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Abstract 

The creation of a reliable artifact removal and precise epileptic seizure identification system using Seina Scalp EEG 

data and cutting-edge machine learning techniques is presented in this paper. Random Forest classifier used for seizure 

classification, and independent component analysis (ICA) is used for artifact removal. Various artifacts, such as eye 

blinks, muscular activity, and environmental noise, are successfully recognized and removed from the EEG signals 

using ICA-based artifact removal, increasing the accuracy of the analysis that comes after. A precise distinction 

between seizure and non-seizure segments is made possible by the Random Forest Classifier, which was created 

expressly to capture the spatial and temporal patterns associated with epileptic seizures. Experimental evaluation of 

the Seina Scalp EEG Data demonstrates the excellent accuracy of our approach, achieving a 96% seizure identification 

rate A potential strategy for improving the accuracy and clinical utility of EEG-based epilepsy diagnosis is the merging 

of modern signal processing methods and deep learning algorithms.  

Keywords: Random forest classifier on EEG, Independent Component Analysis (ICA) epilepsy, Seizure 

Identification, Artifact Removal, Seizure Detection 

 

1. INTRODUCTION 

A non-invasive method for capturing electrical activity in the brain is electroencephalography 

(EEG). Neurological illnesses like epilepsy, sleep problems, and brain injuries can all be diagnosed 

and treated using EEG signals, which are frequently employed in clinical practice. However, a 

variety of artifacts, including eye blinks, muscular movement, and background noise, frequently 

taint EEG readings. The accuracy of EEG-based diagnosis and treatment may be impacted by these 

artifacts because they might mask the underlying brain activity.  

The process of preparing EEG data for clinical use must include artifact reduction. For the 

elimination of artifacts, a number of techniques have been suggested, such as independent 

component analysis (ICA), wavelet denoising, and time-frequency analysis. A blind source 

separation method called ICA breaks down EEG signals into separate components, some of which 

might be artifacts. A filtering method called wavelet denoising uses the wavelet coefficients of 

EEG signals to get rid of noise from the signals. EEG signals are divided into time-frequency 

components using the signal processing method known as time-frequency analysis. These 

components can then be filtered according to their power spectra.  
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EEG signals can be examined for the detection of epileptic episodes in addition to the elimination 

of artifacts. Recurrent seizures, which are abrupt and fleeting alterations in the electrical activity 

of the brain, are the hallmark of the neurological condition epilepsy. Epileptic activity in the brain 

can frequently be detected and localized using EEG signals. In the EEG signal, epileptic activity 

is often characterized by spikes or sharp waves that signify aberrant neural activation.  

The detection of epileptic activity in EEG signals has been proposed using several methods, 

including time-domain analysis, frequency-domain analysis, and machine learning. Based on their 

amplitude, duration, and form, spikes and sharp waves in the EEG data are identified via time-

domain analysis. Based on their power spectra, aberrant spectral components in the EEG data are 

identified by frequency-domain analysis.   

Zhang [3] CNN-based method for detecting epileptic spikes in EEG signals had a 92.5% accuracy 

rate. Similar to this, Daoud [2] reported an RNN-based method with a 94.1% accuracy for 

detecting epileptic activity in EEG recordings. EEG signals can be examined for the diagnosis of 

various neurological conditions, such as sleep apnea and attention-deficit hyperactivity disorder 

(ADHD), in addition to epileptic activity. For instance, Zhen [3] reported a CNN-based method 

that successfully detected sleep apnea events in 91.6% of EEG signals.  

Several seizure prediction model studies have explored the development of seizure prediction 

models using deep learning architectures. Shahbazi and Aghajan [24] introduced a generalizable 

model based on a CNN-LSTM architecture for seizure prediction. Ozcan and Erturk [29] 

investigated the application of 3D convolutional neural networks (CNNs) with an image-based 

approach for seizure prediction in scalp EEG. These studies highlight the potential of deep learning 

models in accurately predicting seizures. The relationship between aging and epilepsy has been 

examined by Beghi and Giussani [25]. They discussed the epidemiology of epilepsy in relation to 

age, shedding light on the impact of aging on seizure occurrence. Understanding the age-related 

aspects of epilepsy can contribute to improved management and treatment strategies for different 

age groups.  

The identification of preictal and interictal states is crucial for accurate seizure prediction. Stacey 

et al. [30] reviewed the present-day EEG evidence for a preictal state, exploring the characteristics 

and potential markers associated with it. Various studies have investigated feature selection and 

optimization techniques for seizure prediction. Bandarabadi et al. [27] examined the selection of 

the preictal period and optimal time frame for detecting pre-seizure patterns. The performance 

evaluation and comparison of different seizure prediction models have been addressed in the 

literature. Graph Theory and Network Analysis: Network analysis and graph theory have been 

applied to investigate brain connectivity and epileptic seizures. Khambhati et al. [31] explored the 

dynamical network biomarkers for seizure prediction using graph theory-based measures. Their 

study highlighted the importance of network connectivity patterns in understanding and predicting 

epileptic seizures.  

 

 



Journal of Biomechanical Science and Engineering 

Japan Society of Mechanical Engineers 

ISSN: 1880-9863 

September Issue: Theme 1 

Innovative Science and Technology in Mechanical Engineering for Advancing Humanity  

DOI: 10.5281/zenodo.8385047 
 

3 | September 2023 

Integrating multiple data modalities has shown promise in improving seizure prediction accuracy. 

By leveraging complementary information from different modalities, the study demonstrated 

enhanced prediction performance. Deep transfer learning techniques have been employed to 

improve seizure prediction models. Acharya et al. [10] introduced a transfer learning-based 

approach for multi-class seizure prediction using EEG signals. By transferring knowledge from 

pre-trained models, their method achieved improved prediction accuracy. Nonlinear Dynamics and 

Chaos Theory: Nonlinear dynamics and chaos theory have been applied to analyze EEG signals 

for seizure prediction.  

Overall, the detection and treatment of neurological illnesses have demonstrated promising 

outcomes using EEG-based artifact reduction and epilepsy detection methods. These methods are 

constantly changing as new machine learning and signal processing algorithms are created. Better 

patient outcomes can result from the application of these approaches in clinical practice, which 

can increase the precision and dependability of EEG-based diagnosis and treatment. 

 

2. MATERIAL AND METHODS 

Complete classification procedure including the artifact removal of EOG and ECG along with ICA 

is described in figure 1 below. Time and frequency domain features are extracted and visually 

explained in the later part of the paper.   

  

Figure 1: EEG classification procedure block diagram 

2.1. Dataset description  

Both interictal (between seizures) and ictal (during seizures) EEG recordings are included in the 

collection. A 21-channel EEG system with electrode placement based on the International 10-20 

method was used to obtain the recordings and 1-2 EKG recordings are also there to support 

removal of artifacts. The EEG signals were stored in EDF format and recorded at a sampling rate 

of 512 Hz. Reusable silver and goldcups electrodes are used with EB Neuro and Natus Quantum 

LTM amplifiers for fetching the data.  Each recording in the dataset comes with a metadata file 

that contains details about the patient, the length of the recording, and the patient's clinical 

background. The metadata also contains details on the patient's particular type and frequency of 
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seizures. Researchers interested in creating machine learning algorithms and other computational 

techniques for the epilepsy diagnosis and treatment will benefit greatly from the dataset. The 

database is having 14 folders each consisting of one patient file with 5 different 2.11GB of data 

files each with a descriptive text file that informs about seizure location. [33]  

2.2. Preprocessing   

2.2.1 Filtering 

In the artifact identification process, bandpass filtering is an essential step for reducing DC offset 

and powerline noise. In this method, the EEG signals are subjected to a bandpass FIR filter with a 

frequency range of 0.5 to 30 Hz. Based on the characteristics of neuronal activity linked to epilepsy 

and the reduction of undesired noise sources, this particular frequency range was selected. The 

retention of low-frequency elements associated with slow wave activity and prospective seizure 

patterns is made possible by the 0.5 Hz cutoff frequency, which can be a useful tool for epilepsy 

identification. In contrast, the 30 Hz upper cutoff frequency is chosen to keep the relevant brain 

activity while excluding higher frequency noise and artifacts. Employing a bandpass FIR filter 

with a tailored frequency range, the methodology aims to enhance the signal quality, improve the 

accuracy of subsequent analysis, and enable the identification of epileptic patterns within the EEG 

data. The same is represented in Figure 2 where raw plot channel-wise representation after 

application of bandpass filter.  

 

Figure 2: EEG data after application of Bandpass filter 
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2.2.2 Electrooculogram - EOG artifact detection 

A particular set of parameters is used in the artifact detection methods provided in the Kaggle code 

to create EOG epochs using a finite impulse response (FIR) filter. The lower passband edge of the 

FIR filter is set at 1 Hz, and the upper passband edge is set at 10 Hz. The 5120-sample filter length 

is chosen. There are 112 notable peaks found after filtering.  

These peaks reflect EOG-active epochs, which can offer important details for later artifact removal 

and detection procedures. It is easier to separate EOG-related artifacts from other sources of noise 

and interference when these strong peaks are noticed in the EEG data.  

By utilizing the FIR filter with the specified parameters, the methodology aims to effectively 

extract EOG epochs, enabling further analysis and identification of artifacts originating from eye 

movements and blinks.  

Figure 3 shows the EOG – Eye blink pattern effect on EEG signal which is mostly affected by all 

the channels. This step contributes to the overall accuracy and reliability of the artifact detection 

system, facilitating the subsequent processing and identification of other types of artifacts in the 

EEG data.   

 

Figure 3: EEG Signal capture on EOG artifact detection 
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2.2.3. Electrocardiogram - ECG artifact detection:   

To obtain EOG (Electrooculogram) epochs using a finite impulse response (FIR) filter in the 

artifact detection methodology described in the Kaggle code, a specific set of parameters is 

employed. The FIR filter is designed with a lower passband edge of 8Hz and an upper passband 

edge of 16Hz. The filter length is set to 5120 samples.  

During the filtering process, 2710 significant peaks are identified. These peaks generally known 

as R peaks represent epochs containing ECG activity, which can provide valuable information for 

subsequent artifact detection and removal steps. Figure 4 represents the ECG – Heartbeat pattern 

effect on EEG signal and its relevance with the channels. The identification of these significant 

peaks’ aids in distinguishing ECG-related artifacts from other sources of noise and interference 

present in the EEG data.   

 

Figure 4: EEG Signal capture on ECG artifact detection 

2.2.4. Artifact Detection and Removal using independent component analysis:   

For artifact detection using ICA same as the above two artifact detection methods first filters are 

applied, FIR filter parameters are one-pass, zero-phase, non-causal high pass filter, Windowed 

time-domain design (firwin) method, Hamming window with 0.0194 passband ripple and 53 dB 

stopband attenuation, Lower passband edge: 1.00, Lower transition bandwidth: 1.00 Hz (-6 dB 

cutoff frequency: 0.50 Hz), Filter length: 1691 samples (3.303 sec). ICA fits to all 33 channels and 
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resulting plots are shown in Figure 5, Primarily 19 channels ICA are represented in figure which 

further helps to remove the muscle movement and other artifacts which can create false detections 

in EEG  

 

Figure 5: EEG ICA component decomposition view 

Figure 6 depicts a topography map illustrating the sensory interface, highlighting the correlation 

between channels and Independent Component Analysis (ICA) channels.    
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Figure 6: Topography EEG ICA component decomposition view 

 

3. RESULT  

The artifact removal effectively reduces the impact of muscular activity, eye blinks, and external 

interference, resulting in cleaner and more reliable EEG signals. Following artifact removal, the 

continuous EEG signal is segmented into fixed-length epochs of 5 seconds, with a 1-second 

overlap between consecutive epochs. This segmentation approach ensures continuity and captures 

potential transient changes at epoch boundaries. Each epoch is then meticulously labeled as either 

normal or abnormal, enabling subsequent analysis and interpretation of the EEG data. By adopting 

this methodology, researchers and clinicians can gain valuable insights into brain activity and 

detect abnormal patterns that may be indicative of neurological disorders or other abnormalities.  

The EEG data used in our study comprises 5-second epochs, sampled at a frequency of 512 Hz, 

resulting in 2560 samples per epoch. The dataset consists of recordings from 35 channels. 

Specifically, we focus on seizure data, which spans 50 seconds, resulting in 10 seizure epochs. In 

contrast, the seizure-free data encompasses 3125 seconds, yielding 643 normal seizure-free 

epochs. To facilitate analysis, we converted the EEG data into arrays, accompanied by 

corresponding labels denoting normal and abnormal epochs.  
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Following the addition of labels to the complete dataset, comprising both seizure and seizure-free 

epochs, we proceeded with feature extraction. Our feature extraction process encompassed various 

time domain features, including mean, standard deviation, peak-to-peak amplitude, variance, 

minimum and maximum values, along with their respective indexes. Additionally, mean square 

and root mean square (RMS) values, coupled with absolute differences, were calculated. To 

capture frequency-related information, we further subdivided the data into specific frequency 

bands, namely delta (0.5-4.5 Hz), theta (4.5-8.5 Hz), alpha (8.5-11.5 Hz), sigma (11.5-15.5 Hz), 

beta (15.5-30 Hz), and gamma (30-45 Hz). For each epoch, we measured the power spectral 

density and appended all the extracted features to a designated array. Furthermore, the seizure data 

was appropriately labeled for subsequent analysis.  

To understand more about selected features and their distribution follow below histogram Figure 

7, According to it the outliers can be easily identified and effective distribution of parameters can 

be selected to improvise the overall performance of the ML algorithm.  

 

Figure 7: Histogram of distribution of selected features 
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The feature listing and their significance are shown in the heatmap below. In Figure 8 alpha, beta, 

etc are the power spectral density of the epoch.  

 

Figure 8: Heatmap of correlation between features 

 

4. DISCUSSION  

There is a wealth of ongoing research in this domain, and among them, notable studies have 

unveiled fascinating insights, Nasseri, M. [34] conducted a study focusing on the development of 

a seizure forecasting system utilizing a long short-term memory (LSTM) recurrent neural network 

(RNN) algorithm. The research involved the utilization of a noninvasive wrist-worn research-

grade physiological sensor device, resulting in a mean AUC-ROC of 0.80 (with a range of 0.72–

0.92). Nahzat, S. & Yağanoğlu, M. (2021) [35] employed a range of classification algorithms, 

namely Random Forest (RF), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), 

Support Vector Machine (SVM), and Decision Tree (DT). These algorithms were applied to 

predict epilepsy using the dataset, with the additional implementation of the Principal Component 

Analysis (PCA) feature reduction technique and analyzed the performance of the classifiers both 
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with and without the utilization of PCA with accuracy levels of the models used in this analysis 

varied across the algorithms ranges from 92% to 97%.  

Along with machine learning techniques other research area explored by Jiang Ximiao, Liu 

Xiaotong [36] is cross-frequency coupling (CFC) and phase-amplitude coupling (PAC) feature 

with an interval length of 5 mins and using Random Forest classifier, receiving an accuracy of 

85.71% for Seina scalp database to 95.87% in CHB-MIT database. Recent research with deep 

learning methodology for the feature selection OAOFS-DBNECD (Deep Belief Network for 

Epileptic Seizure Detection) On CHB-MIT has received an accuracy of 97.81% researchers have 

applied the algorithm with feature selection and without feature selection and received accuracy 

in range of 94% to 97%. Figure 9 we have illustrates the comparison between the approach that 

we have taken with respect to recent deep learning and Neural Network comparison.  

 

Figure 9: Accuracy comparison of EEG seizure prediction  

  

5. CONCLUSION   

Artifact Detection and Removal using Independent Component Analysis, We conducted feature 

comparison and identified dominant features, specifically the power spectral density of alpha and 

theta waves, accounting for 10.53% and 11.76% of the discriminative information, respectively. 

Subsequently, we employed a random forest classifier with selected parameters: 100 n_estimators 

(the number of decision trees in the forest) and the Gini criterion (used to measure impurity during 

tree building). The maximum depth of the trees was determined to allow splits until all leaves 
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contained fewer samples. To determine the best features at each split, the square root of the total 

number of features was considered. The resulting model achieved an accuracy of 96.92% with a 

low error rate of 0.094%. The dataset was divided into 80% for training and 20% for testing, and 

the Python sklearn library was utilized for implementation. Finally, we verified the model's 

performance on the complete dataset and obtained consistent results.  
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