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Abstract

The study of neural dysfunctions requires strong prior knowledge on brain
physiology combined with expertise on data analysis, signal processing, and
machine learning.

One of the unsolved issues regarding epilepsy consists in the localization
of pathological brain areas causing seizures. Nowadays the analysis of neural
activity conducted with this goal still relies on visual inspection by clinicians
and is therefore subjected to human error, possibly leading to negative surgical
outcome.

In absence of any evidence from standard clinical tests, medical experts re-
sort to invasive electrophysiological recordings, such as stereoelectroencephalog-
raphy to assess the pathological areas. This data is high dimensional, it could
suffer from spatial and temporal correlation, as well as be affected by high vari-
ability across the population. These aspects make the automatization attempt
extremely challenging.

In this context, this thesis tackles the problem of characterizing drug resis-
tant focal epilepsy. This work proposes methods to analyze the intracranial
electrophysiological recordings during the interictal state, leveraging on the
presurgical assessment of the pathological areas.

The first contribution of the thesis consists in the design of a support tool for
the identification of epileptic zones. This method relies on the multi-decomposition
of the signal and similarity metrics. We built personalized models which share
common usage of features across patients.

The second main contribution aims at understanding if there are particu-
lar frequency bands related to the epileptic areas and if it is worthy to focus
on shorter periods of time. Here we leverage on the post-surgical outcome
deriving from the Engel classification. The last contribution focuses on the
characterization of short patterns of activity at specific frequencies.

We argue that this effort could be helpful in the clinical routine and at the
same time provides useful insight for the understanding of focal epilepsy.
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Introduction



1
Problems and Outline

Understanding neural activity both in its normal state and in presence of
neurological disorders is one of the greatest challenges of this century 1. A
consistent part of the scientific community is putting intensive effort in the
characterization of this complex organ, where the complexity arises from both
its structural heterogeneity and the functional organization of its parts, giv-
ing origin to thoughts, actions, and more generally, perception, cognition, and
behavior.

In the context of neurological disorders, such characterization is obtained
through several medical tests, and requires a great expertise of trained clini-
cians, who invest a significant part of their time in visually inspecting different
type of data, from long electrophysiological recordings to brain scans.

For the purpose of this story we invested our effort on signal processing
and automatic methods aimed at interpreting these data. Given these premises,
three years of investigation on this complex topic led us to the need of (i) defin-
ing standard protocols on the analysis of neural data, both in pre-processing
and in the definition of relevant models, as this represents the starting point
to generate reproducible results; (ii) developing some medical knowledge so
to speak a common language with neurophysiologists; (iii) quantifying prior
knowledge and clinical elements which are crucial for medical experts, but
sometimes difficult to translate in mathematical terms.

In this work we explore a neurological disorder known as focal epilepsy. The
focal epileptic condition is characterized by states of impaired consciousness,
auras, and uncontrolled limb movements, which are known as seizures. Many
causes can lead to the same diagnosis, among those brain trauma, lesions,
tumors, and genetic factors. Differently from other types of epilepsy, in focal
epilepsy the malfunctioning of the brain affects only a small portion of the
brain. This portion is defined as the Epileptogenic Zone (EZ), or the minimum
amount of brain area that being resected would lead to the absence of seizures.
For drug resistant patients, ablation or surgical removal of the EZ may be the
only solution for a regular daily life.

1 "The 21st century brain: Explaining, mending and manipulating the mind", Iain McClure
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The EZ localization and the characterization of its neurophysiological activ-
ity through automatic tools is the purpose of this thesis. To this aim we will
analyze electrophysiological characteristics that possibly describe and help in
the identification of pathological zones. A not negligible aspect of this story is
the high dimensionality of the dataset at hand. Indeed, we will deal with time
series acquired at high sampling frequency (1 kHz), whose characterization by
pure visual inspection can be extremely challenging, subjective and not repro-
ducible, even when conducted by clinicians with long experience in the field.
The automatization of the main clinical guidelines would be extremely useful
to accelerate the analysis.

To approach this task, we heavily exploit signal processing methods and
machine learning techniques. The former is essential to discard noise and pre-
serve information in the signal, emphasizing some aspects of it, while the
latter drives to the identification of the most important factors for the discrim-
ination of the epileptogenic zones. We will leverage on regularized methods
and feature extraction techniques to identify the main characteristics of the
electrophysiological activity generated in the epileptogenic areas.

In this work, we focus on the analysis of invasive neural recordings during
the interictal stage, which is the furthest time period from the epileptic seizure.
At the behavioral level, the absence of any indication of the pathology would
suggest the brain activity generated during this period to be the least infor-
mative to discriminate epileptogenic zones. Nonetheless, as we will observe
through this work, the results presented here are encouraging and further in-
vestigations of the interictal period deserve to be studied. From a clinical per-
spective, the reader may ask why struggling for the design of methods which
analyze the interictal stage, if the seizure onset time and other periods could
be more meaningful to the localization of the epileptogenic zones.

Among many answers, one could be the search of a further comprehen-
sion of focal epilepsy as a chronic state rather than a short manifestation of
pathological activity, the seizure. In the former scenario, the study of intracra-
nial activity could be of great help for interpreting neurophysiological activity,
and, at long term, be applicable in the analysis of non-invasive recordings.
Non-invasive recordings have indeed a low spatial resolution, which is wors-
ened by the presence of muscular artifacts, extremely likely during the seizure
onset. In this perspective the analysis of interictal activity, and the transposi-
tion of any findings from invasive recordings to non-invasive ones would be
of great help for clinical progress and improved diagnosis.

This work has been financially supported by the grant "Advancing of non-
invasive procedures for the support of early diagnosis of partial epilepsies", funded
by Compagnia di San Paolo protocol 2017.AAI4513.U5101/SD/pv. The goal
of this ongoing project is to provide support in the diagnosis of epileptogenic
areas through the use of non invasive clinical tests, such as high density elec-
troencephalography, during the childhood stage. This collaboration collects
the effort of multiple departments, including DIBRIS (Dipartimento di Infor-
matica, Bioingegneria, Robotica, ed Ingegneria dei Sistemi, Universitá degli
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Studi di Genova), DIMA (DIpartimento di MAtematica, Universitá degli Studi
di Genova), and Ospedale Pediatrico Istituto Giannina Gaslini, Genova, Italy.

1.1 Outline

The first part of the thesis gives a basic background on the main clinical as-
pects regarding the epileptic condition. In Chapter 2 we introduce the notion
of epileptic condition, specifically the focal subtype. After a short description
of the main medical tests performed in this clinical routine, we analyze in more
detail invasive methodologies. We focus on invasive StereoElectroEncephaloG-
raphy (SEEG), which is the methodology used to record neurophysiological
potential in deep brain structure. This technique has been central to our anal-
ysis, as all the applications described are designed on top of this data type. We
further report the main clinical results related to the definition of biomarkers
for the epileptic areas. We put major emphasis on patterns at high frequency,
which have been pointed out as promising candidate biomarkers of the epilep-
tic areas.

In Chapter 3 we focus on state-of-the-art tools in signal processing, in par-
ticular for the analysis of neural recordings. We introduce standard spectral
analysis tools, as the Fourier transform; more sophisticated time-frequency
characterizations of the signal, as the wavelet transform, and more recent data-
adaptive representations, as dictionary learning. Then, we move to Machine
Learning (ML) methods, in the supervised and unsupervised context. This
represents a switch of context, which is showed to be useful as ML may repre-
sent an efficient tool for optimal feature extraction and could guide to efficient
representation of the signal, driven by a learning task.

In Chapter 4 we report the clinical conditions for each patient used in the
analysis.

Chapter 5 represents a starting point in the analysis of SEEG recordings.
It consists of the application of clinical criteria and signal processing tools to
extract some common clinical features from neural recordings. These methods
are mainly based on the signal threshold, Fourier transform and wavelets. We
do not respond to specific interpretation requirements, but rather to the first
warm-up question. Is there any relevant information which may help in the
discriminative task for the dataset at hand?

In Chapter 6 we describe a learning tool designed for a further step in signal
interpretation, Multi Task Multiple Kernel Learning (MT-MKL). The method
leverages on a multi-scale decomposition of the signal with the goal of select-
ing useful features to the discriminative task, common to epileptic patients.
At the same time, MT-MKL generates a customized model for each patient,
in which the prediction on the epileptogenicity of an area is performed based
on similarities among new recordings and the learning recordings, used to
build the model. Based on the neurophysiological activity the method identi-
fies pathological zones by exploiting the correlation with pre-tagged areas. We
descibe the results obtained from a first use of the learning pipeline, in which
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the proportion of epileptogenic and physiological areas is almost balanced
and the results from further analysis on the entire population. Throughout the
chapter we will observe how, despite the good predictive performance, the
method does not preserve its ability in selecting features. We formulate some
hypotheses: i ) a unique set of features might not be sufficient to capture the
variability of a population of focal epileptic subjects; ii ) the study of the en-
tire time series might be not optimal, if the epileptic activity depends on rare
pathological patterns.

Chapter 7 is the realization of the Occam’s razor. In the light of the previous
results, we look here for a further interpretation and the analysis of all pitfalls
which may bias the results. At this point we try to quantify if automatic tools
should be more focused small and rare time windows in the recordings, or
rather the overall activity during the entire registration is more meaningful
to the discriminative task. We will search through feature extraction and the
imposition of sparse a priori the most determinant elements in the discrim-
inative task. We will consider basic features which quantify the rare activity
and others that represent the average behavior for a brain area. The last part of
Chapter 7 will assume also higher clinical relevance, as corroborated by post-
surgical outcome. It consists in the evaluation of the patients conditions after
the surgical removal of the candidate epileptogenic zones, quantified through
the Engel classification. We repeat indeed the analysis to the patients’ subset
correspondent to the best post surgical outcome. The results obtained here will
guide us to the last part of the work, where we focus on smaller time windows.

In Chapter 8, which represents the final part of this work, we define a strat-
egy for the search of pathological patterns of epileptic activity in the interictal
stage. Given the previous results, and the need of translating this method-
ology to scalp measurements, we start by considering a restricted range of
frequencies. We leverage here on open source toolbox. With the imposition of
prior knowledge we report the results obtained from the attempt of selecting
candidate epileptic waveforms.
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2
Focal Epilepsy and Diagnostic Tools

Here we provide a short characterization of epilepsy, with particular attention to focal
epilepsy. We discuss the most common non-invasive diagnostic tools, with particular
accent on methods relying on electrophysiological recordings. When these medical tests
are not sufficient to precisely localize the epileptogenic tissue, more invasive medical
tests are required. Thus we give a description of invasive intracranial measures, with a
particular focus on StereoElectroncephalography. In the last part we present the main
clinical results in this context and the main aspects in the electrophysiological signals
which relate to the epileptogenic zones.

2.1 About Focal Epilepsy

Epilepsy is a neurological disorder mostly characterized by seizures, defined
as a transient disturbance of cerebral function caused by an abnormal neuronal dis-
charge [4]. Seizures manifest with different symptomatology which varies from
involuntary movements involving part of the body, to loss of consciousness
and convulsions. As reported by the World Health Organization 1, this condi-
tion affects 50 million people worldwide. Many factors can concur to epileptic
symptoms, as lesions, brain trauma, brain tumors, and strokes, but in some
cases epilepsy is determined by congenital and genetic factors, which lead to
a malfunctioning of inhibitory mechanisms involved in signal propagation.

One of the main characterizations of epilepsy derives from the distinction
among seizure types and lead to the definition of general and focal or partial
epilepsies. In the former case, the malfunctioning depends on the entire brain,
while in the latter only a restricted region of the brain is involved in the seizure
generation. We restrict our analysis on this last category. As characterized by
Aminoff et al. [4] partial seizures begin with motor and sensory phenomena
and may involve clonic movements of limbs or of facial muscles. Physical
symptoms can be pallor, flushing and sweating, while psychic symptoms lead
to memory distortion, cognitive deficit, illusions, and hallucinations. In simple
partial seizure, consciousness is preserved until the seizure discharge does not

1 https://www.who.int/news-room/fact-sheets/detail/epilepsy
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spread to other brain areas than the focus, while in complex partial seizures
consciousness, responsiveness, or memory are impaired.

In absence of lesions, the terminology used to define the brain regions re-
lated to the seizure generation and propagation discriminates between the area
of primary organization of ictal discharge, named the Seizure Onset Zone (SOZ)
and cortical areas involved in abnormal paroxysmal activity, the irritative zone
(IZ) [58]. Throughout this thesis we use the more general definition of Epilep-
togenic Zone (EZ), which we refer to as pathological regions. The EZ is defined
as the minimum amount of brain area such that its resection would lead to the
absence of epileptic seizures.

A relevant portion (about 30%) of the epileptic patients does not respond
positively to medical treatments [37]. For drug resistant focal epileptic patients
a precise localization of the EZ followed by surgical intervention represents the
only clinical scenario to improve their quality of life.

2.2 Non-invasive Diagnostic Exams

The diagnosis of focal epilepsy relies mostly on the manifestation of symp-
toms described above. The standard evaluation procedure relies on a set of
non-invasive tests, which are listed in Table 1 [4]. These standard investiga-
tion techniques search both for abnormalities of the functional brain activity,
through the analysis of electrophysiological recordings acquired with Elec-
troEncephaloGraphy (EEG), and for structural abnormalities, which are de-
tected using Magnetic Resonance Imaging (MRI).

Table 1: Criteria for evaluation of new seizure disorder in a normal patient as in [4]

History medications and drug exposures

General physical examinations

Complete neurological examination

Multiple EEG tests

Brain MRI especially after the age of 25 years

2.2.1 Electroencephalography

EEG represents one of the most reliable and well-established tool in the clinical
routine. It is one of the first non-invasive tests conducted for the measurement
of potentials generated by the brain activity. The first EEG recordings date back
to 1924 and were performed by the German psychiatrist Hans Berger. In Figure
1 we report one of those registrations. The EEG records the collective activity of
large ensembles of neurons also known as neural populations or neural ensembles.
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Figure 1: One of the first EEG recordings acquired from Hans Berger. In his prelim-
inary studies Berger investigated both the physiological activity as well as
epileptic alterations in electrophysiological recordings.

At its smallest scale the brain electrical activity arises from the generation of
ionic currents in the neural cell, or neuron. The mechanism of neural activation
for a single cell has been widely studied and characterized from the 50’s, by
the Hodgkin-Huxley model of the ionic mechanism underlying the generation
and the propagation of synaptic potential in the giant squid axon [54].

Nonetheless, the signal generation and its propagation at larger scales are
difficult and complex phenomena, as the collective behavior of a neural pop-
ulation gives rise to non-linear dynamical equations. These signals are also
known as post-synaptic potentials. The post-synaptic potential from a neural en-
semble with coherent orientation originates electrical variations which can be
measured through scalp measure.

Modern EEG test, as a non-invasive procedure, relies on the acquisition of
the brain potential through a set of sensors positioned on the scalp. The num-
ber of sensors, also called contacts or channels, changes depending on the EEG
headset model, in a range from 19 to 256 sensors, respectively from the small-
est to the highest spatial resolution. Each sensor records the electrical potential
with respect to a reference signal. The EEG sensors show higher signal resolu-
tion for electrical contributions generated in the cortex, the closest brain region
to the skull.

EEG gives a high temporal resolution signal, as the sampling frequencies
may easily exceed the kHz. Despite that, as an external measure, it suffers
from low spatial resolution, especially for activity generated in deep brain
areas, also known as intracortical regions. Another factor which deteriorates
the quality of the EEG signal is the presence of artifacts caused by muscular
and respiratory activity, eye movements, and cardiac pace [109]. In our context,
EEG is used as diagnostic tool for epilepsy by combining the resting state
protocol to the analysis of sleep stages. It has been proved that the study of
the two leads to 80% of correct diagnosis for focal epilepsy. In addition, EEG
has been shown to be a highly specific and low sensitive instrument for the
diagnostic task [112].

2.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) scans [115] reveal the structural character-
istics of the brain and constitute the standard tool for excluding the presence
of lesions or tumors.
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Even if a plethora of MRI tests exist, all are based on the common principle
of measuring the radio frequency signal emitted by atoms, due to changes in
spins-orientations, as response to a magnetic field. In its basic realization (spin-
echo MRI) the presence of hydrogen, and consequently of water molecules, is
object of the measure. This allows to distinguish brain tissues with different
water content, as fibers and grey matter. MRI can be effective in the diagnosis
of epilepsy deriving from cortical dysplasia, or malformations involving the
outer layers of cells in the cortex. Dysplasias manifest in three different types,
may have genetic causes and well as depend on brain damage (type III). In the
last case the test is sufficient to determine the pathological areas.

2.3 Invasive Diagnostic Exams

When non-invasive procedures fail in the localization of the EZ, further in-
vasive medical tests are necessary. For patients diagnosed with focal epilepsy
who do not respond to medical treatment, the removal or the ablation of the
EZ through surgical intervention may be the only solution to improve their
quality of life.

The presurgical assessment of the EZ through invasive procedure relies on
intracranial measures aimed at localizing the pathological tissue. The localiza-
tion must be precise and reliable, to reduce the amount of tissue to ablate, and
consequent damages at the cognitive level.

Invasive techniques divide in ElectroCorticoGraphy (ECoG), where electro-
physiological registrations are based on electrodes placed on the brain sur-
face, and StereoElectroEncephaloGraphy (SEEG), which records the activity
also from deeper brain structures.

We describe in detail the latter method, as the data analyzed in this thesis
are acquired using SEEG.

2.3.1 Stereoelectroencephalography

SEEG has been first introduced by Talairach and Bancaud in 1974 [123]. In a
more recent work, Cardinale et al. [22] give a precise characterization of the
SEEG acquisitions protocol2.

The SEEG is a surgical procedure which consists in the implantation of mul-
tiple filiform electrodes in the skull. The electrodes positions are determined
from previous clinical assessments about areas potentially involved in the
seizure generation. Through 3D-MRI scans and angiography, clinicians infer
the precise mapping of blood vessels in these areas, so to exclude any possible
complication during the intervention. The electrodes implantation takes place
under general anesthesia, and a 3D Computer Tomography (CT) scan follows
to check the correctness of the electrodes positions.

2 The data acquisition protocol for the results hereafter is the one described by Cardinale et al.
[22], which is also the one adopted of our dataset, as collected in the same clinical center.
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Figure 2: The raw measures are acquired in a monopolar setting, on the left. All the
contacts from the same subject record the signal with respect to a unique
reference. On the right, we convert the monopolar montage into a bipolar
montage. This implies a spatial differentiation of neighbor recordings that
are acquired on the same electrode.

The number of implanted electrodes and their positions are determined by
the patients condition. In Chapter 4 we provide this information in detail. The
contacts on each electrode register local field potential with a common refer-
ence in white matter. The community refers to this setting, in which recordings
are acquired with respect to a unique reference, as monopolar montage. This case
is reported on the left in Figure 2. The reference contact is highlighted in red.

It is a standard clinical procedure to refer the signal recorded at each contact
with respect to the closest one on the same electrode. This is known as the
bipolar montage, shown on the right of Figure 2. This is an approximation of
the spatial gradient of the electrical potential, where strong signal variations
correspond to high contributions from the recorded area.

As highlighted in the work of Mercier et al. [83] the monopolar montage
does not get rid of contributions to the signal deriving from electrical volume
conduction. The conversion to the bipolar setting is indeed considered a stan-
dard procedure to improve the spatial resolution of the signal.

Aside from a high spatial resolution, due to direct contact with cortical and
deep brain structures, the SEEG recordings are characterized by a high tempo-
ral resolution, which depends on the sampling frequency, set typically above
1 kHz. A drawback of the high signal resolution is its spatial limitation. The
measure is indeed operated on a small portion of the entire brain, and it does
allow to study the activity with high spatial resolution from pre-surgical can-
didate regions only.
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2.3.2 Epileptic States and Surgical Intervention

The localization of pathological areas still constitutes a challenging task even
when supported by the use of SEEG acquisitions. The analysis of this long tem-
poral recordings is typically performed through visual inspection by a team
of medical experts, who label the signals. This procedure is extremely time
consuming, prone to error, and subjective. The definition of the EZ relies on
the analysis of multiple stages of the neural activity, at different electrophys-
iological states (e.g. sleep stages, resting state) and during different phases of
the pathological conditions: interictal, preictal, ictal, and post ictal states3.

The interictal state is the furthest from the epileptic seizure. During this pe-
riod, the patient does not show pathological symptoms and conduce normal
activities without any impairment.

The preictal state is defined as the period preceding a seizure. It can last from
minutes to hours. Some patients attest some perceptive alterations e.g. aura or
déjà-vu.

The ictal state is period when the seizure takes place. Impaired conscious-
ness, loss of consciousness, convulsions, and motor symptoms are typical evi-
dences of the epileptic seizure.

The post ictal state is the final phase after the seizure, which lasts about half
an hour and is characterized by nausea, confusion, and headache.

Across different stages, the electrophysiological activity changes abruptly,
especially in the transition from the preictal to the ictal stage. If the analysis
of these phases is not revelatory for EZ localization, medical experts may rely
on electrical stimulations of candidate epileptogenic areas through SEEG. This
can support the clinicians in studying the neural response from each region
and at the same time in evaluating possible cognitive damages deriving from
its ablation.

As the epileptogenic areas have been identified, neurosurgeons proceed
to surgical intervention. There are two possibilities, radio frequency thermo-
coaugulation or ablation of the pathological tissue. In the former case, the
experts exploit the SEEG device to deliver currents causing a local tempera-
ture increase (78°-82° C) [17] in the candidate EZ. Ablation or physical removal
of candidate EZ is historically the most consolidate surgical intervention, and
follows to the SEEG investigation.

The surgical outcome is key in evaluating the performance in the EZ local-
ization. The degree of success of the intervention is quantified through a scale
of symptomatic signs of epilepsy which manifest after the surgery. One of
the classical scale is the Engel classification, proposed publicly by Jerome En-
gel in 1992 [38]. The Engel scale discriminates the subjects in four categories.
Engel I corresponds to seizure free subjects and represents the best surgical
outcome; Engel II collects patients who rarely show disabling seizures; Engel
III is relative to patients who manifest worthwhile improvement; Engel IV is
for cases where no worthwhile improvement is shown. This classification suf-

3 https://www.epilepsycolorado.org/wp-content/uploads/2016/01/2-Types-of-Seizures.

pdf

https://www.epilepsycolorado.org/wp-content/uploads/2016/01/2-Types-of-Seizures.pdf
https://www.epilepsycolorado.org/wp-content/uploads/2016/01/2-Types-of-Seizures.pdf
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fers of subjectivity, as improvements assessment strongly depends on patients
perception.

2.4 Biomarkers in Focal Epilepsy

The localization of EZ for drug resistant focal epileptic patients who do not
show any signs of lesion is mostly based on clinical expertise, which consists
in manually searching for pathological signature in the recordings. The sub-
jectivity of this procedure has been highlighted from both the clinical and the
computational communities [9], [66].

A vast literature aimed at defining biomarkers of epileptogenic areas in focal
epilepsy exists. Several temporal short patterns and rhythms in the brain have
been pointed out to be correlated to epileptic activity. Here, we propose a short
review for the main results relative to the interictal stage.

2.4.1 Interictal Spikes

Interictal Spikes (ISs) are brief paroxysmal events of duration comprises be-
tween 100 − 300 ms, and are retained a well-established signature of focal
epilepsy [8, 82, 130]. An extensive characterization of ISs, on which we lever-
age later on, has been given in the work of de Curtis and Avanzini [32]. Pillai
and collaborators gave a guideline to define electrophysiological patterns as
ISs (see Table 2 in [100]). Typical ISs patterns are reported in Figure 3 from the
work of Noebels and collaborators [92].

Figure 3: Figure from [92]. Different epileptic waveforms in human epilepsy from in-
tracranial recordings are shown. A is an interictal spike, B is a group of
interictal spikes, while C is a sharp wave from a lesional partial epilepsy.

In the last decades the mechanism underlying the ISs generation and their
relation with seizures has been object of several studies.

De Curtis and Avanzini [32] advanced the hypothesis that IS may play an
inhibitory role with respect to seizures. In 2002 Cohen and collaborators [25]
studied at the cellular level the origin of interictal spikes in temporal lobe
epilepsies, by analyzing epileptic neural tissue in vitro and inhibiting chemi-
cal receptors (GABA) at the cellular level. Staley and collaborators investigated
the causal relation between ISs and the seizure onset for focal epilepsies de-
rived from brain injuries, but excluded the causal implication between these
phenomena in genetic epilepsy [121, 122]. In 2012 Wendling et al. analyzed
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the capacity of microscopical and macroscopical models in the simulation of
epilepticform discharges with particular attention to ISs, in both epileptic hu-
mans and animals [131]. In Karoly et al. [67] the authors investigated the peri-
odicity between interictal spikes and seizure, throught a semi-automatic pro-
cedure for spike identification, based on matched template. Here the authors
observed a correlation between the performance in seizure prediction perfor-
mance and the amount of pre-ictal spikes.

2.4.2 High Frequency Oscillations

While there is common agreement on the importance of Interictal Spikes in fo-
cal epilepsy, more controversial results for other temporal patterns exist. A re-
cent part of the literature analyzes other candidate epileptic signatures, called
High Frequency Oscillations (HFOs). The main hypothesis, which justifies the
efforts in this direction, is that the HFOs could be even more relevant than ISs
in the focal area localization, due to their lower intensity and their locality [18,
60, 119, 137].

In [137] HFOs are defined as short patterns at high frequency (> 80 Hz),
which have origin from the co-firing of small groups of interconnected princi-
pal cells.

One of the first criteria to define HFOs (Staba, 2002 [118]) requires that, a
candidate HFO event must satisfy the following conditions a) the Root Mean
Square (RMS) of the signal evaluated on a window of 3 ms > 5σ(RMSbaseline)

(5 standard deviations above overall root mean square of the baseline), b) it
must have a minimum duration of 6 ms, c) it must have at least 6 peaks above
the 3σ of the rectified signal.

A further characterization divides HFOs in ripples (R), with typical fre-
quency ranges between 80 − 250 Hz, and fast ripples (FR), with typical fre-
quencies in the range 250− 500 Hz. In FR this activity represents the collective
effect of the activity generated from several populations of neurons, each firing
at lower frequencies.

In Figure 4, a typical HFO pattern from the work of Fedele et al. [41] is
reported. For HFOs, different clinical studies led to controversial results about
their role as epileptic biomarkers. Concerning this, we report below some of
the more recent results available from the literature.

The presence of FR with high probability links to seizure generation, as re-
ported by Staba et al. [118]. In this work the authors report that HFOs are
nonetheless involved in physiological activity, in the hippocampal regions,
in the entorihnal cortex, and in the mesiotemporal lobe, where these are in-
volved in memory formation and reactivation on previous experiences. Due to
their shape, physiological and pathological HFOs can be distinguished when
recorded using micro-electrodes, but this becomes challenging with macro-
electrodes.

Presurgical localization of the epileptogenic zone is based on the identifi-
cation of irritative areas, seizure onset zones (SOZ), epileptogenic lesions and
functional deficit zones. It seems reasonable to add R and FR areas, keeping
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Figure 4: Co-occurrence of ripples and fast ripples in the trace, as the signal is high-
passed respectively in the ranges 80− 250 Hz, 250− 500 Hz, [41].

in mind that the two mechanisms are related to different pathological mecha-
nisms. The removal of cortex involved in the HFOs generation has been related
to better post-surgical outcome than removing SOZ. The detectability of HFOs
has been assessed even from non invasive test as MagnetoEncephaloGraphy
(MEG) and EEG data [137].

An interesting meta-analysis of the role of HFOs and the surgical outcome is
proposed in the work of Holler et al. [56]. To give a measure of the correlation
of the HFOs with the EZ area the authors define first the resection ratio as

resection ratio =
#(contacts w HFOs)RA

# contacts w HFOs
(1)

The numerator is equivalent to the number of contacts containing HFOs in
the Resected Area (RA), while the denominator corresponds to the number of
contacts which registered HFOs for each subject. In this review the authors
compare the resection ratio between seizure-free (s f ) and not seizure-free pa-
tients (ns f ) from 11 studies. In the following formula µx and Vx corresponds
to the mean values and the variances for the the x population.

z = µ̂s f − µ̂ns f , mean difference of the two groups

s2 =
1

ns f
Vs f +

1
nns f

Vns f , inter-groups variance

Vx =
1

nx − 1
·

nx

∑
i
(Xxi − µ̂x)

2, within-group variance

In the last formula, Xxi represents the individual resection ratio observed on
patient i in group x. Citing the authors, one of the main results of this analysis
shows that ripple resection ratio was higher in seizure free patients in 9 out
of 10 studies, but as in 5 of 9 the positive confidence interval overlaps with
zero, only 4 could be considered significant. For what concerns fast ripples
the resection ratio is higher for the s f population in 5 out of 7 studies, but for
2 out of 5 the confidence interval overlaps with zero. In conclusion they as-
sess that the statistical evidence of the relation between the resection ratio and
seizure free outcome is quite poor and needs further investigations. Another
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more recent work quantifies the HFOs predictive power of the epileptic tissue
[41]. In this work Fedele et al. differentiate the contribute of R and FR, start-
ing from the hypothesis that interictal HFOs are more specific than interictal
spikes in the SOZ localization [60]. The authors make the point that most of
studies reports a difference between mean HFO rates in SOZ electrodes and
mean rates in non-SOZ electrodes. They made instead a classification of the
cortex based on individual electrodes. In this study the authors consider 9 pa-
tients with mesial temporal lobe epilepsy and 11 with extra-temporal epilepsy,
13 seizure free patients after resection. Resorting to the previous work of [21]
they detected ripples (median amplitude 27.4 µV peak to peak, interquartile
range 15.0 µV), fast ripples (median amplitude 9.2 µV peak to peak, interquar-
tile range 7.5 µV). They define the HFO contact as the one with HFO rate
exceeding the 95% of the HFO distribution. R-FR areas are zones which show
a co-occurrence of ripples and fast ripples.

not seizure-free seizure-free

HFO area not in RA TP FP

HFO area fully located in RA FN TN

Table 2: Definition of True Positive (TP), True Negative (TN), False Positive (FP) and
False Negative (FN) given for the patients considered in this study. The dif-
ferentiation is made as the HFO area fully falls in the Resected Area (RA) or
not.

The authors noted that, for the R-FR areas the 95 percentile criterion reaches
a specificity ( TN

TN+FP ) of 100%, and 57% sensitivity ( TP
TP+FN ) (see Figure 1D [41]).

Last we cite one of the most recent results in terms of lack of significance of
the correlation between HFO and the EZ areas [62]. The authors present here
the results from a multi-center dataset (Freiburg, Montreal, Los Angeles), with
a population of 52 subjects. The tagging of the HFOs during the sleep-activity
at the interictal stage is partially guided by an automatic procedure [135], as
the algorithm needs as input a baseline and some HFOs patterns. The proce-
dure has been performed by two medical experts with good coherence in the
evaluation of the patterns k-coefficient > 0.6. For what concerns the quantifi-
cation of the overlap between HFOs areas and EZ, the authors characterized
the contacts using two measures, as already done in Jacobs [61]. The first takes
into account the rate of HFOs in resected and non resected areas, respectively
RA and nRA

ratio rate =
∑i∈{RA} ratei −∑j∈{nRA} ratej

∑k∈{all contacts} ratek
. (2)
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The last quantifies the ratio of contacts participating to high frequency events,
regardless from the rate. This quantity partially relates to the resection ratio
defined in [56], but does not allow a direct comparison.

ratio contacts =
#(contacts w HFOs)RA − #(contacts w HFOs)nRA

# contacts w HFOs
, (3)

= resection ratio− #(contacts w HFOs)nRA

# contacts w HFOs
. (4)

With #(contacts w HFOs)RA, #(contacts w HFOs)nRA and # contacts w HFOs
we denote respectively the number of contacts in the resected areas containing
HFOs, the number of contacts containing HFOs in non resected areas and
the number of contacts containing HFOs. The ratio contacts can assume here
negative values (ratio contacts ∈ [−1, 1]) and it is more informative than the
resection ratio as it discriminates the scenario i) no HFO events are registered
in all contacts, from the scenario ii) HFOs events are present but only in non
resected areas.

The results of this study are quite discouraging. The authors consider the
post-surgical outcome for all patients to evaluate the relationship between the
ratio rate and the ratio contacts with the Engel classification. The Spearman
rank correlation coefficient ρ ∈ [−1, 1] is used to quantify the monotonic re-
lation between two ranked variables. Citing the authors a deeper analysis of the
predictive value in each center at the individual level revealed that HFOs did not
reliably predict post-surgical outcome, with exception of the Los Angeles site. The
statistical results are shown in Table 1 [62].

In the light of the previous results, the result of Fedele et al. [41] is not in
direct opposition to the more recent from Jacobs et al. [62], due to the different
approach used in the definition of the HFO resection area. Indeed the TN rate
of the former work can be traslate to

specificityFedele et al. =
(# contacts w HFOs)RA

# contacts w HFOs
= 1, (5)

for seizure-free subjects (or Engel I subjects).
The TN definition reminds the resection ratio introduced in Eq. 1 with the

peculiarity that to be defined # contacts w HFOs, a contact must meet strict
conditions – the contact must exceed the 95% of the HFOs distribution. Due
to this high threshold value, an abundant co-occurrence of ripples and fast
ripples events in an area seems to be a necessary but not sufficient condition to
define an area as epileptic, as the Engel I subjects with # contacts w HFO not in
RA > 0 is null. The improvement in the resection ratio given by imposing a
threshold to the amount of HFO events per contact so to consider it as a "con-
tact w HFOs" had been proved to give smaller improvement to the resection
ratio in the meta-analysis from Holler and collaborators, in Section 3.5 [56].

For further investigations, a larger population would be necessary to assess
with high confidence that the HFO rate correlates to the EZ area. The analysis
of this patterns presents moreover several problems, which make even harder
their use in the clinical routine. These issues are mostly related to 1) the com-
plexity of the analysis, e.g. filter artifacts may rise from ISs, giving similar
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effects at high frequency 2) the definition of a baseline and HFOs templates
require expertise and can be biased. In this regards the Cohen coefficient of
agreement between visual and automatic marked data in [62] is equivalent to
0.6 in a range between [0, 1].

2.4.3 Alterations of Electrophysiological Rhythms

The synchronization of neuron populations gives origin to oscillations and
rhythmic patterns of electrical activity at a macroscopical level, which are
widely visible from scalp measures as well. These rhythms, which are typ-
ical in the physiological brain, are known as electrophysiological rhythms. The
community divides these oscillations in frequency bands of clinical interest,
which are associated to different states. (i) δ rhythm, between 1 − 4 Hz, is
typically associated to the REM sleep stage. (ii) θ rhythm, 4 − 8 Hz, is re-
lated to spatial navigation and memory. (iii) α rhythm, 8− 13 Hz, is emergent
during the resting state activity, with closed eyes. (iv) β rhythm, in the range
of 13 − 30 Hz, is associated to active concentration and thinking. For (v) γ

rhythm, 30− 70 Hz and (vi) high-γ between 70− 90 Hz, no common agree-
ment on their functional role exists. Several works have pointed out altered
electrophysiological rhythms as evidence of the epileptic status. In this con-
cern we enumerate only a few among these. The work of Pyrowski et al. [103]
highlights alterations of the α rhythm, which shows significative attenuation
from the control population. The interval analysis reveals also an increase of
the θ activity for the epileptic patients. Alterations of the θ rhythms have been
observed also in [128], where the authors analyzed changes of this rhythm in
relation with the network generated by areas showing HFOs. The work of Di
Gennaro et al. [35] shows a correlation of Theta Intermittent Rhythmic Delta
Activity (TIRDA) with the epileptic activity. TIRDA is defined here as a pat-
tern of sinusoidal trains fo activity, in the range 1− 3.5 Hz with an amplitude
comprises between 50− 100µV.



3
Data Representation and Learning

In this Chapter we will introduce different strategies for both fixed and adapted data
representations. In the former case, the choice is independent from the dataset at hand,
while the latter results in the search of an optimal representation, which translates in
the definition of an optimization problem depending on the data at hand. We will intro-
duce several optimization techniques developed in the context of signal representation
and learning methods for solving supervised tasks. In this context the representation of
the input data is guided by the need of predicting one or more variables. This connects
to the goal of the work, as we tackle it as a binary classification problem, where we
aim at discriminating neural recordings as acquired from epileptogenic or non epilep-
togenic zones. Learning to solve a specific task can potentially lead to the design of a
useful representation of the dataset. We will conclude the chapter by discussing meth-
ods for unsupervised learning (e.g. clustering), as we will exploit them in the very last
part of the thesis.

3.1 The Problem of Data Representation

Two main questions arise when discussing data representation. Why should I
represent my data differently from the way they are given? What are the main
advantages of this procedure?

There are tons of acceptable answers to these questions, ranging from phys-
ical needs "My data are too large to fit in memory", to practical usage "I do not
want to scroll a long file of meaningless stuff before finding that small piece of infor-
mation I desperately need" or to the will of putting focus on some aspects in the
data "There are quantities I want to treat in different ways".

These basic motivations already reflect important necessities of people deal-
ing with data analysis. The main driving forces are selectivity, compression, and
efficiency [2, 50, 85]. Data representation improves data analysis by facilitat-
ing the comprehension of the phenomena under study and highlighting key
aspects related to their statistical properties. Even when not explicitly stated,
there is typically an interpretation need which guides to the choice of a specific
representation.

19
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Automatic learning methods have a consistent intersection to the data rep-
resentation problem. Starting from the data, they leverage on automatic ap-
proaches to solve a task. Learning methods are based on the formulation of a
mathematical cost function and the use of optimization techniques to find the
optimal model to fit the data.

Throughout the chapter we will notice that learning and data representation
techniques are strictly intertwined. Historically, learning methods sat on top
of pre-made and ad hoc representations depending on the data at hand and
guided by domain expertise. Through more recent methods the representa-
tion could have been redefined, based on regularization and feature extraction
techniques. In the last years, due to an increasing complexity of the models
used for learning task, data-driven representations emerge as a side effect of
prediction.

To make the picture clearer, we report a diagram in Figure 5, which shows
the main aspects we will review in this chapter. We refer the reader to books
and papers which we cite throughout the analysis for an exhaustive explana-
tion of the introduced topics.

Figure 5: Schematic representation of the main topics covered in this Chapter. At
the top, standard tools for time series representation: Fourier and time-
frequency analysis. At the bottom, most popular learning methods where the
representation responds to specific tasks as compression, supervised learn-
ing, and clustering. Topics denoted with a black star are methods which we
made us of, while the ones with red star are areas to which we made a
contribution presented in the thesis.

The problem of data representation is particularly important for the analysis
of time series. Indeed considering single time points is in general not a good
choice for understanding the data, while analyzing the collective behavior of
the time series may be. The understanding of phenomena underlying time
series is typically difficult due to the high dimensionality of the data, unknown
dynamics, and plausible causal relations among variables, for the multivariate
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case. Note that, even if causality is a topic of extreme interest for the analysis
of our data, we will not approach it in the thesis.

Starting from the top of Figure 5 we introduce hard-coded data representa-
tion methods, which include spectral analysis, or Fourier analysis, and more
sophisticated tools for time-frequency representations for the signal, as win-
dowed Fourier transforms and wavelet transforms. All these representations
share the common peculiarity of being invertible transformations, implying no
information loss with respect to the original signal.

The representation may also be guided by the aim of responding to a spe-
cific task, we will see how learning methods and optimization play a major
role here. The topics in the bottom part of Figure 5 mostly cover these as-
pects. We identified three main goals where representations and learning are
strictly interconnected: compressed representations, supervised tasks, and cluster-
ing. We will describe some techniques for each of the topic, putting emphasis
on the ones we actually use, or to which we contribute. Given the question
in mind and the expertise about the domain, we analyze also how to inject
this information in the solution, which is usually referred to as prior knowledge
imposition. This concept will occur frequently throughout the chapter, and we
will explore some of the strategies used to impose a priori to the solution of
an optimization problem.

3.2 Time Series Representations

Time series and their representation are the main protagonists of this thesis.
In particular we will deal with intracranial variations of electrical potential.
Even though these quantities are continuous in time, the observation of a sig-
nal is affected by discretization, where the temporal resolution is imposed by
the sampling frequency of our acquisition system. In the next sections we de-
note through S(t) a generic time series. The transformations presented in the
following have been formalized in both the continuous and discrete temporal
domains. Here we present their continuous version, as the focus in not dis-
cussing their numerical implementation but rather giving an intuition about
their effect on the data representation. It is worth noticing that these trans-
formations are invertible, implying no information loss neither compression,
while may plausibly improve the interpretation of the signal.

3.2.1 Spectral Analysis

The standard approach in spectral analysis consists in finding a decomposi-
tion of the signal onto patterns of periodic behavior. As introduced before,
meaningful information in an electrophysiological recording can be present at
different level, or frequency bands.

Historically Fourier analysis provides the most well-established tool for the
analysis of time series, as it decomposes the original signal into a sum of
sinusoidal functions of different frequencies and phases.
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Given a time series S(t) ∈ L1(R), the space of integrable functions, the
Fourier transform F maps a signal S(t) from the temporal to the new repre-
sentation in the frequency domain Ŝ( f ) as follows

(FS)( f ) =
∫

R
dtS(t) exp [−i2π f t] = Ŝ( f ). (6)

by projecting S on an infinite basis of sinusoidal functions. The numerical real-
ization of the Fourier transform relies on a discrete version for the continuous
Fourier transform, and it is known as Discrete Fourier Transform (DFT) [28].
In the thesis we will heavily use this tool, which represents a gold standard
for time series analysis.

3.2.2 Time Localization

The projection over a periodic signal presents some limitations. The Fourier
decomposition in Eq. 6 is not optimal to represent short transient in the time
series as this is rather a global transformation, which takes into account the
entire signal in the temporal domain. There are other time series representa-
tions which overcome this issue as the windowed Fourier Transform and the
Wavelet Transform.

3.2.2.1 Windowed Fourier Transform

The windowed Fourier transform provides a temporal localization by defining
a window function g, typically smooth with compact support which selectively
focuses on a signal portion in the temporal domain. The transform is defined
as

(TwindowS)( f , τ) =
∫

dξS(ξ) g(ξ − τ) exp [−i f ξ] . (7)

Twindow denotes the windowed Fourier transform over the signal S, which is
defined on both the temporal and frequency domains. The function g is the
smooth window convolved with the original signal. The exponential term in
the integral has the same role as in the Fourier transform, and it is a sinu-
soidal function whose frequency is specified by f . The size of the window
function represents the trade-off between temporal and frequency resolution.
Short windows in the temporal domain will localize transients with high tem-
poral resolution, leading nonetheless to a worse description in frequency. In-
deed as we reduce the width of the window, the transformation gets further
from being a pure oscillation, for decreasing values of f in Eq. 7. In Figure
6 we show an example of the basis g(ξ − τ) exp [−i f ξ] in Eq. 7, for different
frequency values, f = 2 Hz, on the left, and f = 10 Hz, on the right. The
window support is independent from the frequency value, and this aspect, as
highlighted by Daubechies, may represent a limitation as it does not allow an
optimal localization for both sharp and wide transients in the signal [31].
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Figure 6: Two examples of g(ξ − τ) exp [−i f ξ] for a window of fixed length, orange
curve. The window g has been constructed using functions with exponential
decay. There is a gain in terms of locality with respect to the Fourier trans-
formation, but the results could be not optimal as the frequency increases.
The window width does not change as the frequency increases, as shown on
the right.

3.2.2.2 Wavelet Transform

In this regard we introduce a last family of transformations, known as wavelet
transforms, which offer a valid solution to the localization issue, as they allow
to get a good localization of short as wide transients in the signal. Differently
from the previous methods, the wavelet transform requires the definition of
a function Ψ, called mother wavelet, which is not sinusoidal, onto which we
project the data. In Figure 7 we provide an example of mother wavelet for
different scaling parameters. To be more precise two types of wavelet trans-

-4.0 -2.0 0.0 2.0 4.0
Time,  [s]

a, b = 2
3b 1

4
(1 ( a

b )2)exp[ ( a)2

2b2 ]

-4.0 -2.0 0.0 2.0 4.0
Time,  [s]

Figure 7: Example of a mother wavelet (Mexican hat), whose analytical form is de-
fined in the legend. The two examples reported here are two versions of
the same function at different scales. The scale parameter, related to the fre-
quency, corresponds to b. Differently from what we have seen before for
the windowed Fourier transform, a change in the sharpness of the function
affects its support.

form exist: the Continuous Wavelet Transform (CWT) and the Discrete Wavelet
Transform (DWT).

continuous wavelet transform The CWT requires the choice of a
function Ψa,b, also known as mother wavelet which is parametrized by a ∈ R,
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the scaling parameter, and b ∈ R, the translation parameter. The former allows
to dilate or compress the function changing at the same time its support.

(WCWTS)(a, b) =
1√
a

∫
dξS(ξ) Ψa,b(ξ) =

1√
a

∫
dξS(ξ) Ψ

(
ξ − b

a

)
(8)

Besides the requirement over Ψ of square integrability in R, the admissibility
condition is necessary to define the wavelet transform at hand as invertible.

CΨ = 2π
∫

dξ|ξ|−1|Ψ̂(ξ)| < +∞, admissibility condition. (9)

discrete wavelet transform Differently from the CWT, in the DWT
the parameters (a, b) assume discrete values. The discrete wavelet is thus de-
fined, at the j-th scale, as

Ψj,k =
1√
2j

Ψ
(

t− k2j

2j

)
, with j, k ∈ Z. (10)

The result of the transformation is

(WDWTS)(j, k) =
1√
2j

∫
dξS(ξ) Ψj,k(ξ) =

1√
2j

∫
dξS(ξ) Ψ

(
ξ − k2j

2j

)
. (11)

The transform gives the result of convolution at discrete step, for a fixed scale
j. The convolution is indeed computed at position [0, 2j, 22j, . . . , 2M], with M =
log2 N

j .
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Figure 8: Wavelet coefficients of a signal S showing a transient S(t) = sin(ω0t) +
exp[(t − t0)

2/(2σ2)] + N (0, σn). On the left: the CWT with Mexican hat
mother wavelet. The output is a matrix of coefficients whose dimensions
are (#s× N), with #s choice of the user. On the right: DWT coefficients, with
Haar mother wavelet.

In Figure 8 we report the absolute value of the wavelet coefficients obtained
from a non periodic signal. The wavelet coefficients are able to catch the tran-
sient with a good temporal resolution. The peak occurs in presence of the
dashed red line. The two transformations differ in the output dimensions. On
the left, the array of coefficients of the CWT has the same length across scales,
due to the continuous translation in the temporal axis. The number of DWT
coefficients instead increases as the scale decreases. For the DWT, as shown in
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Formula 10, the translation is discretized. Due to the geometric sequence of
ratio 2 for the scaling parameter this wavelet is also defined as dyadic wavelet
transform.

The choice of the mother wavelet is a key aspect for the output represen-
tation. If we are searching for a specific waveform in the signal, the mother
wavelet should resemble the desired waveform, so to localize at best the pat-
tern. A typical choice is the Morlet wavelet, widely adopted in neuroscience
[20, 75] and implemented in standard tools for the analysis of electrophysio-
logical data1.

3.3 Learning Methods for Compressed Repre-
sentations

So far we introduced lossless data representation methods for time series.
Nonetheless, data representation may become extremely challenging for high-
dimensional data and may be not optimal in terms of data storage. In this
regard, compressive methods play a crucial role.

In practice this requirement entails a dimensionality reduction, which may
lead to truncation or, for more advanced scenarios, to the imposition of con-
straints on the resulting representation. Advanced techniques for data com-
pression take the form of optimization problems. In this sense, an optimal
compression should lead to small information loss, while reducing the dimen-
sionality of the data. Compression, as solution of an optimization problem,
represents the optimal representation learned from the data, as it is guided by
the data themselves.

For what concerns time series representation, compressed versions of the
wavelet transforms derive from coefficients thresholding [23], coefficients shrink-
age [36], and high frequencies removal. Several approximation schemes, whose
choice depends on the hypothesis of regularity of the input signal, are dis-
cussed in Chapter 9 [79]. As we have seen, the Fourier or wavelet transforms
are representation tools independent on the specific time series at hand but
rather guided by previous assumptions on the phenomena under study.

In this chapter we will further explore optimization schemes whose outcome
are both the set of generators used to project the data and the set of coefficients,
both shaped by the dataset.

We introduce some further notation. As some of the methods described be-
low are not specifically designed for time series, let x ∈ Rp denote a generic
observation of p scalar quantities, which can be viewed as one among N ob-
servations. Those are collected in the dataset, X ∈ RN×p. We explore next
several methods for dimensionality reduction. Those explicitly designed for
time series will leverage on the previous notation for signal, S.

1 Last access: May 4th, 2020https://neuroimage.usc.edu/brainstorm/Tutorials/

TimeFrequency

https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency
https://neuroimage.usc.edu/brainstorm/Tutorials/TimeFrequency
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3.3.1 Principal Component Analysis

Principal Component Analysis (PCA) is the most basic version of matrix factor-
ization [97]. PCA is a standard method for dimensionality reduction in many
fields, including image analysis [76], signal processing [111] and data visual-
ization [65].

In the hypothesis of possibly correlated measures, the method returns a
decomposition into orthogonal components. The first component combines
the original features and denotes the direction of maximal variation for the
given set of observations [1].

Each column of the input data matrix X must be centered so to have zero
mean. The direction of maximum variance consists in the solution to the fol-
lowing optimization problem

w(1) = arg max
‖w‖=1

{
‖Xw‖2} (12)

Given the constraint of unit norm, the problem is equivalent to

w(1) = arg max
‖w‖=1

{
wTXTXw

wTw

}
.

The solution corresponds to the largest eigenvalue for the matrix XTX, with
w(1) the corresponding eigenvector. Once we compute this quantity, the first
component is equivalent to t(1) = X ·w(1). The procedure is repeated iteratively
for the other components, with the only difference that the matrix considered

at the k-th iteration becomes X̃ ← X −∑k−1
s=1 Xw(s)

(
w(s)

)T
, which is the resid-

ual of the original matrix, given the components which we already computed.
Then, the estimation of the k-th component can be formulated as

w(k) = arg max
‖w‖=1

{
wTX̃TX̃w

wTw

}
.

The full principal component decomposition of X can then be written as

T = XW (13)

where W is the square matrix whose columns are the ordered eigenvectors for
XTX. This result can be obtained equivalently through matrix diagonalization,
using the algorithm for Singular Value Decomposition (SVD) [44]. A reduction
of the output dimensionality can result from eigenvalue truncation (and corre-
sponding eigenvectors), which corresponds to the removal of directions with
the smallest variance. Typically this is achieved by fixing a level of variance
we want to preserve from the original data, and by keeping the corresponding
number of PCA components.

3.3.2 Independent Component Analysis

PCA is based on a second order statistics, or variance. Differently, Independent
Component Analysis (ICA) exploits higher order statistics. ICA separates a
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multivariate signal as the sum of different sources, which are assumed to be
statistically independent. Given the dataset X, ICA aims at finding

X = AZ (14)

with Z, matrix of independent sources, where each row is the realization of
random process and A is the mixing matrix. As in PCA, the ICA algorithm
[57] assumes zero mean input, which can be easily achieved by re-centering
the data. One among the most popular choice to implement ICA consists in
the search of the decomposition which maximizes the non-Gaussianity of the
sources. This choice is based on the result of the Central Limit Theorem, which
states that, as the number of independent random variables N increases, the
probability distribution for their sum converges to a Gaussian distribution.
Given the hypothesis of independent non-Gaussian random variable, the idea
is finding iteratively the components which give the most non Gaussian set
of signals. For further details we refer to [57], Section 4. Non-Gaussianity is
not the only option to achieve the ICA decomposition. For information based
criteria we refer again to [57].

3.3.3 Adaptive Matrix Factorization

With adaptive matrix factorization techniques we denote a family of meth-
ods which share the common characteristic of factorizing a data matrix in the
product of matrices

X ∼ CD, (15)

with dim(C) = N × k, dim(D) = k × p. The exact factorization is possible
if the condition rank(X) ≤ k holds true [116]. Despite PCA and ICA fall in
the family of matrix factorization techniques, the interest in adaptive matrix
factorization methods arises nonetheless from the necessity of approximating
high dimensional matrices of low rank as the product of smaller matrices. In
presence of small dimensional representations, such that rank(CD) < k with
k user parameter and k � rank(X), it is possible to talk about low rank matrix
factorization. In particular with adaptive matrix factorization we denote Sparse
Coding (SC) and Dictionary Learning (DL), two popular matrix factorization
methods. Their adaptivity is given by explicit requirements of interpretability,
sparsity, or compressibility imposed through specific cost functions.

In [125] we presented a library to optimize this type of problems. Hereafter,
we give a short characterization of SC and DL. Feel free to refer to [125] for
further details about their implementation.

3.3.3.1 Sparse Coding

Given X, sparse coding decomposes the samples on a set of k vectors. Let
D ∈ Rk×p be a fixed dictionary. The problem does not simply imply the pro-
jection of the original data on D, as prior knowledge can be imposed on the
output representation. The aim of sparse coding is finding the best C, matrix
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of coefficients, such that X ∼ CD, with C ∈ RN×k, where we may constrain
the solution C. The optimization problem formulates as follows

C∗ = arg min
C

{‖X− CD‖+ λΨ(C)} , (16)

where, on the right side of the equivalence, the left term represents the distance
between the approximation and the true data. We do not specify the metric,
which is a user choice. The last term on the right represents the constraint,
expressed through the functional Ψ. Typical constraints are: sparsity, achieved
through L0 or L1 norms, shrinkage, achieved using L2 as also a measure to
avoid correlation, together with the combination of the L1 and L2 norms. De-
pending on the choice of the norm, the problem is strictly convex and admits
a unique solution, e.g. in the L2 case. The parameter λ represents a trade-off
between the approximation of the input data and the weight of our constraint.
Its choice is a crucial part of the optimization problem. Among the possible
values it can assume (which are fixed to be in a finite vector, or can be the
result of a random sampling strategy), it is chosen as the one that give rise to
the more robust results and best approximations of the original data.

3.3.3.2 Dictionary Learning

DL is another matrix factorization method where both the coefficients C and
the dictionary D are learnt from data. Given the same hypothesis of SC, or X ∼
CD, the optimal C∗ and D∗ matrices are results of the following minimization
problem

(C∗, D∗) = arg min
C,D

{‖X− CD‖+ λ1Ψ(C) + λ2Φ(D)} . (17)

The matrices dimensions C ∈ RN×k and D ∈ Rk×p depend on k, a free pa-
rameter of the method which fixes the number of atoms in the dictionary. The
parameters λ1 and λ2 weight the importance of prior knowledge, which is
imposed through the functionals Ψ and Φ respectively.

For both SC and DL, the flexibility given by the choice of the fitting data
term and the constraint terms is highly desirable.

Typical choices are L1 norm terms under the assumption of sparse solutions
(Chapter 7.6 [51]), L2 norm to shrink and smooth coefficients [116], L∞ term to
penalize the presence of vector components with high amplitude [126, 127].

Other constraints may rise by requiring a low rank solution, which we can
imposed through a constrain on the rank of the matrices or through a small
value of k� min(N, p). These constraints can be imposed on both the matrices
C and D.

Problem 17 is not jointly convex in the variables C, D. The strategy proposed
for the search of optimal parameters in [125] has been proximal alternating
gradient descent [14]. Following this criterion, the convergence to a local min-
ima, under the choice of a reasonable learning step, is guaranteed.
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3.3.4 Convolutional Dictionary Learning and Sparse Coding

All the compressive strategies introduced above take into account the entire
input dataset, which, in case of time series, is the entire period of acquisition.
Some recent methods used the concept of matrix decomposition to provide
adaptive representations for time series. Those go under the name of Convo-
lutional Sparse Coding (CSC) and Convolutional Dictionary Learning (CDL).
Similarly to SC and DL the idea is to decompose the original time series S
using patterns of smaller support than the entire signal length. This decompo-
sition is obtained through the convolution of patterns and coefficients, which
are alternatively optimized. We report the clear formulation given in La Tour
et al. [71] which gives an overview on the available CDL implementations.

3.3.4.1 Univariate CDL

Given a set of one dimensional signals {Sn}N
n=1 ⊂ RT of length T, the opti-

mization problem corresponds to

min
{dk}k ,{zn

k }k,n





N

∑
n=1

1
2

∥∥∥∥∥Sn −
K

∑
k=1

zn
k ∗ dk

∥∥∥∥∥

2

2

+ λ
N

∑
k=1
‖zn

k‖1



 , (18)

subject to ‖dk‖2
2 ≤ 1, and zn

k ≥ 0. (19)

Here λ is the regularization parameter, {dk}K
k=1 is the dictionary of patterns of

support L, and {zn
k} ⊂ RT−L+1 are the coefficients related to the activation for

the k-th pattern and the n-th time series. One of the first implementations of
this method has been proposed in [49] in the context of audio classification.

3.3.4.2 Multivariate CDL

In the multivariate scenario we deal with the evolution of multiple variables.
In this case each sample is a family of C time series, each of length T, for
a total of N samples. We denote the generic j-th multivariate time series as
(MS)j ∈ RC×T.

min
{Dk}k ,{zn

k }k,n





N

∑
n=1

1
2

∥∥∥∥∥MSn −
K

∑
k=1

zn
k ∗ Dk

∥∥∥∥∥

2

2

+ λ
N

∑
k=1
‖zn

k‖1



 , (20)

subject to ‖Dk‖2
2 ≤ 1, and zn

k ≥ 0. (21)

The k-the element of the dictionary is Dk ∈ RC×L and the activations coeffi-
cients, are, as for the univariate case zn

k ∈ RT−L+1. This approach has also been
implemented for the analysis of multivariate neurophysiological recordings as
EEG signals, see Barthelemy et al. [10].

3.3.4.3 Multivariate with Rank-1 CDL

The method proposed in La Tour et al. [71] has been explicitly designed for
neural recordings, in particular EEG and MEG signals. Here, leveraging on
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the assumption that the real dimensionality of the multivariate time series
may be much smaller than the number of recordings, the authors define a low
rank convolutional dictionary learning approach. The multivariate-time series
is approximated by a single temporal pattern, generated in a region of the
brain, that propagates through all brain regions. The amplitude of the patterns
is modulated by a vector of weights, of the same dimension of the number of
recordings. The dictionary Dk ∈ RC×L of the Multivariate CDL is decomposed
as Dk = ukvT

k , product of uk ∈ RC×1 the spatial vector and vk ∈ RL×1 the
temporal vector. Again the activations for each element k of the dictionary are
encoded by the coefficient zn

k .

3.4 Learning Methods for Supervised Tasks

As we have introduced before, optimization strategies solve many different
tasks, not necessarily related to compression. A substantial part of machine
learning literature was developed to answer predictive challenges. Image recog-
nition, audio classification, sentiment analysis, and decision systems are few
examples of predictive challenges tackled by machine learning techniques.

The traditional learning paradigm for supervised tasks is such that, given
a set of data (Xi, Yi)

N
i=1 we aim at finding a relation f which maps our input

data in the output quantity. The generic i-th sample, (Xi) ∈ Rp, is an array
of p features, while the correspondent output value Yi can be equivalently an
array or a scalar quantity. The relation f is inferred from the dataset at hand,
which constitutes the learning set.

In case of discrete output values Y representing a category we refer to the
problem as a classification problem. In the case where Y is a continuous quantity,
the learning task takes the name of regression problem.

In both scenarios, given the tuple (Xi, Yi) corresponding to the generic i-th
observation, and X × Y as the space of the possible realizations for (X, Y)
variables, we make the hypothesis on an underlying joint probability distri-
bution p(X, Y). The joint probability models different sources of uncertainty,
depending on both the input and the output variables. Under the main as-
sumption that the probability distribution of X is independent from Y, the
joint probability is equivalent to

p(X, Y) = pX (X)p(Y|X).

The distribution p(Y|X) models the noise in the output, meaning that given
a fixed X there is not a determined relation which maps it with probability
1 to a unique Y value. Some techniques (e.g. Bayesian methods) also deal
with the estimation of prior probability distributions, but these approaches
typically require strong assumptions on the process generating the input data.
As already mentioned, from a set of data, our learning task will be limited to
the search of a predictive model, that involves the conditional probability only.

Pivotal ingredients of this learning paradigm are: (i) the dataset, which should
be as large as possible in terms of number of N samples. The quantity of sam-
ple needed to build a model is a critical aspect in order to get generalizable
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results, but can be out of control if the experiments have been not explicitly de-
signed a priori. Moreover scientists must fix carefully (ii) the hypothesis class, a
family of functions which may approximate the input-output relation. This can
be an extremely wide set and differently from standard parametrical methods,
the choice of the best function comes as the consequence of the learning pro-
cess, where the output model and its complexity are results of an optimization
procedure and depends on the dataset [3]. In the following section we report
examples of basic hypothesis class, e.g. linear models, as well as more flexible
non linear models. The third key aspect of learning is the definition of (iii) an
optimization problem, implying the choice of a loss function L. The functional L,
given Xi, quantifies the error made by the model in predicting Yi, and it maps
L : (Y; X, f )→ [0,+∞). It typically consists in the sum of the loss function for
all the points used for model inference, as reported in Formula (22)

L(Y; f , X) =
N

∑
i=1
L(Yi; f , Xi). (22)

The choice of the loss function is a crucial aspect, which has drastic effect
on the model performance. In Table 3 we report some typical loss functions
for classification and regression. Typically, the hypothesis class corresponds

Binary classification Regression

Least square ‖1−Y f (X)‖ Least square ‖Y− f (X)‖

Hinge loss |1−Y f (X)|+ L1 norm |Y− f (X)|

Logistic log(1 + exp[−Y f (X)]) ε-insensitive |Y− f (X)|ε

Table 3: Typical loss functions for binary classification (left), and for regression prob-
lems (right). The two functionals can be easily generalized to the multi-
category/multi-regression cases.

to the class of linear functions. In the regression case, the function can be
written as f (X) = Xβ + b, while in binary classification it may correspond
to f (X) = sgn(Xβ + b). Given the training tuple (X, y) this translates to the
search of the tuple (β, b) which gives the best prediction f (X), or the least
distant from the output.

Nonetheless linear models can be limited in terms of predictive capacity in
presence of more complex underlying dependence of the output from input
variables. This drawback can be overcome through non-linear models, which
may be more complex but more flexible, in term of data fitting. Among those
we make a distinction between kernel methods and non-linear methods.

3.4.1 Kernel Methods

With kernel methods we denote a family of methods whose strategy is to
represent the input data in a typically higher dimensional space. The mapping
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to higher dimensional space is obtained by fixing a feature map, φ : Rp → Hk,
where Hk denotes a Reproducing Kernel Hilbert Space (RKHS) [7]. This space
has the following properties

1. as subspace of the Hilbert space, it is endowed of distance and norm;

2. it is the space of functions which, given an element in Rp, with p feature
space, map to R

Hk = { f : f ∈ Rp → R};

3. as we define an evaluation functional Tx, with Tx : Hk → R,

Tx( f ) = f (x)

this is continuous.

Given a feature mapping φ in a RKHS, the non-linear function in the original
space can be written as

f (·) = φ(·)β + b, (23)

with an additional threshold in presence of a classification task. The function
is non-linear in the original input feature space, but in the tuple (β, b).

To give an intuition we report an example about the beneficial usage of a
feature map, in Figure 9. The image represents a binary classification prob-
lem, where our input samples are originally vectors in a R2 space, on the left.
Each sample is represented as a dot; the two classes, encoded by two different
colors, are non-linearly separable in the original space. Using a polynomial

x1

x2

φ

x2
2

x2
1

√
2x1x2

Figure 9: Example of polynomial feature mapping φ with degree two. Left: the data
are not linearly separable in the input space. Right: the mapping to a higher
dimensional representation allows the linear separation of the two classes.

feature map of degree two, we get a new data representation, through which
the classes are linearly separable.

The prerequisite of having a feature map φ ∈ Hk, the reproducing ker-
nel Hilbert space, guarantees a unique relation between the feature map and
a semi-definite positive functional K, called kernel. The kernel measures the



3.4 learning methods for supervised tasks 33

pairwise distance between any sample in the Hk space [47]. This special prop-
erty is also known as the kernel trick, as is widely used in several machine learn-
ing techniques [5, 84, 114]. This allows indeed to write any function equiva-
lently through the kernel of the feature map. The former case is extremely
convenient when the feature map is high dimensional, as it reduces to the
computation of the similarity.

[110] Using the kernel trick, the formulation of the model in Equation 23 is
equivalent to

f (·) = BK(X, ·) + b, (24)

with B the kernel coefficients to optimize, each weighting a sample of the
dataset in X. In Table 4 some among the most popular kernels used in ma-
chine learning. The linear kernel corresponds to the identical feature map, the

Linear Xi · Xj

Affine (1 + Xi · Xj)

Polynomial (1 + Xi · Xj)
m

Gaussian exp
[
− ‖Xi−Xj‖2

2
σ2

]

Table 4: Examples of the most common kernels, pairwise similarity measures for the
generic ith and j-th samples in the input space. For the linear, affine and
polynomial mappings, the similarity is measured through the product, in the
Gaussian kernel, it increases inversely to the norm of the distance.

affine K has an additional bias term, the polynomial kernel corresponds to
the similarity matrix for the polynomial feature map, and the Gaussian kernel
originates from the Gaussian function, with variance σ. This last feature map
is infinite dimensional, but independently from the choice of the feature map,
the desirable characteristic of kernel methods, given 24, is the bound to the
model complexity given by the number of training examples [55].

3.4.2 Non-linear methods

A second class of more recent methods, which do not share the same mathe-
matical properties of kernel machines, can be used to express non-linear func-
tion. Examples are ensemble techniques and deep learning methods. A large part
of the community is investing its effort on this latter class of methods, as the
non-linearity typical of the free parameters of these models is such that the
solution strongly depends on initial conditions and convergence to an optimal
solution (global optimum) cannot be always guaranteed [129], even if empiri-
cally observed [136]. A mathematical framework able to give general theoret-
ical guarantees about these methods still do not exists, but there have been
several attempts [102, 108]. Nonetheless, the approximation capability of these
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models obtained through the minimization of a data fitting term seems the
perfect learning machine (for more insight about the approximation capacity
of non linear models, refer to the universal approximation theorem [30]).

3.4.3 Learning Issues

There are several aspects that may impact the results during the learning pro-
cess, all related to the difficulty of dealing with real-world measures. A dataset
may indeed be affected by noise due to the acquisition system, which could
introduce random fluctuations in the measurements. Moreover N, the num-
ber of samples, could be not high enough to infer a model given the variables
p under study. This is typically called over-parametrization or small N large
p scenario. Lastly the presence of not relevant features to the learning task
at hand may worsen the performance. For all these cases, the minimization
of the approximation function could lead to an over-adaptation to the given
set of points, resulting in poor predictive capacity. The phenomenon is called
overfitting; in this case the model shows poor generalization capacities. The
over-adaptation phenomenon, and poor predictive results obtained from these
models become more dramatic as the models complexity increases.

We report an example of this phenomenon in Figure 10.
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Figure 10: Example of overfitting for a regression task. The true input-output relation
is f (X) = X2, with Y affected by additive Gaussian noise. The noiseless f
is the dashed gray curve. On the left: result of the fitting procedure using
the least square loss, in the hypothesis of a polynomial of degree 2. In the
middle: results from a polynomial of degree 8. On the right: fitting result
from a polynomial of degree 15. The inferred model adapts better to the
given data as the degree increases, but this is not a desirable behavior in
terms of prediction for new unseen samples.

In the example we generate the true regression values Y using a parabolic
function, affected by Gaussian noise. We fit a polynomial of degree 2, 8, and
15 for the three plots. The functions resulting from the learning procedure are
reported in orange. As the model complexity increases we assists to the over-
adaptation phenomenon, with evident irregularities of the learned model.
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3.4.4 Regularization

As already seen in the approximation functionals in dictionary learning meth-
ods, regularization represents an effective strategy to (i) avoid over-adaptation
of the model to the data, (ii) impose prior knowledge to our model.

Regularization techniques offer a way to mitigate the problem of overfitting
by limiting the space of solutions to a smaller subset [40, 90], Chapter 5 [52].
The search of predictive models, in presence of regularization, can be formu-
lated as the following minimization problem

argmin f

{
N

∑
i=1
L(Yi; f , Xi) + λR( f )

}
, (25)

where we add to the data-fitting term a second term, called regularization term
R. Depending on the regularizer R, we may favor smoother solutions and
more regular functions. The parameter λ weights the importance of the regu-
larization term.

Depending on the imposed constraint, the regularization term assumes dif-
ferent forms. In Table 5 we report the most popular choices for regularization
terms.

L1 norm ‖ f ‖1

L2 norm ‖ f ‖2
2

Total Variation (TV) ‖∇ f ‖2

Elastic Net (ENet) (1− α)‖ f ‖2
2 + α‖ f ‖1

Table 5: Examples of typical R terms. The functional penalizes the use of a large num-
ber of coefficients for L1, unstable models for L2, strong differences between
near coefficients in TV, and a mixture of L1 and L2 assumption for ENet.

With the sparsity assumption, meaning that not all the observed variables
are informative for the predictive task, we suggest the choice of the L1 term
[51]. Another mild requirement on the solution is smoothness, obtained through
L2 regularization [90], which should limit abrupt changes in the prediction for
small variations of the input data. To impose sparsity for correlated features,
a good compromise is given by Elastic Net [34, 138]. The Elastic Net penalty
merges indeed the contribution of L1 and L2 norms. If we aim at penalizing
strong variations of the model for neighbor variables, then a Total Variation
(TV) term, which measures the gradient norm [107], may be desirable.

We presented here a standard regularization framework, given by constrain-
ing the norm of the solution, but many other regularization techniques, devel-
oped to avoid overfitting, exist: early stopping [133], batch normalization [59],
dropout [117] just to name a few.
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3.4.5 Model Selection and Model Assessment

The choice of a model is a critic aspect, as we aim at finding a general law
able to adapt to our learning data as well as to future data. Example of poor
predictive models have already emerged, as reported in Figure 10. On one side,
the use of rich models can lead to an over-adaptation of the model to the data,
which is known as overfitting. On the other side, regularization can bound the
problem complexity, but its contribution to the optimization problem must be
tuned so not to have too strict models, which do not adapt to the data. This
phenomenon is known as underfitting. The choice of the best hypothesis class
and consequently of the best model is tricky. In this section we depict the main
strategies used to avoid models with poor predictive performance, in favor of
more general solutions.

We measure the model capacity to predict the outcome for future data
through the Generalization Error (GE). Let (X, Y)ts denote the test set, or the
input output variables extracted from the same distribution of the training
data, Dtr. The GE quantifies the expected prediction error or the discrepancy,
among realizations of Yts and the prediction obtained through the model f̂ , as
follows

GEDtr = E
[
L(Y, f̂ (X))|Dtr

]
. (26)

Let us provide a direct interpretation of the generalization error through one
of the most common cost functions, the least square loss. This loss penalizes
the Euclidean distance between our model prediction and the true output. We
make the hypothesis that our input-output relation is given by a determinist
law f , as follows

Y = f (X) + ε,

with an additional random variable ε ∼ N (0, σ2) which models the presence
of noise. Let f̂ be the relation inferred from a training dataset Dtr. The gen-
eralization error translates to the expected loss evaluated on an independent
dataset, given the model f̂ , which we consider fixed.

The generalization error for the square loss function can be written as fol-
lows

GEDtr = E
[
(Yts − f̂ (Xts))

2
]
= E

[
( f (Xts) + ε− f̂ (Xts))

2
]

. (27)

In particular it decomposes in the sum of three terms which have direct inter-
pretation.

GEDtr = E
[

f 2(Xts) + ε2 + f̂ 2(Xts) + 2ε f (Xts)− 2ε f̂ (Xts)− 2 f (Xts) f̂ (Xts)
]

= σ2 + f 2(Xts) + E
[

f̂ 2(Xts)
]
− 2 f (Xts)E

[
f̂ (Xts)

]
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The generalization error can also be written as follows

GEDtr = σ2
︸︷︷︸

intrinsic error

+
(

f (Xts)−E
[

f̂ (Xts)
])2

︸ ︷︷ ︸
bias2

+E

[(
f̂ (Xts)−E

[
f̂ (Xts)

])2
]

︸ ︷︷ ︸
variance

(28)

The three terms quantify different contributions to the generalization error.
The intrinsic error cannot be reduced, as related to the data acquisition process.
The bias term gives a measure of the discrepancy of the model from the average
prediction. In presence of underfitting we expect this term to dominate the
generalization error. The variance quantifies the fluctuations of the predictor,
we expect this term to be large in case of overfitting.

More in general the model complexity can be tuned thanks to the regular-
ization parameter. As reported in Eq. 25, this requires the choice of a good
trade-off between model complexity and data adaptation, and in this case de-
pends on the value of the parameter λ. The curves in Figure 11 show the effect
of the model complexity on the predictive performance of a learning method.
The overfitting phenomenon is present as we increase the model complexity,
right extremum in the spectrum of prediction performance, and can be mea-
sured as the gap between the training data and the one used to evaluate the
goodness of the model, validation set.
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Figure 11: Example of overfitting phenomena, and the trade-off given by the obtained
on multiple running of a learning method, as we increase its complexity. On
the x-axis we report complexity, as the inverse of the regularization param-
eter, on the y-axis the classification error. The orange curve, corresponding
to the training error is not a good estimate of the model performance. The
blue curve does not show the same trend for increasing complexity.

The dots and areas in the plot refer to the mean value and standard devia-
tion loss evaluated on the train data, in orange, and on some new validation
data, in blue. The training error does not represent a good estimate of the vali-
dation error. As we increase model complexity the gap between the two curves
becomes larger, leading to predictors with poor performance (overfitting). The
complexity here is controlled by a multiplicative coefficient for the regulariza-
tion term. When the effect of regularization is too strong, the model does not
fit the training data, with poor predictive performance on both the training
and validation set (under-fitting).
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Through this example we notice more in detail that the choice of a good
model requires us to fix several parameters. We can distinguish those in two
families i) hyper-parameters, which are proper to the learning algorithm (e.g.
scalars which weight the importance of the regularization terms, kernel’s fam-
ily, learning rates), ii) model parameters, which weight the variables measured
during the data acquisition.

3.4.5.1 Dataset splits

In context where we are given an abundant dataset, the experimental protocol
would be such to divide the dataset in three parts: the training set, the valida-
tion set, and the test set. The training set should be used to fit the model, the
validation set serves to choose the best model among the ones proposed and
to evaluate its robustness and stability, and a final test set is needed to assess
the performance of the model on previously unseen data.

Nonetheless, in presence of a small amount of data, having a good estimate
of the generalization error can be not trivial, due to random fluctuations. Other
strategies can be preferable to assess predictive models and their performance
with greater robustness. The evaluation protocol has a double goal: model selec-
tion and model assessment. Given a hypothesis class, the former task consists in
the search, among the proposed models, of the one with the best performance.
This is equivalent to identify the optimal hyper-parameters.

The model assessment serves to evaluate the robustness and stability of a
model. We depict this process in Figure 12. The final output of the model
assessment is the expected generalization error, in Eq. 29

Exp GE = E
[
L(Y, f̂ (X))

]
= E [GEDtr ] . (29)

The expected GE is the average error over different realizations of the ex-
periment. We refer the reader to Section 7.12 [52] for further insight in the
experimental design and the evaluation of generalization error or expected
generalization error. In Figure 12 we show the procedure. We split learning
and test data multiple times, one for each brown box. The learning set con-
sists of both the training and validation sets; at this stage the choice of the
best hyper-parameters and the best model, based on the performance on the
validation set, takes place. The outcome of the brown box is a model f̂ and
the measure of the generalization performance over the test split. The average
value of all these outcomes represents the expectation of the generalization
error.

The split of learning and test sets, as well as for training and validation sets
can be performed using several strategies. In Figure 13 we report the most
common dataset splitting protocols: k-fold cross validation on the left, Monte-
Carlo cross validation in the middle, and bootstrap.

3.4.5.2 k-fold Cross Validation

The procedure consists in splitting the dataset in k non intersecting subsets. We
used k− 1 subsets to learn a model and we leave out one split as an evaluation
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Figure 12: Model assessment procedure for the small N scenario. Given a dataset, we
split the learning and test sets multiple times. At each repetition, repre-
sented through the red box, we further split the learning set several times,
to select the best model, including the set of hyper-parameters which regu-
lates its complexity, grey box. We retrain on the entire learning set and we
estimate the performance on the test set. We measure the GEDtr , even if we
are in the small sample size scenario. We compute the overall performance
Exp GE.

Figure 13: Dataset splitting strategies used in model assessment and model selection
for a 4-fold cross validation. On the left, k-fold cross validation is based on
non intersecting k splits of the dataset. In the middle, Monte-Carlo cross
validation separates the evaluation and test set, without contaminations.
On the right, bootstrap, where evaluation and learning set are proportion
of the entire dataset, sampled with repetition.

set. We repeat this procedure for all the different k folds. The prediction error
is estimated as the average of the performance obtained on the left out split.
In Figure 13, we report the example for k = 4. The case k = N is also known
as leave-one-out cross validation.

3.4.5.3 Monte-Carlo Cross Validation

We fix ν, the proportion of evaluation data and we randomly split the data in
two sets, the evaluation set, consisting of nν samples, and n(1− 1/ν) samples
as learning set. This procedure can be repeated multiple times, differently from
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the k-fold cross validation scheme. At each repetition the performance of the
model learned are evaluated on the evaluation set.

3.4.5.4 Bootstrap

We fix a proportion on evaluation samples and we sample with replacement
the learning and the evaluation set from the entire dataset. This may lead
to scenarios with some samples contained in both the learning and evaluation
sets. For this reason this approach is typically used in the unsupervised setting.

3.4.5.5 Hyper-parameters search

The definition of the hyper-parameters search space can be performed through
a grid search or random search. In grid-search, given the hyper-parameters of
the model, we define for each an array of possible values. We then generate
the tuples of all their combinations, and we ran the k-fold protocol for each
tuple. The best tuple (λ1, . . . , λJ)

∗ is selected as the one which obtains the best
average score on the validation set. In random search, we define a distribution
for each hyper-parameter. For a fixed amount of times, we draw the hyper-
parameters tuple and we compute the performance of the model with the
k-fold cross validation scheme. Again, we select the tuple corresponding to
the best performance (λ1, . . . , λJ)

∗. While grid-search is an exhaustive search
criterion for model selection, random search is more flexible as it fixes the
total number of tuples of parameters. For this reason random search is more
suitable to large datasets, to models with large number of hyper-parameters,
and in case of limited computational resources [13].

3.4.6 Classification Methods

As specified at the beginning of this section, there are two main tasks of su-
pervised learning, classification and regression, but we focus on the former, as
we will deal only with classification problems throughout this work. We intro-
duce linear methods e.g. logistic regression, support vector machines, which
can be extended to non linear models through features maps. Then we con-
sider ensemble methods, as random forests and gradient boosting. We report
non-linear classification methods as neural networks.

3.4.6.1 Logistic Regression

Logistic regression (LR) is a common classification method which models the
posterior probability through a linear function [52]. We introduce the binary
case only, even if the generalization to the multi-class scenario is straightfor-
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ward. Let the labels for the two classes be coded as {±1}. For the generic
sample i, its probability to belong to each class is modeled as

Pr(Y = +1|X = Xi) =
exp[β0 + Xiβ]

1 + exp[β0 + Xiβ]
(30)

Pr(Y = −1|X = Xi) =
1

1 + exp[β0 + Xiβ]
(31)

Given N samples, the likelihood for N independent observations corresponds
to

likelihood(X, Y) = ΠN
i=1Pr(Y = Yi|X = Xi), (32)

or equivalently

likelihood(X, Y) = ΠN
i=1 (Pr(Y = +1|X = Xi))

1+Yi
2 (Pr(Y = −1|X = Xi))

1−Yi
2 .

As the search of the optimal parameters from the maximization of the likeli-
hood gives the same result of logarithm of the objective, we consider

log likelihood(X, Y) =
N

∑
i=1

(
1 + Yi

2
log(Pr(Y = +1|X = Xi))+

1−Yi

2
log(Pr(Y = −1|X = Xi))

)

By substituting the definitions 30 in the Formula, we obtain

log likelihood(X, Y) =
N

∑
i=1

(
1 + Yi

2
(Xiβ+ β0)− log(1+ exp[β0 + Xiβ])

)
. (33)

The solution to this problem is typically reached iteratively through Newton-
Raphson algorithm. As the method returns the optimal tuple (β∗, β∗0), the label
for a new test point Xtest is assigned by considering for which of the two prob-
abilities (Pr(Y = +1|X = Xtest), Pr(Y = −1|X = Xtest)) we get the maximum
value.

3.4.6.2 Support Vector Machine

Support Vector Machine (SVM) is a popular regularized binary classification
method [29], which has been lately extended to the multi-class case [101].
Given a binary classification problem SVM aims at finding, among all the pos-
sible solutions, the linear function which separates the two classes at best. The
optimality and uniqueness of the SVM solution is given by the margin maxi-
mization. The idea behind SVM is geometrically intuitive, as reported in Figure
14. Orange and blue dots represent samples from the two classes. The hyper-
plane which optimally splits the space is the one which maximes the margin,
corresponding to the width of the yellow area.
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Figure 14: Linear separating hyperplane in a two dimensional feature space. The task
reduces to find the best linear separating function, or the one that maxi-
mizes the distance between the two classes. The method takes into account
the presence of errors through the variables ξ∗, which weight the misclas-
sified examples through the hinge loss function in Tab. 3.

Given the linear function β · X∗ + β0 = 0, as a candidate separating hyper-
plane, the equations relative to the margin (dotted lines) can be written as

β · X∗ + β0 = +1, positive class

β · X∗ + β0 = −1, negative class.

The distance between the two hyperplanes is equivalent to the quantity 2/‖β‖,
also known as the margin. SVM can also take into account the presence of
outliers. Referring to Figure 14, the outliers are here the two dots which fall
in the wrong side of the margin. The presence of outliers is penalized through
the hinge loss which quantifies the distance of these points from their proper
subspace. For each sample i, we define the correspondent hinge loss evaluated
at that point as slack variable ξi, with

ξi = max(1−Yi(Xiβ + β0), 0). (34)

The SVM optimization problem in the non-separable scenario corresponds to
the minimization of the following objective function

argminβ,β0,{ξ1,··· ,ξN}

{
‖β‖

2
+ C

N

∑
i=1

ξi

}
, (35)

subject to: Yi(Xiβ + β0) ≥ 1− ξi, (36)

ξi ≥ 0, ∀i ∈ {1, . . . , N} (37)

where the first term is also a regularization term, the second term corresponds
to the approximation term, and C regulates the trade-off and is equivalent
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to 1/λ of the regularized methods seen in Formula 25. The presence of con-
straints over the ξ variables leads to a quadratic problem in the Lagrangian
variables, in its dual formulation (see Section 12.2.1 of Hastie et al. [52]). Such
problem is convex, thus we can always obtain a solution denoted as (β∗, β∗0).
Given a new test sample, the label is assigned by taking into account the out-
put of the sign function

ytest = sign(Xtestβ∗ + β∗0). (38)

3.4.6.3 Decision Trees and Ensemble Methods

Decision trees are non-linear methods widely used in classification. They con-
sist in finding charts of decision which, given a sample, guide through its
structure until the class is assigned. Decision trees operate a partition of the
input space in subset of rectangles. For sake of clarity we report an example
in a two dimensional feature space in Figure 15. In the example at the root we

Figure 15: Example of a decision tree in a two dimensional feature space. The cuts
are operated through three scalar quantities t1, t2, t3. Given a new sample,
we follow the chart to find the classification output.

have the variable x2. The choice of the tuple θ = (k, tm), with k denoting the
k-th feature and tm the cutting at node m is the result of an optimization pro-
cedure at each step. Let Sm,1 and Sm,2 denote the two general subsets obtained
at the m-th node. The search for the optimal parameters is performed through
a greedy procedure.

Sm,1(θ) = (Xi, Yi) : (Xi)j < tm

Sm,2(θ) = (Xi, Yi) : (Xi)j > tm

Let n1 = #Sm,1(θ) be the cardinality for the set 1 at node m, and n2 =

#Sm,2(θ), the cardinality for the set 2 at node m, and nm be the sum of the two.
The optimization problem translates to

θ∗ = argminθ

{
n1

nm
H(Sm,1(θ)) +

n2

nm
H(Sm,2(θ))

}
(39)

where H denotes an impurity function, which measures the discriminative ca-
pacity of the cut. Typical impurity functions are Gini criterion and the informa-
tion gain criterion. The former quantifies the goodness of a split by evaluating
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the probability of labeling a random sample obtained at the split m as the one
of the correct class

H(Sm,1(θ)) = p1(1− p1) + p−1(1− p−1), (40)

with p1 = #{(Xi, Yi) ∈ Sm,1(θ)|Yi = 1}/n1 and p−1 = #{(Xi, Yi) ∈ Sm,1(θ)|Yi =

−1}/n1. The information gain criterion consists in the maximization of the
cross entropy

H(Sm,1(θ)) = p1 log2(p1) + p−1 log2(p−1), (41)

with p1 and p−1 defined as before. The non linearity of the decision tree classi-
fiers emerges already from the example in Figure 15. The partition of the input
space for this case is pictorially reported in Figure 16. Decision trees suffer of

Figure 16: Partition of the input space for the chart of the previous example. The
values t1, t2 and t3 determine consecutive cuts in the space and lead to the
optimal division of the space

some weaknesses such as instability and lack of robustness in the presence of
noisy measures, which derive from the hierarchical structure of the prediction.
Different techniques have been proposed to solve these issues, which relies
on predictions from multiple estimators and go under the name of ensemble
methods.

random forest First introduced by Breiman [19] Random Forest is an
aggregative strategy based on bootstrap. Through this method B decision tree
models are trained in parallel using a subset of the entire dataset, sampled
through a bootstrapping strategy. The random forest output for each data
point consists in B predictions. The classification label is assigned through
majority voting. For further details about the decrease of the model variance
given by this aggregating procedure is quantified in Section 8.7 (Bagging [52].)

gradient boosting Gradient Boosting is an ensemble technique based
on the sequential training of a set B of predictors [43]. The procedure is such
that, for each new model, the data are weighted depending on the misclassi-
fication committed at the previous step, so to force the algorithm to learn the
input-output relation previously underrated. The iterative improvement given
by GB can be seen as a functional gradient descent [81].



3.4 learning methods for supervised tasks 45

3.4.6.4 Neural Networks and Deep Learning

Recently, the scientific community assisted to an explosion of automated classi-
fication tools, in image classification, time series analysis, reinforcement learn-
ing, and generative models which leverage on deep learning [70, 87, 95]. This
terms collects a plethora of complex architectures for which mathematical
properties e.g. stability, robustness, and convergence to general solutions are
difficult to prove. Entire books have been written for each section of this chap-
ter, including deep learning [24, 46], so here we only give a short overview
into the main concepts. We start by considering the ancestor of deep learning
architectures, which are shallow neural networks, up to more complex and
highly overparametrized methods.

In the last part we introduce Convolutional Neural Networks, as those repre-
sent a good compromise between supervised learning and data representation.
Indeed deep learning methods first serve the supervised task, solving classifi-
cation or regression problems, but to their flexibility, they act as memory units
with the side effect of returning useful, sometimes compressed data represen-
tations. In this regard, they can also be used as tools for feature extraction, as
the extracted features may be general enough to serve other future learning
tasks [12].

rosenblatt’s perceptron represents the fundamental unit of a com-
plex neural network. The learning unit consists of a non-linear function σ

(e.g. a sigmoid, a rectifier, or a step function) which takes as argument a lin-
ear combination of the input data. Given the collection of N training samples
{Xi, Yi}N

i=1 ∈ Rp ×R the perceptron model aims at approximating the input
output relation as

f (X) = σ(w · X), (42)

with σ a non linear function.

Figure 17: Single neuron architecture. The non linear function corresponds to the step
function, its argument is a weighted combination of the features from the
input data.

The search of optimal parameters takes place through the minimization of
a loss function, which is a user choice. People refer to perceptron as a single
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unit, as the later extension of network methods relies on multiple use of single
units or/and on concatenation of single units.

multilayer perceptron With neural networks the community typically
refers to the stack of multiple layers of parallel single units, which cooperate
to the same learning task. The first layer linearly combines the input features,
and the following layers take as input the output of the previous layer. Shallow
networks have a single hidden layer. The operation performed for each hidden
node is equivalent to the one described for the perceptron (see Eq. 42). The
novelty of this approach is due to the presence of hidden layers. The formula
for a single hidden layer corresponds to the following

fi(X) = ρ

(
p

∑
k=1

wikXk

)
, i ∈ {1, . . . , h} (43)

Yj =
h

∑
i=1

β ji fi(X), j ∈ {1, . . . , o}, (44)

while, in the multilayer scenario, we have the multiple composition of non
linearities, alternated to linear maps, as in Figure 18.

Figure 18: Multilayer perceptron architecture. At the first layer the input features are
linearly combined to form a single output, and go as input to a node of the
hidden layer. This procedure is repeated multiple times, depending on the
depth of the architecture. The last layer collects the feature representations
obtained through the network and is key for the prediction task.

The set of weights for the model are found through the minimization of a
loss function, which is again a user’s choice. Given a loss L the optimization
procedure relies on back propagation.

At each iteration the update of the solution is performed in two steps: the
forward step which consists in fixing the weights to compute predictions and
the backward step where the updates for the outer layers are applied and prop-
agated to the inner layers weights. The interesting property of this procedure
is given by the selective nature of the updates. Through this sort of cascade
of updates, each hidden unit passes information and receives inputs only
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from nodes which share a connection with it. The computational advantage of
this technique is given by the possibility of implementing the neural network
on parallel architectures, specifically designed for scientific computation, as
GPUs. This represents one of the main reasons for their widespread use nowa-
days.

convolutional neural networks An emblematic case of learning a
representation by imposing a learning task is provided by transfer learning,
typical in Convolutional Neural Networks (CNNs).

The CNNs breakthrough has been possible thanks to the technological ad-
vancements of hardware, e.g. GPUs and TPUs, which gave a great acceleration
to the computational speed of these overparametrized models.

CNNs rely on the composition of a high number of hidden units, where
the mathematical operations across layers are extremely general and rely on
convolutions. Given an image or a time series, at each layer the weights to
optimize are respectively two dimensional patches, or one dimensional arrays
convolved with the output of the previous layer. In complex architectures,
several operations across layers are performed for dimensionality reduction,
e.g. max-pooling or average-pooling [6]. One of the first deep neural network
used for the ImageNet data classification has been AlexNet, in Figure 19.

Figure 19: As the computational capacity grows, the possibility of building complex
learning architecture explodes, leading to multilayer models. Here it is
shown AlexNet, a convolutional neural network which competed and won
the ImageNet Large Scale Visual Recognition Challenge in 2012 [70]

Given the models complexity, providing a theoretical framework for these
architectures becomes unfeasible. The formulation of a theoretical framework
for deep learning has been the focus of a consistent part of the machine learn-
ing community, as these models show good predictive performance despite
being heavily overparametrized [136].

The learned filters in CNNs can compete with the engineered ones. An ex-
ample emerges already from the work of Krizhevsky, proposed in Figure 20.
Here 96 filters, RGB squares of edge 11 pixels, show similarity with hand-
crafted filters as Gabor or Wavelets in two dimensions. The filters in the first
layers of the architecture have extremely simple shapes, which are composed
at the higher layers of the representation to generate more complex patterns.
These features can serve as a tool for feature extraction, and in the case of
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Figure 20: Image from the work of Krizhevsky et al. [70]. The 96 convolutional kernels
with dimension 11× 11× 3 at the first hidden layer of AlexNet. The filters
shape reminds famous Gabor and wavelet filters in two dimensions.

small number of training example, it is common to train shallow models on
top of data-driven features extractor as CNNs layers.

3.4.7 Evaluating Models Performance

The choice of a metrics is fundamental to evaluate the predictive performance
of a model. This is typically realized by comparing the predicted label Ŷ to
the true one Y, for all the samples in the evaluation set. In binary classification
this leads to four possible outcomes: True Positive (TP), predicted and true
labels are both positive, True Negative (TN), predicted and true labels are both
negative, False Positive (FP), for negative samples with positive prediction,
and False Negative (FN), for positive samples with negative prediction.

In Table 6 we report some of the most popular classification scores. The
metrics proposed here assume continuous values between [0, 1]. Accuracy is
not an optimal choice for unbalanced datasets. In this case indeed the random
prediction score does not corresponds to 0.5, but must be fixed depending on
the classes unbalance. The other scores are sensitive to the classes unbalance
and allow a further characterization of the model performance.

3.5 Learning Methods for Clustering

In absence of target labels, clustering methods aim at grouping sample points
based solely on their distances. As such, these fall in the class of the unsuper-
vised learning methods. The choice of a proper distance is a critic aspect and
it is based on prior assumptions [63]. Many algorithms have been designed
for this task, from the more fundamental k-means or centroid based clustering to
more complex methods as hierarchical clustering and spectral clustering. All of
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Classification Metrics

Accuracy ACC 1
N · (TP + TN)

Balanced Accuracy BALACC 1
2

[ TP
TP+FN + TN

TN+FP

]

Precision P TP
TP+FP

Recall R TP
TP+FN

False Positive Rate FPR FP
TN+FP

False Negative Rate FNR FN
TP+FN

True Negative Rate TNR TN
FP+TN

F1 score F1 2 P·R
P+R

Table 6: List of the most common score metrics for classification. The acronyms TP,
TN, FP, and FN denote respectively true positive, true negative, false positive
and false negative samples based on the model prediction. Accuracy is not an
optimal choice in presence of unbalanced classification problems.

them rely on the evaluation of a dissimilarity matrix D which quantifies the
pairwise distance among samples.

D =




0 d1N
. . .

d1N 0


 (45)

An exhaustive review of clustering methods is presented in Jain et al [63].
There, clustering approaches are categorized as hierarchical and partitional. In
the former case a nested tree of dependencies dendrogram is built. In the latter
case the partition is operated at once.

3.5.1 Hierarchical Clustering

The similarity measures are computed pairwise, then they are ranked is as-
cending order. The method does not require a number of clusters but a mea-
sure of dissimilarity across clusters. The algorithmic approaches can be divi-
sive or agglomerative: in the former at the first iteration each sample consti-
tutes a cluster (top-down), in the latter at the first iteration all the samples
belong to the same cluster and the split is operated recursively (bottom-up).
The choices to be made in the hierarchical approach concern: i) the metrics
used to measure similarity across samples; ii) the linkage relation across dif-
ferent clusters, which determines the shape of the clusters and their partition.

Different linkage types are enumerated in the following

(i) single, L(C1, C2) = minxi∈C1,xj∈C2

{
distance(xi, xj)

}
,
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(ii) complete, L(C1, C2) = maxxi∈C1,xj∈C2

{
distance(xi, xj)

}
,

(iii) average, L(C1, C2) =
1

#C1+#C2
∑xi∈C1 ∑xj∈C2

distance(xi, xj),

(iv) ward, L(C1, C2) =
#C1#C2

#C1+#C2
‖µC1 − µC2‖,

where C1 and C2 denote the two clusters, #C1 and #C2 their cardinality, µ1 and
µ2 their centroids. In (i), the distance between two clusters is equivalent to the
minimum distance between all the pairwise distances of the point belonging
to the two different clusters. This choice is known to suffer from the chaining
phenomenon, or the generation of clusters which rise from a series of concate-
nated close observations. The diameter of the clusters may be very large [52].
In opposition to this approach there is the complete linkage (ii), here the dis-
tance between two clusters is equivalent to the maximum distances between
all the pairwise distances of the point belonging to the two different clusters.
A previous work showed the capacity of constructing more compact clusters
through this latter method. Both [52] and [63] agree on the higher compactness
and stability of linkage type (ii) over (i). The approach (iii) is based on aver-
age and represents a compromise between (i) and (ii). The linkage type (iv)
consists in the minimization of the variance within elements from the same
cluster.

3.5.2 Partitional Clustering

When hierarchical clustering is unfeasible due to memory constraints, parti-
tional clustering represents a valid alternative. A typical and most basic ex-
ample of partitional clustering is the k-means algorithm (Voronoi iterations).
Here, given k, number of clusters, a new sample is assigned to the cluster with
the nearest mean. Given a set N of observations and a number k of clusters,
the related optimization problem is defined as

argmin{C1,...,Ck}
k

∑
i=1

∑
x∈Ci

‖x− µi‖2
2 (46)

Given an initialization, which consists in a set of {µ(1)
1 , . . . , µ

(1)
k } centroids,

the algorithm consists of two steps, the assignment step, which quantifies the
distance between the generic i-th sample and the centroids and assigns it to the
cluster with the smallest distance, and the update step, where the new centroids
are computed based on the previous assignments.

3.5.3 Evaluating Goodness of Clustering

There are several metrics which evaluate the goodness of clustering methods,
but some of them make use of ground-truth labeled samples. Some examples
are adjusted rank index, mutual information score, V-measure, and homogeneity.
As we typically lack information about the true labels, we report a metric
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which does not rely on those, but rather represents a measure of geometrical
properties from the resulting clusters.

3.5.3.1 Silhouette Score

Assuming the existence of K clusters and a distance metric d, we define the
measure a for each point in the generic cluster i

a(i) =
1

#Ci − 1 ∑
k∈Ci , i 6=k

d(Xi, Xk) (47)

as the mean pairwise distance among points belonging to the same cluster.
A second quantity defined for each i point is given by considering the dis-

tance between i and the mean distance with all the points belonging to another
cluster k.

bk(i) =
1

#Ck
∑

s∈Ck

d(Xi, Xk). (48)

The minimum distance of a generic point i from cluster Ci to another cluster
is defined as

b(i) = min
o 6=i

bo(i). (49)

The silhouette value of each point in the dataset is defined as

s(i) =





b(i)−a(i)
max{a(i),b(i)} , if #Ci > 1,

0, otherwise.
(50)

The silhouette score assumes value in the interval [−1, 1], with 1 for perfect
clustering algorithm.



PART III

Investigation and Main Experiments



4
Dataset Description

4.1 Questions and Motivations

In the introduction we briefly described focal epilepsy and the problem of EZ
localization through invasive recordings. As reported in Chapter 2, we pointed
out the existence of a plethora of works aimed at assessing the contributions
of several electrophysiological waveforms and neurophysiological rhythms as
biomarkers of the pathology. A large number of methods consider only a single
or a small subset of candidate patterns of epileptogenicity. Even though this
represent a reasonable approach for the definition of new biomarkers, it does
not allow to have a general understanding of their relative importance in the
localization of the EZ, neither to assess their collective predictive power.

On the other hand, the manual tagging of waveforms can potentially be a bi-
ased procedure, as performed through visual inspection and rarely guided by
automatic tools. The discrimination between epileptogenic and physiological
activity requires a high-level expertise, and this in general represents a limit
for the reproducibility of these studies.

4.2 SEEG Data from Focal Epileptic Population

Our population consists of 60 subjects, all but one suffering of drug resistant
focal epilepsy. All the subjects underwent the presurgical evaluation through
SEEG.

The data were acquired at the Centre of Sleep Medicine, Centre for Epilepsy
Surgery, Ospedale Ca’ Granda Niguarda, Milano, Italy1. All the subjects signed
the written consent to further analysis for scientific purposes. We dispose of
invasive electrophysiological recordings relative to the wakeful resting interictal
stage for all the 60 subjects.

Neurologists registered local field potential with common reference in white
matter, using platinum-iridium, multi-lead electrodes. The number of contacts
for each electrodes varies from 8 to 15, each is 2 mm long, 0.8 mm of thickness

1 Last access: May 10th, 2020 https://esrs.eu/laboratory/department-of-neuroscience/
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and have distance of 1.5 mm from its neighbor contacts (DIXI medical, Besan-
con, France). The acquisition system is a 192-channels SEEG amplifier system
(NIHON-KOHDEN NEUROFAX-110).

The acquisition protocol is such that the patient lays down, in a state of
wakefulness with closed eyes, and in absence of external stimuli. This is also
known as resting state. These registrations corresponds to interictal activity,
the furthest from the epileptic seizure. We have been provided with record-
ings acquired simultaneously on multiple sites. The length of the registrations
varies among patients, but it is comprised between the 10 and 15 minutes, at
a sampling frequency of 1 kHz.

The neurophysiologists evaluated each recording during the presurgical phase,
and annotated each monopolar contact. Contacts positioned in the epileptogenic
zone are labelled as +1, while contacts in the non epileptogenic zones are labelled as
−1. Throughout the work we refer to this evaluation as pre-surgical assessment.

The passage to the bipolar montage can be considered a spatial gradient
of the signal. It moreover requires to adjust the binary annotations of the
monopolar montage. The conversion is operated in such a way that, if at least
one between two neighbor recordings (Ck, Ck+1) was tagged as recorded from
an epileptogenic zone, we label it as epileptogenic, or pathological. This trans-
lates to the following

Y(p)
Ck−Ck+1

=




−1, if Y(p)

Ck
= Y(p)

Ck+1
= −1

+1, otherwise.

The index p defines the generic p patient.
No annotation has been provided regarding the presence of pathological

biomarkers or epileptic waveforms in the recordings.
For a subset of 40 patients we dispose of geometrical coordinates of the mon-

tage. This information has been extracted through FreeSurfer [42]. The exact
positions of the implanted electrodes is measured using a fused MRI-pre with
CT-post using affine rigid-body co-registration. After the co-registration phase,
the algorithm automatically segments each contact contained in the electrodes
by searching the center of mass for each contact [22]. The results of the seg-
mentation algorithm are, for each contact, the assigned anatomical region, based
on the Destrieux atlas2, the geometrical contacts positions in cartesian coordinates
[mm], the Partial Tissue Density (PTD) [83] and the Grey-Matter Proximity Index
(GMPI) [89], which are measures of proximity to grey matter. As this informa-
tion is not homogeneous across the entire population it will be reported in the
following through a binary label.

For sake of clarity, the pharmacological treatment administered to each sub-
ject is provided. The treatment variability across the entire population is high.
The acronyms in the Tables correspond to the following AntiEpileptic Drugs
(AEDs): CBZ carbamazepine, CLB clobazam, CLZ clonazepam, DT dintoina, FB
fenobarbital, FN phenytoin, LBT missing, LM lamotrigine, LS lacosamide, LR lo-

2 Last access: May 10th, 2020 https://surfer.nmr.mgh.harvard.edu/fswiki/

DestrieuxAtlasChanges

https://surfer.nmr.mgh.harvard.edu/fswiki/DestrieuxAtlasChanges
https://surfer.nmr.mgh.harvard.edu/fswiki/DestrieuxAtlasChanges
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razepam, LV levetiracetam, NTZ nitrazepam, OXC oxcarbamazepine, PRM primi-
done, RP rufinamide, SR sertraline, TP topiramate, TPM topamax, VP valproic and
ZN zonisamide. The dosage for each AED is given in milligrams [mg]. Surgi-
cal and post-surgical information is also available. This information has been
provided during the project, at the beginning of 2019. They are indicated in
the Tables as (∗). They concern the type of surgery for each subject, Ablation
or Thermocoagulation, reported in the entry (A/T). In case where the surgi-
cal intervention has not been performed, we use the None flag. The region
removed through ablation, or subjected to thermocoagulation are provided,
together with the result of the post-surgical classification (Engel classification).

I use the notation - for missing entries.
In Tables 8, 9, 10, 11, 12, 13 we report the main characteristic of the dataset.

Table 7: A short guide to the Tables columns.

Acronym Full name

#C number of bipolar recordings

#PC number of pathological bipolar recordings

P availability of the contacts position

A/T ablation/thermocoagulation

Region ablated/thermocoagulated brain areas

Engel Engel class

AED [mg] Pharmacological treatment at the time of the SEEG
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Table 8: First batch of patients. The columns report respectively: Subject ID subject
identification number, #C the total number of recordings in the bipolar mon-
tage, #PC the number of pathological channels, P a binary label which defines
the presence (Y) or absence (N) of the spatial information, A/T surgical in-
tervention type, which differs in ablation or termocoagulation, Region the
brain area removed through surgery, Engel post-surgical classification, AED,
administered pharmacological treatment during the SEEG acquisitions.

Subject
ID

#C #PC P A/T∗ Region∗ Engel∗ AED∗

[mg]

1 91 13 Y A right
mesial
frontal

IB CBZ
600,
LTV 1k

2 129 40 Y A right
tem-
poral
insular

IA CBZ
1.2k,
PRM
750,
CLZ 10

3 147 11 Y A right
tempo-
ral

- CBZ
1k, DT
450,LS
300,
CLZ 10

4 125 51 N A left
tem-
poral
pari-
etal

IA FB 100,
TP 100,
LV 3k

5 158 27 N A left
tem-
poral
insular

IA OXC
600, LS
400

6 114 37 N A right
tem-
poral
insular

IIIA LBT
1k, LS
350, SR
50, LR
1

7 156 51 N - - - -

8 127 33 Y T left
tem-
poral
orbital

IA CBZ
1.2k,
LV 3.5
k, TPM
200

9 132 23 Y None None None OXC
600, LS
400

10 137 36 N - - - -
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Table 9: Second set of patients. The columns are the same as in Table 8

Subject
ID

#C #PC P A/T∗ Region∗ Engel∗ AED∗

[mg]

11 149 11 Y - - - -

12 119 29 Y A left
tempo-
ral

IA TP 200,
CBZ
900

13 157 18 N A right
ante-
rior
tempo-
ral

IIA CBZ
1.2k

14 152 36 N - - - -

15 140 52 Y T temporal
hip-
pocam-
pal

IIA CBZ
1.4k,
LV 3k

16 120 38 Y T left an-
terior
tempo-
ral

IA LV
2.75k,
CBZ
800,
PRM
750

17 127 54 Y A right
frontal
tem-
poral
insular

IVA CBZ
1K,
CLB
20, LM
200

18 148 25 N A left
pari-
etal
insular

IVA CBZ
1.2k,
CLB
40, FB
75

19 145 62 Y A right
tem-
poral
perysil-
vian

IIC FB 150,
LS 400,
CLB 20

20 159 39 Y A right
insular
perysil-
vian

IVA CBZ
800,
LM
400
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Table 10: Third set of patients. The columns are the same as in Table 8

Subject
ID

#C #PC P A/T∗ Region∗ Engel∗ AED∗

[mg]

21 158 26 Y - - - -

22 109 13 Y A left
tem-
poral
mesial

IA CBZ
1.2k,
LV 750

23 149 44 N A left
tempo-
ral

IA LV 3k,
CBZ
1k, ls
500

24 79 61 Y T IA CBZ
1.2k,
FB 100

25 152 26 Y A right
frontal

IIA VP
800,
CLB 10

26 149 15 Y A right
mesial
frontal

IIIA CBZ
800,
LV 3k,
NTZ
1.5

27 91 11 Y A right
central
frontal

IA LM
400, LV
2k

28 133 15 Y A right
frontal

IVA CBZ
600, RF
1.5k

29 142 15 N A right
frontal

IA CBZ
1.2k,
ZN
400, FB
1k

30 157 14 Y - - - -
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Table 11: Fourth set of patients. The columns are the same as in Table 8

Subject
ID

#C #PC P A/T∗ Region∗ Engel∗ AED∗

[mg]

31 130 64 N None None None LV
1.5k,
CLB 5

32 139 68 N - - - -

33 165 51 Y A right
tem-
poral
ante-
rior
mesial

IIA OXC
2k, FB
150

34 137 9 Y - - - CBZ
1.6k,
LV 4k

35 134 68 Y None None None LV 3k

36 114 61 Y A right
orbital
tempo-
ral

IA ZN
400, LV
750,
CBZ
1.4k

37 145 25 N None None None LS 500,
VP 1k,
ZN 200

38 101 61 Y T IA CBZ
1k, LV
2.5k

39 127 28 Y A left oc-
cipital

IIA CBZ
1.2k,
LV
1.5k,
LS 300

40 118 38 N - - - -
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Table 12: Fifth set of patients. The columns are the same as in Table 8

Subject
ID

#C #PC P A/T∗ Region∗ Engel∗ AED∗

[mg]

41 130 39 Y None None None CBZ
1.2k,
LV 3k,
LS 150,
CLB 20

42 140 6 Y A left
cingu-
lus

IA OXC
1.8k,
TP 200,
LV 3k,
CLB 10

43 142 22 Y A right
frontal
ante-
rior

IIIA CBZ
1k, LV
1k

44 139 68 Y T right
tem-
poral
pari-
etal
perysil-
vian

IA TP 200,
LM
200

45 140 53 Y A left
tem-
poral
pari-
etal

IA CBZ
900

46 143 57 Y T right
tem-
poral
oper-
cular

IVA CBZ
900, LV
3k

47 149 54 N - - - -

48 150 76 N A left
frontal

IA CBZ
1.2k,
LM
200,
CLB 20

49 148 34 Y T IA LV 3k,
LS 400

50 125 51 Y A right
tem-
poral
occipi-
tal

IA LM
600, LV
2k
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Table 13: Sixth set of patients. The columns are the same as in Table 8

Subject
ID

#C #PC P A/T∗ Region∗ Engel∗ AED∗

[mg]

51 144 25 N A right
tempo-
ral

IA CBZ
1.4k,
LV 3k,
CLB 10

52 136 36 Y A left
insular
oper-
cular

IIIA CBZ
800

53 148 25 Y A right
frontal
tempo-
ral

IA CLB
20, LM
600,
FN 500

54 88 39 N A left
tem-
poral
insu-
lar,
oper-
cular

IA CBZ
1.8k,
CLB 20

55 114 15 Y None None None FN
400, TP
500

56 146 17 Y A left
tempo-
ral

IA OXC
1.5k,
CLB
20, LV
2.5k

57 162 15 N A right
mesial
tempo-
ral

IA TP 75,
CBZ
1.5k

58 127 43 Y T nodular
hetero-
topia

IVAa CBZ
1k, LV
500,
CLB 20

59 146 12 Y A left
tem-
poral
ante-
rior
mesial

IIA CLB
20, FB
45

60 141 - - - - - -



5
Feasibility Study: a Preliminary
Approach

In this chapter we report the first attempt at combining machine learning and sig-
nal processing for the automatic classification of the epileptic areas. Given the neural
recordings, our approach relies on specific preprocessing and feature engineering. These
steps are guided by clinical a priori. Once we obtain a representation, we resort to stan-
dard learning methods for the classification of the samples. Throughout this analysis
we aimed at understanding if the classification of epileptic areas may be approached us-
ing standard signal representations of clinical interpretation. This represents a starting
point in proposing machine learning and automatization of the analysis as a support
to the visual inspection of the data. This analysis has been presented @ CIBB 2018,
Lisbon, (Portugal).

Our goal is to exploit standard measures from clinical literature related to
the analysis of electrophysiological neural recordings [15]. Given these mea-
sures, we address the identification of the EZ combining signal processing
and classification techniques. We remark that in this preliminary stage, the pa-
tients post-surgical outcome was not available. As such, the evaluation of the
pipeline is based on presurgical assessment.

The rest of the chapter is organized as follows: we first give a characteri-
zation of the main features extracted from the entire time series, in both the
frequency and the temporal domain, and from the area of acquisition. We
then describe the main learning methods used for the classification task and
we report their performance. Lastly we comment the results and we discuss
the limitations of the analysis. The code related to this pipeline is available at
https://github.com/vanessadamario/multichannelAnalysis.

5.1 Dataset Description

The analysis is performed on the dataset described in Chapter 4. We consider
the entire set of 60 patients for which we have different information, as re-
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ported in Table 14. The dataset divides in two. For 40 patients, we have access

contact position no contact position

# patients 40 20

Preprocessing

Feature Extraction and
Learning

Evaluation of Threshold
Values

Table 14: The split of the population, given the availability of information related to
the contact position. We use the portion which misses the positional infor-
mation to extract an estimate of the physiological baseline activity.

to the contacts position and the labels related to the presurgical assessment.
This set will be used as our learning and test set throughout the analysis. The
feature extraction technique will rely nonetheless on extraction of parameters
based on standard and physiological activity. We rely on the 20 patients for
which we do not have information about the contacts position to extract this
information, including the non epileptic subject.

5.2 Feature Engineering

We perform on the entire dataset of 60 patients the same pre-processing pro-
cedure. For each time series we remove line effect using a notch filter peaked
at 50 Hz and all the harmonics up to the Nyquist frequency, fNyq = 500 Hz.
We use a 2nd order Butterworth filter, bandstop width 2 Hz.

The feature engineering step relies on information extracted from the time
series in both the temporal and the frequency domains.

split of the frequency domain For most of the extracted features, we
divide the spectrum in several frequency bands, shown in Table 15 and Table
16.

Rhythm slow δ θ α β γ high-
γ

Frequency [Hz] < 1 [1, 4] [4, 8] [8, 13] [13, 30] [30, 70] [70, 90]

Band name B0 B1 B2 B3 B4 B5 B6

Table 15: In the first row we report the neurophysiological rhythms, in the second the
frequency interval in Hz, and at the last row the assigned name to ease the
notation

threshold values evaluation To obtain an average estimate of the
standard physiological activity across patients at different frequency bands
we considered only bipolar recordings acquired from non-EZ areas, based on
pre-surgical assessment.
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Frequency [Hz] [90, 140] [140, 190] [190, 240] [240, 290]

Band name B7 B8 B9 B10

Frequency [Hz] [290, 340] [340, 390] [390, 440] [440, 490]

Band name B11 B12 B13 B14

Table 16: Intervals in which we divide the spectrum at higher frequencies and the high
frequency bands names.

Standard activity is evaluated at different frequency bands, as specified in
Tables 15 and 16. To filter at a generic band B∗ we use a band-pass Butterworth
filter (2nd order), with cut-off frequencies and central frequency corresponding
respectively to the extremes and the center of the frequency interval.

For each non-EZ contact, after filtering at a specific band, we quantify the
standard deviation, as σBk = σ

[
IIRButter(Bk)(S(t))

]
and its average value across

the non-EZ population 〈σBk〉. These values are reported in Table 17.

Band name B0 B1 B2 B3 B4 B5 B6 B7

〈σBk〉 [µV] 17.24 13.19 15.54 12.45 11.09 4.58 1.19 1.07

Band name B8 B9 B10 B11 B12 B13 B14

〈σBk〉 [µV] 0.578 0.391 0.298 0.244 0.203 0.183 0.190

Table 17: 〈σBk〉 values for each frequency band extracted from physiological bipolar
recordings on the subset of 20 patients. We considered these fluctuations as
an estimate of physiological standard activity.

5.2.1 Features Extraction for solving the Learning Task

We split the bipolar electrophysiological recordings from the 40 patients (Table
14) in two segments of equivalent length. We operate this choice guided by the
strong hypothesis that neural signals during the interictal period, in absence of
any external stimulus, may be considered as stationary. This is nonetheless a
controversial assumption for electrophysiological recordings, even if operated
during the resting state activity and it may affect the analysis [68]. We will ob-
serve in the next chapters how correlation of the activity may represent a po-
tential limitation, in terms of overestimation of the classification performance.
We furthermore considered one feature inferred from the spatial position of
each contact.

Let us enumerate the features extracted for each bipolar segment:

(i) first moments of the time series, where the bipolar recordings are considered
in the temporal domain and are not filtered at a specific frequency band,
but the harmonics of 50 Hz;

(ii) relative energy, at the frequency bands specified in Tables 15 and 16;
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(iii) normalized energy from wavelet coefficients, where instead of the bands the
division at different frequency is operated automatically by the mother
wavelet at different dyadic scales;

(iv) wavelet entropy, which takes into account the decomposition of the signal
through the wavelet representation;

(v) over-threshold activity, measured as the time spent over an estimation
of the average electrophysiological activity, reported for each frequency
band in Table 17, we compute also the mean activity and its standard
deviation after filtering the signal at each frequency band;

(vi) partial tissue density, which is determined by the neural tissue in the area
of acquisition.

first moments of the time series We consider variance, skewness and
kurtosis. We excluded the mean as the time series will be always filtered in
band to avoid constant trends.

relative energy at frequency bands We measure the energy con-
centration at the different frequency bands. As in [94], we compute the rel-
ative spectrum by normalizing the contribution of the spectrum within the
frequency window of interest with respect to the energy for the entire spec-
trum. Let S be a generic bipolar recording in the temporal domain, we denote
its Discrete Fourier Transform as Ŝ. The normalized Energy (nE) at a specific
band Bk corresponds to

nEBk(S) =
∑ f∈Bk Ŝ2[ f ]

∑g∈[0, fNyq] Ŝ2[g]
(51)

normalized energy from wavelet coefficients We use the dis-
crete wavelet transform to get the signal decomposition onto an orthogonal
basis, with 2nd order Daubechies mother wavelet. Again, we compute the rel-
ative wavelet energy at each scale with respect to the total. We measure the
energy as the sum of the square of the wavelet detail coefficients, using the
wave decomposition function1

[cA, cD] = DWT(S(t))

cA is an array of approximation coefficients, while cD is a list containing the
detail coefficients at each scale, using the concept of quadrature mirror filter.
The energy at the i-th scale, denoted as WEi, corresponds to WEi = ∑j cD2

j [i],
where j is the index denoting the time instant. We quantify the normalized
Wavelet Energy at scale i as

nWEi =
WEi

WEtot
(52)

as the concentration of the signal at a specific scale.

1 Last access: October 14th, 2019, https://pywavelets.readthedocs.io/en/latest/ref/

dwt-discrete-wavelet-transform.html

https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
https://pywavelets.readthedocs.io/en/latest/ref/dwt-discrete-wavelet-transform.html
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wavelet entropy This measure has been defined for the analysis of short
duration patterns in the signal. It leverages on wavelet transform and it has
been shown to be a discriminative quantity in the evaluation of signal co-
herence in neurophysiology [106], especially in pathological activity detection
[88]. Here we will use it naively, by considering the entire time series. The
definition of the Wavelet Entropy (WH) is based on the notion of nWE given
before. This term quantifies the concentration of the energy at some scales

WH(S) = −∑
i

nWEi log(nWEi). (53)

over-threshold activity As in Bartolomei et al. [11] we quantify the
hyperactivity of each bipolar recording as an estimate of abnormal amplitudes,
with respect to a baseline activity. The threshold may be computed using a
segment identified by clinical experts through visual inspection, or may be
inferred from some statistics about the distribution of the signal values.

An example of this approach for what regards hyper-activity at high fre-
quency is provided by Staba and collaborators, who make use of 5 times the
standard deviation of the root mean square of the signal to identify candidate
HFOs [118, 120]. In our case we resort to the values reported in Table 17 as
threshold values, which we multiply for positive scalar factors.

Given a bipolar recording we evaluate the presence of over-threshold activity
for the frequency bands in Table 17 as follows. Let Bk be the generic frequency
band. We band-pass the signal S using a Butterworth 2nd order, with cut-off
frequency and central frequency as respectively the extremes and the center of
the Bk interval. We fix a constant value C, element of the set {2, 3, 4, 5, 6, 7}. We
evaluate the time spent by the signal above a threshold, at band Bk, using the
results in Table 17

TimeBk,C(S(t)) =
1
fs

∑ I
[
IIRButter, B(k)(S(t)) > C · 〈σBk〉

]
, (54)

with I the indicator function and fs sampling frequency. Moreover, after filter-
ing the signal, we save the mean activity at the standard deviation at the Bk
frequency band, for a total of two features per band.

partial tissue density Despite the great variability across neural popu-
lations, the brain tissue can be coarsely divided in gray matter and white matter
(see Chapter 3, [69]). The former has a prevalence of neural cells, glial cells,
and vessels. The latter consists mostly of myelinated axons and fibers which
connect different brain regions.

The recent work of Mercier [83] gives a broad insight in the role played by
white matter in the signal propagation. Mercier highlights the improvement
obtained by adopting the bipolar montage, which allows to decouple spurious
activity. His work also shows the relevance of quantifying the anatomical na-
ture of the brain tissue in the area of acquisition of the signal. Indeed in the
same work, the electrode position is proved to be crucial for clinical evalua-
tions, as there is a high correlation between signal power and the presence of
gray matter over white matter regions.
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In this analysis the differentiation between gray and white matter is possible
using Freesurfer [42], a software tool which parcellates cortical and subcorti-
cal regions from MRI acquisition. The Partial Tissue Density (PTD) index is
defined as

PTD =
Vox Gray−Vox White
Vox Gray + Vox White

, (55)

where Vox Gray and Vox White correspond respectively to the number of gray
and white voxels contained in a volume of 3mm3 centered around the electrode
position [83]. Note that with PTD ∈ [−1, 1]. We extract the PTD index for each
contact in the monopolar setting. We assign to each bipolar recording the PTD
index of the first contact between the two, the deeper in the brain tissue.

5.2.2 Classification

We concatenated the features extracted at the previous step in a unique vec-
tor. The generic sample of our dataset (Xi, yi), with Xi ∈ R156 collecting the
extracted features and yi ∈ {−1, 1} binary label, which assesses the epilep-
togenicity for the recorded area. The proportion of epileptogenic and non
epileptogenic channels is unbalanced in favor of non epileptogenic contacts,
with random guess corresponding to 0.74%.

In Table 18 we report the main aspects characterizing our dataset.

Features moments energy wavelet entropy threshold PTD

3 15 16 1 120 1

Data non EZ for thr EZ for clas non EZ for clas

1968 1342 3973

Table 18: Summary of the dataset used for this experiment. In the first row we report
the subsets of features, which mostly are extracted in the temporal domain,
but one related to the spatial position of the contact, for a total of 156. The
bottom row contains the number of contacts used respectively to compute
the threshold values (non EZ for thr), the number of EZ contacts (EZ for
clas), and non EZ contacts (non EZ for clas) in the classification task.

We consider several binary classification techniques, both linear and non-
linear: Logistic Regression (LR), SVM with linear kernel, Random Forest (RF)
and Gradient Boosting (GB).

In LR we imposed sparsity through the L1 norm, with the regularization
constant C varying in a logarithmically spaced range of twenty values be-
tween (10−2, 102). For SVM, we fixed a linear kernel and let the cross valida-
tion choose the best values of C, in the same range of LR. For what concerns RF
we fixed the number of estimators to 103 where the tunable parameters were
the percentage of maximum features with respect to the total, in the range
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6). In GB we fixed the learning rate to 10−3, the tunable
parameters were the max depth of trees, free to vary linearly in a range be-
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tween (3, 31) and the number of estimators, chosen between three linearly
spaced values in (100, 500).

We split the dataset in 85% samples for learning and 15% for test, using au-
tomatic scikit-learn [98] procedures that split the dataset with respect to the
unbalance of the original problem. The choice of the optimal hyper-parameters
for all the algorithms was performed by using 3-fold cross-validation in the
learning procedure.

5.2.3 Results

The learning and testing procedure has been repeated 50 times using the
Monte-Carlo strategy in order to get a statistically reliable outcome for the
four classifiers, which we report in Table 19. We computed the performance
of our methods using metric scores that take into account the unbalance of
the dataset, such as precision, recall, balanced accuracy (Balanced Acc), and
F1 score.

Classifier Precision Recall Balanced Acc F1 score

LR 0.68± 0.03 0.34± 0.03 0.64± 0.01 0.45± 0.03

SVM 0.57± 0.04 0.15± 0.03 0.55± 0.01 0.23± 0.05

RF 0.88± 0.02 0.57± 0.02 0.77± 0.01 0.69± 0.01

GB 0.80± 0.07 0.35± 0.06 0.66± 0.02 0.48± 0.05

Table 19: Average classification performance obtained across 50 repetitions of the ex-
periment. Random forest obtains the best predictive performance across all
the metrics.

RF obtained overall the best performance across all the metrics. All metrics
show a performance which is highly above chance level, which is promising
in the discrimination of epileptic areas. The precision value for random forest
indicates that the number of false positives is relatively low.

5.3 Comments

The integration of spectral features with anatomical characteristics of the recorded
areas for posterior localization based on MRI test is a first timid attempt to
merge multiple clinical tests and to fix a set of features which are both func-
tional and structural descriptors of the epileptic brain.

Nonetheless, there are several flaws relative to the learning pipeline and
the feature extraction part. Firstly, the split of the recordings in temporal win-
dows of five minutes length has been made to augment the dimensionality
of the dataset, in the hypothesis that the interictal period should not contain
any causal relation. The presence of temporal correlations across samples aris-
ing from this decision has not been verified in this analysis and cannot be
excluded.
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Another critical aspect is related to the mix of all recordings in the learning
and testing procedure. We proceeded to the feature extraction step and we put
together the features extracted from all the samples, without considering the
possibility of having recordings from the same patient in different splits. This
decision is not an optimal experimental choice, as in terms of predictive tools
the results may suffer from the presence of correlations. We will address all
these potential issues in Chapter 7.



6
Interpretable Decision Support Tool
through Data Integration: Multi Task
Multiple Kernel Learning

In this chapter we present one of the main contributions of this thesis, which integrates
non-homogeneous SEEG recordings derived from multiple patients. As we have seen,
the number of contacts changes across the population, not allowing a direct comparison
among patients. The differences due to SEEG montages will be overcome through a
multi-task functional, where each patient represents a task. The outcome of the method
incorporates both a personalized description for each patient and the selection of the
best descriptors of the pathology across the population. The method has been thought
as a supporting tool for the identification of pathological recordings. The clinicians
would pre-evaluate a subset of signals in the dataset to get a classification for the
ones which still have not been analyzed. The results have been presented @Invasive
Mathematics 2018, Genova (Italy) and @ MLHC 2018, Stanford, CA (USA). The
method received several key comments and observations which will inspire further
investigations, throughout this chapter and the entire work. In this chapter we test the
algorithm in different conditions, in order to evaluate its strength and limitations.

6.1 Goals and Contribution

Our main goal is to support medical experts in the diagnosis of the focal areas,
by giving also interpretable results. To this aim we design Multi-Task Multiple
Kernel Learning (MT-MKL), a tool for the analysis of SEEG recordings. MT-
MKL is a supervised method which fuses the multi-scale representation of
time series and feature selection techniques to understand which features play
the major role in the predictive task across multiple patients.

Through the multiple kernel component of the algorithm we aim at identi-
fying the relevant information in terms of amplitude and phase similarities
at certain frequencies. We argue that comparing the signals by first decom-
posing their contributions in different frequency bands is crucial. To illustrate
this we report in Figure 21 an example of a spectrum (F (S)( f )) of a bipolar

70
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recording at the y-log scale. The amplitude of the signal decays as the fre-
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Bipolar Recording: an Example

Figure 21: We report here the spectrum of a pathological bipolar recording, from
class Engel I. We observe that the power distribution goes to zero as the
frequency increases. The neurophysiological signal follow the power law
1/ f β.

quency increases. From [53, 86] there is common agreement on the fact that
the neurophysiological signal follows a power law 1/ f β.

In order to get a fair comparison of different frequency bands in the predic-
tive task the idea here is to split their contributions. The multi-scale decompo-
sition of the signal was inspired by the work of Mallat [80]. Mallat analyzes
the properties of the scattered transforms, which resemble Deep Convolutional
Neural Networks (DCNN). Differently from the DCNN, we fix the filters as
mother wavelets with varying scales.

We leverage on a shallow wavelet representation, and on top of this we ap-
ply feature selection. The wavelet scales and the similarity metrics are shared
across the entire population.

The multi-task nature of the method arises from the need of merging in-
formation and finding out relevant epileptogenic features, while classifying
epileptogenic regions with such different SEEG montages. Indeed the classifi-
cation of SEEG recordings for each patient constitutes a single learning task. In
this way, our model is the sum of personalized models built for each patient,
where the features are nonetheless shared across the entire population. We per-
formed the selection of relevant scales through a feature selection approach,
by imposing sparsity on the coefficients related to the similarity metrics. Spar-
sity constraints are applied also on single models, for the aim of using a small
amount of bipolar contacts, so to observe which are the most contributive to
the classification task.
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MT-MKL is not totally automatic as it cannot be used for predictive task on
a new set of patients. Given a patient we will compare, at each scale, the repre-
sentations of the recordings in the training set, giving a measure of their sim-
ilarity. The classification of an unseen bipolar recording from p relies indeed
on the pairwise comparison with recordings from the training set. This ex-
plains the need of having for each patient some labeled samples. Nonetheless,
differently from the analysis presented before, MT-MKL takes into account
the SEEG montage, including the variety in the number of contacts, which
strongly depend on the clinical non invasive assessment about the candidate
epileptogenic areas.

In Section 6.2 we introduce the wavelet representation and the similarity
metrics we leverage on to solve the classification task. In Section 6.3 we con-
sider the optimization problem. In Section 6.4 we present the experimental
setup and the main results obtained from the MT-MKL. The method has been
presented @ Invasive Mathematics (Genova, May 2018), @ Machine Learn-
ing for HealthCare conference (Stanford, August 2018), and @EuroScipy 2018

(Trento, September 2018). These three events were extremely useful for com-
ments that guided us to further changes and analysis, which will be widely
discussed in Section 6.5.

6.2 Data Representation and Similarity Measures

We denote a generic i-th bipolar recording from a patient p as S(p)
i . To ease the

notation, we omit the patient index from now on. Please note that the similar-
ities are always computed on a generic pair of bipolar recordings

(
S(p)

i , S(p)
j

)

coming from the same p patient, even if we omit the notation.

6.2.1 Multi-Scale Representation of the Recordings

The multi-scale representation for Si is obtained through the CWT, introduced
in Eq. 8. We use the complex Morlet transform as mother wavelet

Ψ(t) =
1√
πB

exp [2iπtC] exp
[
− t2

B

]
, (56)

with B = 1 s2 and C = 1 s−1 for the default sampling period of 1 second. The
complex part of this transformation is such that it enable us to capture aspects
related to both the amplitude of the signal as well as its phase.

The transformation as in Eq 57 will be used across the experiments.

Ψτ,s(t) =
1√
πs

exp
[

2iπ
t− τ

s

]
exp

[
− (t− τ)2

s2

]
, (57)

with the tuple (τ, s) denoting respectively the temporal shift and the scaling
parameter. We define the wavelet representation of the signal as

(WSi)(τ, s) =
1√

s

∫
dξSi(ξ)Ψ

(
ξ − τ

s

)
. (58)
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Let Ai(τ, s) be the instantaneous amplitude at scale s of the wavelet represen-
tation of the signal

Ai(τ, s) = |(WSi)(τ, s)|. (59)

Let Φi(τ, s) be the instantaneous phase at time τ and s scale of the representa-
tion

Φi(τ, s) = arctan
[=[(WSi)(τ, s)]
<[(WSi)(τ, s)]

]
, (60)

with = the imaginary part and < the real part of the wavelet coefficients.

6.2.2 Similarity Measures

To measure the similarity of two time series, we consider standard measures
of pairwise correlations in phase, amplitude, and in the frequency domain.
In the first case we resort to the Phase Locking Value (PLV), which quantifies
the coherence at each time point. In the second case we use a normalized cor-
relation to evaluate the amplitude similarity. This quantity is nonetheless not
invariant to temporal shifts. Correlation is a reliable quantity when the lag be-
tween similar patterns is negligible compared to the pattern length, e.g. areas
participating to the same neural activity or almost instantaneous propagation.
Finally to capture similar behavior of two recordings, independently from the
temporal lag between the two, we resort to shift invariant spectral measures.

phase locking value A measure of phase synchrony between bivariate
measures is known as Phase Locking Value (PLV) [72]. We define the PLV at
scale s as

PLVs(Si, Sj) =
1
T

∣∣∣∣∣
T

∑
τ=1

exp
[
− i
(
Φi(τ, s)−Φj(τ, s)

)]
∣∣∣∣∣ , (61)

with T length of the recordings. Its value ranges between [0, 1]. The maximum
PLV value corresponds to a pair of perfectly synchronous signals.

normalized correlation Let µs(Ai) = Eτ[Ai(τ, s)] be the empirical
expectation value of the wavelet coefficients amplitude at scale s. Let σ2

s (Ai) =

Eτ[(Ai(τ, s)− µs(Ai))
T(Ai(τ, s)− µs(Ai))]. We write the covariance at scale s

as

covs(Si, Sj) =
Eτ

[(
Ai(τ, s)− µs(Ai)

)T(Aj(τ, s)− µs(Aj)
)]

σs(Ai)σs(Aj)
. (62)

spectral measures We define the cross power spectral density as the
Fourier transform of the convolutional product, denoted by ∗, of the absolute
value of wavelet coefficients for the two signals, computed as follows

Ps(Si, Sj)( f ) = F (Ai ∗ Aj)( f ). (63)
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The module of cross power spectral density is invariant in the time and fre-
quency domain, as a result of the Parseval theorem [124]. In order to quantify
the similarity between spectra, we normalize the quantity in Eq. 63

P̃s(Si, Sj) =
‖Ps(Si, Sj)‖2

|Ps(Si, Si)| · |Ps(Sj, Sj)|
. (64)

6.3 Learning Method and Feature Selection

We refer to the entire dataset as D = {S(p), y(p)}N
p=1 with N number of patients.

For the generic patient p, the number of recordings cp varies and consequently
the dimensions, so that S(p) ∈ Rcp×NT and y(p) ∈ {−1, 1}cp

. The term NT

denotes the number of time points.

6.3.1 Multi Task Multiple Kernel Learning

Multiple Kernel Learning (MKL) [16, 73] integrates data by combining differ-
ent kernel functions. A straightforward MKL may be a linear combination of
different kernels [16]. This is possible given the fact that kernels allow linear
operations while preserving their mathematical properties, e.g. positive semi-
definite and symmetry [52].

Kernels K are positive semi-definite matrices whose entries Kij encode pair-
wise similarity between the i-th and j-th samples (Chapter 3, [113]). The met-
rics choice, which reflects in the choice of a suitable kernel function can be
tricky as it heavily depends on the data at hand and the task we aim at solv-
ing.

Formally, consider k kernels {K1, . . . , Kk} that represent different similar-
ity measures among dataset samples. Such kernels can be combined linearly
as a weighted sum ∑k

i=1 wiKi, where w = (w1, . . . , wk)
> ∈ Rk

+ is a vector of
non-negative components, obtained through an optimization procedure. Such
components measure the importance of each kernel for the problem at hand.

MKL in its general formulation is not suitable to our dataset [45]. Indeed,
in our case the variability of the implantation setting does not allow for a
direct comparison of the neural activity across patients. In other words, it is
not possible to use a unified regression model for all patients, as we need to
look at a portion of the contacts for each patient in order to classify the ones
left out.

To handle the variability problem we extended the MKL to Multi-Task Mul-
tiple Kernel Learning to account for different patient conditions. Each kernel
represents a particular similarity matrix among all the contacts in a single pa-
tient at a specific scale. The innovation in the method consists in the capability
of jointly analyzing the patients activity by taking into account their diversity.
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We denote
{

K(p)
1 (·), . . . , K(p)

k (·)
}

the set of k similarity maps for the generic

patient p. The decision function f (p) for the patient p and the recording Sq is
defined as

f (p)
(

S(p)
q

)
= α

(p)
0 + ∑

i∈Ctr
p

[
α
(p)
i

k

∑
j=1

wjK
(p)
j

(
S(p)

q , S(p)
i

)]
, (65)

with α
(p)
i the i-th component of the regression parameter α(p), specific for each

patient p, C tr
p set of contacts used during training.

Having separate parameters
({

α(1), . . . , α(N)
}

, w
)

is fundamental for the

resolution of our problem. In fact, α(p) allows to better approximate the labels
y(p) by capturing the variance of each patient, while w combines the kernels by
weighting them and, as it holds across patients, it provides relevant indication
of the most discriminative kernels.

In order to obtain interpretable results and a more stable solution we also
add an elastic-net (or L1L2) penalty on w and α =

{
α(1), . . . , α(N)

}
. By con-

sidering all the patients, our goal translates into minimizing the following
objective function:

minimize
α(1),...,α(N),w

{ N

∑
p=1

(
` f (p)

(
S(p), y(p)

)
+ λ(rλ‖α(p)‖1 + (1− rλ)‖α(p)‖2

2)
)

+ Nβ
(
rβ‖w‖1 + (1− rβ)‖w‖2

2
) }

s.t. wj ≥ 0 for each j = 1, . . . , k.

(66)

The single-task loss function is the negative log-likelihood of the logistic
probability function

` f (p)

(
S(p), y(p)

)
= − ∑

i∈Ctr
p

log
[
1 + exp

[
−y(p)

i f (p)
(

S(p)
i

)]]
. (67)

The terms rλ and rβ are hyper-parameters of the elastic-net penalty ratios on
α and w respectively. The elastic-net penalty benefits indeed from the well-
known stability property of the L2 regularization term [138].

6.3.2 Minimization

For the optimization of the functional in Eq. 66 we rely on alternating mini-
mization [14]. Indeed after a revision on the current state-of-the-art of multi-
ple kernel methods [45] we did not assume our problem to be jointly convex
in both w and the set of

{
α(1), . . . , α(N)

}
weights. Despite this is one of the

main features characterizing classical MKL methods, the adopted optimiza-
tion framework [14] guarantees convergence to a critical point under mild
assumptions of non global Lipschitz continuity for the gradient of the smooth
term.



6.3 learning method and feature selection 76

In particular the optimization of the form in Eq. 66 is based on an alter-
nating forward-backward splitting procedure given the non-differentiability
of some parts of the functional (L1 norm) [14, 27]. The optimization procedure
is described in Algorithm 1.

Algorithm 1 Alternating Minimization Algorithm

1: Initialize
({

α(1)(0), . . . , α(N)(0)
}

, w(0)
)

2: for t < tmax do
3: for p = 1, . . . , N do
4: α(p)(t)← minimize Problem 66 with w = w(t− 1)
5: end for
6: w(t)← minimize Problem 66 with α = α(t)
7: if stop criterion is met then return

({
α(1)(t), . . . , α(N)(t)

}
, w(t)

)

8: end if
9: end for

minimization of α . Fixing w, for each patient p the functional w.r.t. α(p)

takes the form of a standard logistic regression. Its minimization is then per-
formed by computing the derivative on the logistic loss and the L2 norm and
then applying the soft-thresholding operator [96] on the result of the gradient
descent step. The gradient for the q-th component of the vector α(p) relative to
the patient p is

∇α
(p)
q =

y(p)
q exp

[
−y(p)

q f (p)
(

S(p)
q

)]

1 + exp
[
−y(p)

q f (p)
(

S(p)
q

)]
k

∑
j=1

wjK
(p)
j

(
S(p)

q , ·
)
+ 2λ(1− rλ)α

(p)
q . (68)

minimization of w . The minimization of w is more tricky, given its non-
separability across various patients. In Eq. 69, we report the gradient of the
differentiable part of the functional, which consists in the sum of gradient com-
puted for each patient p and the L2 term. Then, we apply the soft-thresholding
operator to enforce sparsity in the solution. Also, we project the kernel weights
into the positive half-space by applying a threshold on zero. This ensures that
a kernel is considered only if its weight is positive, otherwise it is discarded.
The gradient for the generic m-th component of the kernel weight vector is

∇wm =
N

∑
p=1


 ∑

i∈C(p)
tr

y(p)
i exp

[
−y(p)

i f (p)
(

S(p)
i

)]

1 + exp
[
−y(p)

i f (p)
(

S(p)
i

)]
[
α
(p)
i K(p)

m

(
S(p)

i , ·
)]



+ 2Nβ(1− rβ)wm. (69)
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6.3.3 Parameters Choice

The choice of the optimal parameter for the model leverages on a k-fold Cross
Validation (CV). The best

(
β∗, λ∗, r∗λ, r∗β

)
are chosen based on the highest

averaged balanced accuracy score.

6.4 Experiment I: Support Tool and Feature Ex-
traction

Since MT-MKL needs in input tagged recordings from the positive and nega-
tive classes for each patient, we decide to consider only patients who present
at least 25% recordings tagged as epileptogenic. We analyze in total 18 pa-
tients, for a number of 2347 bipolar recordings, of which 984 have positive
label, reported in Table 20.

ID 4 15 17 20 24 31 33 36 38

Engel class I II IV IV I - II I I

#PC /#C 0.41 0.37 0.46 0.25 0.77 0.49 0.31 0.53 0.60

ID 41 44 45 46 47 48 50 54 58

Engel class - I I IV - I I I IV

#PC /#C 0.30 0.49 0.38 0.40 0.36 0.51 0.41 0.44 0.34

Table 20: Experiment I: dataset used at the first implementation of MT-MKL. We strat-
ified the patients, requiring the amount of positive contacts over the total
#PC/#C to be greater than 0.25. At the time of the experiment, the post-
surgical outcome was not available.

We report in Figure 22 a schematic representation of the implementation of
Experiment I.

We first execute the signal processing step, on the top-left, by removing
power-line effects (50 Hz and harmonics) using a stop-band 2nd order Butter-
worth filter, with 2 Hz bandwidth and filtfilt option to avoid phase distortion.
We reduce each recording to a shared length of T = 590 s, or NT = 590000
time points. We transform each bipolar recording as in Eq. 58. The shift param-
eter τ takes discrete values in [0, NT − 1]. The array of wavelet scales is fixed
to be a list of one hundred elements equally spaced in the logarithmic scale
in the interval [0.3, 3]. Fixing s, the central frequency fa of the mother wavelet
corresponds to fa = 1/s · ts; with ts denoting the sampling period, equivalent
to 1 millisecond. Consequently, the values of fa vary in the range between 0.5
Hz and the Nyquist frequency, corresponding to 500 Hz. We rely for this step
on the MATLAB implementation of the complex Morlet transform 1.

After the preprocessing phase, middle box in Figure 22, we provide the
multi-scale representation as input to the algorithm which computes normal-

1 https://www.mathworks.com/help/wavelet/ref/cwtold.html

https://www.mathworks.com/help/wavelet/ref/cwtold.html
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Figure 22: Schematic representation of the learning pipeline of Experiment I. From
top left, SEEG recordings are preprocessed to eliminate line contributions.
For the multi-scale analysis, we use CWT to represent the time series. The
central panel represents the similarity measure computation step, applied
for each scale of the wavelet transform. We have in total s × 3 similarity
measures. In the last panel, the MT-MKL algorithm includes the minimiza-
tion and the choice of the best model. MT-MKL returns the set of kernels’
weights, the contacts weights, and the predictive result from the logistic
probability function.

ized correlation, PLV, and spectral measures. Then, for each patient p, during
the training procedure we extract randomly, by respecting the proportion be-
tween the two classes, a set C(p)

tr data which are transformed into k = 3× 100
kernels, each of dimension #C(p)

tr × #C(p)
tr . Since quantifying spectral similarity

in Eq. 64 is computationally expensive, given the high number of time points
for each time series, we approximated this quantity by averaging its estimation
on smaller, non-overlapping windows of the signal (5.9 seconds length each).

Lastly, right box in Figure 22, we apply MT-MKL on the resulting similarity
measures. The split in training and validation sets is performed by dividing
equally the number of recordings (50%/50%) for each patient, while preserv-
ing the ratio between the two classes. The learning set is then used to select
the optimal hyper-parameters with a 3-fold grid search CV and the score is
computed on the validation set. We repeat this procedure 50 times in order to
assess the performance stability.
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Figure 23: Kernels which mostly contribute in the characterization of the epilepto-
genic areas. These measures are reported on the x-axis. In square bracket
we put the central frequency values of the mother wavelet, and the typ-
ical event type related to each frequency. We assign blue color to phase
measures and orange to amplitude. Each bar and black line correspond re-
spectively to the mean value and standard deviation of the weights across
50 repetitions of the experiment. The right y-axis denotes the occurrence
value, the green dots correspond to the number of times each kernel was
selected throughout the repetitions. The dashed line indicates the 0.75% of
occurrence value.

6.4.1 Results

First we analyzed w, whose components weight each similarity measure, shared
across all patients. The L1L2 penalty in Eq. 66 gives a sparse small-normed
vector w. The non-zero components of this vector can be analyzed to extract
information about the importance of similarity measures at specific frequency
bands to the prediction task. In Figure 23 we show the similarity measures se-
lected at least once and ordered by their occurrence across 50 repetitions. The
most representative similarity measures (≥ 75% occurrence) and the related
central frequencies are reported in Table 21 ordered by the mean value of their
coefficient.

Normalized Correlation

Event Type HF HF HF HF HF HF HF HF HF

Central Frequency[Hz] 251 267 221 303 183 366 322 389 134

Phase Locking Value

Event Type HF HF hγ hγ hγ hγ hγ HF γ

Central Frequency [Hz] 104 111 86 52 76 67 71 125 35

Table 21: On top: most relevant frequencies for the characterization of critic areas re-
lated to the signal amplitude. High Frequencies (HF) emerge as the most
predictive. On bottom: most relevant frequencies emerging from phase sim-
ilarity. There is a strong prevalence of the γ and high-γ (hγ) frequencies.
Phase Locking Value influences the prediction at lower frequencies than Nor-
malized Correlation.

We notice that the greatest components of w correspond to amplitude cor-
relation at high frequency and phase synchrony at γ and high-γ bands. Note
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that the learning pipeline never selects the spectral measures as reliable fea-
tures for prediction, across all repetitions of the experiment. At the time of the
experiments we retained the selection of relevant similarity measures at spe-
cific frequency bands to constitute the most statistical reliable payback of the
entire procedure, as it is computed across patients.

Another MT-MKL outcome includes statistics on the set of coefficients {α(1), . . . , α(N)}
specific of each patients. These coefficients weight the contacts which have
been mostly selected across repetitions and could be considered as the most
useful to the classification task. We report in Figure 24 the α vector of a patient
from class Engel I.
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Figure 24: α weights evaluated on a patient. The bars denote the mean weight for
each contact, the black bars are standard deviation values across the 50
repetitions. Cyan and red colors refer to the two classes. The green y-axis
report the normalized time in which the contact has been selected with the
L1L2 norm.

We show in Figure 25 the mean and standard deviation of metrics obtained
across 50 repetitions of the experiment on the 18 patients. We measured the
performance of our model according to the following metrics scores: Preci-
sion (P), Recall (R), True Negative Rate (TNR), False Positive Rate (FPR), False
Negative Rate (FNR), F1 score, and Balanced Accuracy (BA).

Figure 25: Average of performance scores across patients. Mean and standard devi-
ation are computed across 50 repetitions for each patient over all bipolar
recordings from the validation set.
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6.5 Comments on Experiment I

This first implementation of MT-MKL has been presented first as a poster at
Invasive Mathematics2 (Genova, May 2018), where I mostly interacted with
Christian Benar and Lino Nobili. The work had been previously submitted at
MLHC 2018 (April 2018) and accepted in its extended version as a conference
paper. The work received several comments from the attendees of the MLHC
conference3 (Stanford (CA), August 2018) and we obtained further feed-back
about the pipeline implementation at the EuroScipy 2018

4 (Trento, Septem-
ber 2018). These interactions have been extremely useful as they put in light
some potential issues and further experimental setups which should have been
tested to improve the analysis.

In the light of this feedback, the following subsections are key as they will
guide the analysis contained in this chapter and throughout the overall work.

6.5.1 Unified Implementation and Filter Design

In Experiment I, the multi-scale representation and the computation of sim-
ilarity measures represented the main bottleneck of the entire procedure. In
Experiment I MT-MKL relies indeed on both the use of MATLAB and Python
software. We leveraged on the former for signal preprocessing, wavelet trans-
forms, and the computation of the cross spectral density measures. The learn-
ing pipeline stands instead on top of the scikit-learn [99] implementation of lo-
gistic regression, to solve a multitask problem and it was developed in Python.
Nonetheless an entirely open-source library would have been much more de-
sirable. In this regard a new release of PyWavelets, with wide implementation
of the Continuous Wavelet Transform, and several software tests for a straight-
forward comparison with the MATLAB software5 was available. A more for-
mal characterization of the filter width was also missing from our work at this
point. The central frequency individuates indeed the main frequency involved
but does not clearly quantify the filter width in the frequency domain.

We address these points in Section 6.6, Experiment II. We will provide a new
implementation of the learning pipeline entirely based on Python software,
with detailed characterization of the filters choice.

6.5.2 Discrimination of Pathological Rhythms and Patterns

Frequency bands may not represent the best criterion to identify the patho-
logical contributions of specific patterns to the signal. High frequency bands
may collect contributions not only from HFOs, but other patterns, e.g. ISs. The
presence of high frequencies (above γ) as a hypothesis for the HFOs contribu-

2 Last visit: November 5th, 2019 http://mida.dima.unige.it/invasive_mathematics/

3 Last visit: October 17th, 2019 https://www.mlforhc.org/2018

4 Last visit: November 5th, 2019 https://www.euroscipy.org/2018/program.html

5 https://pywavelets.readthedocs.io/en/latest/

http://mida.dima.unige.it/invasive_mathematics/
https://www.mlforhc.org/2018
https://www.euroscipy.org/2018/program.html
https://pywavelets.readthedocs.io/en/latest/
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tion cannot be corroborated without a previous localization of interictal spikes
and the evaluation of their contribution to the filtered signal. This observation,
besides being extremely useful, represents a critical aspect. The automatic in-
terpretation of waveforms in the neural signal would require the use of sophis-
ticated strategies for classifying the patterns. In this regard, the work of Roehri
et al. [105] has been suggested as a starting point for an easier separation of
HFOs and ISs at high frequencies.

Quantifying the importance of short bursts of activity during the interictal
stage will be at the center of Chapter 7 and will lead us to the analysis in
Chapter 8.

6.5.3 Spurious Spatial Correlations

A further concern is related to the plausible presence of spurious correlation,
which could lead to biased classification performance.

This hypothesis is corroborated by the absence of spectral similarity mea-
sures as relevant features for classification, across all frequencies. Indeed, we
would have expected similar contributions from cross correlations as well as
from amplitude similarity. This enforces the possibility that physiological ac-
tivity together with the effect of spatial correlation may play a major role in
the predictive performance.

To analyze if spurious effects plays a substantial role in prediction, we carry
out Experiment III, in Section 6.7. We split the recordings in the temporal do-
main to assess the stationarity in the epileptic behavior. Nonetheless in this
setting we are more interested in studying if the prediction remains highly
above chance, and if this happens also when we permute the labels. The con-
clusions obtained from this Chapter will guide us to the experimental design
of Chapter 7. There we will test if any possible contribution to the predictive
model derives from spurious physiological activity.

6.5.4 Surgical Outcome and Clinical Validation

All the considerations were based at the time on the pre-surgical assessment
only. Missing post-surgical outcomes impairs the significance of these results.
In Table 20 we report the post-surgical outcome which was not available at the
time of the analysis. The analysis based on post-surgical outcome will follow
in Chapter 7.

6.5.5 Algorithmic Issues

At the first implementation the functional in Eq. 66 was normalized by the
number of N patients, but in Eq. 65 the normalization factor given by the
amount of training contacts per patient #C tr

p is missing. We introduce this factor
from Experiment II.
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The model relies moreover on the choice a discrete amount of hyper-parameters
and several intrinsic parameters. As defined in Eq. 66 MT-MKL is not convex
in the tuple ({α(1), . . . , α(N)}, w). This leads to optimization issues, as conver-
gence to a global minimum is not guaranteed. Several empirical strategies
could be implemented to attenuate these effect, as re-training the models us-
ing multiple initializations and the use of accelerated minimization methods,
which may reduce the chance of converging at local minima with poor gener-
alization.
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6.6 Experiment II: Improvements and Usage over
all Population

Here we address the issues described in Section 6.5.1. We furthermore fix the
normalization of the discriminative function discussed in 6.5.5.

We design a cascade of consecutive wavelet filters, where the number of
scales is imposed by requirements on the filters width and their superposition.
Overlapped filters should limit information loss for the signal representation.
At the same time, L1L2 penalty in the functional should protect from instability
which rises from sparsity requirements in presence of correlated features.

6.6.1 Analysis of Morlet Wavelet

We analyze the effect of the (B, C) parameters on the filters shapes, starting
from Eq. 56. Indeed, these are independent from the scale and shift param-
eters (τ, s). Given that the complex Morlet wavelet is a sinusoidal function
modulated by a Gaussian envelope, the (B, C) terms regulate respectively the
variance of the Gaussian and the sinusoid frequency. The Fourier transform
for the function in Eq. 56 corresponds to

F (Ψ)(ω) =
1√
2π

∫ +∞

−∞

1√
πB

exp
[
− t2

B

]
exp [i2πCt] exp[−iωt]dt

=
1√

2π2B

∫ +∞

−∞
exp

[
− t2

B

]
exp

[
−2it

ω− 2πC
2

]
dt

=
1√

2π2B
exp

[
− (ω− 2πC)2B2

4

] ∫ +∞

−∞
exp

[
− 1

B

(
t + i

ω− 2πC
2

B
)2
]

dt.

The second last integral can be solved analytically 6 with the following result

F (Ψ)(ω) =
1√

2π2B
exp

[
− (ω− 2πC)2B2

4

]√
πB. (70)

With the factorization at the exponent, the function in the frequency domain
corresponds to

F (Ψ)( f ) =
1√
2π

exp
[
− ( f − C)2

1/(π2B2)

]
. (71)

In the frequency domain the filter maintains its Gaussian shape. The term
C corresponds to the Gaussian center, B is related to the function width σ =

(
√

2πB)−1.

6 Indeed by integrating on a rectangular path on the C plane the vertical edges give no contribu-
tion. The horizontal path corresponds to the gaussian integral on a horizontal line. By pushing
this values to the limit we obtain the integration on the x-axis.
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6.6.2 Scales choice

The relation between the filter parameters (B, C) and the scale factor a can be
inferred from the analysis of the shape of F (Ψa)( f )

F (Ψa)( f ) =
1√
2π

exp

[
−
(

a f − C
1/(πB)

)2
]
=

1√
2π

exp

[
−
(

f − C/a
1/(πaB)

)2
]

.

Both the central frequency and the filter width are compressed of the factor a.
We write the center and the standard variation of the Gaussian curve depend-
ing on the scale parameter as f a

c and σa. We obtain the following equivalence
which allows us to understand the scale effect on the filter

f a
c =

C
a

then, for a = 1→ f 1
c = fs, (72)

σa =
1√

2πaB
then, for a = 1→ σ1 =

1√
2πB

. (73)

In the implementation we fix the first entry of the a array to the value a0 =

2.1. This corresponds to the central frequency f (a0)
c = 476 Hz. We impose a

great overlap of two filters with the requirement in Eq. 74. Given a scale aj, the
central frequency for the larger scale aj+1 must satisfy the condition below

exp


−

(
f

aj+1
c − f

aj
c

)2

2 (σaj)2


 = 0.95. (74)
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Figure 26: Given a fixed central frequency, we require to cover very tightly the spec-
trum, using the requirement that the central frequency at the next scale
must be centered at a tolerance value, equal to 0.95.

In Figure 26 we plot the condition in Eq 74. The value of the central fre-
quency at scale aj+1 must be centered in the point where the function value at
scale aj corresponds to 0.95.

By inverting the relation we find iteratively the central frequency values

−

(
f

aj+1
c − f

aj
c

)2

2 (σaj)2 = ln(0.95)→
(

f
aj+1
c − f

aj
c

)2
= −2 (σaj)2 ln(0.95)

f
aj+1
c = f

aj
c − σaj

√
−2 ln(0.95),
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we consider as solution the smaller frequency value as we increase the scale.
Consequently, from Eq. 72 we extract the entries of the a array. The plots related
to the central frequency and the spectrum width are shown in Figure 27. At
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Figure 27: On the x-axis, index relative to the number of scales, #s = 83, on the y-axis,
frequency values. We cover the entire spectrum, from ∼ 470 Hz to 1 Hz.
On the left we report the central frequency, on the right the correspondent
filter width.

the highest scale, equivalent to a = 970, the correspondent central frequency
is equivalent to 1.03 Hz, and the filter width to 0.23 Hz.

6.6.3 Normalization based on Number of Contacts

We add a normalization term on the loss function fixed as the number of
training contacts for each patient #C(p).

f (p) (S) = α
(p)
0 + ∑

i∈C(p)

[
α
(p)
i

k

∑
j=1

wjK
(p)
j

(
S(p)

i , S
)]

(75)

` f (p)

(
S(p), y(p)

)
= − 1

#C(p) ∑
i∈C(p)

log
(

1 + exp
(
−y(p)

i f (p)
(

S(p)
i

)))
(76)

The objective function assumes the following form

minimize
α(1),...,α(N),w

{
1
N

N

∑
p=1

(
1

#C(p)

(
∑

i∈C(p)

− log
[
1 + exp

[
−y(p)

i f (p)
(

S(p)
i

)] ])
+

λ
(

rλ‖α(p)‖1 + (1− rλ)‖α(p)‖2
2

))

+ β
(
rβ‖w‖1 + (1− rβ)‖w‖2

2
) }

s.t. wj ≥ 0 for each j = 1, . . . , k.
(77)
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6.6.4 Setup

The implementation of CWT and the similarity matrices in Python speeded up
the computational performance, thus allowing us to perform the experiments
on the entire population of 59 focal epileptic patients. The library is available
here https://github.com/slipguru/mt-mkl. We argue that the learning prob-
lem may get much harder given the heterogeneity of the population, in terms
of class unbalance. We aim at observing if the method still provides an insight
about the relevance of some frequency bands. The data representation and
learning process is summarized in Figure 28.

Figure 28: Schematic representation of the learning pipeline for Experiment II. From
top left, the input data has dimension N = 59. In the middle column, we
represent the data as in the previous experiment. We have in total #s × 3
similarity measures. In the last panel, the MT-MKL algorithm includes the
minimization and the choice of the best model. This is tested on a test
set. MT-MKL returns the set of kernels weights, the contacts weights, and
the predictive result from the logistic probability function. We perform a
permutation test.

Signal preprocessing is performed using the Python implementation of the
Butterworth filter from the previous experiment 7. The recordings have been
reduced to a shared dimension on 590 seconds.

For what regards the multi-scale representation we resort to the array of
scales derived from Formula 74. This leads to #s = 83, number of wavelet

7 Last access October 19th, 2019. Butterworth filter https://docs.scipy.org/doc/scipy/

reference/generated/scipy.signal.butter.html

https://github.com/slipguru/mt-mkl
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
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scales. We built the similarity matrices as for the previous experiment. We
construct the matrices related to the spectral measure by applying directly
Formula 63.

Given the higher number of samples we are now able to split the dataset in
learning and test sets and keep the latter for final evaluation of the results. We
perform a stratified shuffled split which preserves the unbalance of epileptic
and non epileptic contacts for each patient. During the learning procedure we
determine the best model for each patient through a 3-fold grid search CV
procedure. The hyper-parameters are selected in the following grid

λ = β = rλ = rβ = [0.1, 0.4, 0.9]. (78)

The selection takes place by considering the tuple with the highest averaged
BA score of the 3-fold procedure.

(λ∗, β∗, r∗λ, r∗β) = argmaxλ,β,rλ,rβ

{
1
N

N

∑
p=1

(BA score)p

}
(79)

6.6.5 Results

We noticed a slow rate of convergence and for some runs of the experiment the
model did not converge. If the minimization algorithm did not reach a min-
imum, within the tolerance value of 10−4, it stops after a maximum amount
of iterations, fixed at 200. To show the results we took into account the exper-
iments where the balanced accuracy over the learning set exceeded the value
0.90. In Figure 29 we report the hyper-parameters selected across 16 repeti-
tions of the experiment, from the condition in Eq. 79. We observe that the
hyper-parameters related to the kernels weights (β∗, r∗β) are stable across the
repetitions.

6.6.6 Lack of Selectivity

We show in Figure 30 and in Figure 31 the frequencies selected respectively for
the normalized correlation measure (in orange) and the phase locking value
(in blue). We report the normalized weights related to bands selected across
all the 16 repetitions of the experiment.

We expect the normalization to help us understanding if some of these
rhythms are more interesting. To a higher value should correspond a higher
relevance while in case of constant and equal weights across all features, all
weights values should correspond to 1/(3#s) = 0.004. In this concern we do
not observe the emergence of features selectivity in the discriminative task,
for the entire set of 59 patients. The low selectivity of the algorithm can be
here directly related to the selected regularization parameter rβ, which is the
smallest among all the values in the grid (see Figure 29).

The predictive model relies over all the similarity measures. From Figure
30, across all the repetitions of the experiment, we observe a consistent pres-
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Figure 29: Histogram of best hyper-parameters selected across 16 repetitions of the
experiment. The term r∗β related to kernels selection is the lowest, indicating

that the L1 term in the elastic net has smaller relevance than the L2. We
observe a dependence from the dataset split for what concerns the selection
of the tuple (λ∗, r∗λ).
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Figure 30: Normalized weights related to normalized correlation, selected at every

repetition of the experiment. There is no selectivity but across all the repe-
tition we observe a strong prevalence of β, γ rhythms, and high frequencies.

ence of β, γ, and high frequencies. Slower rhythms are selected across all the
repetitions in Figure 31.

6.6.7 Predictive Performance

We evaluated the classification performance of the model. We computed the
balanced accuracy score for each patient and then we average these values
across all the population. The mean and the standard deviation related to this
value, across the 16 repetitions of the experiment, are

〈
1
N

N

∑
p=1

(BA score)p

〉
= 0.82± 0.04 (80)
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Figure 31: Normalized weights related to phase correlation, selected at every repeti-
tion of the experiment. We observe the presence of almost all the spectrum,
from slow rhythms (δ) to high frequencies.

In Figure 32 we show other evaluation metrics, which allow to understand the
predictive capacity of the model.

P R TNR FPR FNR F1 BA
metrics
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Figure 32: Performance evaluated on the test set across the 16 repetitions of the model,
for which we fit the validation set. We observe that the metrics are all higher
than chance.

P R TNR FPR FNR F1 BA

0.68 ±
0.08

0.82 ±
0.11

0.82 ±
0.08

0.18 ±
0.08

0.18 ±
0.11

0.70 ±
0.05

0.82 ±
0.04

Table 22: Mean and standard deviation (round parenthesis) of several metrics evalu-
ated on the test set. Starting from the left: precision, recall, true negative rate,
false positive rate, false negative rate, F1 score, balanced accuracy.

In order to further assess the goodness of the prediction ability we perform
a permutation test. This consists in the comparison between the prediction
performance of the 16 repetitions of the experiment, and the prediction per-
formance from another experiment, in the same setting, with randomly per-
muted y labels. We call regular model the ones obtained from the experiment in
the standard setting, and permuted model the outcome of the learning process
for the permuted labels. A high difference between the performance in the
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Figure 33: Result of the permutation test for the 16 selected models. By analyzing the
prediction capacity of those models over the test set we exclude that these
are extracted from the same distribution related to the permuted batch.

two settings is desirable. To quantify this we perform a 2-sample Kolmogorov
Smirnov non-parametric test. The null hypothesis corresponds to balanced ac-
curacy scores for the two models drawn from the same distribution. In Figure
33 we show distribution of the averaged across population balanced accuracy
scores for the repetitions of the experiment. The orange bars correspond to the
performance of the permuted model, in blue bars report the distribution of the
regular model averaged scores. Given the small p-value < 10−3 we discard the
null hypothesis.

6.6.8 Observations

The analysis of the entire set of patients N = 59 gives negative result in terms
selective capacity of the model. As we observed, this could follow from a
higher variability of the class unbalance across the entire population. We ob-
serve nonetheless that the model, across repetitions of the experiment, main-
tains good predictive performance.

This result seems to corroborate the hypothesis that, in order to solve the
predictive task, the method leverages on pathological information as well as
spurious correlations. The latter do not capture the main characteristics of
epilepsy, but help in solving the predictive task. The presence of spurious
correlations is indeed favored by the form of the functional itself, which resorts
to some of the bipolar recordings from a patient to assess the ones left as test.

It is hard to test this hypothesis and to quantify how spurious correlations
contribute to the learning task. Reducing the size of the learning set would
necessarily lead to a deterioration of the performance, whether the hypothesis
holds true or not.
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6.7 Experiment III: Labels Permutation and Role
of Physiological Activity

In this part we address the limitations described in Section 6.5.3.
The main hypothesis here is that high predictive performance cannot prove

the capacity of the model to capture features related to pathological activity,
but rather its dependence on spurious correlations. Indeed the low selectiv-
ity in Experiment II may result from a wider contribution of the frequency
spectrum but it may also denote the presence of spurious correlations. In this
last part we examine the capacity of the model to rely on purely spurious
correlations to achieve high performance.

To this aim, we randomize the labels for every contact and any patient.
After this operation, we expect any model trained on random labels to lack

any features selectivity. We want to analyze nonetheless if the model perfor-
mance is comparable to one without random permutation.

To this aim we compare two models, one trained with random labels and one
with permuted labels. Given the two datasets, in this paradigm we split train,
validation, and test set in the temporal domain.

For each patient, the similarity will be computed across the different chunks,
by comparing the activity recorded from the same site at different time. We
measure the capacity of the model to capture the input-output relation, in
the regular case, and in the random case. If, despite the use of regularized
methods, the model is complex enough to fit the dataset with random labels,
we cannot discard the hypothesis that spurious activity may play a crucial role
in the classification task.

6.7.1 Setup

We propose a scheme of the procedure in Figure 34. Starting from the left,
the signal processing and multi-scale analysis is equivalent to the previous
experiments. In the random label case, we permute the labels at the beginning
of the process, before any preprocessing operation.

In the middle, for each bipolar recording we split the wavelet representation
of dimensions (#s, NT) in three chunks of equivalent length (#s, int(NT/3)).
We denote these three periods as T1, or train chunk, T2, or validation chunk,
and T3, or test chunk. Given the length of the time recordings and the temporal
resolution of the wavelet filter, there is not contaminations across different the
three windows deriving from the convolution from the entire time series. At
the lowest central frequency, equivalent to 1.03 Hz, the filter width equals 0.23
Hz.

We build the similarity matrices. In this experiment, all the matrices have
dimensions #C(p) × #C(p), independently from the data split. We generate the
similarity measures of the training step by comparing the activities across all
contacts in the same window of time T1. The similarity measures for the val-
idation result from the comparison of the recordings in the period T1 with
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Figure 34: Experiment III: the preprocessing and the multi-scale representation is
equivalent to previous experiments. The generation of the train, validation
and test sets is such that we split the CWT representations in three blocks
with the same length. Leakage effects to the split are negligible, given the
filter resolution compared to the chunks length (∼ 200 s). The kernel con-
struction is such that we compare different time instants.

the ones at time T2, while the test matrices derive from the comparison of the
activity at time T1 with the activity at time T3.

We optimize the model by setting the grid of hyper-parameters to

λ = β = rλ = rβ = [0.1, 0.4, 0.9]. (81)

For each hyper-parameters tuple we do not perform a CV procedure, given the
experiment design. The best tuple (λ∗, r∗λ, β∗, r∗β) is chosen as the one which
maximize the averaged balanced accuracy score. The maximum number of
iterations for this experiment is fixed at 400.

6.7.2 Results from Permutation

We compare the classification results from the experiment with regular tags
with the one with permuted tags. In the last case, three chunks from the same
contact will share the same random tag, assigned before preprocessing. Due
to the impossibility of repeating the data preparation step multiple times we
did not perform the Kolmogorov Smirnov 2-sample. We perform the experi-
ment by considering the results only if the value of balanced accuracy score
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over the validation set was higher than 0.90 on the regular model. We observe
already from two repetitions of the experiment (with different initialization
values) that the performance of the regular model and the permuted model was
equivalent. The averaged balanced accuracy scores over all patients in both
cases exceed 90%.

BA score across patients

regular permuted

0.92± 0.13 0.95± 0.11

0.98± 0.06 0.95± 0.13

Table 23: Experiment III: classification performance on permuted and regular experi-
ments. We observe comparable performance in both scenarios. The model is
complex enough to fit a random relation and make prediction with optimal
performance.

We cannot discard the possibility of the model to learn spurious correlation,
despite the regularized approach. This result highlights the possible presence
of spurious correlations among training, validation and test sets. Even though
the hypothesis of spatial correlations is not confirmed we have the further
evidence of strong temporal correlation, which enforces our worries about the
role of correlation in this type of analysis.

6.8 Conclusions and Further Questions

In this Chapter we describe MT-MKL, our attempt to integrate information de-
riving from a multi-scale representation of the bipolar recordings, in order to
classify pathological activity. The method has interpretable clinical outcome,
regarding the selection of similarity measures, in phase and amplitude, and fre-
quencies, which are the most relevant to the discriminative task. The first im-
plementation of the method was run on a subset of patients with at least 25%
of recordings belonging to the epileptogenic class.

From further investigations and a speed-up of the method performance,
given by the Python implementation of the wavelet transform, we ran the al-
gorithm on the entire population of 59 focal epileptic patients. Here, the un-
balance between the two classes changes more abruptly than in the previous
experiment and heavily impacts on the results, for what regards feature selec-
tion. The method does not show the emergence of the high frequencies only
( f > 100 Hz), but we observe the selection of the entire feature set.

Despite the good classification performance and the distance to a random
model in terms of predictive performance, we cannot discard the hypothesis of
spurious correlation. On one hand this aspect does not affects negatively the
predictive capacity of the method, which, leveraging on similarity, assigned
labels with good classification performance within the same patient. On the
other hand, this result leads to a loss of interpretability, as from a neurophysi-
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ological perspective we cannot assess the reliability of feature selection for the
characterization of the epileptic activity.

This consideration led us to the last experiment. Here, we split the record-
ings in three different chunks and we aimed at quantifying the predictive per-
formance. Experiment III is, in our opinion, conclusive. The equivalent clas-
sification performance obtained from both the random and the regular batch
shows that, despite the regularization framework, the method leverages on
pure similarity at different frequency bands to learn the input-output relation,
even when purely random.

We are left with several questions which we wish to address in the next
chapters. Given that quantifying automatically the contribution of spurious
correlation and physiological activity to the learning task was not possible,
we first aim at finding a statistically reliable way to split the contributions
from epileptogenic and physiological activity. Second, we wonder if using
neurophysiological rhythms is the best way to proceed in the interpretation
of pathological activity, or if those could guide to biased results. We tackle this
question in Chapter 7. Third, we ask if MT-MKL, given its generality, can still
be considered a useful method for feature extraction.



7
Search of Relevant Features and
Stratification based on Post-Surgical
Outcome

In this Chapter we answer some of the open questions from the previous analysis.
As we have seen, contributions from physiological activity and the presence of spuri-
ous spatial correlations may potentially impact on the outcome, leading to biased and
misinterpreted results. In the following we address these issues, resorting to a similar
approach to the one adopted in Chapter 5. We improve the analysis by implementing
a feature extraction method to quantify the effectiveness of our representation. In par-
ticular, we determine if an integral analysis of the bipolar recordings in the interictal
phase may be as predictive as focusing on the presence of short bursts of high ampli-
tude at different frequency bands. The analysis at the end of this chapter also assumes
a clinical relevance, as in this last part we have been provided with the post-surgical
outcome for a consistent portion of the population. We finally repeat the analysis on
25 Engel I patients only.

So far we defined data-driven models guided by few priors, without tak-
ing into account signal propagation. These models may nonetheless suffer of
over-adaptation, and the discrimination of confounding factors from the true
epileptic signal becomes extremely challenging. We identified several factors
that represent obstacles to the analysis: (i) patterns variability, (ii) different
pharmacological conditions, and (iii) focus position. In our limited knowledge,
these aspects are linked. The patterns variability can indeed depend from the
relative position between the contact and the neural population, the current
direction and the volume through which the signal propagates (iii). Moreover
point (ii) could affect (i): we expect mechanisms related to neurotransmission
to be strongly modified by the AntiEpileptogenic treatment administered at
the time of the acquisition of the signal.

As we do not take into account all these aspects, to minimize the complex-
ity of our approach, we make in this Chapter a step back, in favor of lin-
ear approaches, where the input data is a preprocessed representation of the

96
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recordings. If this implies on one hand less flexible models, on the other can
potentially lead to higher interpretability and more reliable results.

To implement the following approach, the use of preprocessing and signal
analysis techniques is key. In this regard, a short note about the importance of
preprocessing is necessary. Preprocessing may indeed hide subtle pitfalls, as
highlighted in [132], leading to catastrophic consequences, in term of biased
and misinterpreted results.

In this work, several aspects of filtering, which previously we have not taken
into account, are discussed. Among these, the use of Infinite Impulse Response
(IIR) filters which should be avoided in favor of Finite Impulse Response (FIR)
filters. The former show dramatic phase distortions if compared to the latter.
Also the double filtering option used in the previous Chapter, which should
prevent from these effects, leads to worst amplitude distortions than FIR filters.
Not less important, bias may be also a consequence of difference implemen-
tations of the same filters, which constitutes a non-trivial issue in terms of
reproducibility.

The goal for the following set of experiments is two fold: (i) understand-
ing if some features may have higher relevance in the classification task, (ii)
performing the analysis using an unbiased pipeline. For what concerns the
former aspect, we divide the features in five subgroups. Some of these fea-
tures represent an average measure of the neural activity, other quantifies the
amount of time spent above threshold and are a measure of the abnormalities
in the signal. The analysis will reveal which are more predictive for the EZ
detection. For what regards (ii) we will not split the time series into smaller
segments. We will compare the case in which the data split procedure suffers
of contamination (different recordings acquired on the same subjects are both
in the training as in the other splits) to the case more clinically plausible, where
training, validation, and test sets are three different population subsets.

7.1 Extraction of Interpretable Features and Learn-
ing Pipeline

Guided by these considerations, for this analysis we rely on MNE1, a stan-
dard, well established open-source Python library, developed specifically for
the analysis of neurological datasets.

7.1.1 Preprocessing and Feature Engineering

For each bipolar recording we remove the contribution of slow rhythms and
drifts using a FIR high-pass filter2, with Hamming window, cut-off frequency

1 Last access: October 20th, 2019. MNE-Python library: https://martinos.org/mne/stable/

index.html

2 Last access: October 20th, 2019. FIR on neural recordings https://martinos.org/mne/dev/

generated/mne.filter.filter_data.html

https://martinos.org/mne/stable/index.html
https://martinos.org/mne/stable/index.html
https://martinos.org/mne/dev/generated/mne.filter.filter_data.html
https://martinos.org/mne/dev/generated/mne.filter.filter_data.html
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1 Hz, transition bandwidth of 1 Hz. We apply a notch filter to remove the
power line using a FIR notch filter with bandwidth equivalent to fline/200, as
in the standard MNE implementation3.

The feature extraction from the generic bipolar recording S(p)
j after prepro-

cessing replicates the one proposed in Chapter 5. We list in the following the
feature categories and we describe any change:

(i) first moments of the time series (mom);

(ii) relative energy (fft), where the bands used to divide the spectrum are as
in Table 15 and Table 16;

(iii) normalized energy of wavelet coefficients and wavelet entropy (dwt), we resort
on the PyWavelets [77];

(iv) median absolute values (med), given a generic bipolar recording S(p)
j we

estimate its baseline activity for each frequency band in Table 15 and 16.
For each band we define a Hamming window FIR filter, whose shape
depends on the band through the following relations

Left Bandwidth = min
(
max(1/4 · flow, 2), flow

)

Right Bandwidth = min
(
max(1/4 · fhigh, 2), fNyq − fhigh

)
.

The Nyquist frequency, denoted as fNyq is equivalent to 500 Hz, flow and
fhigh related to the cut-off frequencies, which are extreme values for the
band Bk. Finally, we compute the median for the absolute value for the
filtered bipolar recording at band Bk as in Eq. 82

Abs Med
(

S(p)
j , Bk

)
= Median

∣∣∣FIRBk

(
S(p)

j

)∣∣∣ . (82)

(v) over-threshold activity (thr), it is an estimate abnormal activity for each
bipolar recording. In particular we quantify the amount of time in which
the bipolar recordings exceed a threshold at different frequency bands.
As the physiological activity strongly varies across patients and brain
regions, we quantify a baseline for each contact. In particular, given a
bipolar recording S(p)

j , we compute the threshold values Thr at a fixed
band as

Thr
(

S(p)
j , Bk, c

)
= c ·Abs Med

(
S(p)

j , Bk
)

, (83)

with c integer in the interval [3, 9]. We extract each feature, defined as
Time over Threshold (ToT) as

ToT
(

S(p)
j , c, Bk

)
= ∑

t
I
[∣∣∣FIRBk

(
S(p)

j (t)
)∣∣∣ > Thr

(
S(p)

j , Bk, c
)]

, (84)

with I the indicator function.

3 Last access: October 20th, 2019. Notch filter https://martinos.org/mne/dev/generated/mne.

filter.notch_filter.html

https://martinos.org/mne/dev/generated/mne.filter.notch_filter.html
https://martinos.org/mne/dev/generated/mne.filter.notch_filter.html
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7.1.2 Definition of Different Dataset Splits

We compare two experimental setups rising from different dataset split strate-
gies. The two scenarios are reported in Figure 35.

S(1)
<latexit sha1_base64="NkmSktbsR8SnI2NHp0DvuVtAeKc=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQgpNJENSFBG0FAGQR5SYqLzZRNOOT90t44UWW75Clqo6BAt/0HBv2AbF5Aw1WhmVzs7biiFRsv6NEpLyyura+X1ysbm1vaOubvX1kGkOLR4IAPVdZkGKXxooUAJ3VAB81wJHXdylfmdKSgtAv8OZyE4Hhv7YiQ4w1QamGbfY/jgjuLb5D6u2cfJwKxadSsHXSR2QaqkQHNgfvWHAY888JFLpnXPtkJ0YqZQcAlJpR9pCBmfsDH0UuozD7QT58kTehRphgENQVEhaS7C742YeVrPPDedzHLqeS8T//N6EY4unFj4YYTg8+wQCgn5Ic2VSCsBOhQKEFmWHKjwKWeKIYISlHGeilHaUSXtw57/fpG0T+r2af3k5qzauCyaKZMDckhqxCbnpEGuSZO0CCdT8kSeyYvxaLwab8b7z2jJKHb2yR8YH9/jeJfF</latexit>
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k-fold
<latexit sha1_base64="PzqJ/GwlLW4hbNxcjeHoo/axeEY=">AAAB/3icbVC7TsNAEFzzDOEVoKQ5ESHRENkBCcoIGsogkYeUWNH5sgmnnB/crRGRlYKvoIWKDtHyKRT8C3ZwAQlTjWZ2tbPjRUoasu1Pa2FxaXlltbBWXN/Y3Nou7ew2TRhrgQ0RqlC3PW5QyQAbJElhO9LIfU9hyxtdZn7rHrWRYXBD4whdnw8DOZCCUyq5oy7hAyXHg1D1J71S2a7YU7B54uSkDDnqvdJXtx+K2MeAhOLGdBw7IjfhmqRQOCl2Y4MRFyM+xE5KA+6jcZNp6Ak7jA2nkEWomVRsKuLvjYT7xox9L530Od2aWS8T//M6MQ3O3UQGUUwYiOwQSYXTQ0ZombaBrC81EvEsOTIZMME1J0ItGRciFeO0nmLahzP7/TxpVivOSaV6fVquXeTNFGAfDuAIHDiDGlxBHRog4A6e4BlerEfr1Xqz3n9GF6x8Zw/+wPr4Bvn1lts=</latexit>

CV
<latexit sha1_base64="ADuozL9kqiIwa5Z0LsbzCldTXwg=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRaSiDRB4osaLzZRNOubOtuzUisvwVtFDRIVo+hoJ/wTYuIGGq0cyudna8UAqDtv1plVZW19Y3ypuVre2d3b3q/kHXBJHm0OGBDHTfYwak8KGDAiX0Qw1MeRJ63qyV+b0H0EYE/i3OQ3AVm/piIjjDVLobIjxi3Oomo2rNrts56DJxClIjBdqj6tdwHPBIgY9cMmMGjh2iGzONgktIKsPIQMj4jE1hkFKfKTBunAdO6ElkGAY0BE2FpLkIvzdipoyZKy+dVAzvzaKXif95gwgnl24s/DBC8Hl2CIWE/JDhWqRNAB0LDYgsSw5U+JQzzRBBC8o4T8UoraaS9uEsfr9Muo26c1Zv3JzXmldFM2VyRI7JKXHIBWmSa9ImHcKJIk/kmbxYifVqvVnvP6Mlq9g5JH9gfXwDxiaVDw==</latexit>

further split
<latexit sha1_base64="D/WFoWeSQmeUbYNnSerJILurKDA=">AAACCHicbVC7TsNAEDyHVwiv8OhoTkRIVJEdkKCMoKEMEnlIiRWdL5vklPNDd2tEsPIDfAUtVHSIlr+g4F84GxeQMNVoZlezO14khUbb/rQKS8srq2vF9dLG5tb2Tnl3r6XDWHFo8lCGquMxDVIE0ESBEjqRAuZ7Etre5Cr123egtAiDW5xG4PpsFIih4AyN1C8f9BDuMRnGCsegqDaZOOuXK3bVzkAXiZOTCsnR6Je/eoOQxz4EyCXTuuvYEboJUyi4hFmpF2uIGJ+wEXQNDZgP2k2y62f0ONYMQxqZeCFpJsLvjYT5Wk99z0z6DMd63kvF/7xujMMLNxFBFCMEPA1CISEL0lwJUwvQgVCAyNLLgYqAcqYYIihBGedGjE1PJdOHM//9ImnVqs5ptXZzVqlf5s0UySE5IifEIeekTq5JgzQJJw/kiTyTF+vRerXerPef0YKV7+yTP7A+vgFr6Jph</latexit>

of patients
<latexit sha1_base64="YoH8jTcbIekb/u1pBI5TxBNvHSI=">AAACBnicbVC7TsNAEDzzDOFlQklzIkKiiuyABGUEDWWQyENKrOh82YRTzg/drVEiKz1fQQsVHaLlNyj4F87GBSRMNZrZ0e6OH0uh0XE+rZXVtfWNzdJWeXtnd2/fPqi0dZQoDi0eyUh1faZBihBaKFBCN1bAAl9Cx59cZ37nAZQWUXiHsxi8gI1DMRKcoZEGdqWPMMU0GtHYKBCing/sqlNzctBl4hakSgo0B/ZXfxjxJDBpLpnWPdeJ0UuZQsElzMv9REPM+ISNoWdoyALQXprfPqcniWYY0RgUFZLmIvxOpCzQehb4ZjJgeK8XvUz8z+slOLr0UhHGCULIs0UoJOSLNFfClAJ0KBQgsuxyoCKknCmGCEpQxrkRE9NJ2fThLn6/TNr1mntWq9+eVxtXRTMlckSOySlxyQVpkBvSJC3CyZQ8kWfyYj1ar9ab9f4zumIVmUPyB9bHN5tmmV4=</latexit>

retrain on
<latexit sha1_base64="gwEpeFs4rpx0CUMxyQzqysdeZ1g=">AAACBnicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQYmgoQwSgUiJFa0vC5w4n627NUpkpecraKGiQ7T8BgX/wjm4gISpRjO72p2JUiUt+f6nNzM7N7+wWFmqLq+srq3XNjavbJIZgS2RqMS0I7CopMYWSVLYTg1CHCm8ju7PCv/6AY2Vib6kYYphDLda3kgB5KRebbNLOKDcIBmQmieaj3q1ut/wx+DTJChJnZVo9mpf3X4ishg1CQXWdgI/pTAHQ1IoHFW7mcUUxD3cYsdRDTHaMB//PuK7mQVKeIqGS8XHIv7eyCG2dhhHbjIGurOTXiH+53UyujkOc6nTjFCL4hBJheNDVhjpSkHely44QfE5chdfgAEiNJKDEE7MXEtV10cwmX6aXO03goPG/sVh/eS0bKbCttkO22MBO2In7Jw1WYsJNmBP7Jm9eI/eq/fmvf+Mznjlzhb7A+/jGygDmRM=</latexit>

hyper-parameters
<latexit sha1_base64="ipE9QzqIJrqEa5OSBmKGZB03feM=">AAACC3icbVC7TsNAEDyHVwivAAUFzYkIiYbIDkhQRtBQBok8pMSKzpdNcsr5obs1IrL8CXwFLVR0iJaPoOBfuBgXkLDVaGZWszteJIVG2/60CkvLK6trxfXSxubW9k55d6+lw1hxaPJQhqrjMQ1SBNBEgRI6kQLmexLa3uR6prfvQWkRBnc4jcD12SgQQ8EZGqpfPughPGAyNpI6jZhiPqCxp/1yxa7a2dBF4OSgQvJp9MtfvUHIYx8C5JJp3XXsCN2EKRRcQlrqxRoixidsBF0DAxOk3SR7IKXHsWYYUnMDFZJmJPzeSJiv9dT3jNNnONbz2oz8T+vGOLx0ExFEMULAZ0EoJGRBmithmgE6EAoQ2exyoCKg3LSApgRBGeeGjE1VJdOHM//9ImjVqs5ZtXZ7Xqlf5c0UySE5IifEIRekTm5IgzQJJyl5Is/kxXq0Xq036/3HWrDynX3yZ6yPb+M8m7w=</latexit>

selection
<latexit sha1_base64="/L7IYmmdaETaLnzFReljdgk8OSE=">AAACBHicbVC5TsNAFFyHK4TLQEmzIkKiiuyABGUEDWWQyCElVrTevIRV1mtr9zkistLyFbRQ0SFa/oOCf8E2LiBhqtHMO8ePpDDoOJ9WaWV1bX2jvFnZ2t7Z3bP3D9omjDWHFg9lqLs+MyCFghYKlNCNNLDAl9DxJ9eZ35mCNiJUdziLwAvYWImR4AxTaWDbfYQHTNIBwDNlPrCrTs3JQZeJW5AqKdAc2F/9YcjjABRyyYzpuU6EXsI0Ci5hXunHBiLGJ2wMvZQqFoDxkvzyOT2JDcOQRqCpkDQX4XdHwgJjZoGfVgYM782il4n/eb0YR5deIlQUIyieLUIhIV9kuBZpJECHQgMiyy4HKhTlTDNE0IIyzlMxTjOqpHm4i98vk3a95p7V6rfn1cZVkUyZHJFjckpcckEa5IY0SYtwMiVP5Jm8WI/Wq/Vmvf+Ulqyi55D8gfXxDVoxmLM=</latexit> hyper-parameters

<latexit sha1_base64="ipE9QzqIJrqEa5OSBmKGZB03feM=">AAACC3icbVC7TsNAEDyHVwivAAUFzYkIiYbIDkhQRtBQBok8pMSKzpdNcsr5obs1IrL8CXwFLVR0iJaPoOBfuBgXkLDVaGZWszteJIVG2/60CkvLK6trxfXSxubW9k55d6+lw1hxaPJQhqrjMQ1SBNBEgRI6kQLmexLa3uR6prfvQWkRBnc4jcD12SgQQ8EZGqpfPughPGAyNpI6jZhiPqCxp/1yxa7a2dBF4OSgQvJp9MtfvUHIYx8C5JJp3XXsCN2EKRRcQlrqxRoixidsBF0DAxOk3SR7IKXHsWYYUnMDFZJmJPzeSJiv9dT3jNNnONbz2oz8T+vGOLx0ExFEMULAZ0EoJGRBmithmgE6EAoQ2exyoCKg3LSApgRBGeeGjE1VJdOHM//9ImjVqs5ZtXZ7Xqlf5c0UySE5IifEIRekTm5IgzQJJyl5Is/kxXq0Xq036/3HWrDynX3yZ6yPb+M8m7w=</latexit>

selection
<latexit sha1_base64="/L7IYmmdaETaLnzFReljdgk8OSE=">AAACBHicbVC5TsNAFFyHK4TLQEmzIkKiiuyABGUEDWWQyCElVrTevIRV1mtr9zkistLyFbRQ0SFa/oOCf8E2LiBhqtHMO8ePpDDoOJ9WaWV1bX2jvFnZ2t7Z3bP3D9omjDWHFg9lqLs+MyCFghYKlNCNNLDAl9DxJ9eZ35mCNiJUdziLwAvYWImR4AxTaWDbfYQHTNIBwDNlPrCrTs3JQZeJW5AqKdAc2F/9YcjjABRyyYzpuU6EXsI0Ci5hXunHBiLGJ2wMvZQqFoDxkvzyOT2JDcOQRqCpkDQX4XdHwgJjZoGfVgYM782il4n/eb0YR5deIlQUIyieLUIhIV9kuBZpJECHQgMiyy4HKhTlTDNE0IIyzlMxTjOqpHm4i98vk3a95p7V6rfn1cZVkUyZHJFjckpcckEa5IY0SYtwMiVP5Jm8WI/Wq/Vmvf+Ulqyi55D8gfXxDVoxmLM=</latexit>

k-fold
<latexit sha1_base64="PzqJ/GwlLW4hbNxcjeHoo/axeEY=">AAAB/3icbVC7TsNAEFzzDOEVoKQ5ESHRENkBCcoIGsogkYeUWNH5sgmnnB/crRGRlYKvoIWKDtHyKRT8C3ZwAQlTjWZ2tbPjRUoasu1Pa2FxaXlltbBWXN/Y3Nou7ew2TRhrgQ0RqlC3PW5QyQAbJElhO9LIfU9hyxtdZn7rHrWRYXBD4whdnw8DOZCCUyq5oy7hAyXHg1D1J71S2a7YU7B54uSkDDnqvdJXtx+K2MeAhOLGdBw7IjfhmqRQOCl2Y4MRFyM+xE5KA+6jcZNp6Ak7jA2nkEWomVRsKuLvjYT7xox9L530Od2aWS8T//M6MQ3O3UQGUUwYiOwQSYXTQ0ZombaBrC81EvEsOTIZMME1J0ItGRciFeO0nmLahzP7/TxpVivOSaV6fVquXeTNFGAfDuAIHDiDGlxBHRog4A6e4BlerEfr1Xqz3n9GF6x8Zw/+wPr4Bvn1lts=</latexit>

CV
<latexit sha1_base64="ADuozL9kqiIwa5Z0LsbzCldTXwg=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRaSiDRB4osaLzZRNOubOtuzUisvwVtFDRIVo+hoJ/wTYuIGGq0cyudna8UAqDtv1plVZW19Y3ypuVre2d3b3q/kHXBJHm0OGBDHTfYwak8KGDAiX0Qw1MeRJ63qyV+b0H0EYE/i3OQ3AVm/piIjjDVLobIjxi3Oomo2rNrts56DJxClIjBdqj6tdwHPBIgY9cMmMGjh2iGzONgktIKsPIQMj4jE1hkFKfKTBunAdO6ElkGAY0BE2FpLkIvzdipoyZKy+dVAzvzaKXif95gwgnl24s/DBC8Hl2CIWE/JDhWqRNAB0LDYgsSw5U+JQzzRBBC8o4T8UoraaS9uEsfr9Muo26c1Zv3JzXmldFM2VyRI7JKXHIBWmSa9ImHcKJIk/kmbxYifVqvVnvP6Mlq9g5JH9gfXwDxiaVDw==</latexit>

S(1)
<latexit sha1_base64="NkmSktbsR8SnI2NHp0DvuVtAeKc=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQgpNJENSFBG0FAGQR5SYqLzZRNOOT90t44UWW75Clqo6BAt/0HBv2AbF5Aw1WhmVzs7biiFRsv6NEpLyyura+X1ysbm1vaOubvX1kGkOLR4IAPVdZkGKXxooUAJ3VAB81wJHXdylfmdKSgtAv8OZyE4Hhv7YiQ4w1QamGbfY/jgjuLb5D6u2cfJwKxadSsHXSR2QaqkQHNgfvWHAY888JFLpnXPtkJ0YqZQcAlJpR9pCBmfsDH0UuozD7QT58kTehRphgENQVEhaS7C742YeVrPPDedzHLqeS8T//N6EY4unFj4YYTg8+wQCgn5Ic2VSCsBOhQKEFmWHKjwKWeKIYISlHGeilHaUSXtw57/fpG0T+r2af3k5qzauCyaKZMDckhqxCbnpEGuSZO0CCdT8kSeyYvxaLwab8b7z2jJKHb2yR8YH9/jeJfF</latexit>

S(N)
<latexit sha1_base64="1JvvPRwkpHYqzId5ZrSZ2tZCbNY=">AAACBHicbVC7TsNAEDyHVwgvAyXNiQgpNJEdkKCMoKFCQZCHlITofNmEU84P3a0jRZZbvoIWKjpEy39Q8C/YxgUkTDWa2dXOjhNIodGyPo3C0vLK6lpxvbSxubW9Y+7utbQfKg5N7ktfdRymQQoPmihQQidQwFxHQtuZXKZ+ewpKC9+7w1kAfZeNPTESnGEiDUyz5zJ8cEbRbXwfVa6P44FZtqpWBrpI7JyUSY7GwPzqDX0euuAhl0zrrm0F2I+YQsElxKVeqCFgfMLG0E2ox1zQ/ShLHtOjUDP0aQCKCkkzEX5vRMzVeuY6yWSaU897qfif1w1xdN6PhBeECB5PD6GQkB3SXImkEqBDoQCRpcmBCo9yphgiKEEZ54kYJh2Vkj7s+e8XSatWtU+qtZvTcv0ib6ZIDsghqRCbnJE6uSIN0iScTMkTeSYvxqPxarwZ7z+jBSPf2Sd/YHx8AxD0l+I=</latexit>

. . .
<latexit sha1_base64="F/gLMOf78bct0wFIEvWyW8Cvea8=">AAAB93icbVC7TsNAEDyHVwivACXNiQiJKrIDEpQRNJRBwkmkxIrOl0045Xy27tZIkZVvoIWKDtHyORT8C2fjAgJTjWZ2tLsTJlIYdN0Pp7Kyura+Ud2sbW3v7O7V9w+6Jk41B5/HMtb9kBmQQoGPAiX0Ew0sCiX0wtl17vceQBsRqzucJxBEbKrERHCGVvKH4xjNqN5wm24B+pd4JWmQEp1R/dPmeBqBQi6ZMQPPTTDImEbBJSxqw9RAwviMTWFgqWIRmCArjl3Qk9QwjGkCmgpJCxF+JjIWGTOPQjsZMbw3y14u/ucNUpxcBplQSYqgeL4IhYRikeFa2BaAjoUGRJZfDlQoyplmiKAFZZxbMbW11Gwf3vL3f0m31fTOmq3b80b7qmymSo7IMTklHrkgbXJDOsQnnAjySJ7IszN3XpxX5+17tOKUmUPyC877F6T8k0s=</latexit>

(Xts, Yts)
<latexit sha1_base64="8LL1rzTIZkWvFYHhhfsmo4KAGCA=">AAACEnicbVDLSgNBEJyNrxhfqx4FGQxCBAm7UdBj0IvHCOYhSQizk04cMju7zPSKYdmbn+BXeNWTN/HqD3jwX9zEHGJinaqruunu8kIpDDrOl5VZWFxaXsmu5tbWNza37O2dmgkizaHKAxnohscMSKGgigIlNEINzPck1L3B5civ34M2IlA3OAyh7bO+Ej3BGaZSx94vNDpxC+EBYzRJckxvp8ujjp13is4YdJ64E5InE1Q69nerG/DIB4VcMmOarhNiO2YaBZeQ5FqRgZDxAetDM6WK+WDa8fiPhB5GhmFAQ9BUSDoWYXoiZr4xQ99LO32Gd2bWG4n/ec0Ie+ftWKgwQlB8tAiFhPEiw7VIAwLaFRoQ2ehyoEJRzjRDBC0o4zwVozSxXJqHO/v9PKmViu5JsXR9mi9fTJLJkj1yQArEJWekTK5IhVQJJ4/kmbyQV+vJerPerY/f1ow1mdklf2B9/gDTUJ5c</latexit>

D =
n

X(p), Y (p)
o

= (X, Y )
<latexit sha1_base64="0u7DK66lUqwmZII5svyWETDBN4g="></latexit>

Dlearn =
n

X(plearn), Y (plearn)
o

<latexit sha1_base64="8Rck+MMLQZdKv3ueAdiQoyZ+Ios="></latexit>

Dts =
n

X(pts), Y (pts)
o

= (Xts, Yts)
<latexit sha1_base64="4eZmrPmzC1TtWoH3/yn2NMQxuW0="></latexit>

(Xlearn, Ylearn)
<latexit sha1_base64="PohmUKhxz2GN1UmB6zLxZ2mugi0=">AAACGHicbVC7TsNAEDyHVwivACXNiYAEEorsgAQlgoYySASCEitaH0s4cT5bd2sEsvwDfAJfQQsVHaKlo+BfcIILCEw1mtnV7kwQK2nJdT+c0tj4xORUeboyMzs3v1BdXDq1UWIEtkSkItMOwKKSGlskSWE7NghhoPAsuD4c+Gc3aKyM9AndxeiH0NfyUgqgXOpV1zbavbRLeEupQjA6y7b4+Yiy2avW3Lo7BP9LvILUWIFmr/rZvYhEEqImocDajufG5KdgSAqFWaWbWIxBXEMfOznVEKL102GajK8nFijiMRouFR+K+HMjhdDauzDIJ0OgKzvqDcT/vE5Cl3t+KnWcEGoxOERS4fCQFUbmNSG/kAaJYPA5cqm5AANEaCQHIXIxyXur5H14o+n/ktNG3duuN453avsHRTNltsJW2Qbz2C7bZ0esyVpMsHv2yJ7Ys/PgvDivztv3aMkpdpbZLzjvX6RxoO4=</latexit>

(Xlearn, Ylearn)
<latexit sha1_base64="PohmUKhxz2GN1UmB6zLxZ2mugi0=">AAACGHicbVC7TsNAEDyHVwivACXNiYAEEorsgAQlgoYySASCEitaH0s4cT5bd2sEsvwDfAJfQQsVHaKlo+BfcIILCEw1mtnV7kwQK2nJdT+c0tj4xORUeboyMzs3v1BdXDq1UWIEtkSkItMOwKKSGlskSWE7NghhoPAsuD4c+Gc3aKyM9AndxeiH0NfyUgqgXOpV1zbavbRLeEupQjA6y7b4+Yiy2avW3Lo7BP9LvILUWIFmr/rZvYhEEqImocDajufG5KdgSAqFWaWbWIxBXEMfOznVEKL102GajK8nFijiMRouFR+K+HMjhdDauzDIJ0OgKzvqDcT/vE5Cl3t+KnWcEGoxOERS4fCQFUbmNSG/kAaJYPA5cqm5AANEaCQHIXIxyXur5H14o+n/ktNG3duuN453avsHRTNltsJW2Qbz2C7bZ0esyVpMsHv2yJ7Ys/PgvDivztv3aMkpdpbZLzjvX6RxoO4=</latexit>

retrain on
<latexit sha1_base64="gwEpeFs4rpx0CUMxyQzqysdeZ1g=">AAACBnicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQYmgoQwSgUiJFa0vC5w4n627NUpkpecraKGiQ7T8BgX/wjm4gISpRjO72p2JUiUt+f6nNzM7N7+wWFmqLq+srq3XNjavbJIZgS2RqMS0I7CopMYWSVLYTg1CHCm8ju7PCv/6AY2Vib6kYYphDLda3kgB5KRebbNLOKDcIBmQmieaj3q1ut/wx+DTJChJnZVo9mpf3X4ishg1CQXWdgI/pTAHQ1IoHFW7mcUUxD3cYsdRDTHaMB//PuK7mQVKeIqGS8XHIv7eyCG2dhhHbjIGurOTXiH+53UyujkOc6nTjFCL4hBJheNDVhjpSkHely44QfE5chdfgAEiNJKDEE7MXEtV10cwmX6aXO03goPG/sVh/eS0bKbCttkO22MBO2In7Jw1WYsJNmBP7Jm9eI/eq/fmvf+Mznjlzhb7A+/jGygDmRM=</latexit> Dlearn = (Xlearn, Ylearn)

<latexit sha1_base64="czEDXHBjCL6tXXygKD15Do0F15g=">AAACM3icbVBNS8NAEN34bf2qevSyWAQFKYkKehGLevCoYLXSljBZR1262YTdiVhCfo4/wV/hVQ8iXsSr/8Gk9qDVd3q8N8PMe0GspCXXfXGGhkdGx8YnJktT0zOzc+X5hTMbJUZgXUQqMo0ALCqpsU6SFDZigxAGCs+DzkHhn9+isTLSp9SNsR3CtZZXUgDlkl/ea4VANwJUepj5LcI7ShWC0Rnf5asNP/0pZev8YkBZ88sVt+r2wP8Sr08qrI9jv/zWuoxEEqImocDapufG1E7BkBQKs1IrsRiD6MA1NnOqIUTbTntBM76SWKCIx2i4VLwn4s+NFEJru2GQTxax7KBXiP95zYSudtqp1HFCqEVxiKTC3iErjMwbRH4pDRJB8TlyqbkAA0RoJAchcjHJKy3lfXiD6f+Ss42qt1ndONmq1Pb7zUywJbbMVpnHtlmNHbFjVmeC3bNH9sSenQfn1Xl3Pr5Hh5z+ziL7BefzC/KdrHU=</latexit>

Figure 35: Bipolar recordings acquired from the same patient could potentially fall in
the different splits, as shown with the dotted red box, on the left. Unbiased
and clinical plausible scenario on the right. Here the population is split and
recordings from test patients are separated from the learning set. The same
strategy is applied on further internal splits.

On the left we apply the preprocessing and feature extraction steps on each
bipolar recording. The tuple (X, Y) collects the representation for all the bipo-
lar recordings with their corresponding labels. The dataset splits in learning
and test sets, and further k-fold cross validation splits are performed without
memory of the patient originating the samples at hand. This can cause con-
tamination of the splits, as recordings from the same patients could potentially
belong to both learning and test set. We call this scenario recordings split.

We depict in Figure 35, on the right, the unbiased case. Here we keep track
of each patient before splitting in training, validation, and test set. We perform
the preprocessing and feature extraction step, and we collect this output as a
list of matrices, one for each patient in the population. We randomly sample a
percentage of patients, which fall in the test set, and leave the others as data
of the learning set. All the data forming the test set can be now put together
in the tuple (Xts, Yts). We perform further k-fold splits in the same fashion,
by maintaining the separation of samples from different patients. We divide
the learning set in k-folds and only at this point we generate the (Xtr, Ytr) and
(Xvl, Yvl) tuples, by concatenating the features vectors from different subjects.
We refer to this scenario as patients split. This last strategy assures the absence
of biased results due to spurious spatial correlation, which could inflate the
classification performance. To evaluate this possible effect, below we perform
all the experiments by applying both dataset split strategies.
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7.1.3 Learning Strategies

The dataset consists on N = 59 patients epileptic patients from Chapter 4.
Given our representation, a generic feature vector from patient p and i-th
recording is defined as x(p)

i ∈ R148. We report the summary of our feature
set in Table 24.

#features mom fft dwt med thr

148 3 15 18 14 98

Table 24: Features subsets used during the analysis.

For simplicity in the next section we omit the superscript denoting the pa-
tient, as, once we generate the split of interest, we concatenate features coming
from different patients.

7.1.3.1 Experimental Setting and Metrics

The experiments, unless when explicitly stated, will share the same setting.
The different learning strategies presented here will leverage on the search
of optimal hyper-parameters which is performed through a grid-search CV
procedure. We report below more in detail how we operate the dataset split.

recordings split We split the recordings in learning and test sets, re-
spectively 80% and 20% of the population. We select the best hyper-parameters
through a stratified grid search 3-fold CV procedure. The dataset splits pre-
serve the proportion of positive and negative samples of the original popula-
tion.

patients split We randomly select 11 patients as test set (∼ 20%) and the
remaining 48 as learning set. In this setting we cannot take into account the
unbalance between the two classes for each subset. We search the optimal pa-
rameter through 3-fold grid search cross validation, with 32 patients belonging
to the training set and 16 to the validation set.

learning methods and hyperparameters We use two standard meth-
ods to solve the binary classification task.

1. Logistic Regression with L2 penalty, or LR-L2

min
w,w0

{
1
2

wTw + C
n

∑
i=1

log
(

exp[−yi(XT
i w + w0)] + 1

)}
. (85)
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2. Support Vector Machine with gaussian kernel, or SVM rbf

min
w,b,ξ

{
1
2

wTw + C
n

∑
i+1

ξi

}

s.t. yi(wTφ(xi) + b ≥ 1− ξi)

ξi ≥ 0, for i ∈ {1, . . . , n}.

For both classifiers the hyper-parameter C corresponds to the inverse of reg-
ularization strength. For what regards γ, variance of the Gaussian kernel in
SVM, the value is automatically scaled based on the variance of the fitted
dataset, as γ = p · σ(X). We choose the best hyper-parameter C∗ among the
ones in the C array that maximizes the mean value of the balanced accuracy
score, using a 3-fold grid search CV procedure, where C is equivalent to

C =[0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 30, 40,

50, 60, 80, 100, 200, 300, 500, 750, 1000, 2000, 5000].

evaluation metrics We quantify the classifier performance through Pre-
cision (P), Recall (R), the Balanced Accuracy (BA), and F1 score (F1). We re-
peated the experiments 10 times to assess the results stability. Optimal hy-
perparameters are always chosen based on the maximum averaged balanced
accuracy metric across the CV splits.

7.2 Experiment I: Prediction Performance using
all Features

For this first experiment we resort to the entire feature set defined above, con-
sisting on mom, fft, dwt, med, and thr.

We report the learning curves for one repetition of the experiment in Table
25. For each plot, on the x-axis, we report the hyper-parameter array C, on
the y-axis, the averaged balanced accuracy score across the 3-fold repetitions.
The yellow and blue curves show respectively the model performance on the
training and validation set across the 3-fold cross validation procedure. The
outcome of the CV procedure is the best C∗ value, related to the highest mean
balanced accuracy score. This is shown with a brown vertical line. In each row
we present the result of a classifier, where we differentiate the dataset split.
SVM rbf shows an increasing discrepancy between the training and the valida-
tion curves as we reduce the effect of regularization (1/C). Logistic Regression
with L2 penalty is almost independent from the value of C.

In Table 26 we report the results obtained across 10 repetitions of the exper-
iments. In the grey column we show the averaged balanced accuracy score of
the validation set, from the 3-fold procedure. The other metrics are evaluated
on the test set. In the upper part we show the results obtained for the record-
ings split setting, the lower part is relative to patients split settings. We observe
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Table 25: Learning curves for one repetition of the experiment. On the x-axis, hyper-
parameter C, on the y-axis, averaged balanced accuracy score across the
3-fold repetitions. On the left side we report the results related to record-
ings split, on the right, the results of the patients split procedure. The vari-
ances are higher in this latter case, but the balanced accuracy values are not
dramatically different. The cause of higher fluctuations may originate from
higher dependence on the split, given the absence stratification of the pa-
tients split scenario. The plots in the top row report the curves for the LR-L2

models, while in the bottom row we report curves for the SVM rbf models,
where σ depends on the fitted data. The higher discrepancy between the
training and validation curves for SVM rbf show that this model is more
prone to overfit than LR-L2.

small variation between the performance for the two scenarios. The potential
contribution of spurious correlation does not affect the results for this case.

recordings split

model (BA)vl BA F1 P R

LR-L2 0.722(4) 0.72(1) 0.61(2) 0.76(2) 0.50(1)

SVM rbf 0.754(4) 0.77(1) 0.69(2) 0.79(3) 0.61(2)

patients split

model (BA)vl BA F1 P R

LR-L2 0.714(8) 0.70(3) 0.56(7) 0.76(7) 0.45(8)

SVM rbf 0.700(6) 0.70(2) 0.56(4) 0.76(7) 0.45(5)

Table 26: Metrics scores for the two models. Upper rows, recordings splits, bottom
rows, patients split. In both cases we report the balanced accuracy score
correspondent to the optimal hyper-parameter, in the gray column. The other
metrics are evaluated on the test set.
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We observe nonetheless that the recordings split setting leads to more stable
results, and slighly higher classification performance. In this scenario SVM rbf
exceeds LR-L2 in performance. In the split patients scenario, the performance
of the classifiers are comparable and remain highly above chance level. The
recordings split protocol, even if it does not separate recordings from the same
patients across split, does not show inflated performance for the LR-L2 model.
The SVM is flexible enough to show slightly inflated results for the recording
splits experiments, if compared to the classification performance of the SVM
rbf, patients splits model.

7.3 Experiment II: Predictive Capacity of Fea-
tures Subsets

The goal of this experiment is to apply a hard feature selection. We solve a
different classification problem for each of the five subgroups of features in
Table 24. In particular we apply the two classification methods presented in
Experiment I, with identical C array and learning setup.

Here the dataset dimensionality changes depending on the considered fea-
tures subset. Again, we compare the recordings split and patients split learning
protocols.

Table 27 is the result of the learning procedure. We report performance of
the classifiers across the ten repetitions of the experiment.

The table divides in two: the upper part reports the results of the recordings
split protocol, while in the bottom we show classification performance obtained
from the patients split learning protocol.

1. The performance of models related to the feature subgroup thr are com-
parable to the ones shown in Experiment I, across all metrics.

2. For models trained on thr features, SVM rbf shows higher classification
performance in the recording split than in the patients split setting. This is
not the case of LR-L2, with exception of the precision score.

3. As in Experiment I, in the patients split protocol the standard deviations
of all metrics, across the 10 repetitions, are much higher than in the other
scenario.

This result leads us to further considerations about epileptic signatures. Patho-
logical behavior of the neurological recordings should be searched among
events exceeding baseline, without considering the average behavior at dif-
ferent frequency bands.

7.4 Experiment III: Automatic Feature Selection

As the information mostly resides in high amplitude patterns we focus here
on the analysis of over threshold activity thr and discard the other features
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recordings split

subset model (BA)vl BA F1 P R

thr
LR-L2 0.689(3) 0.68(1) 0.53(2) 0.80(3) 0.41(2)

SVM rbf 0.749(4) 0.75(1) 0.65(2) 0.76(2) 0.57(2)

dwt
LR-L2 0.584(3) 0.584(6) 0.33(2) 0.55(3) 0.24(1)

SVM rbf 0.532(8) 0.531(6) 0.15(2) 0.55(8) 0.09(1)

fft
LR-L2 0.584(4) 0.585(8) 0.34(2) 0.53(3) 0.25(2)

SVM rbf 0.538(3) 0.536(7) 0.17(2) 0.58(5) 0.10(1)

mom
LR-L2 0.547(2) 0.548(5) 0.21(1) 0.61(3) 0.13(1)

SVM rbf 0.594(7) 0.587(8) 0.32(2) 0.64(2) 0.21(2)

med
LR-L2 0.573(3) 0.572(7) 0.28(2) 0.65(3) 0.18(1)

SVM rbf 0.601(4) 0.601(7) 0.37(2) 0.56(2) 0.28(2)

patients split

subset model (BA)vl BA F1 P R

thr
LR-L2 0.689(8) 0.67(2) 0.50(6) 0.71(10) 0.39(7)

SVM rbf 0.704(6) 0.68(3) 0.52(7) 0.76(6) 0.41(8)

dwt
LR-L2 0.59(1) 0.56(3) 0.27(7) 0.53(12) 0.19(7)

SVM rbf 0.55(2) 0.53(2) 0.15(9) 0.53(2) 0.10(7)

fft
LR-L2 0.59(1) 0.58(3) 0.32(10) 0.55(11) 0.25(11)

SVM rbf 0.556(9) 0.53(2) 0.14(7) 0.62(10) 0.08(5)

mom
LR-L2 0.557(6) 0.55(1) 0.21(5) 0.56(12) 0.12(4)

SVM rbf 0.59(1) 0.59(2) 0.32(5) 0.65(8) 0.21(4)

med
LR-L2 0.577(6) 0.572(7) 0.28(2) 0.65(3) 0.18(1)

SVM rbf 0.59(1) 0.59(3) 0.35(7) 0.50(7) 0.28(6)

Table 27: Metrics scores for the two models learned on subsets of features. The upper
rows refer to splits with mixed recordings, the bottom rows are related to
splits with separated patients recordings.

subgroups. In particular, we leverage on an automatic feature selection ap-
proach which captures the most relevant features. We resort to a sparsity prior
based on L1 and L2 penalties [138]. The combination of the two regularization
terms is indeed convenient in presence of correlated variables. In our opinion
this hypothesis holds for the thr features, as correlation may originate from:
(i) their definition, at a fixed frequency band we expect that the time corre-
sponding to the exceed of the threshold will be related for different threshold
values; (ii) filters design, given mild transition bands there can be contribu-
tions from adjacent bands; (iii) the signal itself, if a periodic pattern consists in
the sum of several sinusoidal oscillations, we expect to observe its contribution
at different bands and similar effect is expected for non periodic patterns.
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7.4.1 Feature Selection Strategy

Due to the difficulty in tuning the sparsity constraint in the standard imple-
mentation of the Elastic-Net on LR presented below

argminw,w0

{
1− ρ

2
wTw + ρ‖w‖1 + C

n

∑
i=1

log
(

exp[−yi(XT
i w + w0)] + 1

)}
,

(86)

we decided to implement a nested feature selection method as proposed in the
work of de Mol et al. [34].

argminw

{
n

∑
i=1
L(w; yi, Xi) + µ‖w‖2

2 + τ‖w‖1

}
, (87)

with L loss function of a regression problem. The τ term imposes sparsity,
while µ weights the contribution of the L2 penalty.

The relation between the functional in Eq. 86 and the one in Eq. 87 can be
obtained as

argminw

{
1− ρ

2C
wTw +

ρ

C
‖w‖1 +

n

∑
i=1

log
(

exp[−yiXT
i w] + 1

)}
, (88)

where we have the system τ = ρ
C and µ = 1−ρ

2C . The two optimization problems
are equivalent for

ρ =
τ

2µ + τ
and C =

1
2µ + τ

. (89)

Decoupling ρ and C parameters in the tuple (µ, τ) allows a higher control of
the sparsity prior deriving from the L1 over the smooth prior given by the L2

term. We will resort next of this flexibility to implement a feature selection
method with a nested approach.

learning method and hyperparameters The feature selection is based
on a nested approach, which consists of a two-stage procedure, relying on
three hyper-parameters (µ, τ, λ). The main change to the original algorithm
consists in the use of the logistic regression loss. The two-stage method is re-
ported in Equations 90, 91, 92, and 93.

• stage 1: µ = µ0 across the CV procedure, hyper-parameters (τ, λ) are
selected using a 3-fold CV procedure

arg min
w

{ M

∑
i=1

log
(

exp[−yiXT
i w] + 1

)
+ µ0‖w‖2

2 + τ‖w‖1

}
(90)

arg min
w̃

{ M

∑
i=1

log
(

exp[−yiX̃T
i w̃] + 1

)
+ λ‖w̃‖2

2

}
. (91)
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We solve two minimization problems. In Eq. 90 we minimize the Elastic-
Net problem where we enforce the sparsity constraint. This is obtained
by fixing µ0 � τ. By forcing selectivity, we obtain a subset of features.
We denote w̃ as the array of weights with non null components and X̃
as the correspondent data matrix of reduced dimensionality in the fea-
ture space. In Eq. 91 we solve the classification problem in the smaller
dimensional feature space, with the imposition of the L2 prior. The out-
come of this procedure is the optimal tuple (τ∗, λ∗) which maximizes the
averaged balanced accuracy score over the validation set.

• stage 2: (τ∗, λ∗) fixed from stage 1, ∀µj > µ0, with (X, y) entire learning
set

arg min
w

{ M

∑
i=1

log
(

exp[−yiXT
i w] + 1

)
+ µj‖w‖2

2 + τ∗‖w‖1

}
(92)

arg min
w̃

{ M

∑
i=1

log
(

exp[−yiX̃T
i w̃] + 1

)
+ λ∗‖w̃‖2

2

}
. (93)

As defined, this approach leads to a set of models, of increasing dimen-
sionality, with the relaxation of the sparsity constraint in favor of the L2

term, see Eq. 92. The result of this operation is the selection of a subset
of features. Here we use the notation w̃ to denote the array of weights
corresponding to non null components. For each µ value we obtain a
classifier, as result of Eq. 93.

As the value of µ increases the algorithm selects a larger subset of features.
This leads to high interpretability of the results as features selected from the
sparsest models should be the most relevant to the classification task. As we
relax the L1 constraint we expect the model to catch further correlated fea-
tures to those selected in the sparse model. Moreover we expect in the asymp-
totic regime to obtain comparable predictive performance [34] [33]. The hyper-
parameters arrays µ, τ, and λ have respectively 45 entries equally logarithmic
spaced in the range [10−5, 3 · 104], 10 entries equally logarithmic spaces val-
ues in the range [1, 102], and 10 entries equally logarithmic spaced values in
the range [0.1, 102]. The dataset splits are equivalent to the ones defined for
Experiment I and Experiment II.

evaluation metrics Again we compute the same scores as in Experi-
ment I and Experiment II. The hyper-parameters selection should rely on the
highest value of averaged balanced accuracy score on the CV splits. Nonethe-
less, we observe that the performance are almost equivalent across the different
values of (τ, λ) with fluctuations which are smaller than < 2%. For this rea-
son, based on the validation set, we kept the sparsest model, correspondent
to τ∗ = 100 and we select the best λ∗, correspondent to the best balanced ac-
curacy score, across all the experiments. We ran the experiments 10 times, for
both recordings split and patients split scenarios.
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7.4.2 Results

In Figure 36 we report the classification performance of the procedure over the
second stage across 10 repetition of the experiment. These results correspond
to fixed τ∗ and λ∗ values, with the former always constant. We test the models
as we increase the µ value, or the importance of the L2 regularization term
over the sparsity term. We observe that: (i) as from the previous experiments,
the performance for the recordings split scenario are not significantly higher;
(ii) as expected asymptotically, the performance is independent from the µ

value, which guarantees model stability.
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Figure 36: Predictive performance of the two-stage procedure, for the 45 models ob-
tained for different values of µ. On the the x-axis, the hyper-parameter
µ, on the y-axis, the balanced accuracy score. The colored curves are the
results of each run of the experiment. The black curve and the gray area
report respectively the mean and standard deviation of the balanced accu-
racy across ten repetitions. In general, we observe that the performance is
not affected by the model size, which assures the stability of the results. On
the left recordings split setting, on the right patients split. The recordings split
shows lower variance.

We report the number of features as we increase the value of µ, across the 10
repetitions of the experiment in Figure 37. We observe no discrepancy between
the two splitting data paradigms.

As the ratio between the L1 and L2 hyper-parameters decreases, the number
of features selected by the algorithm increases. In this concern, we remind that
τ∗ = 100 across all the experiments. For the smallest µ value, the number of
selected features is the minimum across all the experiments. This represents
the sparsest scenario. We call the features selected in this regime ancestors.

We show in Figure 38 the occurrence of the ancestors for models obtained in
the recording split protocol, at the top, and patients split protocol, at the bottom.
On x-axis we put the features, which are identified by the band Bk and the
constant value c. We observe that across learning protocols and repetitions
high threshold values c are never selected at high frequency bands ( f > 290
Hz). The feature selection for recordings split and patients split is consistent. The
most selected features correspond to the ones in the α, β, and γ rhythms.

We show in Table 39 the regularization paths for the most selected rhythms.
This is the result for one repetition of experiment, from the recordings split
protocol. The regularization path is informative to establish a hierarchy among
features. On the x-axis we report the µ parameter, on the y-axis the coefficient
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Figure 37: Number of selected features as function of µ. On x-axis the µ coefficient, on
the y-axis the number of nonnull coefficients across repetitions of the exper-
iment. The mean and standard deviation are respectively represented with
dot markers and colored areas. We report the recording split and patients
split respectively in orange and blue.

Figure 38: Histogram for the occurrence of the ancestors across ten repetitions of the
experiment. Top: recordings split, bottom: patients split. The gray line denotes
the maximum occurrence value. We observe that the last scenario leverages
on a smaller amount of features, but there is a good agreement on the
feature importance.

values. The ancestors have a regularization path which never goes to zero,
even for the smallest µ value.

The ancestors selected in the same experiment are shown in Figure 28. Here
we emphasize the correlation among these features, using a heatmap. On the
left we put the ancestors. The ancestors are 1− 4 Hz c = 5, c = 8; 4− 8 Hz
c = 3, c = 5; 8− 13 Hz c = 4; 13− 30 Hz c = 3, c = 6, c = 7, c = 8; 30− 70 Hz
c = 5; 70− 90 Hz c = 4; 90− 140 Hz c = 4; 140− 190 Hz c = 3; 290− 340 Hz
c = 3; 340 − 390 Hz c = 3; 390 − 440 Hz c = 3; 440 − 490 Hz c = 3. The



7.4 experiment iii : automatic feature selection 109

10 4 10 2 100 102 1040.6
0.4
0.2
0.0
0.2
0.4
0.6

co
ef

fic
ie

nt
s v

al
ue

frequency band Bk: 1 4 Hz
c: 3
c: 4
c: 5
c: 6
c: 7
c: 8
c: 9

10 4 10 2 100 102 1040.6
0.4
0.2
0.0
0.2
0.4
0.6

co
ef

fic
ie

nt
s v

al
ue

frequency band Bk: 8 13 Hz
c: 3
c: 4
c: 5
c: 6
c: 7
c: 8
c: 9

(a) (b)

10 4 10 2 100 102 1040.6
0.4
0.2
0.0
0.2
0.4
0.6

co
ef

fic
ie

nt
s v

al
ue

frequency band Bk: 13 30 Hz
c: 3
c: 4
c: 5
c: 6
c: 7
c: 8
c: 9

10 4 10 2 100 102 1040.6
0.4
0.2
0.0
0.2
0.4
0.6

co
ef

fic
ie

nt
s v

al
ue

frequency band Bk: 290 340 Hz
c: 3
c: 4
c: 5
c: 6
c: 7
c: 8
c: 9

(c) (d)

Figure 39: Regularization paths for some of the most recurrent bands, for one repeti-
tion of the experiments. (a) δ rhythm, (b) α rhythm, (c) β rhythm, and (d)
[290, 340] Hz.

black lines denote the division among blocks of coordinates, each black line is
related to an ancestor. We then order the features of the largest model, based
on their correlation with the ancestors, where the features are grouped to the
ancestor for which we measure the highest correlation.

Despite almost all the frequency bands have an ancestor in the sparsest
model, we observe that, by dividing the correlation matrix in the two classes,
there is higher correlation among features for the positive class, especially in
the high frequency bands ( f ∈ [70, 240] Hz).
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Positive Samples Negative Samples

Table 28: Correlation matrices for the family of thr features selected through the one
repetition of the experiments with nested features, for a split performed
across patients, for the model with the biggest µ. On the left, the correla-
tion is computed between epileptic contacts only, on the right, there are non
epileptic contacts. The black lines denote the ancestors features, selected in
the sparsest model (µ = 10−5). Those are in order: 1− 4 Hz c = 5, c = 8;
4− 8 Hz c = 3, c = 5; 8− 13 Hz c = 4; 13− 30 Hz c = 3, c = 6, c = 7, c = 8;
30− 70 Hz c = 5; 70− 90 Hz c = 4; 90− 140 Hz c = 4; 140− 190 Hz c = 3;
290− 340 Hz c = 3; 340− 390 Hz c = 3; 390− 440 Hz c = 3; 440− 490 Hz
c = 3. We measured the correlation between each feature of the largest model
and the ancestors, and we cluster the former depending on the highest cor-
relation value. In this descriptive result, there are indeed some differences
between the positive and the negative classes. The epileptic contacts show
higher correlations between features related to high frequencies.
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7.5 Clinically Unbiased Results: Engel I

All the previous experiments were based on pre-surgical assessment of the EZ,
which we translated in binary labels as commented in Chapter 4.

In the last part of the thesis we have been provided with the post-surgical
assessment for a substantial portion of the population. This information in-
cludes:

(i) the type of surgical intervention, which differentiates in ablation, thermo-
coagulation, or not operated;

(ii) the removed region in case of ablative surgery;

(iii) the post-surgical outcome in case of resective surgery or thermocoagula-
tion, which consists in the Engel classification;

(iv) and the anti-epileptogenic treatment administered at the time of the acqui-
sition.

Based on the post-surgical outcome the population stratifies as in Table 29.

Engel I Engel II Engel III Engel IV Unknown

#patients 25 6 4 6 18

Table 29: Stratified population based on post-surgical outcome. Engel I patients, in
bold, constitute the subgroup for which the pre-surgical evaluation has been
effective. The category unknown includes both the patients who refused the
surgery as the ones for which the post-surgical classification outcome is not
available.

The post-surgical evaluations give higher relevance to the analysis, as we
are able to consider only the subpopulation for which the pre-surgical assess-
ment and the surgical intervention have been effective. With the goal of repeat-
ing the analysis presented in the first part of this Chapter, we first highlight
some aspects: (i) positive contacts position and ablated regions approximately
coincide for all patients belonging to the Engel I class. A direct correspon-
dence between pre-surgical assessment and resected region is nonetheless not
straightforward, because of the higher spatial resolution about the contact po-
sition of SEEG compared to the size of entire brain regions of ablated tissue.
This approximation should not affect thermo-coagulated cases, but these are
nonetheless extremely rare.The contacts position as the region for each contact
have been extracted as for Chapter 5, using the Destrieux atlas4. (ii) Negative
post-surgical outcomes do not necessarily correspond to miscorrect pre-surgi-
cal evaluations. We notice that, in some cases, the pre-surgical assessment on
Engel IV patients defines as epileptogenic a large number of contacts falling in
different regions, which have not been entirely ablated. This may be related to

4 Last access: November 24th, 2019. Cortical parcellation from Free Surfer. https://surfer.nmr.
mgh.harvard.edu/fswiki/CorticalParcellation

https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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further pre-surgical evaluations about cognitive damages deriving from such
drastic resections.

Given the impossibility of taking into account these further factors, we de-
cide to exclude from the following analysis all the classes but Engel I. We limit
the analysis to the patients split paradigm.

7.5.1 Experiment I: Prediction Performance using all Features

We repeat the analysis of Section 7.2, over the entire set of features defined
before.

7.5.1.1 Experimental Setup

As in Section 7.2, we resort to LR-L2 and SVM rbf classifiers. The hyper-
parameter array C is identical to the one proposed in the previous version
of the experiments. Similarly to the previous experiments, the split in learning
and test sets respects the ratio 80%/20%. As the dataset consists of N = 25
patients, 20 patients belong to the learning set while 5 fall in the test set. Dur-
ing learning, we fix the optimal hyper-parameters through a 4-fold grid search
CV procedure. If not specified, the optimal hyper-parameter is the one which
maximizes the averaged balanced accuracy score across the 4 validation folds.
The model is then retrained over the learning set and tested. We repeat each
experiment ten times to assess the stability of the performance.

7.5.1.2 Results

patients split

model (BA)vl BA F1 P R

LR-L2 0.727(9) 0.72(6) 0.57(12) 0.65(10) 0.54(15)

SVM rbf 0.718(7) 0.68(4) 0.52(9) 0.78(7) 0.40(10)

Table 30: Experiment I, Engel I class. Scores for the two models. We evaluate the per-
formance over 5 patients, across ten repetitions of the experiment. We sepa-
rate patients across the learning and test procedures.

We observe high fluctuation of the metrics scores. This is probably due to
the reduced amount of samples, if compared with the results in Table 26. The
results do not significantly improve because of the stratification based on post-
surgical outcome.

7.5.2 Experiment II: Predictive Capacity of Features Subsets

As before, here we evaluate if there is a more predictive subset of features. The
experimental setup is identical to the one of Experiment I presented above.
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7.5.2.1 Results

In Table 31 we show the predictive performance for the models. These results

patients split

subset model (BA)vl BA F1 P R

thr
LR-L2 0.71(2) 0.68(5) 0.52(11) 0.76(10) 0.41(11)

SVM rbf 0.72(2) 0.71(4) 0.58(8) 0.82(5) 0.46(8)

dwt
LR-L2 0.609(8) 0.58(5) 0.30(15) 0.64(15) 0.23(15)

SVM rbf 0.59(1) 0.53(3) 0.15(10) 0.58(16) 0.09(7)

fft
LR-L2 0.612(7) 0.57(5) 0.29(12) 0.56(14) 0.22(15)

SVM rbf 0.62(1) 0.60(5) 0.36(14) 0.55(8) 0.31(17)

mom
LR-L2 0.578(6) 0.55(3) 0.22(10) 0.57(18) 0.16(11)

SVM rbf 0.56(2) 0.52(3) 0.08(10) 0.63(38) 0.05(7)

med
LR-L2 0.61(1) 0.59(5) 0.33(12) 0.66(15) 0.26(17)

SVM rbf 0.61(2) 0.58(4) 0.32(13) 0.59(14) 0.27(15)

Table 31: Experiment II, Engel I class. Scores for the two classification methods, trained
on single features subgroups. We evaluate the performance on 5 patients,
across 10 repetitions of the experiment. Again, we observe the emergence of
the subgroup thr as the most relevant to the classification task.

must be compared to the experiment in Table 27. As before, we confirm the
emergence of thr as the most relevant feature subgroup, among the proposed
ones. By comparing the results from Experiment I with results for the thr fea-
tures in Experiment II, we notice that the gap between balanced accuracy score
evaluated on the validation test and on the test set is almost equivalent, re-
vealing the stability of the result for this subgroup. Moreover we observe that
the precision score increases for both the LR-L2 and SVM rbf models. This
corresponds to a decrease of the number of false positive samples. Statistical
fluctuations are nonetheless too high to assess the significance of this result.

7.5.3 Experiment III: Automatic Feature Selection

As before, we aim here at finding frequency bands of higher relevance, resort-
ing to the nested two-stage method. The learning protocol is identical to the
one of Experiments I and II from this section. The hyper-parameter arrays are
equivalent to the one in Experiment III, Section 7.4.

By design the choice of the optimal tuple (τ∗, λ∗) should be based on the
highest averaged balanced accuracy score. As before, we notice small varia-
tions < 2% of the scores across the hyper-parameters grid. We then consider
the sparsest model, constraining τ∗ = max(τ). We determine the λ∗ value as
the one which maximizes the balanced accuracy score over the 4 validation
folds.
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7.5.3.1 Results

We observe from Figure 40 that the performance is stable across the entire set
of µ parameters. This guarantees that the input-output relation is stable and
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Figure 40: Balanced accuracy curve evaluated on the test set and µ increases for Ex-
periment III, Engel I class. Each gray curve represents a single repetition
of the experiment. The values mµ0 and σµ0 represent respectively the mean
value and the standard deviation of the balanced accuracy score for the
sparsest model, reported in Table 32.

robust despite the increasing dimensionality. In Table 32 we report the metrics
scores for the two-stage feature selection model. We observe a slight increase

patients split

model BAvl BA F1 score P R

L1L2-LR 0.71(1) 0.70(4) 0.57(9) 0.83(8) 0.43(9)

Table 32: Experiment III, Engel I class. Scores evaluated on five test patients averaged
across ten repetitions of the experiment for the models with µ = µ0. We
report the mean value and standard deviation (in parenthesis).

of the learning performance, if compared to the LR-L2 model of Experiment
II, first row in Table 31.

We observe stability also in the number of selected features across repeti-
tions of the experiment. In Figure 41, we show the number of features as the µ

value increases. As µ increases, we notice that curve related to nonnull features
tends to a plateaux. This result is encouraging, as, despite the increase of the
µ value, the models do not show a further increase of complexity.

We show in Figure 42 the histogram reporting the ancestors occurrence
across the ten repetitions of the experiment. We observe a coherent use of
features at the neurophysiological bands, especially for δ, β, and γ bands.
The contribution deriving from very high frequencies ( f > 200 Hz) is always
present, across every repetition of the experiment.
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Figure 41: Experiment III, Engel I class. Number of selected features as the µ value
increases. The black line and gray area denote respectively the mean and
standard deviation of the number of selected features, the curves reports
the result of each repetition.

7.5.4 Experiment IV: Personalized-Models using Automatic Fea-
ture Selection

As a final analysis we consider a patient at the time, to build personalized-
models and to evaluate the stability of the feature selection approach across
patients. We have here multiple goals: (i) confirming the importance of the thr
set; (ii) observing if the classification performance is uniform or the difficulty
of the classification task varies across patients; (iii) understanding if this last
aspect is related to the unbalance of the classification problem.

7.5.4.1 Experimental Setup

Given a patient p, we split the dataset (X(p), y(p)) in learning and test sets
consisting respectively of 80% and 20% bipolar contacts, while maintaining
the class unbalance. We are aware that this may lead to overestimation of the
classification performance, as we cannot exclude contributions from spurious
spatial correlations. The µ, τ, and λ arrays consist respectively of 15, 10, and 10
logarithmically spaced values in the intervals [10−5, 103], [1, 100] and [0.1, 100].
We select the optimal

(
(τ(p))∗, (λ(p))∗

)
with a 5-fold CV procedure. For each

patient we repeat the experiment ten times.

7.5.4.2 Results

In Table 33 we report the classification performance obtained from this single
model pipeline. The subject ID refers to the dataset presented in Chapter 4. Un-
balance refers to the proportion of examples from the epileptic class over the
total. 〈BAsparse〉 and 〈BAlarge〉 are respectively the balanced accuracy scores av-
eraged over the ten repetitions of the experiments, respectively for the sparest
model, with µ = 10−5 and the largest one, with µ = 103. As in Experiment
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Figure 42: Experiment III, Engel I class. Occurrence of ancestors across ten repetitions
of the experiment. The bar corresponds to the number of time the feature
has been selected in the sparsest scenario. On the x-axis we put the c con-
stant. This value, together with the legend, identifies a unique feature. The
black dashed line corresponds to the maximum value of the histogram,
equal to 10. We observe that over-threshold activity at β and γ bands is
selected across all repetitions.

III, we notice that the balanced accuracy score in stable independently from
the µ value. This result shows the stability of our models, even if the number
of samples for this scenario is smaller than in the previous cases. We observe
a strong variability of the models classification performance across patients.
For some subjects the clinical features taken into account are discriminative,
leading to almost perfect performance (e.g. ID 38, 54), but there are cases for
which the classification performance is comparable to random guessing.

We observe the distribution of the occurrence of ancestors across different
models. Given a patient, for each feature we count the number of times this
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Subject ID unbalance 〈BAsparse〉 〈BAlarge〉
1 0.14 0.79(11) 0.77(14)

2 0.31 0.80(6) 0.80(6)

4 0.40 0.80(5) 0.80(6)

5 0.17 0.73(11) 0.73(11)

8 0.26 0.70(13) 0.75(12)

12 0.24 0.87(6) 0.89(7)

16 0.32 0.73(8) 0.73(5)

22 0.12 0.79(16) 0.77(12)

23 0.30 0.81(7) 0.83(8)

24 0.77 0.78(10) 0.80(9)

27 0.12 0.84(16) 0.80(19)

29 0.10 0.58(10) 0.58(10)

36 0.53 0.69(4) 0.73(5)

38 0.60 0.91(4) 0.91(5)

39 0.22 0.81(9) 0.82(12)

16 0.04 0.49(2) 0.59(20)

42 0.49 0.79(10) 0.79(8)

45 0.38 0.78(10) 0.77(9)

49 0.23 0.72(9) 0.74(9)

50 0.40 0.76(4) 0.75(7)

51 0.17 0.79(10) 0.78(9)

53 0.17 0.58(9) 0.63(10)

54 0.44 0.94(5) 0.95(5)

56 0.11 0.70(16) 0.65(10)

57 0.09 0.73(10) 0.75(14)

Table 33: Experiment IV. Balanced accuracy scores from single patient models. We
used a nested approach for feature selection on patients from Engel I class.
The unbalance refers to the proportion between epileptic contacts over the
total. We observe that, for some patients, a linear model with standard clini-
cal descriptors is able to discriminate pathological and physiological record-
ings. In other cases, the prediction capacity is poor. The difference between
the most sparse and the largest model is not significative in terms of perfor-
mance, as expected in the asymptotical regime.

was selected as an ancestor, across the ten repetitions of the experiment. At
the end of this procedure, given a feature, we report the histogram of these
occurrences across the population of the Engel I patients, using the box plots
as reported in Figure 34. Subgroups (i), (ii), (iii), (iv), and (v) refer respectively
to the mom, fft, dwt, med, and thr features. We observe that, coherently to the
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Table 34: Box plots of ancestors occurrence across single patient models for Experi-
ment IV. For each patient we count the number of times each feature has
been selected as ancestor across the 10 repetitions of the experiment. We
report the distribution of this value across the 25 subjects.

results from Experiment II, features which quantify the mean energy across
the ten minutes of acquisitions as fft and dwt are not relevant to the predictive
task. Among the most occurrent ancestors there are variance and skewness
of the time series (from the mom group). We observe the selection of med in
concomitance to thr features for slow rhythms, δ, α, and β rhythms. As the
frequency increases (higher rhythms, f > high-γ), the med features are not as
meaningful as thr features in the same band. The thr features are selected as
ancestors across repetitions, for all the patients, confirming the generality of
results in Experiment III.
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7.6 Variability of the Time Series

As last consideration, we attempt at visualizing and quantifying variations
in the electrophysiological signals. This, together with the insights from this
Chapter, will suggest us future steps. Given that abnormal high amplitude pat-
terns emerged as the most relevant aspects in the discriminative task, we mea-
sure here the average variations of the time series from its mean for different
time scale. We will observe qualitatively the high variability across subjects.

We consider the outcome of the preprocessing step as described in Section
7.1.1.

Given a patient p, we evaluate the variance of the signal S(p)
i for non overlap-

ping windows in the temporal domain. We repeat this procedure for different
window widths w, assuming values in [1, 10, 30, 50] seconds. This operation is
equivalent to Formula 94

Vw

(
S(p)

i

)
[j] =

∫ (j+1)w· fs

j(w· fs)

(
S(p)

i (t)−E[S(p)
i ]
)2

dt, (94)

where the vector length depends on w. We repeat this procedure for all the
contacts and we divide in two subsets the resulting vectors, depending on the
presurgical assessment y(p)

i , for the Vw

(
S(p)

i

)
[j]. We averaged these arrays for

the two classes, so to visualize the average variability and its standard devia-
tion at different time scales for contacts in epileptogenic and non epileptogenic
zones.

In Figure 43 and Figure 44 we report this result across all the w scales, from
the smallest, w = 1 s, on top, to the largest, w = 50 s, at the bottom. The first
pair of figures shows two patients from the Engel I class, the last is relative
to Engel IV patients. For all plots the areas and markers denote respectively
the standard deviation and mean value of the variability of contacts from the
same class, in orange for the positive and green for the negative class.

We observe that, depending on the patient, the discrimination of the positive
and the negative samples based on recordings variability emerges as sufficient
for some cases, but it is not discriminative in others. To highlight this aspect
we report respectively two clinical cases from Engel I class, in Figure 43, and
two patients belonging to class Engel IV, in Figure 44.

Starting from class Engel I, for subject 1, in 43, the overlap of the activity
generated by the two classes is almost perfect. An evaluation from the time
series variability would not be effective in this case. For what regards class
Engel IV, in 44, the pre-surgical assessment in subjects 58 and 46 shows that the
variability between the two pre-surgical assessed classes is extremely different,
despite the bad post-surgical outcome. One among the hypothesis discussed
at the beginning of the Section applies for patient 58: the number of thermo-
coaugulated contacts is much lower that the number of contacts tagged as in
the epileptogenic zone from the pre-surgical assessment.

We observe that the variability across different scales w changes depend-
ing on the patient, but shorter transients seem to be more meaningful for the
discriminative task.
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Figure 43: Variability of the time series for patients of class Engel I. Top: subject ID
1, ablated subject with mesial frontal focal epilepsy, #C= 91, #PC= 13.
Bottom: subject ID 49, thermo-coaugulated subject, #C= 148, #PC= 34.

Moreover these plots confirm that the over-threshold activity, and conse-
quently the time spent in this regime, heavily depend on the patient.

To get a further insight, we report in Table 35 the values related to the vari-
ability of the time series for the two classes. Given a time scale, for each bipolar
contact we compute the mean variability across the entire recording and then
we average these values across patients, by keeping separated the two classes.
The result is a consistent overlap for the two classes. This result suggests that
the inference of classification models which take into account the activity from
a population does not represent an optimal solution for the classification task.
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Figure 44: Variability of the time series for patients of class Engel IV. Top: subject
ID: 58 , thermo-coaugulated subject with nodular heterotopia, #C= 127,
#PC= 43. Bottom: subject ID: 46, thermo-coaugulated subject with right
temporal opercular focal epilesy, #C= 143, #PC= 57.

w [s] 1
N ∑n

p=1

〈
V(p)

w

〉
y=+1

[µV2] 1
n ∑N

p=1

〈
V(p)

w

〉
y=−1

[µV2]

1 53(50) 29(26)

10 57(53) 31(29)

30 58(54) 31(29)

50 59(54) 31(29)

Table 35: The variability of the time series is averaged across the Engel I patients. We
observe that mixing all patients is probably not the optimal solution in term
of separation between the two classes.

7.7 Comments

Let us summarize the considerations arising from this Chapter in the follow-
ing, before moving on.
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First of all, through a feature selection approach we observed across all the
experiments that the collaborative contribution of several bands in the spec-
trum emerges as key to discriminate the epileptogenic zones. This result does
not allow to filter the signal at a specific band while discarding others, so to
ease the burden which clinicians must face in the EZ localization task.

Secondly, this result suggests that neural rhythms, as defined in standard
neurophysiology, are not optimal in terms of signal interpretability, for the EZ
localization task. In this regard, a more appropriate way to proceed would be
taking into account more complex waveforms in the neural signals. Several pa-
pers move in this direction, focusing of the search of short bursts rather than
on the average behavior of the neural signal. As first pointed out by Jasper
[64] the typical neural rhythms may be not as significative as specific patterns
of the brain. Moreover, variability in the wave patterns may indicate the co-
operative activation of particular families of neuronal ensembles and well as
neurotransmitters. The work of Voytek and Cole [26] highlights an important
aspect related to the hypothesis of Jasper. Indeed the authors observed that
several neural measures may be biased by the search of rhythms, while short
patterns with a very specific shape (the µ-rhythm is one example) may be the
major contributors to the neural activity. In this regard, the recent work of
La Tour et al. [71] focuses on signal patterns, with the claim of getting more
interpretable results.

Moreover, in the last part of the Chapter, we have been able to give an insight
of clinical interest, by performing the experiments on post-surgical seizure free
patients. Overall these results do not highlight significative differences in terms
of predictive performance when compared to the previous ones. We made
the hypothesis that this could result from a not straightforward relationship
between the pre-surgical assessment of the epileptic areas and the surgically
ablated area.

In Experiment IV we designed models on single patients. Here the classifica-
tion performance strongly depends on the subject under analysis. The strong
contribution deriving from features related to the presence of pattern of abnor-
mal amplitude is consistent with the previous results. This last result shows
that for some patients a linear predictive model is sufficient to capture the
relation to discriminate the activity recorded in the EZ, but for others it gives
balanced accuracy scores comparable to chance level. This result highlights the
limited predictive power of the interictal stage when the analysis is limited to
the signal amplitude.

Finally, the last qualitative results aimed at measuring the variance of the
electrophysiological recordings confirm the importance of building instruments
capable of considering single patients, as the discrimination based on abnor-
mal activity may not always be sufficient at the interictal stage.



8
Search of Bursts of Epileptic Activity

In the light of the previous analysis on Engel I patients, we obtained an insight about
the crucial role of short patterns of high amplitude for the definition of the EZ. The goal
of this Chapter is to illustrate a tool for their search using an open software library,
which we adapt to SEEG data. We present some preliminary results which mostly
involve data visualization and unsupervised learning techniques for dimensionality
reduction and clustering. Given the difficulty in characterizing high amplitude pat-
terns as typical epileptic patterns, we will resort once again on the clinical pre-surgical
assessment for patients belonging to the Engel I class. This Chapter opens a plethora
of questions and possible future directions to explore, about signal generation and its
propagation through different brain regions.

8.1 Short Patterns of Pathological Activity

From previous analysis we obtained conclusive results of classification meth-
ods trained on interpretable features, extracted using signal processing tech-
niques. In this regard, features which take into account the neural activity
above baseline, with strong contributions from several frequency bands in the
spectrum, emerged as relevant. Electrophysiological patterns potentially re-
lated to the EZ may manifest with high variability of their temporal profile due
to (i) the area involved in their generation; (ii) distortions due to anisotropy
of the neural tissue, as nearby neural populations may activate; (iii) differ-
ent pharmacological treatments which may impact on inhibitory/ excitatory
mechanisms related to signal propagation. In this view, the identification of
epileptic patterns and the following characterization may get extremely chal-
lenging. Moreover, the capacity of finding epileptic patterns using data driven
tools may be strongly affected by the rarity of these events across the neural
recordings during the interictal stage.

In the initial Chapters we debated extensively about candidate patterns of
epileptic activity at the interictal stage. Given the presence of all the frequency
components, we decide to focus here on patterns which we hypothesized to
be interictal epileptic spikes. Our candidate epileptic patterns will be extracted
at relatively low frequency, using a wide band-pass filter. We do not exclude

123



8.2 spyking-circus specifics 124

the possibility of applying the methodology proposed below to any other fre-
quency range of interest (e.g. HFOs).

In this regard, some machine learning tools developed for interictal spike
detection [93, 104] mostly deals with large scale electrophysiology and are
applicable on signal acquired from scalp. Given these patterns, it is nonetheless
controversial their definition as truly epileptic spikes. Several studies highlight
the disagreement among medical experts about the epileptic or physiological
nature of such patterns [9, 66].

On the other hand, algorithms for detection and analysis of spike from sin-
gle as multiple neurons exist [91, 134]. The spatial resolution hypothesized
here is much higher given the different type of measure. In the following we
leverage on one among those, Spyking-Circus [134], an open-source Python
library whose goal is spike sorting for signal recorded using multi-electrode
arrays. The method has been designed for the search of spikes from thou-
sands multi-electrodes recordings, with particular attention to the computa-
tional performance. As the algorithm is well-cited and the library seems main-
tained throughout the last years, we rely on it for our analysis. Reviewing the
literature related to spike detection, we notice the use of common strategies
across these methods, as signal thresholding, PCA, and clustering.

8.2 Spyking-Circus Specifics

The method leverages not only on the temporal nature of the data, but also
on the spatial position of each recording. Based on this a priori co-occurrent
patterns recorded at different positions may derive from the propagation of
a common signal, or may be triggered by the activation of a third common
signal generator. The spatial prior allows to infer more reliable waveforms of
spike activity. The original domain of application of this tool is micro-electrode
recording systems, which acquire local voltage from separated cellular sites, at
a distance of micrometers.

Even in the best case scenario, for neighborhood contacts, the SEEG contacts
distance are orders of magnitude above the micrometer scale. In our limited
understanding, this does not represent a limit to the Spyking-Circus perfor-
mance for pattern detection. The algorithm may have difficulties in grouping
together patterns due to the prior knowledge about high distance among con-
tacts, but this should not impair dramatically the identification and localiza-
tion of templates in time.

8.2.1 The Algorithm

The method is characterized by different phases. We summarize its essential
steps and put more emphasis in the description on those steps and hyper-
parameters which depend on the users choice. We suggest a further reading
of the original work to get a clearer view of the method.
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Guided by our task we slightly adapt the algorithm in some part to work on
SEEG recordings. Notice that for this analysis we will process one patient at
the time.

1 . input data (i) a file containing the arrays on neural recordings, with
dimensions #C(p) × NT; (ii) a related file, containing the contacts positions,
given in µm; (iii) a third file containing the main settings of the algorithm (see
Table 1 in [134]).

2 . preprocessing by default it consists in (i) data filtering, (ii) spike de-
tection, (iii) whitening, and (iv) basis estimation. (i) By default the method
applies a high-pass Butterworth filter, where low and high cut-off frequencies
must be specified. (ii) At this step, for each contact k, the algorithm computes a
spike threshold based on Median Absolute Deviation (MAD) of the signal, as
θk = λMAD(S(p)

k (t)), with λ free parameter. A candidate spike time is the one
which exceeds the θk value. Positive, negative or both signs thresholds can be
imposed. (iii) During whitening spurious spatial correlations are removed. (iv)
Dimensionality reduction through PCA for the set of collected waveforms. Af-
ter having aligned all the waveforms, the algorithm up-samples the patterns,
we reduce to a number of components equivalent to 5.

3 . clustering the goal here is finding a dictionary of waveforms. The
main steps consist here in (i) masking, (ii) pre-clustering, (iii) clustering by lo-
cal density peak, (iv) centroids and cluster definition, (v) clusters merge, (vi)
templates definition, and (vii) removal of redundant templates. We do not go
in detail here. The algorithm clusters the templates both in time (e.g. patterns
recorded from the same channels across different time instants) and space (e.g.
co-occurrent patterns recorded from different electrodes). The main parameter
here is ρ, which denotes the closest contact distance. The output of the cluster-
ing step is a dictionary of non redundant, one dimensional templates, each of
shape Nt. The output of this operation is the set of K templates, {x1, . . . , xK},
with a number of elements depending on the data.

4 . template matching at this step the algorithm leverages on an iter-
ative greedy approach to estimate the putative spike times. The output of
this operation is a set of K lists of different sizes {[T1

1 , . . . T1
t1
], . . . , [TK

1 , . . . TK
tK
]},

where the generic list k contains the times at which the xk pattern has been
detected.

8.2.2 Parameters Choice and Small Modifications

Here we recall the previous steps and we illustrate our choice for the analysis.

1 . For each patient we give as input to the method a matrix of already pre-
processed SEEG recordings. These recordings are results of a band-passed with
a FIR filter (Hanning window) [48], with low and high cut-off frequencies of 1
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Hz and 40 Hz respectively, and low and high transition bandwidths equivalent
to 1 and 10 Hz respectively. As at a preliminary stage, we were interested in
detecting only the highest amplitudes and from the previous results, a reason-
able choice is to set the cut off frequency at 40 Hz, in order to avoid line ef-
fects. The second input file must contain the contacts position. Spyking-Circus
was designed for 2-dimensional probes only, so we slightly modify it to our
geometry. We pass to the algorithm the SEEG positions in the 3D Euclidean
coordinates, as given by FreeSurfer. In Table 36 we report the main setting of
the configuration file. We fixed ρ to the value of 250 µm, which is a slight

parameters cut-off polarity λ Nt ρ[µm]

[2, 40] both [7, 9] 1001 250

Table 36: Our setting for the Spyking-Circus parameters. Filter refers to the prepro-
cessing which the algorithm performs internally, λ to the threshold constant,
Nt to the number of time points for each template.

under-estimate of the distance for contacts on the same electrode.

2 . Our choice regarding (ii) was to detect patterns with both positive and
negative polarities. This is indeed a common scenario in the analysis of SEEG
recordings. As an example we report in Figure 45 two templates, extracted by
Spyking-Circus from the same patient.
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Figure 45: Given a patient, we ran the Spyking-Circus algorithm. We show here two
templates, similar in shape but of opposite polarity. The blue curves corre-
spond to the template in the temporal domain. On the right, we report the
absolute value of the Short Time Fourier Transform, for the two templates.
We observe that the sharp central peaks have effect across all frequencies,
while the slow waves reflects on the low frequencies only.
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8.3 Search for Common Activity

With the goal of searching for any common signature of the epileptic activity
across patients, as a first step we compare templates extracted from different
patients. We decide to test this hypothesis as we notice again high variability
of the extracted waveform shapes across patients. We report in Figure 46 a
template for a different patient from the one who generated the activity shown
in Figure 45.
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Figure 46: The patterns variability among patients is extremely high, as a qualitative
comparison with waveforms in Figure 45 shows.

In addition to the different shape, also strong differences in amplitude are
present. To reduce their impact on the result we leverage of a distance which
takes into account the profile of the temporal patterns, rather than their am-
plitudes. We measure then pairwise similarity across patterns using the cosine
metrics in Formula 95

dcosine(x, y) = 1− |〈x, y〉|
‖x‖‖y‖ . (95)

We introduce in the measure the absolute value to avoid the dependence from
the spike polarity, which, given our choice of considering both, may flip sign.

8.3.1 Comparison Across Patients

From this analysis we aim at observing if the templates, as extracted from
Spyking-Circus, group together in relation to the patient or if they are almost
independent from their domain (the subject in this case). If this dependence
does not hold true, it would justify a further search of common short time
epileptic activity. To evaluate if this is the case we rely on the metric of opti-
mality defined for clustering, in particular the silhouette score.

To proceed in the task, we resort to the absolute cosine distance in Eq. 95 to
first measure the similarity among patients. We leverage on an agglomerative
clustering approach1 which takes as input the precomputed matrix of pair-

1 Last access: October 28th, 2019 https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.

AgglomerativeClustering

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering
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wise distances. We set our choice to complete linkage. We vary the number of
possible clusters in the range #clusters ∈ {2, . . . , 40}. We give as input to the
learning algorithm 80% of the templates randomly extracted with replacement
from the entire dataset, which consists of a total of 1488 templates for the 25
patients of class Engel I.

We repeat the experiment 10 times. For each repetition, at each #clusters we
measure the silhouette score. The result of this procedure is report in Figure
47. On the x-axis we report #clusters, the number of clusters, on the y-axis the
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Figure 47: The curve of silhouette score across 10 repetitions of the experiment. For
each repetition we give 80% of the dataset as learning set. The blue curve
and area represent respectively the mean and the standard deviation of the
silhouette score for different #clusters values. The red line denotes the best
#clusters value, correspondent to the best mean silhouette score.

silhouette score. The blue curve and the blue area correspond respectively to
the silhouette mean and standard deviation across repetitions. The vertical red
line denotes the (#clusters)∗ = 2 for which we obtain the best mean score.

Given the choice of (#clusters)∗, we refit the entire dataset. In Figure 48

we report the two centroids. This result is promising in terms of comparison
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Figure 48: We refit the agglomerative clustering method, imposing the #(clusters)∗ =
2. We report the two centroids. x-axis: time axis, in seconds, y-axis: ampli-
tude.

across patients. We notice that the two centroids are characterized by a sharp
central peak, of time width 200 ms. We observe nonetheless the large variance
of these temporal wave profiles. To more light on the epileptic spikes, we want
to observe if large amplitude patterns recorded in epileptogenic areas tends
to have a more defined shape, when compared to signals recorded from other
non epileptogenic areas. For this task tagged patterns are needed.
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8.3.2 Tagging Patterns

Here we aim at observing if spikes generated from the EZ tend to aggregate
more compactly than sharp patterns which manifest in the non epileptogenic
zones (non EZ). For this scope we need to tag temporal patterns as belonging
or not to epileptogenic zones. We decide to exclude for all patients those tem-
plates which overall occur less than three times across the entire acquisition.
This choice may look arbitrary but it should reduce the amount of noise, as
we risk to discard extremely rare templates but also random fluctuations and
possible signal artifacts.

The tag assignment is performed separately for each patient, as shown in
Figure 49.
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Figure 49: From the top left, using Spyking Circus we extract for each patient a set
of templates. We show the workflow for a generic template xk. The other
output of the algorithm is the time instants corresponding to xk. For each
contact we compute the average of these temporal chunks, highlighted in
red. This operation gives as result a pattern of 1 s length for each contact.
For each of those we compute the maximum amplitude, by taking the ab-
solute value of the signal, as in the bottom left. The label is assigned by
considering the channel which produces the higher activity.

Given recordings from the p-th subject, we consider one pattern xk at the
time. We average the activity on each contact, for those time windows where
the template xk has been detected. This corresponds to the Formula 96

〈
S(p)

j (τ)
〉

k
=

1
tk

tk

∑
s=1

S(p)
j (Tk

s + τ), with τ ∈ [−0.5, 0.5] s. (96)

The output of this operation is the average activity across time windows which
match to the template xk, a pattern of duration 1 second, for each recording.

In order to assign a label to the template k for the p-th patient, we first
evaluate at each contact the maximum amplitude, in its absolute value. This
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operation corresponds to the bottom left part in Figure 49. Finally we consider
which channel produces the maximum overall activity. We call this contact c∗k
and we assigned to the template xk its label, as in Eq. 97.

c∗k = arg max
c

{
max

(∣∣∣
〈

S(p)
j (τ)

〉
k

∣∣∣
)}

(97)

y(p)
template k = y(p)

c∗k
. (98)

The hypothesis is here of instantaneous propagation, so that the maximum
amplitude implies minimum distance to the area generating the activity. Our
labeling procedure gives origin to two subsets of templates

#events with maximum amplitude in EZ = 461,

#events with maximum amplitude in non EZ = 566.

8.3.2.1 Analysis

To evaluate if interictal spikes have a more similar waveform among them than
other high amplitude events we resort to a recent approach aimed at detect-
ing HFOs [78]. Here the authors, after collecting HFO events, show that the
epileptic patterns tends to be more similar in shape than other high frequency
waveforms above threshold. We implement a similar strategy for the interic-
tal spikes. The analysis leverages on DBSCAN [39], an unsupervised method
which performs data clustering. We resort to the scikit-learn implementation
of DBSCAN2.

For this experiment we use the tag assignment as in Equation 97. We run
separately the DBSCAN algorithm on the two classes: patterns in the EZ
against patterns in the non EZ. Given the different amount of templates with
positive and negative tags, we normalize the number of clusters by dividing
the output of the method for the number of elements from a class. We give
as input to DBSCAN a normalized version of the templates, with positive po-
larization. We use the standard metric of the experiment in [78], which is the
Euclidean norm, supposing that this is the best metric to use. In this concern,
since we imposed the unit norm for the templates, the Euclidean distance cor-
responds to the square root of the cosine distance. We do not expect high
difference between the two. We let the tolerance ray of DBSCAN vary in the
range [10−3, 1]. If the hypothesis of similarity for interictal spikes is verified,
we expect the number of clusters for these patterns to collapse to one already
for small ray values.

We report in Figure 50 the curve related to the normalized number of clus-
ters as function of the ray parameter ε of DBSCAN. The results are not encour-
aging, as the EZ curve is comparable to non EZ curve. In the next section we
propose a further attempt to improve this result, which consists in the imposi-
tion of prior knowledge on the spike waveform.

2 Last access: October 28th, 2019 https://scikit-learn.org/stable/modules/generated/

sklearn.cluster.DBSCAN.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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Figure 50: Curve of normalized number of clusters as function of ε. We perform the
clustering separately for the two classes. In green: non EZ clustering results
for events with maximum amplitude in non EZ; in orange: EZ clustering
results for events with maximum amplitude in EZ. In case of high similarity
among interictal spikes we would have observed a drop in the curve. The
two curves are almost indistinguishable.

8.3.2.2 Prior Imposition on the Waveform

To select the patterns we require each template to satisfy some a priori. The
criteria used to select the candidate spikes templates are related to the work of
Latka et al. [74].

Given a template we used different representations of the patterns through
wavelet transform as a way to impose some selection criteria. We chose both
discrete and continuous mother wavelets, in particular

(i) Mexican hat wavelet;

(ii) complex Morlet wavelet;

(iii) Daubechies of order 4th.

For what regards (i) and (ii), the scales are set so to share the same central
frequency values. We then discard frequencies above 40 Hz. Our knowledge
imposition on the patterns shape is extremely mild. Given that for each tem-
plate the maximum amplitude is centered in the temporal interval, we impose
concentration, asymmetry, and decreasing amplitude.

concentration The energy of the wavelet coefficients must be mostly
concentrated in the center of the window of one second length. We consider
the Daubechies wavelet and we divide the temporal dimension in three parts
of equal size. We compute the absolute value of the detail coefficient. Given
a scale we sum up the coefficients from the three windows of equal size
(T1

1/3, T2
1/3, T3

1/3). We require the value for the central window to be higher
than the other two. We perform this operation for the first three scales.

∑
t

cD[t ∈ T1
1/3] < ∑

t
cD[t ∈ T2

1/3] and ∑
t

cD[t ∈ T3] < ∑
t

T3
1/3cD[t ∈ T2

1/3]

We perform a similar operation on the representation from the Morlet mother
wavelet. Given that the peak usually has a width of 200 ms, at a fixed scale we
sum the absolute values of all the coefficients in the first 400 ms, between 400
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and 600 ms, and in the last 400 ms. We call the three windows T1, T2, and T3.
We normalize the sums based on the temporal interval lengths. We require for
the central value to be greater than the left and right sides values.

1
#T1

∑
τ∈T1

∑
a
|C(τ, a)| < 1

#T2
∑

τ∈#T2

∑
a
|C(τ, a)|,

1
#T3

∑
τ∈T3

∑
a
|C(τ, a)| < 1

#T2
∑

τ∈#T2

∑
a
|C(τ, a)|, with C Morlet coefficients.

asymmetry The asymmetry of the patterns must reflect on the coefficients
distribution, in case of symmetric mother wavelets. Epileptic spikes are indeed
usually followed by slow waves. We verify this requirement using the Mexican
hat transform. We consider the absolute value of the coefficients across scales.
This operation returns an array of length NT = 1001 points. We sum the values
for T1

1/2 = t < 0.5 s and T2
1/2 = t ≥ 0.5 s. We require this last value to be greater

than the former,

∑
τ∈T1

1/2

∑
a
|C(τ, a)| < ∑

τ∈T2
1/2

∑
a
|C(τ, a)| with C Mexican hat coefficients.

decreasing amplitude The signal should have coefficients different from
zero at all scales, with a decrease in the energy as the frequency increases.
We use coefficients from the complex Morlet wavelet transform. We divide
the central frequencies in different bands: b1 = 1 − 5Hz, b2 = 5 − 8 Hz,
b3 = 8 − 12 Hz, b4 = 12 − 15 Hz, b5 = 15 − 20 Hz, b6 = 20 − 30 Hz, and
b7 = 30− 40 Hz. We sum the absolute value of the coefficients across time for
each scale. We then sum the outcome vector over all the scales included in each
interval. For this vector we require to measure smaller entries as the frequency
band values increase

∑
a s.t. f a

c ∈bk

T

∑
i=1
|C(τ, a)| ≥ ∑

a s.t. f a
c ∈bk+1

T

∑
i=1
|C(τ, a)|, ∀k ∈ {1, . . . , 6},

with C Morlet coefficients.
In Figure 51 we report three different examples of the wavelet criteria. Start-

ing from the left, we impose the asymmetry of the wavelet coefficients with
respect to the center of the time interval. In the middle, we show the prior
related to energy concentration for the complex Morlet wavelet. The same a
priori is verified by the pattern on the right, using the Daubechies wavelet.

We report in Table 37 the results of the selection.
As we can notice, the ratio between the number of event tagged as in the

EZ and the ones in the non EZ increases based on wavelet criteria, but the
approach is still insufficient to group efficiently the epileptic spikes. In the
same fashion on the previous analysis, we report the result of the DBSCAN
fit on the selected events, in Figure 52. On top we show the previous result
before selection, while at the bottom, the plot reports the curves from DBSCAN
algorithm after selecting events using the wavelet criteria. This approach does
not lead to effective results for the identification of interictal spikes.



8.4 comments 133

dyadic resolution

1/3400 ms 200 ms

time

500 ms

sc
al

es

time

Figure 51: Absolute value of wavelet coefficients computed for a candidate epileptic
pattern. Starting from the left to the right: Mexican hat wavelet, complex
Morlet, and Daubechies 4th. The first two plots report on the x-axis the time
domain, each of length 1 second. On the y-axis wavelet scales. Starting from
the left we impose asymmetry of the coefficients distribution, in the middle
and right plots we impose coefficients concentration.

#events EZ #events non EZ (#events
EZ)/#events

before selection 461 566 0.49

after selection 266 207 0.56

Table 37: Results of selection of templates based on prior knowledge. The entries
#events EZ and #events non EZ denote respectively the number of events
for which the maximum amplitude of the average is recorded from a epilep-
togenic zone or to a non epileptogenic zone. We observe a reduction in the
number of non epileptogenic patterns.

8.4 Comments

Given the results at hand it is hard to proceed in further analysis for the iden-
tification of common patterns of activity in the interictal period in the range
[1, 40] Hz by this approach. The interpretation of these results is not straight-
forward, given the absence of a ground-truth about the tag assignment. The
assumption of a single pathological pattern as an approximation to the com-
mon pathological activity to the EZ in the range [1, 40] Hz could be too strong.
Moreover the attempt of aggregating pathological templates independently
from the region of origin may represent an over optimistic approach. About
the last point, the optimal labeling would arise from considering the region
which generates the pattern, rather than the maximum amplitude approach in
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Figure 52: The curve of the normalized number of clusters as function of the ray
parameter in DBSCAN. The orange curve shows the results for patterns
tagged as from the EZ, while in green we report the ones in the non EZ.
On the top, we report the curve before applying the wavelet selection crite-
ria, on the bottom the curves are computed for the templates that pass the
selection criteria.

Eq. 97. At this point these considerations represent conjectures which require
a future validation.



PART IV

Conclusions



9
Considerations and Future Works

9.1 Summary

In this work we tackled the analysis and characterization of focal epilepsy,
a pathological condition which manifests through convulsions, states of im-
paired consciousness, impaired limbs mobility, auras, déjà-vu, causing a degra-
dation of the quality of life.

We started by considering the clinical state-of-the-art, and focusing mostly
on electrophysiological signals acquired from the brain. The goal of automatic
characterization of the signal in the EZ, aimed at its localization, is extremely
challenging. This is mainly due to the abundance of candidate biomarkers en-
countered in this context, the clinical validation needed for this type of study,
and the general difficulty of reaching perfect agreement among experts.

A prototypical example of this situation is the HFO pattern, which we re-
viewed in greater detail. Different articles in this context present apparently
contradictory results, with some authors claiming the importance of HFOs for
the EZ localization, and others discarding this hypothesis.

In the light of several metrics used across these papers, we suggest that
HFOs may be insufficient to localize the entire EZ, due to the high number of
EZ regions which do not manifest HFOs. Nonetheless, HFOs may still poten-
tially be a good tool for the identification of the EZ, given the low number of
false positive regions (presence of HFOs in the non EZ area) especially when
the presence of HFOs in assessed by multiple repetitions of these events during
the acquisition.

In this thesis we instead consider all the candidate EZ biomarkers in the
electrophysiological signal, rather than focusing on a specific frequency, by
basing our analysis on machine learning and regularized techniques. Through
these tools we aim at

(i) revealing the most salient aspects of interest for the discrimination of the
EZ from the physiological area without the imposition of prior knowl-
edge;

136
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(ii) classifying SEEG recordings, as acquired from the EZ or the non EZ
areas.

For this scope, we performed several analyses on a population consisting
of 60 patients, presented extensively in Chapter 4. The analysis was mostly fo-
cused on the electrophysiological signal acquired through invasive pre-surgical
SEEG acquisition system.

Chapter 5 represents a preliminary analysis of the feasibility of this study,
giving a positive perspective about the predictive role of automatic approaches
for the localization of the EZ, based on features commonly defined in the clini-
cal literature. This analysis takes advantage of data representation, signal pro-
cessing, and feature extraction to classify chunks of interictal activity. We un-
derline that this approach comes with several limitations, due to the learning
protocol which we tackle later on in Chapter 7.

Chapter 6 presents MT-MKL, a machine learning tool for the analysis of neu-
ral recordings. This allowed us to characterize the activity of the entire popu-
lation of epileptic patients, by leveraging to a multiscale decomposition of the
entire time series during the interictal stage. Following signal decomposition,
the method integrates signals at different scales by selecting the most relevant
ones for the classification task, based on a regularized multiple kernel learning
approach. By taking advantage of sparsity constraints, MT-MKL should pro-
vide a measure of the importance of frequency bands common to the entire
population, and possibly give an insight about the activity generated in the
epileptogenic zones. In a series of experiments we have however highlighted
some of its limitations. Retrospectively, the method depends on the similarity
of the neural activity among brain regions to assess the EZ, but this does not
allow us to distinguish the pathological activity from the physiological one.
In particular we observed that further analysis does not lead to any selection
of a sparse subset of frequency bands. Nonetheless, from a machine learning
perspective the method can still support clinicians in the identification of EZ
areas based on similar electrophysiological activity among recordings.

In Chapter 7 we address some limitations from the previous analysis. We
proposed a strict learning protocol which does not allow any type of contami-
nations among data splits. The experiments rely on multiple hand-crafted fea-
tures which make an extensive use of signal processing techniques and clinical
knowledge. Through a series of machine learning experiments, we identified
the most promising pathological signatures of the epileptogenic zones. For
this last part analyses we got access to the post-surgical assessment, which re-
duced the dimension of our population but allowed us to get results of clinical
relevance.

The main result from the last part of Chapter 7 suggests to discard the au-
tomatic analysis of the time series in favor of short patterns of abnormal am-
plitudes, at several frequency bands. In this regard, Chapter 8 represents a
preliminary attempt at identifying relevant patterns of short duration across
the neurophysiological recordings, by considering one patient at a time. At
this preliminary stage, the approach could provide clinical support for the
visualization of candidate pathological activity.
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9.2 Future Directions

Among many possible questions and future directions, we delineate a feasi-
ble path arising from the last results on the Engel I patients. In Chapter 7

we presented indeed the result of the learning pipeline for feature selection
using standard evaluation metrics in machine learning. However, for the task
at hand these metrics may lack of interpretability. These scores indeed take
into account the number of misclassified samples but we argue that the mis-
classification may be more or less severe by the distance to the EZ areas. For
example, a recording labeled as false positive should be weighted differently
depending on whether it was acquired in proximity of the EZ or in a region
far away from it. Quantifying the error through this measure may potentially
alleviate the issue of evaluating the goodness of such models, which has been
a concern given the signal propagation. An analysis left for future research is
to use the models trained on Engel I class to classify the activity of Engel IV
patients. Here we cannot validate the goodness of the prediction, but we do
hypothesize a decrease in performance.

Designing tools for the identification of epileptic patterns seems a promis-
ing, despite if difficult, approach. Indeed, the main limitation here is the lack
of a ground-truth about the real epileptogenicity of the patterns. Again, we
may rely on clinical support, but this would not represent a solution, for the
moon-shot goal of automation. We suggest that the missing component critical
for the clinical interpretation of results is the lack of prior knowledge about
brain structure in our machine learning algorithm.

In general we strongly argue that further investigations of the interictal ac-
tivity is useful for the characterization of the pathology. This holds particularly
true if we wish to automatize the analysis and give support to medical experts
throughout the entire data acquisition period, which spans the range of days
rather than minutes of signals, and whose complete characterization becomes
clearly unfeasible without automatic tools.
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