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ABSTRACT

LQG - Based Fuzzy Logic Control of Active Suspension Systems

Name: Mahesh N. Ariyakula,

University of Dayton, 1996

Advisor: Dr. A.R. Kashani

The importance in the introduction of an active element in an automotive

suspension is to negate the problem of trade-off between comfort and handling. This

work proceeds with a comprehensive review of publications on this particular objective in

the design of active suspension systems, providing an insight of the research in the last 27

years.

An indepth discussion of the latest and most advanced techniques as of today to

improve comfort and handling (enhancing mobility) simultaneously, i.e. LQR and LQG

optimal control techniques are shown. However contemplating them to be inappropriate

in the design of active suspension systems, focus is targetted on improvising upon the

proposed control strategy.

A new technique based on Fuzzy Logic thinking is explored. The control

technique deals with discrete Kalman estimators which are difficult to implement in large

numbers, like in a full car, which adds to the real time computational load. Even if done

so, all the controllers do not contribute to the final control output simultaneously, hence a

thorough study is conducted on Kalman estimators leading to LQG based control and

suggestions are made to have a moving bank to rectify this problem in future. The main

terms contributing to the nonlinearities of the suspension model are kinematic constraints
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on motion, as well as, damping and stiffness of the tires. Considering coefficients of

damping and stiffness of the tires as uncertain parameters which can assume a set of 

possible values, a collection of linear models are developed that can, collectively, 

describe the suspension. This leads to conception and implementation of a multiple bank

of estimators and controllers to take care of model variation.

The implementation of the controller on the original nonlinear model (in

ADAMS), for tuning, and subsequently on the test rig is currently underway.
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CHAPTER I

INTRODUCTION

The main objective of active suspension for off-road vehicles is reducing the 

power absorbed by the occupants. Absorbed power is related to the time integral of

squared acceleration (weighted in frequency by human response transfer function) [22]. 

This makes linear quadratic regulators appropriate for active suspension control of these 

vehicles, with the filtered sprung mass acceleration being the main component of the 

objective (cost) function. To assure that this objective i.e., lowering the acceleration, is 

not compromising the vehicle stability, suspension working space, and control energy, 

these terms are also added to the objective function.

Active car suspension is an expanding field in the design of cars in the luxury 

class. It is already available on cars like Nissan’s Infinity Q45, Toyota’s Celica GT-R 

AS, or Chevrolet’s Corvette ZR1 [36]. Nissan compares its Infinity Q45 to a cheetah,

running over rough terrain while its body remains parallel to the horizon. The brain of 

the hardware of active car suspension is a microprocessor implementing the control

algorithm (see Figure 1.1). The controller drives pressure control valves between actuator

and power source. The actuator is located between wheel base and body, allowing to

apply a force between both elements and capable of changing the states of the car. Both 

states and external disturbance changes are monitored by sensors which provide the

1
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necessary information for the controller.

Design of controllers for active suspensions using optimal control theory (linear 

quadratic techniques, in general, and linear quadratic Gaussian, LQG, in particular) has 

enjoyed a broad acceptance amongst the active suspension research community, see for

example ([10], [12], [16] and [30]). LQG is a computationally elegant, time domain,

linear quadratic control technique using state estimates which are provided by a Kalman

filter. The use of model-based estimated states causes the performance and stability 

characteristics of LQG controlled systems deteriorate, sometimes drastically, when the 

linear model deviates from the plant. This is mainly due to the use of excessive estimator

gain to compensate for the modelling errors.

The above mentioned lack of stability robustness associated with LQG control can

be addressed by adding loop transfer recovery (LTR) to the LQG controller ([30] and

[16]) or using a more robust control technique such as H-°o [17]. These solutions achieve

better stability characteristics at the expense of system performance. Moreover, lowering

the absorbed power (which is a time integral concept) is more in line with LQ controllers

than with H-°° ones. The other alternative is staying with LQG but using multiple

models, rather than one, describing the plant. Using the former approach a bank of

estimators (Kalman filters) and controllers are designed based on these models. The

combination of these estimators and their corresponding controllers can be viewed as a 

collection of LQG controllers in parallel. In this scheme, weighted average of all the

controllers will be the control input to the plant. The use of a bank of Kalman filters in

this control strategy will alleviate the need for opening the bandwidth of the estimation

which is the main reason for low stability robustness characteristics of LQG control. [23]
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has used conditional probability concepts for evaluating the weighting factors. Since

probability describes the uncertainity of event occurance, not the degree to which the

event occurs (which is described by fuzziness), we take fuzzy logic approach to evaluate

the weights for averaging the output of each controller in the bank.

The potential problem with multiple model control technique is the large number

of LQG controllers in the bank. Although this is not a concern in control of the quarter

car suspension, but it will be in control of the full car suspension. The fact is that at any

instant in time, only a few of the controllers in the bank contribute to the control output,

in a meaningful way. In the extension of this work to quarter car suspension control

itself, another fuzzy decision making logic is used in choosing the subset of contributing

controllers and moving the subset inside the set of all controllers.

Need and Motivation for Active Car Suspension

Performance criteria of a car suspension contain a broad spectrum of objectives; a

review and summary of objectives can be found in [28]. The performance criteria include

working space (also found as rattlespace, see [12]), road contact (also called wheel load

variation [28]), grip and discomfort. Discomfort is defined as sprung mass acceleration

[22], as weighted sprung mass acceleration [28], or as jerk of the sprung mass [11].

Throughout this work sprung mass acceleration will be used as a measurement for

discomfort. Additional criteria are static and dynamic attitude behaviour, roll and pitch

behaviour, contribution to good steering behaviour, actuator force levels, and power

consumption. Among practitioners, however, stability and failure safety are the most

important aspects. As long as the active system is not guaranteed to be failure safe and

robust, there is no practical sense in improving other performance criteria.
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It is well known, that in common suspension design there is a trade-off necessary.

Decreasing passenger discomfort, i.e. a soft ride, will increase the wheel load variation,

decreasing the road contact, whereas increasing the road contact i.e. a sporty ride will

increase passenger discomfort. There is no possibility in improving both of them. This

problem triggered off for an alternate strategy in the late sixties to examine the influence

of placing an active element in parallel with the passive suspension part. This new

technique of active suspension system opens the chance of changing the system properties

in a way which cant be achieved by changing the parameters of the passive suspension.

This becomes more obvious when one considers the following example. Let the car be

described by the so called quarter car model in Figure 1.2. The details of the model are

given. This 2-degree-of-freedom (2-DOF) system is of 4th order. With pole placement it

is possible to place all four eigen values anywhere in the s-plane. This is not possible

with just the passive element. If done so, unrealistic values of mass of car body M, mass

of wheel base m, suspension stiffness K and suspension damping coefficient C are

obtained.

Inclusion of an active element and a suitable control law, e.g. pole placement, the

desired pole locations can be obtained without unrealistic values for M, m, K or C. There

is no proof that active suspension will overcome the dilemma between comfort and road

contact, but it shows that active suspension opens the door for a variety of new

possibilities.
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Figure 1.1 - Concept Of Active Car Suspension
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M

Figure 1.2 (a) - Quarter Car Representation Of A Passive Suspension

(h) Adams Model Of The Suspension
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Quarter Car Suspension Modelling

Detailed Modelling

The simplest and commonly used model, which allows discomfort and road

contact in the automotive suspension design is the quarter car or comer car representation

shown in Figure 1.2. A quarter car test rig simulating the vehicle’s rear right station is

constructed. To test different control algorithms, prior to implementation on the test rig

the model of the quarter car is developed in ADAMS; see Figure 1.2 (a). This

representation is perfect for low frequencies unlike high frequencies which bias the

approximations of the corner car model due to coupling of the wheel stations and flexible

modes, are small in amplitude and therefore not as important.

The sprung mass is constrained to move only in the vertical direction, as it is on

the test rig. The test rig is constructed with friction reducing surfaces along the two

square guide posts to provide this constraint. There will be a slight friction associated

with this movement that is not modelled. In the assembly of the test rig, care is taken to

ensure that the center of mass is located in the plane of these guide posts to minimize

moment loading of the constraint; the center of mass of the sprung mass was similarly

placed in ADAMS model.

The comer car suspension model is so chosen in this work because the studied

objectives are comfort and road contact and also due to the ease of design and

computation. As the quarter car model contains only a few parameters and has only one

input, design, computation and understanding of the relation between design and results

are easier compared to that of a full car model.
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The quarter car suspension model consists of two masses, one representing the car

body mass M and the other representing the mass of axle and wheel, m, a suspension unit

and a spring representing the tire. The suspension unit comprises of a coil spring with

stiffness K and a dash-pot with damping coefficient C and an ideal actuator, i.e. an

actuator with a bandwidth higher than the frequency range of interest. Considering the

dynamics of the hydraulic actuator would add to the complexity of design and

computation, but it does not alter the performance criteria nor the model. Throughout the

literature on active suspension, being referenced in this work, actuator dynamics are

neglected.

The tire is modelled as a single component force using an ADAMS impact

function. Only Z-axis dynamics are considered as the test rig has a slide table mounted

on the top of the road profile actuator. This slide table will minimize side loading of the

road-simulating actuator and eliminates the need to model lateral tire forces at this stage.

similar to that of a suspension unit, with tire stiffness Kt, and damping coefficient, Ct.

The justification of tire modelling as a spring and dashpot is found in [28].

The tire force has two components, a stiffness component and a viscous damping

one. The stiffness force, fk, is a function of the tire deflection, X2, defined as the relative

position of the tire with respect to the road, measured from its unloaded position. As the

tire deflects there is a non-linear stiffening effect due to the nature of the rubber and the

geometry of the tire. To accurately model this phenomenon a deformation force

exponent, e, is used. The stiffness component of the tire force is then evaluated according

to Equation 1.1
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ft(x2) = k'x2 (1.1)

where X2 is the tire deflection in mm and fk is the tire stiffness force in N. Based on

experimental data the coefficient, k, was chosen to be 85, and the deformation force

exponent, e, was chosen to be 1.3.

The damping coefficient of the tire force is modelled as a cubic polynomial

function of the tire deflection to prevent discontinuity at the initial contact between the

tire and the road profile actuator. Thus, the damping coefficient is zero, at zero deflection

and maximum, Cmax , at a user defined deflection. Based on data from (Wong, 1978), for

this type of a tire the maximum vertical damping coefficient, Cmax, is approximately 0.73

Ns/mm. The deflection at which damping reaches a maximum was more arbitrarily

chosen to be 38 mm. The cubic polynomial describing the damping coefficient of the tire

is shown in Equation 2

C,(x2) = 1.5 * 10'3 x22 - 2.66 * 10'5 x23 (1.2)

where the tire deflection X2 is in mm and tire damping coefficient ct is in Ns/mm.

Stiffness force and damping coefficient of the tire are shown in Figure 1.2(b). For tire

deflections higher than 38 mm, ct is considered constant at its value evaluated at X2 = 38

mm.

The suspension actuator is modelled as a single component force. The dynamics

of hydraulic actuation is interfaced with ADAMS in a user-defined code.

Control Modeling

Lagrange multiplier can be used to formulate the nonlinear equations of motion

constrained by the double-A arm mechanism. When heave is the motion of interest,

which is true in quarter car rigs, the constraints on motion can be accounted for by
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modifying the stiffness and damping coefficient of the suspension spring and dashpot. In

light of this, spring and dashpot forces were analyzed independently, in the ADAMS

model as described in the following.

The damping of the shock absorber was set to zero and the frame was fixed to the

ground. Then the wheel was displaced through the entire rattlespace. The sum of the

forces acting in the vertical direction on the sprung mass at the spring mount and the joint

connecting the upper and lower control arms were plotted vs. the wheel travel, and

observed to be very linear. The slope of that line is taken as the unconstrained spring rate

of K= 27.4 N/mm. Note that the original stiffness of the spring used in the non linear

ADAMS model was 167 N/mm. Next, the shock absorber damping coefficient was

restored back to 10 Ns/mm and the spring stiffness was set to zero. Having gone through

the similar analysis as presented above, the sum of the forces acting on the sprung mass

vs. unsprung mass velocity (wheel travel velocity) was derived in ADAMS and observed

to be linear, as well. The slope of this line, C = 1.65 Ns/mm, is taken as the

unconstrained damping coefficient. Again, it should be emphasized that this damping

coefficient is different from the original damping coefficient of 10 Ns/mm used in the

ADAMS model. Using the equivalent values of suspension spring stiffness and shock

absorber damping coefficient, i.e., K and C, we can approximate the constrained motion

of the corner car ADAMS model with the model shown in Figure 1.2(c). The state

variable formulation of the model is described below.
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(b)

(c) Tire Stiffness And Damping Coefficient As A Function Of Tire Deflection

(d) Quarter Car Model
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The positions of sprung and unsprung masses where the suspension and tire

springs are not loaded are considered as the references for displacement measurements.

As shown in Figure 1.2(c), the reason for this choice of position references is that the tire

stiffness and damping characteristics are given as functions of unloaded tire deflection.

Considering the absolute positions of the sprung and the unsprung masses as xj* and X2*,

the states are selected as xi being the relative position of the road surface and the sprung

mass (xi = w - xi* ), X2 being the relative position of the road surface and the unsprung

mass (X2 = w - X2*), X3 and X4 being the absolute velocities of the sprung and unsprung

masses, respectively, and w is the road profile. State variable formulation of the system is

x= f(x) + B2u + Bi w + gravity (1.3)

0 0 -x3 0

f(x) =

0____________
1

0
K

- — x9
M 2

K + Kt(x2)
x2m

0
c
M 3 

C
— x3 
m

c
— X1M 4

C + C (x2)
x4

m J

(1.4)

B2 = [ 0; 0; l/M,-l/m ] (1.5)

Bj = [+l,+l,0,Ct(x2)/m]’ (1.6)

where Kt(x2) is the instantaneous value of the tire stiffness coefficient, i.e., Kt(x2) = fk/*2,

B2 and Bj are the control and disturbance input matrices, respectively, and, w the rate of

change of road unevenness, is the disturbance input (process noise). Since the

displacement states are measured from the unloaded springs references (not the static

equilibrium references) ‘gravity’ is included in the equations of motion to account for the

contributions of weights of the sprung and unsprung masses. The last row of f(x),
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Equation 1.4, and the last row of Bi, Equation 1.6, are the nonlinear terms associated with

the tire in this state variable formulation. A notable observation is that these

nonlinearities are only functions of X2. The other nonlinearities, i.e., the separation of the

tire from the road and exhaustion of the suspension travel are considered as variation of

the model structure.

The nonlinear state variable formulation of Equation 1.3 can be replaced by a set 

of linear state space representations, using the two methods of: 1) linearizing around a set

of operating points and 2) substituting the nonlinear terms Kt(x2) and Ct(x2) by constants 

evaluated at a predefined set of X2’s. Both approaches result in an array of linear models.

Considering the fact that more accurate tire behaviour (in terms of Kt and Ct) are

normally in the form of look-up tables, the latter is a more convenient approach and is

taken in this work. Using the notion of fuzzy (multivariance) logic, the instantanious 

nonlinear suspension model is described by all these linear models, simultaneously, only

to varying degrees.

Considering the two elements of a = [Ct(x2) Kt(x2)] as uncertain parameters

which can assume a set of possible values (depending on the tire deflection x2), a

collection of linear models are developed by dividing the range of tire deflection into J 

discrete regions, x2j (j = 1,2,....J), and considering Ct and Kt as constants, evaluated at the

centroid of these regions. The dynamic declaration of the instantaneous linear model,

most closely representing the nonlinear system, is based on estimation of X2 using a bank

of state estimators.

State space representation of the j-th system is
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x = Aj x + B2 u + B ij w (1.7)

y = Cx + D2 u + Di w + v (1-8)

0 0 -1 0
0 0 0 -1
K K C C

A = — — — — — — (1-9)M M M m4
K K+Kt(x2j) C C+Ct(x2j)
M m m m 4_

b2 = [ 0; 0; l/M,-l/m] (1.10)

B,j == [+1,+1,0, Ct(x2)/m ] (l.H)

where j = 1,2,...., J and w and v are disturbance and measurement noise inputs assumed

to be uncorrelated, zero-mean, white, Gaussian processes with auto-correlations of W and

V respectively, i.e.,

E{ w (t) w (t) } = w 8(t - t) (1-12)

E{v(t) v(t) } = v 8(t-t) (1-13)

where E{.} denotes the expectation operator, and 8(.) is the Dirac delta function. Using

the measurement of the displacement between the sprung and the unsprung masses as the

output yields

C = [-1-1 -1 0 0] (1.14)

D2 = [0] (1.15)

Di = [0] (1.16)

However, if the sprung mass acceleration is considered as the output, then C, D2 and Di

matrices will be the entries of the third row of Aj, B2 and Bjj matrices (Equations 1.9,

1.10 and 1.11) of the state equation.
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The actuation force measured by the load cell is one of the inputs to all the

estimators in the bank.

Active suspension can be grouped into two major categories: fully active

suspension and semi-active suspension. In the first type, the sprung and unsprung masses

namely the body and the wheel base, are only connected by an actuator, as seen in Figure

1.3. Characteristic for the semi-active case is that there is a passive element (spring) or a

combination of passive elements (spring and dashpot) in parallel to the active element. In

[28] this case is further categorized into fast (Figure 1.4) and slow (Figure 1.5) semi

active suspension. The latter has, in addition to the passive element in parallel to the

actuator, also a passive element in series with the active one. In [28] it is claimed that it

is possible to achieve better performance results using slow active suspension unlike in

[36] this configuration is blamed not to be failure safe in experiments. Because of this

problem and also due to the fact that all other authors except those of [28] use the setup

shown in Figure 1.4, it is used in this work. The fully active case is not chosen due to its

high power consumption.

Without a spring in parallel to the actuator, the actuator has to support the car

body mass, due to this it consumes a lot of energy. The actuators are subject to two

different operating conditions, when the road disturbance on the suspension is small

(smooth road), the actuators are under relatively high load (weight of the vehicle), but are

displaced at a very low rate, an ideal condition for high pressure-regulated valve-

controlled systems. However, the requirement on the active suspension system to react to

road disturbance effectively makes the actuator subject to high displacement rates, which

in turn requires high flow rate on the hydraulic fluid. Therefore, a hydraulic system for
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the active suspension without a passive element, would be a high flow-rate pressure-

regulated valve controlled system. Such systems convert a large rate of hydraulic system

energy to heat at regulating valves, which is not desirable.

As the so called fully active suspension has limited practical use, most authors use

a different terminology than that of [28]. The fast semi-active suspension is referred to as

active suspension, and the term “semi-active suspension” is one having a passive

element with variable damping or variable stiffness but without an active element. In this

work the configuration in Figure 1.4 is called the active suspension.
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body

Figure 1.3 - Fully Active Suspension

body

Figure 1.4 - Fast Semi-Active Suspension
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body

Figure 1.5 - Slow Semi-Active Suspension

M j*2 ^*4

Figure 1.6 - Possible State Space Representation of the Quarter Car Model
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State of the Art in Active Suspension Design

To improve road contact and comfort there are two major concepts to design the

controller for the active element. The first is to use the optimal control theory (time

domain approach), the second is the shaping of the velocity transmissibilities (frequency

domain approach). In the following, only 2-DOF systems are discussed, because 1-DOF

systems, used in some publications, omits wheel base and tire which changes the nature

of the system.

Optimal Control

Linear Quadratic Regulator (LQR)

The emphasis of optimal control theory is to minimize the objective function

given by,

J = J (xQx +uRu)dt (1-17)
o

where x is the state vector and u is the control force. Q, R and N are weighting matrices

constrained to Q being a positive semi-definite symmetric, R being a positive definite 

symmetric, and ( Q- N R’1 N) being a positive semi-definite matrix. Minimizing this 

integral implies minimizing the area under the squared trajectories of x and u when the

controller drives the system back to zero from a non-zero initial condition. In the case of

automotive suspension, the crucial values are the peak values of discomfort and wheel

load variation in response to road disturbance, e.g. a bump or a pothole. The peak value

of body acceleration describes the passenger discomfort whereas the peak value of loss of

road contact determines vehicle performance and stability. The motivation for using

optimal control techniques (LQR) for active suspensions is due to the fact that the peak
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values so obtained tend to be smaller than the passive suspension system for most

disturbance input responses.

The importance of using LQR is partly due to the existence of a closed form

solution for the minimization of Equation 1.17. If the upper bound is not infinity,

minimization of the above equation leads to the following matrix differential equation:

A' S + S A+S BR-'B S + Q =S (1.18)

with the control law

u(t) = -Fx(t) (1.19)

is calculated by

F = R1 A S

with A and B represented by state space,

x= A x + B u (1.20)

In the steady state, i.e. the upper bound of the integral is infinity, the differential Equation

1.18 results in a algebraic Riccati equation:

A’s + s A + SBR'B S + S = 0 (1.21)

This can be represented in a generic form as

fr , ,i Q N" X
J[x uj
0 _N’ R u (1.22)

An LQR optimal controller not only finds the optimal control law by minimizing

Equation 1.17, but also guarantees infinite gain and phase margins of atleast 60 degrees

for the closed loop system.

As mentioned earlier, first attempts were made in the late sixties and early

seventies to apply active supension system control in automobiles. The easiest model so
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chosen, namely the quarter car suspension model has 4 states. The early attempts

applying optimal control suffer lack of straight-forward choice of the weights Q and R to

match performance objectives, i.e. comfort and road contact. This gap is closed in the

publications of the eighties, dealing with optimal control which focus on a proper choice

for Q and R and the problem of not having access to all the states, which complicates the

use of full state feedback technique such as LQR. One of the first suggestions were made

by Thompson, 1984 [31]. He suggested a structure of R, which yields a cost function

containing the control force, working space and road contact. Note that the incorporation

of road contact makes a special kind of state space representation necessary based on

Figure 1.6. The states are absolute displacement, i.e. displacement not relative to the

ground (road surface), velocity of the body and absolute displacement and velocity of the

wheel base. The state space representation is

x =Ax + Bu + Gw

y = Cx (1.23)

where,

"0 0 10"
0 0 0 1

A = K
-—000

m
0 0 0 0

(1.24)

B = [ 0;0;-l/m; 1/M],

G = [ 0; 0; k/m; 0]
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where u is the control force input, and w is the input of the road surface variation

(disturbance input). Recall that M is the mass of the body, m the mass of the wheel base,

K the stiffness of the spring in the suspension unit, C the damping coefficient of the

dashpot, Kt the tire stiffness and Ct the tire damping coefficient.

Inclusion of the working space, road contact and control force in the objective

funciton yields

J = J (rhol(w - x2)2 + rho2(x1 - x2)2 + rho3u2)dt (1.25)
o

with rhol, rho2 and rho3 being the weights on road contact (w-x2), working space (xj -x2)

and control force respectively.

The representation in Equation 1.25 considers only absolute values of

displacement and velocity of the body. It can be transformed to Equation 1.26 which

considers relative values of displacement and velocity of the body, hence another state

space representation is needed as shown in Figure 1.7. The states are the relative

displacements between the road surface and the body and between road surface and wheel

base and the velocities of the body and the wheel base. It is important to note that the

disturbance input is no longer the variation of road surface, but its derivative. The

Equations 1.23 and 1.24 can be replaced by the following

X! = w - Xi

x2 = w - x2 (1.26)

yields x = Ax + Bu + Gw and y = Cx (1.27)
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with
m

0

0 1 0 
0 0 1 
0 0 0 
0 0 0

(1.28)
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J:. 

.‘1

x2

Figure 1.7 - Alternative State Space Representation of the Quarter Car Model
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B = [ O;O;-l/m; 1/M],

G = [ -1;-1; 0; 0]

The new cost function is

J = J(rholx22 + rho2(x] - x2)2 + rho3u2)dt 
o

(1.29)

which is the the same as Equation (1.1) with

rhol + rho2 - rho2 0 0"

A =
rho2 rho2 0 0

0 0 0 0
0 0 0 0

(1.30)

R = rho3

This objective function now takes into consideration the road contact and the

working space. The distance variation between the road surface and the body and

between the road surface and the wheel base are not accessible. Hence Thompson [32]

first suggested the use of radar and sonar devices to measure the distance between the

body and the road surface with some practical difficulties, using these devices. The

distance between the body and the wheel base and accelerations of both the body and the

wheel base are accessible measurements unlike the velocity and absolute displacements,

which aren’t directly accessible but can be obtained by subsequent integration of the

accelerations. This method would result in inaccurate measurements due to integration

offset and is therefore neglected. The second suggestion [31], avoided the need for

sensoring the relative displacement of sprung mass which resulted in a reduced cost

function referred to as the suboptimal control. This cost function contains the working

space and the control force but not the road contact which makes it possible to use the
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state space representation in Equations 1.22 and 1.23. For certain cases, it was observed

that the control obtained by this method was very slightly inferior to that of optimal

control, though in general, the optimal technique is far superior to that of the suboptimal

one. The suboptimal objective function contained neither the road contact nor the

comfort, hence Q has to be obtained by trial and error. For this system, the LQR

technique can be applied and a full state feedback vector, feed, can be found.

The control law is given by u = - feed * x (1.31)
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n.

J:

Figure 1.8 - State Space Representation chosen by Wilson et al
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Like in [35], road contact is included by Hac in ([10] and [11]). However, the use

of disturbance dynamics to avoid road contact as a state is just a side effect. Hac makes

use of another interpretation of the LQR technique. It can be viewed as a controller

minimizing the auto-correlation of the states with respect to a white noise disturbance

input [10]. He replaced the algebraic Riccati equation incorporating the uncontrollable

dynamics by a set of equations: an algebraic Riccati equation with only controllable

dynamics, two linear matrix equations and a Lyapunov equation.

In his work, active suspension was used having a spring and a dashpot in parallel

with the active element. The states xi and X2 were defined as the absolute displacements

of the sprung and the unsprung masses and X3 and X4 being the velocities of sprung and

unsprung masses respectively. The objective function contains the discomfort, wheel

load variation, working space and control force, which yields the general form of a cost

function of the type in Equation 1.22. The state space representation is given by

x = Ax + Bu + Gw (1.32)

with

x = [xs, xw] (1.33)

where xs and xw are the states of the quarter car model and the disturbance. The full

state feedback matrix feed of the control law is

F = R'’(N’+B'S) (1.34)

with ‘S’ being the solution of the algebraic Riccati equation

S(A - B R'1 N) + ( A - B R'1 N')' S - SB R'1 B S + (Q-NR'' N) = 0

(1.35)
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Equation 1.35 has no solution due to the uncontrollable poles in the disturbance

dynamics. Therefore Hac suggests a pardoning of Q and S.

q _ Qxx Qxw 
Qwx Qww_

(1.36)

_ Jxx °xw
S’ so wx oww_

The dimensions of Qxx and Sxx correspond to the number of controllable dynamics of the

system and the dimensions of Qww and Sww to the number of uncontrollable dynamics

resulting from the disturbance. After certain manipulations, the following set of

equations are obtained instead of Equation 1.35.

Sxx (A x - B x R 1 Nx’) + (A x - B x R'1 N x’)’ Sxx - Sxx Bx R"1 Bx’ Sxx + 

(Qxx-NxR*Nx) = O (1.37)

Sxw A w + ((A x-B x R 1 N x ) - Sxx B x R 1 Bx )SXW + Sxx Bx + Qxw = 0

(1.38)

Aw S xw +S XW((A x-B x R'1 Nx ) - B x R 1 B x Sxx) + B x Sxx + Q xw = 0

(1.39)

Sww A w + A w Sww + (S xw B x + B x Sxw + Qww

+ S XWB x R B x Sxw) = 0 (1.40)

Then the feedback law is

u = - feed xs (1.41)

where feed’ is calculated by

feed’ = R'1 ((N x' + B x' Sxx) B x' Sxw) (1-42)
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The single subscript x indicates system matrices corresponding to the quarter car model

described by the state vector ‘xs’ and the single subscript ‘w’ is used for matrices

corresponding to the disturbances described by the state vector xw. Equations (1.37 -

1.40) can be solved consecutively, however, only Equations 1.37 and 1.38 are necessary

to solve for feed in Equation 1.42. Hac reports good results under the assumption that

the states are accessible whereas in reality they are not, hence an observer would be

necessary to implement the controller.

Linear Quadratic Gaussian (LQG)

The main drawback of the LQR technique is that the measurement of all the states

are required to be fed back. In most of the cases not all the states are measurable, hence

they have to be estimated. The most advanced technique for state estimation is still the 

Kalman-Bucy-Filter. This filter is a model of the original plant, namely the quarter car

suspension model, to simulate the states and an injection matrix H through which the

error between actual plant output and model output is fed back into the model. The

crucial part is the choice of H, since, if it approaches infinity (Leonhard observer), the

estimation becomes very tight, sensor noise is also amplified with an infinite gain,

resulting in sensor noise driving the estimator. If H is too small, the estimation becomes

inaccurate due to the plant disturbance and uncertainities of the plant model. The

Kalman-Bucy-Filter provides an optimal trade-off between plant disturbance noise and

sensor noise.

The filter state space representation is given by

x = A x + B u + G w

(1.43)
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y =Cx + v

with w(t) and v(t) being the white Gaussian noise and

E{ w (t) w (t)} = w 8(t - t) (1-44)

E{v(t) v(t)} = v 6(t -t)

The solution of the injection matrix H results from the solution of the following algebraic

Riccati equation

SA' + AS-SC'v''CS + GwG=O (1.45)

and

H = v'1 C S (1.46)

In the LQR technique all the states are fed back whereas in the LQG case, the

estimated states (using the Kalman-Bucy-Filter for state estimation) are fed back. The

weakness of this technique is that it lacks the excellent robustness properties possessed by

LQR.

Classical Suspension Design

This method involves shaping of the frequency responses of the transfer functions

of the velocity of wheel base over the velocity of disturbance input and the velocity of the

body over the velocity of disturbance input. These transfer functions are called

transmissibilities. The use of LQR is a general approach coming from the controls point

of view and is applied in the case of a suspension system. Transmissibility shaping,

however, is the traditional design originating from the passive suspension system. The

objective of the design is to minimize the discomfort and wheel load variation

respectively.
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An ideal system is a system with only (fictional) skyhook damping (see Figure 

1.14) with

Ei=E2=0.7 (1.47)

where,

Ei = (d,/2)Mw,

(1.48)

E2 = (d2/2) M w2

and

Wj =Vk/m

(1-49)

w2 = Vk/m
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Figure 1.9 - Ideal Suspension
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This is considered an excellent suspension system since the sprung mass (M)

resonance is controlled, coupled with the excellent high frequency isolation. The wheel

motion exhibits perfect tracking of the road, i.e. V2/Vin = 1, over a broad frequency range

with no tendency to leave the ground at high frequencies [23]. The goal of active

suspension design is to find a control law for the active element, such that the shape of

the transmissibilities approaches the behaviour of the transmissibilities for the fictional

skyhook system as closely as possible.

As found in literature, to obtain transmissibilities similar to that of a fictional

skyhook suspension, the coefficients of the transfer functions of the ideal system’s

transmissibilities are matched using full state feedback, or limited full state feedback as

suggested in the earlier literature.



CHAPTER II

CONTROL DESIGN

The State Space Model

Linear Quadratic Gaussian technique is an LQ full state feedback controller which

uses the error covariance optimal estimate of the states, provided by a Kalman filter, in

place of measured states.

The primary objective of each controller gain block in Figure 2.0 is to minimize

the quadratic cost function

o

Q N x 
N’ R u dt (2.1)

with Q, R and N being the same as explained in the previous chapter.

The design of each Kalman filter and gain matrix is based on a particular value of

the parameter vector aj. Minimizing the absorbed power (related to frequency weighted

time integral of the sprung mass squared acceleration) is the main objective of the LQ

controller. To accomodate this objective, the sprung mass acceleration is filtered by an

experimentally derived, 6 th order, frequency dependent weighting function depicting the

human body’s tolerance to vibration (Lins, 1972), and included in the objective function.

Figure 2.1(a) compares the frequency responses of the original 6th order filter with its

2nd order approximation. The use of the low-order filter of Equation 2.2 results in an

35
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augmented system with 6 states (4 from the original suspension and 2 from the filter) and

avoids having excessive number of states.

F(s)=^------—-------- (2.2)
sz+30.02s+901.3

The filter equations can be represented by:

Xf = AfXf +Bfuf (2.3)

yf = CfXf (2.4)

Rattlespace, tire deflection and control force are also included in the objective 

function to assure that minimizing the absorbed power (discomfort) is not achieved at the

expense of excessive suspension travel, tire deflection and control as seen in Equation

2.5.

J = J(rho4(x3f)2rholx22 + rho2(Xj - x2)2 + rho3u2)dt (2.5)
o

where x3f is the filtered sprung mass acceleration, rho 1, rho 2, rho 3 and rho 4 are the

weights on tire deflection (road contact), working space, control force and filtered body 

acceleration, respectively. Note that one rho i can be set to constant and the remaining

are chosen relative to the one set. In this work rho 4 is set to 1. The objective function is 

augmented with the frequency weighted human body response filter at the sprung mass 

acceleration output as can be seen from Figure 2.1 (b)

Equation 2.5 can be written in the form of Equation 2.1, using the

following Q, R and N:
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K2
—7 + rhol 
M2

K2
-—7- rhol

M2
CK
M2

CK
~M2

K2
-—7- rhol 

M2
K2

- —7 + rhol + rho2 
M2

CK 
_ M2

CK
M2 CK

CK CK C2 C2 _ M2
M2" _ M2 M2 _ M2
CK CK C2 C2

_ M2 M2 “ M2 M2

(2.6)

R= [--|y + rho3] 
M

_K__ C_
M2 M2

(2.7)

(2.8)

Combining the two state space realizations of the suspension (Equations 1.7 and

1.8) and the filter (Equations 2.3 and 2.4), the augmented state space realization can be

seen in Equations 2.6 and 2.7; see also Figure 2.1 (b).

‘Ai 0 " X ‘ B2 '
u +
A'

B,C Af_ _xf. BfD2 BfDj
w (2.9)

From Equation 2.4, it can be seen that the output of the filter has a strictly rational

transfer function (no Df term), when the sprung mass acceleration is viewed as the output, 

its augmentation with the suspension model will still yield a strictly rational overall

transfer function. That is, the D term in the output, Equation 2.7, of the augmented

system, representing the filtered sprung mass acceleration, is zero matrix.

y=[° cf] (2.10)
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Fuzzy Logic Controller

Figure 2.1 (a) - Structure of the Fuzzy Logic Suspension Controller
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(b) Augmented Suspension

vertical human response curve (solid) and its 2nd ord approximation (dashed)

(c) Human Body Response Filter and its Second Order Approximation
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It should be noted that in this case the weights rho 1, rho 2 and rho 3 cannot be 

chosen independently because Q - N R'1 N has to be positive semi-definite. In LQG, the 

estimator gains are designed in a manner to provide a trade-off between the necessity of a

tight estimation due to the disturbances perturbing the plant and the necessity of a loose

estimation due to the noise corrupting the measurement.

Since the ratio w/v, not w and v independently, has influence on the estimator

gains, one of them is set to one and the other varied. It turns out that a reasonably high w,

however results in a practically unstable system. For w of higher than le8 which is a

necessary condition for good performance, the system has a gain margin of about 0 db

and a phase margin of 0 degrees. A very small perturbation, e.g. change in parameters,

would make the system unstable. This suggests that LQG is not an appropriate technique

for active suspension systems. Low stability robustness of LQG is the main reason for its

lack of widespread acceptance among practitioners, especially in areas like flight control

and chemical processes control in which stability robustness is a sensitive issue.

Equation 2.5 can be written as Equation 2.1, using the appropriate Q, R and N;

[15]. The zero D matrix in the output (filtered acceleration), Equation 2.7 indicates that

N, the cross term in the objective function, is a zero matrix. Knowing Q and R matrices,

the full state feedback gain vector, KK = [ feed kf] is evaluated by solving the

appropriate Riccati equation. The state feedback control law for the augmented system is

obtained by standard methods to yield the control force of Equation 2.8.

u = feed x +kfXf (2.11)

The effect of variation in the weighting factors (rho i’s ) on the absorbed power,

mean squared filtered sprung mass acceleration surface (representing the absorbed power)
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in response to 1.35” Letourneau course, traversed at 25 mph, road velocity input is

evaluated and presented in Figure 2.3. This is done using one of the elements of the set

of linear models describing the non linear suspension. As expected, lowering the weight

on control input rho 3, i.e., willing to spend high control energy, in conjunction with a

small weight on road contact (tire deflection), lowers the absorbed power.

The effectiveness of the frequency-shaped design in lowering the sprung mass

acceleration at the frequency range of importance in human body power absorption, is

depicted in Figure 2.2 in which two different control designs are compared. These

designs are based on having the sprung mass acceleration x3 or filtered sprung mass

acceleration x3 f in the objective function of Equation 2.5 with the same set of weights for

both designs. Frequency shaped design gives a significant improvement over the non

frequency-shaped design.

The addition of 2 states to the plant resulting from augmenting the plant with the

human body response filter of Equation 2.2 does not add any extra computational burden

to the real-time estimation of the states. This is because, the two states of the filter can be

accurately measured by running the measured acceleration of the sprung mass through an

op-amp based electrical circuit realizing the filter. This will leave the estimation based

on the original 4 states of the suspension itself.
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weights
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The following steps are taken to avoid inclusion of servohydraulics dynamics in

the estimators and controllers design: 1) The measured (not calculated) control force

(control input) is fed to the real-time estimation routines. This is possible because the 

actuator is equipped with a load cell. And 2) By closing a feedback innerloop around the 

actuator force the servohydraulics bandwidth is widened, eliminating the need for

inclusion of its dynamics in the controller design. Figure 2.3 shows the effectiveness of a

proportional plus integral (PI) inner loop force controller in eliminating the dynamics of

the hydraulic system.
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Figure 2.3 - Time and Frequency Responses of the sprung mass acceleration with

frequency and non-frequency shaped controllers
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Figure 2.4 - Response of closed-loop force controlled hydraulic system to step

reference force
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Multiple Model Based Estimated States

Multiple model Kalman filter-based estimation consists of a bank of J separate

estimators, each based on a particular value of the vector of uncertain parameters, a = [kt

ct], i.e., ai, a2, aj. The use of filter banks running in parallel was first suggested by 

Magill [23]. The Baysian conditional probability was used in the scheme proposed by

Magill to estimate the states as the conditional mean of the estimated states by all the

filters in the bank. Although the use of a bank of Kalman filters was considered

impractical at the time it was proposed, recently with the advances in digital signal

processing computer technology, on-line implementation of this scheme is quite feasible

and has been demonstrated in a number of applications.

The Baysian conditional minimum mean square error estimate of the state is the

probability weighted average:

x(ti+) = E {x(ti) I Z(ti) =Zi}

= £ d/t/yp/t,)) (2.12)
j=l

where Z(t,) is the measured output history vector, Zj is the realized output history vector,

A

Xj(tj+) is the state estimate generated by the jth Kalman filter based on the assumption that 

parameter vector is equal to aj and Pj(tj) is the conditional Gaussian probability of that 

event, i.e., a = aj, occuring.

The evaluation of pj (t) is based on certain assumptions which might not always be 

valid. Moreover, fuzziness not probability, is the right approach for estimating the states

by blending the estimates of individual Kalman filters. This is because probability

describes the uncertainity of event occurance (whether it occurs) not the degree to which
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an event occurs (which is described by fuzziness). In other words whether an event

occurs is random, to what degree it occurs is fuzzy. The method proposed by Magill

serves as a good point of departure for fuzzy logic estimation of states, as to be described

in Appendix A.



CHAPTER III

KALMAN ESTIMATOR

Filter Theory

The purpose of the Linear Quadratic Control technique is to estimate the states from

the output of the quarter car suspension model, which can then be used to calculate the

control force. This estimation is done by a Kalman filter based on the assumption that the

parameter vector equals aj, since each filter is based on a particular value of the vector of

uncertain parameters, a, in a given linear stochastic state model for a dynamic system. In

order to make simultaneous estimation of states and parameters tractable, the continuous

range of the parameter values is discretized into j representative values More explicitly,

let the model corresponding to aj be described by an “equivalent discrete-time model”

[26] for a continuous-time system with sampled data measurements:

xj (t+1) = cpj{ti+i , h} xj (q) + G2j (h) u(h)+ Gij (h) Wj(ti) (3.1)

(3.2)

where, <pj is the state transition matrix, [Gj G2]j is the input matrix, Xj is the state, u is

the control input, wj is the discrete time zero mean white Gaussian dynamics noise of 

covariance Qk(h) at each f, z is the measurement vector and Vj is discrete time zero mean 

white Gaussian measurement noise of covariance Rk(h) at tj, assumed independent of wy

x(to) is modelled as Gaussian, with mean xj(t0) and covariance PjO, assumed independent

48
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of wj and Vj.

Based on this model the Kalman filter is specified by the Measurement Update:

Filter covariance,

Fj(ti) =Cj(ti)Pj(ti*)Cj’(ti) + vj(ti); (3.3)

Kalman gain,

Lj(ti) =Pj(ti*)Cj’(ti)Fj’(ti); (3.4)

State Estimates,

Xjj(ti) = xjjGi^+Lj (ti)[y (tj) - Cj(ti) xij(ti*)] (3.5)

Error Covariance,

Pj (ti) = Pj ft*) - Lj (ti) Cj (ti) Pj (ti*); (3.6)

The Kalman filter updates the above estimation by the effects of process and

measurement noises.

And the Propagation Relation:

State Estimates,

A A

xjj(ti+i*) = (pjfti+i, ti} Xjj(ti+) + G2j (ti) u (ti) (3.7)

Error Covariance,

Pj (ti+i*) = <Pj{ti+i, h} Pj (tj+ ) <p‘j (ti+0, tj)+ Gij (tj Wj(ti) Gij ‘ (tj) (3.8)

where, ti* & t/ are the prior & posterior estimates. Thus the multiple model adaptive 

filtering algorithm is composed of a bank of j separate Kalman filters, each based on a

particular value ai...,aj of the parameter vector, a. When the measurement ‘yi’ becomes 

available at time, tj, the residuals rj (ti),...,rj(tj) are generated in the j filters and used to 

compute the probabilities pi (tj),....,pj(ti) and also the firing weights fj (ti),....,fj(tj).
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The Kalman filter residuals are given by:

ij (h) = y(ti) - cj x (tj*) (3.9)

where, tj * is the prior estimate.

One expects from Equation 3.9, the residuals of the Kalman filter based upon the best

model to have mean squared value most in consonance with its own computed 

covariance, Aj (ti), while mismatched filters will have larger residuals than anticipated 

through Aj (ti). Therefore, the performance of the algorithm depends on there being

significant differences in the characteristics of residuals in correct versus mismatched

filters. Each filter should be tuned for best performance when the true values of the

uncertain parameters are identical to its assumed value for these parameters. One should

considerably avoid the conservative philosophy of adding considerable dynamics

pseudonoise, often used to open the bandwidth of a single Kalman filter to guard against

divergence, since this tends to mask the differences between the good and bad models.

Filter Tuning

The above Equations 3.3 through 3.8 indicates that the state estimation using a

Kalman filter consists of two parts, the propagation (Equations 3.7 and 3.8) and

measurement update (Equations 3.3 through 3.6) known as ‘correction’. Equation 3.7 in

the propagation part of the Kalman filter evaluates the contribution of the measured input,

propagating through the plant dynamics, to the state estimates. The correction

(measurement update) part modifies (updates) the above estimation by the effects of the

process and measurement noises.

Every model has a certain amount of uncertainity/nonlinearity. Practitioners

normally account for modelling uncertainities by putting extra emphasis on the correction
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Every model has a certain amount of uncertainity/nonlinearity. Practitioners

normally account for modelling uncertainities by putting extra emphasis on the correction

part of the filter through the introduction of some dynamic pseudonoise into the plant.

This is in addition to the actual process noise, the plant is exposed to. The summation of

the covariances of the actual process noise and the synthesized dynamic pseudonoise will

be the process noise covariance (w) used by the filter. It can be seen from equation 3.8

that high values of w result in high error covariance (P) which results in high Kalman

filter gain (L); see Equation 3.4. The drawback of this fix is excessive estimation

bandwidth which deteriorates the low-pass filtering characteristics of the estimator.

Moreover, when the estimator is used in feedback controls, the closed loop system will

have very poor stability robustness.

Hence each filter should be tuned for best performance when the true values of the

uncertain parameters are identical to their assumed values, as explained above, for

reducing the stability robustness of the filter and the controlled system.

Process Noise Characterization

For many physical systems, including active suspension, it may not be justified to

assume all the noises (especially) process noises) are white Gaussian (assumed by the 

Kalman filter). For these systems, it is useful to generate the power spectral density of

the real noise data and then develop an appropriate noise model called shaping filters.

These filters, which will be augmented to the plant, are driven by white noise processes

which they shape to represent the spectrum of the actual noise.

The road input to the active suspension travelling on two types of courses,

Letourneau and DAT-P, are considered as process noise in this work. The former
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resembles dirt road and the latter resembles a bumpy road. Figure 3.1 shows the

uneveness velocity, experienced by the tire travelling at 25 mph, for these courses. The

validity of zero-mean assumption of the process noise is clearly indicated in the figure.

The whiteness assumption is discussed as follows.

Figure 3.2 shows the power spectrum of road unevenness velocity (process noise)

for various Letoumeau courses with various unevenness rms’s, for the right tire, traversed

at 25 mph.

Pure integrators and low-pass filters have been proposed in the literature for

shaping the road disturbance in suspension systems. Considering the reasonable flatness

of the power spectrum of the disturbance, Letourneau courses unevenness velocities, over

the frequency range of interest in suspension problem (<10 HZ), the road process noise is

considered ‘white’ for these courses, with covariance dependent on the vehicle speed and

root mean square (rms) of profiles; see Figure 3.3. Knowing the vehicle speed and the

road profile, Wj(f) in the propagation equation is updated through Figure 5.3. Knowing 

the vehicle speed and the road profile, wj(tj) in the propagation equation is updated

through Figure 5.3 (stored in a look-up table). The covariance of the road process noise

can also be evaluated, in real-time, via a smearing memory routine fed by the output of a

preview sensor.

Figure 3.4 shows the power spectrum of the process noise input to the suspension

traversing the DAT-P course at various speeds. The corresponding frequency response of

the shaping filters, approximated by double integrators, are also shown on the power

spectrum plots of Figure 3.4.
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Figure 3.3 - Covariance of the Letourneau Courses process noise
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CHAPTER IV

BLENDING TECHNIQUES

Probability Theory

Multiple model adaptive estimation and control techniques have a structure of a bank

of parallel Kalman filters or parallel LQG (linear system model, quadratic cost and

Gaussian noise models used for synthesis) controllers that are used to form a state

estimate or control output as a probability weighted sum. Each filter or controller is

based upon an assumed value of the uncertain parameter a to which adaptation is to

occur and it is the characteristics of the residuals from each of these filters that allows the

evaluation of the probability, based upon the best assumed parameter at the current time.

The parameter can affect the matrices defining the structure of the model or depicting the

statistics of the noises entering it. In order to make simultaneous estimation of states and

parameters tractable, the continuous range of a values is discretized into j representative

values. If we define the hypothesis conditional probability, pj (ti) as the probability that a 

assumes the value ‘aj’ (for j = 1,2,...,J), conditioned on the observed measurement history

to time tj:

pj(ti) = Pr{a=ajly(ti) = yi} (4.1)

then it can be shown [1-4] that pj(q) can be evaluated recursively for all j via the iteration:

(4.2)
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in terms of the previous values of pi(ti_i),....,pj(ti_i) and conditional densities for

the current measurement y(tj) to be defined explicitly in 4.12. Notationally, the

measurement history random vector y(f) is made up of partitions y(ti),....,y(f) that

are the measurement vectors available at the sample times ti,...,tj; similarly, the

realization yj of the measurement history vector has partitions yi,...,yi.

Furthermore, the Bayesian minimum mean square error estimate of the state is

the probability-weighted average:

A

Xidt*) = E{x(ti) I y(ti) = yi}

= XXj(ti+)-Pj(ti) (43)
j=l

where Xjj(ti+)is the state estimate generated by a Kalman filter based on the

assumption that the parameter vector equals aj. More explicitly, let the model 

corresponding to aj be described by an ‘equivalent discrete time model’ for a continuous

time system with sampled data measurements:

xj (ti+i) = (pj{ti+i , h} xj (h) + G2j (h) u(ti)+ Gij (h) wj(ti) (4.4)

y (tj) = Cj (h) xj (h) + Vj (h) (4.5)

where Xj is the state, u is a control input, Wj is discrete time zero mean white Gaussian 

dynamics noise of covariance Qj(h) at each t1? y is the measurement vector and vj is the 

discrete time zero mean white Gaussian measurement noise of covariance Rj(h) at tj, 

assumed independent of Wj; xto modelled as Gaussian, with mean xj0 and

covariance Pjo and is assumed independent of Wj and Vj.

Using the measurement update and the propagation relation as explained in
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Chapter 3, the Kalman filters are designed. Each numerator density function in

Equation 4.2 is given by:

l/2m*IF:(ti)l1/2

(4.6)

where m is the measurement dimension and Ak (ti) is calculated in the jth

Kalman filter as mentioned in the measurement update equations. The

denominator in 4.2 is simply the sum of all the computed numerator terms and 

thus is the scale factor required to ensure that the pj(q) is sum to one. If this is

not taken care, then the probability weighting would sum up to greater than one

and this would cause stability problems since more control input is given than

necessary.

The other blending technique is Fuzzy Logic, which is explained in detail in Appendix

A.

Residual Monitoring

Each Kalman filter residual rj, is defined as

ij(ti) = y(ti) - Cj x(t’) (4.7)

The residual is ideally (when there is no model uncertainity) a white, Gaussian, zero

mean, sequence of covariance Fj in the measurement update equation. Moreover, Pj of

the same equation describes the optimal covariance matrix of the state estimation error

x(h) - x(tj ) in the measurement update equation. Likelihood quotient shown in Equation
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34, q, compares of the residual, q, with the filter’s internally computed residual 

covariance, Fj.

qj = q’ (h) Fj(ti)'1 rj(ti) (4.8)

q is merely the sum of scalar terms relating the product of any two components of the

residual vector and the internally computed covariance for those two components.

Considering that the ‘mismatched’ filters (filters based on less perfect models) will have 

larger residuals than anticipated through Fj, filters with residuals that have square values

most in consonance with their internally computed covariance are the most ‘matched’

filters. These filters are weighted more heavily in calculations of the control.

The above mentioned scalar terms or their sum (likelihood quotient, Equation

4.10) are used as the auxilliary input(s) to the fuzzy logic scheme that evaluates the

control input to the suspension by blending the individual Kalman filter-based (LQG)

controls. They are both viable indications of how good the estimation of each filter, at

any point in time, is.

Also, the switching mechanism is based on a threshhold value of the residuals

from each of the filters. This mechanism serves as an important scheme in model

stability. It could go unstable when the state estimate from one of the filters starts sinking

even when the car is on the ground and when the state estimate from the other two filters

starts building up when the car is off the ground. This is explained in detail in Chapter

VI.

Stability Analysis by Monte Carlo Method

The parameters of the suspension namely (() = [ M, m, K, Kt, C, Ct] vary
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depending on various factors, e.g. the viscosity of oil changes due to the temperature

variation, resulting in the damping coefficient variation. Also the tire stiffness and the

damping coefficient changes with respect to the tire pressure, vehicle speed etc., These

parameters contribute to the model uncertainity of the quarter car system and they have a

significant influence on its fidelity.

The variation of these variables are not known specifically and can be estimated

by Monte Carlo Analysis. The nominal values or the mean of each parameter is initially

specified. We assume that the parameters have a normal distribution with the mean, ji

and variance, v. The variance of the vector, (f) for the Monte Carlo simulation is taken as

5% of the mean. Knowing the variance and the mean, the unknown parameter values are

found as estimates, (X) = z*v + p for each suspension parameter, where z is a normally

distributed random variable.

Random values representing the probability, p are chosen for each suspension

parameter. The values of probability, p, between (0 & 0.5) would represent a normally

distributed random variable, z, between (5 & 0). The probability, p, between (0.5 & 1)

would represent a normally distributed random variable, z, between (0 & -5) thus having

the span of the probability, p, is between (0 & 1) corresponding to the span of the

normally distributed random variable, z, between (5 & -5).

The look up table mapping p to z are fed into the computer with a written code.

This process is necessary to automatically fire a random variable value for each

suspension parameter, whose probability is known at a given time. The probability

values are normally assumed for each suspension parameter statistically.
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Each controller is designed based on a fixed value of (j). The randomly selected

parameters found by Monte Carlo Analysis is coupled along with the plant model, and

used in the simulation of the controlled system. Eight runs are used to indicate the

stability of the system. Figure 4.1 depicts tbe rattlespace of the active suspension

corresponding to the 8 runs discussed above.



CHAPTER V

SIMULATION RESULTS

The non linear dynamics of the quarter car suspension is modelled using Equations of

state variable formulation. The model is used to analyze the LQG-based fuzzy logic

controller developed in this work. The stiffness and damping coefficient of the tire are

the only nonlinearities of the current model. The suspension model is approximated by 3 

linear models considering constant tire stiffness and damping coefficients evaluated at the

three tire deflections of 0.04, 0.025 and 0.01 m (practically zero), measured relative to the 

unloaded tire position. These linear models are used for augmenting the suspension with 

a low-order approximation of human body response filter. The bank of optimal

controllers are designed using these augmented linear models. The same linear models

are also used in the bank of estimators, providing the state estimates of the suspension to

the controller. The states of the human body response filter is measured by running the

measured acceleration of the sprung mass through the 2nd order filter. These states are

provided to the bank of controllers. Note that the added filter states do not add extra

computational burden on the bank of estimators. The measurements used in driving the

Kalman filters are the working space of the suspension and the actuator force. Sprung

mass acceleration will be added to the measurement vector and will be fed to the

estimators in the future. The residual of each estimator is squared and scaled by its

internally computed covariance
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in each estimator and used as the input to the fuzzy logic blending algorithm which mixes

the control provided by each controller. This control will drive the nonlinear suspension

model described above.

Open and closed-loop integrated squared acceleration ( the square of the sprung

mass acceleration is integrated over time, i.e., J (acc2 dt), which indicates the absorbed
o

power and working space, in response to 1.35” RMS Letoumeau course traversed at 25

mph, for the following two sets of weights are shown in Figures 5.1 and 5.3. The

corresponding control actuations are depicted in Figures 5.2 and 5.4. Note that the weight

set 1 has more emphasis on minimizing the working space (higher rho 2).

[rho l....rho 4]i = [leO le2 le-8 leO]

[rho l....rho 4]2 = [lei le-1 le-8 leO]

Comparison of the squared sprung mass acceleration on open (passive) and 

closed loop suspension indicates that using a high weight on working space, i.e., weight

set 1, the absorbed power is reduced to half while the suspension travel is also reduced;

see Figure 5.1. By reducing the weight on suspension travel in the objective function,

e.g., weight set 2, the absorbed power is dramatically reduced without any increase in

suspension travel beyond that of the open loop system; see Figure 5.3.



65

working space, cl

Figure 5.1 - Open and Closed loop integrated squared sprung mass

acceleration and working space using weight set 1
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Figure 5.2 - Closed loop control actuation using weight set 1
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Figure 5.3 - Open and Closed loop integrated squared sprung mass

acceleration and working space using weight set 2
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control input

Figure 5.4 - Closed loop control actuation using weight set 2



CHAPTER VI

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

Summary and Conclusions

Design of active car suspension system thrusts its objective in reducing the

absorbed power while simultaneously improving the road contact with a minimal

suspension rattlespace. The problem of improving comfort and road contact is the

dominating question in literature on active suspension system design for more than

twenty years. Although the nature of the system makes this particular problem so

outstanding among the other suspension objectives, that a passive suspension is incapable

of providing a sufficient solution, e.g. for the demand of a horizontal position of the car

during curving. This demand requires an infinite stiffness of the suspension spring and of

the tire, which is unrealistic and not desirable, whereas it is a simple regulator problem or

a question of zero steady state error, if an active element is employed. In the case of

trade off between comfort and road contact, however, a decent solution is provided by a

passive suspension, so that the demand on an active element is that of improving the

given solution. In Chapters 1 and 2, a cross-section of the publications of the last 23

years is given, which leads to the conclusion, that neither LQR methods nor conventional
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matching of the skyhook suspension yield sufficient results under the constraints of

limited measurements and necessity of a not fully active suspension.

In Chapters 3 through 4 an alternative, LQG based fuzzy logic control of active

suspension system, is discussed and its formulation for active car suspension is

developed. This finally results in a controller design which has good performance and

sufficient stability robustness. The only necessary measurement is that of measuring the

distance between the sprung and the unsprung masses, which is very easy to obtain and

accurate.

Recommendations for further Research

The main objective of this work was to find a control method which improves

comfort and road contact simultaneously based on practical assumptions for the model,

namely limited measurements and avoidance of the necessity of a fully active suspension.

For the quarter car model, the control technique namely LQG-Based Probabilistic Control

of Active Suspension is implemented and compared to Fuzzy Logic. These techniques

are not the best, hence further research on control strategy is strongly recommended.

Though our control strategy provided good results for the objectives of comfort

and road contact on a quarter car model, its abilities on a full car model with additional

objectives like roll and pitch behaviour, needs to be explored. A simple model,

incorporating a full car is, shown in Figure 6.1. Note that this model has four

independent road disturbance inputs whereas in reality the inputs of the front and rear are

correlated: the rear input is a time delayed version of the front disturbance input.

Therefore the system has only two independent road disturbance inputs, one on the right
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and the other on the left side. Analysis of possibilities to improve the system by utilizing

the knowledge from the front for the rear suspension is another topic for further research.

An important part for further research is how model order reduction of the

controller affects the properties of the active suspension system. The order of the

controller increases drastically due to more states of the full car system, actuator

dynamics, more and complicated weighting functions.

In our work, all the simulations of the system have been done on Matlab and

Simulink. Further testing, especially for full car models, should be done with a full car

simulator, which incorporates a good approximation for the tire, e.g. modelling of the

surface contact and other neglected features such as saturation due to limited working

space, limited contraction of the tire or limited force provided by a real actuator.

One important application area for multiple model algorithms is the adaptive

control of the automobile system namely the High Mobility Multipurpose Wheeled

Vehicle (HMMWV). For this case, the use of a ‘moving-bank’ multiple model

estimation and/or control algorithm has been investigated. Rather than implementing

parallel filters or controllers based upon all viable discrete parameter values for all time,

only a subset of these discrete values is used at any one time. Also, implementing the

multiple model in parallel has an adverse effect, since one of the filters based on ‘off

road’ condition tends to sink even when the model is on the ground, which leads to

unstability. This prompted us to have a dynamic logic that decides which subset of

values should be currently implemented.

This concept was further made easier since we had to consider a maximum of 3

separate filters. Maintaining fewer elemental filters in the bank enhances the feasibility
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of the algorithm but could aggravate the behaviour observed earlier in fixed-bank

algorithms of making inappropriate decisions when the true model is not included in the

model set of the filter. Some research has been directed at the information theoretic

problem associated with this condition and further recent research has portrayed the

performance capabilities of various proposed decision logics for ‘moving’ (and changing

the size, if more number of filters are used, but not in this work) the bank of currently

used values around the parameter space [26].

This research [26] has addressed the robustness issues of such an adaptive

estimator/controller. A final implementable controller will necessarily be based upon

reduced-order, simplified models in order to maintain reasonable computational loading.

As discussed above, since our work has 3 filters and only one parameter varying

namely the tire deflection, only 3 filters and controllers have to be implemented. Each

filter design is based on a vector of uncertain parameter ‘a’, which is dependent on the

tire deflection (road contact) alone. Three values of tire deflection are arrived at by

dividing equally the range of tire deflection and approximating by its midpoint. This

produces 3 separate filters tuned to their regions alone producing the best result. One of

the regions is considered to be off the ground by choosing the tire deflection (Kt) and the

damping coefficient(Ct) to be zero, whereas the other two regions are considered to be on

the ground with suitable values for Kt and Ct.

The problem with this type of approach is that all the 3 filters run simultaneously

disregard to whether the car is on or off the ground. Either way the estimation is wrong,

since if the car is on the ground, one of the filters predicts it still to be off the ground and

gives the wrong estimation of the states. If the car is off the ground then two of the filters
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predict it to be on the ground again giving a wrong estimation. To solve this problem, a

suitable switching logic is proposed based on the residual. Consider the same problem as

discussed above. If the car is on the ground, then one of the filters predicts it to be off the

ground, which would give a higher residual value since the estimated output would be

away from the measured output unlike the other two filters which would have a smaller

residual since the estimated output falls in line with the measured output. If the car is

now off the ground, then two of the filters predicts a higher residual whereas the third

filter predicts a lower value. The filters corresponding to the car on the ground is one set,

whereas the third filter corresponding to the car off the ground is taken as the second set.

Switching is done in such a way that a previous history of the measurement of

residuals are plotted and their values noted for each of the filters. If the residual value

exceeds a threshhold value, decided by a history of measurements, then switching is done

from one set to another. It implies that the Kalman filter itself stops estimating, since that

would cut down computational time on the computer. Care is also taken that, even if the

filter starts running for whatever reason, when it is not supposed to, the final output of the

states is still zero, brought about by a suitable decision logic function. This mechanism

would certainly improve the stability of the model, since shutting off one of the set of

filter or filters would stop the model from sinking or building up (adding up).
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Figure 6.1 - Full Car Model with four independent road inputs
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APPENDIX A

Fuzzy Logic Controller
At any given point in time, the non linear suspension model can be approximated

by a set of linear models, with varying degrees on each element of the set. Let the vector

of uncertain parameters in the linear stochastic state model of Equation 1.9 be denoted by,

a = [ Ct Kt]’. Both these parameters are functions of tire deflection, x2 only. The range

of x2 can be discretized into J representative values for implementation reasons resulting

in J sets of uncertain parameter vector pj (for j = 1,2, ...., J). In this work, x2 is divided

into J = 3 regions and the center of each region is chosen to evaluate each aj. This

discretization results in 3 linear models thereby giving 3 Kalman filters and 3 LQ

feedback gain vectors, along with the necessary fuzzification, rule base and the

defuzzification elements, as shown in Figure 2.1. Each LQG controller, designed for

each linear model, is then fired with its corresponding firing weight. The fuzzy input

variable to the rule set is the residuals of each Kalman filter properly scaled by their

internally computed covariances.

Fuzzy Logic

The fuzzy logic is used to blend the individual control actions generated by the

bank of LQG controllers shown in Figure 2.1(a). The mechanics of this blending is

described below:

The Input Space

The input to the fuzzy logic controller is the comparison of the residual

covariance for each filter with the filter’s internally computed residual covariance.

This input is the likelihood quotient, q described by Equation 1.
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qj = rj’ (ti) Fj(ti) inv rj(ti)

q is merely the sum of scalar terms relating the product of any two components

of the residual vector and the internally computed covariance for those two

components. Considering that the ‘mismatched’ filters (filters based on less-

perfect models) will have larger residuals than anticipated through Fj, filters with

residuals that have square values most in consonance with their internally

computed covariance are the most ‘matched’ filters. These filters are weighted

more heavily in calculations of the control. The above-mentioned scalar terms or

their sum (likelihood quotient, Equation 1) are used as the auxiliary input(s) to

the fuzzy logic control scheme that evaluates the control input to the suspension

by blending the individual Kalman filter-based (LQG) controls.

The universe of discourse for ‘q’ is the range of all possible covariances of the

residuals, with the minimum value of zero. Assuming the maximum of the range

in q is +10, the universe of discourse is:

Uq = (0,10) (2)

The universe of the fuzzy variable must be covered with fuzzy sets that represent

all possible fuzzy values the variable can assume. Trapezoidal representations

are used as the membership functions of the fuzzy inputs sets.

Term Sets of the Inputs

The term set is the set of fuzzy values which a fuzzy variable may assume. In

order to keep the potential size of the rule base small, a term set of size 4 was

(1)

decided upon. Note that as part of tuning the Fuzzy Logic Controller (FLC), the
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size of the term set can vary. The four sets defined for the input q universe are

shown in Figure 1. Each fuzzy set is named as shown in this figure and listed in Table

1(a).
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Figure A.l - Term Sets for the fuzzy input ‘q’
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Fuzzy set Description
SML Small residual
MED Med residual
LRG Large residual

VJLRG Very large residual

TABLE A.l (a) - Fuzzy input sets and associated descriptions

Input rc Output (firing weight)
SML HIGH
MED MED
LRG LOW

\GLRG ZERO

(b) Rule Base for firing factor
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Fuzzification

The fuzzification operation consists of converting the deterministic input, or q, to

a fuzzy singleton, and then intersecting it with each of the fuzzy sets on the

universe of discourse. Because of the nature of the fuzzy singleton (degree of

one at the deterministic input and zero everywhere else), and since the

membership curve will always have a value less than or equal to one, values

equivalent to the intersection can be obtained by plugging the deterministic input

directly into the membership function equation for each fuzzy set and solving for

the corresponding degree of membership.

Rule Base

The rule base for the FLC must contain information that decides on the extent of

firing of each LQG controller for each possible fuzzy input. Table 1(b) shows the

format of the rule base. The fuzzy sets describing the rules ‘High’, ‘Med’, ‘Low’

and ‘Zero’ are shown in Figure 3. The universe of discourse for these rules is between

zero, i.e., Zero, (no firing) and 1, i.e., High, (full firing).

The thinking behind the selection is simple and as follows: The fuzzy set ‘High’,

large firing, should be used when the residual is very small indicating the accurate

estimation by the Kalman filter.

Note that the two rules, ‘Zero’ and ‘High’ are singletons, i.e., they are nonzero

only at a single point on the universe. Figure 4 shows the rule base considered for this

problem, graphically. It should be emphasized that all the aspects of setting up the rule

base are the subjects of controller tuning.
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Output Membership lunctions

Figure A.2 - Firing factor rules
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Figure A.3 - Input/Output Rule Base; 1st column (Residual Covariance), 2nd 

column (Output; firing factor)
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Defuzzification

The final aspect of the design consists of using a defuzzification algorithm.

Center of area method is used in the simulation presented here. This technique

is based on evaluating the center of the area of the union of each inferred

output. Using the steps described above, the firing weight curve is evaluated

and shown in Figure 4.
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Figure A.4 - Firing weight surface


