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Abstract

Errors in individual tree detection and delineation affect diameter distribution

predictions based on crown attributes extracted from the detected trees. We de-

velop a methodology for circumventing these problems. The method is based on

matching cumulative distribution functions of field measured tree diameter dis-

tributions and crown radii distributions extracted from airborne laser scanning

data through individual tree detection presented by Vauhkonen and Mehtätalo

(2015). In this study, empirical distribution functions and a monotonic, non-

linear model curve are introduced. Tree crown radius distribution produced by

individual tree detection is corrected by a method taking into account that all

trees cannot be detected. The evaluation is based on the ability of the developed

model sequence to predict quadratic mean diameter and total basal area. The

studied data consists of 36 field plots in a typical boreal managed forest area
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in eastern Finland. The suggested enhancements to the model sequence pro-

duce improved results in most of the test cases. Most notably, in leave-one-out

cross-validation experiments the modified models improve RMSE of basal area

13% in the full data and RMSE of quadratic mean diameter and basal area 69%

and 11%, respectively, in pure pine plots. Better modeling of the crown radius

distribution and improved matching between crown radii and stem diameters

add the operational premises of the full distribution matching.

Keywords: histogram matching, forestry, forest inventory, airborne laser

scanning, Light Detection And Ranging (LiDAR)

1. Introduction1

The distribution of tree diameters at breast height (DBH, measured outside2

bark at 1.3 m aboveground) characterizes the economic and ecological values3

of a forest. Predicting the diameter distribution is an important task for forest4

inventories, because it can be used to calculate further statistics such as basal5

area, volume and biomass. Predicting the diameter distribution has therefore6

been studied based on both of the most prevalent approaches to utilize remote7

sensing (especially airborne laser scanning, ALS, data), i.e., the area-based and8

individual tree detection (ITD) approaches.9

In the area-based approach, statistics of the ALS return height distribution10

are used to explain forest attributes of interest with parametric models or non-11

parametric prediction techniques. To obtain diameter distribution, these tech-12

niques are applied to predict or recover theoretical distribution function param-13

eters (e.g. Gobakken and Næsset, 2004; Mehtätalo et al., 2007; Thomas et al.,14

2008) or impute tree lists using k-nearest neighbor methods (e.g. Packalén and Maltamo,15

2008; Shang et al., 2017; Lamb et al., 2017). Also more theoretical approaches16

to link the ALS return height distribution to the diameter distribution have been17

experimented (Magnussen and Renaud, 2016; Spriggs et al., 2017). Although18

improvements to area-based diameter distribution predictions are still possi-19

ble, the methods have already been established in operationally run inventories20
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(Maltamo and Packalen, 2014) and successfully applied to forest types rang-21

ing from regular plantations (Arias-Rodil et al., 2018; Maltamo et al., 2018) to22

tropical forests with more variation in their structure (Rana et al., 2017).23

In ITD, on the other hand, individual tree crowns are algorithmically de-24

tected from the data, leading to tree-level attributes such as height and crown25

radius (e.g. Persson et al., 2002). The diameter distribution is obtained by26

predicting the DBHs of the detected trees by using the tree-level attributes,27

possibly together with other ALS features, as model predictors. Recent stud-28

ies have especially applied multi-layered or fully three-dimensional ITD methods29

(Reitberger et al., 2009; Li et al., 2012; Duncanson et al., 2014; Lähivaara et al.,30

2014; Lindberg et al., 2014; Lu et al., 2014; Vega et al., 2014). Lähivaara et al.31

(2014) assessed the number of trees detected based on two approaches in an32

area that is also studied by us. They reported an increase from 53% to 70%33

of trees detected by shifting from image analysis of interpolated surface mod-34

els (Pitkänen et al., 2004; Pitkänen, 2005) to the developed three-dimensional35

framework. Both algorithms produced insignificant rates (<1%) of commission36

errors. However, even the most advanced ITD algorithms cannot be expected37

to correctly detect and delineate all trees, especially the proportion of them38

with crowns covered by or interlaced with neighboring trees. These limita-39

tions of ITD also have an effect on the diameter distribution estimate (e.g.40

Vauhkonen and Mehtätalo, 2015).41

Knowledge on marked point patterns has been employed to compensate for42

undetected treees in ITD based on very-high resolution satellite image data43

(Zhou et al., 2013; Gomes et al., 2018). On the other hand, Mehtätalo (2006)44

and Kansanen et al. (2016) presented methods for estimating the true, field45

measured stand density from tree crown objects produced by ITD on ALS data.46

These methods were based on approximating the probability of detecting in-47

dividual trees – the detectability – through stochastic geometry (Chiu et al.,48

2013). Mehtätalo (2006) estimated the detectability assuming that smaller trees49

are left undetected if their center points are inside the crown of a bigger tree.50

The method assumed the crowns to follow a Boolean model, with complete spa-51
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tial randomness of locations and independent identically distributed crown radii.52

Kansanen et al. (2016) reformulated this estimator to rely on fewer assumptions53

on the forest structure. An empirical detectability was based on a morpholog-54

ical transformation of the union of detected crowns larger than the tree whose55

detectability was being calculated. The developed Horvitz-Thompson type es-56

timator (Kansanen et al., 2016) outperformed the one based on the theoretical57

area fraction of the Boolean model (Mehtätalo, 2006) in 36 field plots used for58

validating the method. These methods can also correct the biased crown radius59

distribution by adjusting it using the estimated detectability.60

Predicting tree stem attributes for all trees would require a tree-level match-61

ing between the field measured and remotely sensed tree attributes, which62

cannot be achieved in the case of tree detection errors. To circumvent this63

problem, Vauhkonen and Mehtätalo (2015) proposed that stem diameter dis-64

tributions and crown radii distributions derived through ITD could be directly65

related by building upon a histogram matching technique frequently used in66

digital image processing (Gonzalez and Woods, 2008). The developed distribu-67

tion matching method avoids the problem of tree matching by matching the68

percentiles of the distributions in question as pseudo data and modeling the69

transformation from crown radius to stem diameter using these data points.70

Vauhkonen and Mehtätalo (2015) also showed that it was beneficial to use cor-71

rected crown radius distributions for the distribution matching. However, they72

used the correction method of Mehtätalo (2006) in data where only less than73

half of the plots met the stated assumptions on the spatial randomness and74

independence of the crown radii. The correction failed especially in forests with75

regular tree patterns, and although the method is promising, it is not opera-76

tional because of the restrictive assumptions.77

Based on the text above, it could be possible to improve the results from78

Vauhkonen and Mehtätalo (2015) by critically re-examining their methodologi-79

cal choices. First, because an accurate stand density estimate was crucial also80

with respect to the accuracy of the diameter distribution predictions, either an81

improved ITD algorithm or a better estimator for the detectability of the trees82
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could improve the results. Second, Vauhkonen and Mehtätalo (2015) modeled83

both the crown radii and stem diameter distributions as having Weibull forms to84

produce smooth transformations from one distribution to the other. However,85

since assuming a parametric distribution form is not fundamentally required by86

the method, a more flexible modeling approach could be beneficial to describe87

more complex forms of the diameter distribution. Finally, the ITD-detected88

tree heights were not utilized although they were available. The distribution89

of the detected heights could be assumed useful for predicting the diameter90

distribution of trees.91

In this study, we investigate whether distribution matching (Vauhkonen and Mehtätalo,92

2015) could be improved by enhancing the modeling chain for both the ITD93

and plot-level matching. Especially, we test a more sophisticated ITD algo-94

rithm (Lähivaara et al., 2014), density correction (Kansanen et al., 2016), and95

matching function for the transformation from tree crown radius to stem diam-96

eter. The proposed changes are hypothesized to improve the accuracy of the97

diameter distribution predictions, but also the operational feasibility of the full98

method chain, because of reducing a number of assumptions made regarding99

spatial point patterns and distributional forms of the stem diameters and crown100

radii.101

2. Material102

The study area is a typical boreal managed forest area in eastern Finland103

(62◦ 31′ N, 30◦ 10′ E) with Scots pine (Pinus sylvestris L.) as the dominant104

tree species. It represents 73% of the volume, Norway spruce (Picea abies [L.]105

H. Karst.) 16% of the volume and deciduous trees altogether about 11% of the106

volume. The same area was previously studied by Packalén et al. (2013), who107

describe the measurements carried out in more detail.108

The ALS data for the area were collected on 26 June 2009 using an Optech109

ALTM Gemini laser scanning system from approximately 720 m above ground110

level with a field of view of 26◦. The side overlap of 55% in the data acquisition111
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Attribute n mean sd min max 20 25 30

λ, stems · ha−1 36 1218.8 538.0 466.7 2560 6 20 10

18 1121.4 487.8 544.4 2250 4 11 3

43 1291.8 592.3 512 2875 14 23 6

20 1204.2 582.6 512 2225 8 10 2

QMD, cm 36 17.2 4.3 10.2 29.0

18 16.9 3.5 11.2 23.6

43 16.4 3.5 11.5 27.2

20 16.7 3.5 11.5 23.4

BA, m2 · ha−1 36 24.9 6.3 15.4 40.1

18 22.6 4.4 15.4 32.4

43 24.4 6.2 13.8 36.2

20 23.5 6.6 13.8 35.1

Table 1: Mean, standard deviation, minimum and maximum of stand density (λ), quadratic

mean diameter (QMD) and basal area (BA) in Kiihtelysvaara. The full data usable in our

analysis contains 36 field plots, of which 18 have > 95% of basal area Scots pine (Pinus

sylvestris L.). The training set needed by the tree detection algorithm (see Section 3.1.2)

contains 43 field plots, of which 20 have > 95% of basal area Scots pine. The columns ”20”,

”25” and ”30” show the numbers of plots having that side length in metres.
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means that each location was covered from two flight lines in order to increase112

the probability that trees have ALS hits each side. Pulse repetition frequency113

was set to 125 kHz, and when the instrument was operated in a multipulse114

mode, the nominal sampling density was 11.9 pulses/m2.115

The field measurements were carried out in May–June 2010. Altogether 79116

field plots were placed subjectively, attempting to record the species and size117

variation over the area. The plot size varies between 20 × 20 m2, 25 × 25 m2
118

and 30 × 30 m2. Trees were chosen under the criterion of either DBH ≥ 5 cm119

or height ≥ 4 m. Location, DBH and height were measured and species was120

registered. The full plot data were distributed to training and validation data121

sets according to the needs of the tree detection algorithm (Section 3.1.2): only122

plots that were lying below the flight lines were chosen to the validation set.123

The central plot-level attributes for the 36 plots used in this study, and the 43124

plots used as training data by the tree detection algorithm, are presented in125

Table 1.126

3. Methodology127

As motivated in the Introduction, we attempt to improve the distribution128

matching method of Vauhkonen and Mehtätalo (2015). The method can be bro-129

ken down to three separate steps and presented as a sequence ”ITD + Correction130

+ Matching”, i.e. the full method requires (1) an ITD algorithm to detect and131

segment treetops (Section 3.1); (2) a method to model the tree crown radius132

distribution and correct it for the missing small trees (Section 3.2); and (3) a133

method to transform the crown radii distribution to tree diameter distribution134

(Section 3.3). Fig. 1 is a schematic diagram of the sequence.135

The original method of Vauhkonen and Mehtätalo (2015) is considered as a136

benchmark and described as a sequence of 2D-ITD + Boolean + Polynomial.137

To assess the effects of each component on the accuracies of the diameter dis-138

tributions, we consider three alternative model sequences that are obtained by139

modifying the parts of the benchmark sequence one by one, as reasoned below:140
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Figure 1: Schematic diagram of the modeling chain. Airborne laser scanning data are first in-

terpreted by an individual tree detection algorithm that produces tree objects and crown radius

(r) distributions. These distributions are corrected to compensate for tree detection errors,

which produces corrected crown radius distributions (illustrated by red line) and estimates

of stand density λ. The corrected crown radius distributions are matched to distributions of

DBH, producing a transformation function used to predict the latter from the former. The

evaluation is based on the estimated stand density λ, quadratic mean diameter (QMD) of the

predicted DBH distribution, and basal area estimated using both λ and QMD.
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1. 3D-ITD + Boolean + Polynomial: Conventional 2D-ITD method based141

on image analysis of interpolated canopy height surfaces (Section 3.1.1)142

is replaced by an improved ITD algorithm that uses a priori knowledge143

on tree crown shapes and operates in 3D space (Section 3.1.2). Expected144

improvements are due to being able to detect more trees, but also because145

the initial crown radius distribution obtained using rotationally symmetric146

tree crown approximations may be more compatible with the Correction147

step.148

2. 3D-ITD +HT+ Polynomial: The correction based on assuming a Boolean149

model with complete spatial randomness of locations and independent150

identically distributed crown radii (Section 3.2.1) is replaced by a reformu-151

lated, Horvitz-Thompson type (HT) estimator (Section 3.2.2). Expected152

improvements are due to more realistic modeling of the proportion of small153

trees with fewer assumptions on the spatial patterns.154

3. 3D-ITD + HT + Richards: Distribution matching function with a poly-155

nomial model form (Section 3.3.1) is replaced by a nonlinear function156

form, also known as the Richards’ curve (Section 3.3.2). Expected im-157

provements are due to monotonically increasing function form that better158

fits the data.159

3.1. Individual tree detection160

The main task for the ITD in our method chain is to obtain the initial crown161

radius distribution, which could be possible based on a number of different ap-162

proaches. Since the benchmark ITD method (Vauhkonen and Mehtätalo, 2015)163

was based on image analysis of canopy surface height models interpolated from164

the point data, it is reasoned to test an approach with different fundamentals165

to assess the importance of ITD in the model sequence. Thus, although ITD166

methods similar to the benchmark are often referred to as “2.5D” because of167

including height, the abbreviations for our methods are selected to emphasize a168

main difference between the methods to operate either with raster images (2D-169

ITD) or vector data examined in 3D point space (3D-ITD). As mentioned in170
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the Introduction, both the approaches were compared for estimating the stem171

number in the presently studied area by Lähivaara et al. (2014).172

3.1.1. 2D-ITD173

The 2D-ITD method (Pitkänen et al., 2004) carries out adaptive low-pass fil-174

tering aiming to produce a single local height maximum for each tree top, using175

Gaussian scale parameters that were subjectively defined for different tree height176

classes as explained by Packalén et al. (2013). Segments are created around the177

local maxima of the height-filtered canopy surface model using watershed seg-178

mentation to delineate the tree crowns (Pitkänen, 2005). The drainage direction179

following segmentation algorithm delineates tree crowns as regions bounded by180

other segments and the background, determined as pixels with height < 2 m.181

The crown dimensions are therefore obtained solely based on image analysis182

of eight-neighborhoods of the pixels in the interpolated canopy surfaces. The183

unfiltered surface model pixels with highest value within the segments were con-184

sidered as tree locations and the maximum diameter in four cardinal directions185

passing the crown location was taken as the crown diameter.186

3.1.2. 3D-ITD187

In this ITD method, single tree crowns are modeled by parametric, rota-188

tionally symmetric surfaces; the parameters defining the dimensions of each189

crown are: crown radius, the crown height, the lower limit of the living crown,190

and the crown shape parameter. These parameters, and the horizontal coor-191

dinates of tree crown center points are estimated based on ALS data. The192

estimation problem is written in the Bayesian framework of inverse problems193

(Kaipio and Somersalo, 2005) – the advantage of this approach over, e.g., ordi-194

nary least squares fitting or maximum likelihood estimation is that it allows for195

utilizing a priori information on the tree shapes in the ALS based estimates. As196

a Bayesian estimate for the model unknowns – the positions and crown shape197

parameters of each tree – we consider the maximum a posterior (MAP) estimate198

which is computed by a Newton-based optimization method.199
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As in Lähivaara et al. (2014), the likelihood model is based on an approxi-200

mation of additive, mutually independent Gaussian noise in the ALS measure-201

ments, and all the model unknowns are modeled as Gaussian random variables202

on the basis of a training set consisting of field measurements from 43 plots203

together and allometric models for tree shapes by Muinonen (1995). The ITD204

is applied to a total of 36 plots that were different from plots in the training set.205

3.2. Stand density and crown radii distribution corrections206

The two correction methods discussed have a common basis in stochastic207

geometry (Chiu et al., 2013). The forest is interpreted as a realisation of a208

germ-grain model of discs Ξ =
⋃
B(xi, Ri) in some area of interest W ⊂ R2.209

Here, xi are locations of crown center points, distributed as a homogeneous point210

process of intensity λ (the stand density). The surface areas under tree crowns211

are modeled as closed discs B with random radii Ri. From the output of the ITD212

(estimates of the tree locations and crown shapes), we derive Ξ̂, the collection213

of patches on the ground surface covered by the crowns. A standard germ-214

grain model is the Boolean model, where the disc radii are independently and215

identically distributed and the disc center points are distributed as a Poisson216

process. This means that the number of points in an arbitrary planar set is217

Poisson distributed with parameter that depends on the area of the planar set218

and the intensity λ. The locations of the points are completely independent of219

each other.220

3.2.1. Boolean detectability221

Under the Boolean model assumption, the tree density can be written as222

λ = −
ln(1− cc)

πE[R2]
(1)

measured in trees · ha−1, where cc is the relative canopy cover and E[R2]223

the expected value of the squared crown radius (Mehtätalo, 2006). Additional224

assumption of a tree being detectable only when its location is not covered by225
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the crowns of the larger trees leads to the probability to be detected p, or the226

detectability:227

p(r) = exp

(
−λπ

∫ ∞

r

t2f(t)dt

)
,

where f is the probability density function of the crown radii. The density228

function of the detected tree crown radii can then be written as229

fD(r) =
p(r)f(r)∫∞

0
p(t)f(t)dt

and used to estimate the parameters of f through maximum likelihood. The230

fitted distribution f is then used to calculate E[R2] to be used in Equation (1).231

Vauhkonen and Mehtätalo (2015) assumed f to be a Weibull density.232

3.2.2. Horvitz-Thompson type detectability233

Kansanen et al. (2016) presented a Horvitz-Thompson type stand density234

estimator. Let us consider each detected crown radius r∗i as a representative of235

a size class. The total number of trees in a size class r∗i is calculated by scaling236

the detected number of trees, which we assume to be one, by the detectability237

p:238

N̂i =
1

p(r∗i )
.

If n trees have been detected, the stand density estimator is formed by239

summing the size class specific tree numbers and scaling with the area of W in240

hectares:241

λ̂ =

∑n

i=1 N̂i

|W |
.

Detectability for a certain size class is estimated through the probability of a242

uniformly distributed random point hitting a set formed by the crowns of larger243

trees in such a way that its crown is suitably covered. It can be written as244

pα(r) = 1−
|W ∩ (Ξ̂R>r ⊖B(o, αr))|

|W |
,

12



where r is the crown radius, Ξ̂R>r is a subset of the detected Boolean model245

formed by discs larger in radii than r, B(o, r) is an origin-centred closed disc of246

radius r, |.| is an area operator and ⊖ a Minkowski-subtraction or erosion,247

Ξ̂R>r ⊖B(o, r) = {x ∈ Ξ̂R>r : B(x, r) ⊂ Ξ̂R>r}.

The parameter α ∈ [0, 1] controls the proportion of radius that should be248

covered by the larger trees for non-detection. For example, α = 1 corresponds to249

a situation where trees are not detectable only if their crowns are fully covered by250

larger ones, whereas α = 0 corresponds to a situation where a tree is detectable251

if the center point of the crown is not covered by a larger tree. Because the252

optimal value of α likely depends on the ITD algorithm used, the quality of253

ALS data and properties of the forest, it was determined based on earlier tests254

in the Kiihtelysvaara data described in Kansanen et al. (2016). The buffer size255

was fixed to α = 0.4, which yielded best results in a cross-validation experiment256

that further solidified the position of the Horvitz-Thompson type estimator as257

the best method tested and showed that the estimator is rather robust to the258

choice of α.259

The size class specific tree numbers N̂i can be used to nonparametrically260

estimate the distribution of crown radii. This is done by using the tree numbers261

as weights in an empirical distribution function:262

F (r) =

∑
r∗
i
≤r N̂i

λ̂|W |
. (2)

We need the percentiles of this distribution, which are calculated through263

the inverse of the empirical distribution function. All of the calculations related264

to the weighted empirical distribution functions were done with Hmisc package265

of R (Harrell Jr et al., 2016).266

3.3. Distribution matching267

We wish to find a monotonically increasing transformation from the cor-268

rected distribution of ITD crown radii to the distribution of field-measured269
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Figure 2: The percentiles of the distribution of diameters at breast height as a function of the

percentiles of corrected crown radii distribution in the test data, corrected with the method

of (Kansanen et al., 2016). Each line represents one field plot.

stem diameters. For random variables X and Y having cumulative distribution270

functions FX and FY and Y = g(X) where g is monotonically increasing it can271

be shown that272

FX(x) = P{X ≤ x} = P{g−1(Y ) ≤ x} = P{Y ≤ g(x)} = FY (g(x)) = t,

which leads to formulas F−1
Y (t) = g(x) and F−1

X (t) = x. Hence, given t-273

percentiles of two distributions connected by some unknown transformation g274

this transformation can be estimated by using the percentiles as data points.275

Let dij be the jth percentile (j = 1, 2, . . . , 99) of the diameter distribution276

on plot i, and let rij be the corresponding percentile of the corrected crown277

radii distribution. We define the transformation g as a mixed-effects model278
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(Lindstrom and Bates, 1990):279

dij = g(rij ,φi) + εij , (3)

where the parameter vector φi consists of fixed effects β common to all280

data, possible plot-specific covariates xi, and plot-specific random effects bi ∼281

N(0, σ2D) that are independent for all i 6= k, that is, from plot to plot. The282

covariance matrix σ2D is unknown and has to be estimated. In addition the283

residual errors εij ∼ N(0, δ2) are assumed to be independent for all ij 6= kl with284

an unknown variance δ2.285

When a mixed-effects model is fitted, the predicted values of random ef-286

fects b̃i are only available for plots with observations of the response variable d.287

Hence, only the expected value (zero) of bi can be used for plot-specific predic-288

tions. However, if a plot-specific covariate explained the between-plot variation,289

the predicted values of random effects could possibly be replaced by such covari-290

ate(s) to mimic the between-plot differences described by the random effects.291

Our motivation to add plot-specific covariates to the model was in particular to292

replace the random effects in prediction situations as reasoned above.293

Several different covariates were tested for inclusion in the model to make294

plot-specific predictions. The potential covariates included the mean and stan-295

dard deviation of ALS return heights, the 5th, 10th, 15th, . . ., 95th percentiles296

and corresponding proportional densities of the ALS-based canopy height dis-297

tribution computed according to Korhonen et al. (2008), and also stand density298

estimates, canopy coverage estimates derived from ITD, means, variances and299

the 5th, 10th, 15th, . . ., 95th percentiles of the (non-corrected) ITD detected300

tree height distribution. The details of the model fitting and covariate choosing301

procedure are discussed in the following sections. The model fitting was done302

with the nlme package of R (Pinheiro et al., 2016).303

3.3.1. Polynomial model304

Vauhkonen and Mehtätalo (2015) assumed g in Equation (3) having a quadratic305
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polynomial form:306

g(rij) = β1rij + β2r
2
ij + b1irij + b2ir

2
ij , (4)

where β1 and β2 are fixed effects, b1i and b2i are the plot-specific random307

effects. Equation (4) is used only with its predicted values of random effects,308

in other words, without added covariates. When adding these variables, the309

transformation is first fitted in a simplified form310

g(rij) = β1rij + β2r
2
ij + b1irij

to avoid overfitting. Similar to Vauhkonen and Mehtätalo (2015), we predict311

the values of the random effect using a linear regression model with one plot-312

specific covariate. The most suitable covariate for the model was identified as313

the covariate xi having the highest absolute correlation with predicted b1i. It is314

added to the model:315

g(rij) = β1rij + β2r
2
ij + (β3xi + b1i)rij ,

and the model is fitted again. When predicting stem diameters with the316

model, the random effects are set to their expected value, zero, because they317

are not known in a prediction situation.318

3.3.2. Model with Richards’ curve319

The quadratic transformation is not necessarily monotonically increasing.320

This flaw can be corrected by using a nonlinear transformation function, for321

example the generalized logistic function, also known as Richards’ curve:322

g(rij ,φi, v) =
Ki

(1 + exp(Qi −Birij))
1

v

,

where the parameters are divided to φi = [Qi, Bi,Ki]
T and v to emphasize323

v as a purely fixed effect. The model was chosen by visual inspection of the324

Kiihtelysvaara data (Fig. 2). The data seems to support the logistic curve,325

having variation between plots in the sigmoidal center points, growth rates326
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and maximum values, governed by the plot-specific parameters Qi, Bi and Ki,327

respectively. Possible asymmetric behaviour around the sigmoidal center points328

is taken into account with parameter v. Although preliminary analysis of the329

data by fitting separate models to plots showed variation also in v, we were not330

able to include it as a plot-specific parameter due to convergence problems in331

model fitting.332

The plot-specific parameters were first modeled as φi = β+bi. The variables333

xi with the highest absolute correlations with bi (separately for each parameter)334

were added to the model, giving φi = β0 +β1xi+ bi where β1xi is an element-335

wise multiplication, and the model was fitted again. When predicting stem336

diameters with the model, the random effects were set to their expected value,337

zero.338

The model fitting procedure requires starting values for the fixed effects.339

Preliminary values were chosen as described in Fekedulegn et al. (1999), and340

refined by minimizing residual squared error of the Richards’ curve without any341

random effects. These same values were used for β0 when fitting the model with342

covariates, while β1 were set to zero.343

3.3.3. The estimated tree diameter distribution344

Let us mark the random variables related to crown radii and diameter at345

breast height as R and DBH , respectively. To formulate FDBH(d), one has to346

consider the probability347

FDBH(d) = P{DBH ≤ d} = P{g(R) ≤ d}.

The inequality g(r) ≤ d needs to be solved to produce probabilities regarding R,348

hence performing a change of variable in the cumulative distribution function349

of R. The distribution function resulting from a Weibull distribution of crown350

radii and a quadratic transformation is presented in the Appendix. When using351

nonparametric distributions, the cumulative distribution function for diameters352

at breast height in plot i is simply353

17



F̂i(d) =

∑
g(r∗

ij
)≤d N̂ij

λ̂i|Wi|
,

where summation goes over the index j. It is essentially a weighted empirical354

distribution function calculated from the detected crown radii transformed to355

diameters with the transformation g weighted by the corresponding sizes of the356

radius classes. Notice the similarity to the corrected cumulative distribution in357

Equation (2).358

3.4. Performance measures359

We use quadratic mean diameter (QMD) measured in cm and basal area360

(BA) measured in m2 · ha−1 as measures of model performance. The true value361

for QMD in plot i is calculated as362

QMDtrue
i =

√∑ni

j=1(d
∗
ij)

2

ni

,

where ni is the number of trees in the plot and d∗ij is the observed diameter at363

breast height of tree j. The true value for BA is calculated as364

BAtrue
i = λi ·QMDtrue

i

π

40000
.

We estimate QMD as365

Q̂MDi =

√√√√
∑

j N̂ij(g(r∗ij))
2

∑
j N̂ij

,

where index j goes over the detected tree crown radii, when using the nonpara-366

metric models and as367

Q̂MDi =
√

E[d2] =

√∫ ∞

−∞

(g(r))2f(r)dr

when using the methods with the quadratic transformation g and probability368

density function f for the crown radii. The estimated BA is calculated as369

B̂Ai = λ̂i · Q̂MDi

π

40000
.
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It should be noted that the estimate of BA depends on both the estimates of370

QMD and tree density.371

Root mean squared errors,372

RMSE =

√∑n
i=1(ŷi − yi)2

n
,

means of errors373

ME =

∑n

i=1(ŷi − yi)

n
,

and their normalized variants (RMSE%, ME%) calculated by dividing the374

error with the mean of true values and multiplied by 100 are used as goodness-375

of-fit measures. In the formulas yi is the true value of plot-level statistic, ŷi the376

estimate and n the number of plots.377

To compare the fitting of the estimated diameter distributions we also cal-378

culate L2 distances induced by the well known L2 norm (Rudin, 1987, Chap.379

3), defined as380

||F (d) − F̂ (d)||2 =

√∫ ∞

−∞

(F (t)− F̂ (t))2dt,

where F is the true empirical cumulative distribution function and F̂ is381

the estimated cumulative distribution function. This integral is approximated382

numerically by the R function integrate.383

The Clark-Evans aggregation index (Clark and Evans, 1954) with the edge-384

effect correction of Donnelly (1978) was calculated for every plot to assess the385

effect of spatial distribution of locations on the estimates and their errors. Index386

values close to one suggest complete spatial randomness, whereas values > 1387

suggest ordering and values < 1 suggest clustering.388

In addition to considering the performance measures calculated from fitted389

distributions, leave-one-out (LOO) cross-validation experiments were performed390

to assess the predictive capabilities of the models. In LOO the n plots are di-391

vided into n − 1 plots where the model is fitted and the one plot where these392
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fitted models are used for predicting. This is done n times, leading to a pre-393

diction for every plot. In every prediction case the whole distribution matching394

procedure is performed: in the n− 1 plots the model is first fitted with random395

effects, the best covariate explaining the variation in the predicted values of396

random effects is added to the model and the model is fitted again, and the397

prediction is performed, without random effects, which are not available during398

prediction.399

4. Results400

Vauhkonen and Mehtätalo (2015) considered only pine-dominated plots, de-401

fined as plots with > 95% of the basal area consisting of Scots pine. A precur-402

sory analysis comparing pine-dominated plots to those dominated by the other403

species indicated that random effects were differently distributed in these two404

subsets of data. This resulted to selecting different covariates for plots dom-405

inated either by pine or other species. Hence, we evaluated the predictions406

separately for full data and pure pine plots.407

4.1. Stand density estimation408

Results of stand density estimation are presented in Table 2. The results409

related to 3D-ITD without correction and with both correction methods in410

the full data have been previously presented in Kansanen et al. (2016). In full411

data, the RMSE of stand density is the highest when 2D-ITD is used without412

corrections. Switching to 3D-ITD provides a reduction to it. The correction413

methods further reduce the RMSE for both ITD methods. The HT correction414

provides substantially lower RMSE than the Boolean correction. The reduction415

in RMSE going from the worst results to the best results is 69%. All the416

corrections also shift ME considerably towards zero.417

In the pure pine plots, both of the ITD methods have lower values of RMSE418

and ME closer to zero than in the full data. When the Boolean correction is419

used with 2D-ITD, the RMSE is higher than with no correction. With 3D-420

ITD the Boolean and HT corrections again produce lower RMSE values than421
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n ITD Correction RMSE RMSE% ME ME%

36 2D-ITD - 718.5 59.0 -564.4 -46.3

2D-ITD Boolean 541.8 44.5 -27.2 -2.2

3D-ITD - 486.8 39.9 -380.1 -31.2

3D-ITD Boolean 303.1 24.9 -21.2 -1.7

3D-ITD HT 221.6 18.2 -39.5 -3.2

18 2D-ITD - 500.0 44.6 -384.3 -34.3

2D-ITD Boolean 574.9 51.3 3.7 0.3

3D-ITD - 302.8 27.0 -232.6 -20.7

3D-ITD Boolean 280.1 25.0 103.3 9.2

3D-ITD HT 177.0 15.8 73.1 6.5

Table 2: Errors of stand density estimates (stems · ha−1) used in predicting basal areas. The

column ”n” specifies whether the full 36 field plots or the 18 plots with > 95% pine were

used. Column ”ITD” specifies whether the original algorithm by Pitkänen or the algorithm

by Lähivaara et al. was used. The column ”Correction” specifies the type of stand density

estimator used, see Section 3.2.

using no corrections. Contrary to the full data, all of the correction methods422

produce positive ME values, indicating overestimation. The result of HT could423

be improved by using a slightly higher value of α.424

4.2. Distribution matching425

We present results of distribution matching relating to QMD, BA and L2
426

distances in three different cases: (1) in the modelling data using predicted427

values of random effects, (2) in the modelling data with added ALS or ITD428

covariates that try to explain the variation in the predicted values of random429

effects and leaving predicted values of random effects out (i.e. giving them430

their expected value 0), and (3) leave-one-out cross-validation (LOO), again431

with added covariates and no random effects, which are not available for the432

plot where the prediction is performed. The first case illustrates the potential433

of the model if the variation in the shape of the model curve from plot to plot434

could be estimated optimally, and tells mostly about model fit. The second case435
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shows the model performance when the optimal values of random effects can436

not be utilized (i.e., prediction), but tells still about model fit. The third case437

illustrates the model performance in a practical prediction situation.438

4.2.1. All plots439

When predicted random effects are used in distribution matching, progres-440

sively better error values are achieved when modifying the benchmark model441

(2D-ITD + Boolean + Polynomial) by changing the ITD algorithm, correction442

method and distribution matching model function, especially with regards to443

BA (Table 3, rows 1-4). The largest improvements are caused by changing the444

correction method from Boolean to HT, which is explained by the improved445

estimates of stand density (Table 2). 3D-ITD + HT + Richards produces the446

smallest RMSE for QMD and BA.447

When covariates are included in the models, and the resulting models are448

used without predicted random effects, all of the modified models still have lower449

RMSE of QMD than the benchmark but they do not differ from each other very450

much. The RMSE values for BA follow the same order as the stand density451

estimates used in calculating them. 3D-ITD + HT + Richards has clearly the452

highest ME of both QMD and BA in this case.453

Leave-one-out cross-validation results in 3D-ITD + Boolean + Polynomial454

having the lowest RMSE for QMD and BA, and 3D-ITD + HT + Richards455

having the highest RMSE for QMD and second highest for BA (Table 3, rows456

9-12). Although only the model that differs from the benchmark by different457

ITD achieves a slightly lower RMSE for QMD, all of the modified models achieve458

lower RMSE of BA than the benchmark in this case. It should be noted that due459

to problems in model convergence with the Richards’ curve when a certain plot460

was removed, an assumption of diagonal random-effect variance-covariance ma-461

trix D had to be made during leave-one-out cross-validation for the prediction462

in that plot.463

When predicted random effects are used, 3D-ITD + HT + Richards achieves464

the smallest mean and maximum L2 distances, as well as lowest variation in the465
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QMD BA

case model RMSE% ME% RMSE% ME%

fit, RE 2D-ITD + Boolean + Polynomial 1.4 -0.7 45.2 2.7

3D-ITD + Boolean + Polynomial 1.5 -0.8 24.4 2.1

3D-ITD + HT + Polynomial 1.2 1.0 17.1 2.0

3D-ITD + HT + Richards 0.7 0.5 17.0 0.9

fit, no RE 2D-ITD + Boolean + Polynomial 13.9 0.1 34.9 1.0

3D-ITD + Boolean + Polynomial 12.2 -1.3 26.3 1.6

3D-ITD + HT + Polynomial 12.7 0.5 25.6 3.0

3D-ITD + HT + Richards 13.3 5.4 23.6 11.0

LOO 2D-ITD + Boolean + Polynomial 14.7 0.2 34.9 1.0

3D-ITD + Boolean + Polynomial 14.5 -1.8 30.2 1.0

3D-ITD + HT + Polynomial 15.0 -0.1 30.2 2.2

3D-ITD + HT + Richards 19.0 7.3 33.6 17.0

Table 3: Normalized root mean square errors and means of errors for quadratic mean diameter

and basal area for several model fittings and predictions in the full 36 field plots. The column

”case” specifies if the results are calculated in the modeling data with the predicted values of

random effects (fit, RE), or if the random effects have been explained by covariates derived

from ALS or ITD (fit, no RE), or if the results come from leave-one-out cross-validation

(LOO).
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distances (Table 4, rows 1-4). These results combined with the performance466

of the model when predicting QMD indicate that the applied Richards’ model467

is sufficiently flexible and can well model the various forms of the plot-specific468

relationship between stem diameter and crown radius. When the predicted val-469

ues of random effects are explained by covariates, the means of L2 distances470

for 3D-ITD + HT + Richards and 3D-ITD + Boolean + Polynomial are the471

lowest and very close to each other (Table 4, rows 5-8). However, the larger472

standard deviation and maximum value of the former indicate very large errors473

in the distribution fitting for some plots and very small for others. In leave-one-474

out cross-validation, the mean, standard deviation and maximum value of L2
475

distances for 3D-ITD + HT + Richards are higher than for the other methods476

(Table 4, rows 9-12). 3D-ITD + Boolean + Polynomial has the best perfor-477

mance, producing lowest mean and maximum distance. Examples of the fitted478

cumulative distribution functions are shown in Fig. 3.479

There were differences in the selected covariates between the different meth-480

ods when the predicted values of random effects were replaced with covariates.481

For the benchmark, the 5th ITD height quantile was selected, whereas for the482

two methods with 3D-ITD and polynomial model curve the variance of ITD483

heights was selected. For the Richards’ curve, the covariate with highest abso-484

lute correlations for K and B was the 95th ALS quantile and for Q the 95th485

proportional density value. The leave-one-out cross-validation selected the same486

covariates as above for the benchmark, the 3D-ITD + Polynomial methods and487

B of Richards’ curve every time. Covariates for K and Q were mostly as above,488

but in some cases a few different covariates had the highest absolute correlations.489

4.2.2. Pure pine plots490

For pure pine plots, the results with the mixed-effects models without any491

added covariates are similar to each other for all models when it comes to QMD,492

although RMSE of 3D-ITD + HT + Polynomial is surprisingly high compared493

to the other methods (Table 5, rows 1-4). 3D-ITD + HT + Richards attains494

the lowest RMSE for BA, but also exhibits high ME, as do 3D-ITD + Boolean495
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case model mean sd min max

fit, RE 2D-ITD + Boolean + Polynomial 0.30 0.14 0.11 0.61

3D-ITD + Boolean + Polynomial 0.29 0.14 0.10 0.61

3D-ITD + HT + Polynomial 0.31 0.11 0.17 0.55

3D-ITD + HT + Richards 0.21 0.07 0.11 0.38

fit, no RE 2D-ITD + Boolean + Polynomial 0.60 0.28 0.16 1.31

3D-ITD + Boolean + Polynomial 0.56 0.21 0.16 1.18

3D-ITD + HT + Polynomial 0.58 0.20 0.29 1.22

3D-ITD + HT + Richards 0.53 0.25 0.20 1.53

LOO 2D-ITD + Boolean + Polynomial 0.62 0.30 0.16 1.37

3D-ITD + Boolean + Polynomial 0.59 0.24 0.16 1.24

3D-ITD + HT + Polynomial 0.62 0.23 0.30 1.28

3D-ITD + HT + Richards 0.68 0.35 0.22 1.64

Table 4: Mean, standard deviation, minimum and maximum of L2 distances between true

and estimated cumulative distribution functions in the full 36 field plots. The column ”case”

specifies if the results are calculated in the modeling data with the predicted values of random

effects (fit, RE), or if the random effects have been explained by covariates derived from ALS

or ITD (fit, no RE), or if the results come from leave-one-out cross-validation (LOO).
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Figure 3: Examples of fitted cumulative distribution functions when all of the 36 plots have

been used. At left, the plot where 3D-ITD + HT + Richards achieves the best fit in leave-

one-out cross-validation, and at right, the worst fit. Goodness-of-fit measured through L2

distance. Top panels: fits with the predicted random effects. Middle panels: fits with the

random effects explained by covariates derived from ALS and ITD. Bottom panels: the leave-

one-out cross-validation fits.
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QMD BA

case model RMSE% ME% RMSE% ME%

fit, RE 2D-ITD + Boolean + Polynomial 0.6 -0.4 35.0 1.8

3D-ITD + Boolean + Polynomial 0.6 -0.4 20.8 11.8

3D-ITD + HT + Polynomial 1.2 1.0 15.7 10.2

3D-ITD + HT + Richards 0.7 0.6 14.9 9.3

fit, no RE 2D-ITD + Boolean + Polynomial 11.7 0.2 14.2 -1.7

3D-ITD + Boolean + Polynomial 4.6 -0.6 23.7 12.3

3D-ITD + HT + Polynomial 5.4 0.8 22.1 11.7

3D-ITD + HT + Richards 4.1 -0.2 12.1 7.1

LOO 2D-ITD + Boolean + Polynomial 15.6 0.3 15.0 -1.6

3D-ITD + Boolean + Polynomial 4.9 -0.5 24.0 12.5

3D-ITD + HT + Polynomial 9.8 2.1 26.2 14.1

3D-ITD + HT + Richards 5.4 -0.5 13.4 6.1

Table 5: Normalized root mean square errors and means of errors for quadratic mean diameter

and basal area for several model fittings and predictions in the 18 plots with > 95% pine. The

column ”case” specifies if the results are calculated in the modeling data with the predicted

values of random effects (fit, RE), or if the random effects have been explained by covariates

derived from ALS or ITD (fit, no RE), or if the results come from leave-one-out cross-validation

(LOO).

+ Polynomial and 3D-ITD + HT + Polynomial, too. The explanation may be496

the large mean error of stand density among pure pine plots (Table 2).497

When adding covariates to the models, 3D-ITD + HT + Richards attains498

the lowest values for RMSE of QMD and BA, although the benchmark has the499

best ME values (Table 5, rows 5-8). In leave-one-out cross-validation 3D-ITD500

+ HT + Richards has the second lowest RMSE of QMD, 3D-ITD + Boolean501

+ Polynomial having the lowest, and the lowest RMSE of BA (Table 5, rows502

9-12). In this case all of the modified models produce RMSE values of QMD503

lower than the benchmark, but only the model with the Richards’ curve achieves504

lower RMSE of BA than the benchmark.505

When the predicted values of random effects are used, 3D-ITD + HT +506
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case model mean sd min max

fit, RE 2D-ITD + Boolean + Polynomial 0.27 0.15 0.12 0.61

3D-ITD + Boolean + Polynomial 0.26 0.14 0.10 0.61

3D-ITD + HT + Polynomial 0.32 0.12 0.18 0.51

3D-ITD + HT + Richards 0.20 0.06 0.11 0.34

fit, no RE 2D-ITD + Boolean + Polynomial 0.52 0.24 0.21 1.10

3D-ITD + Boolean + Polynomial 0.38 0.17 0.14 0.74

3D-ITD + HT + Polynomial 0.44 0.16 0.25 0.77

3D-ITD + HT + Richards 0.37 0.13 0.21 0.61

LOO 2D-ITD + Boolean + Polynomial 0.62 0.32 0.23 1.22

3D-ITD + Boolean + Polynomial 0.39 0.18 0.15 0.76

3D-ITD + HT + Polynomial 0.50 0.17 0.26 0.85

3D-ITD + HT + Richards 0.42 0.17 0.24 0.80

Table 6: Mean, standard deviation, minimum and maximum of L2 distances between true

and estimated cumulative distribution functions in the 18 plots with > 95% pine.The column

”case” specifies if the results are calculated in the modeling data with the predicted values of

random effects (fit, RE), or if the random effects have been explained by covariates derived

from ALS or ITD (fit, no RE), or if the results come from leave-one-out cross-validation

(LOO).

Richards exhibits the lowest mean, standard deviation and maximum value of507

L2 distances (Table 6, rows 1-4). When covariates are added to the models508

and the predicted values of random effects are not used, the situation is the509

same (Table 6, rows 5-8). In leave-one-out cross-validation, all of the modified510

models achieve better statistics for L2 distances than the benchmark, 3D-ITD511

+ Boolean + Polynomial achieving best values (Table 6, rows 9-12).512

The chosen covariates for the benchmark and the two 3D-ITD + Polynomial513

models were the same as with the full data, the 5th ITD height quantile and514

the variance of ITD heights, respectively. For 3D-ITD + HT + Richards, the515

best covariates for K, Q and B were variance of the ITD heights, the 95th516

proportional density and 5th proportional density, respectively. The leave-one-517
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out cross-validation chose the same covariates as above for the benchmark and518

3D-ITD + Boolean + Polynomial every time. The other methods had more519

variation in the chosen covariates.520

5. Discussion521

We have presented a methodology of matching crown radii distributions522

extracted from airborne laser scanning data through individual tree detection523

to distributions of diameters at breast height. The methodology is based on524

distribution matching, as described in Vauhkonen and Mehtätalo (2015). Unlike525

previously, no distributional assumptions on tree diameters or crown radii were526

made, and a new nonlinear monotonic transformation was used. A new ITD527

algorithm of Lähivaara et al. (2014) and correction method of Kansanen et al.528

(2016) were used.529

The methodological choices adopted here generally improved the distribu-530

tion matching compared to the benchmark (2D-ITD + Boolean + Polynomial;531

Vauhkonen and Mehtätalo, 2015). Reduced RMSEs for QMD and BA were532

achieved in almost all of the tested cases with a modified model. The bench-533

mark did, however, achieve ME values closer to zero than the other models in534

4 out of the 6 test cases for both QMD and BA. High ME values were obtained535

especially when using the Richards’ curve with random effects explained by ALS536

covariates, whereas the polynomial matching function always yielded either a537

better or not markedly worse result than the benchmark method.538

Changing the 2D-ITD algorithm to 3D-ITD leads to clear improvements539

to the performance. Even if the correction and matching methods were not540

changed, i.e. using 3D-ITD + Boolean + Polynomial, the lowest RMSE of541

QMDwas obtained in 3 cases, two of which are the leave-one-out cross-validation542

experiments, and lowest RMSE of BA in the leave-one-out cross-validation ex-543

periment with the full data. The method also produces lowest mean of L2
544

distances in both leave-one-out cases, indicating best performance in predicting545

DBH distributions, on average.546
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Changing the correction method based on Boolean model to the HT cor-547

responds to replacing the Weibull distributions of crown radii and DBH with548

nonparametric distributions and the correction method of Mehtätalo (2006) with549

the Horvitz-Thompson type correction of Kansanen et al. (2016). The benefit of550

this choice can be assessed by comparing the performance of 3D-ITD + Boolean551

+ Polynomial with 3D-ITD + HT + Polynomial. In most cases, the change re-552

sults in lower RMSE of BA. Exceptions are the cross-validation experiments.553

With full data the errors between the methods are very close, but in the pine554

plots, 3D-ITD + HT + Polynomial almost doubled the RMSE of 3D-ITD +555

Boolean + Polynomial in the cross-validation experiment.556

Distribution matching using the predicted random effects indicates that the557

Richards’ function is able to describe the variability in the transformations from558

crown radius to tree diameter. However, this variability is not well explained by559

the covariates. Especially, in the cross-validation in all data the other models560

beat the most modified method 3D-ITD + HT + Richards. The simpler mod-561

els are more robust, signified by the same covariates being chosen every time,562

whereas the Richards’ curve is more sensitive, and the chosen covariates do not563

accurately represent the transformation in the target plot. The Richards’ model564

might also be overfitted in this data and a larger data set would produce better565

results. However, the data of all 36 plots is quite heterogeneous, and the perfor-566

mance of 3D-ITD + HT + Richards was the best when the cross-validation was567

restricted to the more homogeneous pure pine plot data. Better results could be568

explained by smaller variability in stand density, quadratic mean diameter and569

basal area (see Table 1), change in the accuracy of the stand density estimators570

(see Table 2), or the more homogeneous forest structure.571

The higher ME% values for BA in the pure pine plot data mostly result572

from higher ME% values for stand density in this data. Especially, most of the573

pure pine plots have regular spatial pattern, whereas the whole data includes574

more random and clustered plots (Fig. 4). The lower RMSE values of the stand575

density estimator related to the new methodology also result in good RMSE576

values for BA. Curiously, although the benchmark model has the highest RMSE577
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Figure 4: The estimation errors of quadratic mean diameter and basal area for 3D-ITD +

HT + Richards as functions of the Clark-Evans aggregation index. Top panels: fits with the

predicted random effects. Middle panels: fits with the random effects explained by covariates

derived from ALS and ITD. Bottom panels: the leave-one-out cross-validation fits. Pure pine

plots represented by +.
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for QMD and the stand density estimator connected to it has the highest RMSE,578

it attains RMSE of BA very close to that of 3D-ITD + HT + Richards. The579

errors somehow cancel each other out.580

Fig. 4 indicates that the underlying spatial distribution of trees, measured581

through the Clark-Evans index, does not have an impact on the estimation of582

QMD when 3D-ITD + HT + Richards is used with the predicted random effects.583

The estimation errors of BA with the same model do exhibit more underesti-584

mation in the clustered plots and overestimation in the regular plots, which585

can be attributed to the similar behaviour of the stand density estimator (see586

Kansanen et al., 2016). However, when the random effects have been explained587

with ALS and ITD covariates QMD is underestimated in the clustered plots and588

overestimated in the regular plots. This combined with the opposite nature of589

the stand density estimator might explain why the estimation errors of BA are590

not impacted by the value of Clark-Evans index.591

In several cases, the covariates based on ITD detected tree heights were592

chosen as the best covariates in all models, especially the benchmark methods.593

It would seem that utilizing the height information is useful for distribution594

matching. Maltamo et al. (2018) tested distribution matching from tree height595

to diameter distribution in a pulpwood plantation, where tree planting pattern596

was known and no compensation for undetected trees was needed. However,597

for semi-natural forests that method would require a correction method for the598

tree height distribution based on the ITD detected tree heights. Thus, using599

the corrected tree height distribution to predict the stem diameter distribution600

instead of the crown radii distribution would be the next step, and possibly601

more fruitful, as there are several models connecting the tree heights to stem602

diameters.603

Compared to earlier studies (Vauhkonen and Mehtätalo, 2015; Maltamo et al.,604

2018), this study produced important findings with respect to applying distribu-605

tion matching in practice. According to our results, the method does not need606

to be restricted to forests with known spatial pattern or species. For example,607

applying the method only in forests that met all the assumptions stated by608
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Vauhkonen and Mehtätalo (2015) would have narrowed its application down to609

a small number of forests. After the modifications introduced above, the method610

was not specifically sensitive to the properties of the target forests, for which611

reason it can be potentially applied in a wall-to-wall manner for entire inventory612

areas similar to other methods. As discussed earlier (Vauhkonen and Mehtätalo,613

2015; Maltamo et al., 2018), distribution matching can complement both ITD614

and area-based methods in diameter distribution predictions: especially, due615

to employing ALS-observed distributions as a priori information, the further616

matching with the diameter distribution can potentially be based on a lesser617

number of field measurements than with alternative methods. On the other618

hand, some data are needed to calibrate the ITD method and fit the matching619

function. The requirements for these data should be more carefully studied in620

the future, and for now, the results presented above apply to cases where local621

training data are available from forest plots that are highly similar to target622

forests of predictions.623

6. Conclusions624

It is possible to improve the results of diameter distribution estimation625

methodology of Vauhkonen and Mehtätalo (2015) while abandoning distribu-626

tional assumptions. Especially, the use of improved ITD algorithm (Lähivaara et al.,627

2014), nonparametric distributions, and Horvitz-Thompson type correction (Kansanen et al.,628

2016) improve the results. Nonlinear transformation via a Richards’ curve is629

flexible enough for diameter distribution estimation due to the good fitting630

results when the random effects are included in the model. It is useful for631

prediction when the population from which the field plots have been sampled is632

homogeneous. In this case the random effects can be modeled by using statistics633

derived from ALS return heights and ITD as covariates relatively well. In the634

case where the field plots are not homogeneous, a simpler quadratic transforma-635

tion can still produce good results when compared to the benchmark method.636

To avoid bias in a real prediction situation, where also random effects need to be637
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modeled, the safest choice is to use the polynomial transformation with 3D-ITD638

and either of the tested correction types for the undetected trees.639

The newly formulated model with the Richards’ curve provided the best pre-640

dictions in the situation where the random effects of the Richards’ model were641

known. This result shows that the model we formulated describes the modeled642

process of non-detection and crown diameter – tree-diameter relationship well.643

Unfortunately, the variation in the crown diameter – stem diameter relationship644

was not very well explained by the ALS and ITD covariates in the rather hetero-645

geneous full data set. This may, however, partially result from overfitting as the646

number of plots is rather limited compared to the number of model parameters,647

and the best model varied quite a lot among the cross-validation replicates. The648

results were, however, promising when the analysis was restricted to pure pine649

plots. A larger dataset should be used to further validate the method in the650

future.651
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Appendix A657

The cumulative distribution function of the Weibull distribution is658

F (r) =





1− exp

[
−
(

r
γ

)k
]
, r ≥ 0

0, r < 0

,

where γ is the scale and k the shape parameter. In the following, let us

assume that these are the parameters that have been estimated for the distri-

bution of crown radii. Let us write the estimated quadratic transformation for
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simplicity as g(r) = β1r+β2r
2. To formulate FDBH(d), one has to consider the

probability P{DBH ≤ d} = P{g(R) ≤ d} and solve the inequality g(r) ≤ d to

produce probabilities regarding R, hence performing a change of variable in the

cumulative distribution function of R. This inequality has differing solutions

dependent on the values of β1 and β2. Let us write

D− =
−β1 −

√
β2
1 + 4β2d

2β2γ

and

D+ =
−β1 +

√
β2
1 + 4β2d

2β2γ
.

If β1 > 0 and β2 = 0,659

FDBH(d) = 1− exp

[
−

(
d

γβ1

)k
]
.

If β1 ≥ 0 and β2 > 0,660

FDBH(d) = 1− exp
[
−Dk

+

]
.

If β1 < 0 and β2 > 0,661

FDBH(d) =





0, d ≤ −
β2

1

4β2

exp
[
−Dk

−

]
− exp

[
−Dk

+

]
, −

β2

1

4β2

< d ≤ 0

1− exp
[
−Dk

+

]
, d > 0

.

If β1 > 0 and β2 < 0,662

FDBH(d) =





exp
[
−Dk

−

]
, d ≤ 0

1 + exp
[
−Dk

−

]
− exp

[
−Dk

+

]
, 0 < d < −

β2

1

4β2

1, d ≥ −
β2

1

4β2

.
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