
Dynamic Deployment and Quality Adaptation for

Mobile Augmented Reality Applications

Tim Verbelena, Tim Stevensa, Pieter Simoensb, Filip De Turcka, Bart
Dhoedta

aGhent University – IBBT, Department of Information Technology,

Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
bGhent University – IBBT, Ghent University College, Department INWE,

Valentin Vaerwyckweg 1, 9000 Gent, Belgium

Abstract

With the increasing popularity of smartphones and netbooks, more and more
applications are developed for the mobile platform. Notwithstanding the re-
cent advances in mobile hardware, most mobile devices still lack sufficient
resources (e.g. CPU power, memory) to execute complex multimedia appli-
cations such as augmented reality. Application developers also have diffi-
culties to cope with the changing device context (e.g. network connectivity,
remaining battery life) and the many different hardware platforms and op-
erating systems to run applications on. Therefore, we introduce the concept
where the developer can provide different configurations of an application,
each having different resource requirements and a different quality offered to
the end user. The middleware framework presented in this paper will select
and deploy the configuration offering the best quality possible for the current
connectivity and available resources. As these change over time, the frame-
work will dynamically adapt the configuration and deployment at runtime,
enhancing the quality by offloading parts of the application when a remote
server is discovered, or gracefully degrading the quality when the network
connection is lost. Based on experimental results on the augmented real-
ity use case the performance and effectiveness of our middleware has been
characterized in different scenarios.

Keywords: Distributed Systems, Cyber Foraging, Deployment
Optimization, Mobile Computing

Preprint submitted to Journal of Systems and Software July 29, 2011

1. Introduction

According to a Gartner press release from 12 August 2010 [1], smartphone
sales in the second quarter of 2010 totaled 61.6 million units, a 50.5 per-
cent increase from the same period in 2009. These numbers illustrate that a
significant and growing segment of the world population wants to use their
handheld device in a more versatile way than the traditional mobile phone.
Due to recent advances in mobile hardware, such as increased battery ca-
pacity, CPU power, display resolution, and improved network connectivity,
new and more advanced services are being offered for use on handheld de-
vices. Today, a myriad of applications can be downloaded and installed on
smartphones, in a wide range of categories such as web browsers, games, so-
cial and messaging clients, location-based services, audio and video players,
just to name a few. As an application developer, it is difficult to design and
develop such applications specifically for the mobile market, as due to the
still limited available resources (e.g. CPU power, memory) on the mobile
platform mobile applications are usually less advanced in comparison with
their desktop counterparts and hence cannot match the desktop experience
for similar applications. It is also a burden to deal with the variety of mo-
bile devices, different mobile platforms and the varying mobile context (e.g.
connectivity, location, etc.) [2], which rises the need for run-time adaptation
and recomposition as depicted in [3].

Especially for real-time demanding multimedia applications such as aug-
mented reality (AR), the available CPU power and memory falls short to
execute complex computer vision algorithms developed for the desktop. In
order to run augmented reality applications on the mobile device one ap-
proach is to reduce the complexity of state-of-the-art computer vision al-
gorithms, that lower the required CPU power but also reduce the quality
compared to their desktop counterparts [4],[5]. Another approach is to split
the application in a client-side and a server-side task as investigated in [6].
Object recognition is performed on a remote server, while object tracking is
still done at the mobile device. The biggest drawback of outsourcing tasks
to a server is that the possibly large delay between the client and server can
deteriorate the usability of the application [7].

In this paper we present a hybrid approach to tackle the challenges of mobile

2

multimedia applications such as augmented reality. We present a middleware
framework that will adapt the application depending on the mobile device
and its available resources. In order to be able to adapt the application we
assume that the developer provides different configurations of the application
that have different resource requirements and thus offer a different quality
level to the end user. For example in the object recognition scenario an
object could be recognized using complex computer vision algorithms, but
also by scanning the image for a product barcode. When a low latency remote
server is discovered the framework will outsource parts of the application and
run complex object recognition algorithms remotely. When the connection
is deteriorated, the framework will try to decrease the network usage, most
often resulting in more mobile processing and if necessary degrade the quality
of the application by switching to barcode detection to be able to meet the
real-time constraints. The end user will experience a higher quality when the
complex object recognition is working, but when not enough resources are
available he can still use the application using the barcode scanner.

The reminder of this paper is structured as follows. In the next section
we discuss related work on code outsourcing and cyber foraging. Section 3
describes the architecture of our offloading framework and section 4 presents
our method to calculate the optimal deployment of the application. In section
5 a detailed use case is described which is used to evaluate our framework in
section 6 and finally section 7 concludes this paper.

2. Related work

In this section an overview is given of related work done in automatic par-
titioning and remote execution of software. Early software partitioners such
as JavaParty [8], Doorastha [9] and AdJava [10] use an additional prepro-
cessing step before compiling to insert remote invocation code and expect
the programmer to insert special keywords indicating parts of the software
to be run remotely. However, these methods fully rely on the application
programmer and the source code is needed to partition the program.

This problem is addressed by using binary rewriting to introduce remote ex-
ecution of parts of the software. This technique is used by Addistant [11]
and J-Orchestra [12] that impact the Java bytecodes to create a distributed

3

application. Similarly, Coign [13] distributes Microsoft COM objects and
MAUI [14] rewrites programs written for the Microsoft .NET Common Lan-
guage Runtime. In order to decide which parts to offload, an offline profiling
phase is used to calculate the optimal partitioning.

With the emergence of pervasive computing, the idea of cyber foraging was
introduced by Satyanarayanan [15]. The idea is to use available resources in
the neighbourhood of a mobile device to outsource parts of the application
and utilize the available resources to increase the performance on the device.
The earliest cyber foraging systems such as Spectra [16] and Chroma [17]
introduce a tactics based scheduler to decide which methods to outsource.
However, both systems rely on pre-installed remote procedure calls, implying
that all remoting has to be programmed by the application developer.

A better approach is to make use of mobile code, where the system is able to
outsource parts of the software at runtime, with minimal interference from
the developer. Gu et al. [18] present an adaptive offloading framework where
Java classes can be placed remotely. A fuzzy control model is used to offload
classes at runtime and an adapted MINCUT heuristic is used to minimize
interactions between partitions. Ou et al. also use class outsourcing, propos-
ing a (k+1) partitioning algorithm to outsource k parts on k remote servers
[19]. Han et al. present a flow-based algorithm to partition software which
is evaluated by simulation [20].

The Scavenger cyber foraging [21] system uses a scheduler using adaptive
history-based profiling in order to outsource Python methods, where candi-
date methods for outsourcing have to be annotated by the application de-
veloper. Zhang et al. [22] propose a mobile code framework where platform
independent software components – called weblets – can be outsourced to
the cloud based on a bayesian learning scheduler.

Lastly, recent advances in cloud computing have led to the use of virtual
machines in the cloud as surrogates [23]. The biggest problem in using the
cloud for cyber foraging is presented by the typically high latency of the WAN
link compared to the WLAN connection. To cope with this bottleneck Su et
al. proposed Slingshot [24], where the VMs are co-located with the wireless
access point. Satyanarayanan et al. [25] also placed the surrogates, called
cloudlets, in the physical proximity of the mobile user. Chun et al. [26] uses

4

virtualization technology to create a clone of the mobile device platform to
be able to migrate parts of mobile applications without modification.

In this paper we describe a framework for adaptive deployment that adopts
the cyber foraging concept to offload parts of the software to nearby dis-
covered servers. There are two main research contributions in this paper.
First we focus on real-time multimedia applications such as augmented re-
ality, where multiple components are candidate for outsourcing, instead of
focusing on few well defined tasks as candidates for outsourcing such as image
filtering [21], [22] or speech recognition [23]. We take the same assumption as
Satyanarayanan et al. [25], which implies that the remote processing power
is in the vicinity of the user, since high latencies on a WAN link make it
useless to offload for real-time applications. Second, we present an algorithm
for optimizing the quality as perceived by the end user, rather than focusing
solely on minimizing memory [18], CPU [19] or energy requirements [20]. An
application developer can provide high and low quality versions of application
components, in order to target a wide range of mobile platforms and to cope
with the changing context. The proposed middleware is able to dynamically
adapt the application when the device context changes, i.e. offload parts to a
remote server when one is discovered, or gracefully degrade to a lower quality
version of the application when the network connection is lost, taking into
account the real-time constraints.

3. Offloading middleware overview

3.1. Requirements

To build such an offloading framework, different requirements have to be filled
in. The application has to be able to adapt to the ever changing available
resources, which must happen at run-time since it is impossible to predict
all contexts the application has to operate in. This means the framework
has to be able to sense the context to gather information about all available
resources, which is done by monitoring all known resources on the one hand,
and by discovering possible remote resources on the other hand.

In order to offload parts of the software to a remote server a mobile code
approach is adopted. This means units of deployment have to be defined that
can migrate from one machine to another, a remote procedure call technique

5

has to be used to call these offloaded components, while keeping this as
transparent as possible to the application programmer.

Last but not least an algorithm is needed to decide when to redeploy and
which deployment is best given the current device context. Given the fact
that one application can consist of different versions of different quality levels,
the goal is to deploy the best quality version that is feasible given the available
resources. The details of this algorithm are described in Section 4.

3.2. Offloading framework

This section presents the different components of our offloading framework
as illustrated on Figure 1. Our middleware is built upon OSGi [27], a module
system and service platform that enables runtime deployment of application
components – called bundles – implemented in Java. The portability of Java
enables our framework to migrate and execute code on different hardware
platform and architectures.

Operating System

OSGi Framework

R
-O

S
G

i

jS
L
P

D
-B

U
S
-j

a
v
a

R
e
s
o
u
rc

e
 M

o
n
it

o
r

B
u
n
d
le

 M
o
n
it

o
r

B
u
n
d
le

 I
n
s
ta

ll
e
r

A
g
e
n
t

Figure 1: Overview of the offloading middleware. The Agent fetches the monitor informa-
tion from the monitor bundles and calculates the best deployment. The Bundle Installer
distributes the components to the discovered servers. Our framework is built upon the
OSGi framework in Java and uses R-OSGi for remote execution, jSLP for server discovery
and DBUS as an interface to the operating system.

6

The OSGi bundle concept gives us a unit of deployment, which can be mi-
grated to other machines, while being transparent for the application devel-
oper: by developing the application as OSGi bundles the framework will be
able to partition it and outsource parts of it without the need of special code
or annotations.

On top of the OSGi framework, the following three components provide dif-
ferent functionalities:

R-OSGi extends the functionality of OSGi for distributed systems [28] and
provides remote invocation of methods exposed by the different OSGi
bundles. By creating a local proxy of a bundle running on a remote
server application functionality can be outsourced transparently for the
application.

jSLP is a pure Java implementation of the Service Location Protocol (SLP)
as specified in RFC 2608 [29]. It has a small footprint which makes it
feasible for embedded devices and is used for the discovery of remote
servers in our framework.

Java D-Bus offers access to the D-Bus message bus system, which is used
for inter-process communication between different desktop applications.
D-Bus is commonly used on Linux-based systems and enables us to
integrate applications that use our middleware in the operating system,
for example start-up through shortcuts.

The last four bundles make up our offloading middleware:

Resource Monitor collects system wide monitoring information such as
the used and available CPU time and bandwidth.

Bundle Monitor fetches monitor information on a more fine-grained level.
This bundle monitors the CPU time used for each bundle and captures
the communication between different bundles.

Bundle Installer is responsible for the installation and migration of appli-
cation bundles. When a bundle is migrated the Bundle Installer will
send the code to the destined machine, start it up there and set up all
proxies to enable remote execution through R-OSGi.

7

Agent is the core of our offloading framework. The Agent keeps track of the
remote servers discovered by jSLP and periodically checks the moni-
toring information collected by the Resource Monitor and the Bundle
Monitor to decide if a redeployment is needed. Using the current avail-
able bandwidth and CPU resources the best deployment is calculated
– on a mobile device this calculation is usually outsourced to the server
side – and the Bundle Installer is instructed to migrate the necessary
bundles. The algorithm for determining the best deployment is pre-
sented in the next section.

3.3. Application programming model

Because the proposed adaptation framework is built upon OSGi, application
developers must adhere to the OSGi programming model. OSGi uses a ser-
vice oriented programming model, where bundles can expose a service by
registering a service implementation with the OSGi service registry. When a
bundle wants to call another service, it queries the service registry.

As the adaptation system uses the bundle as unit of deployment, the ap-
plication developer is responsible of composing his application in multiple
OSGi bundles. This can be done with the OSGi APIs or using one of the
many specifications such as Declarative Services or Blueprint Container that
facilitate OSGi programming model using declarative approaches and depen-
dency injection [30]. By splitting up the application functionality in different
bundles, the developer has control over the adaptability of the application:
a fine grained composition of many small components offers the adaptation
framework more choices to optimally deploy the application. As long as all
components are valid OSGi bundles the framework will be able to transpar-
ently offload these to remote resources.

In order to further improve the adaptability, the developer can provide dif-
ferent component implementations, providing the same functionality at dif-
ferent quality levels. Depending on the available resources and the mobile
device capabilities the best possible quality will be chosen. To make the
system aware of the different quality levels, the developer has to provide
an application description that states which different configurations can be
deployed. An example is given in Listing 1. The application named ’Exam-
pleApp’ consists of 3 components and has 2 configurations, because of the

8

two implementations of component2.

<application name=”ExampleApp”>
<constraint deadline=100 />
<configuration name=”config1”>

<bundle name=”component1”
location=”bundles/component1.jar”
time=”10”>
<uses bundle=”component2 v1” data=”5000” />
<uses bundle=”component3” data=”500” />

</bundle>
<bundle name=”component2 v1”

location=”bundles/component2 v1.jar”
time=”150”/>

<bundle name=”component3”
location=”bundles/component3.jar”
time=”40”/>

</configuration>
<configuration name=”config2”>

<bundle name=”component1”
location=”bundles/component1.jar”
time=”10”>
<uses bundle=”component2 v2” data=”1000” />
<uses bundle=”component3” data=”500” />

</bundle>
<bundle name=”component2 v2”

location=”bundles/component2 v2.jar”
time=”30”/>

<bundle name=”component3”
location=”bundles/component3.jar”
time=”40”/>

</configuration>
</application>

Listing 1: Example of an application description consisting of 2 configurations with an
alternative implementation of component2.

Next to the structure of the application, for each bundle also the estimated
average CPU time spent (measured on the mobile device without other load)
and amount of data communicated with other bundles is stated. These values
can be provided by the application developer, or be generated by the Bundle
Monitor in an offline profiling phase or at runtime. The developer can also

9

state a constraint such as a deadline in which all operations should finish. In
this example it is clear that config2 can be executed on the mobile device,
whereas config1 will need remote resources to be able to meet the deadline.
A more detailed example of how the deadline and resource information is
used in the framework is given in Section 6.

Currently, mobile application developers have to tailor their application for a
wide range of mobile platforms. Using our OSGi-based middleware platform,
this is no longer necessary. Instead, the application developer can concentrate
his efforts on the development of component implementations for different
quality levels. The middleware will dynamically choose the best deployment,
taking into account the capabilities of the device at hand and the currently
available remote resources. It is important to note that even if the application
developer decides to provide only one configuration, the system will still be
able to offload components dependent on the discovered remote resources.

4. Optimal deployment calculation

We assume that the application developer provides all software bundles that
make up an application. An application can consist of several configurations
where different configurations can implement the application on a different
quality level. For example in a location based application, there can be a
bundle to estimate the location by using the GPS sensor or by using GSM
localization using the roaming signal to the antenna tower. This can result
in two different configurations where the framework will choose the most
appropriate configuration offering the best quality possible in the current
device context. For each configuration also different deployments are possi-
ble, as bundles can be migrated to remote servers if available. An example
application with two configurations is shown on Figure 2.

10

w1

w2

w4

w3
w1

w6

w5

e14

e12 e23 e15

e16

configuration 1 configuration 2

application

Figure 2: The application developer provides an application consisting of 6 bundles. These
can be used in two configurations that each offer a different quality level. Each bundle
has an associated resource cost wi and interacting bundles have a communication cost eij .
The framework will decide at runtime which configuration to deploy and which bundles
should be offloaded.

More formally an application can be represented as a set of possible graphs
G = (V,E), each representing a single configuration, where V is a set of
N vertices and E is a set of edges connecting these vertices. The vertices
represent the software bundles in a configuration and the edges represent
communication between those bundles. We associate a cost wi with each
vertex vi indicating the amount of resources (i.e. CPU power) this compo-
nent needs. C = (cij) is the adjacency matrix of G, i.e. if there exists an
edge between vi and vj then cij equals the weight of this edge, otherwise
cij = 0. The edge weights represent the cost of communication (i.e. band-
width) between different software components. The weights of the vertices
and edges can be found by profiling the different configurations of the appli-
cation. Each software bundle can be deployed on the mobile device or on a
discovered server with respectively M0 and M1 maximum available resources.
The wireless link has a maximum link capacity denoted by L.

11

M0 M1

Figure 3: The best configuration is the one that matches with the available resources on
the mobile device (M0) and a possibly discovered server (M1) and the available bandwidth
(L) while maximizing the perceived quality. This configuration is then deployed on the
mobile device and the server.

The goal now is to find the configuration where all bundles can be deployed
on either the mobile device or the discovered server, taking in account their
maximum available resources and the wireless link capacity, and which offers
the best user experience, or thus maximizing the quality of the application.

We assume here that the quality of software bundle vi increases with its
weight wi meaning that the software bundle does more useful work, as it is
useless to sacrifice more CPU power for lower quality. The best configuration
therefore maximizes the total node weights, i.e.

max
configurations

∑

i

wi (1)

However, due to the constrained available resources and limited bandwidth,
it is not always possible to deploy this configuration. Therefore we calculate
a possible deployment for each configuration by solving the following ILP
problem for one specific configuration and its associated graph G. Let Xim

be the decision variable that is equal to 1 if software bundle vi is assigned to
machine m ∈ 0, 1 and 0 otherwise.

To end with a possible deployment following constraints are imposed. First
of all the sum of the weights of all bundles deployed on the device or the
server cannot exceed the maximum allowed weight.

12

∀m :
∑

i

Xim × wi ≤ Mm (2)

Next, in order to have a fully functional application, each bundle of the
configuration has to be deployed on either the device or the server.

∀i :
∑

m

Xim = 1 (3)

Lastly the bandwidth needed should be less than the available bandwidth
L. Therefore the bandwidth usage for the configuration is minimized as
the objective function of our ILP problem and afterwards is checked if the
resulting bandwidth is less than L.

Let hij take the value 1 when vi and vj are deployed on a different machine,
0 otherwise. Then the objective function becomes:

min
1

2

∑

i

∑

j

hij × cij (4)

Variables hij can be expressed as a function of decision variables Xim as
follows:

∀i, j : hij = 1−
∑

m

Xim ×Xjm, (5)

Indeed, if vi and vj are deployed on the same machineM , allXim andXjm

will be zero except for m = M where they are both 1, making the resulting
sum equal to 1. When they are deployed on different machines, for each m

at least one of the two variables Xim or Xjm will equal 0. Replacing 5 in
equation 4 gives a formal description that can be solved with a solver that
can handle quadratic objective functions (e.g. CPLEX [31]). It can also be
converted to a true Integer Linear Programming (ILP) problem by stating
that:

∀i, j : hij = 1−
∑

m

hijm, (6)

Equation 6 then introduces extra decision variables hijm subjected to the
following constraints:

13

∀i, j,m :

hijm ≤ Xim

hijm ≤ Xjm

hijm ≥ Xim +Xjm − 1
(7)

The final algorithm to calculate the best deployment is illustrated on Figure
4. The configurations are processed in order of decreasing total weight. When
no remote server is discovered, the configuration is chosen with maximum
total node weight that fits on the client device or thus where

∑

i wi ≤ M0. If
no such solution exists the configuration is chosen with minimal total node
weight. When a remote server is available, the ILP problem is solved and if
a solution exists with bandwidth smaller of equal to the available bandwidth
L this result is returned.

Start

Select G(V,E) with

max w

not yet visited
i

P

L>0

Solve ILP problem

Solution has minimum

bandwidth b

b<L

Return G(V,E) as solution

End

NO

YES

YES

NO NO

YES

Figure 4: Flowchart of the algorithm to calculate the best deployment out of different
possible configurations.

Note that the ILP problem – which is computationally expensive – only has
to be solved when a remote server is available. This calculation can thus be

14

outsourced and executed at the server side which can solve this problem in
less than a second for graphs of 10 to 20 vertices. For larger graphs a set of
deployments could also be calculated upfront for a wide range of parameters.

5. Augmented reality use case

As use case for our offloading framework, we focus on augmented reality
applications for two main reasons. Firstly, it is much more challenging to
identify the best deployment and identify good candidates for outsourcing in
an augmented reality application due to its real-time character, as opposed
to non real-time applications such as a photo gallery application where the
execution of an image filter is almost always a good task to outsource. Sec-
ondly the complexity of augmented reality and the various computer vision
algorithms used make it a mere necessity to outsource parts of the applica-
tion in order to be able to run the most advanced techniques on the mobile
device.

As a sample scenario, we present an augmented reality shopping assistant
that offers the user extra information on the product(s) in view in the form
of an overlay. The most resource intensive part of this application is the
detection and recognition of the products. In the ideal case the user will
point his smartphone at the product on the shelve, where the application
uses complex object recognition algorithms to identify the product. In order
to also let the application work on lower end devices or when no remote
resources are available, another way to identify a product is by scanning
its barcode. However, in this case the user has to take the product form
the shelve, look for this barcode and scan it, which results in a lesser user
experience.

The general architecture and different components of this application are il-
lustrated in the sequence diagram on Figure 5. The Video bundle has a sep-
arate thread to continuously capture frames and show them on the screen.
Another thread is run by the Analyzer bundle that will fetch the last cap-
tured frame and analyze it for possible objects. The Analyzer passes the
frame to the Detector that can identify possible interesting feature points
or regions. Next the Recognizer/Decoder bundle will try to decode a bar-
code from the detected region or match it to a known set of feature points

15

associated to a certain object. When an object is found its ID is passed to
the ContentProvider bundle that fetches the associated content that is then
displayed on top of the video.

Video
Content

Provider Analyzer Detector
Recognizer/

Decoder

getFrame

detect

recognizeObject

lookupContent

overlayContent

getFrame

Figure 5: Sequence diagram of the augmented reality shopping assistant.

Of each component type one or more implementations are developed.

Video – Because the Video bundle is the same for all configurations, only
one implementation is provided. This bundle also has to access the
device camera and can not be outsourced. The video frames are cap-
tured in a native thread by use of the Java Native Interface (JNI) and
rendered on screen with OpenGL ES. All other components are pure
Java implementations in order to be able to migrate.

Content Provider – The Content Provider bundle simply looks up product
information by product ID. Currently only one provider is implemented.

Analyzer – The Analyzer bundle contains the main application loop and
orchestrates between the different bundles. There are two versions of
this bundle differentiated by the way they fetch the captured frames:
one fetches the image at full 640x480 resolution, while the other one
subsamples the image to a 320x240 resolution.

16

Detector – There are two types of detector bundles depending on the method
of object identification. The first type is a Barcode Detector that re-
turns a region that possibly contains a barcode. We implemented two
versions : one detector analyzes the full image for image regions with
many vertical edges using Sobel filtering that possibly represent bar-
codes, a more simple implementation only looks at the centre image
patch. The second type detector will detect image features for object
recognition. Again we implemented two versions: one generates SURF
feature descriptors as described in [32], which results in scale invariant
and rotation invariant feature descriptors, and a faster implementation
combines FAST corner detection with SURF-like feature descriptors
inspired by [5], which gives up the scale invariance for more speed.

Recognizer/Decoder – Depending on the type of detector bundle a suit-
able implementation of the Recognizer/Decoder bundle is deployed.
The Feature Recognizer matches the features from the image to a set
of known features of objects to recognize. We implemented a simple
matching algorithm based on cross-correlation matching that lets us
differentiate a few objects, but for large product databases a more com-
plex algorithm should be used like the one in [6]. A Barcode Decoder
bundle will try to decode a possible barcode in the region detected by
one of the Barcode Detectors, using the ZXing barcode image process-
ing library [33].

By combining the different implementations of the Analyzer, Detector and
Recognizer/Decoder bundles the following five configurations can be distilled
as shown in Table 1.

1. The first one combines the Centre Barcode Detector and Barcode De-
coder with the 320x240 Analyzer. This configuration will need the
least CPU power, but will also offer the least quality to the end user:
he/she will always have to make sure the barcode of the product is in
the centre of the view to get the information displayed.

2. A second configuration uses the Sobel Barcode Detector that will scan
the whole image together with the 320x240 Analyzer and Barcode De-
coder. Now the information will be displayed when the barcode is in
view, but it does not necessarily need to be in the centre.

17

Table 1: Different configurations for the AR use case.

config 1 config 2 config 3 config 4 config 5
Video x x x x x
ContentProvider x x x x x
Analyzer
- Full resolution x x x
- Half resolution x x
Detector
- Centre Barcode Detector x
- Sobel Barcode Detector x
- FAST Feature Detector x
- SURF Feature Detector x x
Recognizer/Decoder
- Barcode Decoder x x
- Feature Recognizer x x x

3. The third configuration will combine the 640x480 Analyzer with the
FAST Feature Detector and the Feature Recognizer. Because the FAST
feature detection the detection phase can be executed on the device and
only the detected feature data has to be transmitted to the server which
can be beneficial when not much bandwidth is available. However, due
to the lack of scale invariance the object can only be detected when it
has the same size in the image as in the reference image.

4. The fourth configuration uses the 320x240 Analyzer with the SURF
Feature Detector and the Feature Recognizer. Because the SURF fea-
ture detection is rather slow, it will probably be outsourced and thus
the whole 320x240 frame will have to be sent to the server.

5. The final configuration uses the 640x480 Analyzer with the SURF Fea-
ture Detector and the Feature Recognizer. By using the full resolution
image objects can be identified from a bigger distance, but at the cost
of more processing power and most likely more bandwidth when the
detector component is outsourced.

Figure 6 shows two screenshots of different configurations of the application.
In the left screenshot configuration 5 is deployed and the book is recognized
by its visual features. In the right screenshot the barcode is used to identify

18

the object.

(a) Config 5 (b) Config 2

Figure 6: The left screenshot shows the high quality configuration where the book is
visually recognized. In the right screenshot the barcode has to be in view to recognize the
object.

6. Experimental validation

In this section we validate our offloading framework using the use case pre-
sented in Section 5 and a number of relevant scenarios. The first scenario is
adaptation on the device locally, when the available CPU changes (e.g. when
another application starts up in the background). A second scenario shows
how our framework is able to discover a remote server on the network and
outsources some components to this discovered server. The third scenarios
introduces changes in the available bandwidth on the network and illustrates
how the application is adapted accordingly. Lastly we show how the frame-
work detects network failures and tries to recover from this situation.

6.1. Set-up

We first describe the hardware and software set-up used for our experiments.
As mobile device we used a Nokia N900 smartphone equipped with a 600
MHz ARM Cortex A8 processor and 256 MB RAM. This device runs Maemo

19

5 Linux on which we run a Sun Java SE for Embedded 6 JVM [34] and
a Felix OSGi instance [35], adapted to be able to monitor the bundles as
described in [36]. It has a camera capable of video recording at a resolution
of 640x480. The server machine is equipped with an Intel Core 2 DUO P8400
CPU clocked at 2.26GHz and runs Ubuntu Linux.

The mobile device is connected to the server with a USB cable and they
communicate using Ethernet over USB. The bandwidth on the link can be
controlled using the Linux traffic control (tc) tool. The introduced bandwidth
value is also fed into our monitoring bundle since algorithms for accurate
bandwidth estimation using probe traffic is out of scope of this research [37].

Finally we have to set up the different parameters of our offloading algo-
rithm in order to correctly deploy our augmented reality application. As
shown in the sequence diagram on Figure 5, the whole application consists
of a repetitive loop of fetching a frame, analyzing it, detecting an object and
augmenting the view. This repetitive structure is typical in multimedia ap-
plications that involve video processing. Using the Bundle Monitor we collect
profile data for each configuration, where we collect for one loop the time (in
ms) spent in each component (vertex weight wi) and the data communicated
(in bits) at each method call (edge weight cij). The experimental values are
shown in Table 2.

The remaining parameters to set are the maximum client and server weights
M0 andM1 and the available bandwidth L. In order to calculate a meaningful
deployment one has to impose a deadline on how long one single loop can
take. For example for our augmented reality application we want to process
a frame in at most 500 ms, which is an intuitively defined threshold that
means one should recognize an object within half a second. The available
client weight is then set to the deadline (500 ms) multiplied by the available
percentage of CPU power. For example, when there is 90% CPU available,
the application has to execute the loop within the 450 ms processor time
available.

Of course, since the CPU of the server is more powerful than the CPU of the
mobile device, the instructions executed in 1 ms on the client device will be
executed much faster on the server. Therefore to determine the server weight
M1 one has to multiply by a scale factor, which can be found by comparing

20

Table 2: Measurements of the CPU time spent (in ms) in the components for each appli-
cation loop for the different configurations on the N900.

config 1 config 2 config 3 config 4 config 5
Video 40 20 40 20 40
ContentProvider 40 40 40 40 40
Analyzer
- Full resolution 10 10 10
- Half resolution 10 10
Detector
- Centre Barcode Detector 50
- Sobel Barcode Detector 150
- FAST Feature Detector 220
- SURF Feature Detector 2390 8990
Recognizer/Decoder
- Barcode Decoder 20 20
- Feature Recognizer 500 820 2810

execution times of the same bundle on the client device and the server device
(e.g. in our set-up the server executes about 30 times faster than the mobile
device). Thus suppose there is 50% CPU time available at the server, M1

is given by 500 ms ×50% × 30 = 7500 ms. Lastly the available bandwidth
which is expressed as bits per second has to be rescaled taking into account
the deadline: in our case it has to be rescaled to bits per half a second.

6.2. Results

6.2.1. Scenario 1: CPU adaptation

In the first scenario the user is running the shopping assistant application
without connection to any remote resources. However, during shopping,
the user wants to listen to some background music and starts up the FM
radio player. Because the available CPU has to be shared between both
applications, the framework will adapt the application to reduce the CPU
usage.

21

Figure 7: Scenario 1. The upper graph shows the CPU usage on the mobile device, the
lower graph shows the frames analyzed per second of the shopping assistant application.
When another application is started, a lower quality configuration is deployed.

Figure 7 shows what happens in this scenario: the upper graph presents the
CPU usage of the mobile device running the shopping assistant application,
the lower graph shows the frames analyzed per second by the shopping as-
sistant application. At first configuration 2 is deployed: frames are analyzed
for detecting barcodes using sobel filtering and when a barcode is decoded
the product information is shown on the screen. This happens at a rate of 3
to 4 analyzed frames per second using all CPU power.

At t = 30s the FM Radio player application is started and less CPU power is
available for our application, which lead to less frames analyzed per second.
The Agent performs a check at t = 55s and detects less CPU power is
available by calling the Resource Monitor. After recalculation the Agent
instructs the Bundle Installer to change to configuration 1, where only the

22

centre of the frame is analyzed. After redeploying the application again
reaches 5 to 6 analyzed frames per second, but at the cost of quality to the
user: he will have to capture the barcode in the centre of his view before the
object is identified.

6.2.2. Scenario 2: Server discovery

Now the user enters a supermarket that wants to enable the customers to use
more advanced mobile applications and has a set up a local WLAN network
with a server where components can be outsourced to. On entering the
supermarket the user’s mobile device will discover the server and reconfigure
the application. The user has good connectivity with the WLAN network
and the available bandwidth is 10 Mbit/s.

At first configuration 2 is deployed because no remote server is found and
no other applications are running on the device. When the jSLP bundle
discovers a server, the Agent is notified and R-OSGi is configured to create
the needed endpoints for remote calls. The Agent then gathers all resource
monitor information of both the client and the discovered server and a new
deployment is calculated. Since there is high bandwidth available the Bundle
Installer is instructed to start configuration 5 and outsource all components
except the Video bundle. This means that all full resolution images are
sent to the server for analysis. Figure 8 shows this process: at t = 36s
the remote server is discovered and the client is configured to be able to
make remote calls which takes about 10 seconds. Then the components
consisting of configuration 5 are started and outsourced, which is finished
at t = 70s. One notices that during configuration of the server and the
redeployment the number of frames analyzed per second drops, since quite
some CPU goes to the redeployment and the responsiveness of the application
will diminish. After redeployment, the user will have a higher quality version
of the application running, and objects will be identified just by looking at
them, rather than searching for a barcode and scanning it. The bandwidth
usage is then around 7 MBit/s which is the bandwidth needed to send 3
frames per second (1 frame = 640× 480× 8 bits).

23

Figure 8: Scenario 2. The upper graph shows the CPU usage on the mobile device and the
server, the middle graph shows the frames analyzed per second of the shopping assistant
application and the lower graph shows the bandwidth usage. When a remote server is
discovered, a higher quality configuration is deployed and components are outsourced.

6.2.3. Scenario 3: Bandwidth adaptation

In the third scenario the available bandwidth changes and the framework
will adapt the application accordingly. At the start there is an available
bandwidth of 10 Mbit/s, but it is first lowered to 3 Mbit/s, and later even to
750 Kbit/s. The framework will deploy respectively configuration 4 (sending
lower resolution frames) and configuration 3 (keep feature detection local and
only send detected features to the server) to lower the bandwidth needed by
the application as shown on Figure 9.

24

Figure 9: Scenario 3. The upper graph shows the CPU usage on the mobile device and the
server, the middle graph shows the frames analyzed per second of the shopping assistant
application and the lower graph shows the bandwidth usage. As the available bandwidth
is lowered, the framework deploys lower quality configurations that use less bandwidth.

Initially a high bandwidth network is available and configuration 5 that pro-
vides the highest quality is deployed. At t = 50s the available bandwidth is
lowered from 10 to 3 Mbit/s. Due to the lower bandwidth, the number of
analyzed frames drops from 1-2 to 0-1 and the framework decides to redeploy.
This redeployment takes little time since only one bundle has to be changed
and both on the device and the server there is CPU available to start and
outsource this bundle.

25

At t = 135s the available bandwidth is even more lowered to 750 Kbit/s.
Again the analyzed frames per second are lowered and the framework de-
cides again to redeploy. Now more bundles have to be started and little
bandwidth is available to outsource bundles, leading to a redeployment time
of 25 seconds. Again during redeployment the number of analyzed frames
per seconds diminishes.

6.2.4. Scenario 4: Network failure recovery

When the connection to the server is lost due to a network failure, the frame-
work will detect the remote server is no longer available and recover from this
failure by starting configuration 2, which can run locally on the device.

Figure 10 shows this scenario. Initially configuration 5 is deployed using the
discovered server on a 10 Mbit/s network and at t = 50s the server is stopped
causing no more frames to be analyzed. At t = 75s the framework detects
the failure and switches back to the local configuration 2.

26

Figure 10: Scenario 4. The upper graph shows the CPU usage on the mobile device and
the server, the lower graph shows the frames analyzed per second of the shopping assistant
application. When there is a failure of the server or the network, the framework recovers
from the failure and switches back to a degraded version of the application.

6.3. Discussion

In four scenarios, we have demonstrated the validity of our framework, the
suitability to develop applications in different quality configurations and how
our framework switches between those configurations. The only issue that
can be experienced by the user is a drop in performance during the redeploy-
ment phase, especially in the case when there is not enough CPU power left
on the device (Redeployment in Scenario 2) to start the bundles, or when
there is little bandwidth available to outsource the bundles (Redeployment
2 in Scenario 3). However, in this experiment all bundles are started ’cold’,
meaning they are only started when they are needed. The redeployment time
could be further lowered by caching selected bundles of all configurations at
both the device and the server, ready to be used when a redeployment occurs.

27

Because the bandwidth limit is imposed using the Linux Traffic Control (tc)
tool, the traffic is actually shaped when the available bandwidth limit is
exceeded. In a real network setting, this is not the case and trying to send
more packets in the network would lead to packet loss, which will deteriorate
the application quality even more and make it more important to redeploy
in order to reduce bandwidth usage.

7. Conclusions and future work

In this paper we presented a mobile middleware for adaptive deployment
of multimedia applications, specifically augmented reality. Using the use
case of an augmented reality shopping assistant, we introduce the concept of
multiple configurations of an application offering different qualities. We pre-
sented an algorithm for calculating the deployment offering the best quality
possible given the current connectivity and available resources. Our frame-
work is built upon the OSGi framework and is able to switch configurations
and outsource components at runtime. When a remote server is discovered
a higher quality configuration is deployed as more load can be outsourced.
When the connection is lost, the application gracefully degrades to a lower
quality configuration. We presented experimental results of different scenar-
ios with an implementation of our augmented reality use case that illustrate
the performance and effectiveness of our approach.

Important points for future work are to lower the redeployment time by
studying caching strategies for bundles and to evaluate our middleware in
other scenarios.

8. Acknowledgement

Tim Verbelen is funded by Ph.D grant of the Fund for Scientific Research,
Flanders (FWO-V).

References

[1] Gartner Group, “2010 press releases”,
http://www.gartner.com/it/page.jsp?id=1421013.

28

[2] A. Fortier, G. Rossi, S. E. Gordillo, C. Challiol, Dealing with variabil-
ity in context-aware mobile software, Journal of Systems and Software
83 (6) (2010) 915–936.

[3] N. Gui, V. D. Florio, H. Sun, C. Blondia, Toward architecture-based
context-aware deployment and adaptation, Journal of Systems and Soft-
ware 84 (2) (2011) 185–197.

[4] G. Klein, D. Murray, Parallel tracking and mapping on a camera phone,
in: ISMAR ’09: Proceedings of the 8th IEEE International Symposium
on Mixed and Augmented Reality, IEEE Computer Society, Washington,
DC, USA, 2009, pp. 83–86.

[5] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmal-
stieg, Real-time detection and tracking for augmented reality on mobile
phones, IEEE Transactions on Visualization and Computer Graphics 16
(2010) 355–368.

[6] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, L. Van Gool, Server-
side object recognition and client-side object tracking for mobile aug-
mented reality, in: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2010, pp. 1–8.

[7] J. J. Hull, X. Liu, B. Erol, J. Graham, J. Moraleda, Mobile image recog-
nition: architectures and tradeoffs, in: Proceedings of the Eleventh
Workshop on Mobile Computing Systems & Applications, HotMobile
’10, ACM, New York, NY, USA, 2010, pp. 84–88.

[8] M. Philippsen, M. Zenger, Javaparty – transparent remote objects in
java, Concurrency: Practice and Experience 9 (11) (1997) 1225–1242.

[9] M. Dahm, Doorastha – a step towards distribution transparency, in:
JIT, 2000.

[10] M. M. Fuad, M. J. Oudshoorn, AdJava: automatic distribution of java
applications, in: ACSC ’02: Proceedings of the twenty-fifth Australasian
conference on Computer science, Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, 2002, pp. 65–75.

29

[11] M. Tatsubori, T. Sasaki, S. Chiba, K. Itano, A bytecode translator
for distributed execution of ”legacy” java software, in: Object-Oriented
Programming, Springer-Verlag, 2001, pp. 236–255.

[12] E. Tilevich, Y. Smaragdakis, J-Orchestra: Enhancing java programs
with distribution capabilities, ACM Transactions on Software Engineer-
ing and Methodology 19 (1) (2009) 1–40.

[13] G. C. Hunt, M. L. Scott, The coign automatic distributed partitioning
system, in: OSDI ’99: Proceedings of the third symposium on Operat-
ing systems design and implementation, USENIX Association, Berkeley,
CA, USA, 1999, pp. 187–200.

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, P. Bahl, Maui: making smartphones last longer with code
offload, in: MobiSys ’10: Proceedings of the 8th international confer-
ence on Mobile systems, applications, and services, ACM, New York,
NY, USA, 2010, pp. 49–62.

[15] M. Satyanarayanan, Pervasive computing: Vision and challenges, IEEE
Personal Communications 8 (2001) 10–17.

[16] J. Flinn, S. Park, M. Satyanarayanan, Balancing performance, energy,
and quality in pervasive computing, in: ICDCS ’02: Proceedings of
the 22nd International Conference on Distributed Computing Systems
(ICDCS’02), IEEE Computer Society, Washington, DC, USA, 2002, pp.
217–226.

[17] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen, H.-I. Yang,
The case for cyber foraging, in: EW 10: Proceedings of the 10th work-
shop on ACM SIGOPS European workshop, ACM, New York, NY, USA,
2002, pp. 87–92.

[18] X. Gu, A. Messer, I. Greenberg, D. Milojicic, K. Nahrstedt, Adaptive
offloading for pervasive computing, IEEE Pervasive Computing 3 (3)
(2004) 66–73.

[19] S. Ou, K. Yang, J. Zhang, An effective offloading middleware for perva-
sive services on mobile devices, Pervasive and Mobile Computing 3 (4)
(2007) 362–385.

30

[20] S. Han, S. Zhang, J. Cao, Y. Wen, Y. Zhang, A resource aware software
partitioning algorithm based on mobility constraints in pervasive grid
environments, Future Generation Computer Systems 24 (6) (2008) 512–
529.

[21] M. D. Kristensen, N. O. Bouvin, Scheduling and development support in
the scavenger cyber foraging system, Pervasive and Mobile Computing
6 (6) (2010) 677–692, special Issue PerCom 2010.

[22] X. Zhang, S. Jeong, A. Kunjithapatham, S. Gibbs, Towards an elas-
tic application model for augmenting computing capabilities of mobile
platforms, in: Mobile Wireless Middleware, Operating Systems, and
Applications, Vol. 48, Springer Berlin Heidelberg, 2010, pp. 161–174.

[23] S. Goyal, J. Carter, A lightweight secure cyber foraging infrastructure
for resource-constrained devices, in: WMCSA ’04: Proceedings of the
Sixth IEEE Workshop on Mobile Computing Systems and Applications,
IEEE Computer Society, Washington, DC, USA, 2004, pp. 186–195.

[24] Y.-Y. Su, J. Flinn, Slingshot: deploying stateful services in wireless
hotspots, in: MobiSys ’05: Proceedings of the 3rd international confer-
ence on Mobile systems, applications, and services, ACM, New York,
NY, USA, 2005, pp. 79–92.

[25] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-
based cloudlets in mobile computing, IEEE Pervasive Computing 8 (4)
(2009) 14–23.

[26] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, Clonecloud: Boosting
mobile device applications through cloud clone execution, Tech. Rep.
arXiv:1009.3088 (2010).

[27] The OSGi Alliance, OSGi Service Platform, Core Specification, Release
4, Version 4.2, aQute, 2009.

[28] J. S. Rellermeyer, G. Alonso, T. Roscoe, R-osgi: distributed applications
through software modularization, in: Middleware ’07: Proceedings of
the International Conference on Middleware, Springer-Verlag New York,
Inc., New York, NY, USA, 2007, pp. 1–20.

31

[29] E. Guttman, C. Perkins, J. Veizades, M. Day, Service location protocol,
version 2 (1999).

[30] The OSGi Alliance, OSGi Service Platform, Service Compendium, Re-
lease 4, Version 4.2, aQute, 2009.

[31] IBM ILOG CPLEX, http://www.ilog.com/products/cplex/.

[32] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, Speeded-up robust features
(surf), Computer Vision and Image Understanding 110 (2008) 346–359.

[33] ZXing, http://code.google.com/p/zxing.

[34] Sun Java SE for Embedded 6, http://java.sun.com/javase/embedded/index.jsp.

[35] Apache Felix, http://felix.apache.org/site/index.html.

[36] T. Verbelen, R. Hens, T. Stevens, F. Turck, B. Dhoedt, Adaptive online
deployment for resource constrained mobile smart clients, in: Mobile
Wireless Middleware, Operating Systems, and Applications, Vol. 48,
Springer Berlin Heidelberg, 2010, pp. 115–128.

[37] C. D. Guerrero, M. A. Labrador, On the applicability of available
bandwidth estimation techniques and tools, Computer Communications
33 (1) (2010) 11 – 22.

32

