358 research outputs found

    On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization

    Full text link
    This paper proposes control laws ensuring the stabilization of a time-varying desired joint trajectory, as well as joint limit avoidance, in the case of fully-actuated manipulators. The key idea is to perform a parametrization of the feasible joint space in terms of exogenous states. It follows that the control of these states allows for joint limit avoidance. One of the main outcomes of this paper is that position terms in control laws are replaced by parametrized terms, where joint limits must be avoided. Stability and convergence of time-varying reference trajectories obtained with the proposed method are demonstrated to be in the sense of Lyapunov. The introduced control laws are verified by carrying out experiments on two degrees-of-freedom of the humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International Conference on Humanoid Robot

    Whole-Body Impedance Control of Wheeled Humanoid Robots

    Full text link

    Motion Control of the Hybrid Wheeled-Legged Quadruped Robot Centauro

    Get PDF
    Emerging applications will demand robots to deal with a complex environment, which lacks the structure and predictability of the industrial workspace. Complex scenarios will require robot complexity to increase as well, as compared to classical topologies such as fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations. Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are flexible enough to handle real world scenarios; however, the improved flexibility comes at the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots have been proposed, resulting in the mitigation of control complexity whenever the ground surface is suitable for driving. Following this idea, a new hybrid robot called Centauro has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid bi-manual upper-body. Differently from other platform of similar concept, Centauro employs customized actuation units, which provide high torque outputs, moderately fast motions, and the possibility to control the exerted torque. Moreover, with more than forty motors moving its limbs, Centauro is a very redundant platform, with the potential to execute many different tasks at the same time. This thesis deals with the design and development of a software architecture, and a control system, tailored to such a robot; both wheeled and legged locomotion strategies have been studied, as well as prioritized, whole-body and interaction controllers exploiting the robot torque control capabilities, and capable to handle the system redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and (ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire work

    Human-friendly robotic manipulators: safety and performance issues in controller design

    Get PDF
    Recent advances in robotics have spurred its adoption into new application areas such as medical, rescue, transportation, logistics, personal care and entertainment. In the personal care domain, robots are expected to operate in human-present environments and provide non-critical assistance. Successful and flourishing deployment of such robots present different opportunities as well as challenges. Under a national research project, Bobbie, this dissertation analyzes challenges associated with these robots and proposes solutions for identified problems. The thesis begins by highlighting the important safety concern and presenting a comprehensive overview of safety issues in a typical domestic robot system. By using functional safety concept, the overall safety of the complex robotic system was analyzed through subsystem level safety issues. Safety regions in the world model of the perception subsystem, dependable understanding of the unstructured environment via fusion of sensory subsystems, lightweight and compliant design of mechanical components, passivity based control system and quantitative metrics used to assert safety are some important points discussed in the safety review. The main research focus of this work is on controller design of robotic manipulators against two conflicting requirements: motion performance and safety. Human-friendly manipulators used on domestic robots exhibit a lightweight design and demand a stable operation with a compliant behavior injected via a passivity based impedance controller. Effective motion based manipulation using such a controller requires a highly stiff behavior while important safety requirements are achieved with compliant behaviors. On the basis of this intuitive observation, this research identifies suitable metrics to identify the appropriate impedance for a given performance and safety requirement. This thesis also introduces a domestic robot design that adopts a modular design approach to minimize complexity, cost and development time. On the basis of functional modularity concept where each module has a unique functional contribution in the system, the robot โ€œBobbie-UTโ€ฟ is built as an interconnection of interchangeable mobile platform, torso, robotic arm and humanoid head components. Implementation of necessary functional and safety requirements, design of interfaces and development of suitable software architecture are also discussed with the design

    ๊ตฌ์กฐ๋กœ๋ด‡์„ ์œ„ํ•œ ๊ฐ•๊ฑดํ•œ ๊ณ„์ธต์  ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์ข…์šฐ.Over the last several years, robotics has experienced a striking development, and a new generation of robots has emerged that shows great promise in being able to accomplish complex tasks associated with human behavior. Nowadays the objectives of the robots are no longer restricted to the automaton in the industrial process but are changing into explorers for hazardous, harsh, uncooperative, and extreme environments. As these robots usually operate in dynamic and unstructured environments, they should be robust, adaptive, and reactive under various changing operation conditions. We propose online hierarchical optimization-based planning and control methodologies for a rescue robot to execute a given mission in such a highly unstructured environment. A large number of degrees of freedom is provided to robots in order to achieve diverse kinematic and dynamic tasks. However, accomplishing such multiple objectives renders on-line reactive motion planning and control problems more difficult to solve due to the incompatible tasks. To address this problem, we exploit a hierarchical structure to precisely resolve conflicts by creating a priority in which every task is achieved as much as possible according to the levels. In particular, we concentrate on the reasoning about the task regularization to ensure the convergence and robustness of a solution in the face of singularity. As robotic systems with real-time motion planners or controllers often execute unrehearsed missions, a desired task cannot always be driven to a singularity free configuration. We develop a generic solver for regularized hierarchical quadratic programming without resorting to any off-the-shelf QP solver to take advantage of the null-space projections for computational efficiency. Therefore, the underlying principles are thoroughly investigated. The robust optimal solution is obtained under both equality and inequality tasks or constraints while addressing all problems resulting from the regularization. Especially as a singular value decomposition centric approach is leveraged, all hierarchical solutions and Lagrange multipliers for properly handling the inequality constraints are analytically acquired in a recursive procedure. The proposed algorithm works fast enough to be used as a practical means of real-time control system, so that it can be used for online motion planning, motion control, and interaction force control in a single hierarchical optimization. Core system design concepts of the rescue robot are presented. The goals of the robot are to safely extract a patient and to dispose a dangerous object instead of humans. The upper body is designed humanoid in form with replaceable modularized dual arms. The lower body is featured with a hybrid tracked and legged mobile platform to simultaneously acquire versatile manipulability and all-terrain mobility. Thus, the robot can successfully execute a driving task, dangerous object manipulation, and casualty extraction missions by changing the pose and modularized equipments in an optimized manner. Throughout the dissertation, all proposed methods are validated through extensive numerical simulations and experimental tests. We highlight precisely how the rescue robot can execute a casualty extraction and a dangerous object disposal mission both in indoor and outdoor environments that none of the existing robots has performed.์ตœ๊ทผ์— ๋“ฑ์žฅํ•œ ์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ๋กœ๋ด‡์€ ๊ธฐ์กด์—๋Š” ์ธ๊ฐ„๋งŒ์ด ํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ๋ณต์žกํ•œ ์ผ์„ ๋กœ๋ด‡ ๋˜ํ•œ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํŠนํžˆ DARPA Robotics Challenge๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์‚ฌ์‹ค์„ ์ž˜ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋กœ๋ด‡๋“ค์€ ๊ณต์žฅ๊ณผ ๊ฐ™์€ ์ •ํ˜•ํ™”๋œ ํ™˜๊ฒฝ์—์„œ ์ž๋™ํ™”๋œ ์ผ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋˜ ์ž„๋ฌด์—์„œ ๋” ๋‚˜์•„๊ฐ€ ๊ทนํ•œ์˜ ํ™˜๊ฒฝ์—์„œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ์œ„ํ—˜ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์‚ฌ๋žŒ๋“ค์€ ์žฌ๋‚œํ™˜๊ฒฝ์—์„œ ์•ˆ์ „ํ•˜๊ณ  ์‹œ์˜ ์ ์ ˆํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋Œ€์•ˆ ์ค‘์—์„œ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๋Œ€์ฒ˜ ๋ฐฉ์•ˆ์œผ๋กœ ๋กœ๋ด‡์„ ์ƒ๊ฐํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋กœ๋ด‡์€ ๋™์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•ด์•ผํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์กฐ๊ฑด์—์„œ ๋Šฅ๋™์ ์œผ๋กœ ๋ฐ˜์‘์„ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ด‡์ด ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๊ฐ•๊ฑดํ•˜๋ฉด์„œ๋„ ์ ์‘์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์กฐ ๋กœ๋ด‡์˜ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ธ๊ฐ„์€ ๋งŽ์€ ์ž์œ ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํ•˜๋‚˜์˜ ์ „์‹  ๋™์ž‘์„ ์ƒ์„ฑํ•  ๋•Œ ๋‹ค์–‘ํ•œ ๊ธฐ๊ตฌํ•™ ํ˜น์€ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ข…ํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ ๋™์ž‘ ์š”์†Œ๋“ค์„ ์ตœ์ ํ™”ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ƒํ™ฉ ์— ๋”ฐ๋ผ ๊ฐ ๋™์ž‘ ์š”์†Œ์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์ ์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ œ์–ดํ•œ๋‹ค. ์ฆ‰, ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ค‘์š”ํ•œ ๋™์ž‘์š”์†Œ๋ฅผ ์šฐ์„ ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋Š” ๋ถ€๋ถ„ ํ˜น์€ ์ „์ฒด์ ์œผ๋กœ ํฌ๊ธฐํ•˜๊ธฐ๋„ ํ•˜๋ฉด์„œ ๋งค์šฐ ์œ ์—ฐํ•˜๊ฒŒ ์ „์ฒด ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ตœ์ ํ™” ํ•œ๋‹ค. ์ธ๊ฐ„๊ณผ ๊ฐ™์ด ๋‹ค์ž์œ ๋„๋ฅผ ๋ณด์œ ํ•œ ๋กœ๋ด‡ ๋˜ํ•œ ๊ธฐ๊ตฌํ•™๊ณผ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ๋‹ค์–‘ํ•œ ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ž‘์—…๊ณต๊ฐ„(task space) ํ˜น์€ ๊ด€์ ˆ๊ณต๊ฐ„(configuration space)์—์„œ ์ •์˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์šฐ์„ ์ˆœ์œ„์— ๋”ฐ๋ผ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ์ „์ฒด ๋™์ž‘์„ ์ƒ ์„ฑํ•˜๊ณ  ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์„œ๋กœ ์–‘๋ฆฝํ•˜๊ธฐ ์–ด๋ ค์šด ๋กœ๋ด‡์˜ ๋™์ž‘ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋™์ž‘๋“ค ์‚ฌ์ด์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ๊ณ„์ธต์„ ์ƒ์„ฑํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋กœ๋ด‡์˜ ์ „์‹  ๋™์ž‘์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์˜ค๋žซ๋™์•ˆ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•˜๋ฉด ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋†’์€ ๋™์ž‘๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ์‹คํ–‰ํ•˜์ง€๋งŒ, ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋“ค๋„ ๊ฐ€๋Šฅํ•œ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ตœ์ ์˜ ํ•ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ด€์ ˆ์˜ ๊ตฌ๋™ ๋ฒ”์œ„์™€ ๊ฐ™์€ ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ๊นŒ์ง€ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง๊นŒ์ง€ ๋งŽ์€ ๋ถ€๋ถ„์ด ๋ฐ ํ˜€์ง„ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋“ฑ์‹๊ณผ ๋ถ€๋“ฑ์‹์œผ๋กœ ํ‘œํ˜„๋˜๋Š” ๊ตฌ์†์กฐ๊ฑด ํ˜น์€ ๋™์ž‘์š”์†Œ๋ฅผ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ๋™์‹œ์— ํฌํ•จ์‹œํ‚ค๊ณ , ํŠน์ด์ ์ด ์กด์žฌํ•˜๋”๋ผ๋„ ๊ฐ•๊ฑด์„ฑ๊ณผ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ด€์ ˆ๊ณต๊ฐ„์—์„œ์˜ ์ตœ์ ํ•ด๋ฅผ ํ™•๋ณดํ•˜๋Š”๋ฐ ์ง‘์ค‘ํ•œ๋‹ค. ์™œ๋‚˜ํ•˜๋ฉด ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์€ ์‚ฌ์ „์— ๊ณ„ํš๋œ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ์กฐ๊ฑด์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋™์ž‘์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํŠน์ด์ ์ด ์—†๋Š” ์ž์„ธ๋กœ ๋กœ๋ด‡์„ ํ•ญ์ƒ ์ œ์–ดํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ ‡๊ฒŒ ํŠน์ด์ ์„ ํšŒํ”ผํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋กœ๋ด‡์„ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์€ ๋กœ๋ด‡์˜ ์šด์šฉ์„ฑ์„ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํŠน์ด์  ๊ทผ๋ฐฉ์—์„œ์˜ ํ•ด์˜ ๊ฐ•๊ฑด์„ฑ์ด ๋ณด์žฅ๋˜์ง€ ์•Š์œผ๋ฉด ๋กœ๋ด‡ ๊ด€์ ˆ์— ๊ณผ๋„ํ•œ ์†๋„ ํ˜น์€ ํ† ํฌ๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋กœ๋ด‡์˜ ์ž„๋ฌด ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์†์ƒ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚˜์•„๊ฐ€ ๋กœ๋ด‡๊ณผ ํ•จ๊ป˜ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ์ƒํ•ด๋ฅผ ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์šฐ์„ ์ˆœ์œ„ ๊ธฐ๋ฐ˜์˜ ๊ณ„์ธต์  ์ตœ์ ํ™”์™€ ์ •๊ทœํ™” (regularization)๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” (RHQP: Regularized Hierarchical Quadratic Program) ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๋ถ€๋“ฑ์‹์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ์ •๊ทœํ™”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์•ผ๊ธฐ๋˜๋Š” ๋งŽ์€ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ํ•ด์˜ ์ตœ์ ์„ฑ๊ณผ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ ์™ธ๋ถ€์˜ ์ตœ์ ํ™” ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์ˆ˜์น˜์  ์ตœ์ ํ™” (numerical optimization) ์ด๋ก ๊ณผ ์šฐ์„ ์ˆœ์œ„์— ๊ธฐ๋ฐ˜์„ ๋‘๋Š” ์—ฌ์œ ์ž์œ ๋„ ๋กœ๋ด‡์˜ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ด์ฐจ ํ”„๋กœ๊ทธ๋žจ(quadratic programming)์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ด์™€ ๋™์‹œ์— ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ์ด๋ก ์  ๊ตฌ์กฐ๋ฅผ ์ฒ ์ €ํ•˜๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด (singular value decomposition)๋ฅผ ํ†ตํ•ด ์ตœ์ ํ•ด์™€ ๋ถ€๋“ฑ์‹ ์กฐ๊ฑด์„ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ๋ผ๊ทธ๋ž‘์ง€ ์Šน์ˆ˜๋ฅผ ์žฌ๊ท€์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•ด์„์  ํ˜•ํƒœ๋กœ ๊ตฌํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๊ณ  ๋™์‹œ์— ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์„ ์˜ค๋ฅ˜ ์—†์ด ์ •ํ™•ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ํž˜์ œ์–ด๊นŒ์ง€ ํ™•์žฅํ•˜์—ฌ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์•ˆ์ „ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์žฅํ•˜์—ฌ ๋กœ๋ด‡์ด ์ ์ ˆํ•œ ํž˜์œผ๋กœ ํ™˜๊ฒฝ๊ณผ ์ ‘์ด‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋กœ๋ด‡์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ์˜ ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ์ด๋™ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์ƒ์œผ๋กœ ๋กœ๋ด‡์„ ์„ค๊ณ„ํ•˜์—ฌ ๊ตฌ์กฐ ๋กœ๋ด‡์œผ๋กœ ํ•˜์—ฌ๊ธˆ ์ตœ์ข… ๋ชฉ์ ์œผ๋กœ ์„ค์ •๋œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ๋ถ€์ƒ์ž๋ฅผ ๊ตฌ์กฐํ•˜๊ณ  ์œ„ํ—˜๋ฌผ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์ž„๋ฌด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๊ตฌ์กฐ ๋กœ๋ด‡์— ํ•„์š”ํ•œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด์™€ ์œ„ํ—˜๋ฌผ ์ฒ˜๋ฆฌ ์ž„๋ฌด์— ๋”ฐ๋ผ ๊ต์ฒด ๊ฐ€๋Šฅํ•œ ๋ชจ๋“ˆํ˜•์œผ๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ž„๋ฌด์— ๋”ฐ๋ผ ์ตœ์ ํ™”๋œ ๋งค๋‹ˆํ“ฐ ๋ ˆ์ดํ„ฐ๋ฅผ ์žฅ์ฐฉํ•˜์—ฌ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ฒด๋Š” ํŠธ๋ž™๊ณผ ๊ด€์ ˆ์ด ๊ฒฐํ•ฉ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ˜•ํƒœ๋ฅผ ์ทจํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ฃผํ–‰ ์ž„๋ฌด์™€ ์กฐ์ž‘์ž„๋ฌด์— ๋”ฐ๋ผ ํ˜•์ƒ์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜•์ƒ ๋ณ€๊ฒฝ๊ณผ ๋ชจ๋“ˆํ™”๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ํ†ตํ•ด์„œ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ํ—˜ํ•œ ์ง€ํ˜•์—์„œ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผํ–‰ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๊ตฌ์กฐ๋กœ๋ด‡์˜ ์„ค๊ณ„์™€ ์‹ค์‹œ๊ฐ„ ๊ณ„์ธต์  ์ œ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„์ •ํ˜• ์‹ค๋‚ด์™ธ ํ™˜๊ฒฝ์—์„œ ๊ตฌ์กฐ๋กœ๋ด‡์ด ์ฃผํ–‰์ž„๋ฌด, ์œ„ํ—˜๋ฌผ ์กฐ์ž‘์ž„๋ฌด, ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ•ด์„๊ณผ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ž…์ฆํ•จ์œผ๋กœ์จ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์„ค๊ณ„์™€ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ์ œ์–ด ์ „๋žต์˜ ์œ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivations 1 1.2 Related Works and Research Problems for Hierarchical Control 3 1.2.1 Classical Approaches 3 1.2.2 State-of-the-Art Strategies 4 1.2.3 Research Problems 7 1.3 Robust Rescue Robots 9 1.4 Research Goals 12 1.5 Contributions of ThisThesis 13 1.5.1 Robust Hierarchical Task-Priority Control 13 1.5.2 Design Concepts of Robust Rescue Robot 16 1.5.3 Hierarchical Motion and ForceControl 17 1.6 Dissertation Preview 18 2 Preliminaries for Task-Priority Control Framework 21 2.1 Introduction 21 2.2 Task-Priority Inverse Kinematics 23 2.3 Recursive Formulation of Null Space Projector 28 2.4 Conclusion 31 3 Robust Hierarchical Task-Priority Control 33 3.1 Introduction 33 3.1.1 Motivations 35 3.1.2 Objectives 36 3.2 Task Function Approach 37 3.3 Regularized Hierarchical Optimization with Equality Tasks 41 3.3.1 Regularized Hierarchical Optimization 41 3.3.2 Optimal Solution 45 3.3.3 Task Error and Hierarchical Matrix Decomposition 49 3.3.4 Illustrative Examples for Regularized Hierarchical Optimization 56 3.4 Regularized Hierarchical Optimization with Inequality Constraints 60 3.4.1 Lagrange Multipliers 61 3.4.2 Modified Active Set Method 66 3.4.3 Illustrative Examples of Modified Active Set Method 70 3.4.4 Examples for Hierarchical Optimization with Inequality Constraint 72 3.5 DLS-HQP Algorithm 79 3.6 Concluding Remarks 80 4 Rescue Robot Design and Experimental Results 83 4.1 Introduction 83 4.2 Rescue Robot Design 85 4.2.1 System Design 86 4.2.2 Variable Configuration Mobile Platform 92 4.2.3 Dual Arm Manipulators 95 4.2.4 Software Architecture 97 4.3 Performance Verification for Hierarchical Motion Control 99 4.3.1 Real-Time Motion Generation 99 4.3.2 Task Specifications 103 4.3.3 Singularity Robust Task Priority 106 4.3.4 Inequality Constraint Handling and Computation Time 111 4.4 Singularity Robustness and Inequality Handling for Rescue Mission 117 4.5 Field Tests 122 4.6 Concluding Remarks 126 5 Hierarchical Motion and Force Control 129 5.1 Introduction 129 5.2 Operational Space Control 132 5.3 Acceleration-Based Hierarchical Motion Control 134 5.4 Force Control 137 5.4.1 Force Control with Inner Position Loop 141 5.4.2 Force Control with Inner Velocity Loop 144 5.5 Motion and Force Control 145 5.6 Numerical Results for Acceleration-Based Motion and Force Control 148 5.6.1 Task Specifications 150 5.6.2 Force Control Performance 151 5.6.3 Singularity Robustness and Inequality Constraint Handling 155 5.7 Velocity Resolved Motion and Force Control 160 5.7.1 Velocity-Based Motion and Force Control 161 5.7.2 Experimental Results 163 5.8 Concluding Remarks 167 6 Conclusion 169 6.1 Summary 169 6.2 Concluding Remarks 173 A Appendix 175 A.1 Introduction to PID Control 175 A.2 Inverse Optimal Control 176 A.3 Experimental Results and Conclusion 181 Bibliography 183 Abstract 207๋ฐ•

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry

    Ein hierarchisches Framework fรผr physikalische Mensch-Roboter-Interaktion

    Get PDF
    Robots are becoming more than machines performing repetitive tasks behind safety fences, and are expected to perform multiple complex tasks and work together with a human. For that purpose, modern robots are commonly built with two main characteristics: a large number of joints to increase their versatility and the capability to feel the environment through torque/force sensors. Controlling such complex robots requires the development of sophisticated frameworks capable of handling multiple tasks. Various frameworks have been proposed in the last years to deal with the redundancy caused by a large number of joints. Those hierarchical frameworks prioritize the achievement of the main task with the whole robot capability, while secondary tasks are performed as well as the remaining mobility allows it. This methodology presents considerable drawbacks in applications requiring that the robot respects constraints imposed by, e.g., safety restrictions or physical limitations. One particular case is unilateral constraints imposed by, e.g., joint or workspace limits. To implement them, task hierarchical frameworks rely on the activation of repulsive potential fields when approaching the limit. The performance of the potential field depends on the configuration and speed of the robot. Additionally, speed limitation is commonly required in collaborative scenarios, but it has been insufficiently treated for torque-controlled robots. With the aim of controlling redundant robots in collaborative scenarios, this thesis proposes a framework that handles multiple tasks under multiple constraints. The robotโ€™s reaction to physical interaction must be intuitive and safe for humans: The robot must not impose high forces on the human or react unexpectedly to external forces. The proposed framework uses novel methods to avoid exceeding position, velocity and acceleration limits in joint and Cartesian spaces. A comparative study is carried out between different redundancy resolution solvers to contrast the diverse approaches used to solve the redundancy problem. Widely used projector-based and quadratic programming-based hierarchical solvers were experimentally analyzed when reacting to external forces. Experiments were performed using an industrial redundant collaborative robot. Results demonstrate that the proposed method to handle unilateral constraints produces a safe and expected reaction in the presence of external forces exerted by humans. The robot does not exceed the given limits, while the tasks performed are prioritized hierarchically

    Exploring robust, intuitive and emergent physical human-robot interaction with the humanoid Acroban

    Get PDF
    International audienceWe present how a humanoid robot, called Acroban, allows whole-body robust, natural and intuitive physical interac- tion with both adults and children. These physical human-robot interaction are made possible through the combination of several properties of Acroban: 1) it is whole-body compliant thanks to variable impedance control and also thanks to the use of elastics and springs; 2) it has a bio-inspired vertebral column allowing more flexibility in postural and equilibrium control; 3) it is light- weight; 4) it has simple low-level controllers that leverage the first three properties. Moreover, the capabilities for physical human- robot interaction that we show are not using a model of the human, and in this sense are "model free": 1) the capability of the robot to keep its equilibrium while being manipulated or pushed by humans is a result of the intrinsic capability of the whole body to absorb unpredicted external perturbations; 2) the capability of leading Acroban by the hand is an emergent human-robot interface made possible by the self-organizing properties of the body and its low-level controllers and was observed a posteriori only after the robot was conceived and without any initial plan to make this possible. Finally, an originality of Acroban is that is is made with relatively low-cost components which lack of precision is counterbalanced with the robustness due to global geometry and compliance

    Robot learning from demonstration of force-based manipulation tasks

    Get PDF
    One of the main challenges in Robotics is to develop robots that can interact with humans in a natural way, sharing the same dynamic and unstructured environments. Such an interaction may be aimed at assisting, helping or collaborating with a human user. To achieve this, the robot must be endowed with a cognitive system that allows it not only to learn new skills from its human partner, but also to refine or improve those already learned. In this context, learning from demonstration appears as a natural and userfriendly way to transfer knowledge from humans to robots. This dissertation addresses such a topic and its application to an unexplored field, namely force-based manipulation tasks learning. In this kind of scenarios, force signals can convey data about the stiffness of a given object, the inertial components acting on a tool, a desired force profile to be reached, etc. Therefore, if the user wants the robot to learn a manipulation skill successfully, it is essential that its cognitive system is able to deal with force perceptions. The first issue this thesis tackles is to extract the input information that is relevant for learning the task at hand, which is also known as the what to imitate? problem. Here, the proposed solution takes into consideration that the robot actions are a function of sensory signals, in other words the importance of each perception is assessed through its correlation with the robot movements. A Mutual Information analysis is used for selecting the most relevant inputs according to their influence on the output space. In this way, the robot can gather all the information coming from its sensory system, and the perception selection module proposed here automatically chooses the data the robot needs to learn a given task. Having selected the relevant input information for the task, it is necessary to represent the human demonstrations in a compact way, encoding the relevant characteristics of the data, for instance, sequential information, uncertainty, constraints, etc. This issue is the next problem addressed in this thesis. Here, a probabilistic learning framework based on hidden Markov models and Gaussian mixture regression is proposed for learning force-based manipulation skills. The outstanding features of such a framework are: (i) it is able to deal with the noise and uncertainty of force signals because of its probabilistic formulation, (ii) it exploits the sequential information embedded in the model for managing perceptual aliasing and time discrepancies, and (iii) it takes advantage of task variables to encode those force-based skills where the robot actions are modulated by an external parameter. Therefore, the resulting learning structure is able to robustly encode and reproduce different manipulation tasks. After, this thesis goes a step forward by proposing a novel whole framework for learning impedance-based behaviors from demonstrations. The key aspects here are that this new structure merges vision and force information for encoding the data compactly, and it allows the robot to have different behaviors by shaping its compliance level over the course of the task. This is achieved by a parametric probabilistic model, whose Gaussian components are the basis of a statistical dynamical system that governs the robot motion. From the force perceptions, the stiffness of the springs composing such a system are estimated, allowing the robot to shape its compliance. This approach permits to extend the learning paradigm to other fields different from the common trajectory following. The proposed frameworks are tested in three scenarios, namely, (a) the ball-in-box task, (b) drink pouring, and (c) a collaborative assembly, where the experimental results evidence the importance of using force perceptions as well as the usefulness and strengths of the methods
    • โ€ฆ
    corecore