1,020 research outputs found

    Analysis and control of nonlinear flexible manipulator

    Get PDF
    This dissertation investigates the approximation techniques and instability for nonlinear one-link and two-link flexible manipulators operating in a vertical plane. The flexible components of the arms are modeled by Euler-Bernoulli beam theory, and the nonlinearity arises due to gravitation and large angle rotation. Two different methods are used for describing the deformation of the flexible members. They are the infinite-dimensional coordinates and finite-dimensional coordinates. Variational principle (Hamilton\u27s principle) is used to generate the governing differential equations and boundary conditions. The distributed coordinate approach results in partial differential equations and the Ritz approximation leads to nonlinear ordinary differential equations. The two sets of differential equations are developed in parallel to give a comparison of the static solution and frequency domain characteristics. Furthermore, the full nonlinear ordinary differential equations is integrated forward numerically for the dynamic response to maneuver transient reference inputs;Among many interesting topics, the following issues are studied (1) Use of the exact solution as the benchmark for the approximation solutions. (2) Effect of the admissible comparison functions to accuracy of approximation solution. (3) Influence of set point selection to the linearized open- and closed-loop flexible dynamic systems. (4) Effect of linear visco-elastic damping to the Laplace transform domain and time domain behavior of a flexible arm. (5) Effects of gravitational force on the closed-loop control systems with PID control at each joint;Various comparison functions are used to discretize the equations of motion of the deformable arm. Since the Ritz method requires only the essential boundary conditions to be satisfied and places no restriction on the natural boundary conditions, it allows the use of many different types of shape functions. Among the various sets of possible shape functions, only certain sets would satisfy both essential and natural boundary conditions, while the rest satisfy only the geometrical boundary conditions. Examples are given to show the importance of selecting comparison functions. In these examples both the exact and approximate solutions are obtained either in closed form or numerically. The effect of the discretization is analyzed in the Laplace transform domain by comparing the approximate solutions with the closed-form solution, and the causes of the differences in results are identified and analyzed. Finally, Liapunov\u27s direct method is used to re-examine the stability characteristics. A sufficient condition for a stable PD control system is derived

    Manipulation strategies for massive space payloads

    Get PDF
    Control for the bracing strategy is being examined. It was concluded earlier that trajectory planning must be improved to best achieve the bracing motion. Very interesting results were achieved which enable the inverse dynamics of flexible arms to be calculated for linearized motion in a more efficient manner than previously published. The desired motion of the end point beginning at t=0 and ending at t=t sub f is used to calculate the required torque at the joint. The solution is separated into a causal function that is zero for t is less than 0 and an accusal function which is zero for t is greater than t sub f. A number of alternative end point trajectories were explored in terms of the peak torque required, the amount of anticipatory action, and other issues. The single link case is the immediate subject and an experimental verification of that case is being performed. Modeling with experimental verification of closed chain dynamics continues. Modeling effort has pointed out inaccuracies that result from the choice of numerical techniques used to incorporate the closed chain constraints when modeling our experimental prototype RALF (Robotic Arm Large and Flexible). Results were compared to TREETOPS, a multi body code. The experimental verification work is suggesting new ways to make comparisons with systems having structural linearity and joint and geometric nonlinearity. The generation of inertial forces was studied with a small arm that will damp the large arm's vibration

    Force control of lightweight series elastic systems using enhanced disturbance observers

    Get PDF
    This paper analyzes the control challenges associated to lightweight series elastic systems in force control applications, showing that a low end-point inertia can lead to high sensitivity to environment uncertainties. Where mainstream force control methods fail, this paper proposes a control methodology to enhance the performance robustness of existing disturbance observers (DOBs). The approach is validated experimentally and successfully compared to basic control solutions and state of the art DOB approaches

    Fuzzy PD control of an optically guided long reach robot

    Get PDF
    This thesis describes the investigation and development of a fuzzy controller for a manipulator with a single flexible link. The novelty of this research is due to the fact that the controller devised is suitable for flexible link manipulators with a round cross section. Previous research has concentrated on control of flexible slender structures that are relatively easier to model as the vibration effects of torsion can be ignored. Further novelty arises due to the fact that this is the first instance of the application of fuzzy control in the optical Tip Feedback Sensor (TFS) based configuration. A design methodology has been investigated to develop a fuzzy controller suitable for application in a safety critical environment such as the nuclear industry. This methodology provides justification for all the parameters of the fuzzy controller including membership fUllctions, inference and defuzzification techniques and the operators used in the algorithm. Using the novel modified phase plane method investigated in this thesis, it is shown that the derivation of complete, consistent and non-interactive rules can be achieved. This methodology was successfully applied to the derivation of fuzzy rules even when the arm was subjected to different payloads. The design approach, that targeted real-time embedded control applicat.ions from the outset, results in a controller implementation that is suitable for cheaper CPU constrained and memory challenged embedded processors. The controller comprises of a fuzzy supervisor that is used to alter the derivative term of a linear classical Proportional + Derivative (PD) controller. The derivative term is updated in relation to the measured tip error and its derivative obtained through the TFS based configuration. It is shown that by adding 'intelligence' to the control loop in this way, the performance envelope of the classical controller can be enhanced. A 128% increase in payload, 73.5% faster settling time and a reduction of steady state of over 50% is achieved using fuzzy control over its classical counterpart

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility
    corecore