862 research outputs found

    Delay Differential Analysis of Seizures in Multichannel Electrocorticography Data

    Get PDF
    High-density electrocorticogram (ECoG) electrodes are capable of recording neurophysiological data with high temporal resolution with wide spatial coverage. These recordings are a window to understanding how the human brain processes information and subsequently behaves in healthy and pathologic states. Here, we describe and implement delay differential analysis (DDA) for the characterization of ECoG data obtained from human patients with intractable epilepsy. DDA is a time-domain analysis framework based on embedding theory in nonlinear dynamics that reveals the nonlinear invariant properties of an unknown dynamical system. The DDA embedding serves as a low-dimensional nonlinear dynamical basis onto which the data are mapped. This greatly reduces the risk of overfitting and improves the method's ability to fit classes of data. Since the basis is built on the dynamical structure of the data, preprocessing of the data (e.g., filtering) is not necessary. We performed a large-scale search for a DDA model that best fit ECoG recordings using a genetic algorithm to qualitatively discriminate between different cortical states and epileptic events for a set of 13 patients. A single DDA model with only three polynomial terms was identified. Singular value decomposition across the feature space of the model revealed both global and local dynamics that could differentiate electrographic and electroclinical seizures and provided insights into highly localized seizure onsets and diffuse seizure terminations. Other common ECoG features such as interictal periods, artifacts, and exogenous stimuli were also analyzed with DDA. This novel framework for signal processing of seizure information demonstrates an ability to reveal unique characteristics of the underlying dynamics of the seizure and may be useful in better understanding, detecting, and maybe even predicting seizures

    Multiview classification and dimensionality reduction of scalp and intracranial EEG data through tensor factorisation

    Get PDF
    Electroencephalography (EEG) signals arise as a mixture of various neural processes that occur in different spatial, frequency and temporal locations. In classification paradigms, algorithms are developed that can distinguish between these processes. In this work, we apply tensor factorisation to a set of EEG data from a group of epileptic patients and factorise the data into three modes; space, time and frequency with each mode containing a number of components or signatures. We train separate classifiers on various feature sets corresponding to complementary combinations of those modes and components and test the classification accuracy of each set. The relative influence on the classification accuracy of the respective spatial, temporal or frequency signatures can then be analysed and useful interpretations can be made. Additionaly, we show that through tensor factorisation we can perform dimensionality reduction by evaluating the classification performance with regards to the number mode components and by rejecting components with insignificant contribution to the classification accuracy

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    DEVELOPMENT OF AN ACCURATE SEIZURE DETECTION SYSTEM USING RANDOM FOREST CLASSIFIER WITH ICA BASED ARTIFACT REMOVAL ON EEG DATA

    Get PDF
    Abstract The creation of a reliable artifact removal and precise epileptic seizure identification system using Seina Scalp EEG data and cutting-edge machine learning techniques is presented in this paper. Random Forest classifier used for seizure classification, and independent component analysis (ICA) is used for artifact removal. Various artifacts, such as eye blinks, muscular activity, and environmental noise, are successfully recognized and removed from the EEG signals using ICA-based artifact removal, increasing the accuracy of the analysis that comes after. A precise distinction between seizure and non-seizure segments is made possible by the Random Forest Classifier, which was created expressly to capture the spatial and temporal patterns associated with epileptic seizures. Experimental evaluation of the Seina Scalp EEG Data demonstrates the excellent accuracy of our approach, achieving a 96% seizure identification rate A potential strategy for improving the accuracy and clinical utility of EEG-based epilepsy diagnosis is the merging of modern signal processing methods and deep learning algorithms

    A new algorithm for epilepsy seizure onset detection and spread estimation from EEG signals

    Get PDF
    Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients suffering from this disease often exhibit different physical characterizations, which result from the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting this information using EEG signals is an important problem in biomedical signal processing. In this work we propose a new algorithm for seizure onset detection and spread estimation in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that captures the physiological brain frequency signals coupled with a generalized gaussian model. Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his spread across the brain.Fil: Antonio Quintero, Rincón. Instituto Tecnológico de Buenos Aires; ArgentinaFil: Pereyra, Marcelo Fabián. University of Bristol; Reino UnidoFil: D'Giano, Carlos. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Batatia, Hadj. Instituto Polytechnique de Toulouse; Francia. University of Toulouse; FranciaFil: Risk, Marcelo. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Entropy Measures of Electroencephalograms towards the Diagnosis of Psychogenic Non-Epileptic Seizures

    Get PDF
    Psychogenic non-epileptic seizures (PNES) may resemble epileptic seizures but are not caused by epileptic activity. However, the analysis of electroencephalogram (EEG) signals with entropy algorithms could help identify patterns that differentiate PNES and epilepsy. Furthermore, the use of machine learning could reduce the current diagnosis costs by automating classification. The current study extracted the approximate sample, spectral, singular value decomposition, and Renyi entropies from interictal EEGs and electrocardiograms (ECG)s of 48 PNES and 29 epilepsy subjects in the broad, delta, theta, alpha, beta, and gamma frequency bands. Each feature-band pair was classified by a support vector machine (SVM), k-nearest neighbour (kNN), random forest (RF), and gradient boosting machine (GBM). In most cases, the broad band returned higher accuracy, gamma returned the lowest, and combining the six bands together improved classifier performance. The Renyi entropy was the best feature and returned high accuracy in every band. The highest balanced accuracy, 95.03%, was obtained by the kNN with Renyi entropy and combining all bands except broad. This analysis showed that entropy measures can differentiate between interictal PNES and epilepsy with high accuracy, and improved performances indicate that combining bands is an effective improvement for diagnosing PNES from EEGs and ECGs

    Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis

    Get PDF
    abstract: We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on–off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.The final version of this article, as published in Royal Society Open Science, can be viewed online at: http://rsos.royalsocietypublishing.org/content/4/1/16074

    Machine Learning for Understanding Focal Epilepsy

    Get PDF
    The study of neural dysfunctions requires strong prior knowledge on brain physiology combined with expertise on data analysis, signal processing, and machine learning. One of the unsolved issues regarding epilepsy consists in the localization of pathological brain areas causing seizures. Nowadays the analysis of neural activity conducted with this goal still relies on visual inspection by clinicians and is therefore subjected to human error, possibly leading to negative surgical outcome. In absence of any evidence from standard clinical tests, medical experts resort to invasive electrophysiological recordings, such as stereoelectroencephalography to assess the pathological areas. This data is high dimensional, it could suffer from spatial and temporal correlation, as well as be affected by high variability across the population. These aspects make the automatization attempt extremely challenging. In this context, this thesis tackles the problem of characterizing drug resistant focal epilepsy. This work proposes methods to analyze the intracranial electrophysiological recordings during the interictal state, leveraging on the presurgical assessment of the pathological areas. The first contribution of the thesis consists in the design of a support tool for the identification of epileptic zones. This method relies on the multi-decomposition of the signal and similarity metrics. We built personalized models which share common usage of features across patients. The second main contribution aims at understanding if there are particular frequency bands related to the epileptic areas and if it is worthy to focus on shorter periods of time. Here we leverage on the post-surgical outcome deriving from the Engel classification. The last contribution focuses on the characterization of short patterns of activity at specific frequencies. We argue that this effort could be helpful in the clinical routine and at the same time provides useful insight for the understanding of focal epilepsy
    corecore