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Abstract In this paper we present a hybrid ap-

proach using Hidden Markov Models (HMM) and

Artificial Neural Networks to deal with the task of

Handwritten Music Recognition in Mensural nota-

tion. Previous works have shown that the task can

be addressed with Gaussian density HMMs that can

be trained and used in an end-to-end manner; that

is, without prior segmentation of the symbols. How-

ever, the results achieved using that approach are

not sufficiently accurate to be useful in practice. In

this work we hybridize HMMs with deep Multi-Layer

Perceptrons (MLP), which lead to remarkable im-

provements in optical symbol modeling. Moreover,

this hybrid architecture maintains important advan-

tages of HMMs such as the ability of properly mod-

eling variable-length symbol sequences through seg-

mentation-free training, and the simplicity and ro-

bustness of combining optical models with N -gram

language models, which provide statistical a priori

information about regularities in musical symbol con-

catenation observed in the training data. The results

obtained with the proposed hybrid MLP-HMM ap-

proach outperform previous works by a wide mar-

gin, achieving symbol-level error rates around 26%,

as compared with about 40% reported in previous

works.
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1 Introduction

The preservation of the musical heritage over the

centuries makes it possible to go deeper into the

study of certain artistic and cultural paradigms. Most

of this heritage is stored in cathedrals, archives and

music libraries [11]. In addition to issues related to

the ownership of the sources, this storage allows the

physical preservation of the sources over time; in

turn, it also severely limits the access for study and

analysis. To improve this situation, significant efforts

are being made to digitize relevant music document

collections [15]. The resulting digital copies can then

be easily accessed and studied without compromis-
ing the integrity of the original sources.

Nevertheless, digitization is not enough to exploit

the important potential of this heritage. To make the

most out of it, the music content itself must be tran-

scribed into a structured format that can be easily

processed by a computer. This would open possibili-

ties of great interest for the musicological community

such as content-based search and digital editing, as

well as large-scale musicological analysis by means

of computational tools. Of course, this transcription

process can be done manually, but the cost of this op-

tion is highly prohibitive given the huge size of the

collections of interest. In this context, systems for

automatic transcription of music manuscripts would

clearly constitute very valuable tools [1].

This kind of systems — usually referred as to

Optical Music Recognition (OMR), or Handwritten

Music Recognition (HMR) when working on hand-

written scores — import the image of a musical score

and are expected to export its content to symbolic

formats such as MusicXML or MEI, to name a few.
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OMR/HMR systems, regardless of the approach used

to achieve their objective, can be very varied due to

the differences over time amongst musical notations,

document layouts, or printing mechanisms. In this

work, we focus on the development of HMR systems

for Mensural music, one of the most commonly used

notations during Renaissance. At present, there are

millions of manuscripts of this type that remain to

be transcribed. Obviously, each manuscript collec-

tion may have its own particularities (such as the

handwriting style), but the approach developed in

this work provides a common formulation to all of

them.

Traditionally, HMR systems have followed a two-

stage work-flow: segmentation, in which the musical

symbols are isolated in the image; and recognition, in

which a meaningful label is assigned to each symbol.

In contrast, here we adopt a holistic approach, where

both stages are integrated and performed simultane-

ously. To this end, we follow the work reported in [7,

8] and resort to the use of Hidden Markov Models

(HMM), which are very convenient to model sequen-

tial data, such as the sequences of music primitives

(notes) in music notation. However, the optimization

strategies of these models pursue a generative objec-

tive and, therefore, their potential for discriminative

recognition is limited to some extent.

In this work we extend the use of HMMs for

HMR by studying a hybrid approach where Arti-

ficial Neural Networks are trained to discriminate

hidden HMM states in the decoding stage. As will

be reported, this approach leads to remarkable opti-

cal symbol modeling improvements, while maintain-

ing important advantages of HMMs. In particular,

it enables proper modeling of variable-length sym-

bol sequences, segmentation-free training, and sim-

ple and robust combination of optical models with

N -gram language models. These language models,

which are also trained from ground-truth data, pro-

vide statistical a priori information about expected

regularities in musical symbol concatenation, which

further help improving recognition accuracy.

These contributions lead us to present the first

HMR system for Mensural notation that is trained

in an end-to-end manner — without any type of in-

formation about the location of the elements in the

input staves — and achieves results which are suffi-

ciently precise to be useful in practice. More specifi-

cally, we improve the performance of previous works

from about 40% symbol error rate to 26%, under

identical experimental conditions.

The rest of the article is structured as follows:

Section 2 presents the current state of the art through

a review of previous works; Section 3 provides in-

formation needed in the remaining sections, such as

an introduction to Mensural notation, the corpus

considered and the image pre-processing adopted;

Section 4 describes the HMM framework for HMR

and its subsequent hybridization with Neural Net-

works, as well as the use of statistic language models;

Section 5 reports the experimental results obtained,

along with analysis and discussion; finally, Section 6

concludes this work, pointing out promising lines of

future research.

2 Background

Optical recognition of music notation is a challenge

for which it is often claimed that there exist no suc-

cessful approaches. This is a rather general state-

ment because different levels of difficulty are found

depending on factors such as the notation type (mod-

ern Western, Mensural, Neumatic, etc.) or the en-

graving mechanism (handwritten or printed).

This task has been commonly addressed through

a series of independent stages that work on differ-

ent parts of the problem [25]. From a morphological

point of view, music notation hardly has what we

might consider low-level entities, like phonemes in

speech or characters in text, but rather isolated mu-

sic symbols. This may explain why most previous

approaches consider by default that symbol segmen-

tation should be an initial step. Correspondingly,

the majority of the research carried out so far has

focused on a staff-line removal stage [12] (because

staff lines are usually considered an important ob-

stacle for music symbol segmentation), followed by

symbol segmentation, and classification of isolated

musical symbols [18]. However, symbol segmenta-

tion is often difficult, especially in the case of im-

ages of handwritten music. It becomes particularly

difficult to distinguish between relevant small ele-

ments from noise and other artifacts caused by doc-

ument preservation problems and possible lack of

image quality. In addition, some handwritten music

symbols are divided into smaller primitives that in

the segmentation-based approach are detected sep-

arately, and so it is necessary to post-process the

results of symbol recognition to assemble the ac-

tual music notation. Clearly, the heuristics under-

lying these solutions for a particular type of docu-

ments hardly generalize to other, even similar, mu-
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sical documents, and often result in diverse kinds of

failures [25].

Not only symbol segmentation is troublesome; it

is even more problematic to achieve robust and ac-

curate recognition results from the segmented im-

age patches. In such a case, considering the symbols

isolatedly makes it difficult or impossible to benefit

from any contextual (“linguistic”) information pro-

vided by the surrounding symbols. Few works have

dealt so far with the whole recognition task, except

for solutions to complete recognition of simple types

of music notation, namely square notation [24] or

printed Mensural notation [6].

In this work, we are interested in addressing the

HMR problem for Mensural notation, mainly used in

early handwritten scores. As introduced by the work

of Pugin [22], and extended in [7,8] for handwritten

scores, an approach based on Hidden Markov Models

(HMM) is certainly interesting in this context. HMM

have traditionally been used in tasks with a similar

formulation to HMR like text or speech recognition

[20], and they continue to be a reference in many

disparate duties and scenarios [27,30].

In our case, the use of HMM allows context-aware

recognition of full staff images, as well as a holistic

training without depending on any kind of previous

symbol segmentation. It also avoids having to rely on

aforementioned complex multi-stage pipelines, with

many hand-crafted heuristics, which are likely to

fail to generalize adequately. Furthermore, produc-

ing ground-truth for such holistic approaches is much

less demanding, thereby significantly reducing the

cost of dealing with new manuscript collections.

The work described in [7,8] show the feasibility

of these ideas for HMR. However, results reported

in these papers were still not sufficiently good to

be useful in practice. Here we go further in this di-

rection by significantly improving optical modeling

and training. To this end, we introduce a hybrid ap-

proach based on HMM and Artificial Neural Net-

works (ANN). HMM naturally model the sequential-

ity of music notation and the holistic nature of the

overall problem, while the ANN provides discrimi-

native modeling and training which is important to

effectively deal with the symbol recognition problem.

The weakness of HMM as regards discrimina-

tive tasks has been widely discussed in the litera-

ture, and that is why it can be found works that

hybridize HMM with other schemes [2,3]. In our

case we consider the use of Multi-Layer Perceptrons

(MLP), whose probabilistic interpretation fits per-

fectly well when combining it with HMM. A simi-

lar idea was successfully used for Handwritten Text

Recognition [10], but its (promising) use for HMR

remains unexplored so far.

3 Preliminaries

Basic concepts and elements of Mensural notation

are outlined in this section, followed by a description

of the dataset used in this work.

3.1 Mensural Notation

The work presented here deals with manuscripts writ-

ten in Mensural notation, specifically with sources

under the Pan-Hispanic framework of the 17th cen-

tury. Although this type of Mensural notation is gen-

erally considered as an appendix of the European

Mensural notation, the Pan-Hispanic context of that

time presented a particular development of the mu-

sical activity that was almost totally under the con-

trol of the ecclesiastical state. This fostered, among

other things, the massive use of handwritten copies

instead of printed ones. These copies, that are his-

torically considered of greater relevance, arise the

necessity of developing successful HMR systems.

This context also caused the development of par-

ticular graphic codes that favored the live readability

of music. A set of representative symbols from this

notation is depicted in Table 1. Among the partic-

ularities mentioned above, it should be noted that

the color of the note-heads does not change the du-

ration of the sound, as it does in modern notations,

but is used to indicate certain particularities of the

rhythm. As in almost any music notation, the mean-

ing of most musical symbols relies on two geometrical

informations: shape and height (vertical position of

the symbol in the staff), which typically indicate the

duration and tone, respectively. In the case of Men-

sural notation, this duality is more general because

even symbols that do not denote any sound (such as

rests) may also appear at different heights, which is

useful for reading the music when many rests appear

consecutively.

Our work aims at producing transcripts that are

useful, amongst other applications, for preservation

purposes. Consequently, we are mainly interested in

diplomatic transcription, which contain all the de-

tails needed to convey information about how the

notation was written in the source. Thus, our sys-

tem is designed to always recognize both the spe-

cific shape and height of each symbol, even in the
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Group Symbol

Note
Semibrevis Minima Col. Minima Semiminima

Rest
Longa Brevis Semibrevis Semiminima

Clef
C Clef G Clef F Clef (I) F Clef (II)

Time
Major Minor Common Cut

Others
Flat Sharp Dot Custos

Table 1: Representative elements of Mensural notation. These elementary symbols are depicted without

considering their height or vertical position on the staff.

cases where the musical meaning is equivalent. For

example, recognizing a minima as a coloured min-

ima or failing to detect the position of a rest will

be considered errors, although they do not modify

the meaning of the music itself. These issues will be

taken into account in the evaluation metrics adopted

in our experiments.

3.2 Corpus

As a case of study, we consider the Capitan dataset

presented in [8]. It contains a complete 96−page ma-

nuscript of the 17th century corresponding to a missa

(sacred music), for which the only ground-truth avail-

able consists of diplomatic transcripts, without any

symbol-to-image alignments or any other symbol seg-

mentation information. For this corpus, a recogni-

tion baseline was defined in [8], which allows us to

easily evaluate and compare the improvements at-

tained by the proposed approach.

Each page contains 6 staves (music pentagram

lines), some of which may be empty of content. The

segmentation of page image into staff-section images

is straightforward and methods such as that pro-

posed in [4] can be generally used for almost per-

fect results. This simple stave segmentation step was

carried out once for all pages when the dataset was

created [8].

3.2.1 Image pre-processing

Staff-section images need to be pre-processed so that

they are presented to the system in a convenient way.

A complete example of our pre-processing pipeline is

shown in Fig. 1. It encompasses the following succes-

sive steps for the staff section depicted in Fig. 1a:

1. Skew correction (Fig 1b): the image skew is com-

puted and corrected so that the staff remains

aligned with the horizontal axis. We use the staff-

line detection algorithm proposed in [9] which

capitalizes on the excellent reference provided by

the staff lines themselves.

2. Staff location (Fig 1c): to ensure that the staff

section to be processed is well framed, we force

the central line of the staff to be in the center of

the image. In addition, the image is cropped so

that it has a fixed height of 1.5 times the distance

between the first and last line of the staff.

3. Height normalization: the recognition methods to

be applied require that each image column (of-

ten referred to as “frame”) be of a fixed height.

Therefore, the image is rescaled to a fixed height,

without changing the aspect ratio.

4. Feature extraction (Fig 1d): finally, the image

is represented as a set of meaningful features.

With the hope of emphasizing the information

needed for the HMR task, each frame is repre-

sented in three different ways: mean gray-scale

values, horizontal gradient, and vertical gradient.

This feature extraction method has been success-

fully used in similar tasks such as Handwritten

Text Recognition [26].

As a result, each staff sample is finally repre-

sented as a variable-length sequence x =
→
x1,

→
x2, . . . ,

→
xT

of d-dimensional feature vectors, where T is (propor-
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tional to) the staff image width. The actual value of

d is adjusted experimentally.

(a) Original staff sample.

(b) Skew correction.

(c) Staff location and normalization.

(d) Feature extraction.

Fig. 1: Pre-processing steps (b-c) applied to convert

an original staff inage (a) into a feature vector se-

quences (d), represented also as an “image”.

Note that neither the staff section separation nor

this pre-processing removes the accompanying text

(lyrics), which is just considered “noise” for music

notation recognition.

4 Framework

Let a staff-section image be represented as a se-

quence x of feature vectors and let s = s1 . . . sm,

sj ∈ Σ, 1 ≤ i ≤ m, be a sequence of musical sym-

bols. We look for a most likely sequence of musical

symbols ŝ according to:

ŝ = arg max
s

P (s | x) = arg max
s

p(x | s)P (s) (1)

where the factor 1/p(x) has been ignored because it

is equal for all possible sequences, s.

Staff-section image ---------Transcript--

HMM training

Image preprocessing

x

HMM

Framewise
forced alignment

MLP training

MLP

jx Q

N-gram
estimation

LM

s

Fig. 2: An overview of the pipeline needed for the

learning stage in the proposed framework for HMR.

In a basic formulation, the conditional density

p(x | s) is typically approximated by means of Gau-

sian mixture HMMs. However, here HMMs are com-

bined with a Multi-Layer Perceptron (MLP), which

allows better discriminative behavior without los-

ing the ability of HMMs to conveniently deal with

variable-length sequences in a holistic way. This also

allows the prior P (s) to be properly formulated along

with the MLP-HMMs, as in classical HMMs. In par-

ticular, the use of N -grams is considered, which in-

creases the recognition accuracy thanks to a priori

information about symbol concatenation likelihoods.

For the sake of clarity, the whole workflow for

using HMM with discriminative training based on

MLP is illustrated in Fig. 2 and Fig.3, for the learn-

ing and the decoding stages, respectively. The fol-

lowing subsections delve into the steps necessary to

develop such framework.
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Image preprocessing

Framewise classification

Hybridization with HMM

Decoding

MLP

HMM

LM
P(s)

Staff-section image

x

P(q=i|x )

P(x|s)

j

ŝ

P(q'|q)

Fig. 3: An overview of the pipeline needed for the

decoding stage in the proposed framework for HMR.

The required models are those generated during the

learning stage (see Fig.2).

4.1 Hidden Markov Models

This sub-section reviews the work presented in [7],

where classical Gaussian mixture HMMs were pro-

posed to model p(x | s). This review is necessary as

a basis for the hybrid MLP-HMM proposed here.

Let X ⊆ RD be a D-dimensional space of obser-

vations, where D is typically the number of features

per frame, d, used to represent the input images. A

continuous-density HMM [23] is a finite state ma-

chine which models the stochatic generation of se-

quences of vectors from X. It is defined by a finite

set of states Q ⊂ N, special initial and final states

I, F 6∈ Q, a first-order state transition probability

distribution P (q′ | q), q′ ∈ Q ∪ {I}, q ∈ Q ∪ {F},
P (I |F )

def
= 0, and a state-conditional observation emis-

sion distribution, p(
→
x|q),→x∈ X, q ∈ Q.

In order to approximate p(x | s) in Eq. (1), each

music symbol sj of s is modelled by an HMM with

Gaussian Mixture Model (GMM) state-conditional

emission density. It is important to remark that each

sj is defined by both both the shape and height of

the corresponding music symbol. Therefore, it is nec-

essary to consider a different HMM for each possible

combination of these two aspects. If we assume Q be

the the sets of all the (adequately relabelled) states

of all these HMMs, p(x | s) is computed as:

p(x | s) =
∑
q∈Q?

p(x,q | s)

=
∑

q∈S(s,T )

T∏
i=1

P (qi | qi−1) p(
→
xi| qi) (2)

where Q? is the set of all finite-length sequences of

HMM states and S(s, T ) is the set of state sequences

of length T corresponding to the concatenation of m

music-symbol HMMs which model s = s1 . . . sm.

Fig. 4 illsutrates an HMM for the musical symbol

“semibrevis-4s”∈ Σ (semibrevis in the fourth

vertical space) modelling two “semibrevis-4s” notes

in a staff fragment of Fig. 1a, represented as a se-

quence of feature vectors, as in Fig. 1d.

4.1.1 Maximum-Likelihood GMM-HMM training

Both the number of states per symbol (and therefore

the overall number of states in Q) and the number

of Gaussians per state must be adjusted empirically

[14]. Once these “HMM topologies” have been set

for all symbols, the corresponding state-initial, state-

transition and GMM distribution parameters can be

trained from whole, unsegmented staff-section im-

ages, accompanied by the corresponding transcripts

into sequences of musical symbols.

Maximum-Likelihood (ML) estimation of these
parameters is easily carried out using a well-known

instance of the Expectation-Maximization algorithm

called forward-backward or Baum-Welch re-estimation

[23]. This approach was first proposed and empiri-

cally evaluated for Mensural-notation HMR in [7].

4.1.2 Discriminative GMM-HMM training

ML estimation assumes a generative optimization,

which can limit the accuracy of the trained mod-

els for recognition tasks such as HMR. Unlike ML,

Discriminative Training (DT) explicitly aims at op-

timizing the model capacity to discriminate among

competing classes (music symbols in our case).

The use of DT to train Gaussian-mixture HMMs

for Mensural-notation HMR was first proposed in [8],

where an estimation criterion based on the so called

“Minimum Phone Error” (MPE) was adopted1. MPE

1 This term comes from the Speech Recognition com-
munity. Here, “phones” refer to the music symbols.
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5

3

4x

Fig. 4: HMM modelling of two symbol notes “semibrevis-4s” for the feature vector sequence of Fig. 1d.

focuses on minimizing the Levenshtein distance be-

tween the hypotheses and the music symbol sequences

of the correct transcripts.

As discussed in [8], the optimization makes use

of Symbol Lattices. For each training sample, two

HMM-symbol-marked lattices are produced: the first

one represents the correct symbol sequence and the

second accounts for competing hypotheses. Using these

lattices, HMM parameters are iteratively optimized

according to the MPE criterion by means of a modi-

fied version of the Extended Baum-Welch re-estimation

algorithm [21].

4.2 Discriminative training with Neural Networks

The state-conditional distribution p(
→
x|q) can be ap-

proximated using other models, instead of GMMs.

To better understand this generality, consider the

following question: which is the most likely hidden

state that may have emitted a given vector
→
x of

the input sequence? This question corresponds to a

classification task where the classes are states from

Q. Therefore, any statistically interpretable classi-

fier explicitly or implicitly computes p(q |→x)∀q ∈ Q
which (as discussed later on) can be easily adapted

to model p(
→
x| q).

A simple way to train such a generic classifier

is to first align each training sequence vector with

a corresponding HMM state. This can be done by

means of a “framewise forced alignment” [28], us-

ing HMM models, trained as discussed in Sec. 4.1.

Then, the classifier training problem becomes a con-

ventional supervised classification task, where the in-

puts are feature vectors from X and the outputs are

corresponding hidden states in Q.

As mentioned above, in this work we adopt a neu-

ral network discriminative classifier; namely a deep

MLP which basically consists of a dense neural net-

work organized in several layers. The last layer en-

compasses |Q| binary (one-vs.-rest) classifiers with

softmax activation functions. These classifiers suit

especially well in the context of our statistical frame-

work because output activations can be properly in-

terpreted as posterior probabilities [5]. More specifi-

cally, for each input vector
→
xi of a feature vector se-

quence x modelling a staff section, the trained MLP

outputs an estimate of P (q |→xi),∀q ∈ Q. A graphical

illustration of this setup is shown in Fig. 5.

The number of input units of the MLP is the

number of feature vector components,D. In a straight-

forward implementation, this value would be equal

to d, i.e., the number of features extracted from

each frame of the input stave section image (see

Sec. 3.2.1). Nevertheless, the overall optical discrim-

inating power can be enhanced by adding to each

frame a number of adjacent contextual frames. There-

fore, the actual configuration of the MLP consists of

an input layer of D = (2 c+ 1) d neurons, where d is

the number of features per frame and c is the length

of the context considered. This layer is followed by a

series of hidden layers that finally connect with the

output layer of |Q| neurons. An empirical analysis of

how many hidden layers are most adequate for the

proposed task will be carried out in Sec.5.3.

MLPs can be strightforwardly trained by gradient-

descent using the well-known back-propagation algo-

rithm. It should pointed out, however, that as the

number of layers increases (i.e., the network becomes

“deep”), conventional gradient descent needs to be

assisted by deep Neural Network techniques such as

layer pre-initialization, stochastic gradient descent,

rectifiers, or learning rate scheduling [13]. See details

in Sec.5.3.

4.3 Statistical Language Models

As any other language, music notation exhibits reg-

ularities that, despite being extremely difficult to
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x

xi

...

...

...
...

...

P(q=1|xi)

P(q=2|xi)

P(q=|Q||xi)

P(q=6|xi)

P(q=4|xi)

P(q=5|xi)

P(q=3|xi)

MLP

Input layer Hidden layers Output layer

Depth

xi0

xi1

xiD

xi2

Fig. 5: The MLP is trained to estimate the posterior probability of each HMM state, given a frame of the input

staff section. The output neurons that correspond to the states of the HMM that models “semibrevis-4s”

(see Fig. 4) are highlighted.

model in their totality, can be exploited to some ex-

tent to improve the accuracy of the recognition. In

this work, we resort to N -gram models to estimate

the prior probability P (s) needed in Eq. (1). An N -

gram model assumes a local-context simplification of

the probability of a sequence s = s1 . . . sm as2:

P (s) = P (s1)

m∏
i=2

P (si | s1 . . . si−1)

≈
m∏
i=1

P (si | si−N+1 . . . si−1) (3)

where P (si|si−N+1 . . . si−1) denotes the probability

of finding si after si−N+1 . . . si−1. These probabili-

ties are the parameters of the N -gram model, which

are easily estimated using trainin sraff image tran-

scripts [29].

Given the limited amount of data and the vo-

cabulary considered, many events might not appear

in the training set. In order to generalize better, a

Knesser-Ney smoothing strategy [17] is considered

so that no sequence has a non-zero probability.

4.4 Decoding

Once all the components have been adequately trained,

a optimization or “decoding” process is carried out

to compute Eq. (1); i.e., to provide a best symbol

sequence hypothesis ŝ, given an input staff section

2 For the sake of notation simplicity, for any sequence z
if j < 1, P (zk | zj . . . zk−1) is assumed to denote P (zk |
z1 . . . zk−1). If j = 1, it is just P (z1 | λ) ≡ P (z1), where
λ is the empty sequence.

image represented as a sequence of T feature vectors

x =
→
x1,

→
x2, . . . ,

→
xT . Using HMMs to model p(x | s),

as discussed in Sec 4.1, Eq. (1) becomes:

ŝ = arg max
s

P (s)
∑

q∈S(s,T )

T∏
i=1

P (qi |qi−1) p(
→
xi|qi) (4)

In order to make the decoding process feasible,

the sum is approximated by the dominating addend:

ŝ = arg max
s

P (s) max
q∈S(s,T )

T∏
i=1

P (qi | qi−1) p(
→
xi| qi)

(5)

In the hybrid MLP-HMM approach, the state-

conditional emission probabilities p(
→
xi| qi) can be

easily derived from the MLP output state posteriors,

P (qi |
→
xi), as:

p(
→
xi| qi) =

P (qi |
→
xi)

P (qi)
p(
→
xi) (6)

and Eq. (5) becomes:

ŝ = arg max
s

P (s) max
q∈S(s,T )

T∏
i=1

P (qi |qi−1)
P (qi |

→
xi)

P (qi)

(7)

where the factor
∏T

i=1 p(
→
xi) has been ignored be-

cause it is equal for all music symbol sequences (only

depends on the input staff-section image). The hid-

den state priors p(qi) can be straightforwardly es-

timated from state frequencies of occurrence in the

forced alignments used to train the MLP (c.f., Sec. 4.2).
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Equation (7) can be solved using the Viterbi algo-

rithm [16]. Thus, given an input sequence of feature

vectors x, an output sequence of recognized musical

symbols ŝ is obtained.

In practice, some additional factors must be taken

into account. First, optical HMM probability densi-

ties (p(x | s) in Eq. (1) or the corresponding prod-

ucts of Eq. (7)) tend to be small and may become

negligible as compared with the much higher values

of language model probabilities, P (s). A Grammar

Scale Factor (GSF) is typically used to scale (the

logarithm of) P (s) in order achieve an adequate bal-

ance between these two kind of models. Second, the

so-called Word Insertion Penalty (WIP) is used to

weight the transition between output sequence sym-

bols, in order to control the tendency of the decoder

to produce shorter or longer sequences. Both the

GSF and the WIP must be tuned empirically.

5 Experiments

Previous empirical work carried out with GMM-HMMs

is reviewed and compared with the results of new

experiments using the hybrid MLP-HMM approach

here proposed. For this approach, we first analyze

how different MLP configurations parameters affect

the recognition performance. Next, we compute final

results and compare them with previous works on

the same corpus. Finally, we study the relationship

between the size of the training set and the perfor-
mance of the different models considered for HMR.

5.1 Corpus and assessment measures

The corpus considered here, referred to as Capitan

is described in detail in [8], where a standard parti-

tion into training, validation, and test samples was

established. A summary of the characteristics of the

dataset as regards to this partition is given in Ta-

ble 2.

Training Validation Test

Staves 462 57 57

Different symbols 176 123 115

Running symbols 10 323 1 286 1 254

Table 2: Partition of the Capitan dataset, reporting

the number of staves, the number of different music

symbols (or “vocabulary”) and the number of run-

ning symbols.

Taking into account the different elements of the

HMR task, we have considered several metrics to

measure the recognition performance; namely:

– Diplomatic Symbol Error Rate (SER): computed

as the average number of elementary editing op-

erations needed to produce a reference (correctly

transcribed) symbol sequence from the recognized

symbol sequence.

– Glyph Error Rate (GER): as in SER but only

taking into account the shape of the symbols, ig-

noring the height component (where any).

– Height Error Rate (HER): as in SER but only

taking into account the height of the symbol.

Those symbols that have no height are grouped

into the same one.

5.2 HMM Setup

All the GMM-HMM results reported below corre-

spond to the experiments carried out in [8], where

configuration parameters where adjusted on the Cap-

itan validation set in order to boost the HMR per-

formance.

A strict left-to-right topology without loops was

adopted for all symbol-level HMMs, with a variable

number of states depending on the graphical width

of the music symbol. This configuration resulted in

a total of 178 symbol-level HMMs (176 music sym-

bols plus 2 auxiliary characters), with a total of 3664

hidden states. The number of Gaussian functions in
the emission mixtures was set to 4 and input frames

were characterized by vectors of 180 dimensions, that

is, 60 components per type of graphical feature (cf.

Sec. 3.2.1).

GSF and WIP parameters are also optimized on

the validation set for each language model consid-

ered.

The very same configuration is used here for the

forced alignment process required for MLP training

in the new MLP-HMM experiments.

All the experimentation has been conducted us-

ing the HTK toolkit [31], including the hybridization

with MLP. Since HTK can only decodes directly us-

ing up to 2-gram models, experiments with higher-

order N -grams have been carried out by applying

the re-scoring method [31,19].

5.3 Configuration of the Neural Network

We start analyzing the impact of basic MLP config-

uration parameters on the overall HMR accuracy. In
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particular, we evaluate two hyper-parameters: the

number of context frames used to form each MLP

input vector — which determines the size of the in-

put layer — and the number of hidden layers (depth

of the network). Some other components are fixed

in advance so that the number of hyper-parameters

does not become huge: the size of all hidden layers is

established as 1
2 i o, where, i and o are respectively

the sizes of the input and output layers. As previ-

ously discussed, i = 180 (2 c+ 1) and o = 3664.

The number of hidden layers to consider ranges

from 1 to 5. We make use of a series of Neural Net-

work techniques that allow training such deep MLPs.

Thus, the activation function for all the neurons is

the so called Rectified Linear Unit, except for those

of the output layer which use a softmax activation.

Network weights are layer-wise pre-initialized accord-

ing to a uniform distribution. The training itself is

carried out by means of stochastic gradient descent,

with a mini-batch size of 40 samples. The loss is

measured with a categorical cross-entropy function.

The learning rate is initially fixed to 0.002, although

we use the newbob scheduler which modifies the

learning rate after each epoch according to the per-

formance over the validation set [31].

Table 3 shows the SER results — as a general

measure — on the validation set. As it can be ob-

served, the results vary up to more than 3 percentual

points depending on the specific configuration. The

results confirm that using no frame context (c = 0) is

less informative (27.06 of SER at best). It may seem

that increasing the context is always beneficial, as

long as the depth of the network is also increased.

However, this reaches a limit quickly because a con-

text of 5 frames, with a 23.87 of SER in the best

case, fails to outperform the best value using a con-

text of 3 frames, with 23.72 of SER. The set of values

considered for the number of layers of the network

seems to be representative enough, given that a lo-

cal minimum is found in each column of Table 3.

Nevertheless, it is possible that the amount of data

available is hindering the possible benefits of using

a wider frame context.

The best configuration corresponds to a context

of 3 frames (D = 1260) and 2 hidden layers. This

shall be adopted in the remaining experiments.

5.4 Comparison with previous works

In this section the accuracy of the approach here pro-

posed is compared with previous work using GMM-

Context length (c)
Hidden layers 0 1 3 5

1 27.60 25.43 25.74 26.44
2 28.08 25.12 23.72 25.58
3 27.06 25.12 24.57 25.19
4 27.68 25.51 25.54 23.87
5 27.84 25.43 25.35 24.49

Table 3: Symbol error rate (SER, in %) with respect

to increasing frame context and MLP depth over the

validation set. Best values per column are typeset in

boldface.

HMMs, both trained with the classic Maximum Like-

lihood (ML) estimation [7] and with Discriminative

Training [8]. Further to these works, we have made

experiments similar to those of the previous section

on the same data partition to study the impact of in-

creasing the frame context on GMM-HMM accuracy.

However, results have not shown significant improve-

ments. Therefore, we consider no context (c = 0) for

GMM-HMMs, and the set-up proposed in the afore-

mentioned references is kept.

Figure 6 shows the test-set SER results obtained

with the different HMR models considered, with N -

gram LMs up to N = 4. In all the cases, all the

meta-parameters involved were optimized using the

validation set.

The main limitation of GMM-HMMs stems from

their discriminative ability. Even when they are trained

in a discriminative way, SER improves from 52.7 %

to 46.4 % (without language model). However, the

use of MLP is able to very significantly boost the

accuracy, further reducing the error rate down to

30.6 % (also without language model). This corre-

sponds to a 34 % relative improvement over the best

results so far.

The impact of the language model is evident in all

the cases. While music generally constitutes a lan-

guage of enormous complexity, it seems that there

are (rather simple, albeit significant) regularities that

can be easily captured computationally. It is clear

that this information is of great help to improve the

recognition of the music notation. At best, the use of

3-grams allows decreasing the error from 30.6 % to

25.7 % (a 16 % relative improvement). The 4-gram

models are probably under-trained with the limited

data available and therefore they lead to a slightly

worse performance. Similar tendencies are also ob-

served for the other approaches, which substantiates

the complementary nature of the language model

with respect to the optical component of HMR.
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Fig. 6: SER (in %) obtained by increasing the or-

der of N -gram LMs over the test set. Three HMR

approaches are compared: GMM-HMMs, with both

ML estimation [7] and DT [8], and the here proposed

MLP-HMM (considering the best configuration ac-

cording to Table 3).

Table 4 shows the final results considering all

the aforementioned metrics. For the sake of compar-

ison, we also report the performance of some previ-

ous research on automatic recognition of Early mu-

sic notation, namely Aruspix system [22] and the

segmentation-based approach described in [6]. In both

cases, the performance of the recognition is quite

poor. Aruspix misclassifies almost all symbols, thus

yielding an error close to 100%. The segmentation-

based approach does correctly recognize more sym-

bols, provided they are correctly isolated. However,

the process produces an over-segmentation — many

actual symbols are broken into more than one iso-

lated component — and so the final result is poor

as well. It is really important to emphasize that this

evaluation is not totally fair, since these methods

were not designed to work with handwritten nota-

tion, which is the object of study here. However, in-

cluding them might help to understand the need for

holistic approaches based on machine learning, like

the one proposed in this work, for handwritten no-

tation. We can see that holistic approaches based

on HMM, regardless of their specific configuration

(ML, DT or MLP), achieve significantly better re-

sults. Within this context, as reported above, the

combination of HMM with MLP represents the ap-

proach that ends up obtaining the best recognition

results by improving its discriminative capacity with

specialized classifiers.

As regards to the dual nature of the symbols, it

follows from GER and HER figures that both the

height and the shape symbol components contribute

almost equally to the accuracy. The HER is system-

atically lower in all cases, which is not surprising

considering that there are 35 different shapes but

only 16 different height positions.

Approach SER GER HER

Aruspix [22] 94.5 93.0 94.1

Segmentation based [6] 93.3 91.7 90.4

HMM-ML [7] 46.2 41.2 34.9

HMM-DT [8] 40.4 35.2 28.2

HMM-MLP 25.7 22.4 18.7

Table 4: Summary of final results for different ap-

proaches. Note that the two first approaches (Arus-

pix and segmentation based) were not designed to

deal with handwritten notation (more elaboration

about this is found in the main text).

5.5 Analysis upon the size of the training set

The previous section has shown that the replacement

of Gaussian emissions with the outputs of a MLP

leads to important accuracy improvements. However,

in the context of the HMR task, it is interesting to

develop models that not only work well but that

the amount of data necessary to train them is not

very demanding. The handwriting style of Mensural

manuscripts is very heterogeneous, given the large

number of copyists at that time. It is likely that spe-

cific training data is needed for each type of writing

style and, therefore, it is important that the recog-

nition models work with a limited ground-truth size

that can be obtained with little cost. Thus, in this

section we study the accuracy achieved by all the

HMM-based approaches proposed so far (ML, DT,

and MLP) with respect to the size of the training

set.

Figure 7 shows the results of such experiment.

Results are given in terms of SER considering the

best N -gram LM of each case (N=4 for ML, and
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Fig. 7: SER achieved by the different HMM-based

schemes with respect to the number of staff sam-

ples in the training set. Results are given considering

their best N -gram LM (N=4 for ML, and N=3 for

DT and MLP).

N=3 for DT and MLP). The most striking remark

that can be extracted from these results is that the

use of MLP not only ends up producing significantly

better results with a reasonably-sized dataset, but

the superiority over other schemes also holds for few

training samples. Moreover, the best result obtained

by previous approaches with all available data is out-

performed by the MLP approach with just 200 train-

ing samples, and it achieves a SER below 30 % with

only 300 training staff sections.

Thus, the use of MLP not only performs signif-

icantly better than previous approaches but it also

uses the available training data in a more profitable

way. It can be observed that the use of DT also repre-

sents an improvement with respect to the traditional

(ML) HMM training approach but to a much lesser

extent.

6 Conclusions

In this work, a previously unexplored approach for

the recognition of Handwritten Music in Mensural

notation has been presented. It relies on the use of

Hidden Markov Models whose emission probabilities

are derived from the outputs of a Multi-Layer Per-

ceptron, trained on pairs of training images and their

corresponding transcripts. The goal is to improve

the discriminant capabilities of traditional GMM-

HMMs. This hybrid model is combined with N -gram

statistical language models, trained on the training

transcripts. As in the case of classical GMM-HMMs,

here N -grams also help biasing the recognizer to-

wards the a-priori most likely sequences, aiming to

further increase the overall recognition accuracy.

The experiments carried out have shown that the

approach studied in this work attains an error rate

around 25 % at symbol level. This result greatly over-

comes the performance achieved in previous works

that reported error rates around 40 %, at best. The

new results definitely evince that real transcription

applications are clearly feasible using the proposed

methods.

Although the present work represents a consider-

able improvement compared to previous approaches,

there is still room for further advances for which sev-

eral avenues for future research are worth exploring.

For instance, the double shape-height nature of sym-

bols is one of the main features that distinguish mu-

sic notation from other similar domains such as text.

In this work we considered that each combination of

these two types of elements must be understood by

the system as a totally independent symbol. Never-

theless, all notes of the same shape share many fea-

tures, and this information is not being used to im-

prove recognition performance. Also, once language

models have proven to contribute noticeably to im-

prove recognition accuracy, a more convenient esti-

mation can possibly be obtained from independent

shape and height statistics.

Furthermore, given the limited amount of data

and the relatively large number of symbols, data

augmentation represents an interesting framework to

consider. However, it should be noted that data aug-

mentation for musical staves must go beyond simple

blurring, rotation, and scaling. In particular, staff

lines are elements that should remain basically sim-

ilar in all images, and only musical symbols should

be altered.
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