
Fast dynamic deployment adaptation for mobile devices

Tim Verbelen
Ghent University - IBBT,

Department of Information
Technology

Gaston Crommenlaan 8/201
9050 Gent, Belgium

tim.verbelen@ugent.be

Tim Stevens
Ghent University - IBBT,

Department of Information
Technology

Gaston Crommenlaan 8/201
9050 Gent, Belgium

tim.stevens@ugent.be

Filip De Turck
Ghent University - IBBT,

Department of Information
Technology

Gaston Crommenlaan 8/201
9050 Gent, Belgium

filip.deturck@ugent.be

ABSTRACT
Mobile devices that are limited in terms of CPU power,
memory or battery power are only capable of executing sim-
ple applications. To be able to run advanced applications
we introduce a framework to split up the application and
execute parts on a remote server. In order to dynamically
adapt the deployment at runtime, techniques are presented
to keep the migration time as low as possible and to prevent
performance loss while migrating. Also methods are pre-
sented and evaluated to cope with applications generating a
variable load, which can lead to an unstable system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Management, Measurement, Performance, Experimentation

Keywords
Smart client, Adaptive software, Software partitioning

1. INTRODUCTION
As mobile devices get more CPU power, memory and net-
work connectivity, more and more applications are devel-
oped for the mobile platform. However, these devices still
fall short to execute the same applications as their desktop
counterparts due to resource constraints and ever increas-
ing resource demands. Moreover the limited battery power
also constrains the possible applications on these devices.
This puts limits to the complexity and the quality of mobile
applications.

In order to cope with the mobile device limitations the thin
client concept has regained intrest [3]. The mobile device
then only acts as input/output device and all processing is
done on a remote server. However, this approach usually

uses much bandwidth and always introduces extra latency.
In [14] we propose a smart client approach to solve this prob-
lem. Here the resources on the mobile device are used to
process a part of the application, while other parts are out-
sourced at runtime to remote servers while the bandwidth
needed is kept as low as possible. A middleware layer contin-
uously monitors the running applications and decides which
components are outsourced. A proof-of-concept implemen-
tation showed the effectiveness of our approach in a scenario
of an application generating a high and constant load. How-
ever, the redeployment of the application takes some time
(more than 50 seconds) during which the application perfor-
mance drops significantly.

In this paper we extend the framework presented in [14] to
achieve truly dynamic deployment adaptation. Therefore
two main issues are tackled. First we reduce the migration
time and the performance loss involved. Second we exper-
iment with an application model generating variable load.
This model is more appropriate for most applications that
rely on user input to trigger computations. Based on these
experimental data we propose optimizations to improve the
offloading decision of the framework.

The paper is structured as follows. In the next section im-
portant related work is discussed. Section 3 presents the
architecture of our offloading middleware and Section 4 in-
troduces the augmented reality use case used to evaluate the
framework. Section 5 discusses the steps taken to speed up
migration while Section 6 presents results concerning vari-
able load. Section 7 ends this paper with conclusions and
future work.

2. RELATED WORK
The rise of mobile computing sets the need to cope with
changing contexts (e.g. network connectivity) and limited
resources, which introduced the paradigm of adaptive soft-
ware [1]. In this paper we adapt the software by partition-
ing the application and by outsourcing parts of it to remote
servers at runtime. In this section we discuss important re-
lated work on software adaptation by partitioning.

Early research on how to transform legacy software into dis-
tributed applications uses an extra preprocessing step before
compiling to insert remote invocation code. JavaParty [9],
Doorastha [2] and AdJava [4] expect the programmer to in-
sert special keywords indicating parts of the software to be
run remotely. This approach has two major drawbacks: the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55823075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


source code of the application has to be available and the
deployment is fixed at compile time.

The first problem is addressed by Addistant [11] and J-
Orchestra [13], by impacting the Java bytecodes to create
a distributed application. To determine a good partition
the first uses a policy file, while the latter uses an offline
profiling phase to find the best partition. Similarly, Coign
[7] distributes Microsoft COM objects using offline profil-
ing and binary rewriting. However, these systems still end
up with static partitions, while in the mobile context the
partitions should be able to adapt to context changes.

An adaptive offloading framework is presented by Gu et al.
[5]. This research focuses on memory constraints, and in
order to deal with limited memory capacity on the mobile
device a fuzzy control model is used to offload classes at
runtime to a remote server. Runtime information of the ap-
plication is fetched by extensive monitoring of objects and
method calls, introducing a significant overhead. Ou et al.
focusses on minimizing response time to the user by offload-
ing classes, proposing a (k+1) partitioning algorithm that
results in one part to execute on the device and k parts to
execute on k remote servers [8]. Han et al. present a flow
based algorithm to partition software which is evaluated by
simulation [6].

Our middleware presents a solution that, as opposed to [9],
[2], [4], [11] or [13] does not modify the original source code
nor the bytecodes. The service oriented architecture of OSGi
[12] is used to offload parts of the application on a software
component level. Instead of optimizing memory usage [5]
or response time [8], our main goal is to improve perfor-
mance for CPU intesive applications, while minimizing the
needed bandwidth. Lightweight profiling is used to instruct
the offloading decision at runtime and to be able to react on
changing device context.

3. OFFLOADING MIDDLEWARE
In this section we will describe the base framework for adap-
tive offloading. The architecture is shown in Figure 1. The
client agent runs the main management loop and periodi-
cally checks the monitor information. The Resource Monitor
provides information about the complete system, monitoring
the total CPU and bandwidth used. The Bundle Monitor
is a more fine grained monitor that observes the managed
software bundles’ CPU and communication cost. Using this
information the Client Agent builds up a weighted graph in
which the software bundles are represented as nodes and the
communication between components is represented as edges.
When a decision is made to redeploy the system the Graph
Cutter calculates the optimal deployment that outsources
enough CPU cost to the server while minimizing the needed
bandwith. The Distributor makes sure the software bun-
dles are in- and/or outsourced as needed. When a bundle
is outsourced a proxy bundle is generated on the client side
that provides the same interface as the original but forwards
calls to the server bundle. The Server Agent initializes and
manages software components that are moved to the server.

Currently the framework is configured to cope with CPU
intensive applications that need to be partly outsourced in
order to be able to run the application. An offloading deci-

Figure 1: The architecture of our offloading frame-
work.

sion is made when the percentage CPU time used is above
a predefined threshold of 80%. The optimal cut is the one
that keeps the CPU cost of the bundles at the client side be-
low the threshold and minimizes the used bandwidth. The
framework is implemented in Java because a cross platform
solution was needed in order to execute components on mo-
bile devices as well as on server machines. The OSGi frame-
work [12] offers us a component model and forces applica-
tions to be built up from seperate units of deployment. It is
used in combination with R-OSGi [10] which handles proxy
generation and remote method invocations. Until now the
framework also only supports migration of stateless compo-
nents.

The framework as described in [14] has two main drawbacks
in order to allow true dynamic deployment adaptation. The
first one is the migration time that takes up to 10 seconds
per bundle and the performance loss while migrating. The
second one is the fact that it is evaluated using application
components generating a constant load, while this is almost
never the case in a real application. Load variations in bun-
dles could lead to a constant in- and outsourcing of bundles
which is not desired. The first drawback will be tackled
in Section 5, while the second problem will be handled in
Section 6.

4. USE CASE: AUGMENTED REALITY
As an example use case we consider an augmented reality
(AR) application. By showing the images captured by a
mobile phone’s camera on the display the user can look to
his device as if it were a window on reality. On this display
the reality can be augmented with virtual objects or over-
layed with useful information about the user’s surroundings.
The architecture of an example AR application is shown in
Figure 2.

The Capturer will continuously fetch 800x480 images of the
camera and push these to the Renderer, that combines this
image with virtual content given by the ContentProvider.
The FeatureDetector will pull the latest available image for
processing and detect some feature to analyze. The Analyzer
will take time to analyze the found features and instructs the
Matcher to match them against known templates. When
information is found the ContentProvider will be activated
and the content will be rendered.



Figure 2: The architecture of an example AR ap-
plication. The components are annotated with the
time it takes to execute a method call and the edges
with the communication cost (bytes) of such a call.

To evaluate our framework we created a synthetic applica-
tion reflecting this scenario. The framework will outsource
CPU intensive components (i.e. Matcher, Analyzer) while
keeping some processing local to minimize the bandwidth
(FeatureDetector). The performance of the application is
measured by counting the amount of method calls to the
Render bundle which reflects the achieved frames per sec-
ond in a real application.

5. IMPROVING MIGRATION TIME
To evaluate the effectiveness of the framework, experiments
were done using the synthetic application presented in the
previous section. Tests were run on a Nokia N900 mobile
device with a 600 MHz ARM Cortex A8 processor and 256
MB RAM running Maemo 5 Linux. The server machine is
equipped with an Intel Core 2 DUO P8400 CPU clocked at
2.26GHz running Ubuntu Linux. The monitor info is fetched
every second and every 5 seconds the framework evaluates
if a new deployment is needed. The synthetic application is
executed on the mobile device and after a minute the out-
sourcing framework is activated. This calculates the best
cut and outsources components until the CPU usage drops
below the threshold of 80%. We measured performance of
the application as the number of frames that would be ren-
dered per second. The results are shown in Figure 3. The
framework chooses – as expected – to outsource both the
Matcher and the Analyzer bundle, which takes almost half
a minute during which the performance drops significantly.
This is unacceptable for real-time use, so optimizations are
needed in order to lower the outsource time and performance
drop.

In order to optimize the outsourcing of a bundle we take a
detailed look at all necessary steps that need to be done.

1. Connect to the ServerAgent service.
The ServerAgent will take care the initialization and
management of bundles at the server side. We use
R-OSGi to get a reference to this service. R-OSGi
will look for the service and return the reference of a
proxy service at the client that will forward calls to
the remote ServerAgent. If a proxy service is not yet
instantiated R-OSGi will generate one on the fly using
bytecode manipulation.

2. Resolve dependencies of the bundle to migrate.
Next the dependencies of the bundle that will be mi-
grated are inspected. These are needed to link the
right services between the client and the server after
the migration.

3. Send the bundle to the server.
The bytecodes of the bundle to migrate are serialized
and sent to the server.

4. Install the bundle at the server.
The ServerAgent installs and initializes the bundle at
the server side. R-OSGi is used to expose the service
interface to the client.

5. Generate proxy of the outsourced bundle.
R-OSGi will search for the exposed service interface
on the server and generate a local proxy that forwards
calls to the remote instance of the bundle.

6. The local instance of the bundle is stopped.
On the client device the bundle is stopped. All bundles
using this service will now use the proxy implementa-
tion and method calls will be forwareded to the remote
instance.

Measuring time spent in each of these steps showed that
more than 60% of the migration time was spent in step
5. Also the first step took significantly longer for outsourc-
ing the first bundle. This indicates that most time is used
to generate proxy bundles. The reason is that the proce-
dure to generate and initialize proxy bundles at runtime uses
bytecode manipulation, reflection and custom class loading,
which are rather slow. Also knowing that the migration
procedure is called when the CPU usage is above 80%, CPU
resources on the device are scarce to perform these opera-
tions.

To avoid the expensive proxy generation at migration time
we introduce proactive generation of the proxy bundles. In-
stead of letting R-OSGi take care of the proxy generation
when we first need the remote service, we generate proxy
bundles for each application bundle upfront when the ap-
plication is started. At migration time step 5 is limited to
injecting the properties of the server (e.g. ip address and
port number) in the proxy bundle corresponding with the
application bundle to migrate.

Figure 3: The performance graph of the synthetic
application before optimizations. The outsourcing
of 2 components takes almost 30 seconds.



Figure 4: The performance graph of the synthetic
application with proactive proxy generation. The
outsourcing of components now only takes 3 seconds.

The effect is shown in Figure 4. The migration of the 2
components now takes less then 3 seconds, and the framer-
ate drop is less intrusive. This comes at the cost of an extra
startup time of around 15 seconds, but this cost is only in-
troduced once, while time is saved for each migration.

6. EFFECTIVENESS UNDER VARIABLE
LOAD

Until now we always used components generating a con-
stant load. In real applications however the load generated
will vary and depend on the user input, for example in our
augmented reality application the time spent analyzing and
matching will depend on the number of features found in the
input images. This could lead to an unstable system where
components are constantly in- and outsourced. To illustrate
this we adapted the Analyzer component from Figure 2 to
generate a changing load. Every 10 seconds the time spent
in a call to the Analyzer will change between 100ms and
2ms. Every 5 seconds the client agent calculates the opti-
mal deployment and in- or outsources bundles as needed.
The result is shown in Figure 5 where the percentage CPU
time used is plotted for the client device and the remote
server.

Figure 5: The percentage CPU time used on the
client and server. The Analyzer bundle will con-
stantly be in- and outsourced leading to an unstable
system.

Each time the Analyzer is in the 100ms phase the framework
will decide to outsource the component to the server. On

Figure 6: The percentage CPU time used on the
client and server. Because the monitor values are
averaged, the framework will be more robust to
changes in the load.

the other hand, when the bundle is in the 2ms phase, it will
be insourced again to the client in order to save bandwidth.
When a component quickly varies in generated load this can
lead to an unstable system that is constantly migrating bun-
dles form client to server and vice versa. This indicates that
a snapshot of the generated load is not enough to instruct
the offloading decision, but that history should be taken in
account. In the following we introduce two ways to cope
with the variability of the load, both working on the history
of the past monitor information. The first one uses the av-
erage of the load generated in a past time window, a second
one uses the maximum value.

6.1 Average load generated in the past
One way to stabilize a varying signal and eliminate peaks is
by averaging over a time window. This way a short drop in
load of a component will not immediatly lead to insourcing
that component. The result of averaging the monitored val-
ues is shown in Figure 6. A time window of 15 seconds is
used.

When the load of the Analyzer bundle drops, the average
will slowly decrease and the bundle will not be insourced
immediatly. As more and more small values come in the
time window the bundle load will keep on decreasing until
the decision is made to insource the bundle. This is shown
in Figure 6 where less frequently a wrong insource decision is
made. This shows that averaging the monitor values makes
the framework more robust to varying load. The amount
of history used will influence how fast the framework reacts
to changes. However, using the average load will lead to
putting components at the client side who’s peak load can
not be handled. Thus, a better approach would be to watch
for the peak load of a bundle inside the past time window.

6.2 Maximum load generated in the past
Another approach for preventing the system to react on
short variations in the load is to take the maximum value
from the past time window. Using a time window of 15 sec-
onds the system now becomes stable as depicted in Figure 7.
Once outsourced the framework will not try to insource the
bundle because the time window is longer than the period
of low load. Altough the generated load keeps varying, it
stays below the 80% threshold at the client.



Figure 7: The percentage CPU time used on the
client and server. Using the peak monitor value of
from the past time window results in a stable sys-
tem.

A drawback of this method is that one rare short peak in
the load will cause the system to outsource the bundle. The
question to ask then is which situation is preferable: execute
the short peak load on the device and save bandwidth or
outsource the bundle and keep the CPU used at the client
low. This question can be answered by taking in account
the battery power used in both situations and use minimal
energy as a goal.

7. CONCLUSIONS AND FUTURE WORK
In this paper we extended our offloading framework to make
fast dynamic redeployment possible. By proactively gener-
ating proxy bundles the migration time is decreased tremen-
dously, while also diminishing the performance loss during
migration. In order to cope with bundles generating vary-
ing load the history of the monitor information is used to
prevent the system from becoming unstable.

Intresting future work is to trade of the use of CPU power
against the use of bandwidth. In this context energy would
be a better goal to minimize. Also the support of stateful
migration is considered as future work.

8. ADDITIONAL AUTHORS
Additional authors: Bart Dhoedt (Ghent University - IBBT,
email: bart.dhoedt@intec.ugent.be).

9. REFERENCES
[1] A. Al-bar and I. Wakeman. A Survey of Adaptive

Applications in Mobile Computing. In Proceedings of
the 21st International Conference on Distributed
Computing Systems, pages 246–251. IEEE Computer
Society, 2001.

[2] M. Dahm. Doorastha – a step towards distribution
transparency. In JIT, 2000.

[3] L. Deboosere, B. Vankeirsbilck, P. Simoens, F. De
Turck, B. Dhoedt, Demeester Piet, M. Kind, F.-J.
Westphal, T. Abdeslam, and T. Plantier. MobiThin
management framework: design and evaluation. In
Proceedings of the 3rd international workshop on
Adaptive and dependable mobile ubiquitous systems,
pages 25–30. ACM, 2009.

[4] M. M. Fuad and M. J. Oudshoorn. Adjava: automatic
distribution of java applications. In ACSC ’02:
Proceedings of the twenty-fifth Australasian conference
on Computer science, pages 65–75, Darlinghurst,
Australia, Australia, 2002. Australian Computer
Society, Inc.

[5] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and
K. Nahrstedt. Adaptive offloading for pervasive
computing. IEEE Pervasive Computing, 3(3):66–73,
2004.

[6] S. Han, S. Zhang, J. Cao, Y. Wen, and Y. Zhang. A
resource aware software partitioning algorithm based
on mobility constraints in pervasive grid environments.
Future Gener. Comput. Syst., 24(6):512–529, 2008.

[7] G. C. Hunt and M. L. Scott. The coign automatic
distributed partitioning system. In OSDI ’99:
Proceedings of the third symposium on Operating
systems design and implementation, pages 187–200,
Berkeley, CA, USA, 1999. USENIX Association.

[8] S. Ou, K. Yang, and J. Zhang. An effective offloading
middleware for pervasive services on mobile devices.
Pervasive Mob. Comput., 3(4):362–385, 2007.

[9] M. Philippsen and M. Zenger. Javaparty – transparent
remote objects in java. Concurrency: Practice and
Experience, 9(11):1225–1242, December 1997.

[10] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-osgi:
distributed applications through software
modularization. In Middleware ’07: Proceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, pages 1–20. Springer-Verlag New
York, Inc., 2007.

[11] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of
”legacy” java software. In Object-Oriented
Programming, pages 236–255. Springer-Verlag, 2001.

[12] The OSGi Alliance. OSGi Service Platform, Core
Specification, Release 4, Version 4.2. aQute,
September 2009.

[13] E. Tilevich and Y. Smaragdakis. J-orchestra:
Enhancing java programs with distribution
capabilities. ACM Trans. Softw. Eng. Methodol.,
19(1):1–40, 2009.

[14] T. Verbelen, R. Hens, T. Stevens, F. De Turck, and
B. Dhoedt. Adaptive online deployment for resource
constrained mobile smart clients. In MOBILWARE
’10: Proceedings of the 3rd international conference on
MOBILe Wireless MiddleWARE, Operating Systems,
and Applications. ICST, 2010.


