14,995 research outputs found

    Fast dynamic deployment adaptation for mobile devices

    Get PDF
    Mobile devices that are limited in terms of CPU power, memory or battery power are only capable of executing simple applications. To be able to run advanced applications we introduce a framework to split up the application and execute parts on a remote server. In order to dynamically adapt the deployment at runtime, techniques are presented to keep the migration time as low as possible and to prevent performance loss while migrating. Also methods are presented and evaluated to cope with applications generating a variable load, which can lead to an unstable system

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Adding generic contextual capabilities to wearable computers

    Get PDF
    Context-awareness has an increasingly important role to play in the development of wearable computing systems. In order to better define this role we have identified four generic contextual capabilities: sensing, adaptation, resource discovery, and augmentation. A prototype application has been constructed to explore how some of these capabilities could be deployed in a wearable system designed to aid an ecologist's observations of giraffe in a Kenyan game reserve. However, despite the benefits of context-awareness demonstrated in this prototype, widespread innovation of these capabilities is currently stifled by the difficulty in obtaining the contextual data. To remedy this situation the Contextual Information Service (CIS) is introduced. Installed on the user's wearable computer, the CIS provides a common point of access for clients to obtain, manipulate and model contextual information independently of the underlying plethora of data formats and sensor interface mechanisms

    A User-Focused Reference Model for Wireless Systems Beyond 3G

    Get PDF
    This whitepaper describes a proposal from Working Group 1, the Human Perspective of the Wireless World, for a user-focused reference model for systems beyond 3G. The general structure of the proposed model involves two "planes": the Value Plane and the Capability Plane. The characteristics of these planes are discussed in detail and an example application of the model to a specific scenario for the wireless world is provided

    Leveraging cloudlets for immersive collaborative applications

    Get PDF
    To enable immersive applications on mobile devices, the authors propose a component-based cyber foraging framework that optimizes application-specific metrics by not only offloading but also configuring application components at runtime. It also enables collaborative scenarios by sharing components between multiple devices

    Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    Get PDF
    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview of motion-based video games and other interactive technologies for older adults. First, we summarize existing approaches towards the definition of motion-based video games – often referred to as exergames – and suggest a categorization of motion-based applications into active video games, exergames, and augmented sports. Second, we use this scheme to classify case studies addressing design efforts particularly directed towards older adults. Third, we analyze these case studies with a focus on potential target audiences, benefits, challenges in their deployment, and future design opportunities to investigate whether motion-based video games can be applied to encourage physical activity among older adults. In this context, special attention is paid to evaluation routines and their implications regarding the deployment of such games in the daily lives of older adults. The results show that many case studies examine isolated aspects of motion-based game design for older adults, and despite the broad range of issues in motion-based interaction for older adults covered by the sum of all research projects, there appears to be a disconnect between laboratory-based research and the deployment of motion-based video games in the daily lives of senior citizens. Our literature review suggests that despite research results suggesting various benefits of motion-based play for older adults, most work in the field of game design for senior citizens has focused on the implementation of accessible user interfaces, and that little is known about the long-term deployment of video games for this audience, which is a crucial step if these games are to be implemented in activity programs of senior residences, care homes, or in therapy

    Context-Aware Computation Offloading for Mobile Cloud Computing: Requirements Analysis, Survey and Design Guideline

    Get PDF
    AbstractAlong with the rise of mobile handheld devices the resource demands of respective applications grow as well. However, mobile devices are still and will always be limited related to performance (e.g., computation, storage and battery life), context adaptation (e.g., intermittent connectivity, scalability and heterogeneity) and security aspects. A prominent solution to overcome these limita- tions is the so-called computation offloading, which is the focus of mobile cloud computing (MCC). However, current approaches fail to address the complexity that results from quickly and constantly changing context conditions in mobile user scenarios and hence developing effective and efficient MCC applications is still challenging. Therefore, this paper first presents a list of re- quirements for MCC applications together with a survey and classification of current solutions. Furthermore, it provides a design guideline for the selection of suitable concepts for different classes of common cloud-augmented mobile applications. Finally, it presents open issues that developers and researchers should be aware of when designing their MCC-approach
    • 

    corecore