1,115 research outputs found

    Optical Music Recognition with Convolutional Sequence-to-Sequence Models

    Get PDF
    Optical Music Recognition (OMR) is an important technology within Music Information Retrieval. Deep learning models show promising results on OMR tasks, but symbol-level annotated data sets of sufficient size to train such models are not available and difficult to develop. We present a deep learning architecture called a Convolutional Sequence-to-Sequence model to both move towards an end-to-end trainable OMR pipeline, and apply a learning process that trains on full sentences of sheet music instead of individually labeled symbols. The model is trained and evaluated on a human generated data set, with various image augmentations based on real-world scenarios. This data set is the first publicly available set in OMR research with sufficient size to train and evaluate deep learning models. With the introduced augmentations a pitch recognition accuracy of 81% and a duration accuracy of 94% is achieved, resulting in a note level accuracy of 80%. Finally, the model is compared to commercially available methods, showing a large improvements over these applications.Comment: ISMIR 201

    Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation

    Get PDF
    In this paper, we present a hybrid approach using hidden Markov models (HMM) and artificial neural networks to deal with the task of handwritten Music Recognition in mensural notation. Previous works have shown that the task can be addressed with Gaussian density HMMs that can be trained and used in an end-to-end manner, that is, without prior segmentation of the symbols. However, the results achieved using that approach are not sufficiently accurate to be useful in practice. In this work, we hybridize HMMs with deep multilayer perceptrons (MLPs), which lead to remarkable improvements in optical symbol modeling. Moreover, this hybrid architecture maintains important advantages of HMMs such as the ability to properly model variable-length symbol sequences through segmentation-free training, and the simplicity and robustness of combining optical models with N-gram language models, which provide statistical a priori information about regularities in musical symbol concatenation observed in the training data. The results obtained with the proposed hybrid MLP-HMM approach outperform previous works by a wide margin, achieving symbol-level error rates around 26%, as compared with about 40% reported in previous works

    Handwritten Music Recognition for Mensural notation with convolutional recurrent neural networks

    Get PDF
    [EN] Optical Music Recognition is the technology that allows computers to read music notation, which is also referred to as Handwritten Music Recognition when it is applied over handwritten notation. This technology aims at efficiently transcribing written music into a representation that can be further processed by a computer. This is of special interest to transcribe the large amount of music written in early notations, such as the Mensural notation, since they represent largely unexplored heritage for the musicological community. Traditional approaches to this problem are based on complex strategies with many explicit rules that only work for one particular type of manuscript. Machine learning approaches offer the promise of generalizable solutions, based on learning from just labelled examples. However, previous research has not achieved sufficiently acceptable results for handwritten Mensural notation. In this work we propose the use of deep neural networks, namely convolutional recurrent neural networks, which have proved effective in other similar domains such as handwritten text recognition. Our experimental results achieve, for the first time, recognition results that can be considered effective for transcribing handwritten Mensural notation, decreasing the symbol-level error rate of previous approaches from 25.7% to 7.0%. (C) 2019 Elsevier B.V. All rights reserved.First author thanks the support from the Spanish Ministry "HISPAMUS" project (TIN2017-86576-R), partially funded by the EU. The other authors were supported by the European Union's H2020 grant "Recognition and Enrichment of Archival Documents" (Ref. 674943), by the BBVA Foundacion through the 2017-2018 and 2018-2019 Digital Humanities research grants "Carabela" and "HistWeather - Dos Siglos de Datos Cilmaticos", and by EU JPICH project "HOME - History Of Medieval Europe"(Spanish PEICTI Ref. PCI2018-093122).Calvo-Zaragoza, J.; Toselli, AH.; Vidal, E. (2019). Handwritten Music Recognition for Mensural notation with convolutional recurrent neural networks. Pattern Recognition Letters. 128:115-121. https://doi.org/10.1016/j.patrec.2019.08.021S11512112

    Exploiting the Two-Dimensional Nature of Agnostic Music Notation for Neural Optical Music Recognition

    Get PDF
    State-of-the-art Optical Music Recognition (OMR) techniques follow an end-to-end or holistic approach, i.e., a sole stage for completely processing a single-staff section image and for retrieving the symbols that appear therein. Such recognition systems are characterized by not requiring an exact alignment between each staff and their corresponding labels, hence facilitating the creation and retrieval of labeled corpora. Most commonly, these approaches consider an agnostic music representation, which characterizes music symbols by their shape and height (vertical position in the staff). However, this double nature is ignored since, in the learning process, these two features are treated as a single symbol. This work aims to exploit this trademark that differentiates music notation from other similar domains, such as text, by introducing a novel end-to-end approach to solve the OMR task at a staff-line level. We consider two Convolutional Recurrent Neural Network (CRNN) schemes trained to simultaneously extract the shape and height information and to propose different policies for eventually merging them at the actual neural level. The results obtained for two corpora of monophonic early music manuscripts prove that our proposal significantly decreases the recognition error in figures ranging between 14.4% and 25.6% in the best-case scenarios when compared to the baseline considered.This research work was partially funded by the University of Alicante through project GRE19-04, by the “Programa I+D+i de la Generalitat Valenciana” through grant APOSTD/2020/256, and by the Spanish Ministerio de Universidades through grant FPU19/04957

    End-to-End Neural Optical Music Recognition of Monophonic Scores

    Get PDF
    [EN] Optical Music Recognition is a field of research that investigates how to computationally decode music notation from images. Despite the efforts made so far, there are hardly any complete solutions to the problem. In this work, we study the use of neural networks that work in an end-to-end manner. This is achieved by using a neural model that combines the capabilities of convolutional neural networks, which work on the input image, and recurrent neural networks, which deal with the sequential nature of the problem. Thanks to the use of the the so-called Connectionist Temporal Classification loss function, these models can be directly trained from input images accompanied by their corresponding transcripts into music symbol sequences. We also present the Printed Images of Music Staves (PrIMuS) dataset, containing more than 80,000 monodic single-staff real scores in common western notation, that is used to train and evaluate the neural approach. In our experiments, it is demonstrated that this formulation can be carried out successfully. Additionally, we study several considerations about the codification of the output musical sequences, the convergence and scalability of the neural models, as well as the ability of this approach to locate symbols in the input score.This work was supported by the Social Sciences and Humanities Research Council of Canada, and the Spanish Ministerio de Economia y Competitividad through Project HISPAMUS Ref. No. TIN2017-86576-R (supported by UE FEDER funds).Calvo-Zaragoza, J.; Rizo, D. (2018). End-to-End Neural Optical Music Recognition of Monophonic Scores. Applied Sciences. 8(4). https://doi.org/10.3390/app8040606S8

    Optical Music Recognition: State of the Art and Major Challenges

    Get PDF
    Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research
    corecore