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Abstract—In this work we propose a control design method for
single-link flexible manipulators. The proposed technique is based
on the Integral Resonant Control (IRC) scheme. The controller
consists of two nested feedback loops. The inner loop controls
the joint angle and makes the system robust to joint friction.
The outer loop, which is based on the IRC technique, damps
the vibration and makes the system robust to the unmodeled
dynamics (spill-over) and resonance frequency variations due
to changes in the payload. The objectives of this work are:
(i) to demonstrate the advantages of IRC, which is a high
performance controller design methodology for flexible structures
with collocated actuator-sensor pairs, and (ii) to illustrate its
capability of achieving precise end-point (tip) positioning with
effective vibration suppression when applied to a typical flexible
manipulator. The theoretical formulation of the proposed control
scheme, a detailed stability analysis and experimental results
obtained on a flexible manipulator are presented.

Index Terms—Flexible manipulators, Precise tip positioning,
Vibration damping, Integral Resonant Control

I. I NTRODUCTION

The past two decades have seen significant interest in the
control of flexible robotic manipulators. Novel robotic appli-
cations demand lighter robots that can be driven using small
amounts of energy. An example of this is robotic booms in the
aerospace industry, where lightweight robot manipulatorswith
high performance requirements (high speed operation, better
accuracy) are demanded [1]. Unfortunately, the flexibilityof
these robotic arms leads to oscillatory behaviour at the tipof
the link, making precise pointing or tip positioning a daunting
task that requires complex closed-loop control. In order to
address control objectives, such as tip position accuracy and
suppression of residual vibration, many control techniques
have been applied to flexible robots [2], [3], [4].

There are two main problems that complicate the control
design for flexible manipulators viz: (i) the high order of
the system and (ii) the non-minimum phase dynamics that
exist between the tip position and the input torque applied
at the joint. These problems have motivated researchers to
employ a wide range of control techniques such as Linear
Quadratic Gaussian (LQG) [5], Linear Quadratic Regulator
(LQR) [6], pole placement [7], and inverse dynamics based
control [8]. The drawback of these model-based approaches
is that the complexity of the control algorithm increases
significantly with the system order and the stability of the
closed-loop system is sensitive to (a) changes in the robot
payload, (b) model parameter uncertainties and (c) high-order

unmodeled dynamics since a wide control bandwidth may lead
to spill-over effect [9]. In order to address these problems,
solutions based on adaptive control [10],H∞ control [11],
µ-synthesis [12], sliding-mode control [13], neural networks
[14] and fuzzy logic algorithms [15] have been investigated.
However, the mathematical complexity and difficulties in their
implementation make their application to flexible roboticsless
attractive.

The use of alternative outputs has emerged as a potential
solution to the problem of non-minimum phase dynamics. In
[16], an alternative output, the so-called reflected tip position,
was proposed. It was demonstrated therein that the transfer
function from the motor torque to the reflected tip velocity is
passive. Therefore, strictly passive controllers make thesystem
stable inL2 sense. However, the passive relationship depends
on the value of the hub inertia, which must be sufficiently
small in relation with beam inertia. In [17], an additional
control loop to make the passive relationship independent
of the system parameters was proposed. However, the main
limitation of these passivity based control schemes is that
they make the system very sensitive to joint friction. Other
solutions based on two control loops can be found in [18],
[19] and [20]. The inner loop based on a collocated input-
output arrangement, is used to damp the vibrations whereas the
outer loop is used for position control. However, in [18] and
[19], the stability of the position control depends on the link
and motor parameters, which complicates the design. Although
the vibration damping proposed in [20] was quite efficient
when a motor without reduction gear was used, the residual
vibration suppression is not effective when reduction gears are
employed.

Recently, a novel control design scheme based on two
control loops was proposed in [21] to make the system stability
independent of the link and motor parameters. The difference
in this control scheme when compared with the philosophy of
the control schemes proposed in [18], [19] and [20] is that
the outer loop is used to damp the vibrations and the inner
loop is used for position control. The position controller only
depends on the motor dynamics, and the outer loop always
guarantees an effective vibration suppression (with or without
the reduction gear). In addition, the stability analysis issimple
and can be made independent of the link dynamics. However,
the proposed outer loop controller has some disadvantages
like high sensitivity at low frequencies that complicates its
implementation on a practical experimental platform (offset
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in the sensors, gravity effect). It also suffers from instability
issues due to anti-aliasing filters.

This work builds on the control methodology of [21] and
proposes a new approach based on the Integral Resonant
Control (IRC) scheme [22]. This methodology consists of: i)
designing a joint position controller robust to Coulomb friction
and payload variations, thus allowing accurate positioning of
the joint; and ii) designing an outer controller that imparts
substantial damping to link dynamics. This combined scheme
results in an easy-to-tune, low-order damping controller that
damps multiple resonant modes, without instability issuesdue
to unmodeled system dynamics. This work substitutes the
outer controller used in [21] by a modification of an IRC
scheme, which retains the advantages of [21] and alleviates
the aforementioned problems.

This paper is organized as follows. Section II provides
a description of the experimental setup. The system model
and the associated parameters are briefly explained in Sec-
tion III. Section IV explains the proposed control scheme
and also demonstrates the closed-loop stability. A practical
implementation of the proposed control scheme on a single-
link flexible robot and the obtained experimental results are
presented in Section V. This section also gives a detailed
comparison of positioning performance achieved by various
previously proposed and popular control schemes. Section VI
concludes the paper.

II. EXPERIMENTAL SETUP

Figure 1 shows a photograph of the single-link flexible
manipulator used as the experimental platform in this work.
The setup consists of (a) a DC motor (Maxon Motor EC-
60) with a Harmonic Drive reduction gear 1:50 (HFUC-32-
50-20H), (b) a flexible single-link comprised of a slender
aluminium beam with a rectangular cross section that is
attached to the motor hub in such a way that it rotates only in
the horizontal plane, so that the effect of gravity can be ignored
and (c) a mass with negligible inertia at the end of the arm.
In addition, two sensors are used: 1) an encoder mounted at
the joint of the manipulator to measure the motor angle, and
2) a strain-gauge bridge placed at the base of the beam to
measure the coupling torque. The physical parameters of the
system are given in Table I. The strain signal is amplified by
the dynamic strain amplifier (Kyowa DPM600) and filtered by
a second-order Butterworth filter with its cut-off frequency set
to 300 Hz. A National Instruments 6024E and a Measurement
Computing CIO-DIO24 are used in a PC in conjunction with
the Real Time Windows Target of MATLAB. The sampling
time is set to 0.002 s. Finally, a dual channel Agilent-35670A
spectrum analyzer was used for determining the frequency
response functions (FRF’s).

III. SYSTEM MODEL

Consider a flexible arm (see Figure 2) composed of: (a)
a motor and a reduction gear of 1:n at the base with total
inertia (rotor and hub)J0, dynamic friction coefficientν and
Coulomb friction torqueΓf ; (b) a flexible beam with uniform
linear mass densityρ, uniform bending stiffnessEI and length
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Fig. 1. Experimental platform.

Stiffness(Nm2) EI 2.40
Width (m) h 0.05

Thickness(m) b 0.002
Length(m) L 1.26

Linear mass density (kg/m) ρ 0.268
Mass of the beam (kg) Mb 0.338

Range of the payload mass (kg) MP 0.0 - 0.300
Motor constant (Nm/V ) K 0.474

Reduction gear ratio n 50
Inertia of the motor and hub (kgm2) J0 0.79

TABLE I
PARAMETERS OF THE FLEXIBLE ARM

L; and (c) a payload of massMP and rotational inertia
JP . Furthermore, the applied torque isΓm, w(x, t) is the
elastic deflection measured from the undeformed beam,θm

is the joint angle andθt is the tip angle. Note that parametric
representation of Figure 2 corresponds with the so call pseudo-
clamped configuration, in which the non-inertial frame (x,y)
rotates with the motor and the overall structure rotates in an
inertial frame (X,Y). Using the variational calculus as [23],
the next boundary value problem can be defined

EIw
′′′′

(x, t) + ρ
(

xθ̈m(t) + ẅ(x, t)
)

= 0, (1)

Γm(t) = nKV (t) = J0θ̈m(t) + νθ̇m(t) + Γcoup(t) + Γf (t), (2)

in which the (̇) and (’) indicates derivation with respects tot
andx, V is a voltage that controls the motor;K is a constant
that relates the motor torque (Γm) and the control voltage (V );
and Γcoup is the coupling torque in the joint due to the link
and the payload, and can be obtained using the formula:

Γcoup(t) = −EIw′′(0, t), (3)

wherew′′(0, t) is proportional to the strain measured at the
base of the link. The boundary conditions are

w(0, t) = 0, w
′

(0, t) = 0,

EIw
′′

(L, t) = −JP

(

θ̈m(t) + ẅ
′

(L, t)
)

,
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EIw
′′′

(L, t) = MP

(

Lθ̈m(t) + ẅ(L, t)
)

. (4)

The boundary problem is solved by using separability of the
variables and modal expansion. Thus, the elastic deflectionis
assumed as follows

w(x, t) =

∞
∑

i=1

φi(x)δi(t), (5)

being φi and δi spatial and time solution of Eq. (1) for
the i vibration mode. Thus, proceeding in the same way as
described in [24], the model betweenw(x, t) (or any function
of w(x, t)) andΓm can be obtained ifΓf is not considered in
model deduction. Ifw′′(x, t) is calculated from Eq. (5) and it
is substituted into (3),Γcoup is as following

Γcoup(t) = −EI

∞
∑

i=1

φ′′

i (0)δi(t). (6)

It can be proved thatφ′′

i (0) 6= 0 ∀i, which guarantees that the
link vibration is zero if and only ifΓcoup(t) = 0. In addition,
Γcoup is also the result of the reaction torque in the link
due to the joint acceleration and link vibrations, which makes
Γcoup(s)/sθm(s) a passive system [21]. IfΓf is neglected in
Eq. (2), the transfer function betweenθm(s) andΓcoup(s) can
be expressed as follows

θm(s)

Γm(s)
=

(nK/J0)/(s(s + ν/J0))

1 + ((nK/J0)/(s(s + ν/J0)))(Γcoup(s)/θm(s))
, (7)

which is used to obtain the expression ofΓcoup(s)/θm(s).
It must be noted that the zeros ofθm(s)/Γm(s) are the
poles of ((nK/J0)/(s(s + ν/J0)))(Γcoup(s)/θm(s)). Then,
the zeros ofθm(s)/Γcoup(s) are obtained by using the poles
of θm(s)/Γm(s) and the denominator of Eq. (7). Thus, the
resulting expression of the systemΓcoup(s)/θm(s), which is
deduced by assuming a link with distributed mass, is as follows

Γcoup(s)

θm(s)
=

(

Γm(0)

θm(0)

) N
∑

i=1

s2/z2

i + 1

s2/ω2

i + 1
, (8)

whereN the number of considered vibration modes,zi and
ωi the zeros and poles ofΓcoup(s)/θm(s) respectively. Note
that the termθ̈m in Eq. (1) involves two zeros in the origin
in Eq. (8) (i.e.,z1 = 0). Finally, the tip angle, which can be
defined as follows

θt(t) = θm(t) + w(L, t), (9)

is accurately positioned to its desired positionθ∗t if θm ≡ θ∗t
and w(L, t) = 0 for t ≥ ts, being ts the settling time. The
condition w(L, t) = 0 is achieved in this work by actively
dampingθm(s)/Γcoup(s).

IV. PROPOSED CONTROL SCHEME

The proposed control methodology accurately positionsθm

and actively damps link vibrations to achieve a precise tip
positioning by an inner and an outer control loops respectively.
This section describes the utilized controllers and demonstrates
the stability of overall control scheme.
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Fig. 2. Parametric representation of the flexible arm system

A. Inner control loop

The control law of the first loop is as follows:

V (t) = Γcoup(t)/nK + Kp(θ∗

m(t) − θm(t)) − Kv θ̇m(t), (10)

whereΓcoup(t)/nK (denoted as decoupling term) makes the
design of the PD constants (Kp, Kv) independent of the link
dynamics. The substitution of (10) into (2) yields

J0θ̈m(t) + (nKKv + ν)θ̇m(t) + nKKpθm(t) (11)

= nKKpθ∗

m(t) + Γf ,

which only depends on the motor dynamics. Thus, ifΓf is
considered as a perturbation input, the motor angle can be
expressed as follows

θm(s) =
θ∗

m(s) + Γf (s)/(nKKp)

s2(J0/nKKp) + s ((nKKv + ν)/(nKKp)) + 1
. (12)

It must be noted that, in addition to the independence between
θm(s) and the link dynamics, this inner loop is robust to
Coulomb friction and to changes in the dynamic friction
(with large values ofKp) [25]. Thus, if the tuning of the
parameters of the PD controller (Kp, Kv) is carried out to
achieve a critically damped second-order system, Eq. (12) can
be approximated by:

θm(s) ∼= Gm(s)θ∗

m(s) =
θ∗

m(s)

(1 + αs)2
, (13)

whereα is the constant time of the transfer function between
θm and θ∗m (Gm(s)). From Eqs. (12) and (13) the values of
Kp andKv are obtained.

Kp = J0/nKα2; Kv = (2J0 − υα)/nKα. (14)

B. Outer control loop

Let us denoteG1(s) and G2(s) as the transfer functions
θt(s)/θm(s) andΓcoup(s)/θm(s) respectively. The outer con-
trol loop imparts damping to link dynamics by using an
IRC scheme forG2(s). As stated earlier, IRC is an easy-
to-tune, low-order controller that imparts substantial damping
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Fig. 3. (a) Schematic of the second control loop formed by IRC. (b) Modified IRC proposed in [26]

to multiple resonant modes of a flexible structure, without
instability issues due to unmodeled system dynamics. If the
IRC proposed in [22] is used (see Figure 3(a)), the next
two problems appear. The first one is that the DC gain of
θt(s)/θ∗t (s) is equal to zero. This can be proved by calculating
the transfer function betweenθm(s) and R(s) (from Figure
3(a)), which is

θm(s)

R(s)
=

s

s + Kc (G2(s) + Df )
. (15)

Then, if θm = 0rad in steady state andw(L, t) = 0, the tip
angle θt is also zero (see Eq. (9)). This problem is solved
by using the alternative representation of IRC scheme, which
is shown in Figure 3(b) [26]. The transfer function between
θm(s) andR(s) is as follows

θm(s)

R(s)
=

s + KcDf

s + Kc (G2(s) + Df )
, (16)

which has the same denominator as Eq. (15). In addition, the
DC gain of Eq. (16) is equal to one becauseG2(0) = 0 due
to the two zeros in the origin mentioned above. The second
problem is derived from the impossibility of actuating directly
on θm. This is solved by usingθ∗m as error signal in the
outer control loop. This requires of a dynamic inversion of
Gm(s), which is denoted bŷG−1

m (s) = (sα̂ + 1)2 1. Then,
the term(sβ +1) is included into the outer controller to make
it implementable with relative order equal to 0. The general
control scheme is shown in Figure 4 and the transfer function
of the overall system is as follows

θt(s)

θ∗

t (s)
=

Gm(s)G1(s)(s + KcDf )(sβ + 1)

βs(s + 1) + s + Kc

(

Gm(s)Ĝ−1
m (s)G2(s) + Df

) .

(17)
Note that, if β → 0 and α = α̂, the design of IRC gains
(Df and Kc) is analogous to previous works (see [22] and
[26]). Finally, it can be deduced that DC gain ofθt(s)/θ∗t (s)
is equal to one (G1(0) = 1 andG2(0) = 0). Thus, the precise
tip-positioning is achieved if the vibrations are canceled.

C. Stability Analysis

Due to the fact thatθt(s)/θ∗t (s) and Γcoup(s)/θ∗t (s)
have the same denominator andGm(s) is stable, the

1Ideally, α̂ = α, but we consider the case of an inexact cancellation of
closed-loop motor dynamics

+
-

θ∗t θ∗m θtθm

Γcoup G2(s)

G1(s)Gm(s)

Ĝ−1

m (s)Kc

(sβ+1)(s+KcDf )

Flexible link

Fig. 4. General control scheme

stability of Eq. (17) can be demonstrated by consider-
ing the negative feedback interconnection ofG2(s) and
KcGm(s)Ĝ−1

m (s)/ ((sβ + 1)(s + KcDf )). At this point, the
results proved in [27], which are based on the feedback
connection of systems with ‘negative imaginary frequency
response’ (NIFR)2 are utilized. More precisely, the Theorem
5 in [27] states that, the positive feedback of two SISO
systemsM(s) and N(s), with j [M(jω) − M(jω)∗] ≥ 0
and j [N(jω) − N(jω)∗] > 0 for all ω ∈ (0,∞), is internal
stable if and only ifM(0)N(0) < 1, M(∞)N(∞) = 0 and
N(∞) ≥ 0.

As we have a negative feedback, we demonstrate that
−G2(s) is NIFR, which is proved by using the passivity prop-
erty ofG2(s)/s deduced in [21]. Note that,G2(s)/s is passive
if and only if it is positive real, i.e.,Re [G2(jω)/jω] ≥ 0,
where Re[⋆] is the real part of a complex number (see for
example Section 4.7.2 of [28]). Then, ifRe [G2(jω)/jω] ≥ 0,
it is easy to deduce the following equation:

j [−G2(jω) − (−G2(jω)∗)] = ω

[

G2(jω)

jω
−

G2(jω)∗

−jω

]

(18)

= 2ωRe

[

G2(jω)

jω

]

≥ 0.

Let us denoteC(s) as the following transfer function

C(s) =
Kc(sα̂ + 1)2

(s + KcDf )(sα + 1)2(sβ + 1)
. (19)

The NIFR definitionj [C(jω) − C(jω)∗] > 0, ∀ω ∈ (0,∞),
is analogous toIm [C(jω)] < 0, ∀ω ∈ (0,∞), whereIm[⋆] is

2A system G(s) has negative imaginary frequency response when
j [G(jω) − G(jω)∗] ≥ 0 (or > 0) for all ω ∈ (0,∞)
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the imaginary part of a complex number. If we substitutes =
jω in Eq. (19) and multiply the numerator and denominator
by the complex conjugate of the denominator, the result is as
follows

C(jω) =
(1 − jβω)(1 − jγω)

[

(1 + αα̂ω2) + jω (α̂ − α)
]2

Df (1 + β2ω2)(1 + γ2ω2)(1 + α2ω2)2
, (20)

in which γ = 1/KcDf . Furthermore, the next restriction
obtained from the imaginary part of the numerator ofC(jω)
can be written as:

1 −
2(α̂ − α)

β + γ
+ (21)

(4αα̂ − α̂2
− α2

−
2(α̂ − α)

β + γ
(αα̂ − βγ))ω2 +

(

α2α̂2 + 2
(α + α̂)

β + γ
αα̂βγ

)

ω4 > 0.

Note that the left side of Eq. (21) is a polynomial of the
variable ω. Let us denote the variablez = ω2 and the
polynomial coefficients ofω4, ω2 and ω0 as a2, a1 and a0

respectively. Thus, Eq. (21) can be rewritten as follows

φ(z) = a2z
2 + a1z + a0 > 0, (22)

This condition is fulfilled if a0 > 0 (φ(0) > 0) and
a2
1 < 4a0a2 (there is no sign change inφ(z)). After further

simplification, these restrictions can be expressed as:

1 −
2(α̂ − α)

β + γ
> 0, (23)

4(αα̂ − β2)(γ2
− αα̂) − (α̂ − α)2(β + γ)2 −

4(α̂ − α)(β + γ)(αα̂ − βγ) > 0.

Although this is not a explicit relation for obtaining the
controller parameters, it is useful to analyze the affordable
variation ofα (due to motor parameters uncertainties) respect
to its desired value (̂α), as it will be shown in next section.

As mentioned earlier, the DC gain ofG2(s) is zero
(G2(0) = 0), and subsequently,−G2(0)C(0) = 0 < 1.
Moreover, it can be deduced from Eq. (19) thatC(∞) = 0,
which implies thatG2(∞)C(∞) = 0 and C(∞) ≥ 0.
Therefore, according to Theorem 5 of [27] the closed loop
system is internally stable. Note that, this stability property
only depends on the controller parameters (Eq. (23)), i.e.,the
stability is independent of the link and payload parameters.

V. EXPERIMENTAL RESULTS

We setα = α̂ = 0.01 and β = 0.001, which allows us
to neglectGm(s)Ĝ−1

m (s)/(sβ + 1) in the tuning of the IRC
parameters and permits us to use the design strategy given in
[22]. In addition, this value ofα makes the transfer function
Gm(s) robust to Coulomb friction and does not saturate the
DC motor. From Table I and Eq. (14), the values ofKp and
Kv were 350.9 and 6.9. Identification forGm(s)G2(s) with
MP =0kg andJP =0kgm2, which was used for IRC design,
was carried out. The frequency response ofGm(s)G2(s) was
obtained by applying a band limited random noise signal
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Fig. 5. Magnitude response of the measured (-.-) and modeled system (—)
of Gm(s)G2(s)

(0.3 to 25Hz) to the motor angle reference (θ∗m). Both the
input (θ∗m) and the output (Γcoup) were recorded using the
spectrum analyzer. Using a subspace-based system identifica-
tion technique, an accurate model of the experimental system
was obtained, [29]. Thus, the three first vibration modes are
identified with sufficient accuracy to design an IRC and test
the achievable damping in simulations. The identified transfer
function is as following

Gm(s)G2(s) =
s2

(0.01s + 1)2

(

3.95

s2 + 0.07s + 43.5
+ (24)

+
3.69

s2 + 0.25s + 1668
+

2.68

s2 + 0.41s + 1.32 · 104

)

,

and the FRF of the measured and modeled system of
Gm(s)G2(s) are plotted in Figure 5.

IRC parameters were tuned using the strategy given in [22].
First, a valueDf > 0 was defined. Subsequently,Kc was
tuned to impart maximum damping to(G2(s) + Df )/s. It
must be noted that, while selecting the value ofDf , there
is a tradeoff between the time response of the system and
the maximum damping that can be imparted. Small values
of Df correspond to a controlled system with a dominant
pole close to the origin. In this case, though the damping
that can be imparted is large, the time response of the system
(i.e., trajectory tracking) is very slow. If the value ofDf is
increased, this pole moves from the origin and can impart good
damping. Thus, the performance of the system is improved to
some extent by increasingDf . Any increase in the value of
Df beyond this point results in a poor damping performance.
Therefore, after careful root locus analysis, tuning ofDf

should be realized together withKc.
Due to practical considerations mentioned earlier, the pro-

posed outer controller parameters were set to:Df = 1,
Kc = 0.7 (γ = 1/0.7 in Eq. (23)). This design considered the
transfer functionGm(s)G2(s) of Eq. (24) and the maximum
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Fig. 6. Magnitude response ofGm(s)G2(s) (-.-) and the closed loop system between coupling torque andtip angle reference (—), (a)MP = 0.0 kg and
(b) MP = 0.3 kg. Note that in both the cases, there is substantial damping in the first two resonant modes.

variation of tip mass (0.3kg from Table I). In addition, it can
be deduced from Eq. (23) that the controller system is stable
if α ∈ (0.0012, 0.056), which makes the controlled system
robust to moderate uncertainties inGm(s). Figure 6 shows
the FRF of the open loop (Gm(s)G2(s)) and closed loop
for MP = 0kg (a) andMP = 0.3kg (b). The first three
vibration modes are attenuated by 20.4dB, 12.8dB and 0.8dB
respectively forMP = 0kg and by 13.95dB, 11.9dB and 7.2dB
respectively forMP = 0.3kg. It can be seen that the damping
performance is quite robust to payload variations.

In order to illustrate the controller performance and show
the slowdown in the time response of the system when the
payload increases, experimental time responses were obtained.
The used trajectory reference was a Bezier polynomial of
fourth order with final value of 0.5rad and trajectory time
of 1s. The three represented variables were the joint angle,
the coupling torque measured at the base of the arm and the
estimated tip angle, which was estimated using a full-order
observer3 whose inputs are the measured motor angle and the
coupling torque. Fig. 7 shows the tip angle reference and the
joint angle with IRC forMP = 0kg andMP = 0.3kg respec-
tively. Figs. 8 (a) and (b) show the coupling torque without
and with IRC forMP = 0kg andMP = 0.3kg respectively. It
can be noted from Figs. 7 and 8 that the joint angle is accuracy
positioned and the vibration is canceled for the two values of
tip mass. Finally, Figs. 9(a) and (b) show the reference and
the estimated tip angle of the open loop (Gm(s)G2(s)) and
closed loop forMP = 0kg and MP = 0.3kg respectively.
It can be observed that the system reaches the final position
without vibration for the two values of tip mass. In addition,
the settling time is bigger forMP = 0.3kg. Finally, the steady
state error inθm andθt is approximately equal to 0.02% and
is due to the Coulomb friction. This can be reduced even more
by higher proportional gain or by including an integral action
in the inner loop.

3This full-order observer was only used to estimate the systemoutput for
comparison, and was not used for control purposes.
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Fig. 7. Time response of the joint angle. Reference (...),MP = 0.0kg (—)
andMP = 0.3kg (-.-)

Therefore, it can be concluded from these experimental
results that this novel control scheme is robust to big changes
in the payload (by almost 90% when compared to the mass of
the manipulator) because the damping is virtually unchanged
and the stability is guaranteed. However, the time responseis
slowed down because the aforementioned pole associated to
Df moves to the origin. This is due to the dependence ofDf

on the natural frequency of the first vibration mode, which
decreases as the tip mass increases.

A. Performance comparison of the most significant control
schemes

The election of a control strategy depends on the plant
and particular application. This work has proposed a novel
control approach that can be classified into the group of control
strategies that use minimum phase dynamics to damp the
vibration originated by link flexibility. These strategiesare
more convenient for making the controlled system robust to
unmodeled high frequency dynamics (spillover) than those
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Fig. 8. Time response of the coupling torque in open loop (-.-)and closed loop (—), (a)MP = 0.0kg and (b)MP = 0.3kg
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Fig. 9. Time response of the estimated tip angle obtained from experimental data, (a)MP = 0.0kg and (b)MP = 0.3kg. Reference (...) and estimated tip
position in open loop (-.-) and closed loop (—)

strategies that consider non-minimum phase dynamics (e.g.,
dynamics between tip position and motor torque). This is
because the stability of the controlled system is simpler to
obtain in practice.

The most significant references related to minimum phase
systems, which have been cited in Introduction, are compared
in this section. The precise tip positioning can be achieved
by using an output related with tip position [16], [17], [20]
or by canceling the vibration and positioning the joint [18],
[19], [21]. Although the direct measurement of the tip presents
the advantage of knowing the tracking error, these sensors
might not be suitable in many industrial applications due to
the need of visual contact between the tip and joint. This has
motivated the use of others sensors such as strain gauges,
which have been successfully used in practice [18], [19],
[21]. In addition to the precise positioning under nominal
conditions, these control techniques exhibit one or more of
the following characteristics: i) robust to payload changes, ii)

robust to joint frictions, iii) robust to external disturbances,
iv) design simplicity and v) stability independent of payload
parameters. In the next paragraphs, a performance comparison
in terms of these characteristics is presented.

The reflected tip position and its generalization are used in
[16], [17] respectively to accurately position the tip, which
is achieved by a PD controller. Their main advantages are
the robustness to payload changes and design simplicity. In
addition, any external disturbance can be detected by the tip
sensor. However, the passivity condition needed to guarantee
the stability does not permit the use of an integral action. In
addition, the PD gains are designed to achieve a good time
response (i.e., imparted damping), which limits the value of
these gains. Therefore, the controller is not robust to joint
frictions. Moreover this passivity depends on the relationship
between hub and link-plus-payload inertia, making the system
stability highly dependent on payload.

To solve this problem, other control methodologies based
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on two control loops have been proposed. For example, in
[18], [19] and [20] an inner loop to actively damp the link
vibrations and an outer loop to achieve precise positioningare
used. Sensors located in the link are used in [18] and [19] to
impart damping. According to the experimental results showed
in these works, the feedback of strain measured at the based of
the link (inner loop) together a joint position control achieve
precise positioning robust to joint frictions. In addition, we
have checked in our experimental platform that this strategy is
quite robust to payload changes. Moreover, the strain measured
at the base can detect external disturbances, making these
strategies robust to them. However, the design of the joint
position control is complicated because the dynamics of the
controlled system by the inner loop is considered. In addition,
the stability demonstration depends of system parameters if
an integral action is used. The joint angle is used in [20]
to impart damping to the system by a resonant controller.
Then, an integral controller of the tip position is used to
guarantee precise tip positioning. This control scheme is robust
to changes in the payload and joint frictions. However, the
stability of overall system depends on the position controland
the order of the inner controller increases with the number of
considered vibration modes. In addition, the residual vibrations
due to external disturbance are substantial if a reduction
gear is employed, thus delivering poor disturbance rejection
performance.

The strategy proposed in this work uses an inner loop to
accurately position the joint angle and an outer loop to impart
damping, which takes coupling torque as output (proportional
to the strain measured at the base of the link) and joint angle
as input. The joint control is designed without considering
the link and can be made robust to joint frictions. The outer
controller is based on the known inner loop dynamics and
the transfer function between coupling torque and joint angle,
which allows the detection of external disturbances in the
link. Based on the internal stability property of the positive
feedback of two systems with NIFR, the stability only depends
on controller parameters. Thus, the stability of the overall
system is independent of payload (i.e., robust to large payload
changes). Finally, a simple and systematic tuning procedure
for inner and outer controller exists and has been provided.

Table II shows a summary of the performance comparison
expounded above. It can be seen that the contribution of the
proposed methodology is to formulate a control law robust
to joint frictions and external disturbances (like [18], [19])
combined with a simple design methodology, which allows
us to make the stability of the overall system independent of
payload parameters.

VI. CONCLUSION

A new approach for the control of flexible manipulators was
formulated and experimentally verified. This work follows the
design methodology proposed in [21] to formulate a novel
controller, which is based on a modification of the IRC scheme
originally used in [22] to damp collocated smart structures.
The resulting control scheme is internally stable if the given
stability conditions are fulfilled, which are independent of
payload parameters.

[16], [17] [18], [19] [20] IRC
Robust to payload Yes Yes Yes Yes

changes
Robust to joint No Yes Yes Yes

frictions
Robust to external Yes Yes No Yes

disturbances
Design simplicity Yes No No Yes

Independence No No No Yes
of stability

TABLE II
COMPARISON PERFORMANCE

The precise tip positioning is guaranteed by accurately
positioning the joint angle and by damping the vibrations
caused by the reference trajectory. Experimental results have
been shown robustness to joint frictions, large changes in
payload parameters and spill-over effects, which has resulted
in a precise tip positioning. In addition, this new approach
simplifies the positioning and damping control task to the
tuning of two parameters (Kc and Df ) that can be adjusted
intuitively without an exact knowledge of system dynamics.
Therefore, the precise positioning and damping achieved by
this simple control scheme makes it very suitable for many
applications.

Future research endeavors will focus on multi-link flexible
manipulators as well as parameter optimization.
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