their dispersion, such as ��.  Gobakken and Næsset (2008) assessed the effect of 133 

point density on biophysical stand properties, finding that maximum height was the least 134 

affected metric and suggesting to avoid metrics most affected by point density. No previous 135 

studies have yet determined how stand density and ALS scan densities affects �� estimates 136 

from ALS. 137 

1.4 Objectives 138 

The aim of the study is to evaluate the effects of plot size and ALS scan density on field and 139 

ALS-derived estimates of �� in the boreal forests of Finland. We developed a simple method 140 

for selecting the optimal plot size for determining the �� of tree size inequality from field 141 

data, and for predicting �� reliably using ALS metrics as auxiliary variables.   142 

2. Material and Methods 143 

2.1 Study Area and Field Data Collection 144 
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The study was carried out in a typical boreal managed forest located in Eastern Finland (62˚ 145 

31′ N, 30˚ 10′ E). Scots Pine (Pinus sylvestris L.) is the dominant species which represents 146 

73% of the total wood volume, while Norway spruce (Picea abies Karst.) represents 16%, 147 

and deciduous species 11% of the total wood volume (Valbuena et al., 2014). The main 148 

properties of the field data such as stand density (�), basal area (�) and quadratic mean 149 

diameter (� !) are shown in Table 1. The field data were collected in May-June 2010 and 150 

consisted of 79 squared plots (henceforth “original field plots”) of various dimensions 151 

(20×20, 25×25 or 30×30 m, the smaller ones being in denser stands). With the intention of 152 

representing the contrast between highly homogeneous even-aged areas and more 153 

heterogeneous forest structures (Valbuena et al. 2016), forest stands were determined using 154 

stratified random sampling, whereas plot locations were purposively selected. After choosing 155 

the sampled stands, plots were located within the stands at a representative location. The 156 

reason for doing this was to avoid plot locations at stand borders and the high cost and 157 

measuring effort required to record the location of all individual stems within the plot. The 158 

absolute positions of every individual tree with "#ℎ > 4 cm and tree top height taller than 4 m 159 

were mapped using an approach combining ALS and field surveying methods suggested by 160 

Korpela et al. (2007). Before the field measurement, a map of individual tree positions was 161 

generated from high density ALS data (see below) using an individual tree detection (ITD) 162 

method (Packalen et al., 2013). Actual positions of trees defined by their longitude/latitude 163 

coordinates �%&'()&*	, ,&'()&*� were verified in the field, while the location of trees not 164 

detected by the ITD method were measured relative to the ITD-derived ones (distances and 165 

bearings) and least-square adjusted (Korpela et al., 2007).  166 

***approximate position of Table 1**** 167 

2.2 Simulation of Circular Plots 168 
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Preliminary tasks for the simulation included transformations into relative coordinates, the 169 

correction of edge effects and a sensitivity analysis to determine the number of simulations 170 

needed. Then, within each original field plot we simulated circular plots at random positions. 171 

Circular plots were chosen on the assumption that tree competition is the same in all spatial 172 

directions. The radius of these circular simulated plots was increased in 1-m intervals, 173 

generating concentric circles up to 15 m-radius. Since the position of individual trees were 174 

available from the original field data, we could extract the trees located within each circular 175 

simulated plots, computing an estimation of �� based on tree "#ℎ. Likewise, the position of 176 

individual ALS returns located within each simulated circular plots could be extracted, using 177 

them to compute ALS metrics commonly employed in area-based estimation methods. 178 

2.2.1 Transformation to Relative Distances and Edge Correction 179 

Transformation of absolute tree coordinates into relative coordinates requires procedures of 180 

plot rotation and translation (Matos, 2014). Since in the case of our study the edges of 181 

original field plots were coincident with the UTM grid, there was no need to carry out plot 182 

rotations. In plot translation absolute coordinates of original field plots were modified into 183 

relative distances, by assigning the origin of axes (0, 0) to the south-western corner of the 184 

original field plot. Absolute coordinates of south-western corner �%'-.�/.	, ,'-.�/.� were 185 

subtracted from the absolute coordinates of each tree �%&01	, ,&01� to get their relative 186 

coordinates �%./*	, ,./*�. 187 

�%./*	, ,./*� = �%&01	, ,&01� − �	%'-.�/. 	, ,'-.�/.�  (2) 188 

Moreover, Pommerening and Stoyan (2006) showed that edge effects play an important role 189 

in spatial statistics. Because the immediate neighbour trees outside the boundary of the 190 

original field plots were not measured, ignoring them would result in biased statistical 191 

estimations. Thus, indices based on tree positions require an edge correction method to 192 
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reduce this bias. We chose a periodic boundary edge correction method (Diggle, 2003), since 193 

Pommerening and Stoyan, (2006) found it to be superior to other alternatives. This method 194 

consisted of replicating the same spatial pattern measured in the field around the original 195 

field plot (Fig. 1). Concentric circular simulated plots randomly positioned at the edge of the 196 

original field plots therefore also included the trees positioned out of the boundaries of the 197 

original field plots. 198 

***approximate position of Figure 1**** 199 

2.2.2 Plot Simulation and Sensitivity Analysis 200 

A pilot sensitivity analysis was done with the intention to identify the minimum number of 201 

simulations within an original field plot which can guaranteed a stable and robust outcome 202 

for the simulation. We selected the original field plot with highest ��, hence likely the one 203 

most sensible to changes among different simulations, and repeated the analysis for 10, 100, 204 

500, 700, 1000, 1500 and 2000 simulations. A position �%1�3, ,1�3) was randomly 205 

simulated	within the original field plot, and �� was calculated for each circular simulated 206 

plot (see below) and for each plot radius (4 ; m)  (1-m intervals from 1 to 15 m) (Fig. 1). As 207 

explained below, the standard error of the mean	�56 � of values obtained for �� at each 208 

radius were considered in order to fix the minimum number of simulations at which no 209 

considerable improvement was observed by adding further replications. After setting the 210 

necessary number of simulations to a fixed number 7 based on the pilot sensitivity analysis, 211 

the whole procedure was repeated for the remaining 78 original field plots. Relative and 212 

absolute positions of all simulations were recorded so that they could later be used for 213 

extracting their corresponding ALS returns as well. 214 

2.3 Gini Coefficient Estimation 215 
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The target was to calculate sample estimations of the �� describing the size inequality of the 216 

tree community represented at each original field plot. Its estimation (Eq. 1) was repeated for 217 

every concentric circular simulated plot of radii 1-15 m, and for all the simulated 218 

positions	�%1�3, ,1�3). For this purpose, basal area (g; m2
) was calculated for each individual 219 

stem. Differences in g were computed for each pair of trees within each circular simulated 220 

plot. ��	is the average of absolute differences relative to their mean �g�� (see detailed 221 

descriptions of �� calculation in Lexerød and Eid (2006a) and Valbuena et al. (2013b)). The 222 

reason of using g instead of "#ℎ was to increase the influence of larger trees (Solomon and 223 

Gove, 1999). The unbiased estimator by Glasser (1962) was employed because it is 224 

appropriate for an estimation based on a finite number of trees � located within each circular 225 

simulated plot (Eq. 1). The mean	�� ���� and its corresponding 56  were computed for 226 

each radius (from 1 to 15 m), and for each of the original field plots. 56  is a measure for 227 

the accuracy of those means, accounting for the variability between the samples, according to 228 

the number of simulations 7 and their sample standard deviation (5!). R statistical software 229 

(R Development Core Team, 2016) was used for all these calculations and statistical 230 

analyses. 231 

We constructed a graph comparing �� results for increasing plot size 4 for all original field 232 

plots. The �� value at circular simulated plots must necessarily approximate asymptotically 233 

to the value of �� for the entire original field plot as the radius of circular simulated plots 234 

increases (Matos, 2014). For this reason, the value of �� obtained by applying equation (1) to 235 

the original field plot was used as a reference	���./9�. In order to make all the simulated �� 236 

values directly comparable, we calculated absolute �� differences ���:�99� by subtracting 237 

simulated �� values from the	��./9: 238 

������:�99 = |��./9 − ������|   (3) 239 
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This way, it was possible to analyse the difference of each simulated �� to its corresponding 240 

asymptotic value, allowing to set a common criterion to evaluate all simulations based on the 241 

stabilization of the estimated �� value (see below). 242 

2.4 Airborne Laser Scanning Data and Metric Computation 243 

ALS data was acquired on June 26, 2009 using ATM Gemini sensor (Optech, Canada) from 244 

600-700 m above ground level with a 26= field of view. Scan swath was 320 m wide with a 245 

55% side overlap between the strips. A high resolution dataset with 11.9 pulses·m
-2

 scan 246 

density was produced from a pulse rate of 125 kHz. Details about the processing of ALS data 247 

are described in Packalen et al. (2013). The last echoes were classified as ground and 248 

interpolated into a DTM (Axelsson, 2000). The spatial resolution of DTM was 0.5 m based 249 

on the scan density, and the height above ground of individual ALS returns was obtained by 250 

subtraction of the DTM height beneath each of them. Echoes lower than 0.1 m from ground 251 

level were eliminated, as they were considered to be reflected from ground.  252 

Individual ALS returns of each circular simulated plot based on its absolute 253 

coordinates	�%1�3, ,1�3) were clipped, and area-based ALS metrics were computed from their 254 

heights with the help of FUSION software (USDA Forest Service; McGaughey, 2015). ALS 255 

metrics are statistics and descriptors of the distribution of ALS heights observed within a 256 

given area, which are usually employed as auxiliary variables in ALS-assisted forest 257 

estimations (Table 2). Some of these metrics were common statistics as, for example, the 258 

mean (Mean) standard deviation (StdDev) or the skewness (Skew) of the distribution of 259 

heights above ground of ALS returns contained within each circular simulated plot. We also 260 

computed the percentiles of their distribution, such as the 25
th

 (P25), 50
th

 (P50) or 99
th

 (P99). 261 

In addition, we calculated the so-called canopy cover metrics (McGaughey, 2015), such as 262 

the proportion of returns backscattered from 0.1 m above the ground (Cover). Another metric 263 
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included in FUSION was the canopy relief ratio (CRR), which is the difference between 264 

mean and minimum ALS return heights divided by a difference between maximum and 265 

minimum heights (Pike and Wilson, 1971).  266 

***approximate position of Table 2**** 267 

The effect of plot size in the relationship with �� was studied separately for each of these 268 

ALS metrics. For each radius, we gathered all the simulations carried out at all the original 269 

field plots and calculated all the ALS metrics listed in Table 2. They were used to calculate 270 

Pearson correlation coefficients (>) using all the combinations of field �� against each ALS 271 

metric. Then, we observed separately for each ALS metric the evolution of > when increasing 272 

the plot size 4 of the circular simulated plots. Since we were only interested in the capacity of 273 

the ALS metrics to explain variability in	��, regardless of whether their relationship was 274 

direct or indirect, we considered the absolute value of the correlation coefficient |>| in the 275 

optimization, as explained below. 276 

2.5 Basic Relationships 277 

The plot size and spatial resolution at which an ALS-assisted estimation is carried out relates 278 

intrinsically to the sample size used in all calculations. Sample size affects the relationship 279 

between predictor and response, and therefore the accuracy of ALS estimation of any forest 280 

attributes (Gotway and Young, 2002; Mascaro et al., 2010; Næsset et al., 2015; Magnussen et 281 

al., 2016; Valbuena et al., 2016). In this context, sample size refers both to the number of 282 

trees used to calculate a given forest attribute, �� in this case, but also to the number of ALS 283 

returns involved in the computation of ALS metrics. The link between resolution and sample 284 

size is employed on the empirical densities of the datasets, i.e. stand density (�; trees·ha
-1

) or 285 

ALS points density ("; points·m
-2

) (Gobakken and Næsset, 2008; Motz et al., 2010; 286 

Jakubowski et al., 2013). Therefore, the effects of plot size and spatial resolution of the ALS 287 
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estimated forest attributes also depend on �	and ", and the combined effects of these two 288 

factors may explain why plot sizes suitable for field surveys may be found sub-optimal for 289 

ALS estimation (Næsset et al., 2015).  290 

Hence, the relationship between the radius 4 of a circular plot and the number of trees (�) 291 

contained within is tied to the �	at the location of the plot.  292 

� = �?4�   (4) 293 

This begs the question on whether the optimization method should search for an optimal plot 294 

radius (4∗; m) or an optimal sample size (�∗). In a forest environment of variable stand 295 

density � (Table 1), does the relationship between �� and ALS metrics depends on the plot 296 

size used, or on the number of trees surveyed? In order to research whether it makes a 297 

difference, we repeated the same procedure for both 4∗ and �∗ optimization. In other words, 298 

we tested the results of optimization according to either plot radius or number of trees.  In any 299 

of the cases, the relationship in eq. (4) assures that the methodology can be replicated for 300 

either dense or sparse forests, since 4 and � can always be deduced from one another by an 301 

empirical �. 302 

Likewise, a similar relationship holds between the size of that same circular plot and the 303 

number of ALS returns backscattered from it, according to a given ALS scan density ". In 304 

this context of estimation using auxiliary variables, the scale concerns both to the size of the 305 

field plots and the spatial resolution of the pixel at which ALS metrics are calculated. 306 

Therefore, the number of ALS points (A) relates to the spatial resolution / plot size used (4) 307 

according to " : 308 

A = "?4�    (5) 309 
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As before, the relationship in eq. (5) assures that the methodology can be replicated for any 310 

range of ALS scan densities, since 4 and A are trivially deducted from one another by an 311 

empirical ". As an overall conclusion, a given optimal plot size 4∗ necessarily implies 312 

optimal sample sizes as well, both �∗ and	A∗. Keeping these relationships in mind is key to 313 

demonstrating the validity of the optimization method for replication elsewhere according to 314 

the � and " which may occur at any other study cases, and therefore the method is equally 315 

valid for both dense and sparse forests and ALS surveys with low or high scan density. 316 

2.6 Plot Size Optimization 317 

To optimize the plot size which should be used for a reliable �� estimation, and thereby also 318 

the optimal spatial resolution for an estimation of �� from ALS datasets, we determined two 319 

criteria to be applied sequentially: (1) stabilization of �� as estimator of the population value 320 

from the field information itself, and (2) maximizing the �� variability explained by ALS 321 

metrics. Therefore, Criterion I considered the minimum plot radius at which the estimation of 322 

�� remained stable to further increases in plot size. Criterion II was set to optimize the ALS-323 

assisted estimation, by observing changes in the correlation between the field �� and each 324 

ALS metric among the simulated plot radii.  325 

Criterion I was implemented by observing the evolution of ������:�99 for increasing radii at 326 

every original field plot. We set a maximum value of ������:�99 = 0.05 at which it was 327 

considered that the estimation of �� was stable and representative of the population, and, 328 

therefore, selected the minimum plot radius 4 as the smallest meeting the first criterion for all 329 

the 79 original field plots. 330 

Criterion II consisted in maximizing the explained variance in the �� values when predicted 331 

from ALS metrics. To implement this criterion we combined all the ��/ALS metric pairs for 332 
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all the simulations carried out at all the original field plots, and grouped them according to 333 

the different simulated radii. The optimal radius was set to be that one showing the maximum 334 

|>| value for a given metric. To make an overall decision, we put the focus on those metrics 335 

showing higher correlations, and decided a range of optimal sizes accordingly (since the 336 

empirical maximum may differ for different ALS metrics). As a summary, the final optimal 337 

plot size 4∗ for a given metrics was: 338 

4∗ = max|>| │������:�99 < 0.05   (6) 339 

2.7 Sample Size Optimization 340 

For sample size optimization, seeking to deduct what is the minimum number of trees needed 341 

to obtain a reliable �� estimation, and the optimum for its ALS prediction, we applied the 342 

same two sequential criteria employed for plot size optimization (section 2.6). Therefore, the 343 

simulations were similar as before, but they increased the size of simulated circular plots 344 

according to the resulting number of trees � instead of plot radii. Thus, for implementing 345 

Criterion I, the evolution of ������:�99 was observed for increasing number of trees �, also 346 

setting a maximum value of ������:�99 = 0.05. As before, we selected the minimum � as the 347 

smallest meeting Criterion I for all 79 original field plots. Criterion II also consisted in 348 

maximizing the absolute correlation between the �� values and each of the ALS metrics. 349 

New values of |>| were obtained for increasing values of �, and the final optimal sample size 350 

(�∗) for each given ALS metric was then set as: 351 

�∗ = max|>|	 │������:�99 < 0.05   (7) 352 

Finally, we compared which alternative, eq. (6) or (7), would be more convenient for a 353 

practical plot size optimization, discussing the results obtained by either method. 354 
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2.8 Reduction of ALS Point Density 355 

Once deducted an optimal spatial resolution 4∗, we also investigated the effects of varying 356 

ALS scan density ". The original point density was reduced to 0.5, 0.75, 1, 3, 5, 7.5, and 10 357 

points·m
-2

. A common option to reduce point density is by moving a 1 m window and 358 

selecting random points from the point cloud to reach the desired point density (e.g., 359 

Magnussen et al. 2010). We calculated a correct thinning factor for each desired point density 360 

" (Ruiz et al., 2014), following the method detailed by Jakubowski et al. (2013) which 361 

incorporates routines included in LAStools (RapidLasso GmbH Inc.; Isenburg, 2016). New 362 

ALS metrics over each of the 7 simulated circular plot positions and their correlations against 363 

the �� values obtained from the field information were calculated, and the entire procedure 364 

was repeated for all the reduced densities. In a similar manner as it was done for 4 and �, the 365 

effects of varying ALS scan density were studied by observing the changes in |>|, i.e. the 366 

effects in the relationship between the �� of tree size inequality and the ALS metrics with 367 

more explanatory capacity towards this given forest attribute. 368 

3. Results 369 

3.1 Establishing the Number of Simulations  370 

Figure 2 shows the results of sensitivity analysis carried out to select the minimum number 371 

of simulations that would yield a robust estimation of �� for increasing simulated plot radii. 372 

As expected, the �� value estimated from few simulations fluctuated considerably, and this 373 

fluctuation decreased as the number of simulations increased (Fig. 2a). The expected general 374 

trend toward the asymptotic value obtained by the entire population (��./9) was generally 375 

observed in Fig. 2a. Very little variation in �� estimates were observed when the number of 376 

simulations increased from 700. Similarly, the 56  decreased as the number of simulations 377 

increased (Fig. 2b), remaining virtually unchanged from 700 to 2000 simulations. 378 
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Consequently, we decided to carry out the analysis using 7 = 700 simulations of 15 379 

concentric circular simulated plots located within each 79 original field plots.  380 

***approximate position of Figure 2**** 381 

3.2 Plot Size Optimization 382 

Figure 3a shows the resulting ������:�99 for each of the 79 original plots, and Table 3 is a 383 

summary of these results which was used for establishing Criterion I, which set the minimum 384 

plot size that would provide a reliable �� estimation for the population. Circular simulated 385 

plots of small sizes provided �� estimates that differed considerably from the population 386 

values as considered by ��./9. Nonetheless, once the estimation reached stabilization, an 387 

increase in the radius of a circular plot (and hence the sampling effort) would not necessarily 388 

imply a considerable change in the estimation of �� (Fig. 3a). Our results showed that only 389 

few of the original field plots (probably very homogeneous stands) obtained stable �� 390 

estimations from very small circular simulated plots (Table 3). On the other hand, for larger 391 

circular simulated plots the differences against the original field plots representing the 392 

population became negligible. We observed that stabilization of the �� estimation started 393 

beyond of simulated plot radius 4 = 6 m, from which all the original field plots fell within 394 

the ������:�99 < 0.05 limit. We therefore established that the smallest plot size required for a 395 

reliable �� estimation should be set at areas sizing around 113 m
2
.  396 

***approximate position of Figure 3**** 397 

***approximate position of Table 3**** 398 

With regards to Criterion II, the evolution of |>| with increasing plot size was observed for 399 

all ALS metrics included in FUSION. Results showed that changes in the relationship 400 

between the field �� of tree sizes and metrics describing the distribution of ALS return 401 
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followed some general trends and patterns. For this reason and for simplifying, we chose to 402 

show only few ALS metrics in Fig. 4a, which we considered representatives of the general 403 

trends observed. These ALS metrics were the described P25, P50, P99, Skew, StdDev, Cover 404 

and CRR (Table 2). Fig. 4a showed an erratic fluctuation for the values of |>| obtained for 405 

plot sizes smaller than a radius 4 = 5 m , which was possibly caused by the instability 406 

observed in the �� estimation at smaller plot sizes (Fig. 3). For this reason, we shadowed this 407 

area in grey colour in Fig. 4, denoting that such small plot sizes were already dismissed under 408 

Criterion I. Once �� estimation reached stabilization, its correlation to ALS metrics often 409 

yielded a convex curve as plot size increased (Fig. 4a). Therefore, the optimal plot size was 410 

possible to determine via maximization of		|>|. This tendency was more clearly marked for 411 

those ALS metrics showing higher values of |>|, i.e. more correlated to the	�� of tree sizes 412 

(eq. 2), such as Skew, Cover or CRR. For other ALS metrics less related to	��, like return 413 

height percentiles (P25, P50 or P99) or StdDev, this tendency was less marked (Fig. 4a). For 414 

the optimization of plot size, we selected those metrics showing highest correlation 415 

against	��, since in practice they would be those more involved in its estimation. Table 4 416 

shows that the maximum |>| for ALS metrics Skew, Cover or CRR ranged 4∗ = 9-12 m plot 417 

radius (the quality of histograms and scatterplots between variables involved can be checked 418 

in the Supplementary Material). It can be observed in Fig. 4a that beyond a circular 419 

simulated plot of 12 m the correlation showed a decreasing trend for most ALS metrics. Also, 420 

local maxima may be found for some ALS metrics for very small plot sizes, which is 421 

probably an artefact due to the above-mention instability in �� estimation at very small plot 422 

sizes (Fig. 3). This proved the necessity of imposing Criterion I as a prior step to correlation 423 

maximization. As a conclusion, under the established combined Criteria I and II, we 424 

determined that any plot radius 4 < 6 m (113 m
2
 area) should be avoided (denoted by grey 425 

colour in Fig. 4a), and the optimal plot size for an ALS-assisted estimation of �� must be 426 
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carried out using scales sizing 250-450 m
2
, which concerns to both the size of the field plot 427 

and the pixel of the grid employed for ALS estimation. 428 

***approximate position of Figure 4**** 429 

***approximate position of Table 4**** 430 

3.3 Sample Size Optimization (Stand Density Effect) 431 

On the other hand, Figure 3b shows the evolution of ������:�99 for increasing sample sizes 432 

(number of trees �) at each of the 79 original field plots. It is worth mentioning the Figs. 3a 433 

and 3b relate to one another according to eq. (4). As a consequence, a similar tendency can 434 

be found for both of them. Table 3 expresses the number of trees that correspond on average 435 

to a given sample size. Therefore, the minimum value obtained for Criterion I in plot size 436 

optimization, 4 = 6, corresponds to stating that a minimum number of � = 15 trees are 437 

required for a stable �� estimation (shaded area in Fig. 4b). We nevertheless further 438 

postulated that this minimum number of trees may be dependent on the heterogeneity of the 439 

forest itself, being possibly larger in the presence of higher inequality of tree sizes. This 440 

presumption was demonstrably true, as it can be observed in a scatterplot comparing the 441 

minimum number of trees required for a stable �� estimation at each of the 79 original plots 442 

against their overall value of tree size inequality observed (��./9; Fig. 5). Such relationship 443 

was not so straightforward if Criterion I was imposed using 4 instead (results not shown), 444 

which demonstrates the effect of varying forest stand density �. Hence, obtaining a stable �� 445 

estimation is more dependent of measuring a minimum number of trees than imposing a 446 

given size for the field plot used. 447 

***approximate position of Figure 5**** 448 
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The case for Criterion II was different, as it can be deducted when observing the same ALS 449 

metrics employed to optimize 4 – P25, P50, P99, Skew, StdDev, Cover and CRR –, but trying 450 

to optimize � instead (Fig. 4b). Again, a similar tendency can be found since Figs.4a-b are 451 

also related by eq. (4). Results were therefore very similar whether optimization was carried 452 

out according to plot size (eq. 6) or sample size (eq. 7). The values of |>| also followed a 453 

convex curve when increasing the number of trees measured, and an optimal sample size �∗ 454 

could be reliably determined via |>| maximization. Our results showed that a number of trees 455 

approximately ranging �∗ = 30-60 (Table 4) should be involved in the computation of ��, 456 

in order to maximize the efficiency of its estimation using ALS. Since the value of |>| 457 

involves both the field �� and the ALS metrics, its changes are determined by both � and " 458 

(eqs. 4-5), and both may cause a change in the correlation between the two variables. 459 

3.4 Effect of Point Density on the Relationship of �� 460 

According to the previous results, we set the optimal plot size to 4∗ = 9 m in order to further 461 

analyse the possible effects due to varying scan density. Among all the ALS metrics (Table 462 

2), we selected those same ones employed previously – P25, P50, P99, Skew, StdDev, Cover 463 

and CRR – to allow direct comparison. Fig. 6 shows the evolution in |>| for increasing ALS 464 

point density ". No considerable changes were observed in the correlation between the field 465 

�� and the ALS metrics, which suggests that " has no major effects on their relationship. 466 

However, a decreasing trend in |>| could generally be observed when point densities 467 

decreased below " < 3 points·m
-2

 (Fig. 6). Overall, these results therefore suggest that the 468 

relationship between �� and ALS metrics is mainly dependent on the plot size employed, 469 

and rather independent of stand density and ALS scan density 470 

***approximate position of Figure 6**** 471 
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4. Discussion 472 

In this study we evaluated the effects of plot size and sample size on the �� of tree size 473 

inequality, and on its practical estimation using remote sensing methods based on ALS. 474 

Sample size refers to the number of individual elements (trees or ALS returns) included 475 

within a given sample area, which is therefore determined by the spatial resolution employed 476 

for evaluating a given forest attribute. We also analysed the effects of ALS scan density and, 477 

overall, we observed that plot size had greater effects on the relationship between ��	and 478 

ALS metrics than either of the other two criteria considered. The motivation for studying 479 

these effects is grounded on the fact that inappropriate plot sizes may provide unreliable 480 

estimates and lead to sub-optimal forest management decisions (Eid, 2000; Mauro et al., 481 

2010). Valbuena et al. (2013a) pointed out that the estimation of �� is affected by the area at 482 

which it is evaluated. Results in Fig. 3 illustrate how the ������:�99	 decreases when increasing 483 

the size of circular plots and, and hence their corresponding sample size. ������:�99	 values 484 

markedly dropped for smaller plot radii  and sample sizes. This decrease smooths from bigger 485 

sizes, which indicates stabilization of the estimation (Criterion I). Fig. 2a also shows an 486 

example of this tendency to asymptotically approach the population value, which was also 487 

observed by George (2003), Barbeito et al. (2009), or Matos (2014). Based on Criterion I 488 

(������:�99	 < 0.05), the circular plot should be large enough (4 ≥ 6 m) to have minimum 489 

sample size of	� ≥ 15 trees (Fig. 3). Although the minimum plot size also depends on the 490 

stand density of an area, eq. (4) can be used to adjust the method to any forest areas, whether 491 

sparsely or densely forested. This conclusion may therefore be partly extended to other forest 492 

types, as it can be for example deduced (via eq. 4) that minimum radius of 4 ≥ 12  m would 493 

be needed in sparsely forested area of only 300 stems·ha
-1

 (Lombardi et al., 2015). Eq. (4) 494 

therefore brings generality to the method, since plot sizes may hence be tailored to forest 495 

areas of differing stand densities. 496 
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In this article we also postulated that maximizing the explained variability between the �� 497 

estimated from the field and ALS metrics could be a valid criterion to optimize the reliability 498 

of ALS-assisted estimations of �� (Criterion II). Results in Fig. 4a showed that our 499 

presumption was correct, since the |>| values between �� and most ALS metrics, especially 500 

the most correlated ones, followed a convex curve with a maximum that could be searched to 501 

reach an optimal plot size / spatial resolution for the estimation. On the other hand, once the 502 

�� reached some stabilization, the correlation between them remains largely unchanged. 503 

Therefore, a lower plot size limit is to be imposed to avoid local minima that could appear as 504 

an artefact of the unstable estimation of �� at low sample sizes. We shaded this area in grey 505 

colour in Fig. 4 (a, b), denoting the area that was already dismissed as a result of Criterion I 506 

(Fig. 3; George, 2003). In larger plots the sample size was more representative of the total 507 

population. Combining both criteria, we found in our study area that an optimal circular plot 508 

radius of 4∗ = 9-12 m, which corresponds to a spatial resolution of sampling units sizing 509 

250-450 m
2
 (Fig. 4a), would be suitable for ALS-assisted �� estimation. Since plot size and 510 

sample size are interdependent (eq. 4), this result may be suitable for any area with a similar 511 

average number of trees (� ≅ 1300 stems·ha
-1

; Table 2). According to these results, 512 

therefore, most forest datasets commonly acquired in operational inventories would be 513 

acceptable for an ALS-assisted estimation of the �� of tree sizes. Lombardi et al. (2015) 514 

deduced a larger optimal plot radius 4∗ = 13-15 m for other forest attributes, most likely due 515 

to lower � in the forest areas considered. For studies dealing with differing plot sizes, one 516 

possibility could be to upscale �� to a common plot size (Kent and Coker, 1992; Magnussen 517 

et al., 2016).  518 

Some of the reflexions raised in this article affect all other types of forest attributes and 519 

remotely sensed auxiliary variables that may be used in forest estimations (Jelinski and Wu, 520 

1996). However, different forest attributes are differently affected by varying plot sizes 521 
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(Chytrý and Otýpková, 2003). Some forest variables such as stand density or biomass would 522 

show an averaging effect as plot size increases (Jelinski and Wu, 1996; Gotway and Young, 523 

2002; Ruiz et al., 2014), which in turn derives in improved model efficiency when using 524 

larger scales in remote sensing estimations (Næsset et al., 2015; Mauro et al., 2016). But 525 

there is a trade-off between model accuracy and spatial resolution, and root mean squared 526 

errors increase from10-15% for 1000-4000 m
2
 to 20-25% for 200-250 m

2
 (Næsset, 2002, 527 

2004, 2007). However, this averaging effect is not applicable to forest attributes describing 528 

structural diversity and heterogeneity (Coomes and Allen, 2007). In fact, many variables 529 

necessarily augment when the plot size increases, for instance species richness and diversity 530 

(e.g., Humphrey et al. 2000; Otypková and Chytry, 2006; Kallimanis et al., 2008; Fibich et 531 

al., 2016) as traditionally assessed through rarefaction (Kent and Coker, 1992). A similar 532 

effect can be observed in other measures of forest heterogeneity (Barbeito et al., 2009; Motz 533 

et al., 2010; McRoberts et al., 2012), and thus in the �� (Valbuena et al., 2013a, Matos, 534 

2014), since increasing the size of a plot increases the probability of finding an additional 535 

differently-sized tree (Chen and Crawford, 2012; Valbuena et al., 2012). This is why 536 

estimated �� values in Fig. 3 asymptotically approach the value of the larger original field 537 

plot (George, 2003; Matos, 2014), which is never exceeded. Imposing a criterion defining 538 

which of the plausible plot sizes should be used is therefore not a trivial question to tackle. 539 

Matos (2014) employed a number of different criteria based on the field information only – 540 

stabilization of the estimate, stabilization of certainty of the estimate and convergence with 541 

��./9 –, none of them resulting fully satisfactory and definitive as they all ultimately rely on 542 

a subjective assumption (Cressie, 1993). For this reason, in this article we approached the 543 

question of plot size from the viewpoint of its practical estimation using ALS remote sensing. 544 

The convex curves obtained in Fig. 4a proved this approach to be highly beneficial, since 545 

maximization of correlation |>| between �� values and selected ALS predictors provides 546 
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with a more objective method for determining the optimal plot size for the assessment of �� 547 

of tree size inequality. Still, due to the very high uncertainty observed in the estimation of �� 548 

when using very small plot sizes (Fig. 3b; Smith, 1938; Lombardi et al., 2015), we deducted 549 

that a criterion avoiding great divergence with ��./9 may be imposed as a prior step to 550 

maximization (Motz et al. (2010) referred to it as minimum grid spacing). Further research 551 

could focus on modelling �� from ALS metrics and investigate how the interaction among 552 

many ALS metrics in a same model may play a relevant role in the optimization of plot size 553 

and spatial resolution. 554 

The analyses carried out with reduced point densities revealed that lowering point density 555 

barely affects the correlation between �� and ALS metrics, unless using a very sparse scan 556 

density " < 3 points·m
-2

. Previous studies such as Maltamo et al. (2006), Ruiz et al. (2014) 557 

or Singh et al. (2015) also indicate that reducing the point density is not affecting the 558 

accuracy of volume prediction and demonstrate that the effects of varying scan densities can 559 

be eluded in practical applications. It must be taken into account, however, that the DTM 560 

used in this study was based on original point density, and the errors in DTM determination 561 

at sparser densities (Liu et al., 2007; Ruiz et al., 2014) may induce to further uncertainty, 562 

although this presumably has a lesser effect on those metrics most related to ��. 563 

Furthermore, since ALS datasets from national programmes are currently surveying entire 564 

countries at densities typically between 0.5-1  points·m
-2

 (Artuso et al., 2003), it must also be 565 

pointed out the relevance of results in Fig. 6 which render most of these nation-wide ALS 566 

datasets unsuitable for reliably estimating �� (Kandare et al. 2016). In line with results in 567 

Valbuena et al. (2017), who postulated that the low densities incur in critical omission of 568 

understorey development, our results demonstrate that indeed there is a need for increasing 569 

point densities up to " = 3 points·m
-2

. This result is very concurrent with those obtained by 570 

Ruiz et al. (2014) and Watt et al. (2014) for different forest attributes in different stand types, 571 
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and therefore the case seems clear that ALS datasets obtained for forest applications should 572 

reach this minimum density requirement. 573 

5. Conclusion 574 

In this study we studied how changing spatial resolution can affect the relationship between 575 

��	and ALS metrics. We used three criteria for optimization: plot size, stand density and 576 

ALS scan density. The effects of stand and scan densities are intimately interrelated to plot 577 

size, since they together determine the sample size employed in calculations. Amongst those 578 

three criteria, we found plot size to predominantly affect the relationship between ��	and 579 

ALS metrics.  580 

We observed that the estimation of �� is strongly affected by the size of the forest plot 581 

surveyed. Very small sample size and plot radii are more sensitive to �� variations, 582 

unrepresentative of the total population, producing unstable and unreliable �� estimations. 583 

The �� estimation stabilizes as the size of plots and samples increases, as larger plots contain 584 

a more appropriate number of observations (sample size) representing the population. We 585 

determined that, in a boreal managed forest, a minimum number of 15 trees ought to be 586 

measured for a reliable �� estimation, regardless of the stand density present at each forest 587 

stand.  588 

We developed a method for plot size optimization based on a combination of two criteria: (1) 589 

imposing a minimum of number of 15 trees measured, and (2) maximizing the absolute 590 

correlation between field �� and ALS metrics. The plot level correlation between ALS 591 

metrics and field �� showed a convex tendency for increasing plot sizes. Our results showed 592 

that 9-12 m-radius plots produced the maximum correlation thus they are suitable for ALS-593 
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assisted �� estimation. Basic relationships between plot size and sample size may be used to 594 

accommodate the method to forested environments of varying stand densities.  595 

With regards to the effects of ALS scan density, we observed that it can barely have any 596 

effects unless lowered under 3 points m
-2

. This however may be relevant for the practical 597 

application of low-density national datasets, and therefore we would recommend increasing 598 

their scan densities with the intention to render nation-wide datasets useful for studying forest 599 

heterogeneity. 600 
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Table 1. Properties of the study area.  817 
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Table 2. Summary of ALS metrics computed with FUSION and used in this research 819 

(McGaughey, 2015). 820 
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Table 3. For each radii, proportion of the total number of original field plots within the 822 

������:�99 < 0.05 limit (Criterion I), and average number of trees contained within those plots. 823 
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 824 

Table 4. Maximum absolute correlation between field �� and ALS predictors (Criterion II). 825 

See Table 2 for description of ALS metrics. 826 

 827 

 828 

Figure Captions 829 

 830 

Figure 1. Reproduction of tree positions (dots) within an original field plot (red rectangle) 831 

surrounded by edge correction i.e. translation method (i.e. periodic boundary), and a sample 832 

of 10 random realizations of simulated concentric circular plots with radii sizing 1-3 m (for 833 

simplicity). Axes show both absolute (above) and relative (below) coordinates (respectively 834 

%&01	, ,&01 and %./*	, ,./* in Eq. 2). 835 

 836 

Figure 2. Results of sensitivity analysis to select minimum numbers of simulations. 837 

Evolution for increasing radii of (a) mean ��N  values and (b) their standard errors for 7 =838 

10-2000 simulations. 839 

 840 

Figure 3. Criterion I. Asymptotic representation showing the evolution of 	������:�99	 (at each of 841 

the 79 original field plots) for increasing (a) plot sizes 4 = 1-15 m radius (corresponding area 842 

also shown in upper axis) (b) and sample size � = 1-50  number of trees (shortened to 843 

enhance visualization). 844 

 845 
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Figure 4. Criterion II. Absolute of correlation |>| between �� values and selected ALS 846 

predictors (see legend, and explanations of ALS metrics in Table 1 and section 2.4) for 847 

increasing (a) plot size 4 = 1-15 m radius (corresponding area also shown in upper axis) (b) 848 

and sample size � = 1-90  number of trees. 849 

 850 

Figure 5. Minimum number of trees (sample size) to reach �� stabilisation in relation to the 851 

reference �� value obtained from the original field plot (��./9).   852 

 853 

Figure 6. Changes due to varying ALS scan densities in the absolute of correlation |>| 854 

between �� values and ALS predictors. See explanations of ALS metrics in Table 1 (section 855 

2.4). 856 

 857 

 858 

Supplementary Materials 859 

Supplementary Figure 1.  Histograms showing the distribution of the response variable – 860 

�� (vertical bars) – and the predictor variables – Skewness, Cover, CRR, P99, StdDev, P50 861 

and P25 (horizontal bars) –. The resulting scatterplots between each response-predictor pair 862 

are also shown. For simplicity, only results for the optimal plot radius 4∗ = 9 m are shown. 863 

 864 
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Abstract 28 

The estimation of Gini Coefficient (��) of tree sizes using airborne laser scanning (ALS) can 29 

provide maps of forest structure across the landscape, which can support sustainable forest 30 

management. A challenge arises in determining the optimal spatial resolution that maximizes 31 

the stability and precision of �� estimates, which in turn depends upon stand density or ALS 32 

scan density. By subsampling different plot sizes within large field plots, we evaluated the 33 

optimal spatial resolution by observing changes in �� estimation and in its correlation with 34 

ALS metrics. We found that plot size had greater effects than either stand density or ALS 35 

scan density in the relationship between ��	and ALS metrics. Uncertainty in ��	estimates 36 

fell as plot size increased. Correlation with ALS metrics showed convex curves with maxima 37 

at 250-450 m
2
, which thus was considered the optimal plot size / spatial resolution. By 38 

thinning the density of ALS point cloud, we deduced that at least 3 points·m
-2

 are needed for 39 

reliable ��	estimates. Many nationwide ALS scan densities are sparser than this, which may 40 

be unreliable for ��	estimation. Ours is a simple approach for evaluating the optimal spatial 41 

resolution in remote sensing estimation of any forest attribute.  42 

Key words 43 

structural heterogeneity; spatial resolution optimization; sample size optimization; forest 44 

structure; LiDAR 45 

 46 

 47 

 48 

 49 
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1. Introduction 50 

1.1 The Gini Coefficient as an Indicator of Forest Structural Heterogeneity  51 

Forest structural characteristics are widely used in the development of sustainable 52 

management plans designed to protect habitats while carrying out forestry operations (Upton 53 

and Fingleton, 1985; Pommerening, 2002; Motz et al., 2010; Vihervaara et al., 2015; 54 

Valbuena et al., 2016). Management can be designed to emulate natural dynamics (Oliver and 55 

Larson, 1990; Buongiorno et al., 1994; Lähde et al., 1999; Pukkala et al., 2016), by studying 56 

how silvicultural operations affects forest structure locally (Humphrey et al., 2000; Valbuena 57 

et al., 2013a; Robles et al., 2016). 58 

Forest structure is often characterized by stem diameter distributions (O’Hara and Gersonde, 59 

2004; McElhinny et al., 2005). If a single concise indicator of size inequality is desired, there 60 

are many available, including Shannon or Simpson indices (Neumann and Starlinger, 2001; 61 

Sterba and Ledermann, 2006; O’Hara et al., 2007; Lei et al., 2009) or variance-based metrics 62 

(Staudhammer and LeMay, 2001). Recent research has highlighted the effectiveness of the 63 

Gini coefficient (i.e. ��, Gini, 1921) for assessing the structural diversity (Lexerød and Eid, 64 

2006a; O'hara et al. 2007; Duduman, 2009; Valbuena et al., 2012, 2013a). Originally 65 

developed for evaluating inequality in income distributions (e.g., Hvistendahl, 2014), �� has 66 

been applied to a variety of fields, such as healthcare (Asada, 2005) or land use (Zheng et al., 67 

2013). In plant sciences, it has been employed to evaluate size inequality (Weiner and 68 

Solbrig, 1984). It has also been applied to forest ecosystems (Weiner and Thomas, 1986), to 69 

quantify structural diversity (Knox and Peet, 1989), analyse competition (Lundqvist, 1994; 70 

Cordonnier and Kunstler, 2015), or successional stages (Valbuena et al., 2013a). Comparative 71 

studies indicate that �� is the best index for characterizing diameter distributions, providing a 72 

logical ranking of different stand types (Lexerød and Eid, 2006a; Valbuena et al., 2012), so 73 

that forest may be stratified according to their structure (Bollandsås and Næsset, 2007). It can 74 
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also be used to observe the effects of different management regimes (Bourdier et al., 2016; 75 

Pukkala et al. 2016; Valbuena et al., 2016). For these reasons, estimation of �� is the focus 76 

of this article.  77 

When used in forest science, �� evaluates size inequality of trees growing in a vicinity 78 

(Weiner, 1990).  For a patch of forest containing � trees, within which the �th and �th tree have 79 

basal areas of �� and �	 respectively,  �� is calculated as (Glasser, 1962):  80 

�� =	 �
����

∑ �
��� 	∑ |����|

�
���

�����
  (1) 81 

Therefore, �� is a statistical measure of relative dispersion, which is equivalent to half of the 82 

relative mean absolute difference (Valbuena et al, 2017: appendix A3), and it ranges between 83 

0-1, zero representing perfect equality and one being maximum inequality (Gini, 1921). 84 

Hence �� describes the shape of tree-size distributions (Valbuena et al., 2016) and is 85 

influenced by competitive interactions among trees (Cordonnier and Kunstler, 2015). 86 

Valbuena et al. (2012) demonstrated that the �� = 0.5 can be considered as a boundary 87 

between even-aged and uneven-aged stand structures. ��	values far below 0.5 indicate a 88 

unimodal “normally distributed” size structure, which are commonly found in even-aged 89 

stands that are self-thinning (e.g. Coomes and Allen, 2007). Values close to 0.5 indicate 90 

irregular size distributions (Duduman, 2009), while values much greater than 0.5 represent 91 

“reverse-J” stand structures (Valbuena et al., 2013a).  92 

1.2 Influence of Plot Size in Measurements of Forest Structure 93 

Sample plots used for measuring plant communities are usually rectangular or circular in 94 

shape (Whittaker, 1972; Kent and Coker, 1992), with a wide range of possible plot sizes from 95 

fine to coarse scales (Chytrý and Otýpková, 2003). As the effects of plot size decrease with 96 

increasing size of a plot (David and Mishriky, 1968; Barbeito et al., 2009), an optimal size 97 
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must be chosen compromising the acquisition of a field plot large enough to obtain a stable 98 

measure of forest structure, but no larger than necessary because of the costs involved 99 

(Otypková and Chytry, 2006). Structural diversity depends on the spatial resolution at which 100 

an index is evaluated (Lexerød and Eid, 2006b). Varying the scale of observation may 101 

therefore distort the information retrieved from an indicator (Chen and Crawford, 2012; 102 

Mauro et al, 2016). As plot size increases, �� estimates may be more reliable, but also 103 

fundamentally different stand conditions may aggregate (Coomes and Allen, 2007). 104 

Therefore, interpretation of data analysed at different scales remains one of the most 105 

challenging tasks in spatial statistics (Gotway and Young, 2002), as shown in the context of 106 

agriculture (Smith, 1938), sociology (Hannan, 1971), and environmental sciences (Jelinski 107 

and Wu, 1996). Also, the spatial distribution of trees has a practical effect on plot size, since 108 

clustered patterns require larger plot sizes to obtain a same degree of confidence in estimates 109 

(Upton and Fingleton, 1985; Pommerening, 2002; Kallimanis et al., 2008; Motz et al., 2010). 110 

Recently, Magnussen et al. (2016) suggested a method of upscaling to a common plot size to 111 

minimize scale effects in survey estimates, which achieved consistency among the quantiles 112 

and proportions of sampling distributions of forest attributes.  113 

1.3 Influence of ALS Scan Density in Measurements of Forest Structure 114 

Airborne laser scanning (ALS) is recognised as a highly effective tool for regional 115 

monitoring because it provides precise information about biophysical stand properties, 116 

(Gobakken et al., 2006; Gobakken and Næsset, 2008). The �� may be calculated as a 117 

descriptor of the distribution of ALS heights (Valbuena et al., 2017), or ALS metrics may be 118 

related to �� of tree sizes (Valbuena et al., 2013b). The spatial resolution of ALS data used 119 

in area-based methods has an effect on estimated values (Mascaro et al., 2011). In the context 120 

of remote sensing-assisted forest estimations, spatial resolution refers not only to the size of 121 

field plots but also to the size of pixels at which auxiliary variables are computed (Gobakken 122 
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and Næsset, 2008; Ruiz et al., 2014; Valbuena et al., 2016). In ALS-assisted estimations of 123 

�� of tree size inequality, there is a lack of knowledge on the effects of varying plot size and 124 

spatial resolution. 125 

Scan density is one of the most important aspects of ALS datasets that affects both processing 126 

and costs (Balsa-Barreiro and Lerma, 2014; Kandare et al., 2016). The importance of 127 

optimizing ALS point density lays in its trade-offs against ALS swath width, and hence costs 128 

(Baltsavias, 1999). Liu et al. (2007) observed that density reduction influenced the accuracy 129 

of digital terrain models (DTM) due to the presence of empty space intervals between points. 130 

A reduction in DTM accuracy may affect the calculation of metrics describing ALS height 131 

(Ruiz et al., 2014; Singh et al., 2015), although it would be unlikely to affect metrics 132 

describing their dispersion, such as ��.  Gobakken and Næsset (2008) assessed the effect of 133 

point density on biophysical stand properties, finding that maximum height was the least 134 

affected metric and suggesting to avoid metrics most affected by point density. No previous 135 

studies have yet determined how stand density and ALS scan densities affects �� estimates 136 

from ALS. 137 

1.4 Objectives 138 

The aim of the study is to evaluate the effects of plot size and ALS scan density on field and 139 

ALS-derived estimates of �� in the boreal forests of Finland. We developed a simple method 140 

for selecting the optimal plot size for determining the �� of tree size inequality from field 141 

data, and for predicting �� reliably using ALS metrics as auxiliary variables.   142 

2. Material and Methods 143 

2.1 Study Area and Field Data Collection 144 
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The study was carried out in a typical boreal managed forest located in Eastern Finland (62˚ 145 

31′ N, 30˚ 10′ E). Scots Pine (Pinus sylvestris L.) is the dominant species which represents 146 

73% of the total wood volume, while Norway spruce (Picea abies Karst.) represents 16%, 147 

and deciduous species 11% of the total wood volume (Valbuena et al., 2014). The main 148 

properties of the field data such as stand density (�), basal area (�) and quadratic mean 149 

diameter (� !) are shown in Table 1. The field data were collected in May-June 2010 and 150 

consisted of 79 squared plots (henceforth “original field plots”) of various dimensions 151 

(20×20, 25×25 or 30×30 m, the smaller ones being in denser stands). With the intention of 152 

representing the contrast between highly homogeneous even-aged areas and more 153 

heterogeneous forest structures (Valbuena et al. 2016), forest stands were determined using 154 

stratified random sampling, whereas plot locations were purposively selected. After choosing 155 

the sampled stands, plots were located within the stands at a representative location. The 156 

reason for doing this was to avoid plot locations at stand borders and the high cost and 157 

measuring effort required to record the location of all individual stems within the plot. The 158 

absolute positions of every individual tree with "#ℎ > 4 cm and tree top height taller than 4 m 159 

were mapped using an approach combining ALS and field surveying methods suggested by 160 

Korpela et al. (2007). Before the field measurement, a map of individual tree positions was 161 

generated from high density ALS data (see below) using an individual tree detection (ITD) 162 

method (Packalen et al., 2013). Actual positions of trees defined by their longitude/latitude 163 

coordinates �%&'()&*	, ,&'()&*� were verified in the field, while the location of trees not 164 

detected by the ITD method were measured relative to the ITD-derived ones (distances and 165 

bearings) and least-square adjusted (Korpela et al., 2007).  166 

***approximate position of Table 1**** 167 

2.2 Simulation of Circular Plots 168 
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Preliminary tasks for the simulation included transformations into relative coordinates, the 169 

correction of edge effects and a sensitivity analysis to determine the number of simulations 170 

needed. Then, within each original field plot we simulated circular plots at random positions. 171 

Circular plots were chosen on the assumption that tree competition is the same in all spatial 172 

directions. The radius of these circular simulated plots was increased in 1-m intervals, 173 

generating concentric circles up to 15 m-radius. Since the position of individual trees were 174 

available from the original field data, we could extract the trees located within each circular 175 

simulated plots, computing an estimation of �� based on tree "#ℎ. Likewise, the position of 176 

individual ALS returns located within each simulated circular plots could be extracted, using 177 

them to compute ALS metrics commonly employed in area-based estimation methods. 178 

2.2.1 Transformation to Relative Distances and Edge Correction 179 

Transformation of absolute tree coordinates into relative coordinates requires procedures of 180 

plot rotation and translation (Matos, 2014). Since in the case of our study the edges of 181 

original field plots were coincident with the UTM grid, there was no need to carry out plot 182 

rotations. In plot translation absolute coordinates of original field plots were modified into 183 

relative distances, by assigning the origin of axes (0, 0) to the south-western corner of the 184 

original field plot. Absolute coordinates of south-western corner �%'-.�/.	, ,'-.�/.� were 185 

subtracted from the absolute coordinates of each tree �%&01	, ,&01� to get their relative 186 

coordinates �%./*	, ,./*�. 187 

�%./*	, ,./*� = �%&01	, ,&01� − �	%'-.�/. 	, ,'-.�/.�  (2) 188 

Moreover, Pommerening and Stoyan (2006) showed that edge effects play an important role 189 

in spatial statistics. Because the immediate neighbour trees outside the boundary of the 190 

original field plots were not measured, ignoring them would result in biased statistical 191 

estimations. Thus, indices based on tree positions require an edge correction method to 192 
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reduce this bias. We chose a periodic boundary edge correction method (Diggle, 2003), since 193 

Pommerening and Stoyan, (2006) found it to be superior to other alternatives. This method 194 

consisted of replicating the same spatial pattern measured in the field around the original 195 

field plot (Fig. 1). Concentric circular simulated plots randomly positioned at the edge of the 196 

original field plots therefore also included the trees positioned out of the boundaries of the 197 

original field plots. 198 

***approximate position of Figure 1**** 199 

2.2.2 Plot Simulation and Sensitivity Analysis 200 

A pilot sensitivity analysis was done with the intention to identify the minimum number of 201 

simulations within an original field plot which can guaranteed a stable and robust outcome 202 

for the simulation. We selected the original field plot with highest ��, hence likely the one 203 

most sensible to changes among different simulations, and repeated the analysis for 10, 100, 204 

500, 700, 1000, 1500 and 2000 simulations. A position �%1�3, ,1�3) was randomly 205 

simulated	within the original field plot, and �� was calculated for each circular simulated 206 

plot (see below) and for each plot radius (4 ; m)  (1-m intervals from 1 to 15 m) (Fig. 1). As 207 

explained below, the standard error of the mean	�56 � of values obtained for �� at each 208 

radius were considered in order to fix the minimum number of simulations at which no 209 

considerable improvement was observed by adding further replications. After setting the 210 

necessary number of simulations to a fixed number 7 based on the pilot sensitivity analysis, 211 

the whole procedure was repeated for the remaining 78 original field plots. Relative and 212 

absolute positions of all simulations were recorded so that they could later be used for 213 

extracting their corresponding ALS returns as well. 214 

2.3 Gini Coefficient Estimation 215 
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The target was to calculate sample estimations of the �� describing the size inequality of the 216 

tree community represented at each original field plot. Its estimation (Eq. 1) was repeated for 217 

every concentric circular simulated plot of radii 1-15 m, and for all the simulated 218 

positions	�%1�3, ,1�3). For this purpose, basal area (g; m2
) was calculated for each individual 219 

stem. Differences in g were computed for each pair of trees within each circular simulated 220 

plot. ��	is the average of absolute differences relative to their mean �g�� (see detailed 221 

descriptions of �� calculation in Lexerød and Eid (2006a) and Valbuena et al. (2013b)). The 222 

reason of using g instead of "#ℎ was to increase the influence of larger trees (Solomon and 223 

Gove, 1999). The unbiased estimator by Glasser (1962) was employed because it is 224 

appropriate for an estimation based on a finite number of trees � located within each circular 225 

simulated plot (Eq. 1). The mean	�� ���� and its corresponding 56  were computed for 226 

each radius (from 1 to 15 m), and for each of the original field plots. 56  is a measure for 227 

the accuracy of those means, accounting for the variability between the samples, according to 228 

the number of simulations 7 and their sample standard deviation (5!). R statistical software 229 

(R Development Core Team, 2016) was used for all these calculations and statistical 230 

analyses. 231 

We constructed a graph comparing �� results for increasing plot size 4 for all original field 232 

plots. The �� value at circular simulated plots must necessarily approximate asymptotically 233 

to the value of �� for the entire original field plot as the radius of circular simulated plots 234 

increases (Matos, 2014). For this reason, the value of �� obtained by applying equation (1) to 235 

the original field plot was used as a reference	���./9�. In order to make all the simulated �� 236 

values directly comparable, we calculated absolute �� differences ���:�99� by subtracting 237 

simulated �� values from the	��./9: 238 

������:�99 = |��./9 − ������|   (3) 239 
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This way, it was possible to analyse the difference of each simulated �� to its corresponding 240 

asymptotic value, allowing to set a common criterion to evaluate all simulations based on the 241 

stabilization of the estimated �� value (see below). 242 

2.4 Airborne Laser Scanning Data and Metric Computation 243 

ALS data was acquired on June 26, 2009 using ATM Gemini sensor (Optech, Canada) from 244 

600-700 m above ground level with a 26= field of view. Scan swath was 320 m wide with a 245 

55% side overlap between the strips. A high resolution dataset with 11.9 pulses·m
-2

 scan 246 

density was produced from a pulse rate of 125 kHz. Details about the processing of ALS data 247 

are described in Packalen et al. (2013). The last echoes were classified as ground and 248 

interpolated into a DTM (Axelsson, 2000). The spatial resolution of DTM was 0.5 m based 249 

on the scan density, and the height above ground of individual ALS returns was obtained by 250 

subtraction of the DTM height beneath each of them. Echoes lower than 0.1 m from ground 251 

level were eliminated, as they were considered to be reflected from ground.  252 

Individual ALS returns of each circular simulated plot based on its absolute 253 

coordinates	�%1�3, ,1�3) were clipped, and area-based ALS metrics were computed from their 254 

heights with the help of FUSION software (USDA Forest Service; McGaughey, 2015). ALS 255 

metrics are statistics and descriptors of the distribution of ALS heights observed within a 256 

given area, which are usually employed as auxiliary variables in ALS-assisted forest 257 

estimations (Table 2). Some of these metrics were common statistics as, for example, the 258 

mean (Mean) standard deviation (StdDev) or the skewness (Skew) of the distribution of 259 

heights above ground of ALS returns contained within each circular simulated plot. We also 260 

computed the percentiles of their distribution, such as the 25
th

 (P25), 50
th

 (P50) or 99
th

 (P99). 261 

In addition, we calculated the so-called canopy cover metrics (McGaughey, 2015), such as 262 

the proportion of returns backscattered from 0.1 m above the ground (Cover). Another metric 263 
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included in FUSION was the canopy relief ratio (CRR), which is the difference between 264 

mean and minimum ALS return heights divided by a difference between maximum and 265 

minimum heights (Pike and Wilson, 1971).  266 

***approximate position of Table 2**** 267 

The effect of plot size in the relationship with �� was studied separately for each of these 268 

ALS metrics. For each radius, we gathered all the simulations carried out at all the original 269 

field plots and calculated all the ALS metrics listed in Table 2. They were used to calculate 270 

Pearson correlation coefficients (>) using all the combinations of field �� against each ALS 271 

metric. Then, we observed separately for each ALS metric the evolution of > when increasing 272 

the plot size 4 of the circular simulated plots. Since we were only interested in the capacity of 273 

the ALS metrics to explain variability in	��, regardless of whether their relationship was 274 

direct or indirect, we considered the absolute value of the correlation coefficient |>| in the 275 

optimization, as explained below. 276 

2.5 Basic Relationships 277 

The plot size and spatial resolution at which an ALS-assisted estimation is carried out relates 278 

intrinsically to the sample size used in all calculations. Sample size affects the relationship 279 

between predictor and response, and therefore the accuracy of ALS estimation of any forest 280 

attributes (Gotway and Young, 2002; Mascaro et al., 2010; Næsset et al., 2015; Magnussen et 281 

al., 2016; Valbuena et al., 2016). In this context, sample size refers both to the number of 282 

trees used to calculate a given forest attribute, �� in this case, but also to the number of ALS 283 

returns involved in the computation of ALS metrics. The link between resolution and sample 284 

size is employed on the empirical densities of the datasets, i.e. stand density (�; trees·ha
-1

) or 285 

ALS points density ("; points·m
-2

) (Gobakken and Næsset, 2008; Motz et al., 2010; 286 

Jakubowski et al., 2013). Therefore, the effects of plot size and spatial resolution of the ALS 287 
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estimated forest attributes also depend on �	and ", and the combined effects of these two 288 

factors may explain why plot sizes suitable for field surveys may be found sub-optimal for 289 

ALS estimation (Næsset et al., 2015).  290 

Hence, the relationship between the radius 4 of a circular plot and the number of trees (�) 291 

contained within is tied to the �	at the location of the plot.  292 

� = �?4�   (4) 293 

This begs the question on whether the optimization method should search for an optimal plot 294 

radius (4∗; m) or an optimal sample size (�∗). In a forest environment of variable stand 295 

density � (Table 1), does the relationship between �� and ALS metrics depends on the plot 296 

size used, or on the number of trees surveyed? In order to research whether it makes a 297 

difference, we repeated the same procedure for both 4∗ and �∗ optimization. In other words, 298 

we tested the results of optimization according to either plot radius or number of trees.  In any 299 

of the cases, the relationship in eq. (4) assures that the methodology can be replicated for 300 

either dense or sparse forests, since 4 and � can always be deduced from one another by an 301 

empirical �. 302 

Likewise, a similar relationship holds between the size of that same circular plot and the 303 

number of ALS returns backscattered from it, according to a given ALS scan density ". In 304 

this context of estimation using auxiliary variables, the scale concerns both to the size of the 305 

field plots and the spatial resolution of the pixel at which ALS metrics are calculated. 306 

Therefore, the number of ALS points (A) relates to the spatial resolution / plot size used (4) 307 

according to " : 308 

A = "?4�    (5) 309 
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As before, the relationship in eq. (5) assures that the methodology can be replicated for any 310 

range of ALS scan densities, since 4 and A are trivially deducted from one another by an 311 

empirical ". As an overall conclusion, a given optimal plot size 4∗ necessarily implies 312 

optimal sample sizes as well, both �∗ and	A∗. Keeping these relationships in mind is key to 313 

demonstrating the validity of the optimization method for replication elsewhere according to 314 

the � and " which may occur at any other study cases, and therefore the method is equally 315 

valid for both dense and sparse forests and ALS surveys with low or high scan density. 316 

2.6 Plot Size Optimization 317 

To optimize the plot size which should be used for a reliable �� estimation, and thereby also 318 

the optimal spatial resolution for an estimation of �� from ALS datasets, we determined two 319 

criteria to be applied sequentially: (1) stabilization of �� as estimator of the population value 320 

from the field information itself, and (2) maximizing the �� variability explained by ALS 321 

metrics. Therefore, Criterion I considered the minimum plot radius at which the estimation of 322 

�� remained stable to further increases in plot size. Criterion II was set to optimize the ALS-323 

assisted estimation, by observing changes in the correlation between the field �� and each 324 

ALS metric among the simulated plot radii.  325 

Criterion I was implemented by observing the evolution of ������:�99 for increasing radii at 326 

every original field plot. We set a maximum value of ������:�99 = 0.05 at which it was 327 

considered that the estimation of �� was stable and representative of the population, and, 328 

therefore, selected the minimum plot radius 4 as the smallest meeting the first criterion for all 329 

the 79 original field plots. 330 

Criterion II consisted in maximizing the explained variance in the �� values when predicted 331 

from ALS metrics. To implement this criterion we combined all the ��/ALS metric pairs for 332 
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all the simulations carried out at all the original field plots, and grouped them according to 333 

the different simulated radii. The optimal radius was set to be that one showing the maximum 334 

|>| value for a given metric. To make an overall decision, we put the focus on those metrics 335 

showing higher correlations, and decided a range of optimal sizes accordingly (since the 336 

empirical maximum may differ for different ALS metrics). As a summary, the final optimal 337 

plot size 4∗ for a given metrics was: 338 

4∗ = max|>| │������:�99 < 0.05   (6) 339 

2.7 Sample Size Optimization 340 

For sample size optimization, seeking to deduct what is the minimum number of trees needed 341 

to obtain a reliable �� estimation, and the optimum for its ALS prediction, we applied the 342 

same two sequential criteria employed for plot size optimization (section 2.6). Therefore, the 343 

simulations were similar as before, but they increased the size of simulated circular plots 344 

according to the resulting number of trees � instead of plot radii. Thus, for implementing 345 

Criterion I, the evolution of ������:�99 was observed for increasing number of trees �, also 346 

setting a maximum value of ������:�99 = 0.05. As before, we selected the minimum � as the 347 

smallest meeting Criterion I for all 79 original field plots. Criterion II also consisted in 348 

maximizing the absolute correlation between the �� values and each of the ALS metrics. 349 

New values of |>| were obtained for increasing values of �, and the final optimal sample size 350 

(�∗) for each given ALS metric was then set as: 351 

�∗ = max|>|	 │������:�99 < 0.05   (7) 352 

Finally, we compared which alternative, eq. (6) or (7), would be more convenient for a 353 

practical plot size optimization, discussing the results obtained by either method. 354 
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2.8 Reduction of ALS Point Density 355 

Once deducted an optimal spatial resolution 4∗, we also investigated the effects of varying 356 

ALS scan density ". The original point density was reduced to 0.5, 0.75, 1, 3, 5, 7.5, and 10 357 

points·m
-2

. A common option to reduce point density is by moving a 1 m window and 358 

selecting random points from the point cloud to reach the desired point density (e.g., 359 

Magnussen et al. 2010). We calculated a correct thinning factor for each desired point density 360 

" (Ruiz et al., 2014), following the method detailed by Jakubowski et al. (2013) which 361 

incorporates routines included in LAStools (RapidLasso GmbH Inc.; Isenburg, 2016). New 362 

ALS metrics over each of the 7 simulated circular plot positions and their correlations against 363 

the �� values obtained from the field information were calculated, and the entire procedure 364 

was repeated for all the reduced densities. In a similar manner as it was done for 4 and �, the 365 

effects of varying ALS scan density were studied by observing the changes in |>|, i.e. the 366 

effects in the relationship between the �� of tree size inequality and the ALS metrics with 367 

more explanatory capacity towards this given forest attribute. 368 

3. Results 369 

3.1 Establishing the Number of Simulations  370 

Figure 2 shows the results of sensitivity analysis carried out to select the minimum number 371 

of simulations that would yield a robust estimation of �� for increasing simulated plot radii. 372 

As expected, the �� value estimated from few simulations fluctuated considerably, and this 373 

fluctuation decreased as the number of simulations increased (Fig. 2a). The expected general 374 

trend toward the asymptotic value obtained by the entire population (��./9) was generally 375 

observed in Fig. 2a. Very little variation in �� estimates were observed when the number of 376 

simulations increased from 700. Similarly, the 56  decreased as the number of simulations 377 

increased (Fig. 2b), remaining virtually unchanged from 700 to 2000 simulations. 378 
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Consequently, we decided to carry out the analysis using 7 = 700 simulations of 15 379 

concentric circular simulated plots located within each 79 original field plots.  380 

***approximate position of Figure 2**** 381 

3.2 Plot Size Optimization 382 

Figure 3a shows the resulting ������:�99 for each of the 79 original plots, and Table 3 is a 383 

summary of these results which was used for establishing Criterion I, which set the minimum 384 

plot size that would provide a reliable �� estimation for the population. Circular simulated 385 

plots of small sizes provided �� estimates that differed considerably from the population 386 

values as considered by ��./9. Nonetheless, once the estimation reached stabilization, an 387 

increase in the radius of a circular plot (and hence the sampling effort) would not necessarily 388 

imply a considerable change in the estimation of �� (Fig. 3a). Our results showed that only 389 

few of the original field plots (probably very homogeneous stands) obtained stable �� 390 

estimations from very small circular simulated plots (Table 3). On the other hand, for larger 391 

circular simulated plots the differences against the original field plots representing the 392 

population became negligible. We observed that stabilization of the �� estimation started 393 

beyond of simulated plot radius 4 = 6 m, from which all the original field plots fell within 394 

the ������:�99 < 0.05 limit. We therefore established that the smallest plot size required for a 395 

reliable �� estimation should be set at areas sizing around 113 m
2
.  396 

***approximate position of Figure 3**** 397 

***approximate position of Table 3**** 398 

With regards to Criterion II, the evolution of |>| with increasing plot size was observed for 399 

all ALS metrics included in FUSION. Results showed that changes in the relationship 400 

between the field �� of tree sizes and metrics describing the distribution of ALS return 401 
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followed some general trends and patterns. For this reason and for simplifying, we chose to 402 

show only few ALS metrics in Fig. 4a, which we considered representatives of the general 403 

trends observed. These ALS metrics were the described P25, P50, P99, Skew, StdDev, Cover 404 

and CRR (Table 2). Fig. 4a showed an erratic fluctuation for the values of |>| obtained for 405 

plot sizes smaller than a radius 4 = 5 m , which was possibly caused by the instability 406 

observed in the �� estimation at smaller plot sizes (Fig. 3). For this reason, we shadowed this 407 

area in grey colour in Fig. 4, denoting that such small plot sizes were already dismissed under 408 

Criterion I. Once �� estimation reached stabilization, its correlation to ALS metrics often 409 

yielded a convex curve as plot size increased (Fig. 4a). Therefore, the optimal plot size was 410 

possible to determine via maximization of		|>|. This tendency was more clearly marked for 411 

those ALS metrics showing higher values of |>|, i.e. more correlated to the	�� of tree sizes 412 

(eq. 2), such as Skew, Cover or CRR. For other ALS metrics less related to	��, like return 413 

height percentiles (P25, P50 or P99) or StdDev, this tendency was less marked (Fig. 4a). For 414 

the optimization of plot size, we selected those metrics showing highest correlation 415 

against	��, since in practice they would be those more involved in its estimation. Table 4 416 

shows that the maximum |>| for ALS metrics Skew, Cover or CRR ranged 4∗ = 9-12 m plot 417 

radius (the quality of histograms and scatterplots between variables involved can be checked 418 

in the Supplementary Material). It can be observed in Fig. 4a that beyond a circular 419 

simulated plot of 12 m the correlation showed a decreasing trend for most ALS metrics. Also, 420 

local maxima may be found for some ALS metrics for very small plot sizes, which is 421 

probably an artefact due to the above-mention instability in �� estimation at very small plot 422 

sizes (Fig. 3). This proved the necessity of imposing Criterion I as a prior step to correlation 423 

maximization. As a conclusion, under the established combined Criteria I and II, we 424 

determined that any plot radius 4 < 6 m (113 m
2
 area) should be avoided (denoted by grey 425 

colour in Fig. 4a), and the optimal plot size for an ALS-assisted estimation of �� must be 426 
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carried out using scales sizing 250-450 m
2
, which concerns to both the size of the field plot 427 

and the pixel of the grid employed for ALS estimation. 428 

***approximate position of Figure 4**** 429 

***approximate position of Table 4**** 430 

3.3 Sample Size Optimization (Stand Density Effect) 431 

On the other hand, Figure 3b shows the evolution of ������:�99 for increasing sample sizes 432 

(number of trees �) at each of the 79 original field plots. It is worth mentioning the Figs. 3a 433 

and 3b relate to one another according to eq. (4). As a consequence, a similar tendency can 434 

be found for both of them. Table 3 expresses the number of trees that correspond on average 435 

to a given sample size. Therefore, the minimum value obtained for Criterion I in plot size 436 

optimization, 4 = 6, corresponds to stating that a minimum number of � = 15 trees are 437 

required for a stable �� estimation (shaded area in Fig. 4b). We nevertheless further 438 

postulated that this minimum number of trees may be dependent on the heterogeneity of the 439 

forest itself, being possibly larger in the presence of higher inequality of tree sizes. This 440 

presumption was demonstrably true, as it can be observed in a scatterplot comparing the 441 

minimum number of trees required for a stable �� estimation at each of the 79 original plots 442 

against their overall value of tree size inequality observed (��./9; Fig. 5). Such relationship 443 

was not so straightforward if Criterion I was imposed using 4 instead (results not shown), 444 

which demonstrates the effect of varying forest stand density �. Hence, obtaining a stable �� 445 

estimation is more dependent of measuring a minimum number of trees than imposing a 446 

given size for the field plot used. 447 

***approximate position of Figure 5**** 448 
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The case for Criterion II was different, as it can be deducted when observing the same ALS 449 

metrics employed to optimize 4 – P25, P50, P99, Skew, StdDev, Cover and CRR –, but trying 450 

to optimize � instead (Fig. 4b). Again, a similar tendency can be found since Figs.4a-b are 451 

also related by eq. (4). Results were therefore very similar whether optimization was carried 452 

out according to plot size (eq. 6) or sample size (eq. 7). The values of |>| also followed a 453 

convex curve when increasing the number of trees measured, and an optimal sample size �∗ 454 

could be reliably determined via |>| maximization. Our results showed that a number of trees 455 

approximately ranging �∗ = 30-60 (Table 4) should be involved in the computation of ��, 456 

in order to maximize the efficiency of its estimation using ALS. Since the value of |>| 457 

involves both the field �� and the ALS metrics, its changes are determined by both � and " 458 

(eqs. 4-5), and both may cause a change in the correlation between the two variables. 459 

3.4 Effect of Point Density on the Relationship of �� 460 

According to the previous results, we set the optimal plot size to 4∗ = 9 m in order to further 461 

analyse the possible effects due to varying scan density. Among all the ALS metrics (Table 462 

2), we selected those same ones employed previously – P25, P50, P99, Skew, StdDev, Cover 463 

and CRR – to allow direct comparison. Fig. 6 shows the evolution in |>| for increasing ALS 464 

point density ". No considerable changes were observed in the correlation between the field 465 

�� and the ALS metrics, which suggests that " has no major effects on their relationship. 466 

However, a decreasing trend in |>| could generally be observed when point densities 467 

decreased below " < 3 points·m
-2

 (Fig. 6). Overall, these results therefore suggest that the 468 

relationship between �� and ALS metrics is mainly dependent on the plot size employed, 469 

and rather independent of stand density and ALS scan density 470 

***approximate position of Figure 6**** 471 
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4. Discussion 472 

In this study we evaluated the effects of plot size and sample size on the �� of tree size 473 

inequality, and on its practical estimation using remote sensing methods based on ALS. 474 

Sample size refers to the number of individual elements (trees or ALS returns) included 475 

within a given sample area, which is therefore determined by the spatial resolution employed 476 

for evaluating a given forest attribute. We also analysed the effects of ALS scan density and, 477 

overall, we observed that plot size had greater effects on the relationship between ��	and 478 

ALS metrics than either of the other two criteria considered. The motivation for studying 479 

these effects is grounded on the fact that inappropriate plot sizes may provide unreliable 480 

estimates and lead to sub-optimal forest management decisions (Eid, 2000; Mauro et al., 481 

2010). Valbuena et al. (2013a) pointed out that the estimation of �� is affected by the area at 482 

which it is evaluated. Results in Fig. 3 illustrate how the ������:�99	 decreases when increasing 483 

the size of circular plots and, and hence their corresponding sample size. ������:�99	 values 484 

markedly dropped for smaller plot radii  and sample sizes. This decrease smooths from bigger 485 

sizes, which indicates stabilization of the estimation (Criterion I). Fig. 2a also shows an 486 

example of this tendency to asymptotically approach the population value, which was also 487 

observed by George (2003), Barbeito et al. (2009), or Matos (2014). Based on Criterion I 488 

(������:�99	 < 0.05), the circular plot should be large enough (4 ≥ 6 m) to have minimum 489 

sample size of	� ≥ 15 trees (Fig. 3). Although the minimum plot size also depends on the 490 

stand density of an area, eq. (4) can be used to adjust the method to any forest areas, whether 491 

sparsely or densely forested. This conclusion may therefore be partly extended to other forest 492 

types, as it can be for example deduced (via eq. 4) that minimum radius of 4 ≥ 12  m would 493 

be needed in sparsely forested area of only 300 stems·ha
-1

 (Lombardi et al., 2015). Eq. (4) 494 

therefore brings generality to the method, since plot sizes may hence be tailored to forest 495 

areas of differing stand densities. 496 
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In this article we also postulated that maximizing the explained variability between the �� 497 

estimated from the field and ALS metrics could be a valid criterion to optimize the reliability 498 

of ALS-assisted estimations of �� (Criterion II). Results in Fig. 4a showed that our 499 

presumption was correct, since the |>| values between �� and most ALS metrics, especially 500 

the most correlated ones, followed a convex curve with a maximum that could be searched to 501 

reach an optimal plot size / spatial resolution for the estimation. On the other hand, once the 502 

�� reached some stabilization, the correlation between them remains largely unchanged. 503 

Therefore, a lower plot size limit is to be imposed to avoid local minima that could appear as 504 

an artefact of the unstable estimation of �� at low sample sizes. We shaded this area in grey 505 

colour in Fig. 4 (a, b), denoting the area that was already dismissed as a result of Criterion I 506 

(Fig. 3; George, 2003). In larger plots the sample size was more representative of the total 507 

population. Combining both criteria, we found in our study area that an optimal circular plot 508 

radius of 4∗ = 9-12 m, which corresponds to a spatial resolution of sampling units sizing 509 

250-450 m
2
 (Fig. 4a), would be suitable for ALS-assisted �� estimation. Since plot size and 510 

sample size are interdependent (eq. 4), this result may be suitable for any area with a similar 511 

average number of trees (� ≅ 1300 stems·ha
-1

; Table 2). According to these results, 512 

therefore, most forest datasets commonly acquired in operational inventories would be 513 

acceptable for an ALS-assisted estimation of the �� of tree sizes. Lombardi et al. (2015) 514 

deduced a larger optimal plot radius 4∗ = 13-15 m for other forest attributes, most likely due 515 

to lower � in the forest areas considered. For studies dealing with differing plot sizes, one 516 

possibility could be to upscale �� to a common plot size (Kent and Coker, 1992; Magnussen 517 

et al., 2016).  518 

Some of the reflexions raised in this article affect all other types of forest attributes and 519 

remotely sensed auxiliary variables that may be used in forest estimations (Jelinski and Wu, 520 

1996). However, different forest attributes are differently affected by varying plot sizes 521 
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(Chytrý and Otýpková, 2003). Some forest variables such as stand density or biomass would 522 

show an averaging effect as plot size increases (Jelinski and Wu, 1996; Gotway and Young, 523 

2002; Ruiz et al., 2014), which in turn derives in improved model efficiency when using 524 

larger scales in remote sensing estimations (Næsset et al., 2015; Mauro et al., 2016). But 525 

there is a trade-off between model accuracy and spatial resolution, and root mean squared 526 

errors increase from10-15% for 1000-4000 m
2
 to 20-25% for 200-250 m

2
 (Næsset, 2002, 527 

2004, 2007). However, this averaging effect is not applicable to forest attributes describing 528 

structural diversity and heterogeneity (Coomes and Allen, 2007). In fact, many variables 529 

necessarily augment when the plot size increases, for instance species richness and diversity 530 

(e.g., Humphrey et al. 2000; Otypková and Chytry, 2006; Kallimanis et al., 2008; Fibich et 531 

al., 2016) as traditionally assessed through rarefaction (Kent and Coker, 1992). A similar 532 

effect can be observed in other measures of forest heterogeneity (Barbeito et al., 2009; Motz 533 

et al., 2010; McRoberts et al., 2012), and thus in the �� (Valbuena et al., 2013a, Matos, 534 

2014), since increasing the size of a plot increases the probability of finding an additional 535 

differently-sized tree (Chen and Crawford, 2012; Valbuena et al., 2012). This is why 536 

estimated �� values in Fig. 3 asymptotically approach the value of the larger original field 537 

plot (George, 2003; Matos, 2014), which is never exceeded. Imposing a criterion defining 538 

which of the plausible plot sizes should be used is therefore not a trivial question to tackle. 539 

Matos (2014) employed a number of different criteria based on the field information only – 540 

stabilization of the estimate, stabilization of certainty of the estimate and convergence with 541 

��./9 –, none of them resulting fully satisfactory and definitive as they all ultimately rely on 542 

a subjective assumption (Cressie, 1993). For this reason, in this article we approached the 543 

question of plot size from the viewpoint of its practical estimation using ALS remote sensing. 544 

The convex curves obtained in Fig. 4a proved this approach to be highly beneficial, since 545 

maximization of correlation |>| between �� values and selected ALS predictors provides 546 
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with a more objective method for determining the optimal plot size for the assessment of �� 547 

of tree size inequality. Still, due to the very high uncertainty observed in the estimation of �� 548 

when using very small plot sizes (Fig. 3b; Smith, 1938; Lombardi et al., 2015), we deducted 549 

that a criterion avoiding great divergence with ��./9 may be imposed as a prior step to 550 

maximization (Motz et al. (2010) referred to it as minimum grid spacing). Further research 551 

could focus on modelling �� from ALS metrics and investigate how the interaction among 552 

many ALS metrics in a same model may play a relevant role in the optimization of plot size 553 

and spatial resolution. 554 

The analyses carried out with reduced point densities revealed that lowering point density 555 

barely affects the correlation between �� and ALS metrics, unless using a very sparse scan 556 

density " < 3 points·m
-2

. Previous studies such as Maltamo et al. (2006), Ruiz et al. (2014) 557 

or Singh et al. (2015) also indicate that reducing the point density is not affecting the 558 

accuracy of volume prediction and demonstrate that the effects of varying scan densities can 559 

be eluded in practical applications. It must be taken into account, however, that the DTM 560 

used in this study was based on original point density, and the errors in DTM determination 561 

at sparser densities (Liu et al., 2007; Ruiz et al., 2014) may induce to further uncertainty, 562 

although this presumably has a lesser effect on those metrics most related to ��. 563 

Furthermore, since ALS datasets from national programmes are currently surveying entire 564 

countries at densities typically between 0.5-1  points·m
-2

 (Artuso et al., 2003), it must also be 565 

pointed out the relevance of results in Fig. 6 which render most of these nation-wide ALS 566 

datasets unsuitable for reliably estimating �� (Kandare et al. 2016). In line with results in 567 

Valbuena et al. (2017), who postulated that the low densities incur in critical omission of 568 

understorey development, our results demonstrate that indeed there is a need for increasing 569 

point densities up to " = 3 points·m
-2

. This result is very concurrent with those obtained by 570 

Ruiz et al. (2014) and Watt et al. (2014) for different forest attributes in different stand types, 571 
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and therefore the case seems clear that ALS datasets obtained for forest applications should 572 

reach this minimum density requirement. 573 

5. Conclusion 574 

In this study we studied how changing spatial resolution can affect the relationship between 575 

��	and ALS metrics. We used three criteria for optimization: plot size, stand density and 576 

ALS scan density. The effects of stand and scan densities are intimately interrelated to plot 577 

size, since they together determine the sample size employed in calculations. Amongst those 578 

three criteria, we found plot size to predominantly affect the relationship between ��	and 579 

ALS metrics.  580 

We observed that the estimation of �� is strongly affected by the size of the forest plot 581 

surveyed. Very small sample size and plot radii are more sensitive to �� variations, 582 

unrepresentative of the total population, producing unstable and unreliable �� estimations. 583 

The �� estimation stabilizes as the size of plots and samples increases, as larger plots contain 584 

a more appropriate number of observations (sample size) representing the population. We 585 

determined that, in a boreal managed forest, a minimum number of 15 trees ought to be 586 

measured for a reliable �� estimation, regardless of the stand density present at each forest 587 

stand.  588 

We developed a method for plot size optimization based on a combination of two criteria: (1) 589 

imposing a minimum of number of 15 trees measured, and (2) maximizing the absolute 590 

correlation between field �� and ALS metrics. The plot level correlation between ALS 591 

metrics and field �� showed a convex tendency for increasing plot sizes. Our results showed 592 

that 9-12 m-radius plots produced the maximum correlation thus they are suitable for ALS-593 
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assisted �� estimation. Basic relationships between plot size and sample size may be used to 594 

accommodate the method to forested environments of varying stand densities.  595 

With regards to the effects of ALS scan density, we observed that it can barely have any 596 

effects unless lowered under 3 points m
-2

. This however may be relevant for the practical 597 

application of low-density national datasets, and therefore we would recommend increasing 598 

their scan densities with the intention to render nation-wide datasets useful for studying forest 599 

heterogeneity. 600 
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Table 1. Properties of the study area.  817 
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Table 2. Summary of ALS metrics computed with FUSION and used in this research 819 

(McGaughey, 2015). 820 

 821 

Table 3. For each radii, proportion of the total number of original field plots within the 822 

������:�99 < 0.05 limit (Criterion I), and average number of trees contained within those plots. 823 
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 824 

Table 4. Maximum absolute correlation between field �� and ALS predictors (Criterion II). 825 

See Table 2 for description of ALS metrics. 826 

 827 

 828 

Figure Captions 829 

 830 

Figure 1. Reproduction of tree positions (dots) within an original field plot (red rectangle) 831 

surrounded by edge correction i.e. translation method (i.e. periodic boundary), and a sample 832 

of 10 random realizations of simulated concentric circular plots with radii sizing 1-3 m (for 833 

simplicity). Axes show both absolute (above) and relative (below) coordinates (respectively 834 

%&01	, ,&01 and %./*	, ,./* in Eq. 2). 835 

 836 

Figure 2. Results of sensitivity analysis to select minimum numbers of simulations. 837 

Evolution for increasing radii of (a) mean ��N  values and (b) their standard errors for 7 =838 

10-2000 simulations. 839 

 840 

Figure 3. Criterion I. Asymptotic representation showing the evolution of 	������:�99	 (at each of 841 

the 79 original field plots) for increasing (a) plot sizes 4 = 1-15 m radius (corresponding area 842 

also shown in upper axis) (b) and sample size � = 1-50  number of trees (shortened to 843 

enhance visualization). 844 

 845 
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34 

 

Figure 4. Criterion II. Absolute of correlation |>| between �� values and selected ALS 846 

predictors (see legend, and explanations of ALS metrics in Table 1 and section 2.4) for 847 

increasing (a) plot size 4 = 1-15 m radius (corresponding area also shown in upper axis) (b) 848 

and sample size � = 1-90  number of trees. 849 

 850 

Figure 5. Minimum number of trees (sample size) to reach �� stabilisation in relation to the 851 

reference �� value obtained from the original field plot (��./9).   852 

 853 

Figure 6. Changes due to varying ALS scan densities in the absolute of correlation |>| 854 

between �� values and ALS predictors. See explanations of ALS metrics in Table 1 (section 855 

2.4). 856 

 857 

 858 

Supplementary Materials 859 

Supplementary Figure 1.  Histograms showing the distribution of the response variable – 860 

�� (vertical bars) – and the predictor variables – Skewness, Cover, CRR, P99, StdDev, P50 861 

and P25 (horizontal bars) –. The resulting scatterplots between each response-predictor pair 862 

are also shown. For simplicity, only results for the optimal plot radius 4∗ = 9 m are shown. 863 

 864 
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Table 1. Properties of the study area.  

Parameter Minimum Mean Maximum SD 

� (stems·ha
-1

) 467 1298 3025 594 

� (m
2
·ha

-1
) 14 25 44 7 

��� (cm) 10 17 29 4 

 �: stand density; �: basal area; ���: quadratic mean diameter; SD: standard deviation. 
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Table 2. Summary of ALS metrics computed with FUSION and used in this research (McGaughey, 

2015). 

Symbol         Description Forest Characteristics 

P50 Median (i.e. 50
th

 percentile) 

StdDev Standard deviation 

Skew Skewness 

P25 1
st
 quartile (i.e. 25

th
 percentile) 

P99 99
th

 percentile 

CRR Canopy relief ratio = (Mean – Min) / (Max – Min)  

Cover Percentage of all returns above 2 m 

Average tree height 

Variation in tree heights 

Tree dominance 

Presence of understorey  

Dominant height 

Vertical structure 

Canopy cover 
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Table 3. For each radii, proportion of the total number of original field plots within the ���������� <

0.05 limit (Criterion I), and average number of trees contained within those plots. 

Plot 

radius 

(m) 

 

Ratio of original 

field plots reaching 

stabilization (%) 

Average sample size 

of trees based on 

simulations 

 1 25.3 1.1 

2 41.1 2.0 

3 70.8 3.7 

4 94.9 6.5 

5 91.4 10.2 

6 100 14.6 

7 100 19.9 

8 100 26.1 

9 100 33.0 

10 100 40.7 

11 100 49.3 

12 100 58.7 

13 100 68.9 

14 100 79.9 

15 100 91.7 
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Table 4. Maximum absolute correlation between field �� and ALS predictors (Criterion II). See 

Table 2 for description of ALS metrics. 

ALS 

metric 

Maximum 

correlation 

max|�| 

Optimal 

plot radius 

(�∗; m) 

Optimal 

number of trees 

(
∗; m) 

Skew 0.58 10 41 

Cover 0.45 12 59 

CRR 0.42 9 33 
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Figure 2(a)  
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Figure 2(b)  
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Figure 3(a)  
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Figure 3(b)  
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Figure 4(a)  
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