
UNIVERSITY OF GENOVA

PHD PROGRAM IN BIOENGINEERING AND ROBOTICS

Motion Control of the Hybrid Wheeled-Legged
Quadruped Robot Centauro

by

Arturo Laurenzi

Thesis submitted for the degree of Doctor of Philosophy (32nd cycle)

December 2019

Nikolaos G. Tsagarakis Supervisor
Ferdinando Cannata Head of the PhD program

Thesis Jury:
Prof. Auke Ijspeert, Ecole Polytechnique Fédérale de Lausanne External examiner
Prof. Fabrizio Caccavale, Università degli Studi della Basilicata External examiner
Prof. Andrea M. Zanchettin, Politecnico di Milano External examiner

Istituto Italiano di Tecnologia (HHCM lab), and
Department of Informatics, Bioengineering, Robotics and Systems Engineering

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,
tables and equations and has fewer than 150 figures.

Arturo Laurenzi
January 2020

Acknowledgements

I would like to thank all the Humanoids and Human Centred Mechatronics team for con-
tributing to a friendly and competent work environment, and my supervisor Nikos Tsagarakis
for giving me the opportunity to work therein. I would also like to thank Dr. Luca Muratore
for the fruitful collaboration which lead to the XBotCore real-time robotic middleware;
Dr. Enrico Mingo Hoffman and Dr. Matteo Parigi Polverini for cooperating on the topic of
prioritized force control.

Abstract

Emerging applications will demand robots to deal with a complex environment, which
lacks the structure and predictability of the industrial workspace. Complex scenarios will
require robot complexity to increase as well, as compared to classical topologies such as
fixed-base manipulators, wheeled mobile platforms, tracked vehicles, and their combinations.
Legged robots, such as humanoids and quadrupeds, promise to provide platforms which are
flexible enough to handle real world scenarios; however, the improved flexibility comes at
the cost of way higher control complexity. As a trade-off, hybrid wheeled-legged robots
have been proposed, resulting in the mitigation of control complexity whenever the ground
surface is suitable for driving. Following this idea, a new hybrid robot called Centauro

has been developed inside the Humanoid and Human Centered Mechatronics lab at Istituto

Italiano di Tecnologia (IIT). Centauro is a wheeled-legged quadruped with a humanoid
bi-manual upper-body. Differently from other platform of similar concept, Centauro employs
customized actuation units, which provide high torque outputs, moderately fast motions,
and the possibility to control the exerted torque. Moreover, with more than forty motors
moving its limbs, Centauro is a very redundant platform, with the potential to execute many
different tasks at the same time. This thesis deals with the design and development of a
software architecture, and a control system, tailored to such a robot; both wheeled and legged
locomotion strategies have been studied, as well as prioritized, whole-body and interaction
controllers exploiting the robot torque control capabilities, and capable to handle the system
redundancy. A novel software architecture, made of (i) a real-time robotic middleware, and
(ii) a framework for online, prioritized Cartesian controller, forms the basis of the entire
work.

Table of contents

List of figures viii

List of tables xi

1 Introduction 1
1.1 Thesis overview and objectives . 2
1.2 Disaster-response robotics . 3

1.2.1 The Fukushima-Daiichi disaster 4
1.3 The Centauro robot . 6
1.4 Contribution . 8
1.5 Contributed papers . 11

2 Background on Cartesian Control 13
2.1 Reference frames representation . 13

2.1.1 Motion of rigid bodies . 14
2.1.2 Spatial algebra . 15

2.2 Robot kinematics . 16
2.2.1 Floating base robots . 21

2.3 Inverse kinematics . 21
2.3.1 Orientation tasks . 22
2.3.2 Online inverse kinematics . 23
2.3.3 Pseudo-inverse . 25
2.3.4 Singular value decomposition . 26
2.3.5 Connection with NLP-based IK 29

2.4 Robot dynamics . 30
2.4.1 Task-space dynamics . 31
2.4.2 Centroidal dynamics . 32

Table of contents v

2.4.3 Contact dynamics . 33
2.4.4 Motion feasibility . 34
2.4.5 ZMP stability criterion . 36

I Software architecture 40

3 Real-time robotic middleware 41
3.1 Motivation and related works . 41
3.2 Hardware abstraction . 44
3.3 Real-time control . 47
3.4 Non real-time control . 49

3.4.1 ROS integration . 50
3.5 High level interfaces . 51
3.6 Conclusions . 53

4 Cartesian control 55
4.1 Motivation and related works . 55
4.2 Architecture and implementation . 58
4.3 The OpenSoT library . 59
4.4 Programmatic interface . 60
4.5 ROS interface . 62
4.6 Real-time integration . 63
4.7 Validation . 64
4.8 Discussion . 66

II Locomotion control 69

5 Wheeled-legged motion control 70
5.1 Introduction . 70
5.2 Background on Cartesian control . 72

5.2.1 Kinematic modeling . 73
5.2.2 QP-based inverse kinematics . 73
5.2.3 Hierarchical inverse kinematics 74
5.2.4 Projector-based unconstrained solution 75
5.2.5 Nullspace-based unconstrained solution 76

Table of contents vi

5.2.6 Constrained solutions . 77
5.3 Controller design . 79

5.3.1 Trunk-based control . 80
5.3.2 Horizontal frame-based control 81
5.3.3 Virtual local frame . 82
5.3.4 Discussion . 85

5.4 Pure rolling condition . 85
5.4.1 Steering control . 86
5.4.2 Dealing with joint limits . 87
5.4.3 Integration into a stack of tasks 88

5.5 Experiments . 88
5.6 Discussion . 91

6 Legged locomotion 94
6.1 Introduction . 94
6.2 Related works . 96
6.3 Simplified models . 97
6.4 LMPC-based gait generation . 98

6.4.1 Classical approach . 98
6.4.2 Proposed decomposition . 100
6.4.3 Feasibility constraint . 102
6.4.4 Auxiliary state initialization . 102
6.4.5 Parameters choice . 103

6.5 Implementation and experiments . 103
6.6 Discussion . 109

III Interaction control 110

7 Prioritized force control 111
7.1 Introduction and related works . 112
7.2 Prioritized force control . 115

7.2.1 Pseudo-inverse free formulation 118
7.2.2 Low priority joint space task . 118
7.2.3 Prioritized QP Formulation . 119
7.2.4 Joint Torque Limits . 120

Table of contents vii

7.3 Validation . 120
7.3.1 Gazebo: Torque Limits . 121
7.3.2 Gazebo: Cartesian Circular Trajectory 122
7.3.3 Robot: Cartesian Circular Trajectory 123

7.4 Extension to floating base systems . 124
7.4.1 Post-optimization of contact forces 128
7.4.2 Discussion . 129

7.5 Implementation and experiments . 130
7.5.1 Gazebo simulations . 130
7.5.2 Preliminary Experiments on the Coman+ platform 132

7.6 Heavy object pushing demonstrator . 134
7.6.1 Continuous environment description 136
7.6.2 Multi-contact planning . 138
7.6.3 Contact Force Distribution . 140
7.6.4 Experiments . 140

7.7 Discussion . 141

8 Conclusions 143
8.1 Summary of main achievements . 143
8.2 Dissemination and exploitation . 144
8.3 Future works . 148

References 151

List of figures

1.1 Unmanned construction machines removing radioactive debris. 4
1.2 Tracked robots employed in the Fukushima-Daichii disaster. 5
1.3 The Centauro robot, a hybrid wheeled-legged quadruped with a humanoid

upper-body. 6
1.4 Kinematic structure of the Centauro robot leg and arm. 7
1.5 Torque controlled integrated actuators used inside HHCM robots. 7
1.6 Thesis structure and dependencies between modules. 8

2.1 Spatial acceleration of rolling wheel. 16
2.2 Example of articulated body. 17
2.3 Pictorial representation of a 1-dof revolute joint connecting two links. . . . 17
2.4 Kinematic state description for a simple robot, involving joint transforms

and tree transforms. 18
2.5 Different strategies for the regularized inversion of singular values. 29
2.6 Effect of linear and angular momentum rate of change on the center of

pressure location, denoted with a red dot. 37
2.7 Different center of mass trajectories for a given ZMP trajectory. 39

3.1 The robot Hardware Abstraction Layer introduced for the XBotCore software
architecture. 45

3.2 XBotCore software architecture: components overview and interaction. . . . 46
3.3 XBotCore threads structure and communication mechanisms. 46
3.4 UML state diagram showing a XBotCore plugin life-cycle. 48
3.5 UML class hierarchy diagram for the the XBotInterface library. 52

4.1 Components of the Cartesian Interface and signal flow. 60
4.2 Timing statistics for the box picking experiment with COMAN+. 65

List of figures ix

4.3 Snapshots from a box-picking task with RT stabilization using humanoid
COMAN+. 65

4.4 Snapshots from the experiment with CENTAURO robot described in Section
4.7. 67

5.2 Kinematic behavior of the Centauro robot while a rolling motion is com-
manded to it base. The Cartesian pose of the wheels is controlled w.r.t. to a
horizontal frame that is attached to the trunk (horizontal frame-based control). 83

5.3 Augmented kinematic model for a wheeled-legged quadruped. 84
5.4 Structure and reference frames for the Centauro wheel complex. 87
5.5 Support polygon shape modulation while performing a driving motion with

forward speed of v = 0.05 ms−1. 89
5.6 Trunk motion w.r.t. the virtual frame in right, forward, and clockwise direction. 90
5.7 Manipulation in world frame coordinates with simultaneous support polygon

adjustment. 90
5.8 Trunk adaptation in the presence of constraints. 91
5.9 Wheel lifting under the proposed stack of tasks, compared to the same task

when the local frame coincides with the trunk frame. 92
5.10 Time history of the absolute velocity of the wheels contact points w.r.t. the

ground, computed along the commanded motion sequence. 92

6.1 Decomposed feasibility constraint as described in Section 6.4.3 102
6.2 Planned CoM velocity profile against reference. 106
6.3 CPU time needed to fully set up and solve with a naive implementation the

MPC QP problem on an Intel i7-6700@3400Hz CPU. 107
6.4 Planned CoM and ZMP trajectories with and without an external disturbance. 107
6.5 Sequence of support polygons generated by the proposed algorithm. 108
6.6 Snapshots taken from an experiment on the actual CENTAURO robot. . . . 108

7.1 Upper body of the Centauro robot. 121
7.2 Joint torques computed by the controller: the green area represent the admis-

sible region for the joint torques, the red area are the bounds 122
7.3 During the Gazebo simulation, the robot end-effector and structure are dis-

turbed by unknown high external forces 123
7.4 Desired (dashed) versus computed (continuous) Cartesian trajectories for the

left end-effector under external pushes in the Gazebo experiment 124

List of figures x

7.5 During the experiment the robot end-effector and structure are disturbed by
unknown high external forces . 125

7.6 Desired (dashed) versus computed (continuous) Cartesian trajectories for the
left end-effector under external pushes in the real hardware experiment . . . 126

7.7 Comparison between measured torques and references, computed by the
proposed algorithm. 127

7.8 Screen shots from Centauro simulations in Gazebo. In the upper plots a
constant force of 200 N is applied downward on the robot waist, while in the
lower plots a constant force of 90 N is applied sideways. 132

7.9 Time histories from Centauro simulation: an external constant force of 200 N

is applied downward (z-direction) on the robot waist for 2 s (shaded area). . 133
7.10 Contact forces’ time history from Centauro simulation: an external constant

force of 90 N is applied sideways (y-direction) on the robot waist for 2 s

(shaded area). 134
7.11 Simulation and experiment with the Coman+ robot. 135
7.12 Centauro pushing a heavy object. 137
7.13 Graphical representation of the quantities involved in the planning problem

to retrieve the final pose. 138
7.14 Overview of the control architecture. “Algorithm 1” is the multi-contact

loco-manipulation problem, whereas “Algorithm 2” is the contact-lifting

problem, as described in the text. 139
7.15 Screenshots from a heavy object pushing experiment. 142

List of tables

4.1 Comparison between different frameworks for robot Cartesian control. . . 57

5.1 Comparison between different proposed strategies for the motion control of
the Centauro robot (R = roll axis, P = pitch axis). 79

6.1 Parameters used for the experiment. 105

Chapter 1

Introduction

At the time of writing, and roughly sixty years after the very first robotic manipulators
were fabricated, despite the vast majority of robotics being clearly focused on industrial
applications, robotic platforms are indeed starting to expand from a mostly industrial focus
to less structured environments. Such a progress has the potential to enhance the quality
of human workers in fields such as agriculture and construction, by relieving humans from
performing laborious and repetitive tasks, while at the same time reducing operational
costs. Furthermore, and arguably more importantly, robots will be able to handle hazardous
scenarios, gradually replacing humans in tasks that expose them to life risk, such as search-
and-rescue inside hazardous environments (e.g. collapsed or on fire buildings, high pressure
underwater scenarios), fire fighting, response to nuclear accidents, land mine clearance, and
others.

As it will become more clear in the course of this chapter, many challenges still need to be
overcome in order to deploy an effective robotic responder to the real world; these are related
to both control and hardware implementation aspects. Focusing on the hardware design, it
is worth noticing that while agile legged platforms do have the advantage of being able to
locomote on unstructured surfaces at moderately high speed, they are usually not suitable in
terms of physical performance for heavy interaction tasks that might realistically be needed
in a disaster scenario, e.g. lifting weights, removing obstacles, turning stiff valves, and others.
In order to address this issue, the Humanoid and Human-Centered Mechatronics (HHCM)

lab at Istituto Italiano di Tecnologia (IIT) has developed the Centauro robot (Kashiri et al.,
2019), a high-performance quadrupedal robot endowed with a humanoid torso. Centauro
is capable of performing heavy manipulation as well as high-impact interaction with the
environment, while retaining a compact form factor in the same range of a human being.
Moreover, Centauro is fully torque controlled; as such, it can behave compliantly when

1.1 Thesis overview and objectives 2

subjected to external disturbances, a feature that is likely to be essential for loco-manipulation
in cluttered, unknown environments.

In addition to hardware-related challenges, many control problems need to be solved.
Legged locomotion has the advantage of only requiring discrete available footholds; however,
it gives rise to difficult problems such as balancing control and footstep planning. Compliance
can be a powerful feature, yet whole-body compliant controllers for legged robots acting
in the Cartesian space are of difficult implementation; indeed, such controllers typically
struggle to provide satisfactory performance, especially in terms of robustness, mostly due to
the high complexity of the system, and its under-actuated nature.

1.1 Thesis overview and objectives

The main goal of this thesis is to develop a software and control framework that will permit
the Centauro platform to leverage on its highly redundant mobility and physical capabilities
to perform complex whole body loco-manipulation and interaction tasks. This primary goal
becomes instantiated with the following objectives that steered the work executed within this
thesis:

• Realization of an effective software architecture for complex robotic systems, with
the aim to ease the development of control algorithms which can run as close to the
hardware as possible, minimizing latencies and jitter.

• Development of Cartesian control methods for whole body manipulation of highly
redundant platforms. In this case, the goal is to ease the integration of Cartesian
controllers, both programmatically and from a ROS-based distributed control system.
Furthermore, such a framework should the user from the need to write and compile
custom C++ code for the specific target platform.

• Realization of mobility control schemes enabling effective wheeled and legged loco-
motion, by fully exploiting the kinematic capabilities of the Centauro platform.

• Development of modules for interaction control, to enable the Centauro robot to operate
in Cartesian space in a compliant way, also regulating the forces exchanged with the
external environment.

The integration of such core components aims towards a robot that is ready to handle a
real disaster scenario, and which addresses the limitations of currently used platforms, as
discussed later in this chapter.

1.2 Disaster-response robotics 3

The remainder of this chapter is devoted to the introduction of the disaster response
robotics field, as it represents the primary source of inspiration for this thesis work (Sec-
tion 1.2), being a great opportunity for robotics to serve mankind in a deeply significant
way. After a brief summary of the related state of the art, our prototype robotic platform is
introduced in Section 1.3, i.e. the Centauro robot. Finally, Section 1.4 summarizes the main
achievements of this thesis in terms of control for the Centauro platform, whereas Section 1.5
lists the main results of this thesis in terms of scientific disseminations.

1.2 Disaster-response robotics

A disaster can be defined as an event, either natural or man-made, which cannot be handled
counting only on locally available resources. Disaster scenarios can generate several types
of hazard, among which high temperature, radioactivity, risk of explosion, air toxicity, and
others, causing high risk to people involved in the management of the disaster itself.

Disasters are commonly described in terms of different phases (Murphy, 2014): a preven-

tion phase, which is mostly about preparation and training; the actual response phase, and
finally a recovery phase. Response is clearly the most critical phase; most often, responders
need to act as fast as possible, in order to maximize the chance to reach all potential survivors.
Even though many recent natural and artificial disasters have highlighted the need for rapidly
deployable robotic responders, the application of robotic platforms to this domain is made
difficult by the limits of tele-operation technology, which often result in a slow task execution.
On the other hand, using a human operator in the loop seems mandatory to handle the off-
nominal conditions that characterize the uncertain, unstructured disaster scenarios. The lack
of situation awareness caused by delays and poor perception makes it fundamental to keep
operators constantly trained, thanks to realistic simulation scenarios and mock up facilities.
Given these considerations, it seems that robots can be successfully applied especially to the
recovery phase, where slow operation can be tolerated, and invaluable benefits are obtained
by relieving human operators from the need to work in the hazardous environments that
result from the disaster. Realistically, while disaster robots can not be expected to replace
responders in the medium term, they can indeed be used to avoid unnecessary risks.

Despite robots have been used in several disasters, starting from the 2001 World Trade
Center collapse, the 2011 Fukushima-Daichii nuclear accident is commonly regarded as a
milestone in disaster robotics, both because robots actually managed to perform useful work
in the contaminated area that would otherwise be done by humans, and especially because it
highlighted important shortcomings in today’s robotic technology, thus serving as inspiration

1.2 Disaster-response robotics 4

Figure 1.1 Unmanned construction machines removing radioactive debris (taken from Murphy et al.
(2016))

and driving force for all robotic community towards the realization of more effective robotic
systems. A brief description of the event follows, with the aim to understand how robots
managed to serve the human responders, and also why, in some cases, they failed.

1.2.1 The Fukushima-Daiichi disaster

On the 11th of March, 2011, a fourteen meters high tsunami hit the Fukushima-Daichii
nuclear facility, causing the failure of the back-up diesel generators actuating the reactors
cooling water pumps. The reactors had been only recently shut down: without the cooling
water flow, the increase in temperature caused several gas explosions and, eventually, the
meltdown of three cores. Consequently, radioactive contamination was spread in the area
surrounding the facility.

After the event, a four months lasting response phase started, during which robots
managed to accomplish tasks related to the removal of radioactive debris through the use
of unmanned (teleoperated) construction machines, as well as the aerial reconnaissance
of the incident area, which allowed to get an understanding of the situation, also in terms
of radiation measurement. Notably, PackBot robots from iRobot (Figure 1.2(a)) were the
first to enter the reactor buildings 1 and 3 (roughly one month after the accident), which
proved useful for assessing the level of radiation and air toxicity before the access of human
operators. In addition, a similar robot Quince (Figure 1.2(b)) was also employed especially
during the recovery phase, turning out to be the only platform able to climb the stairs and
reach the upper floors. In both cases, an extensive training phase was required prior to the
actual operation, also using the building of reactor 5 (which had not been damaged) as a cold
test scenario.

1.2 Disaster-response robotics 5

(a) PackBot (b) Quince

Figure 1.2 Tracked robots proved to implement the most useful robot morphology in Fukushima,
being small and agile, able to handle stairs without resorting to complex perception-based planning.

Despite these success stories, it is generally acknowledged how robotics fell short of
expectations during both the response and recovery phase. It was recognized how mobility
did represent a major issue for all platforms: some robots failed to climb metal stairs, or to
negotiate complex terrains due to the presence of debris. Other failures happened because
of the sensory system being obstructed by fog, or due to the robot tether remaining caught
in the rubble. In terms of footprint and weight, successful platforms were either very small
and light but with very limited manipulation skills (especially in terms of payload capacity),
as in the case of the PackBot robot, or physically strong but very large and heavy (e.g.
construction machines). It was therefore clear that to operate within infrastructures that had
been designed for humans, a robot should possess a rich repertoire of human-like skills, such
as agility, physical power, locomotion and manipulation capabilities, as well as the possibility
to interact with a harsh environment.

A significant step towards addressing these shortcomings has been taken with the CEN-

TAURO European Project1, which ended November 2018 after more than three years of
development activity. Beside proposing to advance the state of the art in fields such as
semi-autonomous tele-manipulation and locomotion, the project produced a novel robotic
platform called Centauro, which combines state of art compliant actuation with a hybrid
wheeled-legged quadrupedal mobility concept. The multi-legged topology aims to address
the limitations of wheeled or tracked mobile robots in rough terrains, since they can deal
with isolated footholds, plus the legs configuration and the robot posture can be controlled
and adapted for maintaining the balance according to the terrain variations. At the same time,

1The CENTAURO project website: https://centauro-project.eu/

https://centauro-project.eu/

1.3 The Centauro robot 6

Figure 1.3 The Centauro robot, a hybrid wheeled-legged quadruped with a humanoid upper-body.

wheeled motion can be conveniently used to move the robot on smooth surfaces in a more
energy efficient way. More details about the Centauro platform, which represents the main
target of the research proposed in this thesis, are given in the following section.

1.3 The Centauro robot

The Centauro robot (Kashiri et al., 2019) is an hybrid wheeled-legged quadruped, which is
also equipped with a humanoid, bi-manual upper body. Each leg is driven by four actuators,
allowing the tip to be positioned in 3D, while also providing an additional degree of freedom
for partial orientation control. It implements a spider-like kinematics, with a yaw as the most
proximal joint allowing to reduce the static (gravitational) load. The leg terminates with a
wheel which is controlled by two motors: the first one provides the steering motion about
a vertical axis, whereas the second one is responsible for the rolling of the wheel about its
spinning axis. Overall, the chosen leg kinematics allows to control the position of the wheel,
while independently keeping the steering axis perpendicular to the rolling surface.

The Centauro robot is designed not only for flexible locomotion over difficult terrain, but
also for heavy manipulation. Such capability is achieved thanks to an upper body comprising
a torso, which can rotate about the yaw axis, on which two arms are mounted. Each arm is
driven by seven motors in order to achieve a level of kinematic redundancy with respect to a
position and orientation placement task.

A picture of the Centauro robot is shown in Figure 1.3, together with a CAD-generated
image reporting its dimensions. From these figures it is clear that Centauro, weighing about

1.3 The Centauro robot 7

(a) (b)

Figure 1.4 Kinematic structure of the Centauro robot leg and arm.

Figure 1.5 Torque controlled integrated actuators used inside HHCM robots. Different sizes, when
combined with different transmission ratios, allow to select a trade-off between weight, speed and
torque.

90 kg, has comparable footprint with respect to a human. This notwithstanding, it delivers
high manipulation performance, each arm being able to manipulate over 10 kg over its full
workspace. Furthermore, the legs are strong enough to sustain an additional payload on the
trunk of roughly 70% the overall robot weight. These results have been achieved thanks to a
custom-made actuation system: more specifically, a family of five actuators covering a wide
range of rated torque and speed has been designed and developed, as depicted in Figure 1.5.
All such actuators incorporate a sensor measuring the torque exerted to the link side, thus
enabling precise torque control. The implementation of torque sensing relies either on strain

gauges or on an encoder measuring the deflection of a torsional bar located at the harmonic
gearbox output. In the second case, the motor behaves as Series Elastic Actuator (SEA), with
the passive compliance providing additional protection of the transmission against impacts.

A strong and flexible hardware platform is not useful without its control system. The
present work of thesis is related for the most part to the development of such a framework,
starting from the middleware architecture, to wheeled and legged locomotion controllers,
passing through whole-body Cartesian control. A detailed summary of such contributions is
given in the next section.

1.4 Contribution 8

Figure 1.6 Thesis structure and dependencies between modules, indicated by arrows.

1.4 Contribution

As it was illustrated in the previous section, the Centauro robot is a rather peculiar platform
combining powerful manipulation capabilities with a reliable quadrupedal hybrid wheeled-
legged locomotion skills. Moreover, it leverages on an advanced proprioceptive actuation
system to regulate the force exchanged with the environment. Therefore, the main contribu-
tions of these thesis are driven and related to these particular features of the Centauro robot.
Figure 1.6 illustrates the main contributions of this thesis as logical blocks, with arrows
representing dependencies between them.

The first topic of this work of thesis is related to the development of a control software
architecture for complex robotic systems, such as the Centauro platform. Previous robots
that were designed inside the HHCM lab (e.g. Coman and Walkman (Tsagarakis et al., 2017a))
were entirely powered by the YARP middleware (Natale et al., 2016), which would cover the
whole software architecture stack, ranging from the hardware abstraction layer (HAL), to the
inter-process communication (IPC) between high-level, low rate processes. While such an
architecture proved to be effective, it could not handle deterministic execution of high-rate
high-priority tasks. To address this shortcoming, a novel real-time architecture has been
developed, i.e. the XBotCore middleware. This software framework provides tools enabling
the real-time (RT) control of a complex robot, from a flexible hardware abstraction layer to
application programming interfaces (API), which allow the user/developer to write generic
robot-independent and framework-agnostic control code, that can then be executed inside a
RT loop. Real-time guarantees are handled by the underlying operating system (Xenomai 3.0

1.4 Contribution 9

or Rt-Preempt) as well as by careful coding practices which eliminate all RT-unsafe operation
from the high-priority threads. Such operations, which are necessary in order to integrate with
the rest of the distributed control system, are offloaded to low-priority companion threads
through appropriate (possibly lock-free) synchronization primitives. Thanks to this effort,
the XBotCore framework nicely integrates with the ROS ecosystem (Quigley et al., 2009b);
ROS-related primitives (such as topics and services) can be used from the RT domain thanks
to specific classes hiding all complexity related to the use of the aforementioned non-RT
companion threads. Finally, thanks to our generic API, control code can be moved any time
to a standard ROS node, whenever it turns out not to need high-priority execution. This work
has been carried out jointly with Dr. Luca Muratore; beside the general architecture design,
which is a product of team work, the focus of the author has been especially devoted to the
high-level API design, and ROS integration.

In parallel to the development of XBotCore, this thesis contributed with a ROS-based
software framework for on-line, real-time capable Cartesian control, which was named
CartesI/O. This piece of software extends a previous work from the HHCM lab Open-

SoT (Hoffman et al., 2017), which is a C++ library implementing a stack-of-tasks strat-
egy (Escande et al., 2014a) to the solution of prioritized quadratic programs, with special
application to the Cartesian control (velocity-level, acceleration-level, torque, . . .) of complex
robots. With CartesI/O, a uniform interface has been given to Cartesian controllers, as well
as provide them with an auto-generated ROS-based API allowing them to interact with the
distributed control system through topics, services, and action. Furthermore, OpenSoT-based
controllers can be automatically set up from textual configuration files, as opposed to manu-
ally writing and compiling C++ code. The resulting library can be thought of as an analogue
of the venerable MoveIt! motion planning library, that is instead dedicated to prioritized
online control. Details on the design and validation of both the XBotCore and CartesI/O
architectures are presented in Chapter 3 and 4.

The second topic of this work addresses the legged locomotion capabilities of the
Centauro robot. Such a topic has been subject of several studies in the existing literature, also
considering the strong similarity with the gait generation problem for bipedal platforms. It
can be observed how the full problem is usefully split into two separate stages, i.e. a footstep

planning and a center of mass (CoM) planning stage. Having done so, both problems can
be turned into linearly constrained QPs, that can be solved exactly by off-the-shelf libraries.
However, such a separation neglects the coupling between footstep planning and center of
mass motion; this can ultimately lead to excessive CoM motion, and to instability as well.
Treating both stages together inside a single optimization problem permits, in principle, to

1.4 Contribution 10

address this effect, at the price of making the whole problem non-convex. As such, the
solution might be only a local minimum with potentially high associated cost. It was therefore
proposed to apply a convex approximation to the overall gait generation problem, which can
be solved exactly and in less time. The corresponding methodology is described in Chapter 6.

As a third contribution of this thesis, a study has been done on the topic of whole-
body Cartesian control in the context of articulated wheeled robots. More in detail,
it was observed how given the full wheeled mobility of the robot as allowed by its four
independently steerable wheels, the choice of some local frame (in addition to the global
world) is required in order to express tasks that are naturally defined in a robot-centric fashion.
Such study highlighted the fact that trivially selecting such a frame as the robot trunk leads
to sub-optimal results in terms of motion capabilities; as main contribution, we therefore
propose a comparative analysis among three different choices of local frame, and demonstrate
that in order to retain all advantages from the whole-body control domain, the kinematic
model of the robot must be augmented with an additional virtual frame, which provides for
an useful choice of local frame. The outcome of our method is a Cartesian controller with
the ability to freely mix local adjustments with global control inside a unified whole-body
framework. Theory and validation of this approach are presented in Chapter 5.

The last topic treated in this thesis is in the field of whole-body torque control of
floating base systems, where this thesis contributes with an extension of a previous work
which was proposing a formulation for prioritized Cartesian impedance controller (Hoffman
et al., 2018). Such family of controllers is well-known, especially concerning the control
of modern torque-enabled manipulators. Extending the Cartesian impedance principle (or
other torque-based control laws) to floating systems requires handling the contact forces

which ultimately permit the robot motion, which is usually done by regarding such forces as
additional control inputs that are either pre-optimized based on a reduced model (e.g. the
well-known centroidal dynamics), or jointly optimized with the joint acceleration vector. In
this context, the main contribution was a novel pipeline which first assumes the robot to be a
fully-actuated fixed base system (i.e. with an actuated base), whereas a later stage converts
the obtained torques to the actual under-actuated model, by performing a post-optimization

of contact forces. Theory and validation of this technique are presented in Chapter 7, with
application to a heavy object pushing task exploiting contacts with the environment.

In order to provide the necessary background knowledge, Chapter 2 provides material
on topics such as the modeling of floating base systems, inverse kinematics, and dynamics,
in an effort to make this work of thesis self-contained. Finally, Chapter 8 concludes the

1.5 Contributed papers 11

work with a summary of achieved results, comments on dissemination and exploitation, and
possible future directions.

1.5 Contributed papers

The outcome of the research work done in this thesis has been published or accepted in several
relevant scientific conferences or journals. A summary of the most relevant publications
follows.

• Architectural article on the XBotCore framework (see Chapter 3):

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,

N. G. (2017b). Xbotcore: A real-time cross-robot software platform. In Robotic Computing

(IRC), IEEE International Conference on, pages 77–80. IEEE

• Architectural paper on the CartesI/O framework (see Chapter 4):

Laurenzi, A., Mingo Hoffman, E., Muratore, L., and Tsagarakis, N. G. (2019c). CartesI/O:

A ROS Based Real-Time Capable Cartesian Control Framework. In IEEE International

Conference on Robotics and Automation (ICRA)

• Integration work involving XBotCore, CartesI/O, and a perception pipeline:

Laurenzi, A., Kanoulas, D., Hoffman, E. M., Muratore, L., and Tsagarakis, N. (2019a).

Whole-body stabilization for visual-based box lifting with the COMAN+ robot. In 2019

Third IEEE International Conference on Robotic Computing (IRC), pages 445–446. IEEE

• Article on the control of wheeled-legged platforms (see Chapter 5)

Laurenzi, A., Mingo Hoffman, E., Parigi Polverini, M., and Tsagarakis, N. G. (2020). An

Augmented Kinematic Model for the Cartesian Control of the Robot CENTAURO. IEEE

Robotics and Automation Letters. Accepted, to appear

• Article on walking pattern generation for quadrupeds (see Chapter 6):

Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2018b). Quadrupedal walking

motion and footstep placement through linear model predictive control. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2267–2273.

IEEE

1.5 Contributed papers 12

• Work on prioritized force control, with application to Cartesian impedance control (see
Chapter 7):

Mingo Hoffman, E., Laurenzi, A., Tsagarakis, N. G., and Caldwell, D. G. (2018). Multi-

priority cartesian impedance control based on quadratic programming optimization. In

IEEE International Conference on Robotics and Automation, ICRA

• Article on balancing control for legged robots based on post-optimization of contact
forces (see Chapter 7):

Laurenzi, A., Hoffman, E. M., Polverini, M. P., and Tsagarakis, N. G. (2018a). Balancing

control through post-optimization of contact forces. In 2018 IEEE-RAS 18th International

Conference on Humanoid Robots (Humanoids), pages 320–326. IEEE

Chapter 2

Background on Cartesian Control

This appendix presents the notation that is used throughout this thesis whenever Cartesian
control is concerned, as well as background material on the topics of inverse kinematics and
dynamics aware control.

2.1 Reference frames representation

Let us consider a Cartesian world frame W and an additional Cartesian frame A, whose origin
coincides with W . The orientation of A w.r.t. W can then be expressed by specifying the
directions of A’s coordinated axes w.r.t. W frame, i.e. W iiiA,W jjjA, and W kkkA. These can be
conveniently assembled into a rotation matrix as follows,

W RRRA =
[

W iiiA W jjjA
W kkkA

]
, (2.1)

which maps vectors expressed in A coordinates into vectors in W coordinates, i.e.

W ppp =W RRRA
A ppp. (2.2)

Because coordinated axes are mutually orthogonal, have unit length, and form a right-handed
triplet (i.e. iii× jjj = kkk), a rotation matrix is actually an orthogonal matrix (RRRT RRR = III) with
determinant equal to det(RRR) = 1. Therefore, a rotation matrix lives in a manifold, embedded
in R3×3, that is called special orthogonal group, denoted by SO(3). Notice that, because of
the aforementioned constraints, the SO(3) manifold has only dimension equal to three, out of
the nine numbers that make up a general three-by-three matrix.

2.1 Reference frames representation 14

If origins do not coincide, then (2.2) must take the offset into account as follows:

W ppp =W RRRA
A ppp + W oooA, (2.3)

where W oooA ∈R3 is the origin of A in W coordinates. The rotation matrix and the offset vector
are conveniently packed into a four-by-four matrix (homogeneous matrix) W TTT A

W TTT A =

[
W RRRA

W oooA

0001×3 1

]
, (2.4)

which is an element of the special Euclidean group SE(3).

2.1.1 Motion of rigid bodies

For robot control purposes, it is of paramount importance to understand and describe how
rigid bodies move in space. Clearly, the position and motion of a rigid body can be identified
with that of a Cartesian frame attached to it. Therefore, the rotation matrix derivative ṘRR can
be used which, together with the origin linear velocity vvvO, forms an element of the tangent
space to SE(3). However, such a description is redundant, since we are using nine numbers
to describe an element which is tangent to SO(3), whose dimension is three. Indeed, it turns
out that the rotation matrix derivative at the generic point RRR ∈ SO(3) is given by

ṘRR = ΩΩΩRRR, (2.5)

where ΩΩΩ is the three-by-three skew-symmetric matrix defining the cross product by the rigid
body angular velocity ωωω ∈ R3, expressed in world coordinates, i.e. ΩΩΩxxx = ωωω × xxx for all
xxx ∈ R3. To conclude, the motion of a rigid body is specified by the pair (vvvO,ωωω), which is
conveniently assembled into a six-dimensional vector called velocity twist vvv ∈ R6:

vvv =

[
vvvO

ωωω

]
. (2.6)

It is important to notice how, despite the fact that the angular velocity describes the rate
of change of an element of SO(3), it is not equal to the derivative of any other quantity
(non-holonomy of the angular velocity), and its time integral does not carry any physical
meaning.

2.1 Reference frames representation 15

2.1.2 Spatial algebra

Velocity twists provide a meaningful and intuitive description of the motion of a rigid body;
yet, it turns out that they do not represent an optimal choice to develop (and program)
kinematics and dynamics algorithms. Intuitively, the shortcoming of a twist is that it depends
on the choice of a reference point, i.e. the rigid body origin O; when dealing with systems
that are made of multiple bodies (e.g. robotic systems), each body i will have a different
origin position Oi, which makes computations harder and more verbose by requiring several
mathematical steps just to deal with reference point offsets. This can already be observed
when computing a quantity as simple as the relative twist between two bodies, as follows. Let
TTT A ∈ SE(3) be the pose of body A w.r.t. the world, and TTT B ∈ SE(3) be the pose of body B;
moreover, let vvvA and vvvB denote the velocity twists of the two bodies w.r.t. the world. The
relative velocity twist cannot be computed by simply subtracting vvvA from vvvB, as the two
linear velocities contained in each twist do not refer to the same point in space. Hence, one
must first shift the reference point for the twist of A to coincide with that of B, and only then
the subtraction can be carried out.

The motion of a rigid body can be equivalently be described by a spatial vector (or
6-D vector), denoted with a hat symbol (e.g. v̂vv) as described e.g. in Featherstone (2010).
Intuitively, spatial vectors describe the rigid body motion by specifying its angular velocity,
plus the linear velocity of a point which is attached to the rigid body, and always coincides
(instantaneously) with the world origin. By doing so, spatial vectors manage to describe
the motion in a self-contained way, whereas twists always need the specification of the
corresponding reference point in order to make physical sense. Moreover, spatial vectors can
be combined in a simpler way, e.g. a relative spatial vector is just obtained by subtraction:

v̂vvrel = v̂vvB − v̂vvA. (2.7)

However, it can be argued that the spatial description of motions (and forces) is less intuitive
than the twist (and wrench) based representations. For example, a wheel rolling on a plane
with constant velocity, from the perspective of spatial vectors, is constantly accelerating
upwards (see Figure 2.1)! For this reason, in this work of thesis, we have decided to work
with twist vectors whenever it is necessary to represent the motion of a rigid body.

2.2 Robot kinematics 16

Figure 2.1 Wheel rolling on the y axis without slipping. Its spatial velocity is
v̂vv =

[
0 0 y v

r
v
r 0 0

]
, and its spatial acceleration is âaa =

[
0 0 ẏ v

r 0 0 0
]
, which is con-

stant and directed upwards. This figure was adapted from http://royfeatherstone.org/spatial/index.
html.

2.2 Robot kinematics

A robot can be generally regarded as a collection of rigid bodies (called links), all of which
are connected together in a tree-like fashion through so-called joints (see Figure 2.2). Each
joint enables the relative motion of its child link with respect to parent link, along some
motion subspace which depends on the type of joint. For instance, 1-dof prismatic joints only
allow for the relative translation about some defined axis, whereas floating joints enable the
full 6-dof relative motion between the parent and child links. Let us immediately observe that,
while such a choice leaves parallel mechanisms out, such topologies can be re-introduced by
imposing holonomic constraints between the robot links.

The kinematic state of a given joint is described by the corresponding joint variable,
denoted by the symbol qqqi ∈ Ci, where i is an index, and Ci is the joint configuration space (in
general, a manifold in Rnq,i). Given the type of joint and the value of the joint variable, it is
possible to define the joint transform TTT Ji(qqqi) ∈ SE(3) between the joint predecessor frame,
which is attached to the parent link, and the successor frame, which coincides with the child
link frame (body frame), as shown in Figure 2.3. In order to complete our robot kinematic
state description, we need to specify the pose of each joint predecessor frame with respect
to its parent link, which we call tree transform and denote it with the symbol TTT Ti ∈ SE(3).
Notice how, for a given robot, tree transforms are constant and independent of the value of
joint variables. Once joint variables are known, the pose of all links w.r.t. the world frame can
be propagated from the kinematic tree root by suitably multiplying tree transforms and joint
transforms, yielding the so-called forward kinematics function fff fk : C → SE(3) mapping the

http://royfeatherstone.org/spatial/index.html
http://royfeatherstone.org/spatial/index.html

2.2 Robot kinematics 17

Figure 2.2 Example of articulated body, i.e. a collections of rigid body (links) connected through
joints in order to form a kinematic tree. This figure was adapted from http://royfeatherstone.org/
spatial/index.html.

Figure 2.3 Pictorial representation of a 1-dof revolute joint connecting two links. Its joint transform
specifies the offset between the successor frame (i.e. the child link frame), and the predecessor frame
(which is attached to the parent link). This figure was adapted from http://royfeatherstone.org/
spatial/index.html.

http://royfeatherstone.org/spatial/index.html
http://royfeatherstone.org/spatial/index.html
http://royfeatherstone.org/spatial/index.html
http://royfeatherstone.org/spatial/index.html

2.2 Robot kinematics 18

Figure 2.4 Kinematic state description for a simple robot, involving joint transforms and tree
transforms. The forward kinematics function is evaluated by composing such quantities, starting from
the tree root and following the arrows. This figure was adapted from http://royfeatherstone.org/
spatial/index.html.

robot configuration qqq to the Cartesian pose of the i-th link Ti w.r.t. the world frame:

fff fk(qqq) = TTT i(qqq), (2.8)

with qqq being obtained by collecting all joint variables into a tuple. As it was previously
mentioned, at the velocity level, each joint allows for a relative motion between the relevant
links. The motion state of the joint is parametrized by the joint velocity variable ννν i ∈ Rnv,i ,
where nv,i is the dimension of the joint motion subspace. In order to convey the information
about which motions are allowed by a specific joints, we can define a suitable matrix
SSS ∈R6×nv,i mapping joint velocities ννν i into allowed spatial velocities of the child link relative
to the parent link v̂vvrel,i:

v̂vvrel,i = SSSννν i; (2.9)

relative accelerations can be computed as well by differentiating (2.9), taking into account
that the matrix SSS can vary in time as well. Proper propagation of (2.9) allows to compute the
spatial velocity (or velocity twist) of all robot links, giving rise to the differential kinematics

function, which is usually given in the form of a Jacobian matrix JJJ ∈ R6×nν mapping the

http://royfeatherstone.org/spatial/index.html
http://royfeatherstone.org/spatial/index.html

2.2 Robot kinematics 19

joint velocities into velocity twists:

vvv = JJJ(qqq)ννν , (2.10)

with ννν being obtained by stacking all joint velocities into a column vector. It is worth to
notice that the first three rows of JJJ are indeed the analytic Jacobian of the forward kinematics
function (2.8) translation part. Clearly, the same does not apply to the rotation part, since a
rigid body angular velocity does not represent the derivative of any vector quantity.

Remark. In many cases, the joint transform TTT Ji(qqqi) can be parametrized by a Euclidean

vector, i.e. Ci = Rnq,i (e.g. prismatic joints, revolute joints with joint limits, and others)

without loss of information. In all such cases, the joint velocity is simply the derivative of

the joint variable, i.e. ννν i = q̇qqi. If this is the case for all robot joints, as for most industrial

manipulators, then ννν = q̇qq and the differential kinematics equation reads the more familiar

expression vvv = JJJ(qqq)q̇qq. Moreover, the robot configuration qqq is a Euclidean vector itself, and it

is obtained by stacking all joint variables, and nq = nν = n.

Example (1-dof revolute joint)

A 1-dof revolute joint allows for the relative rotation of its parent and child links about
a single axis. Without loss of generality, such an axis can be identified with the z-axis
(other choices are equivalent to rotating its tree transform TTT Ti). In this case, the following
propositions hold:

• the joint variable qi is scalar (nq,i = 1);

• the joint transform has the following form:

TTT Ji(qi) =


ci si 0 0
−si ci 0 0
0 0 1 0
0 0 0 1

 , (2.11)

where si = sinqi and ci = cosqi;

• the joint velocity is q̇i (nν ,i = 1);

• the motion subspace is defined by

SSS =
[
0 0 0 0 0 1

]T
. (2.12)

2.2 Robot kinematics 20

Example (3-dof spherical joint)

A 3-dof spherical joint allows an arbitrary relative rotation between its parent and child
links. Such a rotation can be defined with respect to the predecessor frame origin (different
choices are equivalent to translating its tree transform TTT Ti). For such a joint, the following
propositions hold:

• the joint variable qqqi can be taken as a unit quaternion, i.e.

Ci = {qqq ∈ R4 s.t. ∥qqq∥= 1}, (2.13)

and nq,i = 4;

• the joint transform has the following form:

TTT Ji(qqqi) =

[
RRR(qqqi) 000

000 1

]
, (2.14)

where RRR(qqqi) is the rotation matrix corresponding to the quaternion qqqi;

• the joint velocity is ωωω i, i.e. the angular velocity between the two bodies (nν ,i = 3);

• integration of a constant motion is done through the Rodrigues’ formula;

• the motion subspace is defined by

SSS =

[
0003×3

III3×3

]
. (2.15)

Notice how, because the spherical joint must allow a relative motion in SO(3), its joint
variable inherently lives on a manifold (unit sphere in four dimensions). Therefore, its joint
velocity is not equal to the derivative of the joint variable. It is also possible to locally
represent SO(3) with a triplet of Euler angles qqqi ∈ R3, describing three successive rotations
about different local axes. With such a choice, the 3-dof spherical joint can be effectively
replaced by a series of three 1-dof revolute joints. However, for each choice of Euler angles
(e.g. ZYZ, XYZ, . . .) there exist a singularity value of the joint variable for which the motion
subspace matrix becomes rank deficient:

rank(SSS)< 3, (2.16)

2.3 Inverse kinematics 21

and it is no longer possible to represent an arbitrary angular velocity between parent and child
body through the joint velocity variable. Moreover, close to such a singular orientation, small
angular velocities might require high joint velocities, likely causing numerical instabilities if
no special care is taken.

2.2.1 Floating base robots

In opposition to fixed base industrial manipulators, legged robots can be categorized as
floating-base systems, because there is no link of the robot which is rigidly fixed to the
world frame. In such a case, the kinematic state of such robot must include, in addition
to the position of actuated joints, the Cartesian pose of one of its links (usually referred
to as the floating base) with respect to the global frame. This can be done by connecting
the floating base to the world frame through prismatic joints about x, y, and z directions, as
well as a spherical joint to represent the rotation part. In the present work of thesis, with
the aim to simplify the notation and reduce code complexity, we decided to represent the
floating base orientation as a XYZ Euler angle triplet, for which the singular orientation
corresponds to the floating base x axis pointing downwards. If the robot base link is selected
as the floating base, with its x-axis pointing forward, this corresponds to a pose which is
physically outside the robot workspace by a considerable margin. Hence, we shall make the
following simplifications:

• the robot configuration qqq is a Euclidean vector belonging to Rn;

• the robot velocity vector is the derivative of qqq, i.e. ννν = q̇qq;

• the symbol n denotes the dimension of both the configuration space and the velocity
space, i.e. nq = nν = n.

2.3 Inverse kinematics

The inverse kinematics (IK) problem aims at finding a joint configuration vector qqq∗ ∈ Rn

which achieves a desired pose TTT des for some target frame which is attached to the robot. In the
non-redundant scenario where the number of degrees of freedom equals the dimensionality
of the Cartesian task at hand (e.g. n = 6 and the considered task involves the full pose of
some link), one might attempt to solve the non-linear system of equations which matches the

2.3 Inverse kinematics 22

forward kinematics function and the desired pose, i.e.

TTT (qqq) = TTT des; (2.17)

indeed, for simple manipulators the solution exists in closed form. Notice that multiple
isolated solutions usually exist even if there is no redundancy in the system. However, in the
general case (2.17) is not applicable because (i) there is no analytic solution, (ii) the solution
must satisfy additional constraints (e.g. joint limits) and (iii) the robotic system is redundant
w.r.t. the given task, i.e. a continuum of solutions might exist. In such a case, an intuitive
way to formulate the IK problem is in terms of an optimization problem. To this aim, let us
initially focus on a pure position task, i.e. the position of the target frame origin ppp(qqq) must
coincide (or be as close as possible) to a given desired value pppdes; this can be obtained by
solving the problem

min
qqq

∥ppp(qqq)− pppdes∥2 + ε∥qqq−qqq0∥2

subject to qqqmin ≤ qqq ≤ qqqmax

, (2.18)

where a small ε > 0 acts as postural task, aiming at finding a specific solution which is as
close as possible to a reference posture qqq0. Such an approach can be easily extended to a
multi-task scenario, by adding a least-squares term in the cost function for every defined task.
However, in order to keep the notation as general as possible, it is beneficial to define an
abstract task xxx = fff (qqq), where fff : Rn →Rm is a non-linear mapping representing any task, or
aggregation of tasks, for which the desired value xxxdes ∈ Rm is available.

Remark. Notice how to define the task function fff co-domain to be the m-dimensional

Euclidean space represents an abuse of notation, since the task function (or some of its

components) might actually map into a manifold (e.g. SO(3)). However, it is the author’s

opinion that such a choice is beneficial in simplifying the notation and improving general

readability.

2.3.1 Orientation tasks

Let us now extend the general approach of (2.18) to an orientation task, whose objective is
to match a frame orientation RRR(qqq) ∈ SO(3) to a given desired value RRRdes. To this aim, we
need to define a suitable error function on the space of rotation matrices, which replaces the
position error ppp(qqq)− pppdes. This can be obtained in at least two different ways:

2.3 Inverse kinematics 23

• if orientations are given in terms of rotation matrices, one can define the error as

eeeO = skew(RRR(qqq)RRRT
des)

∨, (2.19)

where (i) the skew operator projects a matrix into the skew symmetric subspace, i.e.
skew(R) = R−RT

2 , and (ii) S∨ extracts the underlying 3-D vector from a skew symmetric
matrix S.

• If orientations are given in terms of quaternions, the error can be defined as in Nakanishi
et al. (2008), i.e.

eeeO = εεεdes × εεε(qqq)+ηdesεεε(qqq)−η(qqq)εεεdes, (2.20)

where εεε and η denote the quaternion vector part (imaginary part) and scalar part (real
part), respectively.

Remark. Because one quaternion and its opposite represent the same rigid body

orientation, we need to define the orientation error in (2.20) using two quaternions

that belong to the same half of the unit hypersphere. This requires the dot product of

the desired and actual quaternion to be greater-equal than zero, i.e.

εεεdes · εεε(qqq)+ηdesη(qqq)≥ 0; (2.21)

otherwise, the sign of desired value must be changed.

A more general form of (2.18) can be then written as

min
qqq

∥xxx(qqq)− xxxdes∥2 + ε∥qqq−qqq0∥2

subject to qqqmin ≤ qqq ≤ qqqmax

, (2.22)

where xxx ∈ Rm is a generic task or aggregation of tasks, and the error xxx(qqq)− xxxdes must be
interpreted as simple difference for Euclidean tasks, or with the appropriate error metric for
SO(3) tasks.

2.3.2 Online inverse kinematics

Computing the IK solution via (2.22) requires the solution of non-linear and, in general,
non-convex program. For complex, multi-legged systems such as the Centauro robot, this
strategy might turn out to be too computationally expensive to be applicable to trajectory

2.3 Inverse kinematics 24

tracking problems, where we want the robot links to track some reference signal in an online
fashion. Online IK is clearly of paramount importance for tele-operated systems, and also to
execute on the robot trajectories that are natively expressed in Cartesian space (as e.g. for the
walking pattern generation). In such cases, one can make use of the differential kinematics
equation with the aim to compute, at each control loop, joint space velocities which realize a
given task-space velocity. More in detail, given our task of interest xxx(qqq) ∈ Rm, we compute
its variation as

ẋxx = JJJ(qqq)q̇qq. (2.23)

Then, given a desired signal for the task value xxxdes(t), we compute a reference value for the
task velocity such that the tracking error asymptotically converges to zero. To this aim, let
eee ∈ Rm be the task error

eee = xxx− xxxdes; (2.24)

then, let us define an exponentially converging error dynamics as follows:

ėee+Kp eee = 0, (2.25)

where Kp is an m-by-m symmetric and positive definite matrix gain. Such a dynamics
ensures convergence to zero from an arbitrary initial error. Finally, from (2.25), the following
reference task velocity is obtained in the form of a proportional law, as shown the equation
below:

ẋxxref = ẋxxdes +Kp eee. (2.26)

The task velocity required by (2.26) can be obtained by finding a solution to the linear system

JJJ(qqqk)q̇qq = ẋxxref, (2.27)

where, at the current time t, qqqk is the known joint position value at the k-th control loop,
leaving q̇qq as the only unknown to be computed. When a solution q̇qq∗ is found, it is then
integrated for ∆t seconds (i.e. the control period) in order to find qqqk+1

qqqk+1 = qqqk + q̇qq∗∆t; (2.28)

note that, being (2.27) a linear system, computing one of its solutions is comparatively cheap.
Furthermore, powerful mathematical tools can be employed in order to deal with redundancy,
i.e. the existence of infinitely many solutions to (2.27). For instance, the solution on (2.27)
with minimum L2-norm is given by applying the Moore-Penrose pseudoinverse of JJJ, denoted

2.3 Inverse kinematics 25

by JJJ†, as follows:
q̇qq∗ = JJJ† ẋxx. (2.29)

2.3.3 Pseudo-inverse

Given any matrix AAA ∈ Rm×n, its Moore-Penrose pseudo-inverse AAA† ∈ Rn×m is defined by the
following properties

1. AAAAAA† AAA = AAA;

2. AAA† AAAAAA† = AAA†;

3. AAAAAA† and AAAAAA† are symmetric.

Such a matrix always exists and is unique. The Moore-Penrose pseudo-inverse is especially
useful in solving undetermined linear systems and linear least-squares problems; indeed, it
can be proved that the set of minimizers of a least-squares function is computed as follows:

xxx∗ ∈ argminxxx ∥AAAxxx−bbb∥2 ⇐⇒ xxx∗ = AAA† bbb + (IIIn −AAA† AAA)xxx0, (2.30)

where xxx0 is a vector in Rn. Moreover, the solution given by the right hand side of (2.30) is
the one, among all minimizers, which is closest to the point xxx0; consequently, putting xxx0 = 0
gives the minimum norm element. The pseudo-inverse can be computed as

AAA† = AAAT (AAAAAAT)−1
(2.31)

if AAAAAAT is invertible (i.e. AAA is a full rank fat matrix), or as

AAA† =
(
AAAT AAA

)−1
AAAT (2.32)

if AAAT AAA is invertible (i.e. AAA is a full rank tall matrix). If AAA is (close to) rank deficient, a
damped pseudo inverse approximation can be computed as follows:

AAA† ≈ AAAT (AAAAAAT +λ IIIm
)−1

=
(
AAAT AAA+λ IIIn

)−1
AAAT , (2.33)

for some small positive value of the regularization λ . This is often referred to as Tikhonov

regularization, and it is also possible to prove that, in the limit, it provides the correct value

2.3 Inverse kinematics 26

of the pseudo-inverse even in the rank deficient case, i.e.

lim
λ→0

AAAT (AAAAAAT +λ IIIm
)−1

= lim
λ→0

(
AAAT AAA+λ IIIn

)−1
AAAT = AAA†. (2.34)

It is important to notice how pseudo-inversion is not a continuous operation, and it can have
a pretty unstable behavior depending on the input matrix. For instance, let us consider the
following family of matrices, parametrized by a scalar ε:

AAA(ε) =

[
0 1
ε 1

]
; (2.35)

for any ε ̸= 0, such a matrix is invertible, and its pseudo-inverse coincides with its inverse,
that is

AAA(ε)† =

[
−1

ε

1
ε

1 0

]
, ∀ε ̸= 0. (2.36)

Note how some entries of the matrix go to infinity as ε approaches zero. However, the
pseudo-inverse of AAA(0) is well-behaved:

AAA(0)† =

[
0 0
1
2

1
2

]
. (2.37)

Such instabilities (which are not due to numerical issues but to inherent ill-posedness of
the linear system solution) must be dealt with appropriately for robot control purposes,
by defining an approximate pseudo-inverse which has desirable stability properties. A
simple way to do so is to form a damped pseudo-inverse as in (2.33), possibly having the
regularization parameter λ depend on how far from singular the matrix AAAAAAT is. A more
sophisticate approach uses the singular value decomposition (SVD) of the input matrix, which
allows to selectively damp the direction along which it is singular or close to singular.

2.3.4 Singular value decomposition

Given an arbitrary matrix AAA ∈ Rm×n, it can be decomposed into the product of three matrices
(SVD) as follows:

AAA =UUU ΣΣΣVVV T , (2.38)

where:

2.3 Inverse kinematics 27

• UUU ∈ Rm×m is an orthogonal matrix, i.e. its columns uuui ∈ Rm form an orthonormal
basis; such vector are called left singular vectors.

• ΣΣΣ ∈ Rm×n only has non-zero elements on its diagonal. Diagonal elements

σi = Σii i = 1, . . . , min(m,n),

called singular values, are non-negative, and are sorted in decreasing order.

• VVV ∈Rn×n is also an orthogonal matrix, and its columns vvvi ∈Rn are called right singular

vectors.

By virtue of such properties, the following relation holds:

AAAvvvi =

σi uuui if i ≤ m

000 otherwise
, i ∈ {1, . . . ,n} (2.39)

recalling that both uuui and vvvi have unit norm, (2.39) let us interpret the singular values as
gains from input space to output space, which are in general different depending on the input
direction. Moreover, a null-space orthonormal basis can be readily obtained by collecting all
right singular vectors vvvi for which either σi = 0 or i > m.

Let us now discuss the role of SVD-related quantities as far as our differential kinematics

JJJ q̇qq = ẋxx (2.40)

is concerned. To this aim, let JJJ be a fat matrix, i.e. n > m (m = 6 for a full Cartesian task),
which is the common case when working with redundant robots. First of all, we observe that
right singular vectors are elements of the input space, i.e. they represent joint velocities.
For all i ∈ {m+1, . . . , n}, the joint velocities vvvi do not cause any motion of the end-effector,
but only self-motions of the kinematic tree. Such joint velocities belong to the null-space of JJJ,
denoted as N(JJJ). On the opposite side, joint velocities vvv1, . . . ,vvvm do cause the end-effector
to move with velocity given by

ẋxx = JJJ vvvi = σi uuui; (2.41)

hence, joint velocity values directed as vvv1 achieve the largest Cartesian velocity, because
σ1 = σmax is by definition the largest singular value.

Left singular vectors are instead elements of the output space, i.e. they are velocity
twists. The velocity twist uuui can be obtained with a suitable choice of joint velocity if and only

2.3 Inverse kinematics 28

if its corresponding singular value is greater than zero. In such a case, the minimum-norm
joint velocity achieving the required twist is clearly

q̇qq =
1
σi

vvvi, (2.42)

which is by all means the same minimum-norm solution as obtained in (2.29) via pseudo-
inversion. Indeed, given the SVD of the Jacobian matrix, one can find the minimum-
norm solution to the differential inverse kinematics by (i) rotating the target twist ẋxx by
the matrix UUUT in order to find its components along the left singular vectors, then (ii)
dividing each component by the corresponding singular value (gain), and finally (iii) rotating
the obtained joint velocity (which is expressed in vvvi coordinates) back to the input space
multiplying by VVV . Mathematically this reads as follows:

q̇qq∗ =VVV ΣΣΣ
†UUUT ẋxx, (2.43)

where the matrix appearing at the right hand side can be proved to be the Moore-Penrose
pseudo-inverse of the Jacobian:

JJJ† =VVV ΣΣΣ
†UUUT . (2.44)

It is readily noticed how Cartesian velocities with high corresponding gain (i.e. singular
value) can be obtained by the robot with low effort (i.e. joint velocity), whereas Cartesian
velocities with low gain might require excessive control effort. Clearly, this procedure must
be regularized such that unsafe motions are never obtained; the ability to compute separate
gains for each direction of the rigid body velocity space allows us to regularize the pseudo-
inverse in a selective way, i.e. by only perturbing the directions with low gain, as opposed
to the Tikhonov regularization strategy of (2.33). In practice, the singular value inversion
step (2.42) is replaced with a smoother function ensuring that inverse singular values never
exceed a given threshold, and that asymptotically behaves like 1

σ
, such as:

inv(σ) =
σ

σ2 +
(

σ0
2

)2 , (2.45)

whose maximum value is inv(σ0
2) = 1

σ0
. As a side note, it is often a good idea to apply

regularized inversion to the normalized singular values w.r.t. σmax, thus setting σ0 ≪ 1, such
that the value of σ0 is consistent across different robots and tasks. It is also possible to define
a piece-wise continuous regularized inverse function which perform exact inversion beyond
a given threshold, in order to effectively disable any regularization on directions with high

2.3 Inverse kinematics 29

Figure 2.5 Different strategies for the regularized inversion of singular values, with threshold σ0 = 0.1.
The exact inversion (blue line) is unstable for small values of σ . Regularized inversion is always
bounded, and passes through the origin (indeed, 0† = 0); yet, its value is very conservative up to
roughly 2σ0. Piece-wise regularized inversion is by definition exact above σ0; the linear variant is to
be preferred as it respects inv(0) = 0.

gain, such as

inv(σ) = min
{

1
σ2

0
σ ,

1
σ

}
. (2.46)

A pictorial view of these strategies is given in Figure 2.5.

2.3.5 Connection with NLP-based IK

Online IK based on the inversion of differential kinematics is strongly connected to non-linear
one shot IK, as presented in Section 2.3. The non-linear least squares cost function of (2.22),
that is

fff (qqq) = ∥xxx(qqq)− xxxdes∥2, (2.47)

has derivatives (dropping the explicit dependence on qqq)

∇ fff = JJJT (xxx− xxxdes)

∇
2 fff = JJJT JJJ +

m

∑
i=1

[
(xi − xdes,i)∇

2xi
]. (2.48)

2.4 Robot dynamics 30

Hence, the gradient descent step is equivalent to the differential inverse-kinematics via
Jacobian-transpose:

qqqk+1 = qqqk +η ∇ fff = qqqk +η JJJT (xxx− xxxdes) , (2.49)

where η is the step size, which is chosen as η = Kp ∆t for online IK purposes. Furthermore,
the Gauss-Newton method requires to neglect second-order terms in the objective function
hessian ∇2 fff , and to find a descent direction dddk by solving the linear system

[
JJJT JJJ

]
dddk = JJJT (xxx− xxxdes) , (2.50)

whose solution always exists, and can be (approximately) obtained as

dddk =
[
JJJT JJJ+λ IIIn

]−1
JJJT (xxx− xxxdes) , (2.51)

which is equivalent (see equation 2.33) to the (damped) pseudo-inverse based solution of
(2.29), and becomes exact when the regularization parameter approaches zero. Overall,
velocity-level inverse kinematics can be interpreted as applying a single step of a NLP solver
at each control, in an online fashion, and with a fixed step length. Finally, it is worth noticing
how the same reasoning, when considering a constrained NLP (e.g. including joint limits),
brings to the Sequential Quadratic Programming (SQP) step.

2.4 Robot dynamics

Mechanical systems are second order systems, i.e. the control input directly affects the
second-derivative of the system configuration. Indeed, for a generic articulated body, the
relation between joint acceleration and joint torque is linear, and it is given by the inverse

dynamics equation
BBB(qqq) q̈qq+CCC(qqq, q̇qq) q̇qq+ggg(qqq) = τττ, (2.52)

where the name “inverse” is due to the fact that it allows to compute the control input given

the motion, and not vice-versa. Computation of the right hand side value of (2.52) can
be done efficiently through a spatial algebra formulation of the Recursive Newton-Euler

Algorithm (RNEA), as detailed e.g. in Featherstone (2010). In (2.52), (i) BBB ∈ Rn×n is the
joint space inertia matrix, which also allows to compute the mechanism kinetic energy, i.e.
T = 1

2 q̇qqT BBBq̇qq, and is therefore symmetric and positive definite; (ii) CCC ∈ Rn×n is the matrix of
centrifugal and Coriolis effects; (iii) ggg ∈ Rn is the vector of gravitational torques (torques
needed to compensate for gravity effects); (iv) τττ ∈ Rn is the vector of joint torques, i.e. the

2.4 Robot dynamics 31

control input. Often, centrifugal, Coriolis, and gravitational effects are grouped together in a
vector of non-linear terms (or bias torques) hhh(qqq, q̇qq) =CCC q̇qq+ggg. In the more specific case of
floating base, under the assumption that the base orientation be parametrized in a minimal
way (see Section 2.2), the inverse dynamics model is modified to the following expression

BBB(qqq) q̈qq+hhh(qqq, q̇qq) = SSSτττ + JJJT
C FFFC; (2.53)

in the floating base case, the configuration vector qqq is made up by stacking the minimal
parametrization of the floating base pose (under-actuated component) with the actuated joint
configuration, as follows

qqq =

[
qqqu

qqqa

]
, (2.54)

so that n = 6+na. The matrix SSS ∈ Rn×na represents the under-actuation, mapping actuated
torques τττ ∈ Rna to under-actuated torques for the full model. Finally, floating base systems
are usually subject to contact forces FFF ∈ Rk, which are responsible for any change in the
system center of mass velocity and angular momentum; the contact Jacobian JJJC ∈ Rk×n

allows to compute the contact velocity, which is usually zero, i.e. JJJC q̇qq = 000.

2.4.1 Task-space dynamics

Given a generic task xxx(qqq) ∈Rm as in Section 2.3.1, its dynamics equation is obtained by first
computing its second derivative

ẍxx = JJJ q̈qq + J̇JJ q̇qq, (2.55)

and then plugging the forward dynamics equation (inverse of equation 2.52) so as to remove
the joint acceleration variable; this yields the following task space dynamics equation

ΛΛΛ(qqq) ẍxx+µµµ(qqq, q̇qq) = FFFτ|x, (2.56)

where (i) ΛΛΛ =
(
JJJ BBB−1 JJJT)−1 ∈Rm×m is the task-space inertia matrix, (ii) µµµ ∈Rm is the vector

of bias forces, and (iii) FFFτ|x = J̄JJT
τττ ∈ Rm is the vector of joint torques projected onto the

task space. Where J̄JJ ∈ Rn×m is known as dynamically-consistent pseudo-inverse has the
following expression:

J̄JJ = BBB−1JJJT (JJJBBB−1JJJT)−1
. (2.57)

Such a matrix is a weighted pseudo-inverse, i.e. q̇qq∗ = J̄JJ ẋxx is the solution of minq̇qq JJJ q̇qq− ẋxx with
minimum weighted L2-norm, as given by ∥q̇qq∥2

BBB = q̇qqT BBBq̇qq (i.e. minimum kinetic energy).

2.4 Robot dynamics 32

This is not a pseudo-inverse, strictly speaking, since it does not respect the third property of
Section 2.3.3.

2.4.2 Centroidal dynamics

Regardless of how complex a mechanical system is, the rate of change of the linear and
angular momentum about the robot center of mass is only governed by external forces acting
on the robot, whereas joint torques do not have any control authority on such quantities. In
robotics literature, the composition of linear and angular momentum (taken w.r.t. the center
of mass) is often referred to as the centroidal momentum, denoted by the symbol hhh ∈ R6, the
first three components corresponding to the linear part (denoted by ppp = mvvvcom), and the last
three components corresponding to the angular part (denoted by LLL):

hhh =

[
ppp

LLL

]
. (2.58)

Both quantities depend linearly on the robot joint velocity vector, i.e.

hhh = AAA(qqq) q̇qq =

[
AAAp(qqq) q̇qq

AAAL(qqq) q̇qq

]
. (2.59)

At first glance, the equations for the linear and angular part look similar; however, they have
very different properties and implications. To see this, let us focus on the case where the
centroidal momentum takes a value which is constantly equal to zero, i.e. hhh = 000; the linear
part is equivalent to mvvvcom = 0, which clearly can be integrated as follows:

AAAp(qqq) q̇qq = 000 → xxxcom(qqq) = const. (2.60)

The original constraint on linear momentum, which apparently involves both joint positions
and joint velocities, is actually equivalent to a constraint on joint positions alone. Such a
constraint is said to be integrable, or holonomic. On the contrary, it can be proved (Saccon
et al., 2017) that, in general, such property does not hold for a similar angular momentum
constraint. More specifically, a function of the joint configuration vector whose derivative
gives the angular momentum does not in general exist:

∄ fff : C → R3 such that
∂ fff
∂qqq

= AAAL(qqq). (2.61)

2.4 Robot dynamics 33

The angular momentum equation is therefore not integrable, or non-holonomic. As a
consequence, a constraint on angular momentum does not necessarily result in a constraint on
the configurations that a robot might be able to reach. As noted in Wieber (2006a), animals
exploit such a property to always touch the ground on their feet after a fall, no matter the
(constant) value of their angular momentum during the motion.

The rate of change of the centroidal momentum is given by Newton-Euler equation,
which is also known as centroidal dynamics equationṗpp = mggg + ∑i fff i

L̇LL = ∑i(xxxi − xxxcom)× fff i + mmmi

, (2.62)

where (i) FFF i =
[

fff T
i mmmT

i
]T

are external wrenches acting on the system, (ii) mggg is the gravity
force, and (iii) xxxi are the points where forces are applied. From a kinematic point of view, the
centroidal momentum derivative is also given by

ḣhh = AAA(qqq) q̈qq + ȦAA(qqq, q̇qq) q̇qq; (2.63)

It is also worth noticing how (2.62) and (2.63) are equivalent to the first six rows of the
inverse dynamics equation (2.53) which, indeed, only have external forces in their right hand
side, and not torques.

Remark. Concerning notation, in this section we have used the symbol xxx to indicate point

positions, as in this context the symbol ppp is reserved for momentum. In other contexts (such

as Chapter 6), the letter ppp will be used for point positions, and xxx shall indicate a dynamic

system state.

2.4.3 Contact dynamics

The fact that joint torques do not directly affect the robot centroidal dynamics can be
counterintuitive. Indeed, from common experience, we know that by varying our muscular
effort, it is indeed possible to modulate, e.g., the center-of-mass position. This is due the
dynamic constraints acting on the robot when subject to contacts. Mathematically speaking,
a contact has the form of an holonomic constraint

fffC(qqq) = 000, (2.64)

2.4 Robot dynamics 34

where fffC : Rn → Rm, and m is the constraint dimension. Contact constraints are enforced
through contact forces, denoted as FFFC ∈ Rm. For instance, a quadrupedal robot with point
feet is subject to a constraint pppi(qqq) = p̄ppi, for all feet indexes i = 1, . . . ,4, which states that
the position of each foot is always equal to a constant value. In such a case, m = 12 and the
contact force vector is computed by stacking the four pure forces exchanged between the
feet and the ground.

In order to analyze the effect of such a constraint on the robot dynamics, we need to
consider (2.53), plus the acceleration-level constraint obtained by differentiating (2.64) twice:BBB(qqq) q̈qq+hhh(qqq, q̇qq) = SSSτττ + JJJT

C FFFC

JJJC q̈qq+ J̇JJC q̇qq = 000
. (2.65)

By exploiting the invertibility of the joint-space inertia matrix, joint acceleration can be
computed from the dynamics equation and substituted into the constraint, to obtain

[
JJJC BBB−1JJJT

C
]

FFFC = JJJC BBB−1 (hhh−SSSτττ)− J̇JJC q̇qq. (2.66)

Under the assumption that the contact Jacobian be always full rank, the matrix appearing
at the right hand side is always invertible, and is actually the inverse of the task-space
inertia matrix ΛΛΛC corresponding to the contact task, as previously introduced in (2.56).
There is therefore a contact-induced relation between contact forces and joint torques and,
consequently, also between centroidal momentum and joint torques.

2.4.4 Motion feasibility

Because the robot centroidal dynamics only depend on contact forces, if such quantities must
obey certain constraints, also the robot motion must satisfy appropriate constraint as well.
This is especially true for floating base robots, since fixed base systems can exchange almost
arbitrary wrenches with the environment through the clamp. Mathematically speaking, if
FC ⊂ Rk is the set of allowed contact forces, then considering the top six rows of (2.53), it
is clear that a motion qqq(t) is feasible if and only if

∀t ∈ [t0, t f] ∃FFFC ∈ FC s.t. BBBu(qqq(t)) q̈qq(t)+hhh(qqq(t), q̇qq(t))u = JJJC(qqq(t))T
u FFFC, (2.67)

where the subscript “u” refers to the under-actuated part of a matrix, i.e. the top six rows.
As shown in Wieber (2002), if the feasible set FC is linear, such an existence condition can

2.4 Robot dynamics 35

be turned into a linear inequality check for the left hand side. On the other hand, it is well
known that a robot standing on flat ground cannot be statically stable if the projection of its
center of mass lies outside the support polygon; this is a point-in-set check which is way
easier to compute, and to interpret. This intuitive property directly comes from the unilateral

constraint which characterized contact forces, i.e.

nnnT fff ≥ 0, (2.68)

where nnn ∈ R3 is the outward normal to the contact plane. In order to see this, assuming for

the sake of simplicity (i) the ground plane to be horizontal nnn =
[
0 0 1

]T
, and (ii) passing

through the origin (i.e. the contact plane is described by nnnT xxx = 000), it is enough to apply the
cross product by the contact normal nnn× to the angular momentum equation (2.62). Recalling
that aaa× (bbb× ccc) = (aaa · ccc)bbb− (aaa ·bbb)ccc, the following expression is obtained:

∑
i
(fz,i xxxi)−mgxxx+mhcom(ẍxx−ggg) = nnn× L̇LL (2.69)

where (i) contact torques mmmi and center of mass height variations have been neglected for
simplicity, (ii) g =−nnnT ggg, and (iii) hcom = nnnT xxx. Dividing by ∑i fz,i = mg then yields

∑i (fz,i xxxi)

∑i fz,i
− xxx+

hcom

g
(ẍxx−ggg) =

nnn× L̇LL
mg

. (2.70)

Note now that the first term in (2.70) is a weighted average of the contact points xxxi, each one
weighted according to the portion of robot weight that it supports. As such, this is clearly
a point on the contact plane; furthermore, because of the unilateral constraint (2.68), all
coefficients are positive; hence, the resulting weighted average is actually a convex average,
and the resulting point necessarily lies inside the convex hull of the supporting points xxxi.
Such a quantity is the center of pressure corresponding to the contact forces, denoted by xxxcop,
i.e.

xxxcop =
∑i (fz,i xxxi)

∑i fz,i
. (2.71)

Therefore, the force system corresponding to the vectors fff i applied at xxxi can be replaced by
a single force fff eq = ∑i fff i, applied at xxxcop, up to a pure momentum about the contact plane
normal nnn. Again, this can be easily seen by (i) imposing equality of momentum as in the
following equation

(zzz− xxxcom)× fff eq = ∑
i
(xxxi − xxxcom)× fff i, (2.72)

2.4 Robot dynamics 36

(ii) applying the nnn× operator on the left, and (iii) solving for zzz. Subtracting the right hand
side from the left hand side, equation (2.72) can be simplified to

∑
i
(zzz− xxxi)× fff i = 000, (2.73)

i.e. contact forces exert zero momentum about the center of pressure. This is the reason why,
in the robotic walking literature, the center of pressure is often referred to as Zero Moment

Point (ZMP).
Under static conditions, and focusing on x and y coordinates, one gets

(
xxx = xxxzmp

)
xy, i.e.

the projection of the center of mass must be a point inside the support polygon, showing how,
as a consequence of the centroidal dynamics equation, constraints on contact forces actually
translate into motion constraints. In the static case, this is fairly simple and intuitive; on the
other hand, in dynamic conditions, the point which is restricted to the support area becomes[

xxxzmp = xxx− hcom

g
ẍxx+

nnn× L̇LL
mg

]
xy
, (2.74)

which is a more involved expression deserving further discussion. A graphical representation
of (2.74) is presented in Figure 2.6.

2.4.5 ZMP stability criterion

According to the previous discussion, feasibility of a robot motion under unilateral constraints
can be assessed by a simple point-in-set test, where the relevant point is the ZMP (or CoP)
as given in (2.74), and the corresponding set is the convex hull of contact points. While
the feasibility check is straightforward, the process of generating a feasible motion, i.e. a
trajectory qqq(t) which always satisfies xxxzmp(t) ∈ ConvHull{xxxi}n

i=1 turns out to be less trivial.
In order to simplify the analysis, let us make the common assumption that the robot angular
momentum is constant. This yields the so called Linear Inverted Pendulum Model (LIPM)1

for the ZMP, i.e.

xxxzmp = xxx− hcom

g
ẍxx, (2.75)

which has the benefit of expressing the ZMP exclusively as a function of the center of
mass dynamics. As we shall shortly verify, satisfying (2.75) indeed requires some care, as
constraining the ZMP to a bounded set can easily result in an unboudned (i.e. unstable) CoM

1The LIPM name is due to the fact that the dynamics of a variable-length inverted pendulum pinned at the
CoP, and whose tip is constrained to lie on a plane matches (2.75).

2.4 Robot dynamics 37

(a) When the rate of change of angular momentum is zero, the center of pressure is
obtained by projecting the center of mass position to the contact plane, along the ap-
parent acceleration direction. The equivalent force passes through the CoM, so that no
momentum is generated.

(b) When the angular momentum is changing, the CoP location is shifted such that the
equivalent force does not pass through the CoM anymore, so that the required momentum
is generated.

Figure 2.6 Effect of linear and angular momentum rate of change on the center of pressure location,
denoted with a red dot.

trajectory. Following Kajita et al. (2003); Lanari et al. (2014), let us consider a walking robot
with point feet, i.e. such that its ZMP is always at the contact point. At time t = 0 the robot
performs a step, and because a single contact point is defined, the ZMP undergoes the same

2.4 Robot dynamics 38

change as well. The CoM trajectory can then be computed by solving the ODE (2.75) with:

xxxzmp(t) =

0 t < 0

∆ t ≥ 0
. (2.76)

Let us first introduce the quantity ω =
√

g
hcom

, so that our ODE becomes

xxxzmp = xxx− ẍxx
ω2 ; (2.77)

the general solution is

xxx(t) =

α1 e−
t
ω + α2 e

t
ω t < 0

β1 e−
t
ω + β2 e

t
ω + ∆ t ≥ 0

, (2.78)

where, matching the CoM position and velocity at t = 0 permits to obtain the following
expressions for the coefficients:

α1 =
1
2(xxx0 −ω ẋxx0)

α2 =
1
2(xxx0 +ω ẋxx0)

β1 =
1
2(xxx0 −ω ẋxx0 −∆)

β2 =
1
2(xxx0 +ω ẋxx0 −∆).

(2.79)

A bounded center of mass trajectory is obtained if and only if the coefficients α1 and β2 are
zero, which leads to the following boundedness conditions:

xxx0 =
∆

2

xxx0 +ω ẋxx0 = ∆

. (2.80)

We therefore observe how, for a given (bounded) ZMP trajectory, the CoM behavior is in
general unbounded; only if a condition on the initial state is verified a bounded trajectory is
achieved, as depicted in Figure 2.7. Notice also how the second condition in (2.80) implies
that the capture point xxxcp = xxx+ω ẋxx at the stepping time be coincident with the next foothold.

This behavior can be interpreted in the light of system theory by observing that the
transfer function from the CoM acceleration to the ZMP has a zero in the right hand side of

2.4 Robot dynamics 39

Figure 2.7 Different center of mass trajectories (blue and gray lines) for a given ZMP trajectory (red).
Slightly changing the state at t = 0 yields unstable CoM trajectories (dashed lines).

the complex plane:
Xzmp(s)
Acom(s)

=
ω2 − s2

ω2 s2 ; (2.81)

therefore, (i) the inverse of such a transfer function is unstable as seen in the point foot walker
example, and (ii) there exist unbounded CoM trajectories which still result in a bounded
ZMP trajectory. In other words, the zero-dynamics corresponding to the ZMP, interpreted as
an output of a state-space dynamical system, is unstable.

Remark. It is worth noticing how the only bounded CoM trajectory, as seen in Figure 2.7,

is an anti-causal one, i.e. the center of mass starts moving before the robot takes the step

at t = 0, in order to arrive at the correct initial condition. This observation leads to the

conclusion that, in order to generate a bounded CoM trajectory, a preview on future ZMP

constraints is needed, as done e.g. in Kajita et al. (2003).

Part I

Software architecture

Chapter 3

Real-time robotic middleware

This chapter introduces XBotCore, a real-time robotic middleware enabling the developer to
write control code which runs as close as possible to the hardware, with minimum latency
and jitter. A framework with such properties must ensure that (i) critical control code is
never interrupted (preempted) while running, and (ii) critical control code starts executing
as soon as it is needed (usually in reaction of an external event), with minimum latency
and jitter. Such guarantees require careful code crafting as well as adequate operating
system support, since many standard functionalities of modern programming languages (e.g.
memory allocation, input/output, and others) can cause the application to be preempted
by the kernel for an unpredictable amount of time. With the aim to facilitate the usage of
XBotCore combined with a modern distributed control environment, a lot of effort was put on
the integration of basic ROS primitives (e.g. topics and services) directly into the real-time
layer, taking care not to lose the aforementioned properties. The remainder of this chapter is
devoted to the illustration of how this rather generic design goals have been achieved.

3.1 Motivation and related works

The widespread use of robotics in new application domains outside the industrial workplace
settings requires robotic platforms that demonstrate functionality far beyond that of industrial
robotic machines. The implementation of the additional capabilities increases the complexity
of the robotic platforms at the hardware, control and application software level. As a result,
the inevitable complexity of today’s robots targeting partially unstructured environments has
reached a noticeable extent; e.g., such robots typically employ of a large number of sensors,
actuators, and processors executing a large number of control modules that communicate
through several interfaces. These emerging applications involve complex tasks, requiring

3.1 Motivation and related works 42

advanced capabilities with respect to system autonomy and adaptability, which further
increases the intricacy of the system software architecture creating an additional challenge on
robotic the system’s software; therefore, infrastructures that can be quickly and seamlessly
adapt to these demands, while providing transparent and standardized interfaces to the
robotics developers and users, are required. In this work, the XBotCore software framework
is introduced; the adopted implementation mechanisms are discussed, from both the developer
and user perspective. Its development was driven by the need to provide a robotic low-level
middleware that abstracts the variability and complexity of the hardware, while ensuring
deterministic hard real-time (RT) performance, and incorporating ready-to-use interfaces
that permit it to nicely integrate with state of art robot control frameworks such as ROS.
Finally, hard real time performance is made available to developers, who can customize the
RT control loop with custom control plugins, which are typically dedicated to performance-
critical applications as e.g. high-bandwidth feedback loops.

Several software frameworks for robotics have been developed in the past twenty
years (Elkady and Sobh, 2012) targeting to provide flexible infrastructures, which not only
permit to easily integrate new functionalities and interfaces in the robotic system, but also to
ensure standardization, easy tracking and maintenance of the software development, despite
the increased complexity. The selection among these available software middlewares is not
an easy task for the research community as well as for companies interested to explore this
domain, this being especially true if low-jitter real-time performance is a requirement for the
specific application at hand.

Among state-of-the-art robotics middlewares, let us recall OROCOS (Bruyninckx, 2002)
(Open Robot Control Software), an RT framework, which permits to develop robotics control
applications consist of multiple interacting components. For strict RT applications, OROCOS

allows to schedule components in a single process while it relies on the Common Object

Request Broker 1 (CORBA) architecture for Inter Process Communication (IPC), implemented
in C++ using ACE/TAO2. Components may run in a single or separated threads depending on
their activities. Despite OROCOS is used in a fair number of robotics projects, the framework
maintenance as well as the community is not active anymore3.

A very similar framework to OROCOS is OpenRTM-aist (Ando et al., 2005), developed
in Japan from 2002 under NEDO’s (New Energy and Industrial Technology Development
Organization) “Robot challenge program”. It is also based on CORBA, which increases the

1http://www.omg.org/spec/CORBA/
2http://www.theaceorb.com/
3For instance, latest versions (> 3.0) of the Xenomai RT patch are not supported.

http://www.omg.org/spec/CORBA/
http://www.theaceorb.com/

3.1 Motivation and related works 43

software complexity for the end-users/developers. Moreover, a part of the OpenRTM-aist

documentation is available only in Japanese, further impeding its utilization.
PODO (Jeongsoo et al., 2014) is the framework used by KAIST (Korea Advanced

Institute of Science and Technology) in the DRC-HUBO robot during the Darpa Robotics
Challenge Finals (Lim et al., 2017). Its control system has RT control capabilities and its
inter-process communication facilities are based on POSIX IPC; moreover it uses a shared
memory system called MPC to exchange data between processes in the same machine. This
heterogeneous system has the potential to cause confusion as it is unclear which architectural
style must be used to communicate with a specific component (Houliston et al., 2016).

YARP (Yet Another Robot Platform) (Metta et al., 2006) and ROS (Robot Operating
System) (Quigley et al., 2009a) are popular component-based framework for IPC that do not
guarantee RT execution among modules/nodes. However it is essential to have a component
responsible for the RT control of the robot, making these frameworks only suitable as external
(high-level) software frameworks. It is also worth to mention here that ROS 2 is moving
towards the RT support4 using the DDS (Data Distribution Service) middleware.

In (Smith et al., 2014) an RT architecture based on OpenJDK is introduced (used by
IHMC during the DRC Finals). Nevertheless, to their own admission (Johnson et al., 2015),
none of the commercially available implementations of the Java Real Time Specification had
the performance required to run their controller. In other words, the existing Real-time Java
Support is insufficient.

The above considerations and limitations of the existing frameworks provide the moti-
vations to develop XBot framework baring in mind that the design of a software platform,
which lies at the foundations of such complex and diverse robotic systems, is a crucial phase
in the software development process. XBot was designed to be both an RT control system
and a user friendly, flexible and reusable middleware for RT and non-RT control software
modules. The XBot was developed and with following design goals and features in mind:

• Hard RT control performance: it must perform computation inside specific timing
constraints wirh minimum timing jitter. There are several operating systems or plat-
forms which support RT operation, such as Windows CE, INtime, RTLinux, RTAI,
Xenomai, QNX, VXWorks. We selected a Linux based Real-Time Operating System
(RTOS) to avoid a licensed product that does not give us the possibility to modify
and adapt the source code to fit it to the specifications of our system. In particular,
Xenomai satisfies the requirements for extensibility, portability and maintainability as
well as ensures low latency as stated in Brown (2012).

4http://design.ros2.org/

3.2 Hardware abstraction 44

• High control frequency: robotics applications may often require high frequency
control loops, e.g. reactive walking, torque-based controllers, or force feedback
modules.

• Cross-Robot compatibility: it should be possible to use it with any robot, without
unnecessary code modification. It is crucial to be able to reuse the software platform
with different robots, or subsystems of the same robotic platform. Moreover, standard
robotic description files such as the URDF and SRDF formats, should be preferred for
parametrization of the architecture.

• External Framework integration: it should be possible to use XBot as a low-level
middleware, to be paired with external software frameworks (real-time or non real-time)
without any additional bridge layer tailored for every different case.

• Plug-in Architecture: users and third parties should be able to develop and integrate
their own modules. In a robotic system platform there is the need for an highly
expandable software structure.

• Simplicity: avoiding unnecessary (or over-engineered) features simplifies the software
maintainability.

• Flexibility: XBotCore has to be easily modified or extended to be used in systems and
applications other than those for which it was specifically designed

As presented in Figure 3.2, the XBotCore software architecture is composed by different
components, described in detail within the following sections. Each of them has a dedicated
role and functionality, contributing to the realization of one or more of the design goals
described in this section. Figure 3.3 presents a detailed view of the threads which are
spawned in the main components of the framework. It is worth noticing how, aiming to avoid
scheduling-related issues and to keep down the complexity of the software infrastructure,
XBotCore currently employs only two RT threads and one non-RT thread in the framework.

3.2 Hardware abstraction

The Cross-Robot compatibility feature is achieved through the development of a suitable
hardware abstraction layer (Rigano et al., 2018), which enables XBotCore to efficiently port
and run the same control software modules on different robots, both in simulation and on the
real hardware platforms.

3.2 Hardware abstraction 45

Figure 3.1 The robot Hardware Abstraction Layer introduced for the XBotCore software architecture.
The R-HAL assures high flexibility towards any type of robotic platform or simulation environment.

The main idea is to provide an independent layer with respect to the robot hardware
and high level software enabling the integration of new actuators, sensors or other hardware
components. The core component, for achieving this, is the R-HAL interface, which provide
three abstract methods for each of which concrete implementations have to be provided:

• init(), used in the initialization phase (open the connection, initialization of the data
structures)

• recvFromSlave(), serving the reading of all the data coming from the different type
of slaves (joints, imus and force torque sensors) and to fill the internal data structures

• sendToSlave(), used to send the reference signals to the slave joints

The integration of a new robotic platform requires the implementation of the aforemen-
tioned methods in addition to the interfaces that deals with joints, end-effectors, inertial
measurement unit sensors and force torque sensors, as shown in orange in Figure 3.1. All the
R-HAL implementations are built as a shared library object (.so) loaded at runtime according
to what specified in a configuration file. In particular, the factory design pattern has been
adopted to load/unload several implementations.

3.2 Hardware abstraction 46

Figure 3.2 XBotCore software architecture: components overview and interaction.

Figure 3.3 XBotCore threads structure and communication mechanisms.

3.3 Real-time control 47

Concerning the threading configuration, XBotCore employs a separate thread to execute
the low level robot control loop and permits to realize controllers with different frequency.
The synchronization between the XBotCore thread and the R-HAL thread is needed to access
safely the shared data structures. Dealing with concurrent programming is tedious and error
prone since advanced expertise is needed to implement the right synchronization pattern.
To address this issue the built-in HALThread class is provided to mask all the details about
the threads synchronization: the user has only to implement an initialization function and
two methods to get and set the robot joint states (position, velocity, torque, stiffness and
damping).

XBotCore currently supports EtherCAT (for robot like WALK-MAN, Centauro and CO-
MAN+), Ethernet (for COMAN), and KUKA LWR 4 / KUKA IIWA arm based robots
(Baccelliere et al., 2017a; Bischoff et al., 2010; Tsagarakis et al., 2017b, 2013). The possibil-
ity to simulate the robot and its controllers behaviours prior to testing on the real hardware
is essential, especially when dealing with complex robotic systems. To achieve this, the
framework provides an R-HAL implementation for the well-known Gazebo5 simulator envi-
ronment. In particular, simulator support is implemented in terms of a Gazebo ModelPlugin

class, so that the XBotCore control loop executes synchronously inside the physics thread.
This way, at the cost of a reduced real time factor, an ideal real time system can be simulated
also on machines with limited computational resources.

3.3 Real-time control

The primary objective of this work is, as previously stated, to enable control engineers to have
critical modules executed with real-time guarantees. To this aim, a plugin-based architecture
has been designed, enabling dynamic loading and unloading of control modules on request.
Such plugins implement a basic state machine managing their life cycle, with appropriate
virtual methods allowing to customize their behavior. Plugins are executed sequentially by
the PluginHandler, which is the main component of the XBotCore architecture, represented
in Figure 3.2 with a dark pink color. The PluginHandler is implemented using a single RT
thread running at high frequency (e.g. 1 kHz) and is responsible for the actions that are listed
below:

1. load the set of plugins requested by the user from a configuration file;

2. initialize all the loaded plugins, and start them upon user request;

5http://gazebosim.org/

3.3 Real-time control 48

Figure 3.4 UML state diagram showing a XBotCore plugin life-cycle.

3. execute the started plugins sequentially;

4. reload and reinitialize a plugin upon user request;

5. close and unload all the loaded plugins.

All plugins follow a simple lifecycle, which is depicted in Figure 3.4. A plugin is created
by inheriting from the abstract class XBotControlPlugin, and then compiling it into a shared
library; this means that writing a Plugin is straightforward for the user, as he or she just needs
to implement three basic functions:

• an init_control_plugin() function, which is called by the PluginHandler after the
plugin is loaded/reloaded and is useful to initialize the variables of the Plugin;

• a control_loop() function, which is called in the run loop of the PluginHandler

after the plugin is started;

• a close() function, which called in the PluginHandler closing phase.

3.4 Non real-time control 49

Optional on_start() and on_stop() methods allow to execute specific action during the
first and last control iteration, respectively.

3.4 Non real-time control

Broadly speaking, network capabilities require to perform operations (e.g. system calls) that
are not deterministic in their execution time. For this reason, a purely real-time middleware
does not give the possibility to communicate with external modules executing outside the
robot: for this purpose, the software framework of a robotic system should incorporate a set
of non real-time threads that permit the communication of the system with a remote pilot
stations or cloud services. To this aim, XBotCore implements the CommunicationHandler
component as a non-RT thread with the primary goal of servicing all operations which
would break determinism. Data exchange between such a thread and the PluginHandler
is done either via shared memory (relying on lock-free synchronization patterns on the
RT side), or by exploiting a Xenomai-specific datagram protocol named XDDP (Cross
Domain Datagram Protocol) which achieves asynchronous communication between RT and
non-RT threads, without any mode switches6. Similar to the PluginHandler, a dynamic
loading mechanism is employed in order to achieve easy expandability of the systems in
terms of the non-RT components that can be loaded. Such components belong to two
categories: (i) CommunicationInterfaces, which implement the framework-specific robot
API (e.g. broadcasting robot TFs and joint states to ROS topics, accepting commands from
the framework participants, etc), and (ii) IOPlugins, which provide access to the shared
memory and XDDP pipes. The execution loop of the Communication Handler thread is
responsible for (i) updating an internal robot state that is received from the PluginHandler
through XDDP pipes with the non-RT robot API, and sending the robot state to all the
communication frameworks implemented as CommunicationInterfaces; (ii) receiving
commands from one specific CommunicationInterface (called “master”); (iii) sending
the received commands to the robot using the XDDP pipes; (iv) executing all specified
IOPluginss; (v) servicing real-time ROS publishers and subscribers (more on this in the
next section).

6In a Xenomai system, threads can operate either in “primary” mode (managed by the real-time scheduler),
on in “secondary” mode (managed by the standard Linux kernel). The term mode switch then refers to a RT
thread involuntarily switching to secondary mode due to a non-RT system call.

3.4 Non real-time control 50

3.4.1 ROS integration

During an initial phase of the XBotCore development , the target for the real-time part of
the proposed architecture was to execute mostly low level control algorithms that would not
need too much flexibility for their I/O from and towards the higher level NRT domain. The
reader could think, for instance, of a closed-loop inverse-dynamics plugin, which provides
feed-forward torques to the actuators, or of a center-of-mass stabilizer that is used for
balancing and locomotion. Modules of this kind do not need to exchange much information
with external pieces of software. On the contrary, it turned out later that the user base
wanted to take advantage of the low latency guarantees offered by the RT layer to implement
complex controllers that do need flexible I/O in terms of receiving reference set-points,
online parameter tuning, and sending information on the controller state. Even though it
was possible to build such an infrastructure leveraging the flexibility of the communication
handler loop by means of I/O plugins (as discussed in Section 3.4) in combination with
XDDP communication, the choice has been made to reuse as much as possible standard tools
that are well established in the robotics community such as ROS subscribers, publishers,
service servers, and dynamic reconfigure. While it is not immediately possible to use these
tools from the RT domain, the provided threading structure permits to adapt them with
moderate effort, and with no required modification to the ROS source code.

More in detail, subscribers, service servers, and dynamic reconfigure are based on call-
backs. Since the data reception part involves system calls to the Linux kernel, such callbacks
should be processed by a NRT thread, which in the case at hand is the communication handler.
Once that data is received, callbacks are packaged as std::function-like objects and sent
to the RT thread for execution using lock-free queues.

Publishers are slightly more complex to adapt; the standard workflow when using pub-
lishers from a normal process would be to produce a message, and then to call a publish()

function that serializes it and sends the corresponding bytes via e.g. UDP sockets. The
data transmission part needs to be performed from a NRT thread, since it involves a system
call to the Linux kernel. On the other hand, the serialization part should be done where the
message is produced, since it is the only place where its type is known. Consequently, it is
necessary to “split” the publish() function in a way such that the serialization is performed
on the RT plugin, while the actual publishing is done on the communication handler. Indeed,
ROS allows the power user to take over control of such details by using its advanced API.
Summarizing, XBotCore enables the developer of a RT plugin to:

3.5 High level interfaces 51

• subscribe to arbitrary ROS topics of any message type (including custom messages)
without the need for any adaptation step;

• implement a service server inside a XBotCore RT plugin;

• publish arbitrary messages to a topic;

• tune online the module parameters with the popular ROS dynamic reconfigure tool.

3.5 High level interfaces

After the design and the implementation of the low-latency, hard real-time layer the next
significant feature is given by the implementation of flexible interfaces, which permit the
XBotCore framework to integrate with state-of-art, widely spread robot control frameworks
like ROS, YARP, and OROCOS. During the initial phase of the framework design, the
importance of providing the user with a standard way of communicating with the robot was
recognized, regardless of its specific structure (humanoid, quadruped, manipulator, etc), and
also independently of the particular software layer that the user wanted to operate within.
To satisfy this, an API was developed that could be used to send commands to a robot, and
receive its current state, from a ROS node, an OROCOS component or a XBotcore RT plugin,
in a uniform way, providing the main design goal for the XBotInterface library.

An object of the XBotInterface class is essentially a big, organized, container for the
robot state, including its on-board controllers. As such, it includes quantities that describe the
measurements coming from the robot sensors (e.g. joint position and torque, motor current,
IMU states, force/torque sensing etc), and control references (joint position, torque and
impedance, etc) as well. As complex robot, e.g. a humanoid can have as many as forty joints,
it is important to organize such a state rationally. To this aim, the XBot::Joint si defined
to be the most atomic component of the library. Then, the XBot::KinematicChain object
is also defined as a collection of joints belonging to the same chain. This enables the user
to specify a joint by the name of the chain it belongs to, and its position inside the chain
itself, rather than remembering its literal name or its position inside a possibly huge vector of
joints. However, this semantic approach to the robot description comes with disadvantages
as well, mainly because of the fact that it is inconvenient to use it for the development of
control algorithms, that often rely on the manipulation of the joint states according to the
rules of linear algebra. Hence, the framework also provides a full-robot interface that relies
on Eigen3, a state-of-art linear algebra library. Furthermore, interfaces to two families of

3.5 High level interfaces 52

XBotInterface
+ kinematic chains
+ RX/TX set/get
+ sensor getters

RobotInterface
+ sense() = 0
+ move() = 0
+ setReferenceFrom()

ModelInterface
+ update() = 0
+ kin/dyn functions… = 0
+ syncFrom()

RobotInterfaceROS

RobotInterfaceYARP

RobotInterfaceXbotRT

ModelInterfaceRBDL

ModelInterfaceIDynTree

Figure 3.5 UML class hierarchy diagram for the the XBotInterface library.

sensors that are crucially important for real-time control, i.e. force-torque (FT) sensors and
inertial measurement units (IMU) were implemented and incorporated in the XBotInterface

library.
While the XBotInterface class organizes the robot state, to enable actual communication

with a robot, the RobotInterface class has been defined as a subclass of XBotInterface,
introducing a sense() method for collecting sensory feedback from the robot, and a move()

method for sending reference commands to the robot. Both functions are defined as pure
virtual, since their implementation depends on whether the RobotInterface is being used from
a ROS node, an OROCOS component, or a Xbot RT plugin.

Besides communicating with the robot, it is often that a piece of control code may involve
kinematic and dynamic computations, which are performed by some external library. Such
library must take a model state (e.g. joint positions, velocities, and acceleration) as input,
in to return the joint references (e.g. joint positions or torques) as output. Both states are
usually in the form of arrays, which are arranged according to an order that is specific to
the library itself. Again, this is an inconvenient and error-prone format for the human user,
especially in the case of complex multi-chained robots. In an effort to ease the user’s work,
we reuse our robot state description, which is the XBotInterface class, with the following
three main goals in mind:

• provide a uniform interface not only to the state of actual robots, but also of the
corresponding model counterparts;

3.6 Conclusions 53

• standardize the API for retrieving the outcome of the most common kinematic and
dynamic computations;

• ease the data exchange between a robot and a corresponding model, and vice-versa.

These objectives are achieved by defining the ModelInterface as a subclass of XBotInterface,
which mainly adds an update() method where the underlying kinematic/dynamic library
is updated with the current model state. Similarly, it is a pure virtual function whose
implementation depends on the specific back-end that is being used. In addition, a minimal
set of pure virtual methods are introduced for every fundamental algorithm from the domains
of kinematics (e.g. forward kinematics, differential kinematics, . . .) and dynamics (e.g.
inverse dynamics, bias terms, mass matrix computation, . . .) . As a third step, we also
provide one-line functions for synchronizing robots and models, i.e. for setting a model state
from the sensory feedback from the robot, and for turning a model state into a reference for
the robot controllers. In the author’s experience, these two one-liners have turned out to be
useful especially when robot and model do not have the same structure, as it is often the case
when dealing with complex robots. As a simple example, a manipulation module may use
a model for just the upper-body of a legged robot, while the robot object always takes into
account the system as a whole. The resulting class hierarchy for the XBotInterface library is
summarized in Figure 3.5.

3.6 Conclusions

In this chapter, the XBotCore RT software architecture was presented. XBotCore provides
to the users a software platform capable to work with multiple different robotic system,
possibly under different middlewares, with special care to avoid code changes in order to
deliver a high degree of flexibility and reusability. The design of the framework assures easy
interoperability and built-in integration with other existing software tools for robotics, such
as ROS, YARP or OROCOS. The component-based development of the XBot includes a
Robotic Hardware Abstraction Layer (R-HAL) interface and a set of ready-to-use tools to
control robots either inside a simulation environment or in the real hardware.

The framework has been successfully used an validated as a main software infrastructure
for humanoid robots such as WALK-MAN (result of WALK-MAN EU FP7 project7, notably
XBotCore received the EU innovation radar award in this context8.) and COMAN+ (result of

7https://www.walk-man.eu/
8https://www.innoradar.eu/innovation/30632

https://www.walk-man.eu/
https://www.innoradar.eu/innovation/30632

3.6 Conclusions 54

COGIMON EU H2020 project9) or for quadruped centaur-like robots as CENTAURO (result
of the CENTAURO EU H2020 project10).

Moreover the cross-robot functionality has been exploited to develop both RT and non-RT
control modules inside not only the above mentioned robots, but also in industrial arms like
KUKA LBR IIWA, KUKA LWR 4+ or Franka Emika Panda, or humanoid robots like COMAN

or iCub.
Regarding the simulation part, XBot assures the porting of the control modules from

the simulator to the real hardware with the same interfaces and requiring no code changes.
The built-in simulator supported in the framework is Gazebo, but there is the possibility to
support other simulation environments (as it happened inside the CENTAURO H2020 project
with the VEROSIM simulator11).

XBotCore has become a mature and stable software and control middleware for robotics
in the past few years, and it is the official architecture powering all robots in the Humanoid
and Human Centered Mechatronics (HHCM).

9https://cogimon.eu/
10https://www.centauro-project.eu/
11https://www.verosim-solutions.com/en/

https://cogimon.eu/
https://www.centauro-project.eu/
https://www.verosim-solutions.com/en/

Chapter 4

Cartesian control

Last chapter introduced XBotCore, a new real-time middleware for robotics systems, enabling
the user to implement its control loop inside a low-latency RT control loop. The interfaces
offered by XBotCore are at joint level, serving as a building block for the implementation of
more complex controllers. This chapter expands our robot control stack with a framework
for the Cartesian control of multi-legged, highly redundant robots. The proposed framework
allows the untrained user to perform complex motion tasks with robotics platforms by
leveraging a simple, auto-generated ROS-based interface. Contrary to other motion control
frameworks (e.g. ROS MoveIt!), the focus of this work is on the execution of Cartesian
trajectories that are specified online, rather than planned in advance, as it is the case, for
instance, in tele-operation and locomotion tasks. Moreover, the problem of generating such
motions within a hard real-time (RT) control loop is addressed, thanks to tight integration
with XBotCore. Finally, the capabilities of the designed framework are demonstrated both
on the COMAN+ humanoid robot, and on the hybrid wheeled-legged quadruped Centauro.

This chapter is based on the following article:
Laurenzi, A., Mingo Hoffman, E., Muratore, L., and Tsagarakis, N. G. (2019c). CartesI/O:
A ROS Based Real-Time Capable Cartesian Control Framework. In IEEE International

Conference on Robotics and Automation (ICRA).

4.1 Motivation and related works

In the past few decades, advancements in robotics have vastly extended its domain of
application, moving from the traditional industrial focus to eventually applying robots to
human and more unstructured environments. Consequently, robotic platforms have grown
in complexity, in an attempt to satisfy the requirements that the new applications demand

4.1 Motivation and related works 56

in terms of hardware, motion generation, control and human machine interfaces. Indeed,
operating effectively in complex environments requires enhanced mobility in order to move
on rough surfaces, overcome obstacles, and to carry out complex manipulation tasks that
take place in an extended workspace, ranging from the ground-level to above the eye-level.

Such robots exhibit a high degree of redundancy, which however complicates their control
from several perspectives: first, tasks have usually different priorities; then, when infinitely
many solutions exist, some criterion is needed to select one. Finally, the complexity of the
code required to control the robot grows considerably: a simple-yet-effective scheme for
solving the manipulator inverse kinematics may be realized with few lines of code, whereas
the control of highly redundant robots is best done inside a suitable framework that hides
most of the involved complexity in the motion coordination of redundant robots.

An aspect that is worth highlighting is the dichotomy between tasks that are pre-planned

offline, and tasks that are specified online, in a continuous fashion. As an example from
the first family, the reader could consider a reach-to-grasp task taking place in a cluttered
environment; such an action can be completely pre-planned before the actual execution, thus
opening the possibility of performing a time-consuming search over the robot configuration
space in order to find obstacle-free trajectories. Conversely, examples from the second
category include tele-operation scenarios, reactive locomotion and physical interaction, and
others. Online tasks greatly differ from their pre-planned counterparts, since they require low

computation times and, especially when any kind of feedback is involved, small delay and
jitter in the execution.

Existing works have recognized the need for a Cartesian control framework; yet, it is
hard to find a solution that satisfies the following requirements:

• flexible task specification, in terms of both type and number of tasks;

• ability to enforce soft priorities as well as hard priorities between tasks;

• ability to specify constraints in the task execution;

• small computation time (suitable for online execution);

• possibility to execute inside a real-time (RT) thread in order to reduce delays and jitter;

• ease of configuration and use, quick setup time and ready to use control tools;

• parametrized with standard description formats (e.g. URDF) in order to support
multiple platforms;

4.1 Motivation and related works 57

• handling of floating base robots.

Previous work from the authors (Hoffman et al., 2018, 2017) goes in the direction outlined
by the aforementioned points, resulting in the C++ library OpenSoT, which provides tools for
writing Cartesian solvers while taking into account priorities and constraints, in a real-time
safe way. In the present chapter, additional layers are introduces with a twofold objective:
first, to enable the user to customize and run Cartesian controllers without writing and
compiling C++ code; second, to relieve the developer from the need to write custom code
to interface a solver with its clients. To achieve this, we design an auto-generated uniform
interface to send commands to Cartesian controllers inside the popular ROS framework.
Then, this interface is exploited to implement an OpenSoT-based, run-time configurable

controller. Finally, all additional components are designed to be real-time safe, and we assess
this feature by integrating them into the real-time robot control framework XBotCore (see
Chapter 3).

Environment-
aware planning
capabilities

Real time capa-
ble

Generic robot
support

Flexible task
specification

Floating-base
support

OpenRAVE (Diankov, 2010) ✓ ✓ ✓ ✗ ✗
MoveIt! (Chitta et al., 2012) ✓ ✗ ✓ ✗ ✗
Chorenoid (Nakaoka et al., 2010) ✗ ✓ ✗ ✗ ✓
CartesI/O ✗ ✓ ✓ ✓ ✓

Table 4.1 Comparison between different frameworks for robot Cartesian control.

The presented framework draws inspiration from previous work on the same topic; the
most relevant previous works are summarized in Table 4.1, and discuss them hereafter.

OpenRAVE (Diankov, 2010) is one of the first environments for testing, developing, and
deploying motion planning algorithms in real-world robotics applications. From the Cartesian
control point of view, OpenRAVE relies on ikfast which is an analytic IK engine; it is one of
the fastest IK engines available at the moment, however it does not handle redundancy (extra
DoFs have to be locked manually in order to match the required kinematic structure).

The most widely-spread framework for Cartesian control is probably MoveIt! (Chitta
et al., 2012), which is part of the open source ROS framework. MoveIt! provides a rather
complete system of motion planning and execution tools that also take into account the
perceived environment. The main core of MoveIt! is based on state-of-the-art sampling-
based motion planning algorithms, mostly deployed inside the OMPL project (Şucan et al.,
2012). Despite MoveIt! has been used on many different types of robot, it lacks explicit
support for multi-chains and floating-base (e.g. legged) robots. Furthermore its non-linear
planning nature does not make it suitable for on-line (tele-operation) or real-time control.

4.2 Architecture and implementation 58

Another notable work is the software suite Chorenoid (Nakaoka et al., 2010), which
permits to synthesize whole body motions for bipedal humanoid robots. The user can control
different end-effectors as well as perform dynamic motions which are filtered through a
Zero-Moment-Point (ZMP) based stabilizer. Such a tool has been used successfully on many
HRP-series robots, yet it does not permit to setup customized IK problems. This indeed
limits the usability of Chorenoid to manipulators and bipeds.

A lot of effort was spent on creating GUI systems for the DARPA Robotics Challenge

(DRC) (e.g. (Caron and Nakamura, 2015; Fallon et al., 2015; Schwarz et al., 2016)). Yet,
none of these works was designed to be general enough to handle different types of robots
with considerably diverse structure, or to provide flexibility in terms of tasks or constraints
declaration.

4.2 Architecture and implementation

Following a bottom-up description, we can distinguish:

• the solver; this is the component that solves a single instance of the mathematical
problem that describes the specific Cartesian control algorithm ath hand. In the Carte-
sian control case, this could be either a matrix pseudo-inverse solver, or a Quadratic

Program (QP) solver. Other possibilities exist, like more general Non-Linear Program

(NLP) solvers.

• A modeling language that allows to construct the aforementioned mathematical prob-
lems in a natural and more high-level way, which is less error-prone and time consum-
ing.

• A base class for Cartesian controllers, that allows for uniform programmatic usage of
any specific implementation. In order to avoid code duplication, it should also perform
all the common work which would otherwise be replicated by all implementations,
as for instance enforcing velocity/acceleration limits, or transforming waypoints into
properly interpolated references. In this way, the developer can focus on the controller
implementation alone.

• A middleware interface, which enables all other processes that compose the control
system to send their references in a uniform way that does not depend on the specific
implementation running.

4.3 The OpenSoT library 59

This work is mostly concerned with the last two parts, and it is completely decoupled
from any specific choice of a solver and modeling language. However, integration with the
OpenSoT library, which implements a modeling language tailored to Cartesian control, also
represents a major goal; the OpenSoT library is briefly described in the following section.

4.3 The OpenSoT library

The OpenSoT library is a C++ framework which has been initially developed to participate to
the DARPA Robotics Challenge as a whole-body inverse kinematics engine. During the years,
inverse dynamics and force optimization have also been integrated (Hoffman et al., 2018,
2017) for different robotic platforms. The focus of OpenSoT is to ease the formalization of
prioritized controllers through dedicated interfaces for tasks, constraints and solvers. Each
of these entities are atomic elements which can be combined using a simple syntax, named
Math Of Task. An example of a simple controller described using the Math Of Task is the
following one:

(WaistTRWrist +
Waist TLWrist

)
/

TPosture

<<
(
C Joint

Limits
+CJoint Velocity

Limits

)
. (4.1)

Two hard priorities (slash “/” operator) are specified: the first one is constituted by two tasks
(in relative soft priority, plus “+” operator) which control the arms end-effectors w.r.t. the
Waist frame, and the second one is a Joint Postural task. All priority levels are subject to
Joint Limits and Joint Velocity Limits constraints (“<<” operator).

The control problem (4.1) is then solved in two steps: first, a solver front-end computes
matrices and vectors that describe the QP problems for all priority levels, according to one
of the prioritized QP (i.e. constrained) formulations introduced in Chapter 2.3, as e.g. the
following optimality constraint-based approach:

min
xxxi

∥Ai xxxi −bi∥2 + ε∥xxxi∥2

s.t. bl ≤ Dxxxi ≤ bu

ul ≤ xxxi ≤ uu

Ai−1xxx∗i−1 = Ai−1xxxi
...

A0 xxx∗0 = A0 xxxi,

(4.2)

4.4 Programmatic interface 60

●
●
●

● Reach actions
● Pose reference topics
● SetBaseLink services
● SetControlMode services
● Rviz interactive markers
● TF publisher
● ...

● setPoseReference()
● setBaseLink()
● setControlMode()
● update():

○ Trajectory interpolation
○ Velocity/acceleration limits
○ Logging

● update(): realize references
● setBaseLink()
● setControlMode()
● ...

●
●

●
●

URDFURDF
SRDF

Figure 4.1 Components of the Cartesian Interface and signal flow when the Cartesian Interface is
executed inside a ROS node. External processes exchange information with the CartesI/O framework
via ROS topics (a), thanks to the ROS API Generator component. It gets the current solver state
through the ModelInterface object (b), in order to broadcast it to the ROS environment. It also forwards
the received commands to the Cartesian Interface base class (c), where trajectory interpolation and
filtering take place. The Cartesian Interface implementation component gets these pre-processed
signals in order to track them (d). This results in an updated model state (e), which is then sent to the
robot actuators through the RobotInterface object (f, g).

where xxxi represents the vector of decision variables (e.g. joint velocities for IK problems, or
joint torques for dynamic formulations) at the i-th priority level.

Then, a solver back-end1 actually computes the corresponding solutions. Notice that the
Math Of Task formulation, as well as the chosen solver, are completely decoupled from the
type of controller (velocity or acceleration-level IK, torque control, . . .) which depends only
on the specific tasks and constraints implementations.

4.4 Programmatic interface

A modeling language eases the job of formulating and solving a complex optimization
problem; yet, the need to write C++ code that is customized for the specific robotic platform
and task to be solved remains. This should be avoided, both with a view to promote code reuse,
and also considering that, for complex platforms and according to the author’s experience,
writing a hierarchy of tasks/constraints that makes the robot show the desired behavior can

1At the present moment, back-ends are available for the qpOASES (Ferreau et al., 2014a) and OSQP (Stellato
et al., 2017) solvers.

4.4 Programmatic interface 61

be “an art”. Therefore, it should be left to “experts in the field”, while users should simply
customize the problem to better fit their needs. Furthermore, this code would be of little use
without an I/O infrastructure that allows a control module to communicate with the external
world. Again, the developer should be relieved from writing its own from scratch. With this
motivation, this work contributes with an interface layer that:

• provides a uniform way to programmatically interact with a Cartesian controller;

• automatically generates a complete ROS API for sending references to the controller;

• allows to use the ROS-based API also in the case that the solver is running inside a
real-time thread.

We call the base class that specifies such an interface CartesianInterface. It defines
simple methods that can be used to change the behavior of all defined tasks, as for instance:

• a setPoseReference() method sets the Cartesian set-point corresponding to a task, given
its controlled link name;

• the corresponding setWayPoints() method is used to specify a point-to-point motion
passing through custom waypoints.

• A setBaseLink() method can be used to change online the base-link of a task.

• A setControlMode() method is used for selecting whether a specific task should be
position-controlled, velocity-controlled, or disabled at all. Tasks that are running in
velocity mode will discard any position reference, while tasks that are disabled will
disappear completely from the Cartesian control problem.

• An update() method is used to evaluate all point-to-point trajectories given the cur-
rent time, and to enforce velocity/acceleration limits by means of the Reflexxes li-
brary (Kröger, 2011). This method is overridden by the specific subclasses in order to
implement their own control loop.

The developer willing to implement its own Cartesian controller can override all these
methods in order to take appropriate actions whenever a reference, a control mode or a
base-link has changed.

To store the state of the robot, and to perform kinematic/dynamic computation as well, we
make use of the XBot::ModelInterface class from the XBotCore framework (see Chapter 3.5),
which acts as a wrapper for rigid body dynamics libraries. Specific implementations of itcan
be chosen at runtime, using a dynamic loading mechanism.

4.5 ROS interface 62

4.5 ROS interface

Once that a Cartesian controller has been implemented, a communication layer towards
external modules is needed, which is our middleware interface. This is implemented in the
form of a C++ class called ROS API Generator; for each of the defined tasks, it provides the
following functionalities:

• a TF publisher for the model state;

• point-to-point motions with custom waypoints through a custom ROS action;

• commanding continuous pose and velocity references by publishing to ROS topics;

• run-time activation/deactivation of tasks, as well as change of control mode and base-
link by calling custom ROS services;

• Rviz interactive markers manager (Gossow et al., 2011) that allows for intuitive,
GUI-based reference generation;

• joystick-based reference generation;

• joint sliders, which permit to work at joint space level.

Furthermore, a ROS node that acts as a Cartesian Server is provided as well. It loads
a user-specified implementation of the CartesianInterface class using a dynamic loading
mechanism, and initializes the ROS API Generator. Finally, a ROS service is provided to
dynamically change the controller that is under execution during runtime, while guaranteeing
consistency of the model state. The resulting architecture is shown in Figure 4.1: note that,
in order to send actual references to the robot, the XBot::RobotInterface class from the
XBotCore framework is employed, which serves as the robot abstraction layer.

As the final step towards a complete Cartesian control framework as described in Sec-
tion 4.2, this work provides a generic implementation of the CartesianInterface that relies
on OpenSoT as the modeling language, and on its supported solvers for carrying out the
actual optimization procedure. Such a module allows the user to formulate a hierarchical,

whole-body inverse kinematics problem at the velocity level (as described in Section 4.3);
it is written so as to be completely configurable, meaning that the stack of tasks can be
specified either on a YAML file or via the ROS parameter server. In this way, starting from
a standard description of the robot in terms of its URDF/SRDF, the user can directly run a
ROS Cartesian Server to perform rather complex whole-body control tasks with no code

4.6 Real-time integration 63

compilation involved; moreover, the auto-generated ROS API provides a convenient way to
interact with such a controller from all processes that compose a distributed control system.

4.6 Real-time integration

Whenever a Cartesian controller is based on continuous feedback from the robot, its precise
and jitter-free execution at the specified control frequency becomes critical; indeed, delays
contribute to destabilize feedback loops, and should therefore be avoided. Typical examples
are torque-based controllers (e.g. Cartesian impedance control); however, it is worth noticing
that position-based controllers can involve feedback, as in the case of admittance controllers,
stabilizers for legged robots (e.g. (Zhou et al., 2016)), and tele-manipulation with force
feedback.

Such characteristics can be achieved by calling the CartesianInterface update() method
from within a real-time (RT) thread that runs inside a suitable real-time operating system

(RTOS); in addition, the communication between this thread and the robot control PC needs
to be fast introducing minimum latency. As already noted in Chapter 3, real-time safeness of
all components of this architecture must be ensured, which broadly speaking means that all

non-deterministic operations should be avoided, most notably memory allocations and, e.g.,
network communication.

By careful code development and profiling, the satisfaction of these constraints in ensured
both by the OpenSoT library (including its solver back-ends), and by the CartesianInterface

layer. However, it is not possible to run the ROS API Generator on the RT layer directly,
mainly because of ROS’s usage of networking primitives2. To address this issue, a dual-

thread architecture is needed, where a non-RT thread runs the ROS API component, while a
RT thread runs the CartesianInterface implementation. In practice, this is done by leveraging
on the XBotCore framework, that provides us both a RT “control thread” and a non-RT
“communication thread”, which can be customized via IOPlugins (see Section 3.4). The syn-
chronization between the two is designed to be non-blocking for the RT thread, by employing
a lock-free callback queue mechanism. This avoids priority inversion problems, and results
in a deterministic execution time for our controller, as we experimentally demonstrate in the
next sections.

2TCP/UDP usage from a real time thread is one of the main long-term goals of the ROS2 project.

4.7 Validation 64

4.7 Validation

To validate the presented CartesI/O framework and demonstrate its flexibility in different
robot platforms, we set up two manipulation tasks to be carried out by our legged robots
Centauro (Kashiri et al., 2019), a 39-DoF wheeled-legged quadruped with a humanoid torso,
and the 28-DoF humanoid COMAN+. In both cases, a box-picking task is selected, where
the box must be picked from a low height. In such a case, not only the arms but all the robot
chains must coordinate to accomplish the task, which highlights the advantage of using a
floating-base whole-body formulation. The outcome of the experiments is summarized in the
attached video, which can be found at https://youtu.be/eVmDBVL83WY.

Case study: stabilized box-picking task

As the first experiment, we present an application of the CartesI/O framework to a scenario
where the humanoid COMAN+ has to pick a 3 kg box and pass it to a human. The task is
defined such that the robot must reject external disturbances without falling, and it must also
show compliance in the reaction in order not to hurt people around it. To achieve compliant
rejection of external forces, the work of (Zhou et al., 2016) was integrated in the designed
controller where a compliant admittance-base stabilizer is introduced, which essentially
computes a modified CoM reference from a reference on the center of pressure (CoP) (which
was kept fixed during the experiment) and from force-torque measurements at the feet as
well. Since this experiment involves a feedback controller, the Cartesian solver plus the
stabilizer were executed from within the XBotCore RT control thread as explained in Section
3.3. To execute the motions, a ROS SMACH3-based state machine written in Python is run
from a different low-priority process that sends target poses to the end-effectors via our
auto-generated ROS API as follows:

• the box is grasped and brought to the chest level by sending suitable references to the
hands w.r.t. the world frame;

• the box is then passed to the human operator; in order to do so, the base link for the
hands tasks is dynamically changed from the world frame to the torso frame; it is
therefore enough to command it to rotate about the z-axis of a specified angle.

During the whole demo, the compliant stabilizer is continuously adjusting the CoM reference
to track the desired CoP.

3http://wiki.ros.org/smach

https://youtu.be/eVmDBVL83WY
http://wiki.ros.org/smach

4.7 Validation 65

0 10 20 30 40 50 60

Time [s]

0

0.5

1

1.5

2

2.5

P
e

ri
o

d
 [

m
s
]

RT thread period

Controller execution time

RT thread period (filtered)

Figure 4.2 Timing statistics for the box picking experiment with COMAN+. The thin blue line
represents the XBotCore RT thread period. The cartesian controller computation time (including the
stabilizer) is depicted in red.

Figure 4.3 Snapshots from a box-picking task with RT stabilization using humanoid COMAN+.

Time statistics regarding the experiment are shown in Figure 4.2; it can be noticed that
the RT control thread does indeed meet its deadline in a deterministic way, with a root-mean-
square deviation of Tjitter ≈ 90µs, over more than one minute of experiment. Snapshots from
the experiment are visible in Figure 4.3.

Case study: ground-level bimanual manipulation

For the second experiment, we choose to pick up a 6 kg brick from the ground using the
CENTAURO robot, and then pass it to a human operator. Since the operator is standing
on one side of the robot, the robot must perform a brief wheeled-locomotion phase in
order to turn ninety-degrees. This is done by switching at runtime between two different

4.8 Discussion 66

implementation of the Cartesian Interface: the first, which is used to pick up the box, is
the dynamically-configurable IK controller described in Section 4.4; the second one, called
Centauro Wheeled Motion, is an IK controller that is tailored to the mixed wheeled-legged
locomotion of the CENTAURO robot4. It is implemented by means of the OpenSoT library,
and it permits to:

• control the waist pose w.r.t. the world through appropriate steering/rolling of the
wheels;

• control the wheels position w.r.t. the waist frame in order to adjust the support polygon
shape;

• perform basic control of the end-effectors w.r.t. waist frame.

Since this demonstration does not require to meet hard deadlines, Cartesian controllers
are executed from the ROS Cartesian Server at a frequency of 100 Hz. Again the robot
behavior is scripted via a ROS SMACH state machine as follows:

• first, the postural for the front knees is changed in reference, in order to avoid later
collisions with the arms;

• then, the end-effectors are commanded to surround the box, then grasp it and lift it up;

• after this, the Centauro Wheeled Motion controller is loaded, and commanded to
perform a ninety-degrees rotation of the whole robot w.r.t. the world frame;

• finally, we command the arms to open in order to release the box.

The outcome of this experiment is summarized in Figure 4.4, and in the attached video as
well.

4.8 Discussion

This chapter has introduced CartesI/O, a framework for Cartesian control of floating/fixed-
base robots which is focused on online execution, possibly under real-time constraints. As
the main contribution, generic Cartesian solvers have been integrated inside an architecture
that permits to interact with them in a uniform way. This is achieved at two different levels:

• programmatically, through the provided CartesianInterface base class;
4This simple controller will be then extended in Chapter 5.

4.8 Discussion 67

Figure 4.4 Snapshots from the experiment with CENTAURO robot described in Section 4.7.

4.8 Discussion 68

• from the ROS middleware, via an auto-generated set of topics, services, actions and
tools that can be used to monitor the solver state, send references, and customize the
solver behavior.

The designed API aims at providing highly flexible task customization during runtime:
the user can activate/deactivate tasks, change their base-link, switch between position and
velocity control, and even dynamically load different controllers. Furthermore, the frame-
work integrates common tools, such as trajectory interpolation with way-points, as well as
enforcement of user-specified velocity/acceleration limits.

Moreover, we provide tools to connect a real-time Cartesian controller to our auto-
generated ROS API, in order to enable mixed RT/non-RT robot control.

Future work will address the development of solvers working at the dynamics level, as
well as the enhancement of the markers capabilities (e.g. Cartesian impedance markers).
Moreover, we aim to add previewing capabilities, and environment-aware trajectory planning,
e.g. via integration with MoveIt!.

Part II

Locomotion control

Chapter 5

Wheeled-legged motion control

This chapter deals with the kinematic control the highly redundant, hybrid wheeled-legged
robot Centauro. Given its full wheeled mobility as allowed by its four independently steerable
wheels, the choice of some local frame (in addition to the global world) is required in order to
express tasks that are naturally defined in a robot-centric fashion. In this chapter, it is shown
how trivially selecting such a frame as the robot trunk leads to sub-optimal results in terms
of motion capabilities; as main contribution, this work therefore proposes a comparative
analysis among three different choices of local frame, and demonstrate that in order to retain
all advantages from the whole-body control domain, the kinematic model of the robot must
be augmented with an additional virtual frame, which proves to be a useful choice of local
frame, enabling e.g. the automatic adaptation of the trunk posture under constraint activation.
Our implementation is based on the CartesI/O framework for the inverse kinematics and
ROS-based user interfaces. The resulting Cartesian controller is finally validated by means
of an extensive experimental session on the real hardware.

This chapter is based on the following article:
Laurenzi, A., Mingo Hoffman, E., Parigi Polverini, M., and Tsagarakis, N. G. (2020). An
Augmented Kinematic Model for the Cartesian Control of the Robot CENTAURO. IEEE

Robotics and Automation Letters. Accepted, to appear.

5.1 Introduction

At the time of writing, the robotic technology is mature enough for performing useful work in
a reliable way inside simple environments. On the other hand, operation inside unstructured
scenarios is essentially dominated by overly-simplified machines, such as small tracked
vehicles, which trade simplicity of their control (and reliability) for a lack of flexibility in

5.1 Introduction 71

the tasks that they are able to accomplish. The Centauro robot has been designed with the
aim to take a step forward in the direction of versatility, combining powerful manipulation
capabilities with a more reliable quadrupedal hybrid wheeled-legged locomotion concept.
Because of its peculiar kinematic structure, Centauro provides significant flexibility in terms
of motion control: thanks to the actively steerable wheels, in-place manipulation and stepping
motions can be combined with modulations of the support polygon, and driving motions
of the whole robot. Broadly speaking, a motion controller which completely exploits the
aforementioned kinematic capabilities should provide full control of any task of interest (e.g.
gaze, pose control of the trunk, end-effectors, wheels, . . .) both with respect to a global
world frame, and with respect to a local frame, depending on the nature of the specific task
at hand. Notice that up to this point, the notion of local frame is left rather unspecified, and
is just to be regarded as some frame which moves rigidly with the robot support polygon; it
will however be a key concept in this work.

Existing works on similar platforms (see e.g. Schwarz et al. (2016)) circumvent this
aspect by carefully crafting of all end-effectors desired poses w.r.t. the robot trunk frame
such that the robot performs a desired (local or global) task; then, such poses are tracked by
a chain-based inverse-kinematics solver. Despite the ability of such a strategy to generate
the required motions, it is the author’s belief that significant advantages can be obtained by
employing a floating-base formulation for the robot model, and by exploiting techniques
from the whole-body control domain. The most prominent advantage lies in the structural
enforcement of the required relationships between frames directly through the task matrices
(relative Jacobians), which makes the controller less reliant on feedback gains, more robust
in the presence of constraint, and permits to directly specify reference values for each task in
their natural coordinate frame.

When applying such concepts to the motion control problem of the Centauro robot, the
key question naturally arises of which frame should play the role of local frame. Intuition
suggests that such a frame should “travel with the robot”, and a natural choice would be to
select the trunk frame. However, it will be shown in this work how this choice falls short of
exploiting the versatility of our target platform. The key observation in the present work is
that, if a standard floating base model is employed, such a frame does not actually exist: in
order for the robot to fully exploit its kinematic potential in a whole-body manner, additional

degrees-of-freedom must be added to the robot kinematic model.
Beside the work of Schwarz et al. (2016), other works have previously addressed the

motion control problem of articulated wheeled robots. In the work of Kamedula et al. (2018),
which targets the same robotic platform of this work, the authors analyze a wheel-ground

5.2 Background on Cartesian control 72

contact model under toroidal wheel shape assumptions, and then present a controller for
driving motion and support polygon regulation; Bjelonic et al. (2019) integrates wheeled
contacts into the torque-based controller for the ANYmal robot, yielding effective compliant
adaptation to terrain roughness. However, both approaches are not concerned with ma-
nipulation capabilities. Finally, Geilinger et al. (2018) introduce a trajectory optimization
based approach to the design and control of wheeled-legged robots; even though impressive,
highly-dynamic motions are generated, the proposed strategy is too costly for online (e.g.
receding horizon) applications.

This work proposes a Cartesian control framework that permits the full control of the
Centauro robot in an online fashion as specified in terms of a list of motion requirements to
be defined in Section 5.3. These requirements specify desired relationships between frames,
which we manage to enforce by writing suitable relative Cartesian tasks inside a floating-base
formulation. As it will be illustrated in detail in the forthcoming sections, to achieve this, a
novel kinematic model of the robot must be introduced, allowing to define a local reference
frame which is completely decoupled from the waist frame. As main advantage, the additional
degrees of freedom can be exploited by the whole-body solver with the benefit of enabling
automatic adaptation of the trunk pose when a constraint on some chain is activated.

The rest of the chapter is organized as follows: Section 5.2 introduces the notation and
provides background knowledge about Cartesian control; then, Section 5.3 discusses the
details of this contribution. Afterwards, possible strategies to ensure that a realistic contact
condition between wheel and ground actually holds are discussed (Section 5.4). Finally,
Sections 5.5 and 5.6 conclude the work with an extensive experimental validation of the
presented method, followed by a discussion on possible future directions.

5.2 Background on Cartesian control

This section discusses the basic theory at the heart of prioritized, online Cartesian control
for highly redundant robots. The presented material extends the background knowledge
provided in Chapter 2 with state-of-art techniques to take into account priorities between

tasks, while ensuring that the computed solutions remain robust even under pathological
conditions such as kinematic singularities or incompatible task hierarchy specification.

5.2 Background on Cartesian control 73

5.2.1 Kinematic modeling

Being Centauro a legged robot, its configuration space is given not only by its actuated joint
positions, but also by the pose of one of its links, which is called the floating base. Albeit
such a link can be chosen arbitrarily, it is a natural choice to select the trunk as the floating
base. Consequently, let qqq ∈ Rn denote the full configuration vector for the robot. Such a
vector is obtained by joining the actuated joint configuration vector qqqa ∈ Rna with a minimal
representation1 of the floating base pose qqqfb ∈ R6, as follows:

qqq =

[
qqqfb

qqqa

]
. (5.1)

Then, let xxx denote a Cartesian task of interest (e.g. the pose of one of the robot links), which
is dependent on the robot configuration though some non-linear mapping fff : Rn → Rm:

xxx = fff (qqq); (5.2)

by differentiating (5.2), the task velocity can be computed as

ẋxx = JJJ(qqq)q̇qq (5.3)

where JJJ ∈ Rm×n is the task Jacobian matrix. Notice that, with an abuse of notation, we
identify the quantity ẋxx with the task velocity twist

ẋxx =

[
vvv

ωωω

]
, (5.4)

so that JJJ is the geometric Jacobian.

5.2.2 QP-based inverse kinematics

If constraints need to be taken into account while solving the online IK, different tools than
the Moore-Penrose pseudo-inverse are needed2. Recalling the least-squares, minimum norm
interpretation of (2.30), one can reformulate the differential kinematics inversion problem as

1For the sake of simplicity, a minimal representation of a rigid body orientation (e.g. Euler angles) is used.
A quaternion-based formulation can be employed whenever a singularity free representation is required.

2There has also been some study on pseudo-inverse based IK under constraints, such as in Flacco et al.
(2015).

5.2 Background on Cartesian control 74

a Quadratic Program (QP) as follows:

min
q̇qq

∥JJJ q̇qq− ẋxx∥2 +λ∥q̇qq∥2

subject to

qqqmin ≤ qqqk + q̇qq∆t ≤ qqqmax (joint limits)

− q̇qqmax ≤ q̇qq ≤ q̇qqmax (velocity limits)

cccmin ≤CCC q̇qq ≤ cccmax (other bounds)

. (5.5)

Such a problem can then be solved efficiently with state-of-the art off the shelf libraries such
as qpOASES (Ferreau et al., 2014a), OSQP (Stellato et al., 2017), and others, usually in
less than one millisecond depending on the robotic system complexity and target hardware.
Notice also how the unconstrained minimizer of (5.5) is given by q̇qq∗ =

(
JJJT JJJ+λ IIIn

)−1 JJJT ẋxx,
which coincides with the (damped) pseudo-inverse solution.

5.2.3 Hierarchical inverse kinematics

When dealing with complex system such as the Centauro robot, it is common that the number
of tasks that are involved in the Cartesian control problem grows quite large, needing to
accommodate balancing control, contacts, manipulation, gazing, and other functionalities.
Multiple tasks might interact in ways that are difficult to predict, whereas it is often desirable
for some tasks to have higher priority than others (e.g. balancing or contacts). This is
commonly dealt with through the definitions of weighted L2 norms in the objective functions
(soft priorities), so that whenever the solver can not achieve all tasks with zero error (e.g.
due to constraint activation, workspace limitations, or singularities) it will redistribute the
total task error in a way such that high priority tasks are close to being satisfied. However,
this comes with two drawbacks, namely (i) weights are now tunable parameters which must
be found via trial and error, and (ii) large values for the weights can cause poor numerical
conditioning of the resulting QP problem. A different approach is to define strict (or hard)
priorities between tasks, so that there is a mathematical guarantee that lower priority tasks will
not affect the higher priority task performance. This is usually achieved through cascaded

optimization, i.e. a series of optimization problems is carried out for each priority level, each
of which ensures (either implicitly or explicitly) that the optimal cost function value obtained
at higher priority levels is never increased. Before providing more details on hierarchical
algorithms, let us define JJJk to be the task Jacobian at the k-th priority level, ẋxxk the desired

5.2 Background on Cartesian control 75

task velocity at the k-th priority level, and q̇qq∗k be the joint velocity vector resulting from the
first k priority levels.

5.2.4 Projector-based unconstrained solution

At the first priority level, we need to solve the following unconstrained quadratic program:

min
q̇qq

∥JJJ1 q̇qq− ẋxx1∥2, (5.6)

whose least-squares solution is given by

q̇qq∗1 = JJJ†
1 ẋxx1; (5.7)

driven by the work of Siciliano and Slotine (1991), recall from (2.30) that the general solution
set is parametrized as

q̇qq1(zzz) = q̇qq∗1 + PPP1 zzz, (5.8)

where the projector PPP1 ∈ Rn is given by PPP1 = III − JJJ†
1 JJJ1, and zzz ∈ Rn is used to explore the

solution set. Then, at the second priority level, the corresponding program

min
q̇qq

∥JJJ2 q̇qq− ẋxx2∥2 (5.9)

can be written so as to enforce satisfaction of the k = 1 task, by substituting (5.8) inside the
cost function, yielding

min
zzz

∥JJJ2 PPP1 zzz+ JJJ2 q̇qq∗1 − ẋxx2∥2. (5.10)

Again, the solution set in terms of the zzz vector, and the least-squares solution, can be found
by applying (5.8), giving rise to the following expressions

q̇qq2(zzz) = q̇qq∗1 +PPP1(JJJ2 PPP1)
†(ẋxx2 − JJJ2 q̇qq∗1)+PPP2 zzz

PPP2 = PPP1 −PPP1(JJJ2 PPP1)
†(JJJ2 PPP1)

q̇qq∗2 = q̇qq2(0).

(5.11)

5.2 Background on Cartesian control 76

By exploiting appropriate pseudo-inverse properties (Baerlocher and Boulic, 1998; Maciejew-
ski and Klein, 1985)3, the following equivalent recursion is obtained:

zzz∗k = (JJJk PPPk−1)
† (ẋxxk − JJJk q̇qq∗k−1

)
q̇qq∗k = q̇qq∗k−1 + zzz∗k
PPPk = PPPk−1 − (JJJk PPPk−1)

† JJJk PPPk−1

PPP0 = IIIn

q̇qq0 = 0.

(5.12)

5.2.5 Nullspace-based unconstrained solution

The projector-based hierarchical IK algorithm of previous section requires to solve, via
pseudo-inversion, a number k of quadratic programs of the form

min
zzz

∥(JJJk PPPk−1) zzz−bbbk∥2,

where, for all k ≥ 1, the projected Jacobian matrix is structurally rank deficient. Indeed, the
optimization variable zzz dimension is equal to n for all priorities, whereas the optimization
problem at k must have solution lying inside the null-space of all higher priority tasks. This
property can be exploited in order to reduce the number of optimization variable along the
stack, as it is detailed hereafter. Starting again from the quadratic program of (5.6), let us
parametrize its solution set in a different way, as shown by the following equation:

q̇qq∗1 = JJJ†
1 ẋxx1

q̇qq1(zzz) = q̇qq∗1 + NNN1 zzz,
(5.13)

where the columns of NNN1 form an orthonormal basis of the null-space of JJJ1, denoted as
N(JJJ1), i.e.

NNN1 ∈ Rn×n1 where n1 = dim N(JJJ1) (5.14)

NNNT
1 NNN1 = IIIn1 (5.15)

JJJ1 NNN1 = 000, (5.16)

and zzz ∈ Rn1 is a coordinate vector of the corresponding null-space. Note also that the null-
space basis can be obtained by means of an SVD, as noted in Section 2.3.4. The quadratic

3In particular, the reader may notice that PPPk−1 (JJJk PPPk−1)
† = (JJJk PPPk−1)

† for any projector matrix PPPk−1.

5.2 Background on Cartesian control 77

program at k = 2 then becomes

min
zzz

∥JJJ2 NNN1 zzz+ JJJ2 q̇qq∗1 − ẋxx2∥2. (5.17)

Notice how the task reduced Jacobian is “slimmer” than the original Jacobian matrix, its
column number being equal to the dimension of the preceding task null-space n1, and it is
potentially full rank. Analogue reasoning as in the previous section allows to obtain the
following recursion:

zzz∗k = (JJJk NNNk−1)
† (ẋxxk − JJJk q̇qq∗k−1

)
q̇qq∗k = q̇qq∗k−1 +NNNk−1 zzz∗k
NNNk = N(JJJk NNNk−1), e.g. from SVD

NNN0 = IIIn

q̇qq0 = 0.

(5.18)

Although very similar to the projector-based formulation, the null-space based saves compu-
tations by shrinking the optimization vector dimension as the k index increases. With this
strategy, and even for very complex robots such as Centauro, the last priority level is typically
very small, and therefore cheap to solve. Computational complexity can be further reduced
using the Complete Orthogonal Decomposition (COD) in place of the SVD as shown in
Escande et al. (2014b), at the cost of inferior robustness when computing inverses.

5.2.6 Constrained solutions

In the constrained case, the quadratic program to be solved at the k-the priority level is in the
form

min
q̇qq

∥JJJk q̇qq− ẋxxk∥2 +λ∥q̇qq∥2

subject to

cccmin ≤CCC q̇qq ≤ cccmax (joint limits, other bounds, ...)

, (5.19)

with the additional constraint that the task functions of higher priority tasks cannot be altered.
This can be done in at least three ways: (i) equality constraints can be explicitly added
to the quadratic program (so called optimality constraints); (ii) either the projector-based
approach or the null-space based approach of the previous sections can be employed, such
that priorities are implicitly taken into account inside the cost function definition. If the first

5.2 Background on Cartesian control 78

strategy is chosen, the quadratic program (5.19) is changed to the one given below:

min
q̇qq

∥JJJk q̇qq− ẋxxk∥2 +λ∥q̇qq∥2

subject to

cccmin ≤CCC q̇qq ≤ cccmax

JJJ1 q̇qq = JJJ1 q̇qq∗1
...

JJJk−1 q̇qq = JJJk−1 q̇qq∗k−1

; (5.20)

this strategy relies on the QP solver to actually carry out the optimization inside the null-
space of all preceding tasks, with no pre-processing step (e.g. SVD) involved. Therefore,
good performance is obtained. The drawback is that the only form of regularization being
applied to (5.20) is the Tikhonov term in the objective function. However, when non-trivial
control problem are solved, it is quite common for optimality constraints to become linearly

dependent; more specifically, this happens whenever a higher priority task is rank-deficient
(e.g. 6-D Cartesian control of a kinematic chain with less than six dofs) or when multiple
tasks are in conflict. Under such circumstances, the QP solver might experience instabilities
and return unsafe joint velocities.

In order to mitigate this issue, priority enforcement must be carried out outside the
solver, by employing one of the hierarchical IK strategies of Sections 5.2.4 and 5.2.5. In
order to do so, one simply applies the recursive formulas of (5.12) and (5.18), replacing the
pseudo-inverse based optimal solution for the zzz parameter with the appropriate QP, i.e.

min
zzz

∥JJJk|k−1 zzz− ẋxxk|k−1∥2 +λ∥q̇qq∥2

subject to

cccmin ≤CCC q̇qq ≤ cccmax

, (5.21)

where the priority consistent Jacobian is either JJJk|k−1 = JJJk PPPk−1 or JJJk|k−1 = JJJk NNNk−1 depend-
ing on the chosen strategy, and ẋxxk|k−1 = ẋxxk−JJJk q̇qq∗k−1. In either cases, Tikhonov regularization
can be replaced by a selective SVD-based regularization such as (2.45) or (2.46).

5.3 Controller design 79

Table 5.1 Comparison between different proposed strategies for the motion control of the Centauro
robot (R = roll axis, P = pitch axis).

Local frame \ Motion M1 M2 M3 M4

Trunk frame ✓ ✗ ✓ ✓
Horizontal trunk frame ✓ R,P ✓ ✓
Virtual frame ✓ ✓ ✓ ✓

5.3 Controller design

As mentioned in the introductory section, a complete motion controller for a hybrid wheeled-
legged robot such as Centauro must provide the freedom to combine local tasks with global
tasks. This rather generic statement is now detailed into a list of motion requirements, which
different controller designs will then be compared against. According to such a list, the
Centauro robot should be able to:

M1: move as a whole w.r.t. a global world frame by appropriately steering and rolling the
wheels (driving motion);

M2: while driving, adjust the trunk pose w.r.t. a local frame (e.g. to lift one foot);

M3: while driving, reshape the support polygon by shifting the wheels position w.r.t. a local
frame (e.g. to pass through a narrow passage);

M4: perform a manipulation task w.r.t. to either a local or global world frame, while shifting
the support polygon using the wheels (e.g. to improve stability);

Over the course of this section, we incrementally build the proposed approach to the motion
controller design, that is presented in Section 5.3.3, starting from the naive strategy of
Section 5.3.1. Results of each iteration, as compared to the defined motion requirements,
are summarized in Table 5.1, and a thorough discussion on the advantages given by this
contribution is presented in Section 5.3.4.

For the sake of this presentation, it is assumed that the robot wheels can be steered and
rolled in a way such that their slippage (i.e. the relative velocity between the contact point
and the ground) is zero, whenever this is physically feasible. An algorithmic way to ensure
this behavior will be presented in Section 5.4.

5.3 Controller design 80

5.3.1 Trunk-based control

A first approach to the wheeled motion control of Centauro is to combine relative Cartesian
tasks between the four wheels and the trunk, with another one controlling the trunk pose w.r.t.
a global world frame.

Relative control between frames can be enforced at the Jacobian level as follows. First,
let the label “d” denote the distal frame, and “b” the base frame; then, the relative velocity
twist between the two is given by the following expression:vvvrel = vvvd −

(
vvvb +ωωωb × pppb

d

)
ωωω rel = ωωωd −ωωωb

, (5.22)

where the cross-product term in (5.22) takes into account the motion of the distal frame as
seen from the base frame. In matrix form, equation (5.22) reads

ẋxxrel =

[
III3×3 0003×3 −III3×3 SSS(pppb

d)

0003×3 III3×3 0003×3 −III3×3

][
ẋxxd

ẋxxb

]
, (5.23)

where SSS ∈ R3×3 is the skew-symmetric matrix such that SSS(aaa)bbb = aaa×bbb ∀aaa,bbb ∈ R3. Intro-
ducing the distal and base Jacobians w.r.t. the world frame JJJd and JJJb, such that ẋxxd = JJJd q̇qq

and ẋxxb = JJJb q̇qq, the relative Jacobian is given by

JJJrel =

[
III3×3 0003×3 −III3×3 SSS(pppb

d)

0003×3 III3×3 0003×3 −III3×3

][
JJJd

JJJb

]
. (5.24)

According to the math-of-tasks formalism defined in (Mingo Hoffman et al., 2017), a
possible stack-of-task implementing this solution is the following:

(
∑i

TrunkT [XYZ]
Wheeli +

World TTrunk

)
/

(
[-]THands +∑i

WorldT [RPY]
Anklei

)
/

(TPosture)


<<

(
C Pos.

Lims
+C Vel.

Lims

)
; (5.25)

in the previous equation, ATB denotes a Cartesian task of the frame B relative to the frame A.
The base frame for end-effectors is left unspecified, as it is dynamically changed from trunk

to world depending on the task. Finally, the plus operator “+” indicates aggregation between
tasks, whereas the slash “/” sets the left hand side task at a higher priority w.r.t. the right
hand side task, while the << symbol is used to specify constraints.

5.3 Controller design 81

Figure 5.1 Kinematic behavior of the Centauro robot while a rolling motion is commanded to it base.
The Cartesian pose of the wheels is controlled w.r.t. to the trunk frame (trunk-based control). The
obtained motion is not physically feasible.

With such a stack, and also assuming that some controller continuously steers and spins
each wheel so that it does not slip, the robot base can be conveniently moved around the
world frame by just setting its desired Cartesian velocity or pose. Moreover, the robot support
polygon can be reshaped by simply setting appropriate desired poses of the wheels w.r.t.
the base. However, this scheme cannot handle any roll or pitch motion commanded to the
base; indeed, when the base is commanded e.g. to roll as depicted in Figure 5.1, the imposed
relative task causes the wheels to follow such a motion, leading to wheel-ground contact
break. Under such circumstance, we obtain a physically unfeasible robot motion.

5.3.2 Horizontal frame-based control

In order to adapt the scheme of Section 5.3.1 so that it can handle rolling and pitching of the
base without breaking contact with the ground, there is the need to introduce a special frame
of reference, which we call horizontal trunk frame (HF), with the following three properties:

1. the horizontal trunk frame origin coincides with the trunk frame origin;

2. the projection on the horizontal plane of the trunk frame forward axis (x-axis) coincides
with the projection of the horizontal trunk frame forward axis;

3. the horizontal trunk frame vertical axis (z-axis) coincides with the world frame vertical
axis.

5.3 Controller design 82

This idea is inspired by (Barasuol et al., 2013), in which a similar frame was adopted in the
context of quadrupedal trotting. The reason why such a frame is a good candidate to act as
the robot local frame lies in the fact that its pose matches the trunk pose for what concerns
its position and heading, while being unaffected by rolling or pitching of the base. Thanks to
this property, using the horizontal trunk frame as base frame for the wheels tasks can solve
the contact-braking issue of the trunk-based approach; as it is shown in Figure 5.2, when
the base is commanded to follow the same rolling motion as in Section 5.3.1, the horizontal
frame does not move, and the wheel-ground contact is retained.

In order to implement the required Cartesian task w.r.t. the horizontal trunk frame, it is
enough to compute its Jacobian, and then apply (5.24). In order to do so, let us observe that
such a frame coincides with the trunk frame, except that it does not move about its roll and
pitch axes. Consequently, its jacobian JJJh is given by the following expression:

JJJh = diag(1,1,0,0,0,1)JJJtrunk. (5.26)

A possible stack of task leveraging the horizontal frame is given in the following equation:

(
∑i

HFT [XYZ]
Wheeli +

World T [XY,Yaw]
HF

)
/

(
HFT [Z,RP]

Trunk +[-] THands +∑i
WorldT [RPY]

Anklei

)
/

(TPosture)


<<

(
C Pos.

Lims
+C Vel.

Lims

)
. (5.27)

5.3.3 Virtual local frame

As observed in Section 5.3.2, the Cartesian controller based on the horizontal trunk frame
manages to improve the motion capabilities, by introducing a base frame for the wheels that
is partially decoupled from the trunk link. However, it is unable to achieve local control of
the trunk along the coupled directions, namely x, y, and yaw axes. Such commands result
in the whole robot rolling in the given direction w.r.t. the world frame, whereas our desired
outcome is a local adjustment of the trunk.

In order to achieve the complete decoupling between the local frame and the trunk frame,
this work proposes to inject additional degrees of freedom in the robot model, between the
robot trunk and a newly introduced virtual frame (VF) which, intuitively speaking, can be
interpreted as an additional world frame which travels with the robot. The configuration

5.3 Controller design 83

Figure 5.2 Kinematic behavior of the Centauro robot while a rolling motion is commanded to it base.
The Cartesian pose of the wheels is controlled w.r.t. to a horizontal frame that is attached to the trunk
(horizontal frame-based control).

vector for the Centauro robot is thus changed w.r.t. (5.1), as follows:

qqq =

qqqfb

qqqv

qqqa

 , (5.28)

with qqqv ∈ R6 being a minimal representation of the virtual frame pose w.r.t. the trunk frame.
A pictorial representation of the resulting kinematic model is given in Figure 5.3.

This virtual frame of reference can then be used as base frame for both the wheels and
the trunk tasks. Indeed, having introduced six additional degrees-of-freedom between the
trunk and the virtual frame (red chain in Figure 5.3), full local control of the robot waist can
be achieved, whereas the global motion of the robot is obtained by means of a Cartesian task
for the virtual frame w.r.t. the world, as described by the following stack of tasks:

(
∑i

VFT [XYZ]
Wheeli +

World TVF

)
/

(
VFTTrunk +

[-] THands +∑i
WorldT [RPY]

Anklei

)
/

(TPosture)


<<

(
C Pos.

Lims
+C Vel.

Lims

)
. (5.29)

Interestingly, virtual frames have been exploited by the robotic grasping community in
the context of object manipulation, as e.g. in (Dehio et al., 2018; Tahara et al., 2010; Wang
et al., 2015). Similarly to our case, such a description conveniently provides an additional
link which is not rigidly attached to any of the robot frames.

5.3 Controller design 84

Figure 5.3 Augmented kinematic model for a wheeled-legged quadruped. A virtual local frame (dark
red) is introduced in order to achieve full local control of the trunk frame. An additional virtual chain
(light red) is used to connect such a frame to the robot, so that full decoupling can be obtained.

5.4 Pure rolling condition 85

5.3.4 Discussion

As it has been shown in Section 5.3.3, full local control of the trunk can be achieved by
augmenting the kinematic model with an additional virtual chain. A controller based on
such formulation can fully exploit the platform flexibility, by adding the ability to shift the
trunk w.r.t. the support polygon about all axes. Furthermore, having defined a local frame
which is decoupled from the robot trunk enables taking full advantage of our whole-body
prioritized control framework. By relaxing the local trunk task VFTTrunk (i.e. putting it at
low priority, or removing some of its degrees of freedom from the IK problem), the solver
can adapt its posture to accommodate for more extreme desired poses of the wheels or of
the end-effectors; in other words, local trunk adjustments are managed automatically by the
solver. For instance, whenever a wheel (or a hand) is commanded to a local pose which
exceeds its own workspace, an adaptation of the trunk pose will be required. Because the
first two strategies employ the trunk itself as local frame, they are unable to provide such
an adaptation; on the other hand, the virtual-frame based approach has enough degrees of
freedom between the local frame and the trunk frame to provide the required trunk adaptation
and accomplish the task, as it will be exemplified in Section 5.5 (see Figure 5.8). Having
adopted a whole-body floating base formulation, we gained the ability to freely mix local
adjustments with global control, by setting the base frame of each task to be the virtual
frame or the global world, respectively. Notice how chain based formulations, as e.g. the IK
used in Schwarz et al. (2016), need to explicitly reason about desired poses for wheels and
end-effectors w.r.t. the trunk frame in order to achieve some task that is natively defined w.r.t.
the world frame; for instance, a pitching motion for the base can be obtained by changing
the length of front and rear legs. Such poses must be tracked accurately (high λ as in (??)),
and activation of a constraint on one chain is not taken into account on other chains, thus
hindering automatic adaptations as in Figure 5.8. On the contrary, the designed controller
allows the user to directly specify the desired task in its native coordinate system, while the
solver takes care of the correct relationships between all relevant frames.

5.4 Pure rolling condition

For the sake of simplicity, previous discussion has neglected the problem of guaranteeing
the pure rolling of each wheel on the ground surface. However, such matter is of paramount
importance, since the planned motion can be accurately transferred to the hardware only if the
relevant contact conditions are not violated. In the case of a wheeled robot, a zero-slippage

5.4 Pure rolling condition 86

condition needs to be ensured, which means that the contact point of each wheel must have
zero velocity w.r.t. the ground:

vvvC = JJJCq̇qq = 0, (5.30)

where JJJC ∈ R3×n is the contact Jacobian, i.e. the Jacobian of a point pppC which instanta-
neously moves with the wheel, but is always located at the contact point. Letting pppw denote
the center of the wheel, R the wheel radius, and nnnC the outward normal to the contact surface,
then such a point is given by the following equation:

pppC = pppw −RnnnC. (5.31)

5.4.1 Steering control

To gain further insight on how to effectively enforce the pure rolling constraint, we single
out the contribution of the wheel joints, as in the equation below:

vvvC = vvvw +Rq̇wiiia, (5.32)

where all quantities are conveniently expressed w.r.t. the local frame, such that they are
time-invariant for a constant motion in local coordinates. The meaning of the symbols in
(5.32) is as follows: q̇w is the angular velocity of the wheel about its spinning axis, vvvw

represents the absolute velocity of the wheel’s center, and iiia is the direction of the ankle
frame x-axis. Such a frame is defined as depicted in Figure 5.4: the x-axis points along
the wheel forward direction, the z-axis coincides with the steering joint axis, and the y-axis
completes the right-handed frame. Furthermore, vvvw is assumed to be constant.

With the aim to control the contact velocity to zero, we first compute its variation as
follows:

v̇vvC = Rq̈wiiia +Rq̇w (ωωωa × iiia)+��>
0

v̇vvw ; (5.33)

moreover, since the ankle frame angular velocity ωωωa is given by the steering joint rotation,
we set ωωωa = q̇s kkka, with q̇s denoting the steering joint velocity, and kkka being the direction of
the steering axis; this yields

v̇vvC = Rq̈wiiia.+Rq̇wq̇s jjja. (5.34)

It can be noticed that the rate of change of contact velocity is given by two terms: a forward
acceleration component in the direction iiia, which can be controlled to zero by appropriately
spinning the wheel joint, and a lateral component in the direction jjja which is also influenced
by the steering joint speed. In principle, the lateral contact velocity can be made to vanish by

5.4 Pure rolling condition 87

Wheel forward direction

Ankle link

Wheel spinning axis

Wheel steering axis

Wheel center
Contact point

Figure 5.4 Structure and reference frames for the Centauro wheel complex.

enforcing the following first order dynamics

jjja · [v̇vvC + kCvvvC] = 0, kC > 0, (5.35)

which can be done with a suitable choice of the steering joint velocity. Plugging (5.34)
in (5.35) and solving for q̇s gives rise to the steering control law given by the following
expression4:

q̇s = kC
jjja · vvvC

Rq̇w
, (5.36)

where the scalar gain kC controls the speed of convergence. Finally, note that the forward
component is continuously canceled by the contact task (5.30).

5.4.2 Dealing with joint limits

Under the assumption that the steering joint can spin continuously, (5.36) provides a feasible
solution to the wheel steering problem. However, this is not the case for our Centauro robot:
its steering motors are indeed characterized by hard stops, that prevent the cables connecting
the wheel to the robot from excessive twisting. Equation (5.36) is a local law, in the sense

4Equation (5.36) can be regularized around q̇w = 0 by replacing 1
q̇w

with a term such as q̇w
q̇2

w+ε
for some

ε > 0.

5.5 Experiments 88

that it has no knowledge about whether the commanded motion will eventually lead to a
constraint violation. For this reason, the presence of joint limits demands a different approach
to be followed.

More specifically, let us note that in order for vvvC to be zero, a necessary condition is
that velocity of the wheel center be parallel to the wheel forward direction, so that the two
terms in (5.32) can cancel out. Clearly, such a condition admits two solutions, which can be
obtained by adding or subtracting 180 degrees. Steering angle candidates can be computed
by the following argument: we first consider the angle ϑ between vvvC expressed in the ankle
frame and the direction iiia; such an angle represents a steering error and, as such, can be
added to the current steering angle in order to obtain the correct ones:q(1)s = qs +ϑ

q(2)s = wrap[−π,π]

(
q(1)s +π

) , (5.37)

If the steering joint range spans more than 180 degrees, then at least one between q(1)s and
q(2)s will not violate the limits. Finally, in order to obtain an as smooth trajectory as possible
for the steering joint, whenever both solutions are valid, the one that is the closest to the
current value is eventually selected.

5.4.3 Integration into a stack of tasks

To enforce the pure rolling condition into a stack of tasks, two tasks are defined, TSteering

and TRolling, to separately handle steering (5.37) and slippage control (5.30). Such tasks
must be integrated into the Cartesian control problems (5.25), (5.27), and (5.29) by placing
them at the appropriate priority level. To this aim, we observe that the rolling task must have
lower priority than the wheel position task VFT [XYZ]

Wheel , so that the wheel can move despite the
steering angle not being numerically equal to its optimal value; hence, one possibility is to
place it at the second priority level. Conversely, steering tasks should be placed at highest
priority, so that the steering angle is not affected by the ankle orientation task WorldT [RPY]

Ankle .

5.5 Experiments

The proposed control algorithm was implemented inside the CartesI/O framework (Lau-
renzi et al., 2019c), that is a ROS-based library for online Cartesian control with real-time
(RT) support. Under the hood of CartesI/O, the OpenSoT library (Mingo Hoffman et al.,

5.5 Experiments 89

2017) implements the math of tasks in the C++ language through operator overloading;
the corresponding stack-of-tasks is then setup and solved by OpenSoT in a RT-safe way,
leveraging on off-the-shelf QP solvers. More specifically, a nullspace-based constrained IK
scheme has been selected for this implementation, since it provides a good balance between
computational requirements and stability of the solution. The Centauro robot is powered
by the XBotCore middleware (Muratore et al., 2017b), which allows for mixed RT (through
the development of real-time plugins) and non-RT control (via ROS integration). Because
the whole framework is parametrized in terms of a standard URDF-based description of the
robot, implementation of the virtual-frame concept only required to provide an augmented
URDF model with appropriate additional joints and links.

To validate the proposed control scheme against the given motion requirements (M1)−
(M4), and most notably in terms of transferability to the hardware, an extensive set of experi-
ments has been designed and performed. The stack of tasks employed for the experimental
sessions is based on (5.29), adding further tasks for steering and slippage control, as discussed
in Section 5.4.3. Solving the cascaded QPs of (5.21), plus the computation of nullspace
bases, required on average t̄cpu = 3.4 ms, with a standard deviation of σcpu = 0.17 ms.
The reader is encouraged to check out the accompanying video, which is also available at
https://youtu.be/uIaAGrhMbuY.

A first experiment consists of a single run where the robot performs a driving motion
(M1) while simultaneously adjusting the support polygon (see Figure 5.5) from a starting
squared shape, to a narrower configuration, and then to a wider one (M2). Afterwards, local

Figure 5.5 Support polygon shape modulation while performing a driving motion with forward speed
of v = 0.05 ms−1.

adjustments while driving (Figure 5.6) are validated with a sequence of lateral, sagittal, and
rotation adjustments (M3). Finally, the robot stops to perform a simulated manipulation task

https://youtu.be/uIaAGrhMbuY

5.5 Experiments 90

Figure 5.6 Trunk motion w.r.t. the virtual frame in right, forward, and clockwise direction.

in world coordinates (Figure 5.7), which consists in reaching a high position; the trunk task
VFTTrunk is deactivated in order for the trunk to adapt to the end-effectors desired pose. Then,
while the end-effectors are kept fixed w.r.t. the global world frame, the support polygon is
adjusted by sending suitable references to the virtual frame (M4).

Figure 5.7 Manipulation in world frame coordinates with simultaneous support polygon (SP) ad-
justment. First, the SP is shifted backwards; then, it is rotated clockwise; finally, it is rotated
counterclockwise. The trunk posture is automatically adapted by the solver.

In order to validate the ability of the proposed controller to deal with constraint activation
in a whole-body fashion, we command the rear-right wheel to lift from the ground (Figure 5.8),
after having adjusted the trunk position in order to avoid the robot to fall. The commanded
position cannot be reached by only moving the rear-right leg, due to the hip pitch joint
reaching its hard stop. In such a scenario, where chain-based solvers would be bound to
fail, our strategy is able to automatically adapt the trunk position (which is set to have lower
priority than the wheel) in order to complete the task. A quantitative assessment is given
in Figure 5.9, where the virtual frame based scheme achieves close to zero wheel position
error at the apex of the commanded trajectory (mid point of the red shaded area). Notice how,
because end-effectors are being controlled w.r.t. the local frame, the arms compensate for

5.6 Discussion 91

the trunk motion in order to keep the end-effectors in position. This further highlights the
benefits of a whole-body approach.

Figure 5.8 Trunk adaptation in the presence of constraints. Gray shaded areas highlight the upward
motion of the trunk, whereas end-effectors keep their position as emphasized by the green shaded
areas.

The effectiveness of the proposed steering strategy is assessed in Figure 5.10, which
shows a time history of each wheel slippage velocity, i.e. the relative velocity between each
wheel contact point the the ground. It can be noticed how such values are moderately close
to zero, resulting in a good fulfillment of the desired contact condition. Short spikes in the
slippage profile indicate fast steering maneuvers to align each wheel to the correct direction
given by (5.37). Longer spikes are instead due to the switching between the two solutions
in (5.37), that is necessary due to hard stops in the steering joints. Nevertheless, our simple
steering strategy is sufficient for a smooth transition from a kinematic model to the real
hardware, as it can be assessed in the accompanying video.

5.6 Discussion

The present chapter has introduced a novel methodology for the Cartesian control of hybrid
wheeled-legged robots. A comparison with other approaches has been discussed, leading
to two conclusions; first, a local frame of reference for the robot is to be selected with care;
indeed, the trivial solution does not permit to achieve the complete control of the platform,
as given by the set of motion requirements (M1)− (M4). Second, only by adding further
virtual degrees of freedom to the kinematic model it is possible to achieve a fully decoupled

5.6 Discussion 92

Figure 5.9 Wheel lifting under the proposed stack of tasks (red area), compared to the same task
when the local frame coincides with the trunk frame (blue area).

Figure 5.10 Time history of the absolute velocity of the wheels contact points w.r.t. the ground,
computed along the commanded motion sequence.

5.6 Discussion 93

control of the trunk frame w.r.t. to the local frame. Such a choice allows to mix tasks that are
naturally defined in local coordinated with tasks that are defined in global coordinates, while
taking full advantage of a whole-body floating base formulation. Finally, steering strategies
have been proposed and analyzed, and a thorough experimental validation has been carried
out.

Future work will address the application of the proposed method to a trunk stabilizer with
terrain adaptation capabilities, which will enable the Centauro robot to locomote on non-flat
surfaces. Moreover, the application of the proposed augmented model to dynamics-based
controllers will also be subject of future research.

Chapter 6

Legged locomotion

The present chapter addresses the generation of a walking gait with automatic footstep
placement for a quadrupedal robot, within a Linear Model Predictive Control framework.
Existing work has shown how this is only possible within a non-convex programming
framework, finding a solution of which is well-known to be very hard. The chapter contributes
with a way to formulate the joint optimization problem as an approximate QP with linear
constraints, whose global optimum can be quickly found with off-the-shelf solvers. More
specifically, this is done by introducing auxiliary states and control inputs, each of which
is subject to linear constraints that are inspired from the literature on bipedal locomotion.
Finally, the introduced method is validated on the real Centauro robot.

This chapter is based on the following article:
Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2018b). Quadrupedal walking mo-
tion and footstep placement through linear model predictive control. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2267–2273. IEEE.

6.1 Introduction

Mobile robots are nowadays expected to have an increasingly important role in many domains,
from industrial automation and logistics to maintenance and search and rescue applications
leaving the flat factory floors to enter less structured and controlled environment. To operate
efficiently in these more challenging environments they should be able to safely move around
regardless of how cluttered, or inaccurately known is the terrain. Walking robots have
the potential to perform locomotion through arbitrarily complex terrains, at the cost of an
increased mechanical and control complexity related to stability and body coordination
issues.

6.1 Introduction 95

This chapter addresses the problem of generating an omni-directional walking gait for
a quadrupedal robot, i.e. a coordinated motion of the robot legs satisfying the property
that at least three legs must always be on the ground. When tackling such a problem, it
is important to notice that legged robots are floating base systems, whose global motion
can only be obtained by means of contact forces exchanged with the environment. In turn,
contact forces must fulfill physical constraints, and consequently there exist motions that
cannot be executed by a floating base robot, as also discussed in Chapter 2.4.4. Simplified
models have been proposed in the literature to describe the set of feasible motions in a way
that is more suitable for the development of simple and fast planning algorithms, such as the
linear inverted pendulum model (LIPM) (Kajita et al., 2003); this simple model forms the
basis of many popular walking controllers.

The generation of a walking gait can be decomposed as the series of a footstep planning
stage followed by a center-of-mass (CoM) motion planning. This strategy is common among
the earliest approaches to legged locomotion, but it was shown (Diedam et al., 2008) that,
for the case of bipeds, it is also possible to jointly generate both footsteps and CoM motion
inside a QP framework, gaining improved robustness and disturbance rejection capabilities
(Herdt et al., 2010a). On the contrary, in the case of quadrupedal walking, joint optimization
over both CoM motion and footsteps gives rise to non-linear constraints, which make the
optimization problem more difficult and less efficient to solve.

The main contribution of this work is a decomposition of such a joint optimization
problem that does not introduce non-linear constraints, by introducing auxiliary states and

control inputs that are subject to linear constraints. In this way, we formulate an approximate

optimization problem that can be exactly solved. The proposed approach is validated on our
Centauro robot, both in simulation and on real hardware.

The remainder of this chapter is organized as follows:

• Section 6.2 presents a selection of relevant works in the field;

• Section 6.3 introduces the mathematical formulation that the presented algorithm is
based on, starting from existing models, and then presenting the decomposition that is
the core contribution of the present work;

• Section 6.4 contains the details of the proposed implementation;

• Section 6.5 shows real hardware results;

• in Section 6.6 we summarize the outcome of this work and present possible future
directions.

6.2 Related works 96

6.2 Related works

Legged locomotion is a rather mature field of research; the solutions that have been proposed
can be roughly split into three categories: algorithms that are based on optimal control, hybrid

zero dynamics (HZD) formulations (Sreenath et al., 2011), and algorithms that are based on
bio-inspired oscillators (Wu et al., 2009). Optimal control methods have demonstrated partic-
ularly impressive results, allowing for automatic gait discovery in complex environments
(Neunert et al., 2017; Winkler et al., 2018), albeit with such computational requirements
that often make them unsuitable for online applications. The rest of this section focuses on
relevant works that employ a similar strategy as ours, which is based on optimal control, and
with sufficiently low computational burden to allow for online operation.

Such a family of walking gait generators is mainly due to the work of Kajita et al. (2003)
for bipeds, who tackled the CoM motion generation problem within feasibility constraints

as a servo tracking problem, where the system dynamics is given as an integrator, and the
tracked output is the Zero Moment Point (ZMP), that corresponds to the center of pressure of
the ground reaction forces. Inspired by the observation that humans start moving their CoM
before taking a step, Kajita formulated an LQR problem with preview of the future ZMP
reference. It was later recognized (Wieber, 2006c) that to construct a hand-tuned preview on
the ZMP trajectory is actually not needed, provided that the ZMP is constrained inside future
support polygons, which is possible inside a linear MPC (LMPC) framework. As final steps
in the development of LMPC-based bipedal walking, in the works of Diedam et al. (2008);
Herdt et al. (2010a), the footsteps, CoM motion, and waist orientation (Herdt et al., 2010b)
were jointly optimized in a single QP problem. Stability analyses of the LMPC with ZMP

constraints can be found in the articles of Wieber (2006c, 2008), showing that, for the limited
control horizon case, stability crucially depends on the control horizon time span, with the
requirement that some CoM derivative is minimized inside the cost function. The concept of
capture point was also introduced to identify states that can be stabilized without taking a
step (Koolen et al., 2012). Lanari et al. (2014); Scianca et al. (2016) contributed to this topic
as well, by relating the capture point idea to a boundedness constraint, which describes the
initial CoM state and footsteps that permit to generate a bounded CoM motion. Moreover,
approaches to bipedal walking have been proposed that control the ZMP according to a
feedback law on the capture point (Englsberger et al., 2011).

Concerning quadrupedal walking, McGhee and Frank (1968) studied the stability proper-
ties of the different walking gait patterns, i.e. the order according to which the four legs are
lifted, while Ma et al. (2005) suggested a simple way of selecting a specific pattern according

6.3 Simplified models 97

to the desired speed. In the works of Buchli et al. (2009); Pongas et al. (2007), heuristic
approaches that rely on geometric reasoning to generate static walking are proposed. An
optimal control approach with pre-set footholds can be found in (Winkler et al., 2015), while
in (Winkler et al., 2017) footsteps are optimized as well inside a non-linear programming

framework, whose solution is, in general, extremely hard to find.
This work addresses this specific point by reformulating the joint CoM-footsteps opti-

mization problem as an approximate QP whose solution can be readily found, as explained
in the next section.

6.3 Simplified models

As it was mentioned in the introductory section, and in Chapter 1 as well, the main dif-
ficulty that the walking gait designer must face derives from the fact that legged robots
are underactuated: global motion cannot be directly achieved by their actuated degrees of
freedom; instead, it must be generated by contact forces exchanged with the environment.
This intuition is beautifully summarized by the following centroidal dynamics equation 1

mp̈ppcom =
N

∑
i=1

fff i +mggg

L̇LL =
N

∑
i=1

(pppi − pppcom)× fff i,

(6.1)

where m is the system mass, pppcom ∈R3 is the robot CoM position, fff i ∈R3 is the i-th contact
force, N is the number of contacts, ggg ∈ R3 is the gravity acceleration, LLL ∈ R3 is the robot
angular momentum, and pppi ∈R3 is the i-th contact point. It is remarkably important to notice
that these contact forces are constrained, and consequently there exist CoM trajectories that
cannot be executed by a legged robot. The most important constraint is commonly recognized
(Wieber, 2008) as the unilateral constraint, which takes the following form:

nnnT
i fff i ≥ 0 ∀i ∈ {1, . . . ,N} (6.2)

where nnni ∈ R3 is the outward normal of the i-th contact surface. Broadly speaking, this
means that the robot can only push on the ground. Assuming coplanar contacts (and, for
simplicity, nnn = [001]T) and rearranging equations (6.1) and (6.2) as in (Kajita et al., 2014),

1Notice that we neglect any torque exchanged with the ground, which is equivalent to assuming point
contacts.

6.4 LMPC-based gait generation 98

the equivalent centroidal momentum constraint can be obtained as follows:

zzz ∈ ConvHull{pppi}N
i=1

zzz =
[

pppcom − h
g+ ḧ

p̈ppcom +
nnn× L̇LL

mg+mḧ

]
x,y

,
(6.3)

where zzz∈R2 is commonly referred to as the Zero Moment Point (ZMP). Neglecting variations
in the robot CoM height h and angular momentum, (6.3) gives rise to the popular cart-table

model (Kajita et al., 2003):
zzz ∈ ConvHull{pppi}N

i=1

zzz =
[

pppcom − p̈ppcom
ω2

]
x,y

,
(6.4)

with ω =
√

g
h representing a parameter that characterizes the influence of the CoM accelera-

tion on the ZMP position. Notice how, according to such a simplified model, the feasibility
of a CoM trajectory only depends on whether a linear combination of the CoM derivatives
belongs to some convex set.

6.4 LMPC-based gait generation

6.4.1 Classical approach

If we can assume the set of contact points to be given in advance (e.g. by some footstep
planning stage), then we can follow Wieber (2006c); Winkler et al. (2015) and cast the
walking gait generation problem into a linear MPC problem, as it is briefly summarized
hereafter.

We first specify our process dynamics as a triple integrator of the CoM jerk, as follows:

ẋxx = Axxx+Buuu, (6.5)

where xxx ∈ R6 is the state vector defined by the aggregation of the planar CoM position,
velocity and acceleration, and uuu ∈ R2 is the control input (which corresponds to the CoM

6.4 LMPC-based gait generation 99

jerk). Consequently, A ∈ R6×6 and B ∈ R6×2 take the following form:

A =

02×2 I2×2 02×2

02×2 02×2 I2×2

02×2 02×2 02×2



B =

02×2

02×2

I2×2

 .

(6.6)

The ZMP can be defined as an output zzz ∈ R2 of (6.5):

zzz =Czmp xxx; (6.7)

the definition of Czmp follows from (6.4):

Czmp =
[
I2×2 02×2 − 1

ω
I2×2

]
. (6.8)

Finally, piece-wise constant control input over some control horizon is assumed

uuu(t) = uuuk ∀t ∈ [tk, tk+1] , k ∈ {0, . . . ,M−1}, (6.9)

where tk is the k-th discretization knot, and M denotes the control horizon length (in this
work, a fixed discretization step ∆t has been used). From standard theory of linear systems
we know that the ZMP (as well as any other output) at time tk depends linearly on both the
initial state xxx0 = xxx(t0) and the sequence of controls UUU ∈ R2M, as specified below:

zzzk = C̃k
zmp xxx0 + D̃k

zmpUUU (6.10)

with UUU =
[
uuuT

0 . . . uuuT
M−1

]T
; the matrices C̃k

zmp and D̃k
zmp are obtained from integration of

(6.5) over the knots (6.9).
The ZMP can then be constrained to the convex hull of the contact points over the whole

control horizon. Indeed, the feasibility constraint (6.4) can be written as a linear inequality
of the following form [

(ppp j(i),k − pppi,k)× (zzzk − pppi,k)
]

z
≤ 0 (6.11)

6.4 LMPC-based gait generation 100

for each time step k over the control horizon, and for each support polygon side (i, j(i)),
where j(i) denotes the subsequent of the i-th foot, according to a clockwise ordering2. The
resulting optimization problem takes the form

min
UUU

1
2

M

∑
k=1

xxxT
k Qk xxxk +uuuT

k Rk uuuk

s.t. Azmp(PPP)UUU ≤ bbbzmp(PPP,xxx0),

(6.12)

where Azmp and bbbzmp account for (6.11) when evaluated over all support polygons sides and
over the control horizon as well. Such matrices depend on the current and future footsteps,
which are collected in the vector PPP ∈ R2·(1+MP)·4, with MP representing the number of
predicted footsteps.

Notice that, if the footsteps pppi are not optimized, then the constraint (6.11) is linear; on
the contrary, if footsteps need to be included inside the optimization process, non-linearities
arise in the form of quadratic constraints. Moreover, such a constraint becomes non-convex
(see the appendix for a simple proof), resulting in an NP-hard problem. Even though several
algorithms exist that allow to find a (local) minimizer of such a problem, it is the author’s
belief that finding a linearly constrained QP approximation of the full problem would be
beneficial for at least two reasons:

• QPs are a standard class of optimization problems that are well-known in the scientific
community; global minimizers can be quickly computed by means of off-the-shelf
solvers (e.g. qpOASES (Ferreau et al., 2014a)). General-purpose NLP solvers, on the
other hand, can be expected to be significantly slower.

• NLP solvers can only provide local minima of non-convex problems. It can be argued
that the risk of converging to a “bad” local minimum may ruin the planner performance.

The remainder of this section is devoted to the development of such a QP approximation, that
is the main contribution of the present work.

6.4.2 Proposed decomposition

As it was mentioned in the previous subsection, this chapter goal is to derive a QP approxi-
mation of problem (6.12) when optimizing for both ZMP and footsteps. More specifically,

2As it is customary in the literature, we assign integer labels to the four legs according to a clock-wise
ordering and starting from the front-left leg.

6.4 LMPC-based gait generation 101

the approximated feasible set should be a linear subset of the complete set (6.11), so that a
solution to the approximated QP will also be a feasible point for the original problem.

To this aim, it is observed that the nonlinearity in (6.11) originates from the coupling
between stance feet pairs. Indeed, also in the case of bipedal walking, Herdt et al. (2010a)
noticed how nonlinearities arise whenever more than one stance foot is considered. With
this in mind, this work proposes to split the set of the feet indices I = {1,2,3,4} into two
partitions of two indices each, IA and IB. Correspondingly, two auxiliary states xxxA ∈ R6 and
xxxB ∈ R6 are introduced, such that the full robot state xxx is given by a convex combination of
the two auxiliary states:

xxx = α xxxA +(1−α)xxxB (6.13)

for some parameter α ∈ (0 1), that we call distribution factor. In addition, auxiliary control
inputs uuuA ∈ R2 and uuuB ∈ R2 are also defined such that an analogous relation as (6.13) holds
for the same value of α:

uuu = α uuuA +(1−α)uuuB. (6.14)

Following these definitions, an auxiliary system whose can be defined with state x̃xx ∈ R12 and
input ũuu ∈ R4 are given by the concatenation of the two auxiliary states and inputs:

x̃xx =

[
xxxA

xxxB

]
, ũuu =

[
uuuA

uuuB

]
. (6.15)

Clearly, the auxiliary dynamics
˙̃xxx = Ã x̃xx+ B̃ ũuu (6.16)

is described by the following matrices:

Ã =

[
A 06×6

06×6 A

]
, B̃ =

[
B

B

]
. (6.17)

The robot state xxx can then be recovered as an output for system (6.16), as it is shown below:

xxx =Cstate x̃xx (6.18)

Cstate =
[
α I6×6 (1−α) I6×6

]
. (6.19)

Likewise, we can define outputs corresponding to the auxiliary ZMPs zzzA and zzzB by consider-
ing (6.4) for the auxiliary states xxxA and xxxB, respectively.

6.4 LMPC-based gait generation 102

A

B

Figure 6.1 Decomposed feasibility constraint as described in Section 6.4.3. Auxiliary ZMPs are
shown as colored circles for both system A (blue) and B (purple). The resulting global ZMP (green) is
inside the support polygon.

6.4.3 Feasibility constraint

To generate linear constraints, it can be noticed that the two auxiliary states, together with the
corresponding footsteps, define two equivalent bipeds. Drawing from (Herdt et al., 2010a),
biped-like feasibility constraints can be defined for both auxiliary systems, enforcing the two
auxiliary ZMPs to lie inside the corresponding biped supports. Finally, we notice that the
full quadruped support is given by the convex hull of the two equivalent bipeds supports,
according to the following expression:

zzz = α zzzA +(1−α)zzzB; (6.20)

consequently, as the global ZMP is given by a convex combination of the auxiliary ZMPs, it
will lie inside the full polygon. An illustration of this is given by Figure 6.1.

To obtain a numerically stable QP, equivalent bipeds feet size have been set to a small
(but not zero) δ ppp ∈ R2.

6.4.4 Auxiliary state initialization

It is worth noticing that, having introduced new auxiliary states in our dynamics, we do
not have an observable system anymore; broadly speaking, this means that the full state
(6.15) cannot be reconstructed from the measured output, which is assumed to be the robot

6.5 Implementation and experiments 103

state xxx defined by (6.18). As a consequence, it is impossible to compute (or estimate) in a
meaningful way the initial value of the auxiliary state x̃xx, which is needed at each control
time by the MPC algorithm. However, since auxiliary sub-states do not carry any physical
meaning, we are free to choose the corresponding value arbitrarily, as long as the following
equality holds true:

xxx0 =Cstate x̃xx0, (6.21)

i.e. the initial robot state matches the measured one. Finally, let us notice how the initial
auxiliary state appears linearly in both the cost function and the constraints of the LMPC
problem; hence, the solver can determine an optimal value for x̃xx0 by introducing it as decision
variable, and enforcing (6.21) as a constraint.

6.4.5 Parameters choice

To implement the proposed decomposition, we first need to choose a partitioning IA, IB. To
this aim, let us notice that the quality of velocity tracking along different directions will differ,
depending on the specific choice. More specifically, a front-back partitioning (IA = {1,2},
IB = {3,4}) will privilege forward walking, while a left-right partitioning (IA = {1,4},
IB = {2,3}) will favour lateral walking. This is explained as follows: in the first scenario,
the supports of the two systems have the possibility to overlap along the forward direction,
whereas they are always disjointed along the lateral direction. Consequently, the ZMP
trajectory can be continuous along the forward axis, while it is always discontinuous along
the vertical axis, causing oscillations that are well known in the literature. For a left-right
partitioning, the vice-versa happens instead.

Concerning the role of the distribution factor α , it intuitively controls how much of the
robot weight is supported by the auxiliary systems A and B, i.e. their relative load distribution.

Throughout the rest of this work, a front-back partitioning is employed, while the
distribution factor is fixed at α = 1

2 . A more detailed discussion on the role of the distribution
factor is left for future work.

6.5 Implementation and experiments

The proposed algorithm was implemented in C++ inside the OpenSoT framework (Hoffman
et al., 2017), that mainly targets hierarchical QP optimization problems with constraints,
decoupling the concepts of front-end, i.e. the interface that allows to formulate the opti-
mization problem, from the back-end, i.e. the tool that is actually used to solve it. More

6.5 Implementation and experiments 104

specifically, the front end allows to combine tasks and constraints in a natural way by over-
loading suitable operators. The back-end implementation that was used in this work was
powered by the qpOASES (Ferreau et al., 2014a) solver. The following tasks and constraints
were implemented:

• tracking of a CoM velocity reference vvvref:

Jvel(UUU , x̃xx0) =
M

∑
k=1

∥∥ṗppcom,k − vvvref
∥∥2 ; (6.22)

• a footstep regularization task, which tries to bias the feet positions to the center of the
respective workspaces p̄pp j, for each foot j belonging to the set of stance feet at time k,
denoted by Sk:

Jfootstep(UUU ,PPP, x̃xx0) =
M

∑
k=1

∑
j∈Sk

∥∥ppp j,k − pppcom,k − p̄pp j
∥∥2 ; (6.23)

• minimum CoM acceleration and jerk tasks, as follows:

Jacc(UUU , x̃xx0) =
M

∑
k=1

∥∥p̈ppcom,k
∥∥2

Jjerk(UUU , x̃xx0) =
M

∑
k=1

∥uuuk∥2 ;

(6.24)

• feasibility constraint (for the single auxiliary states), as described in Section 6.4.3;

• footspan constraint, whose aim is to ensure that the relative position of the feet lies
between some lower and upper bound:

∆pi, j
min ≤ pppi,k − ppp j(i),k ≤ ∆pi, j

max ∀i ∈ Sk; (6.25)

in (6.25) j(i)∈ Sk denotes the index of the leg adjacent to leg i, according to a clockwise
ordering.

• Initial state consistency constraint (6.21).

The final objective function was obtained as a weighted sum of the atomic tasks that were
listed above.

6.5 Implementation and experiments 105

Table 6.1 Parameters used for the experiment.

Parameter Value Parameter Value

M 20 wacc 1
MP 2 wvel, x 100
∆t 0.05 s wvel, y 1000
δ px,y 0.05 m wfootsteps 1000
∆p1,2

min, ∆p4,3
min [−0.3, 0.3] m ∆p2,3

min, ∆p1,4
min [0.6,−0.2] m

∆p1,2
max, ∆p4,3

max [0.3, 0.7] m ∆p2,3
max, ∆p1,4

max [1.2, 0.2] m
T 3.0 s β 0.8

In order to validate the proposed approach, we test it on our Centauro robot, which is
powered by our control framework XBotCore (Muratore et al., 2017c), allowing us to control
the robot under hard real-time (RT) constraints, while offering at the same time a complete
interface to non-RT (NRT) external processes. A piece-wise constant velocity reference
is commanded to the CoM, both in the forward and lateral direction. The gait pattern is
dynamically computed as a function of the velocity reference according to the strategy of Ma
et al. (2005), in order to maximize the static stability margin, using a fixed stride time T and
duty cycle β . We tune the parameters as in Table 6.1, trying to balance tracking performance
while avoiding excessive stretching of the legs. The resulting optimization problem has
nV = 108 decision variables and nC = 208 constraints, which leads to roughly 50 Hz average
execution frequency (see Fig. 6.3), which is more than three times faster when compared to
the results of Winkler et al. (2017).

However, it should be noted that the proposed implementation does not take advantage of
the sparsity pattern, as it does not exploit the fact that the hessian of the objective function
is actually constant and does not need to be recomputed and re-factorized at each iteration.
As a remark, notice that, by choosing β < 0.75, the proposed algorithm can also generate
trotting motions.

To transfer the planned motion to the robot, a simple inverse kinematics (IK) scheme
is adopted. Once again, we leverage on the OpenSoT framework to write a hierarchical IK
problem with the following priorities:

1. CoM task + Feet position task

2. Knee task + Waist orientation task + Postural task,

where the aim of the knee task is to avoid the collision of the robot knees. Moreover, joint
position and velocity limits are enforced as constraints. A low weight is assigned to the waist

6.5 Implementation and experiments 106

0 10 20 30 40

Time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
e

lo
c
it
y
 [

m
s

-1
]

CoM velocity (X), filtered

CoM velocity (Y), filtered

CoM velocity (X), raw

CoM velocity (Y), raw

CoM velocity reference (X)

CoM velocity reference (Y)

Figure 6.2 Planned CoM velocity profile (solid) against reference (dash). Data were processed
through zero-phase low-pass filtering with cutoff frequency fc = 0.2 Hz. Raw data are represented in
grey.

orientation task, so that natural rotations arise from the minimization of joint velocities given
by the postural task. From the software architecture point of view, the IK runs inside the RT
loop at 1 kHz frequency, while the motion planning runs on a NRT ROS node.

Figure 6.4 and 6.2 show the achievable tracking performance. It can be noticed that,
as discussed in Section 6.4.5, the forward velocity is tracked smoothly and precisely; on
the contrary, lateral velocity is tracked only on average, and with greater steady-state error.
Indeed, this behavior is inherited from the approach of (Herdt et al., 2010a), that the present
work aims to extend to the quadrupedal case. Finally, it can be visually checked from
Figure 6.5 that the proposed method does indeed generate a ZMP which is always inside the
support polygon, therefore resulting in a feasible motion.

The disturbance rejection capabilities of the proposed method were also tested, by
simulating an external impulsive force that is applied while the robot is walking. As it can be
seen in Figure 6.4 (grey lines), the CoM plan deviates in the same direction of the force, in
order to absorb the impact, while at the same time adapting the footsteps as well.

The outcome of our experiment is summarized in Figure 6.6, and in the attached video
available at https://youtu.be/cGRRnL1Mfzs.

https://youtu.be/cGRRnL1Mfzs

6.5 Implementation and experiments 107

0 10 20 30 40

Time [s]

0

0.02

0.04

C
p

u
 t

im
e

 [
s
]

Raw value

Filtered value

Figure 6.3 CPU time needed to fully set up and solve with a naive implementation the MPC QP
problem on an Intel i7-6700@3400Hz CPU.

0 10 20 30 40 50

Time [s]

-0.5

0

0.5

1

1.5

2

P
o
s
it
io

n
 [
m

]

CoM X position

CoM Y position

ZMP X position

ZMP Y position

CoM X position (perturbed)

CoM Y position (perturbed)

Figure 6.4 Planned CoM and ZMP trajectories without any external disturbance (colored lines), and
with an external impulsive force F = 60 N applied in the negative y direction for 0.3 s (grey lines).
For reference, the robot mass is roughly 90 kg.

6.5 Implementation and experiments 108

-0.5 0 0.5 1

Position X [m]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

P
o

s
it
io

n
 Y

 [
m

]

1

2

3

4

5

6

Figure 6.5 Sequence of support polygons generated by the proposed algorithm. The ZMP trajectory is
plotted as well, with a color that matches the corresponding polygon (grey corresponds to four-stance
phases).

Figure 6.6 Snapshots taken from an experiment on the actual CENTAURO robot. For the sake of
clarity, the final backward phase is not included.

6.6 Discussion 109

6.6 Discussion

The present chapter introduced a way to generate a walking motion of a quadrupedal robot,
through the joint optimization of both the CoM trajectory and the footsteps as well. The
proposed method is more robust than fixing the footsteps a-priori since, as discussed by Herdt
et al. (2010a), enforcing the ZMP to always lie inside the pre-planned supports could require
excessive CoM motions (or be unfeasible altogether). Besides, differently from the work of
Winkler et al. (2017) which allows to find local minimizers of a non-convex optimization
problem, this work proposes to find the exact global minimizer of an approximated QP
problem. Such an approximation leads to the loss of some feasible solutions, and to an
increased number of decision variables, which indeed represent drawbacks of the introduced
formulation; on the other hand, the presented approach eliminates the risk of computing a bad
local minimum for a the original non-linear program. In addition, we achieve a significantly
faster computation time when compared to Winkler et al. (2017) even with a naive, dense
implementation.

First trials on the quadruped robot CENTAURO have shown promising results. A mixed
forward-lateral-backward gait was transferred to the actual hardware with little parameter
tuning.

Future work will address the integration of in place rotations, that are possible under
this framework provided that the orientation trajectory is fixed beforehand, as in Herdt et al.
(2010a). Moreover, the role of the load distribution α , introduced in Section 6.3, must be
further investigated. Such a parameter may also be considered to be time-varying, in order to
produce more variegate CoM motions, and recover part of the lost solutions.

Lastly, more optimized solvers can be implemented by avoiding to uselessly recompute
and re-factorize the hessian matrix, and also by carrying out an analysis of consecutive MPCs
active sets.

Part III

Interaction control

Chapter 7

Prioritized force control

This chapter contributes with a prioritized Cartesian impedance control framework for
fixed-base robots whose formulation resembles classical velocity level hierarchical inverse
kinematics schemes, and which is solved by means of Quadratic Programming (QP) opti-
mization. Such a controller is simpler than a full inverse dynamics based controllers, where
simultaneous optimization over force and joint accelerations variables is carried out. In
addition to strict priorities on force, the presented method can handle inequality constraints,
allowing to easily express, e.g., torque bounds.

Starting from the aforementioned work on prioritized force control, a novel method is
also presented which addresses the balancing problem for torque controlled legged robots
through post-optimization of contact forces. The main concept consists in treating a legged
robot as a fully actuated fixed-base system in order to compute the desired joint torques
according to a fixed-based torque controller. The under-actuated component of the obtained
torques is then mapped into contact forces through an optimal distribution problem. Besides
extending previous work to the floating-base case, the proposed method has the notable
advantage of avoiding the specification of a desired momentum of rotation, in addition to
a reduced number of decision variables compared to full-inverse dynamics methods. The
effectiveness of the proposed approach has been validated in simulation using two different
humanoid platforms: the Centauro and the Coman+ robots, both developed at Istituto Italiano
di Tecnologia (IIT). Preliminary experimental results on Coman+ are also presented.

7.1 Introduction and related works 112

This chapter is based on the following articles:

• Hoffman, E. M., Laurenzi, A., Muratore, L., Caldwell, D. G., and Tsagarakis, N. G.
(2018). Multi-priority cartesian impedance control based on quadratic programming
optimization. In 2018 IEEE International Conference on Robotics and Automation

(ICRA)

• Laurenzi, A., Hoffman, E. M., Polverini, M. P., and Tsagarakis, N. G. (2018a). Bal-
ancing control through post-optimization of contact forces. In 2018 IEEE-RAS 18th

International Conference on Humanoid Robots (Humanoids), pages 320–326. IEEE

7.1 Introduction and related works

Robots that have to perform tasks in unknown, real scenarios, need to handle contacts, both
unintended (such as collisions with the environment) and intentional, e.g. with the objects
to manipulate, or interactions with human co-workers. These requirements can be partially
addressed by proper hardware (e.g. see Series Elastic Actuators (SEAs), Pratt and Williamson
(1995)), which endow the robot with an inherent robustness to impacts, yet a predominant
role is played by the capability of the controller to handle all these scenarios. Furthermore, it
is important to notice that, in general, the forces involved during generic interactions are not
usually known a priori.

Among all possible controllers which are suitable to tackle the needs of physical in-
teraction, a notable one is the Cartesian Impedance Controller, which relates the wrench
exchanged by the robot with the environment to Cartesian pose and velocity errors through
Cartesian stiffness and damping matrices:

FFF = KKK ∆xxx+DDD∆ẋxx, (7.1)

where ∆xxx is the pose error computed w.r.t. a reference pose and ∆ẋxx is the velocity error
w.r.t. a reference velocity. The force FFF is often projected onto the robot joint torque space
to obtained a control effort τττ through the task Jacobian. Equation (7.1) permits to handle
interaction in different scenarios by setting appropriate set points and stiffness/damping
matrices. Cartesian impedance control has been used for the dynamic interaction between
the robot and the environment as well as for motion control.

Cartesian Impedance Control was firstly introduced in Hogan (1985) as an efficient
operational space controller, capable to robustly handle contacts with the environment. As a
matter of fact, Cartesian Impedance Control does not require the inversion of the kinematics

7.1 Introduction and related works 113

but only the computation of forward kinematics and, optionally, of the dynamic terms (e.g.
feed-forward acceleration can be used to improve tracking quality), and it requires joint
level torque control. As usually kinematic parameters are known with much better accuracy
compared to dynamic parameters (i.e. masses, inertias), such a feedback law behaves more
robustly when the robot model at hand has not been identified precisely, such as in the
common case of CAD-generated models. Finally, pose-to-force relations can be used to
implement rather complex behaviors, such as collision avoidance.

An application of Cartesian Impedance Control is the so called Virtual Model Control,
which has been presented and implemented on a walking robot in Pratt et al. (2001). Virtual
Model Control applies principles from Cartesian Impedance Control to attach simple virtual
components (e.g. springs and dampers) to a selection of limbs of a legged robot, in order to
obtained e.g. a walking behavior.

In (Ott, 2008), Cartesian Impedance Control is extended to the case of redundant robots,
where the definition of a single priority level can turn out to be a limiting factor. In particular,
the null-space stiffness concept is introduced as secondary task, with the aim to exploit joint
impedance behavior in a Cartesian Impedance controller, without affecting the high priority
Cartesian task.

Henze et al. (2016a) apply a hierarchical controller to the humanoid robot TORO for
a balancing task using contacts. Cartesian Impedance Control is used to control the end-
effectors of the robot. In this work, a QP problem is set up only to find the optimal contact
forces distribution but the null-space projectors are explicitly computed outside the QP itself.

The work in (Platt Jr et al., 2010) introduces the theory behind a two level Cartesian
Impedance controller in which the secondary task does not influence the primary task and it is
minimized in accordance with the weighted squared magnitude of the Cartesian acceleration
error. Furthermore, they state that the well-known control law of (Sentis and Khatib, 2005)
does not guarantee that the secondary task is minimized under the same optimization criterion.

In (Saab et al., 2013a) the inverse dynamics problem is solved in its full extent by for-
mulating a hierarchical QP problem in which torques, accelerations and contact forces are
computed all together. On the one hand, such an approach is complete since it encom-
passes the definition of a tasks in terms of both force and Cartesian position, as well as
joint acceleration, torque and contact force constraints. On the other hand, as previously
stated, the optimization process involves joint acceleration, joint torque and contact force
variables, potentially leading to a heavier computational burden. The proposed formulation
is similar to the reduced form presented in (Saab et al., 2013a), but the method introduced
in this work further extends it by allowing to handle contacts and motion together using the

7.1 Introduction and related works 114

aforementioned Cartesian Impedance control. Furthermore, the presented method uses a
general formulation that is compatible with any QP solver.

The first contribution of this chapter is the introduction, implementation and validation
of a multi-priority impedance controller that considers task priorities, inside a Quadratic Pro-
gramming (QP) optimization framework. The main advantage of the proposed formulation of
Cartesian Impedance controller is that such an approach allows to cope with highly redundant
robots, taking into account hard priorities between tasks, and easily handling constraints in
form of equalities and inequalities. In particular, inequality constraints and bounds permit to
consider hardware limitations such as joint torque limits that are fundamental when working
with real robotic platforms. The proposed formulation is shown to be simple and efficient,
and it is validated both in simulations and with experiments under physical interactions
during motions.

The second contribution of this chapter is the extension of the aforementioned method-
ology to floating base systems such as humanoid robots, and the application thereof to a
balancing problem where, in addition to manipulation forces, contact forces must be op-
timized in order to cope in a stable way with external perturbations. Indeed, balancing
represents a crucial requirement for legged robots expected to cope with a variety of unstruc-
tured terrains and environments. Despite a deep knowledge on the dynamics governing the
balancing of articulated bodies, balancing is still considered a challenging control problem,
especially when dealing with torque controlled humanoids and legged robots in general. In
this respect, the existing control approaches are generally classified in two categories.

The first category achieves balancing through a two-stage methodology. An optimal
contact force distribution problem is first solved with respect to the robot centroidal dynamics.
This phase will be hereafter referred to as pre-optimization of contact forces. The computed
contact forces are then mapped to joint torques under quasi-static assumptions, see Hyon
(2009); Hyon et al. (2007) and Henze et al. (2016b, 2017); Ott et al. (2011), or through
inverse dynamics, as in (Lee and Goswami, 2010, 2012) and (Stephens and Atkeson, 2010).

In opposition to the first category, the humanoid balancing problem can be alternatively
addressed in a single-stage fashion by entirely exploiting the full-body inverse dynamics.
Several inverse dynamics controllers, e.g. (Khatib et al., 2004; Sentis and Khatib, 2005;
Sentis et al., 2010), compute joint torques by modeling contacts as rigid constraints and
projecting the dynamics into a constraint free space. In this way an explicit solution of
the contact force distribution problem is not required, although optimality of the problem
is not guaranteed. Nevertheless, Righetti et al. (2013, 2011) showed that is possible to
design inverse dynamics controllers and operational space controllers that are optimal with

7.2 Prioritized force control 115

respect to any combination of linear and quadratic cost in the contact forces and in the torque
commands. On the other hand, methods based on a hierarchical Quadratic Programming
(QP) formulation of the full-body inverse dynamics, see (Escande et al., 2014b; Mansard,
2012; Saab et al., 2013b), and (Herzog et al., 2014, 2016), explicitly consider contact forces
as variables for the resulting optimization problem.

It is worth pointing out that, despite a clear advantage in terms of required computation
time of the first category of methods over the second, the pre-optimization of contact forces
raises a major concern about the role of the momentum of rotation in balance control. It
is known in fact that the kinetic momentum of rotation is not directly related to the actual
orientation of an articulated system (Saccon et al., 2017; Wieber, 2006b; Wieber et al., 2016).
As a consequence, controlling the momentum of rotation for a balancing task may end up in
a body rotation which is incompatible with the task itself.

The first contribution of the present chapter introduced a prioritized Cartesian impedance
controller for redundant fixed-base robots has been proposed, based on a hierarchical QP
formulation. Extending this approach to floating-base legged robots to subsequently address
the humanoid balancing problem is the main focus of this second contribution. The proposed
balancing controller belongs to the first category of methods, i.e. it adopts a two-stage
technique. In this respect, aiming to overcome the main limitation inherent in the pre-

optimization of contact forces, i.e. the control of the momentum of rotation, this work
proposes to treat a legged robot as a fully actuated fixed-base system in order to compute the
desired joint torques according to (Mingo Hoffman et al., 2018). Only at this point, the under-
actuated component of the obtained torques can be mapped into contact forces through an
optimal distribution problem, hereafter referred to as post-optimization of contact forces. This
way the tricky specification of a desired momentum of rotation is circumvented. In addition
to the aforementioned advantage over pre-optimization methods and the reduced number
of decision variables compared to single-stage methods, the add-on nature of the proposed
control approach entails no modification of the original algorithm in (Mingo Hoffman et al.,
2018). It is also worth noticing that the proposed post-optimization yields a systematic way
to adapt a generic fixed-base controller to an under-actuated system.

7.2 Prioritized force control

Let us consider a fixed-base n-dof manipulator, and let qqq ∈ Rn be the corresponding joint
configuration vector. Moreover, let xxx ∈Rm denote a task, i.e. some quantity of interest which

7.2 Prioritized force control 116

can be expressed as a non-linear function of the robot configuration

xxx = xxx(qqq). (7.2)

Differentiation of (7.2) yields
ẋxx = JJJ(qqq)q̇qq, (7.3)

where JJJ(qqq)∈Rm×n is the task Jacobian matrix. Since we are mainly interested in the specific
case in which the manipulator is redundant with respect to the given task, the inequality
m < n will hold from now on.

Through manipulation of the system dynamics equation in contact with the environment
through the term fff ext

BBB(qqq)q̈qq+hhh(qqq, q̇qq) = τττ + JJJT FFFext , (7.4)

and the task description at the acceleration level (which can be obtained by further differenti-
ation of (7.3))

ẍxx = JJJq̈qq+ J̇JJq̇qq, (7.5)

a task-space dynamics equation can be obtained, that is the following:

ΛΛΛ(qqq)ẍxx+µµµ(qqq, q̇qq) = FFFτ|x +FFFext , (7.6)

where ΛΛΛ ∈ Rm×m is the task-space inertia matrix, and µµµ ∈ Rm is the vector of bias forces
which are required to achieve zero acceleration. In (7.6) FFFτ|x ∈Rm is the vector of task-space
forces that are equivalent to the joint torques τττ , which for the sake of brevity will be simply
denoted as FFF hereafter. The relation between these two quantities is linear (Siciliano et al.,
2009):

J̄T
τττ = FFF , (7.7)

where:
J̄JJ = BBB−1JJJT (JJJBBB−1JJJT)−1

, (7.8)

also known as the dynamically consistent pseudo-inverse (Khatib, 1987). Given the measured
joint torques it is possible, through (7.7), to compute the force exerted by the robot joints at
the end-effector. The inverse problem of (7.7) is to find the joint torques vector that realizes
a certain task-space force. One specific solution of such a problem which is well known is
the following:

τττ = JJJT FFF ; (7.9)

7.2 Prioritized force control 117

The solution from (7.9) is the one which makes the whole manipulator move as if it was
subjected to the force FFF; however, if we are not interested to this specific property, then
the inverse problem of (7.7) can be considered in its full extent. The general, dynamically-
consistent, solution of the inverse problem of (7.7) can be shown to be:

τττ = JJJT FFF +(III − JJJT J̄JJT
)τττ0, (7.10)

in which the second addend of the right hand side is a vector of torques that generates
null-space manipulator motions but no forces (and, consequently, no acceleration) at the
considered task.

Let us now move to a slightly more complex case, in which two tasks xxx1 ∈ Rm1 and
xxx2 ∈Rm2 are specified, along with their corresponding desired forces FFF1 and FFF2. Furthermore,
let us assume that task 1 is given a higher priority, meaning that we want the robot to “do its
best” to perform task 2 without affecting the performance achieved at executing task 1. To
reach this goal, the null-space of task 1 is exploited as in (7.10), choosing a vector τττ0 which
makes the difference between the desired force FFF2 and the actual force FFF2 = J̄JJT

2 τττ as small as
possible. This can be done via linear algebra techniques as shown in Flacco and De Luca
(2015).

This work aims at specifying a Quadratic Programming (QP) problem, that solves the
inverse problem of (7.7), taking into account priorities and constraints. QP is a convenient
way to solve these kind of problems since it permits to specify inequality constraints that are
useful in practical implementations. Furthermore, QP has already been used in the domains
of Inverse Kinematics (IK) and Inverse Dynamics (ID). In particular, the proposed approach
aims at being simpler, but more robust than full inverse dynamics. The desired virtual forces
are assumed to be generated by virtual components placed at certain locations within the
robot, or between the robot and the environment (Pratt et al., 2001), as for example a virtual
spring:

FFF = KKK (xxxd − xxx(qqq)), (7.11)

where KKK ∈ Rm×m is a virtual stiffness matrix, xxxd ∈ Rm is the desired pose of the end-effector
and xxx(qqq) ∈ Rm is the actual pose of the end-effector.

In this section, the inverse problem of (7.7) is formulated as a QP problem. More
specifically, we want to find a formulation in which the cost functions, as well as the
constraints that allow for strict priorities between tasks, are well defined.

7.2 Prioritized force control 118

7.2.1 Pseudo-inverse free formulation

First, notice that the control law (7.9) can also be obtained by considering the following QP
problem:

min
τττ

∥ J̄JJT
τττ −FFF ∥2, (7.12)

in fact, the quadratic cost function of (7.12) is:

F(τττ) =
1
2

τττ
T J̄JJJ̄JJT

τττ −FFFT J̄JJT
τττ +

1
2

FFFT FFF . (7.13)

By convexity of the objective function, the solution has to satisfy the necessary and sufficient
unconstrained optimality condition:

∂F(τττ)

∂τττ
= J̄JJJ̄JJT

τττ − J̄JJFFF = 0. (7.14)

If (7.8) is used in (7.14), the latter can be written as:

JJJBBB−1
τττ =

(
JJJBBB−1JJJT)FFF , (7.15)

a solution that satisfies (7.15) is given by (7.9), while a parametrization of the general solution
is given by (7.10). The main drawback of formulation (7.12) is that the pseudo-inverse J̄JJ

need to be computed in order to define the cost function. This is a computationally costly
operation that indeed is already handled by the QP solver. To avoid the computation of J̄JJ, we
can use equation (7.15):

min
τττ

∥ JJJBBB−1
τττ − JJJBBB−1JJJT FFF ∥2, (7.16)

and it can be checked that the family of solutions satisfying (7.16) is (7.10), and also (7.9) as
a special case.

7.2.2 Low priority joint space task

The most simple application of prioritized force control is given by a low priority task in
joint space, acting in the null-space of a higher priority Cartesian force task. This can be
expressed in terms of the following optimization problem:

min
τττ

∥τττ − τττ0∥2
WWW

s.t. JJJBBB−1
τττ = JJJBBB−1JJJT FFF ,

(7.17)

7.2 Prioritized force control 119

where WWW ∈ Rn×n is a symmetric positive-definite weight matrix. It is desirable that the
solution of (7.17) is in the same form of (7.10), such that the standard statics equation
is obtained whenever no constraint is active. To this aim, it is possible to show that the
appropriate weight equals the joint-space inertia matrix, i.e., if τττ∗ denotes the solution of
(7.17), then

WWW = BBB → τττ
∗ = JJJT FFF +(III − JJJT J̄JJT

)τττ0. (7.18)

Based on this result, it is now possible to extend this two-layer hierarchical problem to a
generic number of priority layers, as depicted in the following section.

7.2.3 Prioritized QP Formulation

When multiple tasks are considered together, we can imagine a cascade of QP problems in
which, at each level, a new solution τττ i is found subject to the optimality constraint of the
form:

JJJi−1BBB−1
τττ i = JJJi−1BBB−1

τττ
∗
i−1, (7.19)

in which the optimal torques τττ∗i−1 are computed by the previous QP problems. Considering
the i-th level of priority, the QP problem has the form:

min
τττ

∥JJJiBBB−1
τττ i − JJJiBBB−1JJJT

i FFF i∥2 + ε∥τττ i∥2

s.t. bl ≤ Aτττ i ≤ bu

ul ≤ τττ i ≤ uu

JJJi−1BBB−1
τττ i−1 = JJJi−1BBB−1

τττ i
...

JJJ0BBB−1
τττ0 = JJJ0BBB−1

τττ i,

(7.20)

where the speficic task at hand for this example is indeed a Cartesian task. The second term in
the cost function is used as regularisation term, subject to a set of bounds [ul, uu], constraints
[bl, bu] and optimality conditions given by the previous i−1 QPs.

Notice that it is possible to find in literature ways to formalize multiple QP problems in
just one QP, for example in (Escande et al., 2014c) and (Liu et al., 2015).

7.3 Validation 120

7.2.4 Joint Torque Limits

The joint torque limits are an example of bounds for the QP problem previously formulated.
These can be easily written in the form:

τττmin ≤ τττ ≤ τττmax. (7.21)

It is important to notice that any feed-forward term, added to the output torque of the QP,
should be subtracted to the available torques. For example, in order to compensate for gravity
and Coriolis-centrifugal therms, the desired joint torques will be:

τττd = τττopt +CCC(qqq, q̇qq) q̇qq+ggg(qqq), (7.22)

where τττopt are the optimal joint torques computed by the QP Optimization and CCC(((qqq,,, q̇qq)))q̇qq+

ggg(((qqq))) are the joint torques to compensate Coriolis-centrifugal therms and gravity respectively.
The bounds in (7.21) should be changed in:

τττmin − [CCC(qqq, q̇qq) q̇qq+ggg(qqq)]≤ τττ ≤ τττmax − [CCC(qqq, q̇qq) q̇qq+ggg(qqq)] . (7.23)

The presented formulation permits to easily specify constraints to handle joint velocity and
acceleration limits, as in Del Prete (2018). More examples of possible bounds/constraints
can be found also in Flacco and De Luca (2015); Saab et al. (2013a).

7.3 Validation

In this section, a series of experiments using the presented controller formulation, are
shown both in Gazebo simulations and real hardware trials, also considering interaction with
unknown external forces. We choose the humanoid upper-body of the Centauro robot (Bac-
celliere et al., 2017b) that consists in a two 7-DOFs arms mounted on top of a 1-DOF torso,
as shown in Figure 7.1. At the time when experiments were performed, the platform relied
on torque control for the torso joint and the first four joints of the arms chains. The wrist
joints were therefore controlled in position mode and set to a fixed position value. For this
reason, tasks have been defined only for the translation part of the end-effectors pose, and no
command is sent to the wrist joints. For these experiments, two priority levels were defined,
listed in descending priority order:

1. Left and right arm Cartesian impedance (translation only)

7.3 Validation 121

Figure 7.1 The green joints are controlled in torque mode while, the red ones are controlled in position
mode and set to a fixed position values (left picture); the middle picture shows the frames used for the
control; the right picture shows the real hardware platform

2. Joint space stiffness

subject to joint torque limits. The forces to generate the motion of the arms are generated
using a virtual spring-damper:

FFF = KKK (xxxd − xxx)−DDDẋxx, (7.24)

Cartesian impedance values for the left and right arm are set to KKK = 700 Nm−1 and
DDD = 70 Nm−1s in all the directions. The Null-space stiffness is set to KKK p = 5 Nm−1

and DDDp = 2 Nm−1s to all the joints. The controller is written in C++, inside the Open-

SoT (Mingo Hoffman et al., 2015, 2017) library and the inequality Hierarchical QP (Kanoun
et al., 2011) is implemented using the qpOASES (Ferreau et al., 2014b) solver. The controller
is executed under the XBotCore framework (Muratore et al., 2017d), in real time (using
Xenomai 2.6), within a control loop running at 1 kHz.

7.3.1 Gazebo: Torque Limits

A first simulated session has been carried out, in order to validate the performance of the
proposed approach, under ideal conditions. More specifically, the controller behavior under
limited torque was verified. To this aim, torque limits of all the joints are restricted to
τmax = 20 Nm. The simulated robot has to keep its end-effectors pose while an external force
of magnitude F = 20 N is applied, for a duration ∆TF = 2 seconds, at the right end-effector.
Figure 7.2 shows how the generated torques are bounded inside the given joint limits and

7.3 Validation 122

thanks to the QP formulation, an optimal solution given the constraints is found. When the

Figure 7.2 Joint torques computed by the controller: the green area represent the admissible region
for the joint torques, the red area are the bounds

external force is not applied anymore, the end-effector goes back to its previous position.

7.3.2 Gazebo: Cartesian Circular Trajectory

In the second Gazebo experiment, the left arm of the robot is commanded to execute a
circular trajectory while the right arm has to keep the end-effector pose steady. Multiple
external forces are applied to both the end-effectors and the structure of the robot, as shown
in Figure 7.3. In particular, external wrenches are applied for ∆TF = 2 seconds in the form of
(i) a pure torque τ = 30 Nm−1 about the torso joint axis, (ii) a force F = 50 N acting on the
left elbow, (iii) a force F = 30 N on the right end-effector, and (iv) finally a force F = 50
N acting on the left end-effector. Figure 7.4 shows the desired Cartesian trajectories for the
left end-effector along the x, y and z axis w.r.t. the computed ones. As expected, as long as
the moving end-effector is not directly perturbed, the external forces applied to the structure

7.3 Validation 123

Figure 7.3 During the Gazebo simulation, the robot end-effector and structure are disturbed by
unknown high external forces

of the robot have little effect on the motion result, as a consequence of the virtual stiffness
acting on the moving link, and of priority consistency.

7.3.3 Robot: Cartesian Circular Trajectory

The previous experiment is replicated now in the real robotic hardware. Figure 7.5 shows
where the external forces were applied during the motion. Figure 7.6 shows the comparison
between desired and computed Cartesian trajectories for the left end-effector. As expected,
there is a small error due to the uncompensated dynamical effects, the imperfect torque
tracking (Figure 7.7) and the unmodeled dynamics. In this regard, it is worth to point out that
CAD-based inertial properties were used in order to compute the robot dynamics, without
any further identification procedure. Despite this, we can see a fairly good tracking quality
and interaction behaviorr. As in the previous case, larger error tracking are present when the
end-effector is directly disturbed while, when the structure is disturbed, the tracking quality
remains the same, thanks to the imposed priorities.

7.4 Extension to floating base systems 124

0 5 10 15 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

E
n

d
−

e
ff

e
c
to

r
p

o
s
it
io

n
 [

m
]

x

y

z

Figure 7.4 Desired (dashed) versus computed (continuous) Cartesian trajectories for the left end-
effector under external pushes in the Gazebo experiment

7.4 Extension to floating base systems

This section presents an extension of the algorithm that was presented in the previous section
to the floating-base case. From a modeling point of view, a legged robot shows two structural
differences with respect to a fixed-base one:

• under-actuation: floating-base robots can be described in terms of n degrees of freedom
(one for each joint) plus six additional coordinates describing the pose of some robot
link w.r.t. to an inertial world frame. Such a link is usually called floating-base. These
additional DoFs are usually modelled by introducing a virtual six-dof chain of passive
(unactuated) joints, which is known as virtual chain.

• Contact forces: legged robots must always interact with the environment in order to
be controlled in their full (6+ n)-dimensional coordinate space. Indeed, from the
so-called centroidal dynamics equation, we know that the “global motion” of the robot
is entirely given by the contact forces.

7.4 Extension to floating base systems 125

Figure 7.5 During the experiment the robot end-effector and structure are disturbed by unknown high
external forces

The virtual chain formulation allows to easily extend the fixed-base dynamics (7.4) to the
floating-base case. We just augment the generalized coordinate vector with six virtual joints
as in the following equation1:

qqq =

[
qqqu

qqqa

]
, (7.25)

where qqq ∈ R6+n is obtained by stacking the configuration vector of virtual joints qqqu ∈ R6

with the one corresponding to the n actuated joints qqqa ∈Rn. Then, the floating-base dynamics
equation is given by

BBB(qqq)q̈qq+hhh(qqq, q̇qq) = SSSτττ + JJJT
CFFFC + JJJT FFFext; (7.26)

compared to (7.4), the joint torques vector is pre-multiplied by a matrix SSS ∈ R(n+6)×n that
maps actuation torques into torques for the full floating-base robot:

SSS =

[
0006×n

IIIn×n

]
. (7.27)

1We use the subscripts “u” for unactuated, and “a” for actuated, respectively.

7.4 Extension to floating base systems 126

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time [s]

E
n

d
−

e
ff

e
c
to

r
p

o
s
it
io

n
 [

m
]

x

y

z

Figure 7.6 Desired (dashed) versus computed (continuous) Cartesian trajectories for the left end-
effector under external pushes in the real hardware experiment

Finally, contact forces are taken into account by introducing the Jacobian of all support links
JJJC ∈ Rk×(n+6) and the corresponding overall contact wrench FFFC ∈ Rk, with k equal to the
contact constraint dimension (e.g. k = 12 for a humanoid in double support).

By repeating the same steps as for the fixed-base case, the task dynamics is obtained as
follows:

ΛΛΛ(qqq)ẍxx+µµµ(qqq, q̇qq) = FFFτ|x +FFFC|x +FFFext. (7.28)

It can be seen that the contribution from actuated joint torques is changed slightly w.r.t. the
fixed-base case, and it has the following expression:

FFFτ|x =
(

J̄JJT SSS
)

τττ; (7.29)

however, this does not affect the mathematical formulation of the prioritized controller. The
most important change is given by the coupling between the task dynamics and the contact
wrenches, through the term

FFFC|x = J̄JJT JJJT
CFFFC = ΛΛΛ

[
JJJBBB−1JJJT

C
]

FFFC; (7.30)

7.4 Extension to floating base systems 127

0 5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

10

15

20

Time [s]

S
h
o
u
ld

e
r

p
it
c
h
 j
o
in

t
to

rq
u
e
 [
N

m
]

Reference Torque

Measured Torque

Figure 7.7 Comparison between measured torques and references, computed by the proposed
algorithm, for the left shoulder pitch joint. It can be notice that there is, in some situation, a tracking
error of approximately 10% as shown in the black circle

on this regard, it is worth noticing that coupling matrix between square brackets in (7.30) is
non-zero for any task xxx that is specified w.r.t. the world frame: indeed, all tasks are coupled
through the virtual chain connecting the floating-base to the world frame itself.

Such a coupling hinders the direct application of the algorithm of (Mingo Hoffman et al.,
2018); in order to tackle the problem, three possible methods can be employed, as explained
below:

• pre-optimization of contact forces. This approach has been successfully used in (Ott
et al., 2011) for balancing control applied to the lower-body of the TORO robot. From
the robot centroidal dynamics, the authors compute contact forces that achieve the
desired center-of-mass and angular momentum behavior. More specifically, the angular
momentum is used to perform orientation control of the robot base link.

Once that such forces have been obtained, they can be made to disappear from the
dynamics formulation by, for instance, redefining the bias torque vector as

ĥhh = hhh− JJJT
CFFFC. (7.31)

7.4 Extension to floating base systems 128

However, it is the author’s belief that such an idea contains a pitfall, namely that
the centroidal dynamics of the robot is constrained to the value obtained during the
pre-optimization phase (see remark in Section 7.5.1). Consequently, the center-of-mass
behaviour is always a first-priority task for the resulting controller, and the same applies
to the angular momentum. This is undesirable for a prioritized controller; moreover, it
is not clear which reference should be assigned to the angular momentum, given its
non-holonomy as stated in (Wieber, 2006b).

• Joint optimization of joint torque and contact forces. This approach is conceptually
similar to the one of (Herzog et al., 2016), where the optimization is carried out over
contact forces and joint accelerations. Full control over the task hierarchy and system
momentum is retained at the cost of an increased number of optimization variables.

• Post-optimization of contact forces. A third option, which is the main contribution of
the present work, consists in treating the floating-base robot as a fixed-base one, by
mathematically replacing the sum of under-actuated joint torques and contact torques
with an equivalent completely-actuated torque vector. Then, a post-optimization phase
is set up in order to map back the obtained virtual joint torques and forces to equivalent
contact wrenches. At the best of the author’s knowledge, this approach has not been
explored before. A full description of such method is the subject of the following
section.

7.4.1 Post-optimization of contact forces

Starting from (7.26), let us define an equivalent fully-actuated torque vector τ̄ττ

τ̄ττ = SSSτττ + JJJT
CFFFC; (7.32)

with such a definition, the floating-base dynamics formally resembles the fixed-base one:

BBB(qqq)q̈qq+hhh(qqq, q̇qq) = τ̄ττ + JJJT FFFext; (7.33)

consequently, the algorithm of Section 7.2 can be applied without any modification, yielding
some optimized value τ̄ττ

∗ for the fully-actuated torque vector (7.32) that permits to achieve
the desired hierarchical motion and interaction.

Our problem is then to recover the contact force information, by taking into account
the under-actuated nature of the system. Essentially, this amounts to solving the system

7.4 Extension to floating base systems 129

of equations (7.32) for τττ and FFFC. On this regard, notice that the number of equations is
Neq = n+6, while the number of variables is Nvar = n+k; this means that in an unconstrained,
full-rank case the problem admits ∞Nr many solutions, with Nr = k−6.

The number of unknowns can be reduced by exploiting the structure of the actuation
matrix (7.27). By focusing on the first six rows of (7.32), we obtain

τ̄ττu = JJJT
C,uFFFC, (7.34)

where the subscript “u” indicates the sub-matrix corresponding to the unactuated virtual joints.
Equation (7.34) is torque-independent, and contains only the contact forces as variables.
Once that these have been determined, joint torques can be recovered by looking at the
bottom n rows of (7.32) and solving for τττ:

τττ = τ̄ττa − JJJT
C,aFFFC. (7.35)

The transpose of the unactuated part of the contact Jacobian acts as a grasp matrix

GGG ∈ R6×k:
GGG = JJJT

C,u; (7.36)

hence, we can draw inspiration from (Ott et al., 2011) and obtain a least-squares solution for
FFFC:

FFF∗
C = GGG†

τ̄ττu, (7.37)

where the dagger symbol † denotes the pseudo-inverse. However, we can also exploit a
QP formulation in order to enforce inequality constraints, as for instance friction cones, as
follows:

min
FFFC

∥GGGFFFC − τ̄ττu∥2

s.t. bbbl ≤ DDDFFFC ≤ bbbu

uuul ≤ FFFC ≤ uuuu.

(7.38)

Torque constraints can be introduced as well by considering the dependency on the contact
forces as given by (7.35).

7.4.2 Discussion

The main advantage of the proposed post-optimization formulation with respect to the pre-
optimization is clearly given by the proper handling of priorities between tasks, since neither
the Center of Mass (CoM) motion nor the robot angular momentum need to be set a-priori.

7.5 Implementation and experiments 130

Moreover, the user is relieved from specifying a target angular momentum to the robot, which
seems to be problematic as discussed in Section 7.4. With the proposed approach, target
values for the centroidal dynamics are obtained from the fixed-base solution τ̄ττ

∗, and only

then the corresponding contact wrenches are optimized.
The main drawback is that the first optimization stage may give back a solution that is not

feasible under force constraints (e.g. friction cones), which means that the objective value
of (7.38) will be greater than zero. This could lead to loss of performance and, in the worst
case, instability of the closed loop system. However, this situation can eventually be used to
detect the need to perform a recovery action, e.g. a step.

On the other hand, a joint torque-force optimization strategy could perform better in such
a case, since constraints on forces are taken into account for motion/force control as well.
The price to pay is an increased number of decision variables.

As a final consideration, the proposed post-optimization approach gives us the possibility
of adapting the fixed-base formulation to the floating-base case without any need for modifi-
cation, since the under-actuation is dealt with at a separate stage that is completely decoupled

from force/motion control. As a matter of fact, the proposed formulation permits to adapt
any fixed-base torque controller to the floating base case, while fully retaining its behavior.

7.5 Implementation and experiments

In order to validate the proposed extension of the controller of Section 7.2 to the floating-base
case, we set up two simulation scenarios in Gazebo involving two different legged platforms:
our Centauro robot, and Coman+, which is a 28 DoF, 1.70 meters tall humanoid robot.
Both robots are fully torque-controlled by feeding back the measured link-side joint torques.
Moreover, our control architecture XBotCore (Muratore et al., 2017b) allows for transparent
switch between simulation and real hardware, and hard real-time control on the actual robot.
We conclude the section with a brief overview of some preliminary experimental results on
the Coman+ robot.

7.5.1 Gazebo simulations

The controller’s first stage is formalized in the following way:

7.5 Implementation and experiments 131



(
∑i

WorldTFooti
)
/

WorldTWaist/

(
WorldTLHand +

World TRHand
)
/

TPosture


<<

(
CJoint Torque

Limits

)
, (7.39)

where the symbol ATB denotes a Cartesian impedance task of the frame B relative to the
frame A; such a task is implemented by commanding simple virtual wrenches as in the
following expression:

FFFd = Kd (xxxd − xxx)+Dd (xxxd − ẋxx) , (7.40)

where x, xd , ẋ and ẋd represent the actual and desired Cartesian poses and twists, respectively,
whereas Kd and Dd denote the desired Cartesian impedance. These are combined by means
of the operators “+” and “/”, which are used to set aggregation and null-space relations,
respectively. Finally, the symbol “<<” denotes insertion of constraints into the problem.

Recall from Section 7.4.1 that the first stage of the proposed method computes a fully
actuated torque vector, that is then mapped to an under-actuated torque vector via post-
optimization of contact forces. The post-optimization stage is implemented as in (7.38),
considering linearized friction cones as inequality constraints:

|FFF t | ≤
√

2µ

2
FFFn, FFFn ≥ 0; (7.41)

where FFF t and FFFn are the tangential and normal components of contact forces, respectively,
and µ = 0.3 is the considered friction coefficient. As a final observation, for all our simulation
experiments the state of the floating-base link is directly taken from the simulator.

Centauro balancing under external disturbances

The first simulation scenario consists on a balancing task for the Centauro robot under the dis-
turbance of external forces applied on the robot waist. Screen shots from the performed sim-
ulations are reported in Fig. 7.8. The desired Cartesian impedance for the waist position task
has been set equal to: Kd =

[
500 500 500

]
Nm−1 and Dd =

[
200 200 200

]
Nm−1s.

A constant force of 200 N is first applied downward along the z-direction for 2 s. The
obtained contact forces along the z-direction are shown in Fig. 7.9(a), while the corresponding
waist position error is shown in Fig. 7.9(b). As expected, the maximum value of the actual

7.5 Implementation and experiments 132

Figure 7.8 Screen shots from Centauro simulations in Gazebo. In the upper plots a constant force of
200 N is applied downward on the robot waist, while in the lower plots a constant force of 90 N is
applied sideways.

waist position error (blue solid line), approximately 0.4 m, is consistent with the expected
value (black solid line) obtained through (7.40).

To further highlight the impact of friction cones, a second simulation involves the
application of a constant force of 90 N sideways along the y-direction, see Fig. 7.10. Note
that, according to (7.41), the x and y components of the contact force on the rear right leg
(yellow lines) are driven to zero at once with the z-component.

Coman+ picking a box

In the second simulation scenario we consider the Coman+ robot picking a two kilogram
box from the knee level. However, the box weight is not known to the controller. The task
has to be performed using whole-body motions to reach the box and pick it up.

Notice that, in order to be able to reach the box, the z-translation task is removed from
the waist control. As a side-note, the orientation is managed using a quaternion formulation
as in (Nakanishi et al., 2008). The outcome of the simulation experiment can be seen in the
video available at https://youtu.be/p8fwwV_zZa8.

Remark: Notice that the obtained whole-body motion would be impossible under a
pre-optimization framework, in which the CoM trajectory is decided beforehand. In this case,
the only solution is to explicitly decrease the CoM height in order for the hands to reach the
box.

7.5.2 Preliminary Experiments on the Coman+ platform

In this preliminary experiment we test the presented controller, with the real humanoid
robot Coman+. As the only difference compared to our simulations, in this case we need to

https://youtu.be/p8fwwV_zZa8

7.5 Implementation and experiments 133

(a) z-component of contact forces.

(b) Actual (blue solid line) vs. expected (black dashed line) waist position error along the
pushing direction, i.e. the z-direction.

Figure 7.9 Time histories from Centauro simulation: an external constant force of 200 N is applied
downward (z-direction) on the robot waist for 2 s (shaded area).

estimate the state of the robot base-link in terms of pose and twist w.r.t. an inertial world
frame. In order to do so, kinematic information from the lower-body is simply fused with
IMU measurements, assuming fixed contacts.

After some controller tuning, the robot could balance on two feet, even when subject to
small external perturbations (see Figure 7.11b). Despite the encouraging results, instabilities
and strong vibrations were observed, in a very similar way as described in (Englsberger
et al., 2018); indeed, implementation of full-torque controllers on legged robots appears
to be challenging, and it needs further investigation in order to improve the robustness of
the controller and successfully deploy it to real systems. As intermediate step, a simplified
architecture has been used in order to implement a real demonstrator with the Centauro robot,
as described in the following section.

7.6 Heavy object pushing demonstrator 134

Figure 7.10 Contact forces’ time history from Centauro simulation: an external constant force of
90 N is applied sideways (y-direction) on the robot waist for 2 s (shaded area).

7.6 Heavy object pushing demonstrator

The demonstrator described in this section addresses the control problem inherent in the
pushing task of a heavy object with a centaur-type humanoid. This is a clear example of
a multi-contact loco-manipulation task: due to the heavy weight of the object combined
with the friction coefficient of the ground, it is not possible to simultaneously fulfill the
balancing and the manipulation task, while keeping all the legs in contact with the ground.

7.6 Heavy object pushing demonstrator 135

Figure 7.11 On the left, Coman+ in simulation. During the squat motion needed to pick up the box,
the knees of the robot (red dot) enter in contact with the table generating unwanted forces which
perturb the CoM. Green dots represent intentional contacts. On the right preliminary experiments
with the real Coman+ platform

As a matter of fact, only by interacting with a different environment surface, e.g. by pushing
with the rear legs against a wall, it is possible to successfully perform the task. In order to
address this control problem, a control architecture has been implemented for multi-contact
loco-manipulation tasks, conceived for torque-controlled legged systems such as Centauro.
The proposed control architecture comprises:

- a multi-contact planner, that reasons about the robot centroidal dynamics under quasi-
static assumptions, and relies on a continuous description of the environment, e.g.
through superquadric functions;

- a multi-contact controller responsible for the tracking of the planned contacts and for re-
active balancing, by means of hierarchical Inverse Kinematics (HIK) and instantaneous
contact force distribution, respectively.

Finally, experimental validation has been performed on the pushing task of a heavy object
using the Centauro robot. It is important to notice how this architecture is simplified with
respect to the full floating-base Cartesian impedance controller of our simulated results
as presented in Section 7.5.1, because of quasi-static assumptions. Nevertheless, as the
task execution is expected to be slow, reasonable performance can be obtained on the real
hardware.

7.6 Heavy object pushing demonstrator 136

More in detail, the manipulation task considered in this demonstrator consists in the
pushing of a wooden cabinet, loaded with bricks, for a total weight exceeding 120 kg, see
Fig. 7.12. Consequently, considering a Coulomb friction coefficient of 0.5, this task requires
a pushing force greater than 600 N along the x-axis. The considered scenario is an example
of a manipulation task that inherently requires multi-contact loco-manipulation capabilities
to be successfully accomplished. As it can be noticed from Fig. 7.12(a), if all the legs of
the robot stay in contact with the ground, it is not possible to effectively push the object by
simply imposing a forward motion to the two hands (here the robot is controlled in position
mode). In fact, the robot loses grip and slides backwards, while the object keeps its original
position. Note that, due to the object weight and the inadequate level of grip forces that can
be generated between the legs and the ground, the only way to accomplish the pushing task is
to let the robot interact with an environment surface, different from the ground, that allows to
exert a force along the pushing direction, without exceeding the friction limits of the contact
surfaces. This can be done e.g. by pushing with the rear legs against a wall located behind the
robot, as shown in Fig. 7.12(b). Assuming an a-priori knowledge on the surface location, this
section introduces and validate a possible control architecture that enables to autonomously
produce this behavior.

7.6.1 Continuous environment description

Representing the environment with simple but separate convex-hulls can be useful in contacts
planning approaches, although it necessarily requires mixed-integer optimization as in Deits
and Tedrake (2014); Ponton et al. (2016). In this respect, we hereafter propose to adopt
a unique continuous description of the environment complexity, based on a superquadric

function, which allows for continuous optimization. This choice is particularly effective in
modelling walls, as required by the pushing task described in the previous section. This
approach is similar to the work of Winkler et al. (2018), where all environment surfaces are
combined and approximated with a smooth height-map.

The general form of a superquadric function with fully independent axis orders is given
by:

SC :
∣∣∣∣x−Cx

Rx

∣∣∣∣Px

+

∣∣∣∣y−Cy

Ry

∣∣∣∣Py

+

∣∣∣∣z−Cz

Rz

∣∣∣∣Pz

= 1 (7.42)

where the superquadric center is defined by the vector CCC =
[
Cx Cy Cz

]T
, while the su-

perquadric axial radii are defined by the vector RRR =
[
Rx Ry Rz

]T
. Finally, PPP =

[
Px Py Pz

]T

defines the axial order, or curvature, which determines the actual shape of the superquadric.

7.6 Heavy object pushing demonstrator 137

Figure 7.12 Centauro pushing a heavy object. When all the legs of the robot stay in contact with
the ground (left-hand side) and a forward motion is imposed to the two hands, the robot structure
moves backwards, while the object keeps its original position (see bottom left figure). Instead, as
an outcome of the proposed approach, by pushing with the rear legs against a wall located behind
the robot (right-hand side), Centauro can accomplish the manipulation task and effectively move the
object.

7.6 Heavy object pushing demonstrator 138

If each element of PPP is greater than 2, (7.42) is continuously differentiable and defines a
cube with smooth edges and corners, see Fig. 7.13. In the following, we will consider the

Figure 7.13 Graphical representation of the quantities involved in the planning problem to retrieve the
final pose. The environment complexity, consisting of the ground and a vertical wall (see upper part),
has been modeled through a single superquadric function (7.42) with PPP = [8 8 8]T (see bottom part).

environment superquadric function to be manually specified, assuming the surfaces locations
to be known. Alternatively, the superquadric could be automatically generated from point
cloud data.

7.6.2 Multi-contact planning

Based on: (i) the robot centroidal statics model000 = mggg + ∑i fff i

000 = ∑i(pppC,i − pppcom)× fff i + mmmi

, (7.43)

7.6 Heavy object pushing demonstrator 139

Figure 7.14 Overview of the control architecture. “Algorithm 1” is the multi-contact loco-
manipulation problem, whereas “Algorithm 2” is the contact-lifting problem, as described in the
text.

(ii) a continuous description of the environment (7.42), and (iii) Coulomb friction cones, it is
possible to set up two different nonlinear programming (NLP) problems.

The first one, referred to as multi-contact loco-manipulation problem, produces a quasi-
static pose, in terms of CoM position pppcom, contact positions stacked together into a vector
pppC, and contact forces FFFC, given a desired manipulation wrench at the CoM frame τττext, and
the environment superquadric SC.

The second one, referred to as contact-lifting problem, produces the CoM position pppcom

and the contact forces FFFC, which are needed to reach the final pose produced by the first
state, by lifting one leg at the time. In this case, a number of successive optimizations is
performed, every time fixing the feet positions and setting the force of the swing foot to zero.

Both problems can be obtained as sub-problems of the following NLP:

min
xxx

∥pppcom − pppdes
com∥2

2,WCoM
+∥pppC − pppdes

C ∥2
2,Wr +∥FFFC∥2

2,WF

subject to

mggg+GGGCDFFFC + τττext = 000

pppC,i ∈ SC

{FFFC,i, pppC,i} ∈ F (FFFC,i, pppC,i,µi)

u ≤ xxx ≤ u

, (7.44)

where (i) xxx =
[

pppcom pppC FFFC

]T
is the vector of optimization variables, (ii) GGGCD maps

contact forces to wrenches at the robot CoM according to (7.43), and (iii) F denotes the set
of contact forces satisfying friction constraints.

7.6 Heavy object pushing demonstrator 140

7.6.3 Contact Force Distribution

Building upon the work of Section 7.4, it is possible to formulate the following contact force
distribution problem in order to track the planned contact forces FFFC, while providing reactive
balance capabilities:

min
FFFC

∥FFFC −FFFC∥2
2

subject to

GGGFFFC = gggu(qqq)

bbbl ≤ DDDRRRC FFFC ≤ bbbu

(7.45)

The equality constraint ensures closed-loop balancing by employing (7.43) under quasi-
static assumptions. The grasp matrix GGG, see (7.36), and the floating-base gravitational term
gggu(qqq) ∈ R6 are computed w.r.t. the closed-loop joint coordinates, based on IMU feedback.
The inequality constraints account for polyhedral linearized friction cones:

Fz
C,i ≥ 0, |Fx,y

C,i | ≤ µ̃i Fz
C,i (7.46)

where µ̃i =
√

2
2 µi models the inner approximation of the conic Coulomb friction constraints F ,

and the RRRC rotation matrix maps contact forces from the world frame to the contact local
frame, whose z-axis is the outward normal unit vector.

Finally, the actuated torque τττ ff ∈ Rn to be sent to the joint-level controller as a torque
feed-forward term (see Fig. 7.14) is computed according to (7.35).

7.6.4 Experiments

The multi-contact planner is executed inside a ROS node running at 10 Hz. Nonlinear
optimizers have been implemented using IFOPT (Winkler, 2018), an Eigen-based C++
interface to the nonlinear programming solver IPOPT (Wächter and Biegler, 2006). To
decrease the nonlinearity of F (FFFC,i, pppC,i,µi) and speed up the solver computation, the
contact-surface normals nnnC were included in the set of decision variables. The considered
set of contact points {Ci} comprises the four legs, while a pure manipulation force of
800 N along the x-axis is applied at the two hands; the considered manipulation wrench

is τττext =
[
800 0 0 0 0 0

]T
. The environment superquadric axial curvature has been

chosen equal to PPP =
[
8 8 8

]T
, while the vectors CCC and RRR have been chosen based on an

approximate knowledge of the wall position w.r.t. the robot base (see Fig. 7.13).

7.7 Discussion 141

The multi-contact control layer runs at 100 Hz. The HIK is managed by the CartesI/O

framework within a ROS node, as described in Chapter 4. The considered SoT can be written
using the Math of Task (MoT) formalism as in Mingo Hoffman et al. (2017) as follows:



(
∑i

WorldT [XYZ]
Footi

)
/

(
WorldTCoM +World TLHand +

World TRHand
)
/

(
TPosture +∑i

WorldT [RPY]
Anklei

+World T [RPY]
Waist

)


<<

(
C Pos.

Lims
+C Vel.

Lims

)
, (7.47)

Here the + and / symbols are used to specify soft and hard priorities among tasks, respec-
tively. ATB denotes a Cartesian task of the frame B relative to the frame A, while the <<

symbol is used to specify constraints to the whole stack or to single levels of the stack. A
separate ROS node is dedicated to the contact force distribution problem for the considered
set of contact points, i.e. the four legs. The contact detection has been implemented by
evaluating the following logic condition:

sign
(

FFF(est)
C,i ·nnnC,i −Fcnt

)
(7.48)

where Fcnt > 0 is a scalar contact threshold. Since Centauro is not equipped with any
force/torque sensors mounted at the end-effectors, the estimated contact forces FFF(est)

C are
computed under quasi-static assumptions as:

FFF(est)
C = JJJ†T

C,a

(
ggga(qqq)− τττmes

)
(7.49)

being τττmes ∈ Rn the measured link-side joint torques and ggga(qqq) ∈ Rn the actuated grav-
itational term computed based on closed-loop joint coordinates, while † stands for the
Moore-Penrose pseudo-inverse. Finally, the joint-level controller runs at 2 kHz.

Snapshots from a complete experiment are shown in Fig. 7.15 (these results are also
illustrated in the video available at https://youtu.be/Xhn3MwHh1X0).

7.7 Discussion

In this work, a novel method to to formulate task-space inverse dynamics of floating-base
robots has been developed as a follow up of the work in (Mingo Hoffman et al., 2018). The
method consists in a two step optimization: during a first optimization stage, a fully-actuated
torque vector that realizes the desired tasks is found using (Mingo Hoffman et al., 2018);

https://youtu.be/Xhn3MwHh1X0

7.7 Discussion 142

Figure 7.15 Screenshots from a pushing experiment. In (a)-(f) Centauro reaches the final multi-contact
loco-manipulation pose produced by the first stage. This is done by iteratively applying the contact
lift planner in order to be able to lift and move the rear legs toward the planned contact locations
on the wall, see (d) and (f). In (g) the two arms approach the object in velocity control mode, until
contact is detected. In (h) the contact forces FFF(1)

C given by the post-optimization stage proposed in
Section 7.4 are applied to the leg end-effectors, while the manipulation force is distributed between the
arm end-effectors, effectively producing a forward motion of the object. Finally, in (i), (j) Centauro
returns to the initial pose

such a vector contains non-zero torques at the virtual joints, and is not directly applicable
to the robot. Hence, during a second optimization stage this wrench is mapped back to the
available contacts. The proposed method, in comparison to (Ott et al., 2011), has the main
advantage of avoiding to constrain the robot centroidal dynamics.

The method has been tested first in simulation using two floating base robots with
substantially different kinematic structure: the Centauro and the Coman+ robot. Preliminary
results are reported in the real Coman+ robot which is subject to small perturbations, and
a simplified architecture has been used on Centauro to implement a heavy object pushing
demonstrator, which exploits contacts in order to overcome friction constraints.

Future works will address first the implementation on the real hardware which, as
stated previously, at the moment presents some stability problems, very similar to the one
in Englsberger et al. (2018). Second, we would like to explore a single-stage torque-force
optimization, and compare it to Herzog et al. (2016). Finally, it is the author’s belief that this
method can be extended to other problem that can be treated by introducing virtual kinematic
chains, for example when contact forces to pick a box has to be computed.

Chapter 8

Conclusions

This work of thesis has dealt with the control of a novel robotic platform, a fully torque-
controlled, hybrid wheeled legged quadruped with humanoid upper body named Centauro.
Most of this work has therefore concerned the control design, development, and implementa-
tion of loco-manipulation capabilities, with the aim to explore most of the potential of such a
unique machine. The outcome of this research has been especially applied and validated on
tasks related to the CENTAURO H2020 project.

8.1 Summary of main achievements

During the first period of this work, a novel real-time robotic middleware named XBotCore

was developed, which has later been extensively used in all the successive contributions of
this thesis, and in all our lab as well. Because the XBotCore framework is configured from
standard description files such as URDF and SRDF, it was easily applied to other robots
which were developed inside the Humanoid and Human Centred Mechatronics (HHCM) lab,
such as Walkman, Coman, and the newer-generation Coman+, and to a Kuka LWR as well.
The XBotCore middleware is inspired by the OROCOS framework but aims at being simpler
to understand and maintain, and also at providing ready-to-use components for e.g. hardware
abstraction, high-level robot and model API, ROS integration, and others.

Later on, in an effort to standardize and improve the online Cartesian control capabilities
of Centauro, the CartesI/O framework was developed to be the standard Cartesian control
interface for HHCM users. CartesI/O offers both (i) programmatic interfaces, allowing
easy integration of a complex Cartesian controller into the client C++ code, and (ii) ROS
interfaces providing the capability to interact with a remote Cartesian control solver via
topics, services, and action. Furthermore, integration with XBotCore allows to run the solver

8.2 Dissemination and exploitation 144

inside a real-time plugin, i.e. the part of the middleware which is closest to the hardware, and
that suffers from the smallest jitter and delay. At the core of CartesI/O, different QP-based
hierarchical inverse kinematic strategies are offered based on the OpenSoT library, which
notably provides a real-time friendly implementation. Differently from the popular MoveIt
framework, our work targets online control, as opposed to motion planning.

Based on the aforementioned achievements, legged locomotion strategies for quadrupeds
were also studied. A novel walking gait generation scheme was proposed, which automati-
cally optimizes future footsteps and center of mass motions, in a joint fashion, while retaining
linearity of constraints. The resulting QP problem is faster to solve with respect to state of
the art non-linear approaches, and its global optimum is guaranteed to be found. Experiments
on real hardware have shown promising results, and demonstrated the transferability of
the proposed algorithm to the actual robot. Furthermore, a novel Cartesian controller for
wheeled-legged robots was introduced, which is based on an augmented kinematic model
that also entails a virtual reference frame acting as local world. The presented formulation
allows to fully exploit the motion potential of the robot, by freely mixing support polygon
adjustments (w.r.t. the local world), local trunk control, and manipulation w.r.t. the world.

Finally, interaction controllers exploiting the robot torque control capabilities have been
studied. Starting from a work which introduces a prioritized force controller for fixed
base robots (with application to Cartesian impedance control), an extension to floating base
systems was proposed, leveraging on the principle of contact force post-optimization. By
means of this strategy, it is possible to adapt a generic torque-based controller for a fixed
robot into a floating base controller. Results have been validated in simulation, whereas a
simplified control architecture based on the same principles was used for environment-aware
pushing of a heavy object. With respect to the state of the art, the presented method permits
to decouple the control design from the actuation part, without losing the possibility to have
the centroidal momentum variation to be produced automatically by the controller.

8.2 Dissemination and exploitation

The presented work of thesis has generated several outcomes, in the form of (i) scientific
dissemination, (ii) software packages, and (iii) deliverables and demonstrators for a number
of project beyond the CENTAURO EU. The most significant outcomes are summarized in
the remainder of this section.

8.2 Dissemination and exploitation 145

Articles as first author

1. Article on walking pattern generation for quadrupeds based on linear MPC (see
Chapter 6). Presented at IROS 2018, and published to the corresponding proceedings.

Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2018b). Quadrupedal walking

motion and footstep placement through linear model predictive control. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2267–2273.

IEEE

2. Architectural paper on the CartesI/O framework (see Chapter 4), describing its de-
sign, implementation and validation. Presented at ICRA 2019 and published to the
corresponding proceedings.

Laurenzi, A., Mingo Hoffman, E., Muratore, L., and Tsagarakis, N. G. (2019c). CartesI/O:

A ROS Based Real-Time Capable Cartesian Control Framework. In IEEE International

Conference on Robotics and Automation (ICRA)

3. Article on balancing control for legged robots based on post-optimization of contact
forces (see Chapter 7). Presented at Humanoids 2018, and published to the correspond-
ing proceedings.

Laurenzi, A., Hoffman, E. M., Polverini, M. P., and Tsagarakis, N. G. (2018a). Balancing

control through post-optimization of contact forces. In 2018 IEEE-RAS 18th International

Conference on Humanoid Robots (Humanoids), pages 320–326. IEEE

4. An integration work involving XBotCore, CartesI/O, and a perception pipeline was
presented as short paper to the IEEE IRC 2019 international conference, and published
to the corresponding proceedings.

Laurenzi, A., Kanoulas, D., Hoffman, E. M., Muratore, L., and Tsagarakis, N. (2019a).

Whole-body stabilization for visual-based box lifting with the COMAN+ robot. In 2019

Third IEEE International Conference on Robotic Computing (IRC), pages 445–446. IEEE

5. Article on the control of wheeled-legged platforms though an augmented kinematic
model (see Chapter 5)

Laurenzi, A., Mingo Hoffman, E., Parigi Polverini, M., and Tsagarakis, N. G. (2020). An

Augmented Kinematic Model for the Cartesian Control of the Robot CENTAURO. IEEE

Robotics and Automation Letters. Accepted, to appear

8.2 Dissemination and exploitation 146

Articles as second author (selection)

1. Architectural article on the XBotCore framework, in its early design version.

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,

N. G. (2017b). Xbotcore: A real-time cross-robot software platform. In Robotic Computing

(IRC), IEEE International Conference on, pages 77–80. IEEE

2. Journal extension of Muratore et al. (2017b):

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,

N. G. (2017a). On the design and evaluation of xbotcore, a cross-robot real-time software

framework. J. of Software Engineering for Robotics (JOSER), 8:164–170

3. Work on prioritized force control, with application to Cartesian impedance control (see
Chapter 7):

Mingo Hoffman, E., Laurenzi, A., Tsagarakis, N. G., and Caldwell, D. G. (2018). Multi-

priority cartesian impedance control based on quadratic programming optimization. In

IEEE International Conference on Robotics and Automation, ICRA

Other works

1. Application of the Cartesian controller presented in Chapter 5 to autonomous naviga-
tion and obstacle avoidance.

Raghavan, V. S., Kanoulas, D., Laurenzi, A., Caldwell, D. G., and Tsagarakis, N. G. (2019).

Variable Configuration Planner for Legged-Rolling Obstacle Negotiation Locomotion:

Application on the CENTAURO Robot. In 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE

2. Application of the CartesI/O online Cartesian control framework of Chapter 4 to the
robot tele-operation using cheap perception sensors

Rolley-Parnell, E.-J., Kanoulas, D., Laurenzi, A., Delhaisse, B., Rozo, L. D., Caldwell,

D. G., and Tsagarakis, N. G. (2018). Bi-manual articulated robot teleoperation using an

external rgb-d range sensor. 2018 15th International Conference on Control, Automation,

Robotics and Vision (ICARCV), pages 298–304

3. Application of mixed-integer programming to the contact force post-optimization
problem, presented in Chapter 7

8.2 Dissemination and exploitation 147

Parigi Polverini, M., Mingo Hoffman, E., Laurenzi, A., and Tsagarakis, N. (2019). Sparse

optimization of contact forces for balancing control of multi-legged humanoids. IEEE

Robotics and Automation Letters, 4(2):1117–1124

4. Application of CartesI/O to an hybrid limit-cycle and ZMP-based strategy for humanoid
walking

Ruscelli, F., Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2019). Synchronizing

Virtual Constraints and Preview Controller: a Walking Pattern Generator for the Humanoid

Robot COMAN+. In 2019 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE

5. Tele-interaction strategy based on autonomous impedance regulation

Muratore, L., Laurenzi, A., Mingo Hoffman, E., Baccelliere, L., Kashiri, N., Caldwell,

D. G., and Tsagarakis, N. G. (2018). Enhanced tele-interaction in unknown environments

using semi-autonomous motion and impedance regulation principles. In IEEE International

Conference on Robotics and Automation (ICRA)

6. Centauro robot overview paper

Kashiri, N., Baccelliere, L., Muratore, L., Laurenzi, A., Ren, Z., Hoffman, E. M., et al.

(2019). Centauro: A hybrid locomotion and high power resilient manipulation platform.

IEEE Robotics and Automation Letters, 4(2):1595–1602

7. CENTAURO H2020 project overview paper

Klamt, T., Schwarz, M., Lenz, C., Baccelliere, L., Buongiorno, D., Cichon, T., DiGuardo,

A., Droeschel, D., Gabardi, M., Kamedula, M., Kashiri, N., Laurenzi, A., Leonardis, D.,

Muratore, L., Pavlichenko, D., Periyasamy, A. S., Rodriguez, D., Solazzi, M., Frisoli, A.,

and Behnke, S. (2019). Remote mobile manipulation with the centauro robot: Full body

telepresence and autonomous operator assistance. Journal of Field Robotics

Tutorials, workshops and media

• the XBotCore framework, along with the OpenSoT and CartesI/O libraries were
presented during a tutorial session of the IROS 2018 international conference, named

“A hands-on tutorial on XBotCore: a real-time cross-robot and cross-framework software

architecture” 1; this tutorial was co-organized by the Author.

1XBotCore tutorial web page available at https://xbotcoretutorial.weebly.com/

https://xbotcoretutorial.weebly.com/

8.3 Future works 148

• The demonstrator of (Laurenzi et al., 2019b) was showcased during the presentation
event of the COMAN+ humanoid robot, at the Cogimon European Project booth at
ICRA 20192.

• Multiple demonstrators based on the works of Chapter 4 were showcased during the
MARS 2019 private event held by Amazon during March 2019.

• Multiple demonstrators based on the works of Chapter 4 were part of the official
presentation video of the Centauro robot3

Software packages

The XBotControl package, containing the XBotCore, OpenSoT and CartesI/O libraries has
been released4.

Funded projects

The scientific and technological outcomes of this work have contributed to the successful
results of the following funded projects:

• CENTAURO5 (H2020 project);

• CogIMon6 (H2020 project)

• Pholus7 (Italian Ministry of Defense project)

8.3 Future works

The present thesis has dealt with a variety of problems that arose while developing a control
system for a modern, torque-controlled legged robot which leverages on a novel, hybrid
locomotion concept, based on both wheeled maneuvers and stepping motions. Most of the
designed strategies have lead to successful experimental implementations and validations,
leaving for future work a more complete interaction and integration among the control

2https://cogimon.eu/cogimon-icra-exhibition
3The Centauro presentation video is available at https://www.youtube.com/watch?v=L7JssknlCvw
4https://github.com/ADVRHumanoids/XBotControl
5https://www.centauro-project.eu/
6https://www.cogimon-project.eu/
7https://www.difesa.it/Amministrazionetrasparente/segredifesa/navarm/Documents/7_

Divisione/DetermineAContrarre/20151028_55_PHOLUS.pdf

https://cogimon.eu/cogimon-icra-exhibition
https://www.youtube.com/watch?v=L7JssknlCvw
https://github.com/ADVRHumanoids/XBotControl
https://www.centauro-project.eu/
https://www.cogimon-project.eu/
https://www.difesa.it/Amministrazionetrasparente/segredifesa/navarm/Documents/7_Divisione/DetermineAContrarre/20151028_55_PHOLUS.pdf
https://www.difesa.it/Amministrazionetrasparente/segredifesa/navarm/Documents/7_Divisione/DetermineAContrarre/20151028_55_PHOLUS.pdf

8.3 Future works 149

system components. To this aim, it will be necessary to incorporate the vision system inside
the control loop; indeed, the variety of tasks that can be accomplished by a blind robot
is limited, no matter how complex and flexible the platform is. As a result, the Centauro
robot will be able to tackle more real-world tasks such as (i) dynamically overcome small
perceived obstacles with hybrid driving and stepping; (ii) stepping over complex terrain (e.g.
debris) while computing optimal contact forces in order e.g. to avoid slippage; (iii) improve
manipulation precision with online visual servoing; and others.

In addition to the integration between core components, all specific areas to which
this thesis has contributed must be considered as ongoing projects, rather than completed
activities. Some ideas for future contributions follow:

• The XBotCore middleware is designed to be compatible with different robotic plat-
forms using different fieldbus (e.g. CAN, Ethernet, ...), through the hardware abstrac-
tion layer component. However, if a custom component is added to the robot (e.g.
a foot pressure sensor, a gripper, ...), several manual steps are required in order to
make it available at all the architectural layers (real-time, ROS, ...), which usually
require altering some parts of the framework source code. As a future work, a plugin
architecture for custom devices could be designed, in order to better decouple the
framework from the specific robot components.

• The single-process design of the XBotCore middleware can be regarded as a weak
point, as user-defined real-time plugins, in the event of a failure, can crash the whole
system causing the loss of communication with the robot. To improve the system
robustness, a client-server multi-process scheme can be adopted, which exploits the
level of process insulation guaranteed by the operating system. Futhermore, the client
could even be run on a remote machine.

• Our Cartesian control framework CartesI/O could be extended to better support torque-
based controllers, by also providing interfaces to quantities related to interaction tasks,
such as forces and impedance levels.

• Prioritized online Cartesian control as implemented by CartesI/O could be exploited in
order to design a sampling-based motion planner for floating base systems, a capability
which currently is missing even from the popular MoveIt! framework.

• Walking pattern generation and compliant controllers could be merged, in order to
make the robot able to traverse complex terrains. Optimization of contact forces
applied to the legged locomotion would be beneficial as well. Finally, the Cartesian

8.3 Future works 150

controller of Chapter 5 could be employed to implement a mixed wheeled-legged
locomotion strategy.

• Concerning interaction control, further investigation will be needed in order to have
a robust implementation. To this aim, a reliable implementation of a floating-base
state estimation module will be needed. This will ultimately allow to go beyond the
simplified architecture of our heavy object pushing demonstrator, and fully exploit
prioritized, Cartesian space compliance.

As last remark, only limited attention has been devoted in this work to the matter of closed
loop robustness of the designed strategies w.r.t. to real world, non-ideal scenarios. Despite
most of the achieved results have been experimentally validated in the laboratory, or in other
simplified settings, there is a need to implement more effective feedback strategies in order
to cope with the uncertainties of a fully unstructured environment.

References

Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., and Yoon, W.-K. (2005). Rt-middleware: dis-
tributed component middleware for rt (robot technology). In 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3933–3938. IEEE.

Baccelliere, L. et al. (2017a). Development of a human size and strength compliant bi-manual
platform for realistic heavy manipulation tasks. In Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on, pages 5594–5601. IEEE.

Baccelliere, L., Kashiri, N., Muratore, L., Laurenzi, A., Kamedula, M., Margan, A., Cordasco,
S., Malzahn, J., and Tsagarakis, N. G. (2017b). Development of a human size and strength
compliant bi-manual platform for realistic heavy manipulation tasks. In Intelligent Robots
and Systems (IROS), IEEE/RSJ International Conference on, pages 5594–5601.

Baerlocher, P. and Boulic, R. (1998). Task-priority formulations for the kinematic control
of highly redundant articulated structures. In Proceedings. 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Appli-
cations (Cat. No.98CH36190), volume 1, pages 323–329 vol.1.

Barasuol, V., Buchli, J., Semini, C., Frigerio, M., De Pieri, E. R., and Caldwell, D. G. (2013).
A reactive controller framework for quadrupedal locomotion on challenging terrain. In
IEEE International Conference on Robotics and Automation (ICRA), pages 2554–2561.

Bischoff, R., Kurth, J., Schreiber, G., Koeppe, R., Albu-Schäffer, A., Beyer, A., Eiberger,
O., Haddadin, S., Stemmer, A., Grunwald, G., et al. (2010). The kuka-dlr lightweight
robot arm-a new reference platform for robotics research and manufacturing. In Robotics
(ISR), 2010 41st international symposium on and 2010 6th German conference on robotics
(ROBOTIK), pages 1–8. VDE.

Bjelonic, M., Bellicoso, C. D., de Viragh, Y., Sako, D., Tresoldi, F. D., Jenelten, F., and
Hutter, M. (2019). Keep rollin’—whole-body motion control and planning for wheeled
quadrupedal robots. IEEE Robotics and Automation Letters, 4(2):2116–2123.

Brown, J. H. (2012). How fast is fast enough? choosing between xenomai and linux for
real-time applications. Twelfth Real-Time Linux Workshop.

Bruyninckx, H. (2002). OROCOS: design and implementation of a robot control software
framework. Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatron.

Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., and Schaal, S. (2009). Compliant
quadruped locomotion over rough terrain. In Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on, pages 814–820. IEEE.

References 152

Caron, S. and Nakamura, Y. (2015). Teleoperation system design of valve turning motions in
degraded communication conditions. The 33-rd Annual Conference of the RSJ.

Chitta, S., Sucan, I., and Cousins, S. (2012). Moveit! IEEE Robotics & Automation Magazine,
19(1):18–19.

Dehio, N., Smith, J., Wigand, D. L., Xin, G., Lin, H., Steil, J. J., and Mistry, M. (2018). Mod-
eling and control of multi-arm and multi-leg robots: Compensating for object dynamics
during grasping. In IEEE International Conference on Robotics and Automation (ICRA),
pages 294–301.

Deits, R. and Tedrake, R. (2014). Footstep planning on uneven terrain with mixed-integer
convex optimization. In IEEE-RAS International Conference on Humanoid Robots (Hu-
manoids), pages 279–286.

Del Prete, A. (2018). Joint position and velocity bounds in discrete-time acceleration/torque
control of robot manipulators. IEEE Robotics and Automation Letters, 3(1):281–288.

Diankov, R. (2010). Automated Construction of Robotic Manipulation Programs. PhD thesis,
Carnegie Mellon University, Robotics Institute.

Diedam, H., Dimitrov, D., Wieber, P.-B., Mombaur, K., and Diehl, M. (2008). Online walking
gait generation with adaptive foot positioning through linear model predictive control. In
Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
pages 1121–1126. IEEE.

Elkady, A. and Sobh, T. (2012). Robotics middleware: A comprehensive literature survey
and Attribute-Based bibliography. Journal of Robotics, 2012.

Englsberger, J., Mesesan, G., Werner, A., and Ott, C. (2018). Torque-based dynamic walking
- A long way from simulation to experiment. In Robotics and Automation (ICRA), 2012
IEEE International Conference on.

Englsberger, J., Ott, C., Roa, M. A., Albu-Schäffer, A., and Hirzinger, G. (2011). Bipedal
walking control based on capture point dynamics. In 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4420–4427.

Escande, A., Mansard, N., and Wieber, P.-B. (2014a). Hierarchical quadratic programming:
Fast online humanoid-robot motion generation. The International Journal of Robotics
Research, 33(7):1006–1028.

Escande, A., Mansard, N., and Wieber, P.-B. (2014b). Hierarchical quadratic programming:
Fast online humanoid-robot motion generation. The International Journal of Robotics
Research, 33(7):1006–1028.

Escande, A., Mansard, N., and Wieber, P.-B. (2014c). Hierarchical quadratic programming:
Fast online humanoid-robot motion generation. The International Journal of Robotics
Research, 33(7):1006–1028.

Fallon, M., Kuindersma, S., Karumanchi, S., Antone, M., Schneider, T., Dai, H., D’Arpino,
C. P., Deits, R., DiCicco, M., Fourie, D., et al. (2015). An architecture for online affordance-
based perception and whole-body planning. Journal of Field Robotics, 32(2):229–254.

References 153

Featherstone, R. (2010). A beginner’s guide to 6-d vectors (part 1). IEEE Robotics Automation
Magazine, 17(3):83–94.

Featherstone, R. (2010). A beginner’s guide to 6d vectors (part 2). IEEE Robotics Automation
Magazine, 17:88–99.

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and Diehl, M. (2014a). Qpoases: a
parametric active-set algorithm for quadratic programming. Mathematical Programming
Computation, 6(4):327–363.

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and Diehl, M. (2014b). qpOASES:
a parametric active-set algorithm for quadratic programming. Math. Program. Comput.,
6(4):327–363.

Flacco, F. and De Luca, A. (2015). Discrete-time redundancy resolution at the velocity
level with acceleration/torque optimization properties. Robotics and Autonomous Systems,
70:191–201.

Flacco, F., Luca, A. D., and Khatib, O. (2015). Control of redundant robots under hard joint
constraints: Saturation in the null space. IEEE Transactions on Robotics, 31:637–654.

Geilinger, M., Poranne, R., Desai, R., Thomaszewski, B., and Coros, S. (2018). Skaterbots:
Optimization-based design and motion synthesis for robotic creatures with legs and wheels.
ACM Transactions on Graphics (TOG), 37(4):160.

Gossow, D., Leeper, A., Hershberger, D., and Ciocarlie, M. T. (2011). Interactive markers:
3-d user interfaces for ros applications [ros topics]. IEEE Robot. Automat. Mag., 18:14–15.

Henze, B., Dietrich, A., and Ott, C. (2016a). An approach to combine balancing with hierar-
chical whole-body control for legged humanoid robots. IEEE Robotics and Automation
Letters, 1:700–707.

Henze, B., Dietrich, A., and Ott, C. (2016b). An approach to combine balancing with hierar-
chical whole-body control for legged humanoid robots. IEEE Robotics and Automation
Letters, 1(2):700–707.

Henze, B., Dietrich, A., Roa, M. A., and Ott, C. (2017). Multi-contact balancing of humanoid
robots in confined spaces: Utilizing knee contacts. In Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on, pages 697–704. IEEE.

Herdt, A., Diedam, H., Wieber, P.-B., Dimitrov, D., Mombaur, K., and Diehl, M. (2010a).
Online walking motion generation with automatic footstep placement. Advanced Robotics,
24(5-6):719–737.

Herdt, A., Perrin, N., and Wieber, P.-B. (2010b). Walking without thinking about it. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages
190–195. IEEE.

Herzog, A., Righetti, L., Grimminger, F., Pastor, P., and Schaal, S. (2014). Balancing
experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
pages 981–988. IEEE.

References 154

Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., and Righetti, L. (2016).
Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid.
Autonomous Robots, 40(3):473–491.

Hoffman, E. M., Laurenzi, A., Muratore, L., Caldwell, D. G., and Tsagarakis, N. G. (2018).
Multi-priority cartesian impedance control based on quadratic programming optimization.
In 2018 IEEE International Conference on Robotics and Automation (ICRA).

Hoffman, E. M., Rocchi, A., Laurenzi, A., and Tsagarakis, N. G. (2017). Robot control
for dummies: Insights and examples using opensot. In 17th IEEE-RAS International
Conference on Humanoid Robotics, 2017, pages 736–741.

Hogan, N. (1985). Impedance control - An approach to manipulation. I - Theory. II -
Implementation. III - Applications. ASME Transactions Journal of Dynamic Systems and
Measurement Control B, 107:1–24.

Houliston, T., Fountain, J., Lin, Y., Mendes, A., and others (2016). NUClear: A loosely
coupled software architecture for humanoid robot systems. Frontiers in Robotics.

Hyon, S.-H. (2009). Compliant terrain adaptation for biped humanoids without measuring
ground surface and contact forces. IEEE Transactions on Robotics, 25(1):171–178.

Hyon, S.-H., Hale, J. G., Cheng, G., et al. (2007). Full-body compliant human-humanoid
interaction: Balancing in the presence of unknown external forces. IEEE Trans. Robotics,
23(5):884–898.

Jeongsoo, L., Jungho, L., and Jun-Ho, O. (2014). Development of robot software framework
podo: Toward multi-processes and multi-users. Workshop on software architectures and
methodologies for developing humanoid robots, IEEE HUMANOIDS 2014.

Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., Abeles, P., Stephen,
D., Mertins, N., Lesman, A., Carff, J., Rifenburgh, W., Kaveti, P., Straatman, W., Smith, J.,
Griffioen, M., Layton, B., de Boer, T., Koolen, T., Neuhaus, P., and Pratt, J. (2015). Team
IHMC’s lessons learned from the DARPA robotics challenge trials. J. Field Robotics,
32(2):192–208.

Kajita, S., Hirukawa, H., Harada, K., and Yokoi, K. (2014). Introduction to humanoid
robotics, volume 101. Springer.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H.
(2003). Biped walking pattern generation by using preview control of zero-moment point.
In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference
on, volume 2, pages 1620–1626. IEEE.

Kamedula, M., Kashiri, N., and Tsagarakis, N. G. (2018). On the Kinematics of Wheeled
Motion Control of a Hybrid Wheeled-Legged CENTAURO robot. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2426–2433.

Kanoun, O., Lamiraux, F., and Wieber, P.-B. (2011). Kinematic control of redundant manip-
ulators: Generalizing the task-priority framework to inequality task. IEEE Transactions
on Robotics, 27(4):785–792.

References 155

Kashiri, N., Baccelliere, L., Muratore, L., Laurenzi, A., Ren, Z., Hoffman, E. M., et al.
(2019). Centauro: A hybrid locomotion and high power resilient manipulation platform.
IEEE Robotics and Automation Letters, 4(2):1595–1602.

Kashiri, N., Baccelliere, L., Muratore, L., Laurenzi, A., Ren, Z., Hoffman, E. M., Kamedula,
M., Rigano, G. F., Malzahn, J., Cordasco, S., Guria, P., Margan, A., and Tsagarakis, N. G.
(2019). Centauro: A hybrid locomotion and high power resilient manipulation platform.
IEEE Robotics and Automation Letters, 4(2):1595–1602.

Khatib, O. (1987). A unified approach for motion and force control of robot manipulators:
The operational space formulation. IEEE Journal on Robotics and Automation, 3(1):43–53.

Khatib, O., Sentis, L., Park, J., and Warren, J. (2004). Whole-body dynamic behavior and
control of human-like robots. International Journal of Humanoid Robotics, 1(01):29–43.

Klamt, T., Schwarz, M., Lenz, C., Baccelliere, L., Buongiorno, D., Cichon, T., DiGuardo,
A., Droeschel, D., Gabardi, M., Kamedula, M., Kashiri, N., Laurenzi, A., Leonardis, D.,
Muratore, L., Pavlichenko, D., Periyasamy, A. S., Rodriguez, D., Solazzi, M., Frisoli, A.,
and Behnke, S. (2019). Remote mobile manipulation with the centauro robot: Full body
telepresence and autonomous operator assistance. Journal of Field Robotics.

Koolen, T., de Boer, T., Rebula, J., Goswami, A., and Pratt, J. (2012). Capturability-based
analysis and control of legged locomotion, part 1: Theory and application to three simple
gait models. The International Journal of Robotics Research, 31(9):1094–1113.

Kröger, T. (2011). Opening the door to new sensor-based robot applications—the reflexxes
motion libraries. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 1–4. IEEE.

Lanari, L., Hutchinson, S., and Marchionni, L. (2014). Boundedness issues in planning of
locomotion trajectories for biped robots. In Humanoid Robots (Humanoids), 2014 14th
IEEE-RAS International Conference on, pages 951–958. IEEE.

Laurenzi, A., Hoffman, E. M., Polverini, M. P., and Tsagarakis, N. G. (2018a). Balancing
control through post-optimization of contact forces. In 2018 IEEE-RAS 18th International
Conference on Humanoid Robots (Humanoids), pages 320–326. IEEE.

Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2018b). Quadrupedal walking motion
and footstep placement through linear model predictive control. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2267–2273.
IEEE.

Laurenzi, A., Kanoulas, D., Hoffman, E. M., Muratore, L., and Tsagarakis, N. (2019a).
Whole-body stabilization for visual-based box lifting with the COMAN+ robot. In 2019
Third IEEE International Conference on Robotic Computing (IRC), pages 445–446. IEEE.

Laurenzi, A., Kanoulas, D., Mingo Hoffman, E., Muratore, L., and Tsagarakis, N. (2019b).
Whole-Body Stabilization for Visual-based Box Lifting with the COMAN+ Robot.

Laurenzi, A., Mingo Hoffman, E., Muratore, L., and Tsagarakis, N. G. (2019c). CartesI/O:
A ROS Based Real-Time Capable Cartesian Control Framework. In IEEE International
Conference on Robotics and Automation (ICRA).

References 156

Laurenzi, A., Mingo Hoffman, E., Parigi Polverini, M., and Tsagarakis, N. G. (2020). An
Augmented Kinematic Model for the Cartesian Control of the Robot CENTAURO. IEEE
Robotics and Automation Letters. Accepted, to appear.

Lee, S.-H. and Goswami, A. (2010). Ground reaction force control at each foot: A momentum-
based humanoid balance controller for non-level and non-stationary ground. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 3157–
3162. IEEE.

Lee, S.-H. and Goswami, A. (2012). A momentum-based balance controller for humanoid
robots on non-level and non-stationary ground. Autonomous Robots, 33(4):399–414.

Lim, J., Lee, I., Shim, I., Jung, H., Joe, H. M., Bae, H., Sim, O., Oh, J., Jung, T., Shin, S.,
Joo, K., Kim, M., Lee, K., Bok, Y., Choi, D.-G., Cho, B., Kim, S., Heo, J., Kim, I., Lee, J.,
Kwon, I. S., and Oh, J.-H. (2017). Robot System of DRC-HUBO+ and Control Strategy
of Team KAIST in DARPA Robotics Challenge Finals: Robot System of DRC-HUBO+
and Control Strategy of Team KAIST. Journal of Field Robotics, 34(4):802–829.

Liu, M., Tan, Y., and Padois, V. (2015). Generalized hierarchical control. Auton. Robots,
pages 1–15.

Ma, S., Tomiyama, T., and Wada, H. (2005). Omnidirectional static walking of a quadruped
robot. IEEE Transactions on Robotics, 21(2):152–161.

Maciejewski, A. and Klein, C. (1985). Obstacle avoidance for kinematically redundant
manipulators in dynamically varying environments. The International Journal of Robotics
Research, 4.

Mansard, N. (2012). A dedicated solver for fast operational-space inverse dynamics. In
Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 4943–
4949. IEEE.

McGhee, R. B. and Frank, A. A. (1968). On the stability properties of quadruped creeping
gaits. Mathematical Biosciences, 3:331–351.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: Yet another robot platform. Interna-
tional Journal on Advanced Robotics Systems.

Mingo Hoffman, E., Laurenzi, A., Tsagarakis, N. G., and Caldwell, D. G. (2018). Multi-
priority cartesian impedance control based on quadratic programming optimization. In
IEEE International Conference on Robotics and Automation, ICRA.

Mingo Hoffman, E., Rocchi, A., G. Tsagarakis, N., and G. Caldwell, D. (2015). Opensot: a
whole-body control library for the compliant humanoidrobot coman. In IEEE International
Conference on Robotics and Automation (ICRA), pages 6248–6253.

Mingo Hoffman, E., Rocchi, A., Laurenzi, A., and Tsagarakis, N. G. (2017). Robot control
for dummies: Insights and examples using opensot. In 17th IEEE-RAS International
Conference on Humanoid Robots, Humanoids, pages 736–741.

References 157

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,
N. G. (2017a). On the design and evaluation of xbotcore, a cross-robot real-time software
framework. J. of Software Engineering for Robotics (JOSER), 8:164–170.

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,
N. G. (2017b). Xbotcore: A real-time cross-robot software platform. In Robotic Computing
(IRC), IEEE International Conference on, pages 77–80. IEEE.

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,
N. G. (2017c). Xbotcore: A real-time cross-robot software platform. In 2017 First IEEE
International Conference on Robotic Computing (IRC), pages 77–80.

Muratore, L., Laurenzi, A., Hoffman, E. M., Rocchi, A., Caldwell, D. G., and Tsagarakis,
N. G. (2017d). Xbotcore: A real-time cross-robot software platform. In 2017 First IEEE
International Conference on Robotic Computing (IRC), pages 77–80.

Muratore, L., Laurenzi, A., Mingo Hoffman, E., Baccelliere, L., Kashiri, N., Caldwell, D. G.,
and Tsagarakis, N. G. (2018). Enhanced tele-interaction in unknown environments using
semi-autonomous motion and impedance regulation principles. In IEEE International
Conference on Robotics and Automation (ICRA).

Murphy, R. R. (2014). Disaster Robotics. The MIT Press.

Murphy, R. R., Tadokoro, S., and Kleiner, A. (2016). Disaster Robotics, pages 1577–1604.
Springer International Publishing, Cham.

Nakanishi, J., Cory, R., Mistry, M., Peters, J., and Schaal, S. (2008). Operational space
control: A theoretical and empirical comparison. The International Journal of Robotics
Research, 27(6):737–757.

Nakaoka, S., Kajita, S., and Yokoi, K. (2010). Intuitive and flexible user interface for creating
whole body motions of biped humanoid robots. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 1675–1682. IEEE.

Natale, L., Paikan, A., Randazzo, M., and Domenichelli, D. E. (2016). The icub software
architecture: Evolution and lessons learned. Frontiers in Robotics and AI, 3:24.

Neunert, M., Farshidian, F., Winkler, A. W., and Buchli, J. (2017). Trajectory optimiza-
tion through contacts and automatic gait discovery for quadrupeds. IEEE Robotics and
Automation Letters, 2(3):1502–1509.

Ott, C. (2008). Cartesian impedance control of redundant and flexible-joint robots. Springer
tracts in advanced robotics. Springer, Berlin.

Ott, C., Roa, M. A., and Hirzinger, G. (2011). Posture and balance control for biped robots
based on contact force optimization. In Humanoid Robots (Humanoids), 2011 11th
IEEE-RAS International Conference on, pages 26–33. IEEE.

Parigi Polverini, M., Mingo Hoffman, E., Laurenzi, A., and Tsagarakis, N. (2019). Sparse
optimization of contact forces for balancing control of multi-legged humanoids. IEEE
Robotics and Automation Letters, 4(2):1117–1124.

References 158

Platt Jr, R., Abdallah, M. E., and Wampler, C. W. (2010). Multi-priority cartesian impedance
control. In Robotics: Science and Systems.

Pongas, D., Mistry, M., and Schaal, S. (2007). A robust quadruped walking gait for traversing
rough terrain. In Robotics and Automation, 2007 IEEE International Conference on, pages
1474–1479. IEEE.

Ponton, B., Herzog, A., Schaal, S., and Righetti, L. (2016). A convex model of humanoid
momentum dynamics for multi-contact motion generation. In IEEE-RAS International
Conference on Humanoid Robots (Humanoids), pages 842–849.

Pratt, G. and Williamson, M. (1995). Series elastic actuators. In IEEE/RSJ International
Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative
Robots, volume 1, pages 399–406.

Pratt, J., Chew, C.-M., Torres, A., Dilworth, P., and Pratt, G. (2001). Virtual model control:
An intuitive approach for bipedal locomotion. The International Journal of Robotics
Research, 20(2):129–143.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng,
A. Y. (2009a). Ros: an open-source robot operating system. In ICRA Workshop on Open
Source Software.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
and Ng, A. (2009b). ROS: an open-source Robot Operating System. In Proc. of the IEEE
Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics, Kobe,
Japan.

Raghavan, V. S., Kanoulas, D., Laurenzi, A., Caldwell, D. G., and Tsagarakis, N. G. (2019).
Variable Configuration Planner for Legged-Rolling Obstacle Negotiation Locomotion:
Application on the CENTAURO Robot. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.

Rigano, G. F., Muratore, L., Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2018).
A mixed real-time robot hardware abstraction layer (r-hal). Encyclopedia with Semantic
Computing and Robotic Intelligence.

Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., and Schaal, S. (2013). Optimal
distribution of contact forces with inverse-dynamics control. The International Journal of
Robotics Research, 32(3):280–298.

Righetti, L., Buchli, J., Mistry, M., and Schaal, S. (2011). Inverse dynamics control of
floating-base robots with external constraints: A unified view. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pages 1085–1090. IEEE.

Rolley-Parnell, E.-J., Kanoulas, D., Laurenzi, A., Delhaisse, B., Rozo, L. D., Caldwell, D. G.,
and Tsagarakis, N. G. (2018). Bi-manual articulated robot teleoperation using an external
rgb-d range sensor. 2018 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV), pages 298–304.

References 159

Ruscelli, F., Laurenzi, A., Hoffman, E. M., and Tsagarakis, N. G. (2019). Synchronizing
Virtual Constraints and Preview Controller: a Walking Pattern Generator for the Humanoid
Robot COMAN+. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., and Fourquet, J.-Y. (2013a). Dy-
namic whole-body motion generation under rigid contacts and other unilateral constraints.
IEEE Transactions on Robotics, 29(2):346–362.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., and Fourquet, J.-Y. (2013b). Dy-
namic whole-body motion generation under rigid contacts and other unilateral constraints.
IEEE Transactions on Robotics, 29(2):346–362.

Saccon, A., Traversaro, S., Nori, F., and Nijmeijer, H. (2017). On centroidal dynamics
and integrability of average angular velocity. IEEE Robotics and Automation Letters,
2(2):943–950.

Schwarz, M., Rodehutskors, T., et al. (2016). Nimbro rescue: Solving disaster-response tasks
with the mobile manipulation robot momaro. Journal of Field Robotics, 34(2):400–425.

Schwarz, M., Rodehutskors, T., Schreiber, M., and Behnke, S. (2016). Hybrid driving-
stepping locomotion with the wheeled-legged robot momaro. In IEEE International
Conference on Robotics and Automation (ICRA), pages 5589–5595.

Scianca, N., Cognetti, M., De Simone, D., Lanari, L., and Oriolo, G. (2016). Intrinsically
stable mpc for humanoid gait generation. In Humanoid Robots (Humanoids), 2016
IEEE-RAS 16th International Conference on, pages 601–606. IEEE.

Sentis, L. and Khatib, O. (2005). Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives. International Journal of Humanoid Robotics, 2(04):505–
518.

Sentis, L., Park, J., and Khatib, O. (2010). Compliant control of multicontact and center-of-
mass behaviors in humanoid robots. IEEE Transactions on robotics, 26(3):483–501.

Siciliano, B., Sciavicco, L., and Villani, L. (2009). Robotics : modelling, planning and
control. Advanced Textbooks in Control and Signal Processing. Springer, London. 013-
81159.

Siciliano, B. and Slotine, J. J. (1991). A general framework for managing multiple tasks in
highly redundant robotic systems. Fifth International Conference on Advanced Robotics

’Robots in Unstructured Environments, pages 1211–1216 vol.2.

Smith, J., Stephen, D., Lesman, A., and Pratt, J. (2014). Real-time control of humanoid robots
using openjdk. In Proceedings of the 12th International Workshop on Java Technologies
for Real-time and Embedded Systems, JTRES ’14, pages 29:29–29:36, New York, NY,
USA. ACM.

Sreenath, K., Park, H.-W., Poulakakis, I., and Grizzle, J. W. (2011). A compliant hybrid
zero dynamics controller for stable, efficient and fast bipedal walking on mabel. The
International Journal of Robotics Research, 30(9):1170–1193.

References 160

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2017). OSQP: An operator
splitting solver for quadratic programs. ArXiv e-prints.

Stephens, B. J. and Atkeson, C. G. (2010). Dynamic balance force control for compliant
humanoid robots. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 1248–1255. IEEE.

Şucan, I. A., Moll, M., and Kavraki, L. E. (2012). The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19(4):72–82. http://ompl.kavrakilab.org.

Tahara, K., Arimoto, S., and Yoshida, M. (2010). Dynamic object manipulation using a
virtual frame by a triple soft-fingered robotic hand. In IEEE International Conference on
Robotics and Automation (ICRA), pages 4322–4327.

Tsagarakis, N. G., Caldwell, D. G., et al. (2017a). Walkman: A high performance humanoid
platform for realistic environments. Journal of Field Robotics, 34(7):1225–1259.

Tsagarakis, N. G., Caldwell, D. G., Negrello, F., Choi, W., Baccelliere, L., Loc, V., Noorden,
J., Muratore, L., Margan, A., Cardellino, A., et al. (2017b). Walk-man: A high-performance
humanoid platform for realistic environments. Journal of Field Robotics, 34(7):1225–1259.

Tsagarakis, N. G., Morfey, S., Cerda, G. M., Zhibin, L., and Caldwell, D. G. (2013).
Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control.
In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages
673–678. IEEE.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57.

Wang, Y., Smith, C., Karayiannidis, Y., and Ögren, P. (2015). Cooperative control of a serial-
to-parallel structure using a virtual kinematic chain in a mobile dual-arm manipulation
application. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2372–2379.

Wieber, P.-B. (2002). On the stability of walking systems. In Proceedings of the International
Workshop on Humanoid and Human Friendly Robotics, Tsukuba, Japan.

Wieber, P.-B. (2006a). Holonomy and Nonholonomy in the Dynamics of Articulated Motion,
pages 411–425. Springer Berlin Heidelberg, Berlin, Heidelberg.

Wieber, P.-B. (2006b). Holonomy and nonholonomy in the dynamics of articulated motion.
In Fast motions in biomechanics and robotics, pages 411–425. Springer.

Wieber, P.-B. (2006c). Trajectory free linear model predictive control for stable walking in the
presence of strong perturbations. In Humanoid Robots, 2006 6th IEEE-RAS International
Conference on, pages 137–142. IEEE.

Wieber, P.-B. (2008). Viability and predictive control for safe locomotion. In Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages
1103–1108. IEEE.

http://ompl.kavrakilab.org

References 161

Wieber, P.-B., Tedrake, R., and Kuindersma, S. (2016). Modeling and control of legged
robots. Springer Handbook of Robotics, pages 1203–1234.

Winkler, A. W. (2018). Ifopt - A modern, light-weight, Eigen-based C++ interface to
Nonlinear Programming solvers Ipopt and Snopt.

Winkler, A. W., Bellicoso, C. D., Hutter, M., and Buchli, J. (2018). Gait and trajectory
optimization for legged systems through phase-based end-effector parameterization. IEEE
Robotics and Automation Letters.

Winkler, A. W., Farshidian, F., Neunert, M., Pardo, D., and Buchli, J. (2017). Online walking
motion and foothold optimization for quadruped locomotion. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 5308–5313. IEEE.

Winkler, A. W., Mastalli, C., Havoutis, I., Focchi, M., Caldwell, D. G., and Semini, C. (2015).
Planning and execution of dynamic whole-body locomotion for a hydraulic quadruped on
challenging terrain. 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 5148–5154.

Wu, Q., Liu, C., Zhang, J., and Chen, Q. (2009). Survey of locomotion control of legged
robots inspired by biological concept. Science in China Series F: Information Sciences,
52(10):1715–1729.

Zhou, C., Li, Z., Wang, X., Tsagarakis, N., and Caldwell, D. (2016). Stabilization of bipedal
walking based on compliance control. Autonomous Robots, 40(6):1041–1057.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Thesis overview and objectives
	1.2 Disaster-response robotics
	1.2.1 The Fukushima-Daiichi disaster

	1.3 The Centauro robot
	1.4 Contribution
	1.5 Contributed papers

	2 Background on Cartesian Control
	2.1 Reference frames representation
	2.1.1 Motion of rigid bodies
	2.1.2 Spatial algebra

	2.2 Robot kinematics
	2.2.1 Floating base robots

	2.3 Inverse kinematics
	2.3.1 Orientation tasks
	2.3.2 Online inverse kinematics
	2.3.3 Pseudo-inverse
	2.3.4 Singular value decomposition
	2.3.5 Connection with NLP-based IK

	2.4 Robot dynamics
	2.4.1 Task-space dynamics
	2.4.2 Centroidal dynamics
	2.4.3 Contact dynamics
	2.4.4 Motion feasibility
	2.4.5 ZMP stability criterion

	I Software architecture
	3 Real-time robotic middleware
	3.1 Motivation and related works
	3.2 Hardware abstraction
	3.3 Real-time control
	3.4 Non real-time control
	3.4.1 ROS integration

	3.5 High level interfaces
	3.6 Conclusions

	4 Cartesian control
	4.1 Motivation and related works
	4.2 Architecture and implementation
	4.3 The OpenSoT library
	4.4 Programmatic interface
	4.5 ROS interface
	4.6 Real-time integration
	4.7 Validation
	4.8 Discussion

	II Locomotion control
	5 Wheeled-legged motion control
	5.1 Introduction
	5.2 Background on Cartesian control
	5.2.1 Kinematic modeling
	5.2.2 QP-based inverse kinematics
	5.2.3 Hierarchical inverse kinematics
	5.2.4 Projector-based unconstrained solution
	5.2.5 Nullspace-based unconstrained solution
	5.2.6 Constrained solutions

	5.3 Controller design
	5.3.1 Trunk-based control
	5.3.2 Horizontal frame-based control
	5.3.3 Virtual local frame
	5.3.4 Discussion

	5.4 Pure rolling condition
	5.4.1 Steering control
	5.4.2 Dealing with joint limits
	5.4.3 Integration into a stack of tasks

	5.5 Experiments
	5.6 Discussion

	6 Legged locomotion
	6.1 Introduction
	6.2 Related works
	6.3 Simplified models
	6.4 LMPC-based gait generation
	6.4.1 Classical approach
	6.4.2 Proposed decomposition
	6.4.3 Feasibility constraint
	6.4.4 Auxiliary state initialization
	6.4.5 Parameters choice

	6.5 Implementation and experiments
	6.6 Discussion

	III Interaction control
	7 Prioritized force control
	7.1 Introduction and related works
	7.2 Prioritized force control
	7.2.1 Pseudo-inverse free formulation
	7.2.2 Low priority joint space task
	7.2.3 Prioritized QP Formulation
	7.2.4 Joint Torque Limits

	7.3 Validation
	7.3.1 Gazebo: Torque Limits
	7.3.2 Gazebo: Cartesian Circular Trajectory
	7.3.3 Robot: Cartesian Circular Trajectory

	7.4 Extension to floating base systems
	7.4.1 Post-optimization of contact forces
	7.4.2 Discussion

	7.5 Implementation and experiments
	7.5.1 Gazebo simulations
	7.5.2 Preliminary Experiments on the Coman+ platform

	7.6 Heavy object pushing demonstrator
	7.6.1 Continuous environment description
	7.6.2 Multi-contact planning
	7.6.3 Contact Force Distribution
	7.6.4 Experiments

	7.7 Discussion

	8 Conclusions
	8.1 Summary of main achievements
	8.2 Dissemination and exploitation
	8.3 Future works

	References

