629 research outputs found

    Distributed Event-triggered Fault-tolerant Consensus Control of Multi-agent Systems under DoS Attacks

    Get PDF
    This study investigates the distributed fault-tolerant consensus issue of multi-agent systems subject to complicated abrupt and incipient time-varying actuator faults in physical hierarchy and aperiodic denial-of-service (DoS) attacks in networked hierarchy. Decentralized estimators are devised to estimate consecutive system states and actuator faults. A unified framework with an absolute local output-based closed-loop estimator in decentralized fault estimation design and a relative broadcasting state-based open-loop estimator in distributed event-triggered fault-tolerant consensus design is developed. Criteria of exponential consensus of the faulty multi-agent systems under DoS attacks are derived by virtue of average dwelling time and attack frequency technique. Simulations are outlined to confirm the efficacy of the proposed distributed fault-tolerant consensus control algorithm based on an event-triggered mechanism

    Active-passive dynamic consensus filters: Theory and applications

    Get PDF
    ”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally set their value-of-information, characterizing an agents ability to sense a local quantity of interest, which may change with respect to time. The presented active-passive dynamic consensus filters utilize equations of motion in order to diffuse information across the network, requiring continuous information exchange and requiring agents to exchange their measurement and integral action states. Additionally, agents are assumed to be modeled as having single integrator dynamics. Motivated from this standpoint, we utilize the ideas and results from event-triggering control theory to develop a network of agents which only share their measurement state information as required based on errors exceeding a user-defined threshold. We also develop a static output-feedback controller which drives the outputs of a network of agents with general linear time-invariant dynamics to the average of a set of applied exogenous inputs. Finally, we also present a system state emulator based adaptive controller to guarantee that agents will reach a consensus even in the presence of input disturbances. For each proposed active-passive dynamic consensus filter, a rigorous analysis of the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical examples and experimental studies are included to demonstrate the efficacy of the proposed information fusion filters”--Abstract, page iv

    XRLoc: Accurate UWB Localization for XR Systems

    Full text link
    Understanding the location of ultra-wideband (UWB) tag-attached objects and people in the real world is vital to enabling a smooth cyber-physical transition. However, most UWB localization systems today require multiple anchors in the environment, which can be very cumbersome to set up. In this work, we develop XRLoc, providing an accuracy of a few centimeters in many real-world scenarios. This paper will delineate the key ideas which allow us to overcome the fundamental restrictions that plague a single anchor point from localization of a device to within an error of a few centimeters. We deploy a VR chess game using everyday objects as a demo and find that our system achieves 2.42.4 cm median accuracy and 5.35.3 cm 90th90^\mathrm{th} percentile accuracy in dynamic scenarios, performing at least 8×8\times better than state-of-art localization systems. Additionally, we implement a MAC protocol to furnish these locations for over 1010 tags at update rates of 100100 Hz, with a localization latency of 1\sim 1 ms

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Data based identification and prediction of nonlinear and complex dynamical systems

    Get PDF
    We thank Dr. R. Yang (formerly at ASU), Dr. R.-Q. Su (formerly at ASU), and Mr. Zhesi Shen for their contributions to a number of original papers on which this Review is partly based. This work was supported by ARO under Grant No. W911NF-14-1-0504. W.-X. Wang was also supported by NSFC under Grants No. 61573064 and No. 61074116, as well as by the Fundamental Research Funds for the Central Universities, Beijing Nova Programme.Peer reviewedPostprin

    Estimation, filtering and fusion for networked systems with network-induced phenomena: New progress and prospects

    Get PDF
    In this paper, some recent advances on the estimation, filtering and fusion for networked systems are reviewed. Firstly, the network-induced phenomena under consideration are briefly recalled including missing/fading measurements, signal quantization, sensor saturations, communication delays, and randomly occurring incomplete information. Secondly, the developments of the estimation, filtering and fusion for networked systems from four aspects (linear networked systems, nonlinear networked systems, complex networks and sensor networks) are reviewed comprehensively. Subsequently, some recent results on the estimation, filtering and fusion for systems with the network-induced phenomena are reviewed in great detail. In particular, some latest results on the multi-objective filtering problems for time-varying nonlinear networked systems are summarized. Finally, conclusions are given and several possible research directions concerning the estimation, filtering, and fusion for networked systems are highlighted

    Distributed Cooperative Control of Multi-Agent Systems Under Detectability and Communication Constraints

    Get PDF
    Cooperative control of multi-agent systems has recently gained widespread attention from the scientific communities due to numerous applications in areas such as the formation control in unmanned vehicles, cooperative attitude control of spacecrafts, clustering of micro-satellites, environmental monitoring and exploration by mobile sensor networks, etc. The primary goal of a cooperative control problem for multi-agent systems is to design a decentralized control algorithm for each agent, relying on the local coordination of their actions to exhibit a collective behavior. Common challenges encountered in the study of cooperative control problems are unavailable group-level information, and limited bandwidth of the shared communication. In this dissertation, we investigate one of such cooperative control problems, namely cooperative output regulation, under various local and global level constraints coming from physical and communication limitations. The objective of the cooperative output regulation problem (CORP) for multi-agent systems is to design a distributed control strategy for the agents to synchronize their state with an external system, called the leader, in the presence of disturbance inputs. For the problem at hand, we additionally consider the scenario in which none of the agents can independently access the synchronization signal from their view of the leader, and therefore it is not possible for the agents to achieve the group objective by themselves unless they cooperate among members. To this end, we devise a novel distributed estimation algorithm to collectively gather the leader states under the discussed detectability constraint, and then use this estimation to synthesize a distributed control solution to the problem. Next, we extend our results in CORP to the case with uncertain agent dynamics arising from modeling errors. In addition to the detectability constraint, we also assumed that the local regulated error signals are not available to the agents for feedback, and thus none of the agents have all the required measurements to independently synthesize a control solution. By combining the distributed observer and a control law based on the internal model principle for the agents, we offer a solution to the robust CORP under these added constraints. In practical applications of multi-agent systems, it is difficult to consistently maintain a reliable communication between the agents. By considering such challenge in the communication, we study the CORP for the case when agents are connected through a time-varying communication topology. Due to the presence of the detectability constraint that none of the agents can independently access all the leader states at any switching instant, we devise a distributed estimation algorithm for the agents to collectively reconstruct the leader states. Then by using this estimation, a distributed dynamic control solution is offered to solve the CORP under the added communication constraint. Since the fixed communication network is a special case of this time-varying counterpart, the offered control solution can be viewed as a generalization of the former results. For effective validation of previous theoretical results, we apply the control algorithms to a practical case study problem on synchronizing the position of networked motors under time-varying communication. Based on our experimental results, we also demonstrate the uniqueness of derived control solutions. Another communication constraint affecting the cooperative control performance is the presence of network delays. To this regard, first we study the distributed state estimation problem of an autonomous plant by a network of observers under heterogeneous time-invariant delays and then extend to the time-varying counterpart. With the use of a low gain based estimation technique, we derive a sufficient stability condition in terms of the upper bound of the low gain parameter or the time delay to guarantee the convergence of estimation errors. Additionally, when the plant measurements are subject to bounded disturbances, we find that that the local estimation errors also remain bounded. Lastly, by using this estimation, we present a distributed control solution for a leader-follower synchronization problem of a multi-agent system. Next, we present another case study concerning a synchronization control problem of a group of distributed generators in an islanded microgrid under unknown time-varying latency. Similar to the case of delayed communication in aforementioned works, we offer a low gain based distributed control protocol to synchronize the terminal voltage and inverter operating frequency
    corecore