1,178 research outputs found

    Robust Multi-Criteria Optimal Fuzzy Control of Continuous-Time Nonlinear Systems

    Get PDF
    This paper presents a novel fuzzy control design of continuous-time nonlinear systems with multiple performance criteria. The purpose behind this work is to improve the traditional fuzzy controller performance to satisfy several performance criteria simultaneously to secure quadratic optimality with inherent stability property together with dissipativity type of disturbance reduction. The Takagi– Sugeno fuzzy model is used in our control system design. By solving the linear matrix inequality at each time step, the control solution can be found to satisfy the mixed performance criteria. The effectiveness of the proposed technique is demonstrated by simulation of the control of the inverted pendulum system

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Integral MRAC with Minimal Controller Synthesis and bounded adaptive gains: The continuous-time case

    Get PDF
    Model reference adaptive controllers designed via the Minimal Control Synthesis (MCS) approach are a viable solution to control plants affected by parameter uncertainty, unmodelled dynamics, and disturbances. Despite its effectiveness to impose the required reference dynamics, an apparent drift of the adaptive gains, which can eventually lead to closed-loop instability or alter tracking performance, may occasionally be induced by external disturbances. This problem has been recently addressed for this class of adaptive algorithms in the discrete-time case and for square-integrable perturbations by using a parameter projection strategy [1]. In this paper we tackle systematically this issue for MCS continuous-time adaptive systems with integral action by enhancing the adaptive mechanism not only with a parameter projection method, but also embedding a s-modification strategy. The former is used to preserve convergence to zero of the tracking error when the disturbance is bounded and L2, while the latter guarantees global uniform ultimate boundedness under continuous L8 disturbances. In both cases, the proposed control schemes ensure boundedness of all the closed-loop signals. The strategies are numerically validated by considering systems subject to different kinds of disturbances. In addition, an electrical power circuit is used to show the applicability of the algorithms to engineering problems requiring a precise tracking of a reference profile over a long time range despite disturbances, unmodelled dynamics, and parameter uncertainty.Postprint (author's final draft

    LQG-based fuzzy logic control of active suspension systems

    Get PDF

    Precision Control of a Sensorless Brushless Direct Current Motor System

    Get PDF
    Sensorless control strategies were first suggested well over a decade ago with the aim of reducing the size, weight and unit cost of electrically actuated servo systems. The resulting algorithms have been successfully applied to the induction and synchronous motor families in applications where control of armature speeds above approximately one hundred revolutions per minute is desired. However, sensorless position control remains problematic. This thesis provides an in depth investigation into sensorless motor control strategies for high precision motion control applications. Specifically, methods of achieving control of position and very low speed thresholds are investigated. The developed grey box identification techniques are shown to perform better than their traditional white or black box counterparts. Further, fuzzy model based sliding mode control is implemented and results demonstrate its improved robustness to certain classes of disturbance. Attempts to reject uncertainty within the developed models using the sliding mode are discussed. Novel controllers, which enhance the performance of the sliding mode are presented. Finally, algorithms that achieve control without a primary feedback sensor are successfully demonstrated. Sensorless position control is achieved with resolutions equivalent to those of existing stepper motor technology. The successful control of armature speeds below sixty revolutions per minute is achieved and problems typically associated with motor starting are circumvented.Research Instruments Ltd

    Optimal Control of Unknown Nonlinear System From Inputoutput Data

    Get PDF
    Optimal control designers usually require a plant model to design a controller. The problem is the controller\u27s performance heavily depends on the accuracy of the plant model. However, in many situations, it is very time-consuming to implement the system identification procedure and an accurate structure of a plant model is very difficult to obtain. On the other hand, neuro-fuzzy models with product inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership functions can be easily trained by many well-established learning algorithms based on given input-output data pairs. Therefore, this kind of model is used in the current optimal controller design. Two approaches of designing optimal controllers of unknown nonlinear systems based on neuro-fuzzy models are presented in the thesis. The first approach first utilizes neuro-fuzzy models to approximate the unknown nonlinear systems, and then the feasible-direction algorithm is used to achieve the numerical solution of the Euler-Lagrange equations of the formulated optimal control problem. This algorithm uses the steepest descent to find the search direction and then apply a one-dimensional search routine to find the best step length. Finally several nonlinear optimal control problems are simulated and the results show that the performance of the proposed approach is quite similar to that of optimal control to the system represented by an explicit mathematical model. However, due to the limitation of the feasible-direction algorithm, this method cannot be applied to highly nonlinear and dimensional plants. Therefore, another approach that can overcome these drawbacks is proposed. This method utilizes Takagi-Sugeno (TS) fuzzy models to design the optimal controller. TS fuzzy models are first derived from the direct linearization of the neuro-fuzzy models, which is close to the local linearization of the nonlinear dynamic systems. The operating points are chosen so that the TS fuzzy model is a good approximation of the neuro-fuzzy model. Based on the TS fuzzy model, the optimal control is implemented for a nonlinear two-link flexible robot and a rigid asymmetric spacecraft, thus providing the possibility of implementing the well-established optimal control method on unknown nonlinear dynamic systems

    Fuzzy control turns 50: 10 years later

    Full text link
    In 2015, we celebrate the 50th anniversary of Fuzzy Sets, ten years after the main milestones regarding its applications in fuzzy control in their 40th birthday were reviewed in FSS, see [1]. Ten years is at the same time a long period and short time thinking to the inner dynamics of research. This paper, presented for these 50 years of Fuzzy Sets is taking into account both thoughts. A first part presents a quick recap of the history of fuzzy control: from model-free design, based on human reasoning to quasi-LPV (Linear Parameter Varying) model-based control design via some milestones, and key applications. The second part shows where we arrived and what the improvements are since the milestone of the first 40 years. A last part is devoted to discussion and possible future research topics.Guerra, T.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later. Fuzzy Sets and Systems. 281:162-182. doi:10.1016/j.fss.2015.05.005S16218228
    • …
    corecore