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Abstract.
Appropriate diagnosis and treatment of epilepsy is a main public health issue. Patients

suffering from this disease often exhibit different physical characterizations, which result from
the synchronous and excessive discharge of a group of neurons in the cerebral cortex. Extracting
this information using EEG signals is an important problem in biomedical signal processing.
In this work we propose a new algorithm for seizure onset detection and spread estimation
in epilepsy patients. The algorithm is based on a multilevel 1-D wavelet decomposition that
captures the physiological brain frequency signals coupled with a generalized gaussian model.
Preliminary experiments with signals from 30 epilepsy crisis and 11 subjects, suggest that the
proposed methodology is a powerful tool for detecting the onset of epilepsy seizures with his
spread across the brain.

1. Introduction
The term epilepsy derives from the Greek term epilambanein which means to seize, and it
denotes the predisposition to have recurrent, unprovoked seizures. Seizures can be symptomatic;
that is, result from specific precipitants such as fever, strokes, metabolic disturbances (e.g.
hypoglycaemia, drug abuse/withdrawal), trauma, infections in the central nervous system, and
acute head injury. In epilepsy, however, seizures are unprovoked and expected to be recurrent
[46]. Appropriate diagnosis and treatment of epilepsy is a main public health issue. According
the World Health Organization [1], there are more than 50 millions people worldwide that suffer
from some form of epilepsy, nearly 80% of them are in developing regions, where it is believed
that 3 out of 4 people with this conditions do not get appropriate diagnostic and treatment [1].

The International League Against Epilepsy (ILAE) [10] defines “epileptic seizure as a
transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous
neuronal activity in the brain”. The elements defining an epileptic seizure include its mode
of onset and termination, its clinical manifestations, and its abnormal enhanced synchrony [32].
Physical manifestations of epilepsy result mainly from the synchronous and excessive discharge of
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electricity by a group of neurons behaving abnormally in the cerebral cortex. Epileptic seizures
usually have a sudden onset, they spread within seconds and, in most cases, are brief. The
precise manifestation of a seizure depends on the location in the brain where it originates, and
on how far and fast it spreads. The correct identification of this location and spread information
is key to a proper treatment.

Electroencephalography (EEG) is a non-invasive and widely available biomedical modality
that can be used to diagnose epilepsy and plan treatment. One particular task that has received
attention during the last years is the detection of epileptic seizures from EEG signals measured
on the brain scalp. It is widely acknowledged that detection can be improved by summarizing
the EEG signals using relevant descriptors; that is, quantities computed from the EEG signals
that capture the main relevant features of the seizure, and whose values help discriminating
between normal and abnormal brain activity. The most relevant EEG features studied in the
literature can be classified in three groups: a) frequency spectral properties such as band power
and edge frequency; b) signal morphological properties such as wave amplitude, sharpness, line
length, and zero crossings; and c) statistical descriptors such as statistical moments, correlation
times and information entropies.

In this work we study a new algorithm for epilepsy seizure onset detection and spread
estimation. The algorithms is based on a statistical generalised Gaussian model that represents
the activity in each of the brain’s main frequency bands, which are identified by using a multi-
resolution temporal wavelet representation. The remainder of this document is structured as
follows. Section 2 describes the state of the art in seizure onset detection (SOD). Section 3
defines the univariate generalised Gaussian statistical model. Section 4 describes the proposed
the epilepsy seizure onset detection and spread estimation algorithm. In Section 5 the proposed
methodology is demonstrated on real EEG signals from patients suffering from epileptic seizures.
Discussions and conclusions are finally reported in Section 6.

2. Seizure Onset Detection
Seizure onset detection (SOD) methods stem from the observation that EEG descriptors allow
discriminating between normal and abnormal brain activity; that is, between the expected
rhythms of the brain and varying degrees of thalamocortical interdependence, and the activity
resulting from seizures and burst suppressions. Epileptic attacks have two clinical manifestations
that may reflect abnormal brain activity: Ictal and Inter-Ictal discharges, in which the impaired
consciousness plays an important role (this is the inability to respond normally to exogenous
stimuli by virtue of altered awareness and/or responsiveness) [24]. The Interictal discharges
are a positive indicator of epilepsy and, depending on the duration of EEG recordings and the
inclusion of different states of vigilance, they can be observed in up to 90% of cases [37].

The Ictal discharges are clinical signs used to detect the onset seizure from the epileptogenic
zone in the brain cortex, SOD may enable physicians to better therapy with drug treatment,
diagnostic and alert procedures, since is intended to recognize the start of a seizure, with the
shortest possible delay, but not necessarily with the highest possible accuracy. The SOD when
used with intracranial recordings, for seizure identification and retrospective analysis of seizures,
often in the context of presurgical evaluations, it can be relatively straightforward to detect with
reasonable sensitivity and specificity since it is dealing with events often lasting over a minute
[22]. Another use of SOD with extracranial recordings to distinguish between primary and
secondary irritative areas may be difficult, because a interictal discharge can spread via normal
anatomical connections between cortical areas, through the commissural fibers or via subcortical
structures, finally this may lead to widespread or bilateral occurrence of interictal discharges
[45].

Seizure onset detection was first investigated in the seventies by Viglione et al. [50] and Liss
et al.[30], and with later contributions by Ktonas et al. [27] and Gotman et al. [14]. Moreover,
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several works studied linear and nonlinear prediction techniques to separate transients from
background activity. For example, filter techniques [3], power spectrum techniques [11], cross-
correlation techniques [52], principal and independent component analysis techniques [33], [20]
have been investigated. Other examples include techniques based on wavelet representations
[15], state space reconstruction [35], correlation measures [43], signal dimension [17], density [29],
integral [41], mutual prediction [44], Lyapunov exponents [19], synchronization [40], similarity
measures [18], recurrence quantification measures [47], and nonlinear predictability [4]. We
refer the reader to [49] for a comprehensive treatment of measurement, models, detection and
prediction. Other important surveys of the literature in this topic can be found in [23], [15],
[26], [7], [21], [53], [34], [28], [8], [48].

Modern SOD methods can be grouped into the following categories: 1) Template matching :
These are techniques based on finding events tha match previously selected spikes; the detection
is made whenever the cross correlation of the EEG with a template exceeds a threshold [31]; 2)
Parametric methods: These techniques are based on traditional signal processing and consider
that a seizure has occurred when the difference between the EEG signal and a predicted value
(based on the assumption that the background is stationary) exceeds a threshold [2]; 3) Mimetic
Methods: these techniques seek to copy the human expert (i.e. neurophysiologist) and operate
by monitoring the value of parameters computed from each wave and applying thresholds [13],
[6], [25]; 4) Morphologic Analysis: these techniques are based on the characterisation of the
waveforms in terms of sharpness, amplitude, duration, convexity, frequency bands or time-
frequency representations of spikes [13], [16]; 5) Syntactic methods: these techniques are based
on the detection of the presence of structural features [51]; 6) Neural Networks: this approach
adopts a machine learning perspective to learn transients related to epileptic seizures [42], [38];
7) Expert systems: this approach detects seizures by mimicking an expert’s knowledge and
reasoning process[12]; 8) Data mining techniques: this approach also adopts a machine learning
perspective to train a classifier [8], [9], [48]; 9) Clustering Techniques: in this case detections are
based on hierarchical agglomerative processes and self-organising maps [3], [48]; 10) Knowledge-
based rules: these techniques seek to incorporate knowledge from neurophysiologists who adopt
spatial and temporal rules [5], [7], [5], [48].

3. Generalized Gaussian Distribution
The univariate generalised Gaussian distribution (GGD) is a flexible statistical model that has
found numerous applications in science and engineering, and which recently was use to model
epilepsy signals in [39]. This statistical model has 3 parameters, with a probability density
function (PDF) given by:

f(x;µ, σ,B) =
B

2A(σ)Γ( 1
B )
exp−|(x− µ)|B

2σ2
(1)

with

A(σ) = σ

√
Γ( 1

B )

Γ( 3
B )
, Γ(z) =

∫ +∞
0 ete−z−1dt, z > 0

and where µ ∈ R is a location parameter, σ ∈ R+ is a scale parameter and B ∈ R+ is a shape
parameter that controls the shape of the density tail. The density (1) has many properties that
are useful for modelling signals: i) the value of (1) approaches zero as x approaches positive and
negative infinity, ii) the mean and mode of (1) coincide and are given by µ, iii) (1) is symmetric
with respect to the mean value µ. Notice that the GGD parametric family comprises many
popular distributions that are commonly used in biomedical signal processing. For example,
setting B = 1 leads to a Laplacian or double-exponential distribution, B = 2 to a Gaussian or
normal distribution, and B → ∞ to a uniform distribution. We refer the reader to [36] for a
comprehensive treatment of the mathematical properties of the GGD statistical model.
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4. Methodology
The first step of the proposed methodology is to represent the EEG signals in a time-frequency
domain. This step allows decomposing each one of the EEG channels in the signal array into five
frequency bands associated with the five brain rhythms that clinicians typically use to capture
different types of neurological activity. We believe that this decomposition is very useful for
SOD because there are rhythms or frequency patterns that appear often at the beginning of
the epileptic crisis and that are difficult to quantify visually. We have used a time-frequency
representation associated with the following bands: Delta: 0.5-4Hz, Theta: 4-8Hz, Alpha: 8-
13Hz, Beta: 13-30Hz and Gamma: 30-45Hz. In order to achieve this we used a multilevel
1-D wavelet decomposition filter constructed using a Dauchebies wavelet decomposition with
five resolution scales. From the wavelet decomposition it is then possible to determine how
the energy in the signal is spread over the different brain rhythms, and how this distribution
of energy evolves over time. Precisely, this information is captured by modelling the signals
associated each each brain rhythm with a GGD statistical model, whose parameters A and
B are estimated from the observed data, see equation (1). The shape parameter A is closely
related to the variability of the brain activity and is therefore a good descriptor for performing
SOD detection.

We evaluated the performance of the proposed seizure onset detector and spread estimation
algorithms by using the Children’s Hospital Boston database [45], which consists of 36 EEG
recordings from paediatric subjects with intractable seizures. In this work we used 30 crisis
from 11 subjects. A set including two to five bipolar EEG recordings sampled at 256Hz were
available for each subject. Each recording contained a seizure event with a labeled onset that was
detected by an experienced neurologist, who worked backward from the observed clinical onset
to find the electrographic onset. Each signal was edited to have an epoch with the following
characteristics: 2 minutes before crisis, crisis at minute 2 and 2 minutes after crisis.

For each epoch we know where the crisis begins and can calculate the onset delay by comparing
the average amplitude with the background, similar to [16]. Once onset delay estimation has
been performed for each brain rhythm and each channel (by performing SOD with the respective
parameter A), we collect this information in a table that allows identifying channels with low
delay and thus understanding how the seizure originated and propagated. This is illustrated in
Figures (1) to (6) and Table (1). The proposed algorithm can be summarised as follows:

(i) Separate each EEG signal in the array of signals into the different physiological brain
frequency bands.

(ii) Estimate the GGD parameters A and B, see eq. (1).

(iii) Use the parameter A to calculate the delays of each SOD for each channel and each frequency
bands.

(iv) Create a table with the information and calculate each delay for each channel by frequency
bands.

(v) Organize the table ascendently.

(vi) Calculate the SOD candidate channels for the different brain areas (i.e. Frontal, Parietal,
Temporal and Occipital).

(vii) The candidates for the onset are the channels that are common to all other channels by
frequency band in a determined brain area; and the other channels are the possible spread
accompanying the crisis.

(viii) Repeat these steps for all the rhythms bands.
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Table 1. Onset Delay (in seconds) by Frequency Bands, the symbol (-) means that there is
no clear difference in the beginning of the onset. In this example, according to the data, the
channels (13) FP2-F8, (14) F8-T8 and (15) T8-P8 are the best candidates by brain area for
SOD because it have minor delays; in this case F8 is common to all channels in this brain area,
therefore is the best option for be the onset and the other channels form the spread.

Channel Number Channel Name Delta Theta Alpha Beta Gamma

1 FP1-F7 -0.099 .001 .002 .13 .131
2 F7-T7 - .069 .234 .131 .058
3 T7-P7 - .037 .215 .369 .371
4 P7-O1 - - - .224 .162
5 FP1-F3 - .037 .011 .133 .133
6 F3-C3 - - - .221 .132
7 C3-P3 - - - .378 .14
8 P3-O1 - - - .534 .552
9 FP2-F4 .083 .06 .037 .212 .098
10 F4-C4 - .001 - .125 .110
11 C4-P4 - .018 .029 - .103
12 P4-O2 - .035 - - -
13 FP2-F8 .105 .012 .025 .021 .101
14 F8-T8 .073 .087 .134 .097 .1
15 T8-P8 .081 .018 .013 .099 .103
16 P8-O2 - .036 .016 .253 .086
17 FZ-CZ - - - .034 .141
18 CZ-PZ - - - - -
19 P7-T7 .086 .085 .04 2.36 .35
20 T7-FT9 - .069 - .372 .377
21 FT9-FT10 .005 .001 .016 .098 .117
22 FT10-T8 .075 .066 .01 .102 .101
23 T8-P8 .065 .032 .015 .098 .117

Figure 1. A for Channel 13. Figure 2. A for Channel 14.

No distinctions regarding the types of seizure onsets were considered; the data contains
focal, lateral, and generalized seizure onsets. Furthermore, the recordings were made in a
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Figure 3. A for Channel 15. Figure 4. A for Channel 16.

Figure 5. A for Channel 10. Figure 6. A for Channel 11.

routine clinical environment, so non-seizure activity and artifacts such as head/body movement,
chewing, blinking, early stages of sleep, and electrode pops/movement are present in the data.
The set of recordings lasted on average 35 minutes for 30 subjects in total; 2 hours for 4 subjects;
and 12 hours for 2 other subjects. Taken together the recordings account for 60 hours of EEG
recordings and 139 seizures [45].

5. Results
The performance of the algorithm proposed for seizure onset detector and spread estimation
was assessed using the Children’s Hospital Boston database described above, and by comparing
results with those obtained by visual inspection by an experimented neurologist relying on EEG
and MRI data.

For illustration figure (8) shows the EEG and MRI image for one patient; this information
allows the reconstruction of a model of the brain and the determination of the location where
the seizure was originated, as well as how is spread throughout the brain, which allows is the
information that our algorithm seeks to estimate directly from the EEG.

In this SOD example, we can see the A parameter in the x-axis, se Figures (1) to (6), which
correspond to right temporal brain area. Our algorithm shows that the seizure starts in channel
F8 and then spreads across the channels F8-T8-P8, F4-C4-P4, as is shown the data in table (1)
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and Figure (7).
Channels with the minor delay in the right temporal brain area: (13) FP2-F8, (15) T8-P8,

(22) FT10-T8, (14) F8-T8, (12) P4-O2.

Figure 7. EEG electrodes Array, shows that the seizure starts in channel F8 and then spreads
across the channels F8-T8-P8, F4-C4-P4

Spread by Delta Bands: (10) F4-C4, (21) FT9-FT10, (11) C4-P4, (23) T8-P8, (14) F8-T8,
(22) FT10-T8, (15) T8-P8, (9) FP2-F4, (19) P7-T7, (1) FP1-F7, (13) FP2-F8.

Spread by Theta Bands: (1) FP1-F7, (21) FT9-FT10, (13) FP2-F8, (15) T8-P8, (11) C4-P4,
(23) T8-P8, (16) P8-O2, (3) T7-P7, (5) FP1-F3, (9) FP2-F4, (22) FT10-T8, (2) F7-T7, (20)
T7-FT9, (19) P7-T7, (14) F8-T8.

Spread by Alpha Bands: (1) FP1-F7, (22) FT10-T8, (5) FP1-F3, (15) T8-P8, (23) T8-P8,
(16) P8-O2, (21) FT9-FT10, (13) FP2-F8, (12) P4-O2, (9) FP2-F4, (19) P7-T7, (14) F8-T8, (3)
T7-P7, (2) F7-T7.

Spread by Beta Bands: (13) FP2-F8, (17) FZ-CZ, (14) F8-T8, (21) FT9-FT10, (23) T8-P8,
(15) T8-P8, (22) FT10-T8, (10) F4-C4, (1) FP1-F7, (2) F7-T7, (5) FP1-F3, (9) FP2-F4, (6)
F3-C3, (4) P7-O1, (16) P8-O2, (3) T7-P7, (20) T7-FT9, (7) C3-P3, (8) P3-O1, 19 P7-T7.

Spread by Gamma Bands: (2) F7-T7, (16) P8-O2, (9) FP2-F4, (14) F8-T8, (13) FP2-F8,
(22) FT10-T8, (11) C4-P4, (15) T8-P8, (10) F4-C4, (21) FT9-FT10, (23) T8-P8, (1) FP1-F7,
(6) F3-C3, (5) FP1-F3, (7) C3-P3, (17) FZ-CZ, (4) P7-O1, (19) P7-T7, (3) T7-P7, 20 T7-FT9,
(8) P3-O1.

6. Discussion
The preliminary results reported in this work suggest that the proposed algorithm is potentially
useful for onset detection and spread estimation, and that performing the analysis at the level of
the brain activity rhythm bands can improve the identification of the area of the brain affected.
This suggests that the algorithm is potentially interesting for devising automatic processing
systems.
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Figure 8. For illustration, the figure shows the EEG of a patient (left) with his corresponding
MRI (right top). A reconstruction of the brain is shown with his corresponding brain spread
(left bottom). On the right of each image is a color map which indicates the intensity of each
sour activation.

Another interesting research questions to explore in more depths, are related with the analysis
of the frequency bands detected before the onset seizure, and which channels are active despite
not participating directly in the detection of the seizure onset.

Perspective for future work include an extensive evaluation of the proposed methodology, as
well as performing comparisons with other detection methods from the state of the art, and
the development of fusion techniques to combine detections from several algorithms to increase
robustness to noise and to artefacts.
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