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ABSTRACT 

Jin, Xin. M.S.E., Purdue University, August 2014. Optimal Control of Unknown 

Nonlinear System from Input-Output Data. Major Professor: Yung Shin. School of 

Mechanical Engineering. 

 

 

Optimal control designers usually require a plant model to design a controller. 

The problem is the controller’s performance heavily depends on the accuracy of the plant 

model. However, in many situations, it is very time-consuming to implement the system 

identification procedure and an accurate structure of a plant model is very difficult to 

obtain. On the other hand, neuro-fuzzy models with product inference engine, singleton 

fuzzifier, center average defuzzifier, and Gaussian membership functions can be easily 

trained by many well-established learning algorithms based on given input-output data 

pairs. Therefore, this kind of model is used in the current optimal controller design. 

Two approaches of designing optimal controllers of unknown nonlinear systems 

based on neuro-fuzzy models are presented in the thesis. The first approach first utilizes 

neuro-fuzzy models to approximate the unknown nonlinear systems, and then the 

feasible-direction algorithm is used to achieve the numerical solution of the Euler-

Lagrange equations of the formulated optimal control problem. This algorithm uses the 

steepest descent to find the search direction and then apply a one-dimensional search 

routine to find the best step length. Finally several nonlinear optimal control problems are 

simulated and the results show that the performance of the proposed approach is quite
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similar to that of optimal control to the system represented by an explicit mathematical 

model. However, due to the limitation of the feasible-direction algorithm, this method 

cannot be applied to highly nonlinear and dimensional plants.  

Therefore, another approach that can overcome these drawbacks is proposed. This 

method utilizes Takagi-Sugeno (TS) fuzzy models to design the optimal controller. TS 

fuzzy models are first derived from the direct linearization of the neuro-fuzzy models, 

which is close to the local linearization of the nonlinear dynamic systems. The operating 

points are chosen so that the TS fuzzy model is a good approximation of the neuro-fuzzy 

model. Based on the TS fuzzy model, the optimal control is implemented for a nonlinear 

two-link flexible robot and a rigid asymmetric spacecraft, thus providing the possibility 

of implementing the well-established optimal control method on unknown nonlinear 

dynamic systems. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Literature Review 

1.1.1 Difficulties in Finding an Accurate Model 

Most control strategies are based on an explicit mathematical model of the system. 

It is well known that modeling and identification procedures for the dynamics of a given 

nonlinear system are most time consuming iterative endeavors that require model design, 

parameter identification and model validation at each step of the iteration. Moreover, it is 

quite reasonable to say that no matter how well one tries to describe a system in terms of 

a set of mathematical equations, there will always be a model mismatch. This mismatch 

between the model and the actual system is due to the imperfection of available system 

identification techniques, high nonlinearity and unknown system model form. Since there 

are a limited number of mathematical functions (sine, cosine, exponential, logarithm, etc), 

it is rather impossible to only use them to describe the actual system whose components 

are not fully understood at the microscopic level [1]. 

Traditionally, controllers have been designed from simplified models that were 

obtained from fundamental physical laws such as Ohm’s law and Kirchhoff’s voltage and 

current laws in electrical circuits, Faraday’s law and Ampere’s law in magnetic fields, 

Lagrange-Euler equations and Newton’s formula in mechanics. To be able to apply these 

fundamental physical laws, many assumptions have to be made during the system 
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identification process. The outcome of the identification process is usually an over-

simplified model. Therefore, if the system for which a controller is designed is too 

simplified, one may cannot meet the control objective [1]. 

 

1.1.2 Neuro-Fuzzy Models 

The difficulties in obtaining accurate models from fundamental physical laws 

motivate the use of neuro-fuzzy models to represent unknown systems. It has become an 

active research field because of its unique merits in representing complex nonlinear 

system behavior. It is essentially a multimodel approach in which individual rules (where 

each rule act like a “local model”) are combined to describe the global behavior of the 

system [2]. Primary advantages of this approach include the explicit knowledge 

representation in the form of if-then rules, the mechanism of reasoning in human-

understandable terms, and the ability of universal approximation, which means it can 

approximate any nonlinear function to arbitrary accuracy as proved by the Stone-

Weierstrass theorem [3]. Therefore, a neuro-fuzzy model is used in the current work to 

model systems instead of using physical laws. 

When using a neuro-fuzzy model to approximate an unknown system, it is desired 

that the model can approximate the training data as closely as possible while including as 

few rules as possible. The tradeoff between them is a fundamental principle underlying 

various general theories of statistical modeling and inductive inference [4] [5].  Several 

research efforts have been made in the fuzzy logic community to strike a balance between 

reducing the fitting error and increasing the model complexity. For instance, back-

propagation algorithm [6], gradient descent, least square [7], clustering [8], and 
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orthogonal least square (OLS) algorithm [9] [10] [11] have been developed to train the 

neuro-fuzzy models. The most efficient and widely used method is the OLS algorithm, 

which is used in the thesis to train the neuro-fuzzy model. Specifically, after an initial 

fuzzy system is first constructed with as many fuzzy basis functions as input-output pairs, 

then the OLS algorithm is used to select significant fuzzy basis functions to construct a 

final neuro-fuzzy model [9] [10]. 

 

1.1.3 Recent Developments in Optimal Control 

Optimal control theory that has played an important role in the design of modern 

control systems has as its objective the maximization of return from, or the minimization 

of the cost of, the operation of physical, social, and economic processes. It was 

introduced in the 1950s with use of dynamic programming (leading to Hamilton-Jacobi-

Bellman partial differential equations) and the Pontryagin maximum principle (a 

generalization of the Euler-Lagrange equations deriving from the calculus of variations) 

[12] [13]. However, the optimal control of nonlinear systems is still one of the most 

challenging and difficult subjects in the control field. In recent years, 

adaptive/approximate dynamic programming algorithms [14] [15] [16] have gained much 

attention from researchers. It is a reinforcement learning approach based on adaptive 

critics to solve dynamic programming problems utilizing function approximation for the 

value function. It can be based on value iterations or policy iterations. In [17], a 

successive approximation method using generalized Hamilton-Jacobi-Bellman equation 

was proposed to solve the near-optimal control problem for affine nonlinear discrete time 
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systems, which requires a small perturbation assumption and an initially stable policy. 

The complete dynamics of affine nonlinear systems were assumed known in the approach. 

In [18], the Q-learning policy iteration method was used to solve the optimal 

strategies for linear discrete time without requiring known system dynamics where in the 

system dynamics are defined as constant matrices. However, this method is intended only 

for linear systems and it is not clear how to select the number of iterations required for 

convergence and stability. 

Optimal control strategies for unknown affine nonlinear discrete time systems of 

the form  (   )   ( ( ))   ( ( )) ( ) [19] [20] [21] [22] or continuous time 

linear systems [23] using offline trained neural networks have been presented. The 

proposed scheme does not require explicit knowledge of the system dynamics as only the 

learned neural network model is needed. It first uses a neural network to learn the 

complete plant dynamics and then offline adaptive/approximate dynamic programming is 

attempted to use only the learned neural network system model, resulting in a novel 

optimal control law. However, this scheme can only be applied to the specific type of 

affine nonlinear discrete time systems or continuous time linear systems. Therefore, two 

ways of optimal control that can be applied to the unknown nonlinear systems in a more 

general form of  ̇   (   ) are developed in the current work. 

 

1.1.4 Control Based on TS Fuzzy Models 

The TS fuzzy model is a powerful practical engineering tool for modeling and 

control of complex nonlinear systems. It is shown to be a universal function approximator 

that can approximate any smooth nonlinear functions to any degree of accuracy [24] [25] 



5 

 

5
 

and is less prone to the curse of dimensionality than other fuzzy models [26]. It is similar 

to the concept of typical piecewise linear approximation methods in nonlinear control, 

which is achieved by linearizing a system around a number of nominal operating points 

and then applying linear feedback control methods to each local linear model. However, 

such linear models can only guarantee the stability and performance of the system at the 

operating points [27]. On the other hand, the TS fuzzy model approximates an entire 

nonlinear dynamic system by fuzzy inferencing between affine local linear time invariant 

models [28]. Therefore, it provides a way of designing controllers based on local linear 

models and analyzing stability or performance based on the global nonlinear model [29]. 

The TS fuzzy model based controller is usually to design a feedback controller for 

each local model and the stability of the overall system is then determined by Lyapunov 

stability analysis [30] [31] [32]. This kind of design methods must find a common 

positive definite matrix to satisfy the Lyapunov equations, which can be difficult to find, 

especially when the number of rules required to give a good plant model is large. Besides, 

this method proves to be conservative in many cases. However, there has been a lot of 

research to relax the stability conditions by utilizing the property of the fuzzy 

summations at different levels [33] [34] or analyze the stability of the fuzzy controller 

that does not share the same premise membership functions with the TS fuzzy model [35] 

[36]. Moreover, some people constructed a globally sliding model fuzzy logic controller 

by blending all local state feedback controllers together with a sliding model controller. 

Therefore, they can design a globally stable fuzzy logic controller without finding a 

common Lyapunov function and overall robustness and tracking ability of the entire 

closed-loop system can also be significantly improved [37] [38]. With the development 
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of the TS fuzzy model based controller, it begins to show its advantages over 

conventional nonlinear controllers. 

To take advantage of TS fuzzy model based controllers, the research for 

establishment of a TS fuzzy model has attracted great attention. There are basically two 

kinds of approaches to identify a TS fuzzy model. One is to linearize the original 

nonlinear system in a number of operating points when the model of the system is known. 

The other is based on the data generated from the unknown nonlinear system [29], which 

is more of interest to us. The second approach was based on the idea of consecutive 

structure and parameter identification. Structure identification includes estimation of 

local points of the rules by fuzzy clustering. With fixed antecedent parameters, the TS 

model transforms into a linear model, where the parameters are obtained by the recursive 

least square method [39], back-propagation [40] or genetic algorithm [41]. The objective 

of this approach is to minimize the global nonlinear prediction error between the TS 

fuzzy model and the corresponding original nonlinear system. However, all these 

methods may result in local models that are significantly different from local linearization 

of the nonlinear systems although they can offer good global prediction performance [42]. 

So when the TS fuzzy model generated from data is used as a basis for a fuzzy gain-

scheduled controller, these methods can hardly provide a satisfactory model for control 

since the local linear models are used to design local linear controllers. 

The authors in [43] presented an approach to achieve accurate global nonlinear 

prediction and at the same time its local models that are close approximations to the local 

linearization of the nonlinear dynamic systems. This defines a difficult multi-objective 

identification problem, namely, the construction of a dynamic model that is a good 
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approximation of both local and global dynamics of the underlying system. It has been 

shown that constrained and regularized identification methods may improve 

interpretability of constituent local models as local linearization, and the locally weighted 

least squares method may explicitly address the tradeoff between the local and global 

accuracy of TS fuzzy models. However, the practical importance of the approach was 

illustrated only by very simple examples. One may expect that the problems related to 

interpretability and identifiability will be much more pronounced when more complex 

higher order and multivariable examples are considered. In this work, a different 

identification approach to circumvent these difficulties is presented and will be used for 

the optimal control. 

 

1.1.5 Control Based on Neural Network Models 

Except for the TS fuzzy models, the most popular universal function 

approximators used in control is the neural network models. During the adaptive nature 

of the neural network models, most neural network controllers are adaptive neural 

network controllers. The first stable and efficient neural network controller designs were 

proposed in [46] [47]. Then the Lyapunov’s stability theory was applied to the controller 

design and several stable adaptive neural network control approaches were developed [48] 

[49]. Although these approaches do not require nonlinear dynamic functions to be 

linearly parameterized and still can achieve a good control performance, they were 

applied only to a relatively simple class of nonlinear systems because the nonlinear 

uncertainties and interconnections must satisfy the strict matching condition. This 

mismatch problem was first overcome by using a modified Lyapunov function and the 
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backstepping techniques in [50]. The developed control scheme guarantees the uniform 

ultimate boundedness of the closed-loop adaptive systems. Now the nonlinear adaptive 

neural network control has been widely used for continuous nonlinear systems [51] [52], 

and for nonlinear discrete time systems [53].  

People began to research the adaptive neural network control in other aspects. 

Adaptive neural network control was developed for a class of MIMO nonlinear systems 

with unknown bounded disturbances in discrete-time domain [54] and continuous-time 

domain [55]. In [56], in view of possible time-delays in practical systems, approximation-

based adaptive neural network control has been also addressed for nonlinear SISO time 

delay systems with constant virtual control coefficients. In [57], the nonlinear MIMO 

time-delay system was addressed by constructing a novel quadratic type Lyapunov 

functional. In [58], a robust adaptive neural network control was investigated for a 

general class of uncertain MIMO nonlinear systems with unknown control coefficient 

matrices and input nonlinearities. The variable structure control in combination with 

backstepping and Lyapunov synthesis was proposed for adaptive neural network control 

design with guaranteed stability. In [59], the switched nonlinear systems with switching 

jumps and uncertainties in both system models and switching signals were also addressed. 

Overall, during the past two decades, neural network control has attracted considerable 

attention because of its inherent capability for modeling and controlling highly uncertain, 

nonlinear and complex systems. 

 



9 

 

9
 

1.2 Research Objectives 

1.2.1 Nonlinear Optimal Control with Neuro-Fuzzy Models 

As in section 1.1.2, the existing optimal control schemes can only be applied to 

the specific type of affine nonlinear unknown discrete time systems or unknown 

continuous time linear systems. So this work seeks to extend them to the nonlinear 

systems in the form of  ̇   (   ). First, a neuro-fuzzy model with product inference 

engine, singleton fuzzifier, center average defuzzifier, and Gaussian membership 

functions is trained by the OLS learning algorithm based on given input-output data pairs 

to model the unknown systems. Then the feasible-direction algorithm [44] [45] is used to 

achieve the numerical solution of the Euler-Lagrange equations of the formulated discrete 

time optimal control problem. This algorithm uses the steepest descent to find the search 

direction and then apply a one-dimensional search routine to find the best step length. It 

has a very high computational efficiency and very easy to implement. Finally the 

proposed approach is applied to several nonlinear systems to show its efficiency for 

control of unknown nonlinear systems. The results are quite similar to that of optimal 

control to the systems represented by explicit mathematical models. However, due to the 

limitation of the feasible-direction numerical algorithm, it cannot be applied to a too 

complex system or a control process with too many time steps. Therefore, a better way 

which also utilized the TS fuzzy model is then developed.  

 

1.2.2 Nonlinear Optimal Control with TS Fuzzy Models 

The TS fuzzy model is also used to model the complex nonlinear systems and 

shown to be a universal function approximator. However, unlike neuro-fuzzy model, 
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most training algorithms can hardly provide satisfied local accuracy to be used for control. 

In this thesis, a novel way to derive a TS fuzzy model whose local models are close 

approximations to the local linearization of the nonlinear systems is presented. A fuzzy 

model with product inference engine, singleton fuzzifier, center average defuzzifier, and 

Gaussian membership functions is first used to approximate the global nonlinear systems. 

Then the TS fuzzy model is derived from the direct linearization of the fuzzy model at 

prescribed operating points. Therefore, it is close to the local linearization of the 

nonlinear dynamic systems. Besides, the operating points are chosen so that the TS fuzzy 

model is a good approximation of the neuro-fuzzy model, which means it can obtain a 

good approximation of the nonlinear dynamic systems. Then the optimal control is 

implemented on each linear affine system and the overall control action is derived from 

the fuzzy inferencing of each optimal control action. Finally, the proposed method is 

simulated for several examples and also applied to a very complex two link flexible robot 

in the laboratory, which demonstrates the wide practicality and effectiveness of the 

proposed algorithm for controlling unknown nonlinear dynamic systems. 

 

1.3 Overview of Thesis 

Chapter 2 starts introduction of neuro-fuzzy model and orthogonal least square 

algorithm as a background. Then optimal control using neuro-fuzzy model is discussed in 

details. Finally, the simulation results for several unknown nonlinear systems are shown 

and discussed. 
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Chapter 3 has a similar structure to the previous section. The TS fuzzy model is 

first introduced. Then the identification of TS fuzzy model and control based on it are 

focused. The experimental and simulation results for some practical examples are given 

in the last part. 

Chapter 4 presents the conclusion of the current work and the recommendations 

for future work. 
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CHAPTER 2. OPTIMAL CONTROL WITH NEURO-FUZZY MODELS 

2.1 Neuro-Fuzzy Models 

A neuro-fuzzy model consists of four principal elements as shown in Figure 2.1 

[26]: fuzzifier, fuzzy rule base, fuzzy inference engine, and defuzzifier. For the nonlinear 

discrete time multi-input, multi-output (MIMO) system, it can be separated into a group 

of multi-input, single-output (MISO) systems:         , where   is compact. The 

neuro-fuzzy model is established in state space form such that the inputs of the neuro-

fuzzy system are the   states and   inputs of the system and the output of it is the each 

state value of the system at the next time instance. 

Fuzzy Rule Base

Fuzzy Inference 
Engine

Fuzzifier Defuzzifier

Fuzzy sets 
in inputs

Inputs Outputs

Fuzzy sets 
in outputs  

Figure 2.1. Basic Configuration of Neuro-Fuzzy Systems. 

The fuzzifier performs a mapping from the observed crisp input space        

to the fuzzy sets defined in  . The fuzzy rule base consists of a set of linguistic rules in 

the form of “IF a set of conditions are satisfied, THEN a set of consequences are 

inferred”. The fuzzy inference engine is the decision making logic that employs fuzzy 
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rules from the fuzzy rule base to determine a mapping from the fuzzy sets in the input 

space   to the fuzzy sets in the output space  . The defuzzifier performs a mapping from 

the fuzzy sets in   to crisp points in   [8] [9]. 

MIMO neuro-fuzzy systems with singleton fuzzifier, product inference, centroid 

defuzzifier, and Gaussian membership function can be represented as follows, for 

        [8] [9]. 

  (   )    ( ( )  ( ))  
∑   

 (∏  
   
 (  ( )) 

   )(∏  
   
 (  ( )) 

   )
  
   

∑ (∏  
   
 (  ( )) 
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 (  ( )) 
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           (1) 

where   :         ,   (   ) is the  th state of the system at time index    , 

  
  is the singleton,  ( )  [  ( )   ( )     ( )]

  is the state vector of the system at 

time index   and  
   

 (  ( )) is the Gaussian membership function, defined by 
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(
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)                                      (2) 

where    
  and     

  are the center and width of   ( ) respectively. Similarly  ( )  

[  ( )   ( )     ( )]  is the input vector of the system at time index   and 

 
   

 (  ( )) is the Gaussian membership function, defined by 
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  ( )    
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)                                    (3) 

where    
  and     

  are the center and width of   ( ). 
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2.2 Orthogonal Least Square Algorithm 

The orthogonal least square (OLS) algorithm is a very efficient and widely used 

way of training a neuro-fuzzy model. The OLS algorithm is a one-pass regression 

procedure, and is therefore much faster than other algorithms. Also, the OLS algorithm 

generates a robust neuro-fuzzy model that is not sensitive to noise in its inputs [8] [9]. In 

this paper, the width ( ) of the neuro-fuzzy model are first fixed to cover the input state 

region. The resulting neuro-fuzzy model is then equivalent to a series expansion of fuzzy 

basis functions, which is linear in parameters [8] [9].  

  ( ( )  ( ))  ∑   
   

 ( ( )  ( ))
  

                                     (4) 

where 

  
 ( ( )  ( ))  

(∏  
   
 (  ( )) 

   )(∏  
   
 (  ( )) 

   )

∑ (∏  
   
 (  ( )) 

   )(∏  
   
 (  ( )) 

   )
  
   

                       (5) 

However, since the normalization factor in the denominator is not known before 

the fuzzy basis function is selected, a pseudo-fuzzy basis functions is needed to define as 

follows [10]: 

  
 ( ( )  ( ))  (∏  

   
 (  ( ))

 
   ) (∏  

   
 (  ( ))

 
   )                    (6) 

Then the fuzzy basis function can be expressed in terms of pseudo-fuzzy basis 

functions as follows [10]: 

  
 ( ( )  ( ))  

  
 ( ( )  ( ))

∑   
 ( ( )  ( ))

  
   

                                       (7) 

For   input-output training pairs ([  ( )   ( )]   
 (   )), we can get from 

    to   in the following matrix form [11]: 
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                                                                (8) 

where   [  
 (   )     

 (   )]
 
,   [  

      

  ] with 

  
  [  

 (  ( )   ( ))     
 (  ( )   ( ))]

 
,   [  

      

  ] , and   

[       ] . 

The classical Gram-Schmidt orthogonal least-squares algorithm is used to 

determine the significant pseudo-fuzzy basis functions which then can be normalized to 

fuzzy basis functions [9] and the weighting factor can be calculated as [11]: 

  (   )                                                         (9) 

 

2.3 Optimal Control Based on Neuro-Fuzzy Models 

The procedure of designing a discrete time optimal controller for nonlinear 

systems represented by a neuro-fuzzy model is presented in this section. In this paper, a 

feasible-direction algorithm is used for achieve the numerical solution of the Euler-

Lagrange equations of the formulated discrete time optimal control problem [44]. 

The general problem considered in the solution algorithm is that of minimizing a 

cost function: 

   [ ( )]  ∑  [ ( )  ( )]   
                                       (10) 

subject to the MIMO neuro-fuzzy model trained by OLS algorithm for        : 
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 ( )                                                            (12) 



16 

 

1
6
 

The augmented cost function is represented by 

    [ ( )]  ∑  [ ( )  ( )]   
      (   )( [ ( )  ( )]   (   ))   (13) 

The gradient of    with respect to   is given by 

 ( )  
 ∑  [ ( )  ( )]   

   

  ( )
 

  [ ( )  ( )]

  ( )

 

 (   )                         (14) 

where 
  [ ( )  ( )]

  ( )
 

(

 

   [ ( )  ( )]

   ( )
 

   [ ( )  ( )]

   ( )

   
   [ ( )  ( )]

   ( )
 

   [ ( )  ( )]

   ( ) )

  and            . 

If we use an explicit mathematical model of the nonlinear system, 
  [ ( )  ( )]

  ( )
 is 

easy to derive. However, if we only have a neuro-fuzzy model of the system, 
  [ ( )  ( )]

  ( )
 

should be computed as: 

   [ ( )  ( )]

   ( )
 ∑ ∑   

    
    

    

    

  

    (         )                        (15) 
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  ( )    
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  )

                                                     (18) 

From the gradient of    with respect to  , we can get 

 ( )  
 ∑  [ ( )  ( )]   

   

  ( )
 

  [ ( )  ( )]
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 (   )                          (19) 

 ( )  
  [ ( )]

  ( )
                                                     (20) 
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where 
  [ ( )  ( )]

  ( )
 

(

 

   [ ( )  ( )]

   
 

   [ ( )  ( )]

   

   
   [ ( )  ( )]

   
 

   [ ( )  ( )]

   )

  and            . 

Similar to 
  [ ( )  ( )]

  ( )
, 
  [ ( )  ( )]

  ( )
 for the neuro-fuzzy model should be 

represented as: 

   [ ( )  ( )]

   
 ∑ ∑   

    
    

    

    

  

    (         )                        (21) 

where 
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                 (23) 

  
    

  ( )    
  

(    
  )

                                                    (24) 

Then the structure of the solution algorithm to find the optimal state trajectories 

and control inputs can be described as follows [44]: 

Step 1: Select a feasible initial control trajectory   ( ), set the iteration index    . 

Step 2: Using   ( ), solve (11) from the initial condition (12) to obtain   ( ). 

Step 3: Using   ( ) and   ( ), solve (19) from terminal condition (20) to obtain 

Lagrange multipliers   ( ) and calculate gradients   ( ) from (14). 

Step 4: Specify a search direction:   ( )     ( ). 

Step 5: Apply a one-dimensional search routine along   ( ) to obtain     ( ). The 

corresponding line-optimization problem minimizes the following quantity: 
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  [  ( )     ( )] 

Step 6: If for a give scalar    , the inequalities 

[  ( )   ( )]    

hold, stop. Otherwise, set       and go to step 2. 

In step 4, several methods such as conjugate gradient methods or quasi-Newton 

methods can also be used for the specification of the search direction   ( ) [60]. All 

these methods use a search direction that satisfies [  ( )   ( )]   , which guarantees 

that the derivative 
  

  
 is always negative for     (except for   ( ), which is a 

stationary point), and therefore the objective function can be improved for some    . 

In step 5, there are many different ways to search for the best step length for the 

line search algorithm such as Wolfe conditions, Goldstein conditions or backtracking 

approach [61]. For the neuro-fuzzy model, the computation procedures are rather 

complex. Thus, we need to use the following forward-backward method to find the best 

step length   in a range [   ]: 

(1) Given      , evaluate  (  ), where      and    . 

(2) Compare the objective function values. Set           and evaluate      

 (    ). If        , go to forward step (3); otherwise, go to stop step (4). 

(3) Forward step: Set        ,        ,      , go to (2). 

(4) Stop step: Set     ,       , output [   ] and stop. 

Then choose a smaller   and do the iteration again, until (   )   ̅. After that 

choose   
   

 
. 
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2.4 Simulation Results 

In this section, three simulation examples that illustrate the effectiveness of the 

proposed method are presented. They are the carriage and nonlinear spring system [62], 

the rigid asymmetric spacecraft [63] and the nonlinear continuous stirred tank reactor 

[64]. 

2.4.1 Carriage with Nonlinear Spring 

 

Figure 2.2. Carriage and Nonlinear Spring. 

The optimal control law is applied to a cart with a mass   moving on the plane. 

This carriage is attached to the wall via a spring with elasticity   given by 

     
                                                           (25) 

where    is the displacement of the carriage from the equilibrium position associated 

with the external force  . Finally, a damper with damping factor    affects the system in 

a resistive way. The model of the system is given by the following continuous-time state-

space nonlinear model [62]. 

 ̇ ( )    ( )                                                     (26) 

 ̇ ( )   
  

 
    ( )  ( )  

  

 
  ( )  

 ( )

 
                              (27) 
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where    is the carriage velocity. The parameters of the system are       ,    

        , while the damping factor is       . An Euler approximation of system with 

sampling time          is given by [62] 

  (   )    ( )      ( )                                         (28) 

  (   )    ( )    
  

 
    ( )  ( )    

  

 
  ( )    
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             (29) 

Since the equation (28) can be easily known from the physical meanings of    and 

  , only the state equation (29) needs to be approximated by the following neuro-fuzzy 

model: 
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   (30) 

For    , the widths of the states    and    (    
  and     

 ) were fixed to be 0.6 

and the width of the input   (   
 ) is fixed to be 0.6. Then 300 input-output pairs were 

utilized to train the neuro-fuzzy model by the OLS algorithm to derive the centers of 

states and input (   
 ,    

 ,    
 ) and the weighting vector (   ). After trained, 73 rules 

(     ) were selected to be the neuro-fuzzy model of equation (30).  

To validate the neuro-fuzzy model, the system responses were simulated with the 

same inputs ( ( )       for         ) for the discrete time mathematical model 

and neuro-fuzzy model. As shown in Figure 2.3, the trained neuro-fuzzy model 

approximates the mathematical model well. 
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Figure 2.3. The System Responses of the Mathematical Model and Neuro-Fuzzy Model 

with the Same Control Inputs for the Cart with Nonlinear Spring. 

The initial condition is   ( )      and   ( )       , the command input is 

       and          and the performance index is (    ):: 

  (  ( )    ( ))
 
    (  ( )    ( ))

 
 

 ∑ ((  ( )    ( ))
 
    (  ( )    ( ))

 
     ( ) )   

                  (31) 

Using the proposed algorithm, the optimal control input for the system 

represented by a neuro-fuzzy model was derived. The feasible-direction algorithm [24] 

[25] was also used to derive the optimal control inputs for the system represented by an 

explicit mathematical model. Then the two optimal control inputs were implemented with 

the mathematical model to obtain the state trajectories, as shown in Figure 2.4. From the 

simulation results, the optimal control results for the nonlinear system represented by an 

explicit mathematical model and a neuro-fuzzy model are quite similar. The performance 

index values for the mathematical model and neuro-fuzzy model are 3.2654 and 3.2838 

respectively, which indicates the effectiveness of the proposed method.   

0 1 2 3 4
-2

-1

0

1

Time (s)

x 1
 (

m
)

x
1
 vs. Time

 

 

mathematical model

fuzzy model

0 1 2 3 4
-1

-0.5

0

0.5

Time (s)

x 2
 (

m
/s

)

x
2
 vs. Time

 

 

mathematical model

fuzzy model



22 

 

2
2
 

 

   

Figure 2.4. Simulation Results of Optimal Control for the Cart with Nonlinear Spring 

Represented by a Neuro-Fuzzy Model and an Explicit Mathematical Model. 

2.4.2 Rigid Asymmetric Spacecraft 

Tracking of a rigid asymmetric spacecraft is concerned with a primary attitude 

control task. Due to inherent nonlinearity of attitude dynamics, tracking in large and rapid 

maneuvers is a complex undertaking. Therefore, this tracking problem with three 

independent axis controls is investigated here. The Euler’s equations for the angular 

velocities   ,   ,    of the spacecraft are given by [63] 

 ̇ ( )   
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 ̇ ( )   
     

  
  ( )  ( )  

  ( )

  
                                      (34) 

where   ,   ,    are the control torques, and               ,                and 

                are the spacecraft principal inertias. 

An Euler approximation of the system with sampling time       is given by 

  (   )    ( )    (         ( )  ( )          ( ))           (35) 

  (   )    ( )    (         ( )  ( )          ( ))           (36) 

  (   )    ( )    (         ( )  ( )          ( ))           (37) 

To train the neuro-fuzzy model of the system, the widths of the states   ,    and 

   were fixed to be 0.05, the widths of the inputs   ,    and    were fixed to be 0.1. 

Then 2000 input-output pairs were utilized to train the neuro-fuzzy models by the OLS 

algorithm to derive the centers of states and inputs, and the weighting factors. For the 

input-output pairs, the ranges of states   ,    and    were from -0.1 to 0.1, the ranges of 

inputs   ,    and    were from -0.2 to 0.2. After trained, 500 rules were selected to be 

the neuro-fuzzy model of all the three equations (35), (36) and (37) respectively. 

To validate the neuro-fuzzy model, the responses with constant inputs (  ( )  

        ,   ( )          ,   ( )           for          ) were simulated 

for the mathematical model and the neuro-fuzzy model. As shown in Figure 2.5, the 

neuro-fuzzy model is close to the mathematical model. 
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Figure 2.5. The System Responses of the Mathematical Model and Neuro-Fuzzy Model 

with the Same Control Inputs for Rigid Asymmetric Spacecraft. 

The initial conditions are   ( )         ,   ( )          and   ( )  

       , the command inputs are set to              ,               and    

          , and the performance index is defined by (    ): 
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 (  ( )    ( ))
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 ( ))                                           (38) 

Similar as in section 2.4.1, the optimal control inputs for the systems represented 

by a neuro-fuzzy model and an explicit mathematical model were derived and then the 
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state trajectories were obtained, as shown in Figure. 2.6. From the simulation results, the 

optimal control results for the nonlinear systems represented by the two models are very 

close and the performance index values for the neuro-fuzzy model and mathematical 

model are both 0.0149. Therefore, the performance of the proposed method is very good. 

 

 Figure 2.6. Simulation Results of Optimal Control for the Rigid Asymmetric Spacecraft 

Represented by a Neuro-Fuzzy Model and an Explicit Mathematical Model. 
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2.4.3 Continuous Stirred Tank Reactor 

Consider a continuously stirred tank reactor shown in Figure 2.4.3.1. The mass 

and heat balance for a single reaction     are [64] 

  

  
 

 

 
(    )   ̂                                                  (39) 

  

  
 

 

 
(    )    ̂    (    )                                     (40) 

                                                             ,    

 

 

                                                               

                                                                                           ,   

Figure 2.7. Continuously Stirred Tank Reactor. [64] 

where concentration of reaction   and temperature   are two states of the system,   is the 

coolant flowrate control input,          is the total start-up time of interest,    

        is the feed concentration of reaction,          is the feed temperature, 

      is a chemical constant,  ̂ is the reaction rate,                is the 

dimensionless heat transfer area and          is the room temperature. 

If we define dimensionless quantities    
 

  
 ,    

 

   
 ,    

  

   
 ,    

  

   
 , 

  
 ̂

  
 , one gets 
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(    )                                                    (41) 

   

  
 

 

 
(     )      (     )                                    (42) 

where   ,   ,    and    are dimensionless concentration, temperature, coolant 

temperature, feed temperature respectively, and the dimensionless irreversible reaction 

rate   is given by 

        
 

 

                                                       (43) 

where         is a pre-exponential factor of forward constant and        is a gas 

constant. 

An Euler approximation of the system with sampling time           is given 

by 

  (   )    ( )    (
 

 
(    ( ))   ( ))                         (44) 

  (   )    ( )    (
 

 
(     ( ))   ( )    ( )(  ( )    ))     (45) 

To train the neuro-fuzzy model of the system, the widths of the state    and    

were fixed to be 0.25 and the width of the input   was fixed to be 250. Then 500 input-

output pairs were utilized to train the neuro-fuzzy models by the OLS algorithm to derive 

the centers of state and input, and the weighting factors. For the input-output pairs, the 

range of state    was from 0 to 1, the range of state    was from 3 to 4 and the range of 

input   was from 0 to 1000. After trained, 137 rules were selected to be the neuro-fuzzy 

models of the two equations (44) and (45) respectively. The system responses with the 

constant input ( ( )            for          ) was simulated for the 
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mathematical model and the neuro-fuzzy model. As shown in Figure 2.8, the responses of 

the two models are completely same. 

 

Figure 2.8. The System Responses of the Mathematical Model and Neuro-Fuzzy Model 

with the Same Control Inputs for Continuously Stirred Tank Reactor. 

The initial conditions for the dimensionless concentration and temperature are 

  ( )    ( ( )    ( )         ) and   ( )    ( ( )     ,   ( )       ) 

respectively. The objective of optimal control problem is to find the coolant flowrate 

control  ( )    such that minimize the functional 

    (  ( )    ( ))
 
   (  ( )    ( ))

 
  

∑ (  (  ( )    ( ))
 
   (  ( )    ( ))

 
   ( ( )    ( ))

 
)   

        (46) 

where     ,            ,           ,         ,           ,         

and         . So the desired values for concentration and temperature are       

         and                    respectively. 
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Figure 2.9. Simulation Results of Optimal Control for the Continuously Stirred Tank 

Reactor Represented by a Neuro-Fuzzy Model and an Explicit Mathematical Model. 

Similar to the previous examples, the optimal control inputs for the systems 

represented by a neuro-fuzzy model and an explicit mathematical model were derived 

and then the state trajectories were obtained, as shown in Figure 2.9. From the simulation 

results, optimal control results for the nonlinear systems represented by the two models 

are quite close. Besides, the performance index values for the neuro-fuzzy model and 

mathematical model are            and            respectively, which are also 

very similar. Therefore, the performance of the proposed method is very good However, 

due to the limitation of the feasible-direction numerical algorithm, it cannot be applied to 
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a too complex system or a control process with too many time steps. Therefore, a better 

way which also utilized the TS fuzzy model is then developed in the next Chapter. 
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CHAPTER 3. OPTIMAL CONTROL WITH TS FUZZY MODELS 

3.1 Takagi-Sugeno Fuzzy Models 

TS models can be used to represent complex MIMO systems with both fuzzy 

inference rules and local analytic linear dynamic models as follows:   : IF    is   
       

is   
  and    is     

       is     
 , THEN  ̇     ( )     ( )    , where     

         ,    denotes the  th fuzzy inference rule,   is the number of inference rules, 

  
  (           ) are the fuzzy sets,  ( )     is the state vector,  ( )     is the 

input vector and (        ) are the matrices of the  th local model [29]. 

By using a singleton fuzzifier, product fuzzy inference, and center-average 

defuzzifier, the TS fuzzy model can be rewritten as 

 ̇   ( ) ( )   ( ) ( )   ( )                                   (47) 

where  ( )  ∑     
 
   ,  ( )  ∑     

 
   ,  ( )  ∑     

 
    and    is the normalized 

membership function [29]. It is a nonlinear model in nature since the membership 

functions are nonlinear functions of the premise variables that contain some or all of the 

state variables and input variables.
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3.2 Identification of Takagi-Sugeno Fuzzy Models 

Because the TS fuzzy models are used to design the local linear controllers, they 

should achieve a good approximation of both local and global dynamics of the underlying 

system, or it can hardly achieve satisfied control performance. However, considering 

them together would become a very difficult problem because it is not straightforward to 

identify constituent local models of TS fuzzy models from the input-output data and the 

tradeoff between the local and global accuracy of TS fuzzy model should be addressed 

[43]. 

In this thesis, a novel approach that utilizes the neuro-fuzzy model to obtain a TS 

fuzzy model whose local models are close approximations to the local linearization of the 

nonlinear systems is presented. The neuro-fuzzy models can approximate any nonlinear 

function to arbitrary accuracy and there have been many matured training methods 

proposed. First, from input-output data, a MIMO neuro-fuzzy model with product 

inference engine, singleton fuzzifier, center average defuzzifier, and Gaussian 

membership functions are obtained by the orthogonal least square or least square training 

algorithm to approximate the global nonlinear system [43]: 
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                       (48) 

where   (        ) is the state vector,   (        ) is the input vector,     is 

the weighting factor,    
  and     

  are centers and widths of the state   , and    
  and     

  

are centers and widths of the input    and        . 
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Next the TS fuzzy model is derived from the linearization of the neuro-fuzzy 

model. Therefore, this kind of TS fuzzy model can be interpreted as the local 

linearization of the nonlinear dynamic system, which is very important for the design of 

local linear controllers. By choosing enough operating points so that the TS fuzzy model 

is a good approximation of the neuro-fuzzy model, one can also obtain a good 

approximation of the nonlinear dynamic systems. 

Linearization about one operating point (     ) results in 

 ̇    (    )    (    )    (     )                                 (49) 
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For simplicity, equation (49) can be rewritten as 

 ̇                                                             (58) 

where 

      (     )                                                  (59) 

However, since the neuro-fuzzy model is trained by input-output data, the 

relationships of all states and inputs are not known in advance. So some unimportant 

states that do not influence all the other states will be modeled in the TS fuzzy model, 

which result in some uncontrollable and unobservable states in the system and should be 

eliminated. 

Suppose the original system has   controllable and observable states, if we add 

one state that does not influence all the other states and inputs, we will get a     states 

system. Because the state does not influence all the other states, so for        , we 

can get 

 ̇    ([             ]  )   ̇ 
    ([                   ]  )     (60) 
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where  ̇  and  ̇ 
  have the same            but different     . 

Therefore 

   (   )

     
 

  ([                   ]  )   ([             ]  )

               
 

 

     
             (61) 

Besides, 
     (   )

     
 can be any value and 

     (   )

  
  , because the input vector   

should not influence the state. So after the linearization of the system, if some states 

satisfy 
   (   )

   
   for all     and 

   (   )

  
  , then we can safely eliminate them to 

get a completely controllable and observable system. 

 

3.3 Optimal Control Based on TS Fuzzy Models 

In order to design a global optimal controller based on the TS fuzzy model of the 

original nonlinear system, the parallel distributed compensation is used to derive each 

control rule so as to compensate each local linear model of the fuzzy system and 

construct a global fuzzy controller by the aggregation of the local optimal controllers 

with a fuzzy inference system [65]. 

Using the same premise as in the  th rule of the TS fuzzy model, the local 

controller can be obtained as follows [29]: 

  : IF    is   
  and      is   

 , THEN      

The fuzzy controller is analytically represented by 

  ∑     
 
                                                        (62) 

where    is the normalized membership function same as in (47) and    should be derived 

by the following procedure. 
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Assume the cost function is: 

   
 

 
( (  )   (  ))

 
 ( (  )   (  ))  ∫ ((   )  (   )      )

  
  

     (63) 

where   is the command input,   is the state vector,   is the input vector,    is the initial 

time,    is the final time,   and   are symmetric positive semi-definite matrices and   is 

a symmetric positive definite matrix. 

For each local optimal controller, the control action    can be derived by the 

Riccati differential equation [66]: 

     (   )  (  
   )

    
                                       (64) 

where   is given by 

       
  ( )                                                  (65) 

and  ( ) is found by solving the continuous time Riccati differential equation 

  
  ( )   ( )    ( )   

    
  ( )      ̇( )                      (66) 

 

3.4 Simulation Examples 

3.4.1 Two Link Flexible Joint Robot 

Flexible robot manipulators exhibit many advantages over rigid ones: they require 

less material, have higher manipulation speed, lower power consumption and are safer to 

operate due to reduced inertia. However, control of flexible robot manipulators to 

maintain accurate positioning is an extremely challenging problem. Due to the flexible 

nature and distributed characteristics of the system, the dynamics are highly nonlinear 

and complex. Problems arise due to precise positioning requirement, vibration due to  
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Figure 3.1. The Two-Link Flexible-Joint Robot. 

 

Figure 3.2. Schematic of the Robot with Physical Parameters. 
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system flexibility, the difficulty in obtaining accurate model of the system and non-

minimum phase characteristics of the system [67]. The two-link flexible-joint robot 

whose model is used for simulation is schematically shown with all physical parameters 

in Figure 3.2. 

Flexible robot manipulators exhibit many advantages over rigid ones: they require 

less material, have higher manipulation speed, lower power consumption and are safer to 

operate due to reduced inertia. However, control of flexible robot manipulators to 

maintain accurate positioning is an extremely challenging problem. Due to the flexible 

nature and distributed characteristics of the system, the dynamics are highly nonlinear 

and complex. Problems arise due to precise positioning requirement, vibration due to 

system flexibility, the difficulty in obtaining accurate model of the system and non-

minimum phase characteristics of the system [67]. The two-link flexible-joint robot 

whose model is used for simulation is schematically shown with all physical parameters 

in Figure 3.2. 

The reduced model is given by [68] 

 ( ) ̈   (   ̇)    ̇                                            (67) 

where   [        ]
  is the vector of the link and motor positions. The 

positions of the first and second link are denoted by    and   , respectively, whereas the 

positions of the first and second motor are denoted by    and   .  ( ) is the inertia 

matrix,  (   ̇) is the vector of Coriolis and centrifugal functions,   is the viscous 

damping matrix,   is the matrix of the stiffness coefficients, and   is the vector of the 

driving torques. 

The inertia matrix  ( ) is given by 
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 ( )  [
  (  )  

   
]                                              (68) 

where 

  (  )  [
      

      
]                                               (69) 

and 

   [
    
    

]                                                   (70) 

The first matrix element is given by 

                 (  )                                          (71) 

with 

       
      

      
      

                                      (72) 

       
                                                         (73) 

And 

                                                                (74) 

Moreover, 

                 (  )                                        (75) 

                                                               (76) 

       
  

  
                                                      (77) 

and 

       
  

  
                                                      (78) 

   is the lumped mass,    is the moment of inertia of the component,    is the length of 

the link, and    and    denote the distance between the center of gravity of the first and 

second link and the first and the second joint, respectively. Furthermore,    is the 
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distance between the second motor and the first joint, and   is the gear ratio of the chain 

drives. The vector of the Coriolis and centrifugal functions is 

 (   ̇)  [
  

 
]  

[
 
 
 
   (  ̇  ̇   ̇ 

 )    (  )

   ̇ 
     (  )
 
 ]

 
 
 

                           (79) 

and the viscous damping matrix can be written as 

  [
   
   

]                                                      (80) 

where the diagonal elements are the link damping matrix 

                                                                 (81) 

and the motor damping matrix 

                                                                 (82) 

with the viscous friction coefficients   . The matrix of stiffness coefficients is given by 

  

[
 
 
 
 
     

  

 
 

     
  

 

 
  

 
 

  

   

  
  

 
 

  

  ]
 
 
 
 
 

                                        (83) 

where    denote the coefficients of the torsional springs, and the torque vector is 

  [
 
  

]  [

 
 
  

  

]                                                    (84) 

where    and    denoting the driving torque of the first and second motor, respectively.  

With    [    ]
  and    [    ]

 , the equations of motion for the links 

and motors can be written separately as 
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Table 3.1. Estimated Values of the Robot’s Parameters. [68] 

Parameter Value Parameter Value 

   0.1402
     

   
    1.4975         

   
 

    
     0.01962 

     

   
    0.005

    

   
 

       0.02338 
     

   
    8.128         

   
 

   4.1571          

   
    2.848

   

   
 

   7.5429          

   
    2.848

   

   
 

   0.025
     

   
    0.01987    

   0.025
     

   
    0.0323    

   0.04
    

   
    0.0053    

   0.02143
    

   
    0.0271    

   1.8937         

   
   5 

 

  (  ) ̈    (    ̇ )     ̇    (   
  

 
)                        (85) 

for the links and 

   ̈     ̇    (
  

   
  

 
)                                      (86) 

for the motors.    is a diagonal matrix and contains the spring coefficients, 

                                                               (87) 
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It can be clearly seen that the links and motors are only coupled by the torsional 

springs in the joints. 

With 

  

[
 
 
 
  

  

 ̇ 

 ̇ ]
 
 
 

 [

  

  
  

  

]                                                    (88) 

as state variables, equations (85) and (86) can be rewritten in the fourth order state space 

form [68] 

 ̇                                                              (89) 

 ̇                                                              (90) 

 ̇     
  [             (       )]                        (91) 

 ̇    
  [             (    

      )]                     (92) 

The model in combination with estimated values of the robot’s physical 

parameters is used for simulating the robot. Table 3.1 lists the used values. 

To obtain the neuro-fuzzy model of the robot, the motors were excited by sine 

sweep torques. A combination of a 1Hz sine wave and a subsequent sine sweep signal 

with an initial frequency of 1Hz and a final frequency of 5Hz was used to excite the 

shoulder motor and the elbow motor, as shown in Figure 3.3. 

To reduce noise in the velocity and acceleration signals that mainly originate from 

the quantization of the position signal, a low-pass Butterworth filter was applied to the 

position signal. After filtering, velocities and accelerations were obtained from the signal 

through the central finite difference method. To avoid transient effects from filtering in 

both directions with initializing the filter states, experiments were started with a rest  
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Figure 3.3. Sine Sweep Signals to Motors. 

period. This period and the last 0.5 seconds of the experiment were removed from the 

data set for estimation. The velocity is calculated from 

 ̇  
  (   )   (   )

  
                                                 (93) 

where   ( ),        are the values of the discrete angular position measurements and 

          is the sampling time. The second order central difference 

 ̈  
  (   )    ( )   (   )

                                             (94) 

is used for calculating the acceleration signal. 

2000 training data chosen even from the obtained data are used to train the system 

and 500 testing data that are different from the training data, are used to test the accuracy 

of the neuro-fuzzy model and TS fuzzy model. The system is linearized at 9 or 27 

operating points from the neuro-fuzzy model to get the corresponding TS fuzzy models. 

The 9 operating points are based on the combination of three different    values of -0.7, 0, 

0.7 and one  ̇  values of   and three different  ̇  values of       . For 27 operating 
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points, except for  ̇  has three values of -1, 0 and 1, values of the other two parameters 

are same as that of 9 operating points. 

As shown in Figure 3.4, the points in the red dashed line are testing experimental 

data. The points in the blue solid line and black dash-dot line are the outputs of the neuro-

fuzzy model and TS fuzzy models respectively. Because the outputs of the TS fuzzy 

models for 9 operating points and 27 operating points are almost same, they are shown by 

the lines of same color in the figures. The lines in these figures overlap closely, which 

indicates the accuracy of the neuro-fuzzy model and TS fuzzy model. 

 

Figure 3.4. Experimental Data and Outputs from Neuro-Fuzzy Models and TS Fuzzy 

Models. 
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The initial condition is set as   [        ] , and the 

command inputs for both    and    are given by 

     {

                                                                                         
          (     )                                         

       (       )                                        
                                                                                  

              (95) 

Because the gear ratio is 5, so the command inputs for both    and    are given 

by 

                                                               (96) 

The command inputs for both  ̇  and  ̇  are given by 

     {

                                                                                    
                                                                        
    (       )                                          
                                                                            

                (97) 

Similar to    and   , the command inputs for both  ̇  and  ̇  are given by 

                                                                (98) 

The performance index is defined as: 

  ∫ (     (   [
  
  

])
 

 (   [
  
  

])
 

     (   [
  
  

])
 

 (   [
  
 
])

 

 
 

 

     
       

 )                                                  (99) 

The optimal controllers derived from the TS fuzzy models based on 9 and 27 

operating points were first simulated using the mathematical plant model in MATLAB. 

Figure 3.5 illustrates the response the flexible robot system with the optimal controller. 

The closed-loop behavior of the robot can track the designed trajectories very well. 

Besides, whether the TS fuzzy model has 9 operating points or 27 operating points, the 
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results are almost the same. Therefore, 9 operating points are enough for the design of 

optimal controller. 

 

Figure 3.5. Simulation Results of the Optimal Controller for TS Models of Flexible 

Robot. 
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Then the optimal controllers derived from 9 and 27 operating points TS fuzzy 

model were implemented for the robot. The experimental results are shown in Figure 3.6. 

The results are very good except for the oscillations in the trajectories. These oscillations 

are caused by the flexible joints of the robot, which are very difficult to eliminate. 

 

Figure 3.6. Experimental Results of the Optimal Controller for TS Models of Flexible 

Robot. 
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3.4.2 Rigid Asymmetric Spacecraft 

Tracking of a rigid asymmetric spacecraft is concerned with a primary attitude 

control task. Due to inherent nonlinearity of attitude dynamics, tracking in large and rapid 

maneuvers is a complex undertaking. Therefore, this tracking problem with three 

independent axis controls is investigated here. The Euler’s equations for the angular 

velocities   ,   ,    of the spacecraft are given by [69] 

 ̇ ( )   
     

  
  ( )  ( )  

  ( )

  
                                    (100) 

 ̇ ( )   
     

  
  ( )  ( )  

  ( )

  
                                    (101) 

 ̇ ( )   
     

  
  ( )  ( )  

  ( )

  
                                    (102) 

where   ,   ,    are the control torques, and               ,                and 

                are the spacecraft principal inertias. 

Similar to the flexible robot, 2000 input-output data pairs were utilized to train the 

neuro-fuzzy models by the OLS algorithm [9]. The ranges of states   ,    and    were 

from -0.1 to 0.1, the ranges of inputs   ,    and    were from -0.2 to 0.2. The widths of 

the states   ,    and    were fixed to be 0.05, the widths of the inputs   ,    and    were 

fixed to be 0.1. After trained, 500 rules were selected to construct the fuzzy models 

corresponding to equations (101), (102) and (103) respectively. 

The system is linearized at 27 operating points from the neuro-fuzzy model to get 

a TS fuzzy model. The 27 operating points are chosen using the combination of three 

different    states of 0, 0.02, 0.04, three different    states of 0, 0.02, 0.04, three different 

   states of 0, 0.02, 0.04 and              . 
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The system responses with constant inputs          ,          ,    

       were simulated using the mathematical model, neuro-fuzzy model and TS fuzzy 

model. As shown in Figure 3.7, the system responses of the three models are almost 

identical. 

 

Figure 3.7. The System Responses of the Mathematical Model, Neuro-Fuzzy Model and 

TS Fuzzy Model with a Same Control Input. 
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Figure 3.8. Experimental Results of the Optimal Controller for the Asymmetric 

Spacecraft. 
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method can achieve very good simulation results for nonlinear systems. Therefore, the 

performance of the proposed method is very good. 
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CHAPTER 4. CONCLUSION 

In this work, an optimal controller to the nonlinear system represented by a neuro-

fuzzy model has been developed. With the product inference engine, singleton fuzzifier, 

center average defuzzifier and Gaussian membership functions, a fuzzy model was 

trained by the OLS learning algorithm which is very efficient and not sensitive to noise in 

its inputs, and then the optimal control problem was formulated based on the fuzzy model. 

The numerical solution of the problem was obtained by use of a feasible-direction 

algorithm. This algorithm uses the steepest descent to find the search direction and then 

apply a one-dimensional search routine to find the best step length. It has a very high 

computational efficiency and very easy to implement. The simulation results of three 

nonlinear optimal control examples showed that the performance of the proposed 

approach based on a fuzzy model was quite similar to that of optimal control to the 

system represented by an explicit mathematical model, thus demonstrating its efficacy for 

optimal control of unknown nonlinear systems. However, due to the limitation of the 

feasible-direction numerical algorithm, it cannot be applied to a too complex system or a 

control process with too many time steps. Therefore, a better way which also utilized the 

TS fuzzy model was then developed.  
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The TS fuzzy model can be also used to model the complex nonlinear systems 

and shown to be a universal function approximator. However, unlike neuro-fuzzy model, 

most training algorithms can hardly provide satisfied local accuracy to be used for control. 

Therefore, an explicit procedure of establishing TS fuzzy models of unknown nonlinear 

systems from experimental data has been presented to make the local models are close 

approximations to the local linearizations of the nonlinear dynamic systems The system 

responses of the TS fuzzy models for the same control inputs were shown to be very 

close to the response of the actual systems, which indicated the accuracy of the proposed 

identification method. Then the optimal controllers derived from TS fuzzy models were 

experimented to a very complex two-link flexible robot and achieved very good results, 

which demonstrates the practicality and effectiveness of the proposed algorithm for 

controlling unknown complex nonlinear dynamic system. 

In future work, a better method other than the feasible-direction algorithm can be 

used to extend the first method to more complex systems. In addition, for the second 

method, a more rigorous method to eliminate the unnecessary states and how to deal with 

them could be studied. 
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