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High Speed, Precision Motion
Strategies for Lightweight
Structures

SUMMARY

During the period of this report, from May 16 to November 15, 1989, work continued
on (1) control for bracing of light weight arms and (2) modeling of closed chain flexible
dynamics. Work on (3) control of a small arm mounted on a large flexible arm to meet
demanding application requirements was supported for the first time, although the work
has been in progress for some months.

Mr. Dong-Soo Kwon has been looking at control for the bracing strategy. His early
work concluded that trajectory planning must be improved to best achieve the bracing
motion. He has now achieved very interesting results which enable the inverse dynamics of
flexible arms to be calculated for linearized motion in a more efficient manner than
previously published. The desired motion of the end point beginning at t = 0 and ending at
t = t¢ is used to calculate the required torque at the joint. The solution is separated into a
causal function that is zero for t < 0 and an accusal function which is zero for t > t;. He
has explored a number of alternative end point trajectories in terms of the peak torque
required, the amount of anticipatory action, and other issues. The single link case is the
immediate subject of this study, and an experimental verification of that case is being
performed. An abstract was submitted to the 1990 American Control Conference and that
paper is now in preparation.

Modeling with experimental verification of closed chain dynamics continues and will
soon result in the Ph.D. thesis of Mr. Jeh-Won Lee. Mr. J-W Lee is no longer supported
under this grant since he is completing his thesis while employed at the NASA Marshall
Space Flight Center. His work there is closely related to the thesis work carried out with
this NASA Grant. His modeling effort has pointed out inaccuracies that result from the
choice of numerical techniques used to incorporate the closed chain constraints when

modeling our experimental prototype RALF (Robotic Arm Large and Flexible). Since he



is comparing his results to TREETOPS, a multi body code developed for and used by
NASA, direct improvements in the NASA modeling capabilities are expected. The
experimental verification work is suggesting new ways to make comparisons with systems
having structural linearity and joint and geometric nonlinearity. Mr. J-W Lee should
complete his Ph.D. degree in the first quarter of 1990.

Work on the small arm mounted on a large arm currently involves three students.
MTr. Soo-Han Lee has been studying the generation of inertial forces with a small arm that
will damp the large arm’s vibration. Since the centralized control is complex to implement
and dependent on close coordination for stability (hence less robust) he has concentrated
recently on a "nearly decoupled" control. Decoupling is enhanced by the proper
configuration of the small arm. During the large arm motions this is reasonable, since the
small arm may not have a specified configuration. When the small arm configuration is
specified by the task other approaches may be necessary. Experimental verification using
the planar motions of RALF, a 20 ft arm, and SAM (Small Articulated Manipulator), a 3
degree of freedom arm, are proceeding. The control computer interfaces have now been
constructed. These experiments should begin in early 1990.

Mr. Jae Lew has orally presented his Ph.D. thesis proposal and is making several
adjustments to the draft document. He is studying the control and coordination problems
that arise in task execution using a small and large arm combination like RALF and SAM.
The disparate size of these arms and the serial mounting challenge us to use the advantages
of each arm most effectively to provide reach, precision, payload and speed improvements.
Existing approaches for redundant and dual arms are relevant, but not directly applicable.
In particular, by attaching the heavy payload to the large arm at the same point the small
arm is attached, a topology similar to the construction crane results. The small arm can
make precise adjustments to the payload position much as the construction worker places
the crane’s load by pushing on it.

Mr. Jonathan Cameron joined the project in the Fall quarter. He has now successfully

compleéted his qualifying exams and will be studying the multiple arm dynamics and



coordination problem. His experience in the space program at JPL and his computer
experience make him an immediately valuable team member.

Previous researchers under this grant are continuing to publish papers on the
research it supported. Dr. Bau-San Yuan, currently with American Semiconductor
Equipment Technologies, has co-authored papers on his control results, and the draft of a
paper on symbolic modeling has been prepared. Dr. Sabri Cetinkunt, now at the University
of Illinois, Chicago, has submitted and published papers to several journals as documented

in the following.



RESEARCH TOPIC: Control of a Flexible Bracing Manipulator
RESEARCH ASSISTANT: Dong-Soo Kwon
SHORT TERM OBJECTIVE: Inverse Dynamics Calculation for Following The Desired
End Point Trajectory
1) INVERSE DYNAMICS
An inverse dynamic equation is derived from the direct dynamic equation of a flexible
one-link manipulator using the assumed mode method. The required torque for a certain
desired trajectory is obtained by synthesizing two solutions of the causal part and the
anticausal part of the inverse dynamic equations.  Applying the calculated torque to the
ideal model of the system as open loop, the reference values of all state variables, which
match the desired end point trajectory, are provided. These can be used as reference
command values of all state variables for full state feedback tracking control. The
characteristics and the performance of the open loop control and the combination of the
open loop feedforward control and feedback control are studied in simulation and

experiment.

2) EXPERIMENTAL EQUIPMENT

To implement the torque profile which was obtained from the inverse dynamics, a
flexible 47" long aluminum single link manipulator is setup with a direct DC servo motor
and a current amplifier. Two strain gauges are attached at the base and the mid point of
the beam to measure the flexible vibration. A joint angle position sensor and a
tachometer are attached at the shaft of the motor. At the end of the beam, a mass is
attached to model the payload, and a force sensor is installed to measure the contact force

for bracing applications.



PUBLICATION
The abstract of the paper "A Causal Approach to The Inverse Dynamics of a Flexible

Link Arm" was submitted to the 90’ American Control Conference.



RESEARCH TOPIC: Modeling of the Constrained Dynamics of a Flexible Robot
RESEARCH ASSISTANT: Jeh-Won Lee

Jeh-Won Lee is nearing the completion of his thesis. He is currently working for
NASA Marshall Space Flight Center while he completes his degree.

The numerical simulations of RALF (Robotic Arm Large and Flexible) were
compared to results obtained from TREETOPS, a NASA sponsored code. Discrepancies
found appear to be due to the means of enforcing the constraints for the TREETOPS code.
Mr. Lee is working with TREETOPS in his job at Marshall, and so has an excellent
opportunity to influence the direction of its development.

Experiments with the large motion behavior of RALF are being examined for various
geometrical nonlinearities, Coriolis and centrifugal forces influencing the behavior.
Experimental results for nonlinear systems lack an accepted way to categorize the results.
Mr. Lee is looking at sinmoidal motions and the resulting harmonics that appear in strain
and joint measurements.

Initial drafts of all chapters of Mr. Lee’s thesis have been received. He should

complete his degree early in the Winter '90 quarter.

PUBLICATIONS

Lee, Jeh-Won and Wayne J. Book, "Efficient Dynamic Models for Flexible Robots,"
submitted to 1990 IEEE Robotics and Automation Conference, May 13-18,
Cincinnati, OH.



RESEARCH TOPIC: Control of a Small Working Robot on a Large Flexible Manipulator
for Suppressing Vibrations
RESEARCH ASSISTANT: Soo Han Lee

The main research activities during this period were working for the construction of
the I/O interface boards of the small robot, and studying for the development of the
control algorithms for the small robot (SAM, Small Articulated Manipulator).

1) Although a prototype 1/O board designed by Douglas J. Paul, who earned his MS
in March of this year, worked well for single joint operation, the board had reliability and
noise problems. In order to solve these problems, printed circuit boards were constructed.
In addition to the construction of the I/O boards, the kinematics, inverse kinematics, and
dynamic equations of motion of the small robot were obtained for testing and calibrating
the total robot system that consisted of a controller, I/O interface boards, and mechanical
hardware.

2) Inertial forces are generated by the movement of SAM around a nominal
configuration. The nominal configuration is related to the direction of the inertial forces.
The direction of the inertial forces affect the stability of the vibration control of the large
arm on which SAM is mounted, RALF (Robotic Arm, Large and Flexible). The stability
analysis has been done using lumped mass-spring analogy and force diagrams. This analysis
shows that decoupling is achieved if the nominal angle of the lower joint of SAM should be
90 degrees to the upper link of RALF, and the angle of the upper joint of SAM should be
90 degrees to the lower link of RALF. Hence a control law has the terms which force SAM
to keep these nominal angles.

3) In order to suppress the vibrations of RALF, the angles of SAM should oscillate
around the nominal angles and the oscillation should generate D or PD actions in response
to the vibrations. The amplitudes of the oscillation need to be reasonably small for not
disturbing the stability and nominal configuration of SAM. Total control forces must
require less than the peak torque of a joint motor. Up to now the effects of D and PD

control have been found; D control suppresses the vibrations at nearly same rate as PD



control, and needs less torque than PD control. PD control is more effective than D control

in keeping nominal angles.

PUBLICATIONS

Book, W. J. and Soo-Han Lee, "Vibration Control of a Large Flexible Manipulator by a

Small Robotic Arm," Proceedings, 1989 American Control Conference, Pittsburgh,
PA, July , pp.

Lee, Soo-Han, Wayne J. Book, "Control of a Small Working Robot on a Large Flexible
Manipulator for Suppressing Vibrations," Submitted to 1990 American Control
Conference, May 23-25, 1990, San Diego, CA.

Book, W. J., Soon-Han Lee, "Robot Vibration Control Using Inertial Damping Forces,"
submitted to 1990 CISM-IFTOMM Symposium on Theory and Practice of Robotic
Manipulators, Cracow, Poland, July 2-6, 1990.



RESEARCH TOPIC: Control Strategy for Cooperating Disparate Manipulators
RESEARCH ASSISTANT: Jae Young Lew

Jae Lew’s research seeks higher performance manipulators in large workspace,
particularly for those that require precise positioning and mating relatively massive
payloads. Demand for these manipulators can be found in some of the common space
maintenance and construction scenarios. As a solution, the concept of a small arm
mounted on the end of a large arm is introduced to provide precise motion as well as large
workspace. From a real world experience with crane-human coordination, when a heavy
payload is unloaded, we know that we can obtain precise positioning and high payload
capacity. This crane-human configuration may be analogous to the topology of bracing at
the tip of the small arm and having an end effector at the middle of the chain. Since
contact with the environment occurs at a bracing point on the small arm, similarity to a
dual arm topology exists. However, this topology is different than dual arm in some ways.
For example, the large arm (crane) is powerful and the small one (human) is capable of
precise positioning. To take full advantage of such disparate features, several control
strategies have been studied.

The short term objective is to investigate and identify the theory and the related
problem behind the disparate large/small arms coordination. The research activities
during the last 6 months have included the following. First, related literatures were briefly
reviewed. Second, the kinematic topology was synthesized in various combinations of the
large /small arms for the planar motion. Third, the kinematics for the large/small arms was
studied when they are constrained by a closed chair, and the advantage of the proposed
configuration was analytically proven. Finally, with the master/slave approach, the control
strategy for the two arms was considered, and the typical force control problem of a flexible

arm, so called, "non-colocated control" was examined.
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PUBLICATION

Lew, Jae Y. "Control Strategy for Cooperating Disparate Manipulators®, (Draft) Ph.D.
thesis proposal, Department of Mechanical Engineering, Georgia Institute of

Technology, Atlanta, Georgia, Fall Quarter 1989.
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RESEARCH TOPIC: Dynamics of Cooperating Robots
RESEARCH ASSISTANT: Jonathan M. Cameron
SHORT TERM OBJECTIVE: Assist in various research-related activities and prepare for

Ph.D. qualifying exams.

Mr. Cameron worked as a graduate research assistant for one month of this reporting
period. During that time, he assisted with several research-related activities in the ME
Research building. Also, he helped in the system management of several computers
related to this research. Much of his time was spent in preparing for his Ph.D. qualifying
exams which he took in the beginning of November and passed.

In relation to this research, he prepared to write a robot simulation program that will
be useful in this research as well as a useful tool in the ME research building. He also

investigated several research ideas in preparation to forming a dissertation proposal.
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RESEARCH TOPIC: Control of a Large Flexible Arm
RESEARCH ASSISTANT: Bau-San Yuan (previously supported)
PUBLICATIONS:

Yuan, B-S, J. D. Huggins, and W. J. Book, "Small Motion Experiments on a Large Flexible

Arm with Strain Feedback," Proceedings, 1989 American Control Conference, June
21-23, 1989, Pittsburgh, PA, pp 2091-2095.

Yuan, B-S, W. J. Book and J. D. Huggins, "Decentralized Adaptive Control of a Two
Degree of Freedom Flexible Arm," to be presented, 1989 ASME Winter Annual
Meeting, December 10-15, 1989, San Francisco, CA.

Yuan, B-S, Wayne J. Book and Bruno Siciliano, "Direct Adaptive Control of a One-Link
Flexible Arm with Tracking,” to appear J. of Robotic Systems, December 1989.

Yuan, B-S, W. J. Book and J. D. Huggins, "Control of a Multi-Link Flexible Manipulator
with a Decentralized Approach,” submitted to the 11th IFAC World Confress, 13-17
August, 1990, Tallinn, USSR.
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RESEARCH TOPIC: Characterization of the Limits of Control of Flexible Arms
RESEARCH ASSISTANT: Sabri Cetinkunt
PUBLICATIONS:

Cetinkunt, Sabri and Wayne Book, "Performance Limitations of Joint Variable Feedback
Controllers Due to Manipulator Structural Flexibility," submitted to IEEE
Transactions on Robotics and Automation, June, 1989.

Cetinkunt, Sabri and Wayne J. Book, "Symbolic Modeling and Dynamic Simulation of
Robotic Manipulators with Compliant Links and Joints," Robotics and Computer
Integrated Manufacturing, Vol. 5, No. 4, pp. 301-310, 1989.
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APPENDIX

The abstract of the paper "A Causal Approach to The Inverse Dynamics of a Flexible Link
Arm" was submitted to the 90’ American Control Conference.
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Transactions on Robotics and Automation, June, 1989.

Cetinkunt, Sabri and Wayne J. Book, "Symbolic Modeling and Dynamic Simulation of
Robotic Manipulators with Compliant Links and Joints," Robotics and Computer

Integrated Manufacturing, Vol. 5, No. 4, pp. 301-310, 1989.

Lee, Jeh-Won and Wayne J. Book, "Efficient Dynamic Models for Flexible Robots,"
submitted to 1990 IEEE Robotics and Automation Conference, May 13-18,
Cincinnati, OH.

Lee, Soo-Han, Wayne J. Book, "Control of a Small Working Robot on a Large Flexible
Manipulator for Suppressing Vibrations," Submitted to 1990 American Control
Conference, May 23-25, 1990, San Diego, CA.

Yuan, B-S, J. D. Huggins, and W. J. Book, "Small Motion Experiments on a Large Flexible
Arm with Strain Feedback," Proceedings, 1989 American Control Conference, June
21-23, 1989, Pittsburgh, PA, pp 2091-2095.

Yuan, B-S, W. J. Book and J. D. Huggins, "Decentralized Adaptive Control of a Two
Degree of Freedom Flexible Arm," to be presented, 1989 ASME Winter Annual
Meeting, December 10-15, 1989, San Francisco, CA.



15

Yuan, B-S, Wayne J. Book and Bruno Siciliano, "Direct Adaptive Control of a One-Link
Flexible Arm with Tracking," to appear J. of Robotic Systems, December 1989.

Yuan, B-S, W. J. Book and J. D. Huggins, "Control of a Multi-Link Flexible Manipulator
with a Decentralized Approach," submitted to the 11th IFAC World Confress, 13-17
August, 1990, Tallinn, USSR.



Submitted to 1990 American Control Conference, May 23-25, 1990,
San Diego, Ca.

A CAUSAL APPROACH TO THE INVERSE DYNAMICS OF A FLEXIBLE LINK ARM

Dong-Soo Kwon and Wayne J. Book
The George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

An inverse dynamic équatfon which gives a causal solution for certain desired end
point trajectories is derived from a flexible arm by using model. The model uses assumed
modes to represent arm bending. The torque which is calculated from the inverse
dynamics is applied to the arm as an open loop control. However, the friction at the joint
and unmodelled dynamics causes tracking error and final positioning error. To
compensate for these errors, feedback control is added to the nominal joint position and
strain commands which are obtained from the forward dynamics model upon applying the
torque calculated from the desired end point trajectory. The results of open loop control
and the combination of open loop control and feedback control are shown in simulation
and experiment. Also, preliminary results for control of a flexible link arm as it contacts a

rigid surface to initiate a bracing action are presented.



To appear in Proceedings,1989 American Contro

Conference, June 1989, Pittsburgh, PA.

VIBRATION CONTROL OF A LARGE FLEXIBLE MANIPULATOR
BY A SMALL ROBOTIC ARM!

Wayne J. Book and Soo Han Lee }
George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology

ABSTRACT

The vibration of a large flexible
manipulator is suppressed by inertial forces
induced by the joint torques of a small arm
which is located at the tip of the large
manipulator. The control of the small arm
is studied based on a slow and fast submodel
which are derived by applying the singular
perturbation technique. A composite
controller is designed to control the slow
and fast motion.

I. Introduction

A large, two degree of freedom flexible
manipulator which has a small arm at one
end has been constructed in the Flexible
Automation Laboratory at Georgia Institute
of Technology as shown in Figure 1, The
large manipulator is designated RALF
(Robotic Arm, Large and Flexible) and the
small arm is designated SAM (Small
Articulated Manipulator). The large
flexible manipulator is for gross motions,
and the small arm is for fine motions. The
large manipulator consists of two ten foot
long links made of aluminum tubing
actuated hydraulically through a parallel
link drive. The small arm is actuated by
three brushless D.C. motors through
harmonic drives at each joint. The small
arm could be used as a fast wrist or braced
robot. In this research, however, the small

! This work was partially supported by NEC
Corporation and the Computer Integrated
Manufacturing Systems Program at Georgia
Tech.

arm is used as an inertial force generator for
suppressing flexible vibrations of the large
manipulator. This is consistent with many
applications where the small arm has little
to do during large arm motion.

To control the vibration of a light
weight manipulator, most researchers have
used the joint actuators of that manipulator.
The joint actuator also controls rigid body
motion. A few researchers have studied
using additional actuators which control
flexible motions. Zalucky, and Hardt [1]
designed two parallel beams with a
hydraulic actuator mounted at one end.
This arrangement was used to compensate
deflection and to improve dynamic
response. A similar configuration was
applied to tracking control [2]. Singh and
Schy [3] studied control of the vibraton by
external forces acting at one end. Their
approach required separate actuators solely
for vibration damping.

When the RALF changes
configuration, the vibration modes of the
manipulator change. SAM also can change
its configuration to increase the ability to
suppress vibrations of RALF.

In order to study the effectiveness of
the inertial force of SAM, the dynamics of
the manipulator is decomposed into a slow
and a fast submodel by applying the singular
perturbation technique [4]. A composite
controller is designed based on the
submodels.

Two Time Scale Control

The dynamics of a flexible manipulator
is viewed as coupled rigid and flexible
motion which, under certain conditions, can



be also classified as slow and fast motion.
In this case, the system dynamics can be
analyzed by a two time scale model [4].
Several researchers have applied singular
perturbation theory to the control of
manipulators with flexible joints [5,6]. One
of the authors has studied the control of
flexible manipulators based on two time
scale models [7,8]. In this study, the
effectiveness of inertial forces of the small
arm for suppression of vibrations is studied
by two time scale model.

For initial understanding the large
flexible arm is considered with joints locked.
The deflection of each link is modeled with
one assumed mode. Based on analysis by
Tsujisawa [9] this is adequate to represent
the most important dynamic behavior.
Applying Lagrange’s equations to this
configuration the general form resulting is:

07 o
woa [ oo

A (1)
["1 (0,9,q,q)] [u]
NZ (e’a!q’q) 0
where,
M(9,q) is the inertia matrix,
N(4,6,q,9) contains nonlinear and
gravity terms, -

K is the stiffness matrix, of RALF
8 is the vector of joint angles of SAM
q is the vector of deflection amplitudes
and
u is the control torque vector.
This equation can be expressed as,

f = -H,;Kq-H)N, -H,,N, + Hjju @
q = -H,,Kq-H,N, - H,N, + Hyu

where, [H;] is the inverse matrix of matrix
M.

By taking 4 = 1/k,, as a perturbation
parameter, we can rearrange equation (2)-as
follows;

6 = -lez - H“N1 - H12N2 + Hllu (3a)

Bz = -Kszz - KHZlNl - KHZZNZ + KHZIU

(3b)
where, K = pK, and z = kq.

When we set M = 0, we can obtain the
quasi-steady-state z as,

] -1
Z = Hyy o (-Hy Ny RN, U (4)

where the over-bars are used for denoting
the terms when g4 = 0. By substituting (4)
into (3-a), we can obtain the slow submodel,
that is, the rigid model of a manipulator as,

§ = M1,(-N, + u) )

To derive the fast submodel, we assume that
the slow variables 8, are fixed during the fast
transient. By introducing the fast time scale,
we can obtain the fast submodel as,

‘rst/.fu—

n + KH, . u (6)

n" - KA 21'f

22
where, n =z-2z
4 =u=0

and " indicates diferentiation with respect to
T.

In order to guarantee that the fast
variables z follow the slow manifold, we
need to use a composite control law [4] as,



u = u(6) + u(n)

In this research, a nonlinear feedback
control law like the computed torque
method is used for controlling the slow
motion. A pole assignment control
algorithm is used for the fast motion. If the
number of actuators and modes included in
modeling are the same enabling the
neceesary matrix inverse, the slow control
law, u, and the fast control law, u,, are given
as

u-=N1 +M11 {ad 'Als[e - ad}

SV Y J o - o Jar)

,

-1 (-- ’
uf = _K”21] {K“zz” T A Aan} ’

where, A, A, and A, are diagonal gain
matrices and the subscript s denotes the
slow motion control, and f denotes the fast
motion.

II. DISCUSSION

The application of the two time scale

control has verified the simplification
_possible with this approach. The two
control laws must each control a 4th order
system as opposed to one 8th order system.
This will make real time implementation
easier.

The advantage of simplification is
obtained at the price of limited
performance. The fast system variables 7
are controlled relative to the slow manifold
Z. Thus when n=0 the deflections q might
not be zero.

Based on preliminary studies of a one
link flexible arm with a one link rigid arm
on its tip, we expect effective vibration
dampening. When compared to joint

motions of the flexible arm, several other
parameters must be considered, such as the
nominal joint angles, initial conditions, and
which mode is to be damped.

While the fast control algorithm
described above requires equal numbers of
actuators and modes, this is not a general
limitation for other possible algorithms.

Further work on these issues is
underway.
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Figure 1: The system of interest: RALF
(Robotic Arm, Large and Flexible) carrying
SAM (Small Articulated Manipulator).




Submitted to 1990 CISMOTFT.MM Symposium on Theory and Practice of
Robotics and Manipulators, Cracow, Poland, July 2-6, 1990.

Robot Vibration Control Using Inertial
Damping Forces

Wayne J. Book
Soo-Han Lee
School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
Tel. 404-894-3247

Lightweight manipulators are subject to vibrations that reduce their
performance. Active means to damp these vibrations are of significant
research interest. Joint actuators of the arm can perform this task very
effectively as has been shown in theory and experiment by several researchers.
These actuators must respond at the bandwidth of the vibration they are to
damp. If the manipulator and/or the payload is large the actuators are
correspondingly large. The bandwidth requirement is a serious impediment to
practical implementation of the active vibration damping scheme. An
alternative under exploration is vibration damping through inertial forces.
Inertial forces are commonly used for active vibration control in large space
structures. Reaction wheels and linear momentum exchange devices are placed
on the structure specifically for this purpose. This paper will explore the
use of the existing degrees of freedom at the end of a large arm to damp
vibrations during gross motions when they are not otherwise employed. These
smaller actuators can have a higher bandwidth and more precise control than
the joints used to reconfigure the arm. The smaller actuators could be
actuating the wrist of a manipulator in a traditional industrial manipulator.

The system used in the analysis and experiments of this paper is actually two
arms. (See Figure 1.) The large arm is designated RALF (Robotic Arm Large
and Flexible). It consists of two, 3 meter beams and two rotary joints
actuated by hydraulic cylinders and controlled by a MicroVAX II computer. The
moving structure weighs only 32 kg (70 pounds) and has natural frequencies
under 9 Hz when no payload is present. A small arm with three electrically
actuated degrees of freedom has two links of about .5 meter each. Each joint
is controlled by a Motorola 68000 microprocessor supervise by a common IBM PC.
It is designated SAM (Small Articulated Manipulator). Its links are
essentially rigid. SAM is designed to be carried by RALF. These robots are
test beds for control algorithms and operating strategies appropriate to
flexible arms. In this paper we consider the use of SAM to generate inertial
forces for damping the vibrations of RALF. Motions in a plane are our initial
consideration.

The effectiveness of the inertial forces in damping vibrations depend on the
nominal configuration of both arms. At this time we are not considering the
problem of moving the small arm to the configuration that will be required for
the manipulator task. As a useful strategy the center of mass of the small
arm and its motion are moved as required for inertial force generation on the
tip of the large arm. The moments produced are of less significance on the
motion of the large arm. The large arm is modeled by an assumed modes method.



This model can be linearized when the motions'are relatively slow. The mode
shapes of the arm change when the arm changes configuration, and this is
accounted for in determining the appropriate small arm nominal configuration
ang the appropriate small arm nominal configuration

and motions.

SAM is significantly affected by the nonlinear terms in the dynamics. Its
controller must allow for these terms. The control explored strives to
maintain the simplicity of a decoupled motion. In other words, the large and
small arm are controlled separately, not as a single kinematic chain.

Conclusions on the most effective configurations for SAM for various
configurations of RALF are presented. The effectiveness inertial forces in
active damping is compared to the use of the large arm's joints for active
damping. Inertial forces do not appear to be as effective as joint motion for
the test system. The approach is relevant to cases where the joint control is
not possible, however. The approach seems particularly relevant to space
manipulators proposed for the space station, where a small manipulator is
carried by a “space crane." It also holds advantages for use in combination
with a bracing strategy, since after bracing the small arm can be moved to
perform its manipulation task without significantly exciting the large arm's
vibration.

FIGURE 1. The Test Case: Robotic Arm Large and Flexible (RALF) and Small
Articulated Manipulator (SAM).
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Abstract

The performance limitations of manipulators under joint variable feedback control
are studied as function of the mechanical flexibility inherent in the manipulator struc-
ture. A finite dimensional time domain dynamic model of a two link, two joint planar
manipulator is used in the study. Emphasis is placed on determining the limitations
of control algorithms that use only joint variable feedback information in calculations of
control decision, since most motion control systems in practice are of this kind. Both
fine and gross motion cases are studied. Fine motion results agree well with previously
reported results in the literature, and are also helpful in explaining the performance

limitations in fast gross motions.
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Nomenclature

elastic deformation of link i, at location z; and time ¢.
vector of joint angles ([6;, 6, ])
vector of flexible mode generalized coordinates

vector of effective torque at joints

[24]

plant full state vector

reference model state vector ( | 9,8 ldesired )
[6,8.6,4]

commanded input vector to the reference model

error state vector (z,, — z; )

filtered error state

output vector of the nonlinear time varying feedback block of the standard

hyperstability problem

ij component of joint angle feedback gain matrix

ij component joint velocity feedback gain matrix

nominal joint variable (position and velocity) feedback gain matrix
nominal feedforward gain matrix

adaptive state feedback gain matrix

adaptive feedforward gain matrix

positive scalar constants of integral gain adaptation algorithm.

the lowest natural frequency of the arm with all joints clamped.
closed loop bandwidth of the feedback controlled flexible arm

closed loop bandwidth of the feedback controlled equivalent rigid arm

desired motion bandwidth (the natural frequency of the reference model which

has step command input)

damping ratio of mode i

n dimensional real vector space
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LTI
NLTV
FFB
FBB
AMFC
CLS

belongs to symbol

there exists symbol

dynamic systems defined by Popov class
approaches symbol

linear time invariant

nonlinear time varying

feedforward block

feedback block

adaptive model following control

closed loop system
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I. Introduction

Robotic manipulators have compliance that are inherent in their links and joints.
The compliance becomes significant especially at high manipulation speeds and/or large
payload conditions. Today, there is an increasing demand for manipulators with high
speed, precision and payload handling capabilities as a result of higher productivity
needs. Hence, the manipulator flexibility and control of it has become an important
problem. In some cases, structural flexibility in manipulators may be desirable. For
instance, a manipulator cleaning delicate surfaces, handling household jobs, is desired to
have significant structural flexibility so that errors in position control do not generate
large forces that may damage the surface, or become dangerous for the people in the

house in case of accidents.

Regardless of the reason that the flexibility becomes significant (i.e. due to high
speeds, large payloads, inherently very soft links for household services), precision con-

trol of the manipulator tip is necessary to accomplish the desired task. Manipulator

motions may be divided into two groups in terms of the range of motion: 1. fine mo-

tion, 2. gross motion. In fine motion, the manipulator tip moves in a small region
of workspace. Despite high closed loop bandwidth, absolute velocities do not become
very large since the motion occurs in a small region. Therefore, the nonlinear dynamic
forces (coriolis and centrifugal) are generally negligible. In gross motion, the manipu-
lator tip makes large rotational maneuvers in workspace. The large rotations of joints
relative to each other are the main source of complicated nonlinear dynamic coupling
between the generalized coordinates [Shabana and Wehage 83, Sunada and Dubowsky
82]. Absolute velocities may become large during the fast, large maneuvers to the point

that the nonlinear dynamic forces become very dominant {Luh 83].
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1.1 Review of the State of Art

The majority of work in control of robotic manipulators ignores the flexibility of
the manipulator in the analysis. Therefore, no reference is made to the effect and for
limitations of flexibility in control system performance (Dubowsky and DesForges 78,
Balestrino et. al. 87, Hsia 86, Craig et. al. 86, Slotine 87]. Inorder to avoid the flexibility
problem, very conservative controller design rules are suggested [Paul 83, Luh 83]. Ata
time when researchers are striving to design high performance controllers, it is logical to
explicitly study the limitations imposed by the manipulator flexibility, instead of taking
conservative design measures. Closed loop bandwidth limitations of non-adaptive joint
variable feedback controllers were studied explicitly as function of arm flexibility in fine
motion [Book et. al. 75]. However, the results can not be generalized to fast gross
motions where dynamic nonlinear effects become significant. The dynamics of flexible
manipulators are described by infinite dimensional mathematical models due to their
distributed flexibility [Book 84, Low and Vidyasagar 87), yet the controllers are designed
based on truncated finite dimensional models. The discrepancy between the designed
perférmance and the actual performance achieved as a result of model truncation for the
purpose of controller design is studied and an iterative design procedure is suggested in

[Book and Majette 85).

The class of control algorithms studied here, that is algorithms that use only joint
variable measurements, are particularly important since most industrial robots and mech-
anisms are controlled that way. Tip position measurements [Cannon and Schmitz 84,
Shung and Vidyasagar 87, strain measurements along the flexible link [Hastings and
Book 86}, tip acceleration measurements [Kotnic, Yuckovitch, Ozgiiner 88] are examples
of attempts to design so called noncolocated controllers that would achieve performance
beyond the traditional limitations of colocated controllers. A major problem associated

with noncolocated control is the destabilizing effect of observation and control spillover

2
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[Gevarter 69, Balas 78]. Independent joint variable control of multi-link manipulators,
that is each joint control action is based on the local measurement information of that
joint only (colocated control), does not have this problem since spillover never drives the
system unstable in colocated control [Gevarter 69]. This conclusion, however, cannot
be extended to the class of joint variable controllers where intra-joint feedback is used

to achieve decoupled joint response [Book et. al. 75].

In short, joint variable feedback controllers require fewer sensors, have better stabil-
ity robustness against spillover and unmodelled dynamics, and widely used in practice.
Therefore, it is worthwhile to study their potential use in fine and gross motion control
of flexible manipulators, even though their upper limit of closed loop bandwidth is in
general considerably smaller than that of noncolocated controllers. In particular, the
adaptive joint variable feedback controllers should be analyzed since they receive increas-
ing interest due to the adaptability of feedback gains as a function of the changing task

conditions.

1.2 Characterization of the Problem and Definitions

The signficance of structural flexibility in motion control of a manipulator is a func-
tion of the task conditions. Any given manipulator can be moved slowly enough that
the structural flexibility will not cause any significant deviation from the intended mo-
tion. Similarly, it can also be moved fast enough such that the structural flexibility will
become very apparent in the response of the manipulator (presuming the availability of

actuators that can deliver sufficiently high torque/force levels).

Physically, every robotic manipulator has structural flexibility. The question of
whether the controller needs to be concerned with it or not varies from task to task.
At this point, one must quantify the term slow enough motions such that flexibility

does not present any problem, as well as the fast enough motions where the flexibility
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does present a problem.

The speed of motion is quantified as slow or fast (low, medium, or high speed) with
respect to the structural flexibility of a manipulator using the lowest structural frequency

of the manipulator when all joints are locked (wj,) as the reference.

[Book et. al. 75] quantified the speed of a given fine motion relative to the struc-
tural flexibility using the ratio of necessary closed loop bandwidth (ws,) to the lowest
structural frequency of the system (wy,/w},). Given a manipulator, and a desired fine
motion, one can easily predict whether the structural flexibility will be significant or not

during that motion using the ratio of (wow /W5 )-

In fast gross motion, where dynamic nonlinearities are dominant due to high joint
speeds and large angular rotations, the notion of bandwidth is no longer a well defined
characteristic of the control system. However, in the context of model reference control,
the speed of gross motion may be quantified using the bandwidth of the reference model,
(wm ), with a step input. Here, the (wm/w,) ratio is proposed to quantify the speed of

gross motions relative to the structural flexibility.

The essential difference between this work and other works in control of single link
flexible arm is that, in case of multiple joints (two joint two link example used in this
study) there are many nonlinear couplings between the generalized coordinates of dif-
ferent links as a result of large angular rotations of joints. Most of these couplings do
not exist in single link case. [Book et. al. 75, Book and Majette 85] studied the control
aspects of two link two joint flexible manipulator example in fine motion using infinite
dimensional linear frequency domain models based on transfer matrices. Here both fine
and gross motion control aspects are studied using a finite dimensional nonlinear time

domain model.

The remainder of this paper is organized as follows: The mathematical model of
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a two-link, two joint flexible manipulator is briefly described in Section II. Fine and
gross motion control under joint variable feedback controllers are analyzed in Section
I11, results are discussed in Section IV. The conclusions of this work are summarized
in Section V. Design details of the proposed adaptive model following controller are

presented in the Appendix.

I1. Dynamic Model of a Two Link Flexible Manipulator

Symbolic derivation details of dynamic models for flexible manipulators are described
in [Cetinkunt and Book 89]. The differences between different Lagrangian-assumed
modes based modeling approaches come from the kinematic descriptions. Here the
kinematic description will be summarized, and derivation using Lagrangian-assumed

modes approach will be skipped since it is a well known standard procedure.

Let (O, X, Y,) be the inertial coordinate frame (Fig. 1). Assign two coordinates
for each flexible link; one is fixed to the base (e.g. O1 X1 Y1), the other is fixed to the tip
of the link (e.g. 02 X}Y{). In order to describe the absolute position of any differential
element on the links, let §, and 8, describe the joint angles, and wy(zy, 1), wa(z2, t)

describe the elastic deformations of links from the undeformed positions.

The spatial variable dependence of the deformation coordinates leads to a math-
ematical dynamic model that is of partial integro-differential equation form [Low and
Vidyasagar 87]. In order to simplify the model, the deformation coordinates are approx-
imated by a finite series which consists of shape functions multiplied by time dependent

generalized coordinates.

wi(zi, t) =Z¢ij(zi)5ij(t) ;oi=1,2
j=1
j= 1' A | ni

where n; is the number of mode shapes considered in the approximation in describing
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the elastic deformation of link .

This results in a finite order dynamic model. Since the spatial variable dependence
is already specified through the shape functions, the mathematical model is of ordinary
differential equation form. Let us order the generalized coordinates as ¢ = (8, 8], where
8 = [8:,82], the joint coordinates, and § = [(é11,. .-, b1n,)), (621, - - -, 62n,)], the deformation
coordinates. Having uniquely established the kinematic description of the manipulator,
the derivation steps of the equations of motion via Lagrangian formulation is straight for-
ward [Book 84, Cetinkunt and Book 89]. The dynamic model of a flexible manipulator

may be expressed in the form

(48 e 8+ 2]+ (B +[E]=[a]e @

where m, (6, §), m.;(9, §), my(8, §) are partitioned elements of generalized inertia matrix
which is always positive definite, and symmetric, L(&,é, 5, 8), iI(B, 8, 6, §) are coriolis
and centrifugal terrﬁs which are quadratic in the generalized coordinate velocities ( 9, 8);
9.(6,8), 2},( 9, §) are gravitational terms; and [ K] is the structural stiffness matrix associ-
ated with arm flexibility and mode shape functions, u represents the effective torque (or
force) vector at the joints. For the two link arm example considered here 8 = [§,, 82},

and since two mode shapes are used per link, § = [( 811, 812), ( 621, 822)].

The equation (2.1) is a highly nonlinear and coupled ordinary differential equation
set. This makes the controller synthesis and design a problem difficult. ~Furthermore,
experiments [Hastings and Book 86] and analytical studies [Cetinkunt ami Yu 89) indi-
cates that the mode shapes of the links quickly converge to the mode shapes of clamped-
base beam under joint variable feedback control for even low values of feedback gains of
interest. All mode shapes of a clamped-base beam have zero slope at the base, there-
fore B,, = 0 for the dynamics of flexible manipulators under feedback control. That

means the joint variable controller effects the flexible variables through coupling from
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joint variables, but not directly through the input matrix. The dynamic model of a

rigid manipulator, in general, has the form
[(M(6)16+ £(6,0)+g(0) =u (2.2)

The structural difference between the dynamics of rigid and flexible manipulator is dis-

played by equations (2.1) and (2.2).

IIL. Fine and Gross Motion Control with Joint Variable Feedback

The question of when the arm flexibility becomes significant and what limitations it
imposes on the performance of joint variable controllers are studied first in fine motion.
The results are valid only when the dynamic nonlinearities are negligible. In order to
determine the effect of dynamic nonlinearities, the linear and nonlinear control algorithms

are simulated on the nonlinear model (2.1).

II1.1 Fine Motion Control

The nonlinear model (2.1) is linearized about a nominal configuration, z, =
(8,8, 8, 8] = [Bnominai» 0, 0, 0] and nominal input unominat which compensates for the nom-
inal gravitational loading. ~Since nonlinear coriolis and centrifugal terms are quadratic
in 8, §, they have no contribution to the model that is obtained by linearizing about
a nominal configuration where nominal values of velocities are zero (Q_ =§=0). Let
0 = B ominat + A8, 8= bpominat + A8, a0d ¥ = Upomina + AY, then the linear dynamic

@ nominals g, 0, m is given by (31),

model about the nominal configuration z,,minat = [

me me) (G, [00./00 99 /06 )[As)_ (A -
my my | \adf Y |60,00 og,/08+ (K] 1asf T 0 (3.1
N et ~~ -~

Meyy Keyy

In compact form, let Az =[Af, A4, Ad, AQ}, the linear dynamic model about the given
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nominal configuration can be expressed as,
Az=AAz + BAu (3.2)

where

A—[ g I] Bl (3.3)
-M Key 0]’ Me/l(O) '

The closed loop eigenstructure of the linear model under linear joint variable feedback
controllers is studied as a function the feedback gains. The linear joint variable feedback

control has the general form
Au= (K] A8 -[Cy)AL (34)

For independent joint control;
' (K = diag{kic}
(Ci;] = diag{cii}
For decoupled joint control;
[ Ki;] = me(Bnominais 0) diag{kis}
(Cij] = mr(Bnominal, 0) diag{cii}
Independent joint control results are presented here in order to compare with the previ-
ously reported ones. Position and velocity feedback gains of joint 1, ( k11, ¢11), are set
to very high values in order to force the joint 1 behave like a clamped base. The locus
of closed loop eigenvalues are studied as a function of joint 2 feedback gains, ka2, c22.
The finite dimensional linear model should be able to predict-at least the dominant be-
havior of the closed loop dynamics of the infinite dimensional actual system, despite the
errors introduced due to truncated dynamics. Otherwise the truncated finite dimen-

sional model would not be of any value.

By comparing the root locus behavior of a given flexible manipulator with that of
an equivalent rigid manipulator, the conditions at which flexibility becomes significant

8
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and the range of conditions where the flexibility can be ignored can be determined
and compared with reported results. The study of dominant behavior of closed loop

eigenvalues will determine the best possible performance in fine motion.

IIL.2 Gross Motion - Adaptive Model Following Control

The fundamental challenge in the control of industrial and space robots is to provide
high speed, high précision motions despite large variations in payload, and other task
conditions. Extensive research in the past decade has shown that adaptive control
methods are potentially more promising to meet that change than non-adaptive control
methods. It is desirable to have an adaptive controller that would achieve the following
performance criteria:

1. Good transient and steady state tracking of desired motion trajectory.

2. High speed and precision manipulation in gross and fine motion (high closed loop
bandwidth) relative to the structural flexibility.

3. Good performance and stability robustness against unknown task condition varia-
tions.

An adaptive model following control (AMFC) algorithm is developed based on the
hyperstablity approach [Cetinkunt 87). The design details are presented in the Ap-
pendix in order to keep the essential points of this paper in focus. Let us call z, = [¢, 8].

The adaptive control algorithm is given by, (Fig. 2)

= —Kpnzy + Kunllm + AKp( ¢, t) 2o + AKu(g, 1) Um (3.5)
where
Kpn = m,(&, 5,1) [[k,‘,‘] s [C,',']] (360)
Kun = me (0, b41) (3.6.5)
t
AK, =/ Ppi Me( 8o, 8o¢) w25 dT (3.6.¢)

9
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t
AK, = Dui mr( ooy 6”) ZE;T;; dr (36d)

[
[ki), and [ci] are the reference model dynamic components chosen by the designer, &,
is the static deflection values of flexible modes. Here, the reference model is chosen as

a decoupled linear system of the form

[gﬂ - [[—%ﬁ] [—Ic.-,-]] [Z_‘,"n] + [%] Um (37

The response of the reference model, 8,,,(1), to the commanded input, u,,(t), is the desired
joint response. The reference model dynamics affects the control through equations
(3.6.a, ¢, d). Using &, in the control algorithm does not require real-time feedback
information about the flexible states. Therefore, the controller is still a joint variable
feedback control algorithm. The use of §,, as oppbsed to 0 (zero) for the flexible modes
is more accurate and improves the decoupled control of the flexible manipulator without
imposing any significant implementation difficulty. The v is the filtered tracking error ¢
(Fig. 2). ppi and py; are arbitrary positive scalar adaptive controller design parameters
effecting the convergence rate of the adaptive control system and the transient response

of the closed loop system.

The specific dynamic characteristics of manipulators are utilized in the general con-
text of hyperstability based design so that the resultant controller is particularly suitable
in control of manipulators exploiting their specific dynamic characteristics as opposed to
treating them as a black boz dynamic system. Following that philosophy, the general-
ized inertia matrix plays a significant role in the adaptation algorithm (eqn. 3.6.c-d), and
in the nominal control (eqn. 3.6.a-d). First, the feedback gains are naturally adapted in
a manner to preserve the decoupled joint control. Secondly, arbitrary parameter selec-
tion that is generally required in Lyapunov and hyperstability based designs, is reduced
to the selection of only two scalar parameters no matter how many joints the manipulator
has, as opposed to the usual requirement for selection of two arbitrary positive definite

10
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matrices [Hsia 87]. Notice that the gain adaptation is of integral type (eqn. 3.6.c-d),

which is a commonly used adaptation type in model reference adaptive control.

IV. Results and Discussion
IV.1 Fine Motion Control Results and Discussion

Let w}, be the lowest structural frequency of the manipulator when both joints
are clamped and extended ( ky; and k2 — oo, ¢1; and ¢z = 0, Fig. 3). Consider
an equivalent rigid manipulator with the same inertial and geometric properties of the
flexible manipulator. The rigid system with first joint clamped (ky; — o) will be a
second order mass-spring system with feedback gains ( k22, co2 # 0). Let w,; be the

undamped natural frequency of the rigid system for a set of feedback gains k2, and cjo.

In fine motion, the w,,/w}, ratio determines the significance of flexibility and the
dominant behavior of the closed loop system. In the rigid manipulator case, it is pos-
sible to achieve arbitrarily large closed loop bandwidth by increasing k22 and c,;, for

wey = (/k22/( Jo2),;;, and damping ratio & = ¢22/(2.0 x {/(Joz2).;; X k22), where (Jo2),,

is the effective moment of inertia of link 2 and payload about joint 2 axis of rotation.

However, when the same controller is applied to the flexibile manipulator, the closed
loop bandwidth, ws, will definitely be smaller than w},, for the fact that as k,; — oo,
| why | — w3 with very little damping ratio (Fig. 3). If the servo stiffness is low relative
to the structural flexibility, that is w,;/w}, < 1/2, the locus of closed loop eigenvalues
is indistinguishable from those of rigid case as c,; increases. However, if the velocity
feedback gain, cg2, is further increased to large values, the effective result is to stiffen
the joint. One dominant eigenvalue meets with another on the negative real axis, and
breaks away from the real axis converging to the w}, magnitude on the imaginary axis
as cqp increases (Fig. 3, curve a, Fig. 4.a). In the rigid case, this phenomenon does

not exist for any value of feedback gains. The root locus analysis of fine motion is

11
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done as function of czo for many other values of w,;/wj,. The basic outcome of this
analysis is illustrated in (Fig. 3 and 4, only dominant regions of root locus are shown in
the figures). It is seen from (Fig. 4.b-c) that above certain values of w,1/w}, ratio, the
dominant eigenvalues are no longer able to reach the real axis. Physically that means,
if joint position control is too stiff relative to the arm flexibility, it is not possible to

provide well damped dominant modes no matter how large the velocity feedback gain is.

For a given manipulator and payload, wj, is determined by the geometric, inertial
and structural flexibility properties of the manipulator. If a joint variable controller
attempts closed loop bandwidth larger than (1/2)w;,, then the flexibility of the manip-
ulator will be a significant factor during the fine motions. Otherwise, the structural
flexibility may be ignored, and controller may be designed based on rigid manipulator
assumptions (Fig. 3, curve a, Fig. 4.a). The best performance of a joint variable feed-
back controller is defined here as the highest possible closed loop bandwidth (that is
the largest dominant eigenvalue magnitudes with sufficient damping ratios; i.e. 0.707 or
more). As shown in figure 4.b, approximately (2/3) w}, closed loop bandwidth can be
achieved by appropriate choice of feedback gains. It is equally important, however, to
note that the dominant eigenvalues are very sensitive to the variations in feedback gains
in the best performance region (Fig. 4.b, locations 8,9,10, between each point the velocity
feedback gain is incremented by a constant amount). In practice it may not be easy to

realize that performance due to modeling errors.

The results concerning the effects of structural flexibility in closed loop performance
agree very well with the previously reported results based on infinite dimensional fre-

quency domain results (Book et. al. 75, Book and Majette 85].

12
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IV.2 Gross Motion Control Results and Discussion

In order to see the effect of dynamic nonlinearities, the closed loop system is sim-
ulated for two cla.sées of motions: first, slow motions where nonlinear forces are small
(Fig. 5a-b, curves (a)), and secondly, fast motions where nonlinear forces are signifi-
cantly larger or of same magnitude with the other dynamic forces (Fig. 5a-b, curves
(b))-

Fig. 6 shows the response of the manipulator with adaptive controller to the desired
slow motion. Two different adaptive control results are shown for slow and fast adap-
tion, refering to small and large values of the adaption parameters pp; and pyi. The
appropriate values for these parameters are found by trial and error. This motion has
two properties: 1. 'dyna,mic nonlinearities are not significantly large (Fig. 5, curve (a)),
9. the bandwidth of the desired motion is about 1/4 of the lowest natural frequency
of the arm. The bandwidth of the desired motion, wm;, is defined as the bandwidth
of the reference model which generates the desired motion in response to a step input

command (Fig. 2).

Since the adaptive controller essentially tries to make the closed loop dynamic be-
havior match to that of the reference model, the function of wn; in the nonlinear analysis
content is similar to the function of the w,; in the linear analysis. ~Clearly, figures 6.a-e
show that flexibility of the arm is not significant in terms of joint tracking and setting time
of flexible vibrations at the end of motion, which is in agreement with the linear analysis
results. When the same system is simulated for motion (b) where wm;/weer =1 /2 and
nonlinearities are significant (Fig. 5a-b, curves (b)), the response deteriorates. Persis-
tent, lightly damped oscillations occur in joint and flexible mode variables (Fig. 7.a-e).
The difference between the two simulations (Fig. 6 and 7) is the magnitude of nonlinear

forces (Fig. 5, curve (a) and (b)). When the nonlinear forces are significant compared

13
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to other dynamic forces, the performance is unacceptably poor. Therefore, the nonlin-
ear effects during fast gross motions impose further restrictions on the performance of

adaptive joint variable feedback controllers with integral gain adaptation.

The mechanism through which the nonlinear forces affects the joint controller per-
formance can be desribed as follows with the help of the insights gained from the fine
motion analysis. If the nonlinearities are significant, the adaptive controller automati-
cally adjusts its feedback gains through integral adaptation (eqn. 4.6.c-d) to compensate
for the tracking errors caused by the nonlinear forces. Increasing the controller gains
through the adaptation rule eventually leads to very stiff joints. Linear analysis has
shown that very high joint stiffness relative to the flexibility of a given arm results in
very lightly damped dominant modes (Fig.3 curve (c), Fig.4.c). Thus, lightly damped
dominant modes are generated by the adaptive controller, while it is trying to compen-
sate for the joint tracking errors caused by the large nonlinear forces. It is important
to note that this mechanism is valid for the class of adaptive controllers that use integral

type gain adaptation.
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V. Conclusion

In fine and slow gross motions where coriolis and centrifugal nonlinear forces are
negligible, a given manipulator can be considered as rigid if the controller does not
attempt to reach closed loop bandwidth more than 1,2 of the lowest structural frequency
of the manipulator when all joints are locked (w},). In fine motion, the best possible
performance of joint variable feedback controllers may be up to 2/3 of w,; with damping
ratios greater than 0.707. However, it is equally important to note that the sensitivity
of the dominant eigenvalues to the variations of joint feedbaﬁk gains are highest in the
best performance region (Fig. 4.b, locations 8,9,10). Therefore, it may be difficult to
achieve (2/3)w}, closed loop bandwidth in a practical situation due to the modeling
errors. The fine motion analysis results obtained here based on a finite dimensional
time domain model agree very well with the previously reported results based on infinite

dimensional frequency domain models {Book et al. 75, Book and Majette 85].

The performance of an adaptive controller with integral gain adaptation is also shown
to be limited by the structural flexibility. While the adaptation algorithm increases the
feedback gains to provide good tracking in joint variables against the large nonlinear
forces (Fig. 5, curve b), the same increase in feedback gains will result in very stiff
joint hence persistent structural vibrations. Through that mechanism, the manipulator
flexibility presents a potential problem and limitations to the utilization of adaptive

controllers with integral type gain adaptation.
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Appendix

A.1 AMFC-Hyperstability Based Design

The basic idea of AMFC comes from the linear perfect model following control
(LPMFC) problem of [Erzberger 69]. AMFC attempts to asymptotically realize the

same objective of LPMFC for time varing systems.

Let the reference model be

Zn = AmZm + Bmlm (A.1)
and the plant dynamics be in time varing (quasi-linear) form
i, = Ap(2p )2, + By( 2, DY, (A2)
with the control algorithm of the form,
u, = —Kpz, + Kulim + Kmz, (A.3)
Clearly, as the plant dynamics ( Ap(z,, t), Bp( 2, t)) varies, the feedback gains must also

vary in order to match the dynamics of the plant to that of the reference model.

There are two basic assumptions associated with the current AMPFC designs [Landau
1979]:

1. There exist Kp, Ku, Km for every (Ap(zp, ), Bp(z,, t)) and the given ( Am, Bm)

so that at any instant LPMFC conditions of Erzberger are satisfied.

2. Variations of 4,(z,,t), Bp(z,,t) are slower than the speed of adaptation.

Assumption # 1 is an expected existence condition. AMFC attempts to converge
to the ideally correct values of feedback gains through adaptation as the plant dynamics
vary. Existence of such limit values is the first requirement for the convergence, let

alone whether the adaptation algorithm will converge or not.

Assumption # 2 is commonly made in most AMFC design methods. During adap-
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tation intervals, it is assumed that time invariant approximations of plant model is
accurate enough. Therefore, robot motions must be slow compared to the adaptation
speed of adaptive controller. Let us look at the origin of this assumption by going

through the derivation steps of hyperstability based AMFC design.

Letting Km = 0, without loss of generality [Landau 79}, the error dynamics is described

by
é = Ame+ [Am — Ap(2Z,, t) + Bp(2,, t) Kyl z,

(A4)
+(Bm = Bp(2zp, 1) Ku] tm

For ¢(t) — 0 as t — oo for all z,, u,, that belong to a piecewise continuous, bounded
class of functions, the coefficients of z,, u,, must be zero. By assumption # 1, there
exist K;, K; such that

Ap(2p,t) — A = Bp(z,, 1) Kp (A.5.a)
Bm = By(z,, t) K (A.5.b)
The goal is to develop adaptive control algorithms for K, Ky such that Kp, K, converge
to K;, K;. Convergence must be fast enough for the assumption # 2 to hold.
Let the feedback gains be
Kp = Kpn — AKp(e, t) (A.6.a)
Ku = Kun + AKu( e, 1) (A.6.b)

where Kon, Kun are nominal, and AK,, AK, are adaptive feedback gain matrices. Fol-
lowing the standard steps of hyperstability based design {Landau 79], it can be shown
that the equivalent hyperstable closed loop system representation of the error dynamics

can be expressed as (Fig. A.l)
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z2=-z,=[K; — Kpn + AKplz, + (Kun + AKy — K3lun, (A.T.¢)

where D is determined by using Kalman-Yakubovich-Popov lemma. In order to guar-
entee the hyperstability of the closed loop system (CLS), the AK,, AK, selection as

follows is sufficient (not necessary):

AKy(e, t)=/0 $1(u, t, Tydr + da(n, t) + AK,(0) (A.8.a)

AKy(e t) = /‘ Y1(u, t, 7)dr + ¥a(n, t) + AKL(0) (A.8.b)
0

where the most general conditions on ¢y, ¢, ¥1, ¥ are discussed in [Landau 79}, and
more specific forms are discussed in section A.2. AK,(0), AK,(0) can be chosen as
zeros without loss of generality since any nonzero values of them can be included in Kpn,

Kun nominal gains. Substituting (A.8) into (A.7.c)

t
z=-z =[A ¢:1( v, t, T)dr+ é2( v, t) + AK]) 2,

t (A.9)
+[ Wl b ) dr+ v O+ AKE
where
AK) = K; — Kon (A.10.0)
AK? = —K + Kyn (A.10.5)

The hyperstability of the feedback block (hence the CLS using Kalman-Yakubovich-
Popov lemma) is proven for AKJ, AK] constant case. That is where the assumption
# 2 comes from.

AKQ, AKJ constant requirement implies that (K; — Kpn), and ( Ky — Kun) are con-
stants. If K,., K., are chosen to be constant nominal gains, then K;, K; must be
constant at least during the adaptation intervals. From eqn. (A.5), this implies that
(Ap(z,,t), Bp(z,,t)) must be constant during the adaptation process. Equivalently,
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(Ap(z,,t), By(z,,t)) must vary slower than the speed of adaptation (which is the as-
sumption # 2).

Notice that the condition imposed by the hyperstability is not that K, K should be
constant, but ( K} ~ Kpn), and ( K — Kun). If nominal feedback gains are not constant,
but somewhat better in keeping the plant track the reference model, then assumption #
2 would not have been so restrictive. Choosing variable K,n, Kyn nominal gains based
on the decoupled joint control algorithm [Whitney 72] where generalized inertia matrix

plays a significant role, assumption #2 may be relazed as follows:

The previous assumption # 2 was:

The difference between the reference model and the closed loop plant
dynamics under constant linear nominal control should vary slower

than the speed of adaptation.

The new assumption # 2 is:

The difference between the reference model and the closed loop plant
dynamics under variable nonlinear nominal control should vary slower

than the speed of adaptation.

A.2 Generalized Inertia Matriz Based AMFC:

Application to Flexible manipulators

Consider the flexible manipulator model

[rrnnf,((eé,éf% ,::j,((;,;))] [ﬁ] * [f;] * [[lglé] * E’,] = [5] (4.11)
m.(0,6)f=u—[my8+f +g] (A.12)

u=g +y, (A.13)

me(0,8) 8= u, +[mepd+f +(g —3) (4.14)
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where §, is gravity compensation (feedforward). During the gross motion, nonlinear
terms and coupling from the flexible modes to the joint variable dynamics are treated as

a disturbance and to be taken care of by the closed loop system robustness.

Under the influence of a gravitational field, a flexible arm will deflect. Designing a
control system which uses the static deflections as the nominal value for flexible states

as opposed to zero would be more accurate.

Let the desired reference model be

g 0 I ][bn 0
= = =y A.15
El=145 AllE]+ ] e (4.19)
and the control law
0

——

u, = —Kpz, + Kyt + Kmz,,
(A.16)

= —Kpnz, + Kuntim, + AKp(e, )z, + AKy( e, t)

Nominal control Adaptation algorithm control action
The nominal control can be chosen in the form (as used by the computed torque method),

[Luh et. al. 80, Cetinkunt 87).

= (8, B.2) U + 10 (8, 6,0) [[c.‘s - Adém + [kis — Ao d,, + [kii]QO]
‘ (A.17)
— (8, 8) [leuld + [kl 8]

The nominal gains for the adaptive model following control algorithm based on the

generalized inertia matrix is given by

Kun = (8, 8,,) (4.18.0)

Kon = 08, 8,) [kl (el (4.18.)

Kmn = (8, 8,0)[[ ki) = Aol [ei] = A1) (4.18.)

If error dynamics eigenvalues are equal to those of the reference model, then k; = Ao,
¢ii = Ay = Kmn = 0. The m, (6, é,) term in the control algorithm is the key for
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decoupled control of joints. The adaptation algorithm should be designed such that

when added to the nominal control vector u,., the decoupled nature of the control is

—=pn?

preserved. The adaptive part of the control is:

t
AK, = / Fplg[Gplgp]Tdr+ Fpg_u[G,,g;;,]T (A.19.a)
[¢] s  p——

~ -

~ ti ! Adaptation;AK
Integral adaptation;AK,,; Proportiona apratton ”

t
AK, = / Fa Q[Gulﬁm] Td7'+ Fua E[Gu2ﬁfrJT (Algb)
0 N e

7

v Proportional Adaptation;AK .,
Integral adaptation;AK .,

Any positive definite matrix of appropriate dimension for Fp1y Fpa, Gp1, Gpa, Fui, Fuz,
Gut, Gu2 would be sufficient (but is not necessary) to guarantee the global asymptotic
stability of the control system with an appropriate output filter. For an n-degree of
freedom system with m number of inputs; Fpy, Fpay Fu1, Fuzy Gu1, Guz € R™™™, and Gy,
Gpz € R™*". There are too many design parameters which can be chosen arbitrarily
from a large admissible class. Neither the hyperstability based design nor Lyapunov
methods give any guidelines for the selection of the elements of these matrices. As
the system dimension increases, finding appropriate adaptation algorithm parameters

becomes a more serious design problem.

The proposed AMFC design method solves that problem to a great extent. Since
decoupled control calls for the use of the generalized inertia matrix, one should utilize
this fact in the adaptation algorithm to direct the adaptation algorithm in the right di-
rection. The following adaptation algorithm, which uses the generalized inertia matrix,

will guarantee the global asymptotic stability of the closed loop system.

AKy = AKpi + AKpp

t (A.20.a)
= / Dpi me(8,, én)ﬂ?—g dr +Pppfnr(Qov Su E;j;
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AK, = AKyi + AK,,p

t (A4.20.5)
= / Pus Th,.(ﬂo, éu)y.ﬁg dr + pupﬁlr(ﬂo: éat)_ﬂz

The generalized inertia matrix based AMFC algorithm described by (A.16), (A.18)

and (A.20) has the following advantages over previous algorithms:

1. The use of the generalized inertia matrix immediately solves the magnitude
selection problem of the adaptation algorithm, for it is naturally compatible with

the problem in the sense that it preserves the decoupled joint control.

2. The number of design parameters for integral adaptation is only 2, for integral
plus proportional adaptation is 4, no matter how many degrees of freedom the system
has. Thus the design problem of finding the good adaptation parameters becomes

much simpler.

3. Utilizing the generalized inertia matrix as an integral part of adaptation im-

proves the decoupled response of joint variables.

4 The use of variable nominal gains results in less restrictive conditions on the

applications of AMFC to nonlinear systems.
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Table 1
Manipulator model parameters Value
Geometric properties of uniform, slender links
(link 1 and 2 are identical)
Length of link i (i;) 2.0 m.

Cross-section area of link i (4;)
Cross-section area moment of inertia about z-axis (I,;)
Link material properties (Aluminum)
Mass density (p; )
Young’s modulus of elasticity (E;)
Resultant link inertial and structural properties
Mass per unit length (p;A;)
Mass of link i
Flexural rigidity of link ¢ (£;1,; )
Lowest natural frequency of the arm (wec)
(both joint are locked, and 6, =0 )
Joint inertial parameters
Joint 1 and 2 masses (mj;, mj; )
Joint 1 and 2 mass moment of inertia about the joint
center of mass { J;1,Jj2 )
Payload inertial properties
Mass (m, )

Mass moment of inertia about the center of mass (J,)

27

7.224x10™* m?
7.6190x10~% m*

2768.8 kg/m3
7.0x10+10 N¢/m?

2.0 kg/m

4.0 kg

533.33 and 5333.33 Nt.m?
3.59 and 11.35 rad/sec

0.0
0.0

0.0 to 2.0 kg.
0.0
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MANIPULATORS WITH COMPLIANT LINKS AND JOINTS
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NOMENCLATURE

jth generalized coordinate asso-
ciated with element 2i

number of generalized coordinates
associated with element 2i

total number of links

Jjth mode shapes for the deflections
of element 2/ in the x,;, y;, Z3; axes
directions, respectively.
homogeneous transformation mat-
rix from coordinate frame 2i to in-
ertial coordinate frame
homogeneous transformation mat-
rix from coordinate frame (2i + 1)
to coordinate frame (2i)

kinetic energy of the system
gravitational potential energy
elastic potential energy

spatial variable along element 2i
mass distribution of element
uniform mass distribution value
generalized coordinates associated
with joint angles between links
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bolic expansion of the dynamic model equations for
based on commercial symbolic manipulation programs (SMP, MACSYMA,
used as an example. Computational complexity involved in real-time coatrol,
ons, is studied on single CPU and multi-CPU parallel computation

q:

q;

(]x)Zir ([y)Ziv ([z)Zi

(Ax)li
intm

O TR

IZi—l

]

4
Mpryis.)

ynamic model of robotic manipulators with compliant links and
of formulation. This form of dysamic model is
f robotic applications. The final form of the equations
This allows one to identify the differences between
current knowledge on coatrol of rigid manipulators
g new control algorithms for flexible manipulators.

any desired manipulator is

generalized coordinates associated
with link flexibilities

generalized coordinates associated
with joint flexibilities

mass of element 2i (link )
Young's modulus of elasticity of
the material

shear modulus of elasticity

area moment of inertia of element
2i cross section about x;; vai, Z3;
axes, respectively.

cross section area of element 2i.
maximum rounded integer, €.g.
intm(5.2, 6.3)=7

mass element 2i — 1 (link J)
inertia tensor of element 2/ — 1 with
respect to a coordinate frame fixed
at its center of mass

generalized inertia matrix of all
joints

gravity vector, [g,. &, 8., 017
generalized mass matrix element
with row index (p, r), and column

index (s, )
. p-l
row index: Y. n;+r
L
. ' =1
column index: ) n; +¢

i=1
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1. INTRODUCTION

1.1 Motivation for the work
Computer controlled robotic manipulators are very

versatile elements of modern flexible manufacturing
systems. Their versatility stems from two main
characteristics: (1) mechanical reconfigurability, (2)
reprogrammability with the control computer. There
is an increasing demand for the utilization of robotic
manipulators in many manufacturing operations such
as milling, grinding, drilling, and deburring. Further-
more, manipulators are required to complete their part
of a job in shorter times, in order to reduce the cycle
time and thus improve productivity. This requires
manipulators to move faster and faster.

The compliance of manipulators due to links and
joints becomes a significant factor affecting the
precision of manipulation as the manipulators move
at high speeds and/or interact with large contact forces.
In order to operate within a desired precision range,
the computer control algorithms must account for
previously neglected manipulator compliance. Under-
standing and appropriately accounting for the com-
pliance in control is a prerequisite for the utilization
of manipulators in the forementioned high-perfor-
mance tasks. Therefore, effective means of modeling
the dynamics of manipulators, including the link and
joint compliance, is needed.

In general, there are two different reasons for
mathematical modeling of any dynamic system, and
for that matter, compliant manipulators.

1. Study and simulate a system before it is actually
built. For that purpose, the model should be as
accurate and detailed as possible to closely represent
(model) the actual system, so that the predicted
behavior will be close to the actual behavior of
the real system.

2. Model only the major characteristics of the system
so that it is simple enough to synthesize an
appropriate control algorithm, and implement it in
real-time. Explicit, symbolic form of the flexible
manipulator dynamics presented in this paper offers
important insights to the dynamic characteristics,
which is crucial for the development of an appro-
priate controller. :

1.2 Literature review

Dyamics and control studies of flexible manipula-
tors have concentrated on a single joint-singie link
example.! = The single flexible beam is modeled as a
Bernoulli-Euler beam and infinite dimensional vibra-
tion coordinates are truncated to a finite number of
modal coordinates. Joint flexibility is considered as a

torsional spring coupling the actuator rotor/gear

assembly to the link.

Previous work on the Lagrangian formulation based

dynamic modeling of multi-link flexible manipulators
can be classified into two groups:
1. Lagrangian—finite element based methods,
2. Lagrangian—assumed modes based methods.
The small vibration dynamic models of flexible
mechanisms and manipulators are developed about
known nominal joint variable trajectories.* The coupl-
ing effects of deformation coordinates on the joint
motions were neglected. This assumption is removed
in Ref. 5. Static deflection modes are included in the
model in addition to dynamic deflection modes. thus
improving the accuracy of model.® A two-link fexible
arm is modeled with a Lagrange-finite element based
method, and the performance of linear quadratic
regulators (LQR) with prescribed degree of stability 1s
studied.” In a recent work, a Newton—Euler formula-
tion and Timoshenko beam theory are used.® Stiffness
matrix accounting for combined flexibility of joints
and links is derived again for a two-link example.” The
main advantage of finite element based methods is that
they can be applied to complex shaped systems,
covering a wide class of problems. However. the main
disadvantage is that they do not give much insight to
the dynamic structure of the system.

A general Lagrangian-assumed modes based meth-
od is presented in Ref. 10. The equations of motion are
developed in recursive form to reduce the real-time
computation in inverse dynamic control. A symbolic
modeling method based on Ref. 10 is developed in
Ref. 11. Transfer matrices are used to develop linear
frequency domain model of servo controlled manipula-
tors.'? The method of 10 is attractive for the following
reasons:

1. Tt is an easy-to-understand conceptual approach:
therefore, utilization of the resuits by other re-
searchers in the robotics field will be at a maximum.

2. As a result of using an independent set of relative
coordinates in the kinematic description, the
dynamic model has a form similar to the rigid
manipulator models. Therefore, it provides more
insight to the dynamics of the system and may
suggest modifications of rigid manipulator control
algorithms for use on flexible manipulators by
exploiting the differences between rigid and flexible
manipulator dynamics.

2. PROBLEM STATEMENT
Explicit, non-recursive, symbolic modeling of robo-
tic manipulators with compliant links and joints is the
problem dealt with in this work. In order to accurately
study and simulate the behavior of the system, the
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modeling method should yield accurate models. Yet
simpler models conveying only dominant character-
istics of the dynamics are needed for successful
controller design. The Lagrangian-assumed modes
based method described in Ref. 10 fulfill these require-
ments. A recursive formulation is useful and critically
important in computed-torque control. However, the
non-recursive, direct dynamic form of equations is
needed for more general simulation and controller
synthesis studies. If the multi-cpu parallel computation
is needed in order to implement a detailed dynamic
model based controller in real-time, the recursive form
of equations is not suitable, rather, the explicit,
non-recursive form is desirable.

3. SYMBOLIC MODELING OF FLEXIBLE
MANIPULATORS

1. Flexible-arm kinematic description

Consider the kinematic structure shown in Fig. 1
representing a manipulator with serial links connected
by revolute joints. The elements of the manipulator
are numbered, and body fixed moving coordinates are
assigned as shown, where O,XYZ is the inertial
coordinate frame. 4 x 4 homogeneous transformation
matrices are used to describe the position and
orientation of one coordinate frame with respect to
another. Let qf,;=(qi;, G.2» -+-» 9xm) be the gen-
eralized coordinates associated with the degrees of
freedom (d.o.f) of element k. For instance, if element

Element No.2

Etement No.| /
e

X, -
/
-

————
/Inortial frame

Element No. 2/

kis a single d.o.f. revolute joint, then g, ; = gy, ifitisa
two d.of revolute joint, then qu;=(g.1» u2)" If
element k is a flexible link, q, ; is a vector of modal
coordinates, if the link is rigid (zero d.o.f.), q; ; is a null
vector.

The position vector of a differential element along
link i (element 2i) with respect to coordinate frame 2i
is given by (Fig. 1)

uhZI = [’Izn 0,0, I]T

+ 21 Q20X 255 Yaup 205 017 .
s

The second summation term in (Eq. 1) describes the
deflection of the element 2i at that point in terms of
modal coordinates approximately. The x; ;, ¥2ij» 22i.;
are the jth mode shape functions of the element in x,;,
Vai» 23 directions, respectively, ¢, ; is the generalized
modal coordinate, n,, is the number of modes used to
describe the deflection of element 2i. The absolute
position of this point with respect to the inertial frame
0,XYZ is given by

®hydn) = 0 Wiy uhu("l) (2)

where °W,,_, is the 4 x 4 homogeneous transforma-
tion matrix from coordinate frame 2/ to the inertial
coordinate frame (Fig. 1)t

Wy-1=A; Ay ... Agi-y. (3)

+Preceding superscript® will be dropped for notational simplicity.

Element No. 2/ +2

Element No. 2/+1

Fig. 1. Kinematic description of serial link flexible manipulators.
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Fig. 2. [Illustration of flexible link transformation.

Note thatifa link is considered rigid, the corresponding
link transformation will be a constant matrix. Approxi-
mations are involved in the definition of link trans-
formation, 4,;, as described below. If link i (element
2i) was a rigid, slender beam, 4,; would be (Fig. 2)

100 I
010 0

A= 1001 0 @)
000 I

The change in the position and orientation of the
(2i + th coordinate frame due to the flexible deflection
of link i is described by a differential coordinate
transformation (Fig. 2). This is an approximation in
the kinematic description. The approximation is valid
to the extent that the orientation change of coordinate
frame (2i + 1) due to deflections is small enough to
justify the following approximation:

sin 0%, ~ 6%, cos 03, =~ 1. (5)

where 6% is the equivalent rotation angle about an
axis of rotation to transform the orientation of (2/ + 1)
to that of the (2i+1) th coordinate frame. This
approximation is well satisfied in robotic applications.
Finally, the link transformation 4,,,

Ay= A'zt + dA’z& (3]
dAy, = Ay A M
Invoking the modal approximation for the deflections

0 —(82)z (Gy)Zi X2i
M = (8.)2 0 =02 Yu
—(0,)2s (652 0 Z2i
0 0 0 0
0 A (ey)zi'j xz:"j
=¥ g, | s O =Gy v
= 92, 22i.] 1 (8)
i=1 ! —(0,)2; (82a; 0 22,5
0 0 0 0

Hence
1 0 0 Iy
o010 0
Ada=19 0 1 o
0 0 0 1
0 “(Bz)u.; (Gy)Zi‘j X2i,)
3 0.)31.4 0 — 02 Yaij
+ 2 daij ( z)2i+d xJ2i.j 2i.j 9
f ! "(ey)zt.j (0,21, 0 22i,j ®
0 0 0 0

Ay, (fori=1,..., N), are joint transformations and
no approximations involved in their description.

3.2 Flexible-arm kinetics: Lagrangian-assumed modes
formulation

Once the kinematic description of the system is set
up, the next step in Lagrangian formulation is to form
the kinetic and potential energies and take the
necessary derivatives of the equations of motion:

d /oK oK oP
a}(’: )_‘ +— 0 Qpr: lp—l 2N’

aqp.r aqp.r 5qp r
{r=1,...,n}} (10)
where
N
K=Y K, —total kinetic energy (1)
i=1
N
P= P,; — total potential energy (12)
i=1
Q,., — the generalized force vector. (13

Here only the link dynamics are considered. Inclusion
of the joint dynamics into the mode! will be discussed
in Section 3.4. Kinetic energy of element 2i (link /)

Ku=1/2 j Tr{°hyi- *h3} ulm)dn (14)
°h2,{n) =Wy-y- hzt(ﬂ) (15)
0’-'2.('1) =Wy Yhydn) + Wy 2".12:(’1) (16)
where

. 2i-1 A, )
Wy = Z |:A1Az'--< 2 E—J> AZi—l:]qj.k
ji=1 k=1 qj_k

2-1 n oW
- Z Z' ( 2i- 1> i (17)

aqjk
2‘h21 2 Qz;,[xz. SL] y2u’ “2ij> 0] (18)

Substituting Eqgs (15) to (18) into {14) and summing
over i as in (l1) yields the kinetic energy of the
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manipulator links

N 2i=12i-t m n oW, _
N S

fm] g=] u=] t=] p=|

+ jil [Cajt+ C;i.j]qZE.j

LT awT_ L.
+ 2 21 Czt.jJSQZi.quE,k] T?qul qs.lqu.o>

j-l k=

N 2i—-1 oW, _
+Z Z i TV'( 2 1[2 CZIJqZAJ

i=1 s=1 t=1- 0q;, <
n n.
+121 kﬁl Czi.j.k‘Izuk"hi.jjIWzTi—1‘?;.:)

N
+172 3 TH W

l:jzl S Caijx21.i92i. ]sz 1) (19)

where

i
=J‘ ["21’ 0’ 0’ 1]T["2i’ Ov 07 1]/‘(’7)(1" (203)

CZU j [’72:’ 0 0 l] [xZup Y2 2i.jr Zij» 0)#(']}(1"
(20b)
Caiju ='[ [xzuv Yaijs Z21,j0 0]”
0

[x20js Yaijs 221y 0Jp(nOdn. (20¢)
The potential energy of the system is given by

N
P=Py+P¢=.Zl [(Pg)zi + (PJ]- (21
The gravitational potential energy, P,,
N 13
P,= .Zl J‘ g™ Wai— *haodmulmydn (22)
i=1 Jo
Substituting *h,, from (1) into (22)
N n
P, = _Zl gTWZE-l[mgzi + i q2i.jm82i.j:] (23)
i= i=
where
gT = [gx’ gy 92> 0] = [0’ 01 "9'811 O] (24)
i
mgs; =J. {n2:, 0,0, 137 u(m)dn (25)
0
[
mezu’:j- (x2i.js Yaij» Z2ijs 017 u(n)dn. (26)
0

Incidentally, me,; ; is same as the bottom row of C,; ;

in (20b). *

The elastic potential energy expression, considering
bending in the y, z, extension in the x, and torsion
about the x directions, is given by

_ N lyi azzzl 2 62)"2.‘ 2
Pe—i; 172 J; { [( z)z‘<‘a—r;—> +(1y)2i<__a_”7>
0xy &(6,),;
+(Ax)2i< n ) ]+ G(';)z:)( 2n ) }d"-

Noting the truncated modal approximations for the
deformation coordinates of the links [Eqs (1) and (9)]

N ny n
=12y Z: kz ki jxd2i. /920 (28)

i=] j=1k=1

27

where
kll k= (kx)Zi ok + (k))ZI Jok ( 2)21 Lok + ( t)2| 1 k (29)
[ ax 0%4;
(k214 = E(A,)z.( 2 ’)( = *) (29a)
Jo
2 02 ;i
(ki gk = E(Iy)2l( a):’z; J ( Yai k)d o (29b)
"‘zi 2
(k)zijx = L) Zx( 22 (@ zz”‘) (29¢)

o6
(kl)Zt jok = j G(Ix)‘h( axr)’b 1)( ( 0)")’2‘ k> n (29d)

Note that the k; ;,, term is the same structural stiffness
value that would be obtained numerically from finite
element methods.

3.3. Dynamic model: non-recursive form

For general purposes, such as simulation and
controller synthesis studies, the non-recursive dynamic
form of the model is needed. For computed-torque
(inverse dynamic) control, which is a specific control
algorithm, the recursive form is desirable.'® The
components of the dynamic model should be explicitly
separated out into inertial, centrifugal and Coriolis,
gravitational, and structural stiffness terms, so that
this information can be embedded in the structure of
the real-time control algorithm. For instance, the
generalized inertia matrix plays a critical role in
decoupled joint control of robotic manipulators. In
order to implement a real-time decoupled joint
controller for a given manipulator, the generalized
inertia matrix must be known explicitly so that it can
be used in control action calculations. In contrast, the
recursive formulation avoids such separations to
reduce the number of operations needed for inverse
dynamic calculations. The non-recursive explicit form
of the dynamic model is presented below. If the
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necessary derivatives are taken, and the terms gen-
d .
erated by a(ax/aq,,) and (0K/dq,,) in Eq (10) are

cancelled, the resultant system of equations can be
organized in matrix form,

[M(q)lq + Clg, 9 + Gl@+ [Klg=0 (30)

where

qT = [(ql.l’ d1,25---» ql.m)u (‘12.1: RN Qz,n,), cees (qZN.U
cees Qo]

One row of this matrix Eq. (30) corresponding to g,
may be written as

n,

N
Zl 21 M 1. sndss + Cpnl@ D + Gp.n(@)
R

n,

2N
+ Z 2 Kip.rris09ss = Qion (31

sw] (=]
where

p—1
Y n;+r=row index (p, ).

i=1

=1
Y n,+t=column index (s, ) in Eq. (30).

(=1

Elements of the generalized inertia matrix:

Mprisn = m{;.)n.(:.t) + mg.’r).u,n + m::?r).(s.n (32)
3 oWy, &
Mg s = i-_zmm Tr<_73_q_,—,_ Cyu+ jz(,l [Cay
)
12
+CT ),
n. " aWT_
+ 2 i CZi.j.kqll,qui.k] 3 2 1)
j=1 k=1 .
(32a)
aw, . L
mg:.)n.u.n = T’( 3, ’X [Cx.l + kz:x Cs.x,kqs.k]wf; 1)
(32b)

m3 = WP" 1 Cp.r.: u’pr— 1> §S=p
(P.r)i(8:8) 0 . s#p.

Elements of the nonlinear centrifugal and Coriolis
terms vector:

N 2i-12i-1 m N aZW‘,_
Cotd= % T % ¥ 3 T(———

i=imm s=1 w=1 t=1v=l aqs.xaqu.v
p+1 S+|)
272

x [CZi + 2 [Cauj+ Cliidais

i=1

(32¢)

n n
+ ,il f.‘l Czi.J.qui.jQZLk]
hs

Wi _
< o qq>
Gp.r

+2 g "z Cz.',j,kQZi.k"lziJ]

Jj=1 k=1

oWI_ . p—1 n, p—1 n
D )e L R R

aqs.t s=]1 (=] u=] v=l

W, .
x <__2__1_ [c,, + k‘;l c,,,.kq,,k}

045,09,

L. p_l n W, _
X WpT- l!.lqu,u) + z 2 T’(E;_I'l'
s,

s=] =1

X [2 Z Cr.r.kqp.k}mr- 1 ‘L,x)- (33)

k=1

Elements of the gravity vector
al oW, ny
Gpnl@ = z g —6;2—1 [mgzi + il meli.jqﬁ.jjl
= j=

tRtm p.r

+ gTu/p_ 1 mep.r' (34)

Elements of the structural stiffness matrix

k,.: forp=s

=¢ P 35

k(p.r)'(s.n {0 for p #5. ( )

Note some simplifying facts as follows

Corr Cpirsr Kpr s =0 for p odd (36a)
a—VE_—I-=O fors—l<p (36b)
04,

In symbolic expansion of Egs (32) to (35) for a
manipulator, these facts (36a), (36b) will be automatic-
ally utilized and will cancel out the terms that are
already known to be zero. Such capabilities are
conveniently provided by commercial manipulation
programs (SMP, MACSYMA, REDUCE).

Considering (35) and (36), and rearranging gen-
eralized coordinate vector into two groups associated
with joint and link flexibility

[q{» ‘hr] = [(QI.j’ qs3.j» L (92.js 9a.j - - )l (37)

The equations of motion (30) can be shown to have
the following form:

|:mr mrfjl{‘h} + {Cr('h’ 42, 4. 42) } + {Gr(qx’ q,) }
mrrf m, {42 Cr(q:, 92, 915 42) G,(qy, q2)

¥ [g Igf}{:z} - {8} (38)



Robotic manipulators with compliant links and joints @ S. CETINKUNT and W. J. BOOK 307

3.4 Inclusion of joint dynamics
Inclusion of joint dynamics into model involves
1. modifications of Eqs (20a—c), (25), and (26) by
redefining mass distribution of links,
2. augmenting a set of second order equations to (38)
as a result of joint flexibility and inertia.
DC motor-driven revolute joints whose rotor/gear
arrangement is elastically coupled to the links will be
considered. Joints can have more than one degree of
freedom. Elastic mechanical coupling between a joint
and link is modeled as a torsional spring. The following
assumptions are made regarding the joint assembly
mass distribution.

Assumption |: Rotational kinetic energy of each joint
about is own center of mass is only due to its own
rotation. Rotational kinetic energy due to rotation of
previous joints and links is neglected. This amounts
to neglecting terms in the order of gear reduction ratio,
which is typically in the order of 1: 100. Translational
kinetic energy due to both previous joints and elastic
deformations is taken into account.

Assumption 2: Rotor/gear assembly inertia is sym-
metric about the rotor axis of rotation such that
gravitational potential energy. and translational velo-
city of joint center of mass are independent of rotor
position.> This assumption is generally satisfied by
joint assemblies of most industrial robots.

Let f = (@, -+ a2 @15 -0 @Snsdr -

@-11s -+ AR 1))
be the generalized coordinates associated with joints
(Fig. 3). The relative motion between a joint rotor and
elastically coupled link is {(gzi-1.,— qaf_,,). The
contribution of the joint dynamics to the equation of

Fig. 3. Flexible joint-link assembly.

motion will be reflected through kinetic, potential
energies and generalized forces. The kinetic energy of
joint i (element 2i —1) is

Ky = l/2m2i—1(VG)§i—l “(Vo)ai-
+ 172wl o[- 1 Jwai-y (39)

where m,;_, is the mass, (Vg)y, velocity of center of
mass, w,;_, angular velocity vector, [I;;-,] inertia
tensor with respect to a coordinate frame fixed at the
center of mass of joint. From assumption 2, (Vg)zi-1
will be function of the generalized coordinates of
proximal elements and will not depend on ...
Therefore translational kinetic energy of joint i can be
included in the formulation by considering its mass as
part of the proximal link. This is accomplished by
redefining mass distribution of link (i—1)as

Mai-2 = o + My—1 0N — I3-2) (40
where
1 forn=1l-,

—l-))= 41
6(" 2i 2) {0 fO!’ "#!2‘—2 ( )
and evaluate Eq. (20a—c) with new definition of u as
in (40).

From assumption 1, wy;_, = 4¥!_,,
Kii-1= l/z(q(?—l.r)r[[zi— 1)(.11212— 1.re (42)
For all joints of the manipulator
N
K9V = . Z KZ(-I = 1/2‘1;[-]]"13- (43)
i=intm

p+l 3+1
The contribution of joint potential energy to the
dynamic model equations is

YV = VgU) + V‘U) (44)

From assumption 2, the gravitational potential energy
of joint i may be included in that of link (i—1) by the
evaluation of (25) and (26) with u(n) as defined in Eq.
(40). The elastic potential energy stored in elastic
coupling between joint and links is

Vo =1/2q, “qJ)T Diag{K,}(q, —qa). (45)

As a result of the contributions of (43) and (495)
equations of motion (38) is modified to the following
form:

[mr mrf]{‘lx} + {Cr(‘ln q2, 4y, ‘iz)}+ {Gr(‘ha ‘Iz)}
"‘;rf me [P CAaqy, 92, 4, 42) GAa,, 92)

fo o0 ol

[J3{ds} + [KJ{as —q.} = {u}- (46a, b)



308 Robotics & Computer-Integrated Manufacturing @ Volume 5, Number 4, 1989

Element No.!

Fig. 4. Two-link flexible manipulator example.

4. A CASE STUDY
The described modeling method has been applied

to a two-link planar flexible arm, with single d.of
revolute joints (Fig. 4). In this case study, only the link
flexibilities are considered, the joint flexibilities are not
included. The bending deflections of links are approxi-
mated with two assumed mode shapes for each link.
Mode shapes are chosen from the analytical solution
of a Euler-Bernoulli beam eigenfunction analysis but,
of course, could also be otained using a finite element
analysis program. The mathematical model is symboli-
cally obtained using SMP symbolic manipulation
program and simulated with a VAX-11/750 micro-
computer with the following objectives:

1. Verify that the model generated by the above
algorithm is correct,

2. Demonstrate the ease of changing mode shapes for
the given example manipulator, and study the effect
of using different mode shapes on the predicted
dynamic response of the system.

Model verification is supported by comparing the

response of the flexible arm model with that of rigid

arm model. Clearly, as the flexural rigidity, EI,, of the
links increase, joint angle response of the flexible model
should converge to that of rigid model. This is observed
as shown in Figs 5 and 6a, b. In the simulations of

Fig. 6, mode shapes corresponding to clamped-free

boundary conditions of a beam were used in the model.

Now, let us consider the case that one would like to

use a different set of mode shapes. The necessary change

required in the model is to re-evaluate the following
terms with new mode shapes (considering the fact that
selected mode shapes form an orthogonal set): {C; ;.

Cajw fori=1,2and j=k=1,2:(Cy,,, Ci1, Cyts

Angles (rad )

Time (s)

Fig. 5. Two-link rigid model joint angle responses.

Cazh (Cy11 Ca2.20 Catr Cazi2h (Kyna Kooz
Kay.1» Ka3.2)}, mey,; must be updated with the new
values of the fourth row of Cy; ;. Figure 7a-b shows
the same simulation case resuits of flexible model with
clamped- clamped mode shapes. The reason for the
faster convergence of joint angle responses compared
with those of the rigid model is that clamped-—clamped
mode shapes results in a stiffer model than clamped-
free mode shapes.

Computational, complexity of the resultant model
is studied for real-time dynamic control of flexible
manipulators. These computational results give us an
idea about the algebraic complexity of the explicitly
symbolic model and the computational power need
for real-time control. Since we have obtained the
equations in explicit, symbolic form, we could simply
equally distribute the computational load over a
multi-CPU architecture where each processor could
work independent of each other. The computation time
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Fig. 6. Two-link flexible model joint angle responses—clamped-
free mode shapes: (a) EI; = 10 Nm? (b) £/, = 100 Nm?,

for the inverse dynamics of the example flexible

manipulator (Fig. 4) is as follows:

1. Computer: VAX-11/750
(a) without floating point accelerator: 7 Hz.

(b) with floating point accelerator: 14 Hz.

2. Computer: 8 transputer (T414) configuration in
parallel computation architecture (estimated value,
not fully implemented): 80 Hz

It seems that real-time dynamic control of large

dimensional flexible systems can only be realized by

distributing the real-time computation load over an
array of processors, for the dynamic model equations

are, in general, too complicated to be handled by a

single processor at a fast enough rate for real-time

control. An explicit non-recursive form of equations
readily lends itself for multi-CPU implementation.

Since the equations are non-recursive, the computa-

tional load may be distributed over a muiti-CPU

system where the computational task of each processor
is independent of others. This is not possible using
recursive form of model.
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Fig. 7. Two-link flexible mode! joint angle responses—clamped-
clamped mode shapes: (a) £/, = 10 Nm? (b) £/, = 100 Nm?,

5. SUMMARY AND CONCLUSION

The elastic deformations are described by summa-
tion of a finite number of mode shapes which may
either be assumed or obtained from a finite element
analysis program. Link deformations are assumed to
be small enough to justify differential coordinate
transformation and linear elasticity theory [Egs (6) to
(9), and (27)].

The modeling considers all dynamic couplings
(linear and nonlinear) between deflection and joint
coordinates. Links are assumed to be slender beams.
Revolute joints with multiple degrees of freedom are
allowed. Joint flexibility and link flexibility are
included.

An explicit symbolic form of the equations is directly
useful for simulation and control studies. Computer
automated symbolic expansion of Eq. (32) to (35), and
(46) to obtain a dynamic model for any desired
manipulator structure is studied and an example case
is presented. The dynamic model is presented in an
analogous way to the dynamic model of rigid
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manipulators. This displayed the way link and joint
flexibility enter the model, i.e. C;; ;, C;; ;4 terms in the
elements of generalized inertia matrix. The mode shape
dependent model parameters are identified and chang-
ing mode shapes for a given model is simplified (only
Ciij» Caijur Kziju need to be re-evaluated for new
mode shapes).

The explicit symbolic modeling method presented
here has the following advantages:

1.

2.

improves the insightful understanding of dynamics
of flexible manipulators.

often equations must be simplified for real-time
control implementation. The importance of each
term can be determined by simulations, and the
unimportant terms can be climinated from the
symbolic equations.

. equations readily lend themselves to multi-CPU

paraliel computation for real-time control.

. changing mode shapes for a given model is very

simple.

. the approach is conceptually easy-to-understand

and similar to rigid manipulator formulations.
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Abstract

Dynamic equations of motion of flexible manipulators are
more complicated than those of rigid manipulators. The
number of equations of motion increases as the number
of modes to be included increases. It is difficult to un-
derstand the effect of flexible motion on rigid motion via
recursive forms of the equations of motion for multi-link
arm even if it were efficient. On the other hand, the closed
form of the equations of motion is useful in understand-
ing the characteristics of model parameters. However,
the equations resulting from existing closed forms are too
complex to serve this purpose. Therefore, a method which
is structually well organized and computationally efficient
is developed.

1 Introduction

One of the primary concerns in manipulator dynamics is
computational efficiency. For the efficient form of the ma-
nipulator dynamic equations, various recursive formula-
tions for rigid manipulators using Lagrangian {6], Newton
- Euler (10}, or Kane's method [4], have been proposed.
For flexible manipulators, Book used the method of ho-
mogeneous transformation matrices. He first considered
small linear motions of a massless elastic chain [2] and
later considered distributed mass and elasticity [3]. When
the recursive formulation is used, the structure of the dy-
namic model, which is quite useful in providing insight for
designing the controller, is destroyed. To overcome this
problem, several programs for rigid manipulators have
been developed to derive the equations of motion in sym-
bolic form. Symbolic formulation has the advantage of
allowing the identification of the distinct components of
the model. Mai2za-Neto [11] derived symbolically the
equations of motion of a two link flexible manipulator
by hand. A systematic method to symbolically derive
the nonlinear dynamic equations of multi-link flexible ma-
nipulators was presented by Cetinkunt [5]. However, he
did not explore the structure of the terms in the flexible

manipulator model. The conceptual framework leads to
design guidelines for simplifying and reducing the nonlin-
ear kinematic and dynamic coupling of robot dynamics.
The physical interpretations and structural characteris-
tics of the Lagrangian dynamic rigid manipulator model
was drawn by Tourassis and Neuman [13,14]. The mass
matrix is deduced from the masses and center of gravity
of links. In turn, the centrifugal and Coriolis coefficients
are derived from an inertia matrix through the Christoffel
symbol. However, the method of deriving mass matrices
is not efficient. Asada [1] presented a method which uses
the Jacobian matrix to derive the mass and gravity ma-
trices. This method is found in this paper to be very
efficient in the modelling of a flexible. manipulator. Low
[9] used the Jacobian matrix in deriving the equations of
motion of a flexible manipulator. However, the link defor-
mation was not represented in the assumed mode method
and the structure of centrifugal and Coriolis force was still
complicated and hard to understand.

In this paper, a Lagrangian method is used to derive
the equations of motion for a flexible manipulator. The
Jacobian matrix is used to derive the mass and gravity
matrices. The Coriolis and centrifugal coefficients are de-
rived from the mass matrices using the Christoffel symbol.

2 Derivation of Equations of Mo-
tion .

The total kinetic energy of an elastic link can be written -

as
R
T=§Z/° T pi Aidzi

=1

(1)

where ¢ is the velocity vector of any point on the elastic
link and p;, A;, [; are the density, the area, and the length
of link i respectively. The velocity vector can be expressed
by Jacobian matrix and generalized coordinates.

F= iél {(2)



Substitute (2) into (1),

1
T = ;Zf (J Ql Jq))plA dz:
. o
= 52 / IT Jip. Aidzs)g;
=1
1 tfl n
= '2'22 i79i4; (3)
where . -
M,J' =‘/o J?J,pgA;dz; (4)
The potential energy due to gravity is
y-Z/ g "JPJAJd“J
=1
= Z m,-gTrj (5)
=1
where g is the 3 x 1 gravity vector and
: . L :
m; = /0 PjA;dz; (6)
The potential energy due to elastic deformation is :
1 L 8 u; Quy
Ue =< 1 -»J - dz‘ 7
22./(; E“a > dz; (M

=1

where E is Young’s modulus of elasticity, and I is the area
moment of inertia. u is the elastic deflection which can
be expressed as follows.

%= Z ¥ijbij
i=1

Therefore, the elastic energy can be rewritten as (9)
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Lagrange's equation is
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Substitute the kinetic energy (3) into (11),
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- where ](') is the i th column of Jacobian matrix J,.
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The Lagrangian equations of motion can be written sym-
bolically as follows.

n m
Y Miyd+ Y Kipbig+
=1 =1 :

(18)
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(19)
where q is the vector of generalized coordinates, M is the
generalized mass matrix, K is the elastic stiffness matrix,
C is the coefficient matrix of Coriolis and centrifugal force,
G is the gravity force, 7 is the vector of generalized forces.



3 Illustraive Example

In this section, equations of motion of a planar two degree
of freedom flexible robot are derived as an illustration. In
the conventional two serial link robot, there is a difficulty
in measuring the end point slope a of link AB as shown
in Fig. l.a. In order to overcome this problem, the flex-
ible robot with a parallel link mechanism is developed
as shown in Fig. 1.b. The angles 6 and 6; are equal
because link AD and link BC remain parallel. In this
paper, equations of motion of only link AB and link BC
are derived because those of the other link can be derived
similarly.

Mass Matrices
and Gravity Vectors

3.1

Deformed position vectors of each link in Fig. 2.a and 2.b
are described as follows:

71 = (z1cos8; — uysiny )i + (1 sinfd) + vycos6y)j (20)

7y = [l1€086) — u1.sinby + T2c08(6; +63) — u2sin(6) +6;)]i

+ [l15in6) + uy.cos6y + z28in(6) + 62) + uzcos(6; + 62)1
(21)
where i and j are unit vectors along the inertial frame,
Xo and Yo. The elastic deformation, u,, can be expressed
by finite series of mode shape functions which satisfy as-
sumed boundary conditions multiplied by time dependent
general coordinates. Suppose that the amplitude of the
higher modes is relatively small compared with the first
mode, two modes per link are considered in this model.

ui(z1,1) = Y1(z1)€n () + vra(21)€12(2) (22)
us(z2,t) = a1 (72)En (1) + ¥iaa(22)€22(t)  (23)

The elastic displacement of the end point is
e = w1 {ly,t) (24)

Velocity vectors are related to general coordinates by the
Jacobian matrix {1}.

- 71 = Jidn (25)
72 = Jagiz (26)
where
Q12 = {61, 62.611, 612, 621, €22} (27)
I = ¢y =25 0 —enS —vi2Gr 0 0
—Uy Ny - 1‘1C1 0 1 (o vi-C; 0 0
(28)

145 - 4.Cy —uaCia — 22512 —uaCya — 22512

J3 = +11 Cl - 1[1¢51 - ‘U-251: -+ ;r-_.Cm . —u;Slg -~ 13013
~y11eS1 —¥12eS51 —¥aSiz —v¥Se (29)
Y1.C1 Y1201 ¥aCiz ¥22Cr2 -

The Jacobian matrix, J; and J3, can be easily derived by
the MJac function of SMP(Symbolic Manipulation Pro-
gram) [12]. Using the Jacobian matrix, mass matrices and
gravity vectors are calculated by the following equations;

2,
M, =) /; pAJT Jdz,

1=1

(30)

2 1;
{c.}:Z/ p, A, J;[2,d)dz; (i=1,2)  (31)
y=1 o ’

The second row of J; is used in the gravity vector since
the gravity is acting in the negative direction of ¥5.
Elements of mass matrices and gravity forces are:
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13
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The integrals in equations are labeled as follows.

where

m, = /.x p,'A,'dz, (34)
o

i
"”iltt = / zivaidzr (35)
o

I8
J:=/ zip Adz; (36)
o]
i
LM, =/ ¥u5 ()P Aide, (37)
V]
i,
AM;, =/ z¢,5(zi)pi Aide; (38)
1]
1,
NM; = / %5 (zi)ps Avdz, (39)
0

where [;. is center of mass of link i.

The first three terms are parameters which are related
to a rigid motion. These are called zeroth, first, and sec-
ond moments of inertia respectively. On the other hand,
the last three terms are parameters which are related to
a flexible motion. LM;; and AM,; are called the modal
momentum coefficients and the modal angular momen-
tum coefficients respectively [7]. The physical meaning
of these terms is not easy to explain. However, these are
have the following properties [7].

(-]
S IMi=m (40)
=1
> LM;AM, = ml, (41)
=1
Y AM}=1J (42)
1=1

N M;; are used for the normalization of mode shape func-
tions. Generally, these coefficients have been chosen equal
to 1 or the total moment of inertia of the link.

3.2 Centrifugal and Coriolis force

The velocity coupling matrix which are consist of coeffi-
cients of centrifugal and Coriolis force can be derived from
the mass matrix using the Christoffel symbol [13,14].

. 1 M, '6M,- oM, |
Ci(i) = o {Got + 5o~} ()

Cji(f) characterizes the effects on link i which are caused
by the coupled velocities of link j and k. The diagonal ele-
ments for j = k are the coefficients of the centrifugal force.
The off-diagonal elements for j # k are the coefficients of
the Coriolis force.

In the flexible arm dynamics, the states can be parti-
tioned into the rigid states # and the flexible states 6.

2 8 2 2 2 €
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Therefore, each velocity coupling matrix can be written
as follows:

Pali)= G+ FE - Z8Y (ae)
Quli) = 3{G02 + Tk - Y (an)
Bali)= {50+ TRy qa9)
Qnti) = G2+ FE - T (s0)
Bati) = {500+ 2 -0y (s

Because mass submatrix D,; are not the function of elas-
tic state §; in equation (29), fijk(i) is eliminated. The
number of independent centrifugal and Coriolis coeffi-
cients also can be reduced using the symmetry and the
reflective coupling properties [13,14].

Cix(i) = Cij(3) (52)
Cjr(i) = =Cji(k)  for (53)

The reflective coupling property that Tourassis and Neu-
man finds for rigid arms is not always valid in the flexible
case. Therefore, even though the symbolic manipulation
program can be used as the computational tool, the sim-
plication procedure must be completed under the super-
vision of the analyst.

Using these properties, the following independent terms

i<k

are drawn from elements of the velocity coupling matrix ~

Cj(i).

L

di = | {(1meCa =1 S2)zy = (w152 + 1 Ca)uzpr Ardzs}
O .

1

dy = Yiqnp1di1dz;

12
+¢11e[/ (5222 4+ Caug + vy, )paAadas)]
o

0
1a ’
dz; = ¢12e/ (S2za + Cauz)paAadz
)

13

dy = P21(¥21921 + ¥22¢22)p2 Aadz
P}
dyy = Ya2(¥21921 + ¥22922)p2A2dzy  (54)
I3
ds; = Yo {(¥21g21+¥22¢22) + {11 C2~11 S2) } p2 A2dzs
0

s
dsy =

Va2 {(¥21921+¥22922)+(u1.Ca =11 52) } p2 Ardzs
0 .

1z

der = Y1152 Y2103 A2dT,
0

iz
dez = %1:52/ VYa2p2 Azdz
o

13
dn = ’1’1::52/ P13 A2d2
)

h
dr2 = ¥12¢52 [ Ya2p2Ardzy
0
Using these coefficients, the velocity coupling matrix for
the two link example can be simplified as follows:

0 dy day dax dg de
di 0 0 dy de
0 0 0 0
Cc(1l) = 0 0 0 (55)
0 0
0
—dy 0 d3y ds ds; ds>
0 0 0 d51 d52
] 0 —dg/2 =—de/2 -
cl) = iy Tanla | 1
0 0
" 0



—dgl —d31 0 0 —den -d62
~dy 0 0 —da/2 -de/2
0 0 0 0
c@y= |- . 0 0 0
0 0
0
- - (57)
—dys —-daz 0 0O —dn —dr
—dzg2 0 0 -dn /2 —-dr/2
0 0 0 0
C(4) = 0 0 0
0 0
0
(58)
[ —dg  —ds de1 dy 0 0]
—ds; de1/2 dn/2 0 0
0 0 0 0
C(5) = 0 0 0 (59)
0 0
e 0 -
[ —dy; —ds2 dez ds 0 0]
—ds; de2/2 dr2/2 0 O
0 0 0 O
c(6) = 0 0 0 (60)
0 0 i
- O_-

4 Conclusion

Mass matrices and gravity vectors are directly derived
from the Jacobian matrices which are easily calculated
from positon vectors by SMP. Because the deriving pro-
cedure is simple, it reduces the possibility of producing
the incorrect equations. Furthermore, this form can eas-
ily expand the model to higher modes expanding elastic
deformations as series of mode shape functions. The coef-
ficients of centrifugal and Coriolis force are derived from
the mass matrices by Christoffel symbol and are simpli-
fied by using several structural properties. The resulting
velocity coupling matrices have a structure which is useful
to reduce the number of terms calculated, to check cor-
rectness, or to extend the model to higher order. Some
procedures for deriving the velocity coupling are not com-
puterized. In the future, an even more systematic deriva-
tion method may be possible.
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CONTROL OF A SMALL WORKING ROBOT ON A LARGE
FLEXIBLE MANIPULATOR
FOR SUPPRESSING VIBRATIONS

Soo Han Lee
Wayne J. Book
The George W. Woodruff School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

The vibrations of flexible manipulators have been usually damped out by using the.
joint actuators. The joint actuators must have a larger bandwidth than flexible vibrations.
This means that the additional use of joint actuators has larger torque per link weight ratio
(or actuator weight per link weight ratio) compared to a rigid link robot. The high weight
ratio degrades an advantage of flexible manipulator, light weight, especially when a flexible
manipulator is long. A simple solution to decrease the weight ratio is to use joint actuators
for only nominal position control. The vibrations are suppressed by a passive damping
treatment or momentum exchange devices that increase total weight. A flexible
manipulator at Georgia Institute of Technology gives another solution, that is, damping out
the vibrations by using inertial forces of a small rigid robot carried by large flexible
manipulator.

An approximately human scale three degree of freedom research robot designated
SAM (Small Articulated Manipulator) can change the direction of inertial force by
changing joint angles and joint torque directions. The direction of the inertial forces affects
the vibration suppression effectiveness. The most effective angles and torque directions of
the small robot depend on the mode shape of a large flexible manipulator designated
RALF (Robotic Arm, Large and Flexible). Also the mode shape of flexible vibrations
varies with the angles and joint torque directions of the large manipulator. The issues
related with the angles (nominal position) and torque direction (inertial force management
scheme) are addressed.

A small robot carried by a large flexible manipulator suffers from relatively large
acceleration and nonlinear forces. The controller of a small robot should keep the robot at
a nominal position and follow a predetermined inertial force management scheme for
damping the vibration of the large manipulator. The control law should be simple and
effective in order to overcome the speed limit of computations. Studies on this control
issue are also addressed.
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SMALL MOTION EXPERIMENTS ON A LARGE FLEXIBLE ARM
WITH STRAIN FEEDBACK!

B. S. Yuan
American Semiconductor Equipment Technologies
Woodland Hills, California

J. D. Huggins !
W.J. Book
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ABSTRACT

Initial experiments on state space feedback control of
a large flexible manipulator with a paralletl linkage drive
are described. A linear controller using joint angle and
strain measurements was designed to minimize a
quadratic performance index with a prescribed stability
margin. It is based on a simplified model that accounts for
the constraints of the parallel linkage kinematically rather
than through constraint forces. The results show
substantial improvement over a simple P.D. joint control.

INTRODUCTION

A large, two link flexible manipulator designated

RALF (Robotic Arm, Large and Flexible) is the subject of

thodeling and control résearch at Georgia Institute of
Technology. It is hydraulically actuated with the second
joint powered through a parallelogram linkage. This drive

linkage is representative of drives found in many large |
articulated arms. It allows the substantial weight of the i

actuators to be located near the base hence reducing the
weight that must be supported and the inertia that must be

moved. A parallelogram arrangement allows the drive for -

the second joint to carry some of the bending load on link
1 as well. Most control researchers have avoided this
practical configuration, especially when the links are
flexible for the more tractable direct drive, serial link
problem. The direct drive concept has not been employed
for large articulated arms in earth’s gravity and may never
be practical in that application.

The difficulty of research with the parallelogram
mechanism is the conceptual difficulty of modeling a
system with nonlinear large motion dynamics, distributed
flexibility, and constraints of closed kinematic chains. One
valuable contribution of the research described here is the
determination of a simple yet adequate model for RALF
and other arms of this type. The second contribution is

1This work was partially supported through NASA Grant

NAG1-623 and the Computer Integrated Manufacturing
Systems Program at the Georgia Institute of Technology.

the analytical development and experimental testing of '

simple linear state space controllers.
DYNAMIC MODELING

Dynamic models for RALF have been developed and
compared to experiment as reported in Lee, etal. [1].
That mode! included an assumed modes approximation
for the link deformation and algebraic constraint
equations representing the closed chain topology of the
parallel actuating link. A simpler model is used here as
the result of two key assumptions. First, the kinematics of
the deflection assumed allows no beam extension. Hence
the distances between pin joints in the parallelogram
remains constant and deflection of the lower or actuating
link causes no rotation in the upper link. The thicker
cross section of the upper link between the pins (points E
and F in the schematic of Fig. 1) makes reasonable the
second assumption: rigidity in that segment of the upper
link. Consequently, the segment E-F remains parallel to
the same line while deflections rotate the lower link. This
is in sharp contrast to serial link arms. These facts will
now be incorporated into the description of the arm’s
motion.

arms is readily described by 4x4 transformation matrices.
In particular, consider the two link arm of Fig. 1. The
transformation matrix between link-fixed coordinates and
base coordinates is composed of joint transformation
matrices A; and flexible link transformation coordinates
E,. The transformation to a point located a distance I,
along the beam from the second joint is
T,=AE A E,. (1)
The point on the second link is located at *r; in the link-
fixed frame or at point r, in the base frame, where

As proposed in Book [2], kinematics of serial flexible |
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The constraints of the parallelogram mechanism on link
two can be readily incorporated in the rotation matrix of
E,. In general (for small deflections)

mofo a6 o ulfloo o
i zig “yig i
Ei-g R e I S
T Sy O Myl o 01,
o0 o o o |looaoa
where

8; is the time varying amplitude of the shape function,
u;;, vi; and wy; are the x, y, and z components, 1‘
respectively, of the shape functions, !

9,ij» 8y and 8., are the small rotations of the body-
fixed coordinate system at the point of interest,

m; is the number of shape functions needed to represent
the flexible kinematics to the degree of accuracy needed,
and ; is the distance to the point of interest along the links
neutral axis, which is L, the length of the link, when the
point at r, is not on link i.

In the special case at hand the rotations 041 8yyjp and
8.); are zero as seen by link two. Only transiations of the
tip of link one are experienced by link two.

It should be made clear that the model still accounts
for rotations of the beams in the equations, but that the
kinematic constraints prevent those rotations from
propagating to link two in the ideal case of the joint
rotational axis on the beam neutral axis. Comparing the |
drawing and the schematic of Fig. 1 will show a substantial
offset in the laboratory hardware. This is an additional
approximation in the dynamic model.

Given the above description of the arm kinematics,
8.4 the derivation of the dynamic equations of motion can
proceed using Lagrange’s equations substantially the same
as described in Book [2]. The method shown here for two
links can be extended to additional parallelogram
actuated links.

It is desirable to account for the cumulative
compliance of the actuating link, pin joints, and hydraulic
fluid in the actuator. Including a simple massless spring
effectively accomplishes this. One end of the spring is
attached to the second link and the spring compression is
prescribed by the actuator displacement. Lagrange’s
equations can accommodate this model simply with an
additional term in the system kinetic energy. The method
employed here differs somewhat, however, The actuator
force, instead of displacement, is chosen as the input. The

force acting through a massless spring is instantaneously
felt by the link and the spring is of no direct consequence.
The actuator spring is of consequence in the selection of
assumed mode shapes for the links, however, as described
below.

The transformation matrix E; contains deflection
displacements and rotations as a function of position ;.
along the link. The spatial dependence of these:
deflections, their shape, is theoretically required only to!
meet modest restrictions at the link boundaries in anj
infinite order model. A finite element approach was used|
in this research to determine the shapes from detailed
models of the link geometry and material properties. Ofl
crucial importance to the accuracy of a low order model!
are the boundary conditions applied in deriving thej
shapes. Equivalent springs were used to represent thet
actuators for both links. Equivalent masses and inertias|
were also placed at the end of each link, yielding boundary|
conditions at 3 points on each link: at each end and where!
pinned in the middle. At these points on

Link 1: pinned, spring, inertia

Link 2: pinned, spring, mass
The final nonlinear equations derived by Lagrangian or
other equivalent method is of the form

M(x) x+ H(X,x) x + K x = Q (4)
where \
x is a vector containing the joint angles §; and the
deflection amplitudes §;;

M is the inertia matrix
I
H(x,x) contains the nonlinear velocity dependent functions:

K is a spring constant matrix
Q is a vector of actuator torques.
CONTROL ‘

Using the model developed in above, an LQR
(Linear Quadratic Regulator) controller was developed }
for RALF. The points about which the model was|
linearized are 8, = 0* and 8, = 90°. The LQR controller |
utilizes strain feedback from strain gages mounted near
the base of the links to control vibrations of the links.

The linearized form of the equations of motion is:

M (x) + [KI{x) = {Q)
where x, M, K, and Q are given by:
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611 1949.92 12.47 317.74 2.365
(i)-* fl L; (M- 12.47 .0998 0 0
02 317.74 0 317.74 2.365
62 2.365 0 2.365 1.786 E-2
. g
() 6124860 © 0 0 /
bl
10 ¥ 0 157.02 0 0 ‘
@=1, |5 (K] = |
2 0 0 1814400 0 }
0 J 0 0 0 60.94
Note that: 8, = 0y + 6,
8, =8y + 0,

where 8y = 0° and 8, = 90°. See Figure 24.
writing this in state space form yields:

p d X 0 If x 0
Em'd‘t’[iJ'[-M'lk 0]{2}*[M"o”‘

For this LQR controller the following quadratic cost
criteria was used to obtain a prescribed degree of stability:

t
PI -% J et 1x" px + u'Raj dt
0
with e, P, and R given by:
TS £
PRI
a =2 -
540 o
Rw-1.E-5 [ 0 1 J
a4y Do
Bievs ¢
W 11ELL 0 o ...... 0
0 1
e, 1€11
N 1
- 1
."0"' ]

and u = -F(x - x,) where x, is the reference state variable.
Notice the large values in the {Q] matrix corresponding to
the joint position variables. Two factors influenced these
numbers. First, the system model was derived using
inches as the unit of length. This resulted in very small
numbers when [M]-! is formed. Secondly, the hydraulics
actuators are very stiff and inherently have a high gain.
The large numbers in the [P] matrix compensate for these

factors. The small numbers in the [R] matrix also resulted
because of the system of units used in deriving the model.

Using a controller design software, CTRL-C, the
LQR feedback gains were found as follows:

Fa 2.8161E7 1.3518E4 3.1388E4 8.3383E3 2.8013ES
1.5035E5 -4.4833E3 3.0015E7 1.0065E4 4.6735E4

1138.4 4.483E4 248.226
-12.9825 7.7616E4 268.2405

This yields a state space system of the form:

X = (A - BF)X + BX,

It should be mentioned here that the feedback gains found
by solving the LQR equations do not result in absolute -
values. What is important is the relative magnitude of the
gains. When the controller was implemented, the gains
were scaled to match the physical capabilities of the
system.

The controller for RALF was then implemented on a
Microvax IT computer with a sampling rate of 8
milliseconds. The language used is FORTRAN. All path|
planning is calculated before movement starts. The!
following graphs show the results of the LQR controller:
compared to a controller that does not utilize strain
feedback, ie., a controller using joint position feedback:
only. The LQR regulator uses differentiation and filtering|
to estimate all rates. ‘

Figure 3 is a plot of the strain in the lower link when:
the manipulator is subjected to a step input. Figure 3-a.|
shows the strain in the lower link when the controller usesi
joint position feedback only. Figure 3-b. is a graph of the|
strain in the lower link when subjected to the same input;
but using the LQR controller with strain feedback instead.:
As can be seen in Fig. 3-b., the vibration amplitude in the
lower link is reduced much more rapidly when the LQR
controller is used.

Figure 4-a. shows the strain in the lower link when
the controller uses joint position feedback only. Figure 4-
b. is a graph of the strain in the lower link when subjected
to the same input but using the LQR controller with strain
feedback instead. Again the vibration amplitude is
reduced much more quickly when the LQR controller
incorporating strain feedback is used.

Figure 5-a. shows the strain in the lower link in
response to a disturbance to the manipulator’s structure.
In this case, the manipulator’s position is being
maintained by the controller that uses joint position
feedback only. Figure S-b. shows a graph of the strain in
the lower link when subjected to the same disturbance
when using the LQR controller to maintain the
manipulator’s position. Much better disturbance rejection
is seen in Fig. 5-b. than in Fig. 5-a.

SUMMARY AND FUTURE WORK

It is seen from these experiments that a suitable
controller utilizing strain information from the links can



successfully damp out the vibration in the manipulator.
The LQR controller is a good example of these. Since the
structure’s dynamics are non-linear, a better controller
might be one that incorporates some nonlinearities and
adapts to changes in configuration. Work on this aspect is
underway.
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Figure 1. Robotic Arm Large and Flexible (RALF);
Actual and Idealized.
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Figure 2. Variables in RALF Model
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DECENTRALIZED ADAPTIVE CONTROL OF A TWO DEGREE OF FREEDOM
FLEXIBLE ARM

B.S. Yuan WJ. Book

1.D. Huggins

School of Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0405

E

A robust adaptive control is derived by signal-synthesis
methods for a Bght, flexible two degree-of-freedom manipulator, The
controller for cach joint is decentralized, using measurements of one
joint's position as well as one link’s strain. The coupling to otber
dynamics is treated as a bounded uncertainty in the model A stability
proof has been developed and is outlined. Performance of the advanced
moﬂuumpredloalmwQudnncchnhmr(LQR)ndlo_
an independeat joint control. Both simulations and experiments are
presented. The cases of payload variations are considered at this point.

L INTRODUCTION

The industrial robotic arm has been designed for rigidity by
implementing short ink lengths and heavy steel coastructioa in order to
achieve positional accuracy and stability of the robot’s movemeat. The
resulting disadvantages include slow motion speed, low payload to -
weight ratio aad high power consumption. To overcome these issues, a
robotic arm with a light-weight structure poses an important solutioa for
the designer of the next generation of robots. The main problem with
Eght-weight structures is in the resulting flexible vibrations which are
aaturally excited as the arm is commanded to move or is disturbed. An
effective control is onc key to moving the flexible arm with high-speed
motion and fast vibration settling time [1,2].

In order to demonstrate the coatrol system of a flexible arm, a
large ficxible manipulator arm, designated RALF (Robotic Arm, Large
ndFluiblc).nmdmtheexpermenLMroboucmmme
independent joist PD (Proportional-Derivative) controller, which is
mmbeﬂabmlheLynpmanmludﬂotbedﬂew
of an advanced coatrol algorithm using a decentralized scheme. In other -
words, each flexible link can be considered as a subsystem of the overall
system. Under coasideration of the uncertainty for interconnected terms |
of cach subsystem, the dynamic system of the manipulator motion is
illustrated to be bounded by the reference model, which is chosea to be
stable. The possibie magnitude of the uncertainty is presumed known,
making the statistical information for a stochastic approach unncccssary
(3). Thus, the feedback systems are also imsensitive to other .
wncertaioties such as friction, measurement error, backlash and etc. ‘

Certain matching conditions are assumed to guarantee that the
uncertainty vector does not influence the dynamics more than the
muolinplndoum.msigml-symhedstdamﬁmappruchmed
here results in a robust design that reduces the burden of on-line
mpmm.wﬁkunuhuympmwﬁhtheupdnemﬁouldhvﬂ
faster convergeace rate and smaller steady-state error.

A

|

"controller to the independent joint PD controller and an LQR

controller. The sensitivity of the control performance to variations in
payload ranging from 0% to 40% of the arm structure is considered.

IL DYNAMIC MODELING AND INDEPENDENT JOINT
CONTROLLER

To specify the robot coatroller, the dynamical equations of .

" motion need to be developed for the system design [5). A rigid arm will

where

lnvecnegenenliudcoordimaperjoim,bmaﬂeﬁblclmmayhv:
many. Transformations representing the joint coordinates and link
deflection can be used to represent the position r; of a point. The
velocity can be related to the coordinate derivatives as [7]

- J.X

T R (2.1)

r is the velocity vector in the Cartensian coordinates,

A is the 3xL matrix of Jacobian,

X represcats the time derivative vector including i joints,
say, qp, qb...q,, and L-i time dependent flexible coordinates.

The kinetic cnergy of the n-link flexible arm is then:

KE = 3 > I r,'r, dn
11nk1

1e=1

(2.2a)

-% } iiT ” .117.11 am]i(1
link1

t=1
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It is mentioned that the inertia matrix M, a function of
position, is symmetric and positive definite. The kinetic energy of rigid
robotic arms have the same structure as (2.22)

Without the effect of gravity, the potential encrgy of the
flexible arm which includes the clastic joint and strain cnergy is

expressed as

PE = (2.3)

Xxx,

N -

where  _
X = X - Xo, Xo is the unstretched coordinate at the “home®

K is the stiffness matrix, which bas the corresponding value as
described in Ref. [7].

By applying the Lagrangian formula, the equation of motion in
the Matrix-Vector form is:

M MX+HX+Kk=0Q, (2.4)

where
Q is the generalized force, which acts on the joint q only.
H represents nonlincar terms and (M - 2H) is skew symmetric.

The similar form bas also been found in the rigid arms without the
stiffness term K.

Hence, a multi-link flexible arm with independent joint
controllers will be stable. The case of a rigid-link manipulator has beea
illustrated by Asada and Slotine {S}. The frequency domain approach
has been taken by Book [1] for flexible arms, and physically, the
feedback system effectively equips each joint with an equivalent rotary
spring and damper. The input torque then has the following form:

T1 - Kpiq1 + Kdiqi ’ (2.5)

where
Kp; and Kd, are positive constants,
q; -gi-%.qioixthereferencepnhmdmmedtobe

coustant. §; > q;.
Because the torque acts only on each joint, the following equality exists
k=149 , (2.6)

where )

T T

7T = [rl, 72, ..... 1n], q = [ql, qz,....qn],
Choosc a Lyspunov candidate V associated with the total eaergy of the
feedback system:

V(X,.q) = %[iTni + EKK + aTxp&], 2.1

Differentiating V with respect to time gives
V- aTKpa + e+ 3 &N+ KT (2.82)

T-.

-aTxpa+iT(n+xi)+%inx

By substituting (2.5), (2.6), (24) and the skew-symmetry of (M-2H) into

1.7

V- 'K G+ K(Q - W) + g KRX

- &Txpa U % xT(H - 20k

-&TKpi+&Tr

--qKk;a<0
where
kp =diaglky] is 2 positive matrix

Therefore, the system with a local joint PD controfler leads to
the development of an advanced coatrol algorithm using a
deceotralized scheme which is restrictive on information transfer from
oae group of sensors and actuators to others.

' 1L DECENTRALIZED ADAPTIVE CONTROL

Without loss of generality, the system of a two-degree-of-
. freedom flexible manipulator with the effect of gravity is considered
! from the control viewpoint; i.e, n=2. To combine with friction and other
;dhubm&nmmdumwmkmmmd
{ motion are, then, rewritten as follows:

M(X)X + H(X,X)X + KX + 6(X) + R{X,X) = Q 3.1)

Emmdynmiuisipoted.

i Sioce the inertia matrix, M(X), is square, symmetric and
itive definite, one can always find a constant matrix 8 such that the

. positive
elemeats of B corresponding to the coupling subsystem are zero and

Bl 2 oo - 8l (3.2)
where || is an induced norm.

Equation (3.1) can be rearranged as

X WK+ KE + 6+ R]+ B0+ (W) 210 (3.3)

Withi = 1,2, let 7 = [x, x|T and equation (33) i divided into two
. equations for two subsystems,

Z‘l = Ail1 + biu‘l + F‘(Z) + fi(Z)Ili (3.4)
where = 7, in (26); f, (Z)u; =~ the coupling terms of (M1 -£)Q for
subsystem i. A, is a constant matrix which represents the lincar time
invariant part of -M-1 K,

, [o IJ
, .
! M1 Y

while F; (Z) represcnts the rest of -M! K and the soalinear terms of
. -M"! H+R+G]. by, then , becomes a vector form with zero elements oa
" the upper half.

It is assumed that F; and f; are bounded and have the following
properties:

F‘(Z) - b1 Di(Z)

(3.5)

(3.5)

£,(2) = b, E,(2)
where D, and E; bave the corresponding dimensions; IE,-|<lfron
(32).
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. each link is considered as a subsystem.

These conditions, called the matching conditions [8], guarantee that the
uncertainty does not influence the dynamics more than the control input
docs [4]). The one degree-of-frecdom system, has beea illustrated by the
previous works [9] , and for the two degree-of-freedom flexibie arm,

The objective of model reference adaptive control is to

! climinate the state error between the plant and the reference model so
- that the behavior of the plant follows the model Consider the reference

© and et

' where K...-ud Ky; are constant matrices with the corresponding
dimensions.

model first,

Z.1 - A-‘ Z.1 + b.i r (3.7a)
where . 1 —

zli - [xli ' X.,]

L i{s the reference input,
Aai = Ay # DKy

Bai = By Ko

(3.7b)

Abo, Ay, which is a stable matrix, satisfies the Lyapunov
equatioa, -

T

Aai Py * Py Agi = - Ly

where P, and L, are positive definite and symmetric matrices.

The signal-synthesis method [10] implemented here seeks to
control the system by adjusting the input u; which is as described in the
following equation

u1 - K Z + Kbi r. + ti(e ) (3.8)

where ¢; = 2z - qsrdmedtoumemummdtheﬁmmﬁi
the control input to compensate the system uncertainty. Thus, let ¥; be

(3.7c)

f
b, '1‘1

|bP

#,(Z,e,,r,), when Ib P b8,
ol
(3.9)

91(2 8Ty ). when |b P1 i 5‘

), =1
i T
by Piey
8

{ .
where Sﬁawauibedpodﬁwm;ndpihapodﬁvemmm:
be specified subsequeatly. )
Asamnh,tbeerrordynmaoflhesubsyttunudawed}
from the Mmbﬁwaequm(lﬂnd(&?)dugmez)i
and (39):

|
e =1

g2y - 4 i - by(®y +wy), (3.100)

where
vi - 01 + Ei(xzi + Kb1 r1 + ti) (3.10b)

Given the boundedness of the state variable z; and the
reference input r;, equation (3.10b) with (3.9) has the following

bl <o @onry, (3.112)

: where

. e b oo

oy & o I+IE Nclk 2,0+ Ieyyr, b+ o] (3.120)

This definition involving 2; on both sides of the equation is valid; ic.,

(3-11) can be solved, since (3.2) is satisfied. Therefore, we have

-1
p=0-le D7 o B IE LK, 2, Bk o D 3.12)
To specify that the error dynamics (3.10) is uniformly bounded,

: the approach is also based on the Lyapunov criterion and similar to ref.

:‘ [B). Given a candidate

T .
i V1 - P1e1 , (3.13a)
;Vi = o‘ Lie Ze P b (vi +V )

1

! b.P.e

T T i1

<8, Li'i' Z[b‘ Piei][v1 - -——T;--— p1] {3.13)
: RN

Consequently, 91 <0

Furthermore, to improve the convergence rate of equation
(3-10), an auxiliary input w;,(t) is introduced and applied to the input v,
in (3.8) [7]. This input is apparently an integral action and

T

t'l‘(t) --al (t)+ s b, Pye. (3.14)
where 2
480, o ) ed
e 2 2
,,,,(S) W, |
S >0

NMMX‘.M&emmWw

The error dynamics of the total system can be proven stable by
summing the individual Lyapunov function (3.13) [7). The block diagram
of the decentralized adaptive coatrol is shown in Figure 1.

IV. SIMULATIONS AND EXPERIMENTS

The following section will demonstrate the results obtained
from the analytical works using RALF, which is in the Flexible
Automation Laboratory at Georgia Tech. The arm is constructed of two
ten foot links and two rotary joints. The second joint is actuated through
a parallclogram mechanism by a hydraulic cylinder at the base [11}. A
simple yet adequate dynamical model for RALF has been established,
wherein the parallel] link is described simply as a spring [7].

A MicroVax I running the VMS operating system is used to
provide high speed calculation for real-time control and data-
scquisition. The resolution of D/A and A/D is 12 bits/10 Volts, and the
sampling time is 8 ms. For the initial measurement, the bandwidth of
both hydraulic motors is above 45 Hz and the lowest frequencies of the
RALF are 5.69 Hz and 9.12 Hz. The parallel link’s lowest frequency is
about 30 Hz, which cannot be controlled. A linear variable differential
transformer (LVDT) is the position transducer mounted on the
bydraulic piston rod, so that the noncollocation problem existing in the
feedback control of flexible structures may be avoided. The link
deflection is obtained by utilizing a strain gage mounted near the joint.
One flexible mode is adopted for each link in this work.

The first joint position of 35° and the second joint position of
109° are set to be the "home” position for RALF. A linearized
dynamical equation is used to derive the constant gains Kz; and Kb, in
(3.7) and (3.8), while the payload is not considered at this moment {11].
Kz, (i=1,2) are:
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Kzi - [-2.8E7 -1.35€4 -2.8E5 -1.14E3] , (4.1)

KlZ = [-3.0E7 -1.01E4 -7.76E4 -2.68E2] ,

mdKb, = L

The gains sssociated with the joint positions and velocities turn out to
be the independent joint controller in (2.5) as follows:

[z.an 0 ]
K=l o 3.067 (4.2)

2.BES 0 ]

. [ 0 7.76E4

To pet b;, equation (3.2) needs to be satisfied and B has the
interconnecting elements of zero. Thus, by and b, are:

[ 0
0

% = | o.002 (4.3)

| -0.259
0
0

2 0.0373
| -5.267

The values of g; and §; are chosea as 3.0ES and 2.0 respectively. For the
decentralized adaptive control, S;! is 3.0E2 and @; is simply set to zero.

The distal ends of both the lower and the upper links are
moved 243 inches in 1 second for joint point-to-point control. Figures
2a-d show the time responses of the feedback system without payload,
and Figures 3a-d show resuits with a 30 Ib payload. Note that the best
tracking and fast oscillation-setting time of each link occurs with
adapuﬁonbmthtthelinkosdlhdomdampedommotesbwlyfonhe
joiml’DmolndLQR.wbuthesystcmhutheplylondontheﬁp.
Hmm,aﬂoflhethreemoﬂmdcmons&aetherohumeswith
the variation of payload. When the controller is implemented in the
experiment, the gains are scaled to match the physical capability of the
system. Figures 4a,b show the time responses of the joints with the PD
controller and with the decentralized adaptive controller without
payload. The strain responses arc demonstrated in Figures 4c-f. With
payload, the response is as shown in Figures 5. It should be mentioned
that the gravitational effect provides the partial reason for the steady-
state error in the joint PD control

The results from simulations are compared with the
experimeats to Mlustrate certain agreement. The fact that the simplified
model, (the actuator dynamics ignored and one flexible mode used),
implemented in the simulation may cause small deviation from the
measured experimental data is, bowever, expected and acceptable from
the engincering point of view.

V. CONCLUSION

A flexible arm with positive gains and negative feedback
independently controlling cach joint is shown theoretically and
experimentally to be stable. The decentralized algorithm results have
shown much improvement of the system responses. To achieve
insensitivity to variations of the payload, the adaptive scheme of control
is superior. The assumption of banded and small interconnecting action
between subsystems is consequeantly appropriate.
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Abstract

A robust tracking controller for a one link flexible arm based on a model reference
adaptive control approach is proposed. In order to satisfy the model matching conditions, the
reference model is chosen to be the optimally controlled linearized model of the system. The
resulting controller overcomes the fundamental limitation in previously published research on
direct adaptive control of flexible robots which required additional actuators solely to control
the flexible degrees of freedom. The nominal trajectory is commanded by means of a
tracking control. Simulation results for the prototype in the laboratory show improvements

obtained with the outer adaptive feedback loop compared to a pure optimal regulator

control. Robustness is tested by varying the payload mass.



Introduction

Lightweight arms are a challenging research topic with potential to improve over today’s
robot performance. Control is one key to effective use of lighter arms,!2 but it is limited by
uncertainties in the arm’s behavior and in the environment. The main problem with light-
weight structures is the flexible vibrations which are naturally excited as the arm is
commanded to move.3

The first step in designing a control system consists of developing a dynamic model for the
ﬂe*ible arm. A general dynamic modeling technique was established by Book,* based on a
recursive Lagrangian-assumed modes method. If one is interested in the regulator control
problem requiring that the arm reach a pre-specified nominal state with satisfactory response,
the approach of linearizing the dynamic equations by assuming small motions around the
nominal state and neglecﬁng terms of higher order, proves effective. An optimal control for a
one-link flexible arm was experimentally tested by Hastings and Book.5 Also, experimental
results with linear models were reported by Cannon and Schmitzé, by Fukuda?, by Sakawa et
al8, and by Chalhoub and Ulsoy.? Frequency domain techniques, instead, were adopted by
Book and Majettel0 and recently revisited by Ower and Van de Vegte.!!

On the other hand, if one is concerned with controlling the arm while it is moving along a
pre-defined path with given velocity and acceleration of the joint variables, the technique of
linearizing the system is likely to fail. Furthermore, linearization around a seqﬁence of

nominal states, as done by Sunada and Dubowskil2 for instance, seems expensive



computationally and not necessarily very robust when applied to the overall nonlinear
dynamics.

This paper describes research on control for a one link flexible arm moving along a pre-
defined trajectories. The resulting controller overcomes the fundamental limitation in
previously published research on direct adaptive control of flexible robots which required
additional actuators solely to control the flexible degrees of freedom. Previous efforts aimed
at designing tracking controllers for flexible arms have been produced by Singh and Schy13
with a nonlinear inversion control, and by Davis and Hirschornl4 with a linear control. They
have both taken advantage, however, of additionai active tip actuators. A nonlinear joint
tracking controller has been devised by DeLuca and Siciliano’s. A singular perturbation
approach has been pursued, instead, by Siciliano and Book.16

The approach adopted here is based on Model Reference Adaptive Control (MRAC),17
as recently proposed by Siciliano et al.’® In order to assure the satisfaction of the so-called
model matching conditions, the reference model is chosen as the linearized system (2nd order
terms neglected) as optimally controlled. Integral type adaptive actions guarantee the stability
of the overall syétem, as is proved via the Lyapunov direct method. However, since the
reference model turns out not to be decoupled, the reference trajectory is forced on the
system by means of a tracking controller.!® A direct adaptive controller for a linear model of
a flexible arm was also designed by Meldrum and Balas?, but stability was guaranteed only
for a special class of trajectories. An indirect adaptive control conversely, with dynamic

parameter identification was proposed by Canudas, De Wit and Van den Bossche.2!



A case study based on a laboratory prototype, whose dynamic model is described in
Hastings and Book2? shows that the control performs well when tracking a fast trajectory. The
whole nonlinear system is considered for simulation purposes. Moreover, the control proves
robust to parameter variations such as payload changes.

It must be mentioned that full state availability is assumed for control synthesis. While
the state variables representing deflection can be obtained from strain gage measurements,’

their derivatives need to be reconstructed by means of an observer.3

Problem Formulation

Nonlinear equations of motion for a flexible arm can be derived using the Lagrangian
approach.4 The deflection of the elastic members is represented as a linear combination of
admissible functions multiplied by time dependent generalized coordinates.2* The flexible

motion of a link is then described by

n
u(n,t) }: 8.(m) () (1)
i=1

where the ¢,(n) are assumed in this paper to be eigenfunctions of a clamped-free beam, §,(t)
are the generalized coordinates, and 7 is any point along the undeformed link (see Fig. 1).
Furthermore, assuming that the amplitudes of the higher modes of the flexible link are very
small compared to the lower modes, n = 2 will be accurate enough to describe the flexible

motion.22.2



The derivation of the dynamic equations for the one link arm follows then as in Book*

and Siciliano and Book!6 i.e. (dropping the explicit reference to time dependence)

ol 11 2] 18] [

where 6 is the joint angle.
M is the inertia matrix.
f, and f, are vectors containing nonlinear dynamic terms
(interactions of angular rates and deflections).
K is the effective spring matrix.
u is the net input torque.
Notice that in the model no actuator dynamics is considered, and no friction at the joints nor

in the structural vibrations is explicitly included. Define the full state vector
XT = [xpT,x'T] and x'T = [, §T] = xoT (3)

The dynamic model of the flexible arm of Fig. 1 can be expressed in state variable form as

S0 0 I xP 0o
el (KL
xV A1(xP) A(xP,xV) xV Bo(xP)



).( = A(X)X + b(X)u (5)

A1 {(xP)xP = M

where

Ké

-1 f1
Az (xP,xV)xV = M
2

-1[1}
Bo(xP) = M
0

At this point it becomes clear why the tracking control problem is difficult. If the goal is
just to require that the arm reaches a pre-specified nominal state, linearizing (5) around the
nominal state leads naturally to an optimal regulator in which one can eventually specify the
closed loop poles of the linearized system with an arbitrary degree of stability. However, if
one desires to control the arm while it moves along a pre-defined trajectory,’ in terms of joint
angle rates and accelerations, a different approach must be sought, rather than trying to
linearize (5) around a sequence of nominal states.

In order to obtain good trajectory tracking and steady-state accuracy, a direct MRAC
approach!” is pursued in the following. The basic idea of this approach is to define a linear
time-invariant reference model and directly synthesize a controller that assures that the error

between the states of the system and those of the model tends to zero. To this purpose let

X, = ApXm + bl (6a)



0 I 0
Alo  A20 bg

be a linear time-invariant reference model of the same dimension as the system described by
egs. (5).

As in the work on MRAC for rigid manipulators,2627 it would seem appropriate to select
a decoupled model for (6), i.e. Ajy = diag(a;; a;; a13), a;; < 0, Ay = diag(a,; ap a53), ay < 0.
However the model matching conditions which are the basis of an MRAC approach? cannot
be satisfied independent from the particular values of A, A, b, b,,. This can be confirmed by
observing that the system described in (5) does not have as many control inputs as nontrivial
state variables (8, §,, §,), i.e. the lower block of vector b, in (6b) is not a square block (a row
vector in this case).

In the »partic1-11ar case of the system in (5), however, the nonlinear terms do not play a
dominant role, thus it appears adequate to choose a reference model on the basis of the
linearized model of the system (2nd order terms neglected) as optimally controlled; this

approach will be outlined in the next section.

Control Law Development
Following the basic MRAC scheme in Landau!” a control for the overall system (5) - (6)

is proposed in the form

u=u; + U, (7a)

u, = -KIX + K,  u, = -AKTX + AK,u,, (7b)



where u, is a linear model following control and u, represents the adaptive control which is

devoted to assuring the stability of the whole system. Under the action of control (7), the

system (5) becomes

X = A(X)X + by(X)un (8a)
A, =A-bKT + AKT), b, = b(K, + AK,). (8b)
Let then

e=X,-X ®)

be the error between the model and system states. On reduction of (6) and (8), the error

dynamics are found to be

é = Ame + (Am - As)x + (bm - bs)um (10)

In order to satisfy the model matching conditions, the following should hold:2

A, = A-bKT b, = bK, (11)



where A and b are the linearized forms of A and b, respectively. Assuming that the pair (A,b)
is stabilizable, K,T can be designed by means of optimal control techniques for the linearized

system in (A,b). K, is chosen equal to 1 for simplicity. Substituting (8b) and (11) into (10)

gives

e = Ape + [AA-ADK,T+bAK,T]x + [AbK,-bAK, Ju,, (12)
where A-A = AA (13a)
and b-b=4b (13b)

express the difference between the actual system and its linearized parts. In order to

guarantee the stability of the overall system, a candidate Lyapunov function is

V = eTPe + tr(Aq - A)TF, U(Ap - A)]

+ tr[(bm - bs)TFb-l(bm - bs)] (14)

where P, F,, F, are positive definite matrices. The derivative of V including (12) yields :

V = eT(A,TP + PA,)e + 2tr[(AA-AbK,T+bAK,T)T(PeXT-F,1A,)]

+ 2tr[(AbK,-bAK, ) T(Peu,,-Fy1b)] (15)



Setting, as is usual,

A.TP + PA, = -H (16)

where H is a positive definite matrix, and assuming that the rate of the adjustable gains is

larger than that of the system, AK,, AK, > > A, b, leads to

V = -eTHe + 2tr[(AA-AbK,T+bAK,T)T(PeXT+F,1bAK,T)]

+ 2tr[(AbK,-bAK,)T(Peu,-Fy1baK,)] (17)
At this point the choice of
AK,T = -(bTF,-1b)-1bTPeXT,
AK,T o = AK,oT (18)
AK, = (bTF,-1b)-1bTPeuy,
(18b)

AK, | (=0 = AKyo

results in cancellation of the last two terms in (17), and assures that V is negative definite, thus

guaranteeing that e + 0 (X » Xp).

The only problem now remaining is to force the system to track a desired trajectory. This

point has been addressed by Meldrum and Balas? but, even with an equal number of controls

10



and output variables, only a sinusoidal reference trajectory could be commanded of the rigid
body motion. An inverse model technique of the type proposed in Balestrino et al.26 cannot
be adopted since the model (6), satisfying (11), turns out not to be decoupled. However, the
state-space design existing in the reference model (6) appears to provide a possible way out of
this dilemma by specifying the development of systematic design procedures for both the

optimal regulator and the tracking problems.??

Tracking Controller
The tracking problem was initially conceived in order to extend state-space regulator

methods to problems having external command inputs. Therefore, consider an output form

Y =CX, (19)

where Y is the output to be tracked.

C is a constant matrix.

Meanwhile, a control system for the reference model (6) and (19) must be synthesized such
that in the steady-state condition, the output Y becomes equal to some arbitrary desired
constant reference output Y,(t) = Y,. In order to pursue this goal, the integral error W

between the reference and the actual outputs is defined as follows :

11



W=Y,-Y or W= JyY-Y)dt (20)
and the tracking control law can thus be written as

U, = ‘Ko Xn - KiW (21)
where K, K; are the proportional and the integral gains respectively. Adjoining (20) and (21)
to (6), gives

Z = AZ + B.Y, (22)

where ZT = [X,T, W]

Ro

[ Am'mem ‘meI jl

-C 0

[ 0
% - | 1|

L

It is claimed that the dynamic system (22) is asymptotically stable, if K is chosen

appropriately. Then, in the steady state,

Xeo An+bmKm  -bmKI 1rg
1imZ = 2y = = - Yy (23)
to We -C 0 I

where the inverse matrix exists due to the asymptotical stability. Clearly, the desired zero

error between Y and Y, is also obtained in the steady state. i.e. {8 Y(t) = Y, or b8 W(t) = 0.

12



Now, the objective is to find the gains K;, and K. Define

AX, =Xp-Xo AW =W-W, Au, =u,-uy

where ug, = -K; X - KiWo

The transient response is then governed by the set of differential equations

g An O [ &% by
= + AUm
AW -C 0 AW 0

An LQR design is utilized to minimize the performance functional for (25)

d

dt

m AX 2
J = Io ([AXpT AW] Q [Awm] + RAug") dt

This results in

Kn = R1b, Sy
Kl = R‘lbmslz
S11 S12
where S = > 0 is the solution of the Riccati equation.
S12 S22

(24)

(25)

(26)

(27a)

(27b)

In summary, since the constant matrix C is determined by the output Y, one needs at

least as many inputs as the number of outputs to be tracked and needs the dynamical system

(25) to be controllable.’ Therefore, K,, and K| are simultaneously derived as in (27). With

13



only one input, for example, the dynamical system (25) in the case of a one-link flexible arm
may be uncontrollable when the joint velocity is to tracked as is shown in the following
example. This may result in a singular solution for the Riccati equation (27). Finally, the total
control problem becomes one of choosing the feedback constant gains K,, K,, along with the
adaptive gains AK,, AK, for system stability, and K, as well as the integral gain K| for the
desired reference tracking. In other words, u is composed of (7) and (21). The block diagram

of the total system is shown in Fig. 2.

The Case Study

In the following a case study is developed for the one link flexible arm existing in the
Flexible Automation Laboratory at Georgia Tech, whose specification is fully described in
Appendix A.

As far as the joint angle trajectory is concerned, the arm is required to move from ¢; = 0
deg. to 8; = 90 deg. in 2 seconds, following a standard trapezoidal velocity profile with
maximum velocity 8§ = 60 deg./sec. The constant feedback gain resulting is K,T = [65.27
-176.13 -2937.23 27.27 -7.50 -67.27] and K, = 1. AK,T and AK, (18) have been chosen with F,
= 21, F, = 0.005, and H = I in (16) such that the system under adaptive control is guaranteed
to be stable. AK,,T and AK,, are null here. An LQR design with Q = 2] and R = 1, which is
used to derive the tracking controller, results in KT = [0.0 -0.635 -8.591 0.06 -0.056 0.046}, K,
= 0.031 for the joint angular velocity to be tracked (Fig. 4 - 7) (i.e. CT = [00 0 1 0 0]). For

the joint angular position to be tracked (Fig. 8 - 11) (i.e. CT = [1 0 0 0 0 0]), the tracking

14



controller is K, T = [0.616 -0.793 -10.004 0.1335 -0.034 0.05], K; = 1.414. For the end point
position to be tracked (Fig. 12 - 15) (i.e. CT = [4.2.02 -1.365 00 0]), K, T and K| bécome [2.41
-1.27 -14.32 0.396 0.05 0.0058] and 1.4142. Also notice that the dynamic system which is
linearized around zero states from (4) is used to derive the optimal (constant) gains K,. This
results in unstable responses for the constant (nonadaptive) feedback control system, when
the arm travels at high velocity.

Different sets of simulations have been carried out, one with the above design
parameters, and another one just with the constant feedback gains K,T and K,, without any
outer adaptive control. In order to analyze the control performance the whole nonlinear
model has been simulated for the system (5) in both cases. A sampling rate of .1 ms has been
adopted. Furthermore, the robustness of the system control to parameter variations has been
tested by doubling the payload mass, without changing the constant control gains. Figs. 4
through 15 illustrate the results obtained. It can be recognized that the adaptive control
performs better than the simple optimal control, as it results in better tracking accuracy.

First consider the case (Fig. 4 - 7) of joint velocity tracking. Fig. 4 shows the joint position
response with and without adaptive control and corresponding reference input. Fig. 5 shows
the joint velocity. Note better tracking occurs with adaptation but at the expense of some

oscillations as gains adapt. Fig. 6 shows differences in the end point position error with
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respect to the reference signal. Fig. 7 shows the joint torque. It should be pointed out that the
dynamical system (25) does not satisfy the criteria of controllability. Therefore, the solution
of the Riccati equation is singular, which causes undesirable response with inaccurate
tracking and oscillations. However, such problems do not arise for joint position and end
point tracking.

When the system is used to track a joint position command (Fig. 8 - 11), the nonadaptive
control is unstable due to uncompensated nonlinearities and thus not plotted. The joint
position response of the adaptive control is shown in Fig. 8 with the reference joint position
command and responses for a nominal payload as well as twice the payload used in the
design. The low steady-state error and the low effect of payload change illustrate the robust
properties of the controller. Joint velocity, end point position error and control torques are
illustrated in Fig. 9 - 11.

Another quantity tracked in this analysis is the end point position. Figs. 12 - 15 show the
time responses for this simulation. The results are almost identical to the above joint position
case, except that the end point position error is comparatively small during this control

process. Note that this requires that the reference model predict the end point position.
Conclusions

A model reference adaptive control has been presented for a one link flexible arm which

is based on the preliminary results obtained in Siciliano et al.1# In order to comply with the
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model matching conditions, the reference model has been set up to be the linearized arm
model of the system as optimally controlled. Since the resulting reference model is not
decoupled, the desired joint angle trajectory is commanded through a tracking controller
proceeding the overall system. Full state availability has been supposed for control synthesis.
The extension of this work to the use of an observer has been initiated and described in Yuan
and Book.?

A case study has been developed for a prototype in the laboratory. Simulation results
have shown the advantage of using an outer adaptive feedback control with respect to the
pure optimal control aﬁd the robustness of the system control to payload variations.
Furthermore, for the tracking controller, only the joint velocity command is not
recommended based on the results of this work.

It must be emphasized, however, that for multiple link flexible manipulators the results
obtained in this paper appear only partially éatisfactory. In the case of more degrees of
freedom, the nonlinear coupling terms in the joint variables (which are not present in the one
link case) may become dominant, particularly at high speed, and control performance is likely
to be derated.

This point, along with the problem of state reconstruction, or eventually considering

output feedback, constitute two challenging research issues needing additional investigation.
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Appendix A : Specification of Experimental Properties

Beam

Length : 48 in

Section : 3/16 * 3/4 in2
EI: 4120

Material : Aluminum
Alloy : 6065-T6

Payload

Weight : 0.11b
Material : Aluminum
Alloy : 6065-T6

Torque Motor
Manufacturer : INLAND MOTOR

Type : T-5730 (Permanet Magnet DC)
Rotor Inertia : 0.06 in-1b-sec?
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Figure Captions

Fig. 1. The one link flexible arm

Fig. 2. Block diagram of the total control scheme

Fig. 3. 1st and 2nd mode shapes

Fig. 4. Joint position profiles (joint velocity to be tracked)

Fig. S. Joint velocity profiles (joint velocity to be tracked)

Fig. 6. End point position errors (joint velocity to be tracked)
Fig. 7. Control torques (joint velocity to be tracked)

Fig. 8. Joint position profiles (joint position to be tracked)

Fig. 9. Joint velocity profiles (joint position to be tracked)

Fig. 10. End point position errors (joint position to be tracked)
Fig. 11. Control torques (joint position to be tracked)

Fig. 12. Joint position profiles (end point position to be tracked)
Fig. 13. Joint velocity profiles (end point position to be tracked)
Fig. 14. End point position errors (end point position to be tracked)
Fig. 15. Control torques (end point position to be tracked)
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CONTROL OF A MULTI-LINK FLEXIBLE MANIPULATOR WITH A DECENTRALIZED APPROACH

B. S. Yuan, W. J. Book, J. D. Huggins

School of Mechanical Eagincering, Georgia Institute of Technology, Atlanta, GA 30332-0405 USA.

Abstragt. This work secks to provide an cffective way for the development of the dynamics of » multi-link flexible
-unpuhtot Due to the presence of nonlinearities, uncertainty, and lisk flexibility, 2 decentralized control is
bere to provide robust stabilicy without increasing the burdes of on-line computation. Simulations and

experiments show agreement with the analytic work.

INTRODUCTION

The Bght weight manipulator arm is a challenging research topic with
potential to improve the performance of robots and other high
performance motion systems [Book, 1974; Cannon, 1984]. The main
problem with light-weight structures is in the m-hin; flexible
vibrations paturally excited as the manipulator is commanded to
muudﬂurbed[BahngB].Connohs one key to effective use
of lighter manipulators, but its capability is limited by uncertaintics

o the manipulator plast and in the eavironment.

The firt step in studying a design is establishing s suitable dynamic
model. An assumed mode representation of the structural deflection
approach to derive the equations. An
efficient derivation is possible by recogrizing that the inertia matrix is
positive and symmetric, and that noslincar terms exhibit 2 skew
( symmetry. The general form of the equations allows the complete
nonlincar model to be derived from the Jacobian matrix and the

masé properties via symbolic manipulation techniques [Yuan, 1989).

A centralized control is possible and a linear quadratic reguistor
using link strain and joint angle mecasurements is comsidered for
comparison to advanced conmtrollers [Yuan, 1989]. A decentralized
coatrol, bowever, will have advantages in terms of implementation in
complex cases. The independent control of the joints of s flexible arm
is shown to be stable [Yuan, 1989]. Then, an advanced comtrol
algorithm using a decentralized scheme with bounded plant
uncertainty is proposed. If the rigid dynamics is dominant, the fSexible
dynamics will contribute most to mode! uncertainty. Alernmely lhe

-mbmedmhahgugun

flexibility of each link can be included in the d alized

interactions thea form the major source of uacertainty.

The decentralized coatrol scheme assumes the satisfaction of certain
matching conditions [Leitmann, 1981]. These cooditions guarantee that
the uncertainty vector does not influcace the dynamics more thaa the

coatrol npwt does [Gutman, 1979]. The signal-synthesis

adaptation
approsch used here results in a robust stability design which reduces
the burden of on-line computation and satisfies the neods of flexible
arms. The design is based om the Lyapunov criterion [Vidyasagar,
1978), with the output error betwees the system and the reference

model used as the signal of interest.

Simulations and experiments are carricd out on a two Enk test case
called RALF (Robotic Arm, Large and Flexible), at the Flexible
Automation Laboratory at Georgia Tech (Fig. 1). The results
compare independent joint control and s decentralized adaptive
controller,

, when & predefined trajectory is followed.

DYNAMIC MODELING OF A MULTI-LINK FLEXIBLE

MANIPULATOR

To establish a successful feedback coatrol for a mechanical system,
dynamic modeling is an important prerequisite. In coutrast to the
rigid manipulator, whose equations of motion bave been well-developed
[Asada, 1986; Paul 1981], the distributed-mass character of the flexible
manipulator peeds further explasation. The kisetic and potential
energies, that are derived using Cartesian coordinates, result in a
Lagrangian formulation that simply snd systematically produces the

dynamics of a multi-link flexible arm.

Kinematics of ficxible arms has been described by 4x4 transformation
matrices as proposed in Book [Book, 1984). A point aloog the hink is
described in a fixed reference coordinate system by two
transformations, A; and E;, betweep the coordinate systems. The
transformation, A,, relates sysiem i , the point before deflection, to
system »meﬁmamm&&mdmnw
system i . Note that the transformation which is described as the
position of az arbitrary point attached to the rigid arm has the form of

R P
A-[ 0 1 ] (2.1)

where

R = 313 matrix of direction cosines,

P = position vector.
Therefore, the combined relation is

b= AED, @2
where

b = [PT 17 = the position of the point in system i.

Considering the ith consecutive eoordinate transformation along a
serial linkage, we can derive the location (r;) of a point aloog the ith

coordinate viewed from the base frame,

=Ty (239)
where
Ti= ME A B - AL E A, @3b)

and 1; s the position vector related to the ith coordinate without the
transformation E; dut to link deflection.

The flexible deflection is assumed to be » finite scries of scparate
modes which are the product of admissibie shape functions and
time-dependent generalized coordinates. Higher modes are
comparatively small in amplitude. With small deflections, the matrix
E can then be expressed as

0 0 Oy Uy
. -
ez b4 3 % 0%y Vg
i=1 - ) 0 v
vis Oy 13
0 0 0 0
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0
0
1 (2.4)
0

0
0
t
11

(- -3 - N
[ — I - ]

mwmisiimmmmp&wummm
Ii.'i.ndwimthel.yndzmmwly.dmm
function, 8,5, 8, and 8,;; arc the smail rotations of the body-fixed
mdinaulwwu!h:pomdhtuen.qith:mbadm
fanctions needed (o represent the flexible kinematics to the degree of
sccuracy needed, and £ is the distance to the point of interest aloog the
Bak's acutral axic, which is Ly, the leagth of the link, whea the point af 1y
fsmotonlink i

q%lﬂy.ﬁilfudiolof!hjdﬂdﬁﬂl&ﬂﬂl () and E; s 2
fancticn of link defiections (§;). Traasformation cquation (23)
. tatioorhi ;

along the ith liok and the dispheemn!sohlljoinnndhnkdeﬂedim
isvolved in the kinematic chain. Then, consider the kinetic eaergy of &
point on the ith link,

u-I XE, =
Vol

1] Tar dri]
2 1nk 1 Trace m , (2.5)

at Tdt
where -%{ is called the velocity vector.

T.kiqlhedetivuiveohheuamfornnﬁm (2-32) with respect to time

i i.
ry + Ti r, (2.6)

r‘-Ti

Smmiuovcrdlnlinh.gouﬁnduherynmkinaicmgy tobe

n
KE = 2 I dKE‘ {2.7)
1=1
Tink -
Equatioe (2.6) can also be written as
I'" - J‘ X ’ ’ {2.8)

where

3, i the 4afux{mi, + 1)] matrix,
Xinciudes all g; sand & 5

Then,
T ST T, .
KE =2 3 I Trace (X J‘ 01 X) dm, (2.9a)
te1 2 dJumk s
n
EUE T Trace (3,19,) d |X, (2.9b)
121 2 h » (2.

1ink §

where \111 Ji is symmetric and positive.

To assign indezes i and o X,

.. { 9 30 (2.10)

H 4% ge1,2 ..., .
equation (2.9), then, becomes

, " ®m no® L
=3, %y 3 T0aFspTo e bty XD

In nd&ﬁmlo&tmﬂ‘ﬁmof&ehmﬁcw,wwcdwﬁnd
the poteatial encrgy, which arises from three sources as 3
here: joint clasticity, gravity and link deformation.
Wecmﬁdanrﬁnknanipnlﬂuwhhnvdmemndnodelthe
ehnicityoflhcihjoinlnnequinlcﬂtuionlmwhhspﬁng
constant K,;. The formula for this potential cnergy is

n 1 n -2
PE =y 3 PRy =3 1 E1 Ko » (21D

where ; is the joint coordinate measured from the unstretched
position qy to ;.

mmwmfaaﬂMMcﬂ&nmi

T i
dl’Eﬁ1 =-9 11 Y dn, (2.1.31)
vheretb_e'p!viyveaotghsthefm
g =lg, 9, 9; 0 (2.13b)

lnepaﬁuovutheﬁnkndmh;waﬂhh.&emﬂmmﬁd
energy is
n

T
l’E9 --9, z 1 Tihi . {2.14a)
)
where hi - H‘ h.‘§ k E 1 S“‘ Eik , (2.14b)

and M; = the total mass of ink i, by; = [0,0,b;,1]T = 3 vector to the
center of gravity from joint i (undeformed),

T
E -I [U,, vV, ., % ,0] dnm
ik Tink § ik* ik’ ik

The strain energy of link i is related 1o the link deformation integrated
aloag the z-axis coincident with the link is described as

_ . ]' ( azu’(i 2 &, 2
PE,, =1 e | —5 | s | =21+
42 Dyt | % 22,7 Nazt
20, %
+ Eng S—ZTJ dl1 (2.15)

MEME'mYom(tnoduhsudshw modulus of elasticity,
l.ndl,mthemmo(huﬁadlhhk.vmel,ithepoln
ares moment,

-
~
Ut "k 21 ik Vi
5
Yoo k31 Sk ik
"
0 st 5. 0

12 " k%1 %k zik
Noulhlmwuﬁoniswinihﬂyindudedaihpwnﬂynuh

Thea, the total strain energy PE4 can be written as
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1 n .‘ .‘
Pz 121 351 k¥ Ma figfu 219
" where
Kaogk = Fxagk * Fyige * Faagk
and 2

2
av dv
i ik a1

ﬁuu'] 2 172 ez
Vink 1 1 !

Kyijk s Kzijk' etc.

Now, we are mmmmwmd-mrm
mmwuedmum for any coordinate state
o

n n
d [ XE d i .
g { . ] i EL 5T 0 Mine xij] (2.17)
(N
n m n | ] n
. § . 1
13y 3EoMma it iE1gdo o afo
-~
3'1129 isj iaa
*ap
and
n | ] n "
KE 1 s
ax_ 2 121 onc§1 afo
Pq
(2.18)
Tises
i
ax o J Tap

Taking the partial derivative of the potential eaergies of the elastic joint
and the link deflection leads to
3(!1'5e + PEd) ",

—_— ., 2 K
F) t=o0 pt
qu pea

X

ot, (2.19).

where
K, q n(2.12) , whent =0

Kotq pt © { K 0 (216) , whenf0

and the gravity term is

T n @ T1 T
- —_— - T , when qu0
aPE i °1§paquh1 9 DEPQ Qv
9 x

-g' ! vhen g=0

sy i M » when q

pq
n 9 T1 aAn

Note thlti z p E_x-pq - sq—n = 0, when p=n and qe0

Finally, combining (2.17), (218), (2.19) and (2.20) gives the equation of
motion for Xp,:

nom - n oWy on By
&1 sEomidea 113 *ih gRo of1 Ao
n (2.21a)

HijagPa Xi3 Xas *gq
where

Kotq Xpt + Bpq = Qpq.

S omijpg 1 Mmiggs

Gy s the gravity term in (220),
Qyy is the geacralized force.

In matrix-vector form,

N(X)X mmbi+d+su)-o. (2.22)

where X is the statc variable measured from the reference

(unstretched) position.

mmdt&eqmﬁoud-oﬁw!utﬁddndkm
arms are very similar as given above, while the ized coordinate
varisbles are different. Additional variables, namely the deflection
coordinate §, arc usod to describe the link deformation so that the
stiffaess coefficient K in (2.22) originates from the strain energy.
M«q&ewﬁkﬁnda@mwym-ﬂ{)mkm
in (2.22) [Yuan, 1989] as it bas been found in the case of rigid
manipulators [Asada, 1986].

M. CONTROL ALGORITHM

Independent linear controllers at each joint, commonly called joint
proportional-derivative (PD) controliers, have provided adequate
position control for rigid robotic arms [Asada, 1986, similarly for
flexible arms [Book, 1974]. The system with fexibility is shown to have
thepnn'veumre&onboththeﬁequmy—dminn&[ﬂoohlﬂd]md
mmﬁmlm]wmmmdmdnmouhis
carried forward with the development of an advanced coatrol algorithm
ﬁnamemdhedsémethnmulb:mlﬂsynmumd
absynm(loaltystm).ﬁcduiperformdimmduerminaa
mdmwhiduﬁpshmtoamdbdmmm
observes only local system output. The interconnecting terms between
subsystems arc considercd as uocertaintics in the sysiem and are
bounded [Yuan, 1989].

In a multi-link flexible manipulator, M(X), the inertia matrix, is

symmetric and positive definite. Therefore, one can define a positive
matrix £ such that

Il 2 Wl - ol 3.1
where | | is an induced norm.

Equation (2.22) can thea be rewrittes as

Xe- ] (X) (MU, X ReKESE(X) 1804 M) (X)-800 (3.2)

Tu:euhﬁniasanmquunndtk&nnﬂewﬁd*nZI-(XL
XT], where the vector X; is includes onc joint coordinate and
generalized deflection coordinates for link i (221). Equation (32) is
Whonmfumnmmednmmmfmc.
ﬁmimw.&-ww ial equation of the

zqy = Aqzy + bjug + Fy(2) + f4(2)uy, (3.3)

where
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i=12,.8Z = (2,2, 2|7
ad

% = Qg in (221), §(Z)u; = the coupling terms of M1(X)-A1Q
for subsystem i. A is 8 constani matrix which represeats the linear
time-invariant part of -M-1(X)K

[ 6 1
A %2 )

while F;(Z) represents the rest of -M-1K and the nonlincar terms of
~M-{H+G]. by becomes a vector form with zero elements oo the upper
half.

{3.4)

(i) Fi(Z) asd £,(Z) arc assumed 1o be bounded and are modeled as
sysiem uncertaintics assumed 0 have the properties [Leitmana, 1981]

FOiFrzn (5e)
4«24 yzo) G5)
where 0€R? represent the system uncertainty and is continuous on RF
as well as the uncertainty bounding set.

(ii) (A;b,) is controllable.

(i) There exist matrix functions D;(+) and Ei(+) such that

F(Z.0) = bD(Z0) (341)
§20) = bE(Z0) (.6)

where [E| < 1from (3.1)

A model reference control with signal-syathesis adaptation is
implemented bere and the satisfaction of the matching conditions (3.6)
is assumed These conditions guarantee that the uncertainty vector does
pot influence the dynamics more than the control input does [Gutman,
1979]. The objective of mode! reference adaptive control is eliminate the
state crror between the plant and the reference model so that the
behavior of the plant follows the model Cousider the reference model
first,

2. =A

i niZni * b-i’i ’ (3.7
where

A |
1.1-[x.i.x.‘] and A {s the reference input.
And let
A.i - A1 + b1K11 (3.8a)
b-i b1Kb1 {3.8b)

where K, and K,,; are constant matrices of compatible dimension. Also,
Am,, a stable matrix satisfies the Lyspunov cquation,

T
4 ol’iA-1 l' (3.9)

where P; and L, arc positive definite and symmetric matrices.
The signal-syntbesis method (Landau, 1979] implemented bere secks to

control the system by adjusting the input u which is as described in the
following equation

u, - Kzi 2, 0+ Kbi 7 ¢ 01(01) (3.10)

where ¢; = 7, - 2, is referred (0 as state error and the function P, is the
coatrol input to compensate the system uncertainty. Thus, let ¥, be

S
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I Pie
T ’1(2"1"1) when
Ib P .1 Ib
t4 4 1|>s
’i('i) - {3.11)
b P‘ei
A1 I (z”1 v11)o when
T
|b‘P1e1[561

where A, is a presaibed positive coustant and 9, is a positive constant
which will be specified subsequently.

As a result, the error dynamics of the subsystem is derived from the
difference betweea equations (3.3) and (3.7) along with (3.11) and (3.6):

e, = A

i ity bi“i + vi) ’ (3.12a)
where
¢ " |Z|‘~9E‘(kz1 z‘ + kbi’! + ’1" (3.12b)

Givea the boundedness of the stale varisble 2 and the reference input
¥, equations (3.11) and (3.12b) give the following inequality:

bl <oz e, vy (3.132)
where
piLe b @ e @ (I, 2,1

(3.13b)

+ lxuzi I*l" (e‘) I)

The definition of p; in (3.13b) is valid; ie. (3.13) can be solved since
(3.1) is satisfied. Therefore, we have

-1
(-1, D" tho, Jefe  Helk 1z, |
(3.14)
WD

To insure that the error dynamics (3.12) is uniformly bounded, the
approach relies on the Lyapunov criterion [Vidyasagar, 1978]. Gives a
Lyapusov fusction candidate

V(ei) - .:Piei (3.18)

and there exists

-
Ve e‘Pie‘ + e P e (3.16)
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Farthermore, the error dynamics of the total system can be proven to be
stable by summing the individual Lyapunov function [Yuan, 1969). To
improve the comvergence rate of equation (3.12), an auxiliary input w (1)
is introduced and applied to the input y; in (3.102) [4,13]. This input is
effectively an integral action. Thus,

"1"11 11+KM -1‘+¢‘+u1 {3.17)
where
o -0 +S1bIP e (3.182)
AR IR .
and
2

(4, o, - A, ()] 15

. 1 24 " dminfte 1 (3.180)
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IV. SIMULATIONS AND EXPERIMENTS

hthep:viuuwdion.lhedmicnodddnaiufannﬂi-ﬁnk
flexible manipulator has been derived and the control algarithm
implemented bere bas been proven to be theoretically feasidle.
Cmpﬁuimnhhmndphyddwuinmwbemiedom
10 test the work. A computer-coatrolled prototype two link manipulator,
RALF with a paralic! actuation mechanism, drivea by bydraulic rams is
used to perform this verification. Each link is & cylindrical bollow beam,
ten feet long. The parallel mechanism's function is force transmission
to the upper link. The weight of the robotic structure is about seventy
pounds. More details are given [Yuan, 1989).

The transformation matrix E; cootains deflection displacements and
rotations as a fusction of position 1 along the link. The spatial
dependence of these deflections, their shape, is theoretically required
odyloneetnodulru&ricﬁounthehkbmmda&shninﬁnhe
order model. A finite clement approach was used to in this research to
determine the shapes from detailed models of the link geometry and
material properties. Of crucial importance to the accuracy of a low
order mode! are the boundary conditions applied in deriving the shapes.
Equivalent springs were used to represent the actustors for both links.
Eqﬁnkmmndheninmnkoplmdulheeaddwﬁnk.
yieldingbonnduymdhiomonadllink[Yun.lml. The parallel
mechanism is simplicd as a correspooding spring so that equatioas of
motion as givea in (2.22) are obtained.

A Micro-Vax 1l rusning under the VMS operating system is used to
provide high-specd calculation during real-time coatrol and data
scquisition. The control program is writtea in Fortran and the
resolution of D/A and A/D is 12 bits/10 vok. It results in sampling
and calculation time of 7 ms. When the advanced comtrol is applied,
computation time is increased by i I1mstoa total of 8
ms. However, this sampling rate is feasibic to control the RALF since
the bandwidth of both bydraukic actuators is above 45 Hz sad the
lowest two frequencies of the RALF arc 569 Hz and 9.12 Hz, while
the higher mode frequencies are hardly measurable. The third mode
primarily consisting of vibration of the actuating link is about 30Hz, sad
can not be controlled.

The measurement of the piston position is used for feedback instead of
the joint angie. A lmnecar variable differential transformer (LVDT) is
the transducer. Because the LVDT is located at the same position as the
scruator, the nos-collocation problem existing in the feedback coatrol of
flexible structures can be avoided [Balas, 1978]. Strain gages mounted
near the base and midpoint of each fink provide measuremeats of the
Enk deflections. The servo valve of the bydrsulic acruator is drivea by &
power amplifier based on the voltage signal

mmoncrda'gnhuniedoummingmplyludouheudmd
the configuration of the RALF & “homc” position; i.c., the first joint of

35° and the second joint of 109°. Therefore, the constant gains (K
are obtained as [Yuan, 1989)]. ®a)

Ky =[-22E7 -1 354 -2.80ES -1.14E3) (4.12)
Ky3=[-3.00E7 -101EA -7.76E4 -2.68E2) (41b)

to specify a joint PD coatroller as follows:

“"KPQ°KDQ
[z.azn 0 ]

Kl o 3.007] , #.2)
[z.sss 0 ]

Kl o 7.76E4

Equation (3.1) mceds to be satisfied in deriving b, such that -1 is here
chosen as the inertia matrix with the intercoanecting terms of zero. b,
snd by are, thus,

e ]
0

b = |0.002| ° (4.3)
-0.259 |
0
0

b, = | 0.0373] - (4.3)
-5.267 |

The valve of p; in (3.11), is related to assumed uncertainties by (3.14).
p;is set 1o be 3.05ES from the engineering viewpoint; and the value of
is then 2.0. For the decentralized adaptive coatroller, S; is chosea to be
333E-3, while @; is simply set to zero.

The ead point of each link is moved about 8.5 inches in 0.4 soconds for
point-to-point control. Figures 2a.b show the joint (error) respoases
and Figures 2¢,d represent the strain responses in simulations.
Obviously, the decentralized adaptive comtrol results in the best
performance in the joint position tracking as well as flexible link
damping, while the joint PD coatrol displays the low relative stability of
that feedback system. Whesn the controller is implemented in the
experiments, the gains are scaled to match the physical characteristics of
the system. The Figures 3ab show time responses of the joints with a
PD controller and with an adaptive deceatralized controller. Figures
4ab and Sab illustrate the strain responses occurred in the Jower and
settles in less than 1/3 the time needed by the PD controller.

The results from simulations can be compared with experiments to

Mm qualitative agreement. 1a light of model simplifications the

:-mmmmwm:uﬁ-ﬂmmm,
tolerable.

V. CONCLUSIONS

An effective approsch based on Lagrange's formula and the assumed
mode method has been developed to derive the dynamical equations of
s multi-link flexible manipulator. By applying positive contral gains K,
and Kq, om individual joint position and velocity feedbacks, the system is
Imows to be stable. This simple indepeadent joint control leads to an
sdaptive deceatralized scheme to improve the convergeace rate. In the
experiments, time responses show compatibility with the theoretical
analysis and simulation. The vibratioa is damped out in under 2 cycles.

Long distance motion and variations of payload must be performed in
the experiments in ordes to test control robustncss.
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