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ABSTRACT

This dissertation presents a new method for distributively sensing dynamic envi-

ronments utilizing integral action based system theoretic distributed information fusion

methods. Specifically, the main contribution is a new class of dynamic consensus filters,

termed active-passive dynamic consensus filters, in which agents are considered to be active

if they are able to sense an exogenous quantity of interest and are considered to be passive

otherwise, where the objective is to drive the states of all agents to the convex hull spanned

by the exogenous inputs sensed by active agents. Additionally, we generalize these results

to allow agents to locally set their value-of-information, characterizing an agents ability to

sense a local quantity of interest, which may change with respect to time.

The presented active-passive dynamic consensus filters utilize equations of motion in

order to diffuse information across the network, requiring continuous information exchange

and requiring agents to exchange their measurement and integral action states. Additionally,

agents are assumed to be modeled as having single integrator dynamics. Motivated from this

standpoint, we utilize the ideas and results from event-triggering control theory to develop a

network of agents which only share their measurement state information as required based

on errors exceeding a user-defined threshold. We also develop a static output-feedback

controller which drives the outputs of a network of agents with general linear time-invariant

dynamics to the average of a set of applied exogenous inputs. Finally, we also present

a system state emulator based adaptive controller to guarantee that agents will reach a

consensus even in the presence of input disturbances.

For each proposed active-passive dynamic consensus filter, a rigorous analysis of

the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical

examples and experimental studies are included to demonstrate the efficacy of the proposed

information fusion filters.
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SECTION

1. INTRODUCTION

Distributed dynamic information fusion is a task performed by a group of agents

which use local peer-to-peer information exchange in order to achieve system level goals.

In recent years, distributed information fusion has been identified as a major research thrust

area owing to its envisioned use in a wide variety of applications in law-enforcement [1]–[3],

military [4], [5], and scientific data gathering [6]–[17] to name but a few examples. At the

core of distributed sensing networks is an information fusion algorithm for distributing and

fusing the local information sensed by each agent.

Classical distributed sensing methods require large bandwidth, memory, and over-

head for record keeping [9], [18]–[25]. One widely used classical distributed sensing

method, flooding [9], requires all agents to store all information from all other agents in the

network and forward all received information to neighbors, resulting in redundant informa-

tion exchange and high memory usage. Motivated from this standpoint, this dissertation

considers system theoretic information fusion methods where equations of motion are used

to perform information fusion, requiring agents to only exchange their local information

with their nearest neighbors.

1.1. SYSTEM THEORETIC INFORMATION FUSION

In contrast to classical distributed sensing methods where messages must be routed

and agents must track individual messages, system theoretic information fusion utilizes

equations of motion to diffuse information across the network. This means agents only fuse

information from nearest neighbors, significantly reducing information exchange, memory,
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and computational costs. In addition, system theoretic methods are generally robust to noise

and uncertainty and provide insight into the mechanics of the information fusion process

[26], [27]. At the core of system theoretic information fusion processes is a consensus

algorithm responsible for the information fusion step.

Among two important classes of consensus algorithms are static consensus algo-

rithms and dynamic consensus algorithms. Much literature, notably [26], [28]–[31], focuses

on static consensus, where agents reach an agreement on a fixed quantity of interest. How-

ever, this class of consensus algorithms is not suitable for agents sensing time-varying

environments. To address the challenges of dynamic sensing several authors, most notably

[6], [8], [10], [12]–[14], have studied dynamic consensus algorithms where agents reach an

agreement on a time-varying quantity of interest. Owing to their versatility, this thesis will

focus on dynamic consensus algorithms.

1.2. HETEROGENEITY IN SENSING

Existing dynamic consensus algorithms are suitable for applications where all agents

are able to sense the same time-varying quantity of interest. From a practical standpoint,

some agents may be able to sense a quantity of interest while others may not be able to

sense any quantities. Furthermore, in many situations, agents may be heterogeneous with

respect to which quantity of interest they are able to sense. Throughout this dissertation we

will consider an agent to be active if it is able to sense a quantity of interest and consider an

agent to be passive if it not able to sense any quantities of interest. To elucidate this point,

consider the scenario in Figure 1.1 where a network of 7 agents are tracking 3 dynamic

targets with the goal of building a time-varying environment map. Three mobile agents are

active for one target each as follows: agent M1 is active for area T1, agent M2 is active for

area T2, and agent M3 is active for area T3. In addition, four stationary agents are active

for some targets and passive for others as follows: agent S2 is active for target T1, agent

S3 is active for targets T1 and T2, agent S4 is active for targets T2 and T3, and agent S1
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Time

S1

S2

S3

S4

M1

M2

M3

T1 T2

T3

Figure 1.1. Distributed sensing network with 4 stationary ground agents (denoted by Sx,
where x denotes the agent number) and 3 mobile agents (denoted by Mx) sensing a dynamic
environment. Solid black lines denote communication links. Black circles (labeled Tx)
denote areas of interested directly sensed by mobile agents.

is passive. Note that an agent is referred to as passive for targets it is not able to sense.

For example, agent M1 is passive for targets T2 and T3. In order for all agents to build

and maintain an environment map, agents must use information received from neighbors to

learn about areas which they are not able to directly access. As an example, agents S1 and

S2 must be able to learn about target T3 even though they are not able to directly access the

state of this target.

The first contribution of this dissertation, provided in Paper I, is to introduce a new

class of integral-action based dynamic consensus filters, active-passive dynamic consensus

filters, in which the state of all agents is driven to a user-adjustable neighborhood of the
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average of the set of applied exogenous inputs sensed by active agents. Here, we would like

to note that that some authors refer to integral-action consensus algorithms as PI consensus

algorithms due to similarities in structure with standard PI controllers. Several other studies

exist on integral-action based distributed control algorithms, notably [32]–[36]. However,

the authors of [32], [33] only consider specific situations where all agents are active with

respect to a set of applied exogenous inputs. The authors of [34] overview several dynamic

consensus algorithms, but are commonly interested in optimizing the network feedback

gains and do not consider exogenous inputs. In [35], the authors consider an integral-

action based distributed control algorithm but only consider agents having no observations.

The results of [36] present a distributed proportional-integral-derivative control algorithm,

where agents track locally generated reference velocity and acceleration signals. Yet, all

agents are only able to sense one corresponding velocity and acceleration pair, which may

not be suitable for applications where agents are required to change their active and passive

roles.

It is important to note that agents may also be heterogeneous with respect to their

sensing power, measured by their value of information, due to variations in sensor capabil-

ities, the quality of sensors, and/or simply distance to the target. To elucidate this point,

consider that even though agents M3 and S4 are both active for target T3, agent M3 is

clearly able to more accurately sense the target since it is closer to and able to move with the

target. In addition, the sensing power of agents may vary with time. Motivated from this

standpoint, the second contribution of this dissertation, presented in Paper IV, exploits het-

erogeneity in individual agents’ value-of-information to reduce the sensing error owing to

lower valued agents. Even though a few works exist on this subject, notably [15], [37]–[41],

they are presented in the context of static consensus algorithms and/or only consider mission

planning (i.e. sensor placement) scenarios. Here, we extend the proposed active-passive

dynamic consensus filters algorithm to account for heterogeneity in the sensing capabilities

of each agent. To demonstrate the efficacy of these results, Paper II and Paper III present
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two practical examples in which several ground sensors work cooperatively to reconstruct

an environment even though each agent is passive for some parts of the environment. In

addition, we draw parallels to existing classes of leaderless and leader-follower networks,

and demonstrate that for static exogenous inputs, all agents asymptotically converge to the

weighted average of the set of applied exogenous inputs.

1.3. REDUCING INTER-AGENT INFORMATION EXCHANGE

The results presented in Paper I and Paper IV utilize an integral-action based dy-

namic consensus filter as do the works presented in [32]–[36]. All these works, with the

notable exception of [35], require that agents exchange their integral-action states with their

neighbors in addition to their measurement state, incurring a high cost of inter-agent in-

formation exchange. In addition, due to the nature of system-theoretic dynamic consensus

filters, agents must continuously exchange information in order to reach and maintain a

consensus. While [35] takes steps to reduce inter-agent information exchange by consider-

ing agents which can estimate neighboring agents integral-action states, they only consider

agents that have no observations, which may not be suitable for all situations. To address

these challenges, the next contribution of this dissertation introduced in Paper V extends

the proposed active-passive dynamic consensus filters approach to allow agents to exchange

only their measurement states in a simple, isotropic manor, reducing the cost of inter-agent

information exchange. Paper V also utilizes the ideas and results from event-triggering con-

trol theory, notably [42]–[46], to further reduce the cost of inter-agent information exchange.

This generalization additionally allows agents to schedule information exchange based on

errors exceeding a user-defined threshold. This eliminates the need for agents to synchro-

nize their update intervals, which is important for practical implementations. Finally, we

demonstrate that no Zeno behavior can occur as a result of our using an event-triggered

controller.
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1.4. EXTENSIONS TO LINEAR TIME-INVARIANT AGENTS

The active-passive dynamic consensus filters presented in Paper I-Paper V assume

that all agents have, or can be made to act as having single integrator dynamics, which

may not be practical in all situations. To elucidate this point, we again consider the target

tracking scenario in Figure 1.1, specifically agents M3 ad S4. Since agent S4 is stationary,

we may be able to decouple the sensed information from the agent dynamics. In contrast,

agent M3 is mobile and moving with the target. Consider that agent M3 is a fixed-wing

aircraft circling the target. In addition, as the target moves in space, the aircraft must adjust

its course to continue tracking. Owing to the motion of the aircraft, the dynamics will

inherently appear in the agent’s measurement state and must be accounted for when fusing

information with other agents. To this end, Paper VII contributes a static output feedback

active-passive dynamic consensus filter for agents with homogeneous dynamics. While

a few works exist for dynamic consensus filters with general linear time-invariant agents,

notably [33], [47]–[53], the authors of [47]–[51] only consider cases where agents have

no observations. The authors of [33], [52], [53] do consider agents which are subjected

to exogenous inputs, however, only [53] considers agents which are active and passive.

Yet, the authors of [53] only considers that all agents are sensing a target with known (or

estimated) linear time-invariant dynamics where the sensing agents are following the target

in a leader-follower paradigm.

To address this challenge, Paper VII utilizes the tools and ideas presented in Paper VI

to extend the active-passive dynamic consensus filters approach to agents having dynamics of

the form (A,B,C). In particular, we develop a static output feedback controller for a network

of linear time-invariant agents which drives the output of each agent to a neighborhood of

the weighted average of a set of applied exogenous inputs sensed by the active agents.
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1.5. CONSENSUS IN THE PRESENCE OF DISTURBANCES

The active-passive dynamic consensus filters mentioned thus far have focused on

fixed-gain distributed controllers which are unable to recover the desired performance in

the presence of unknown exogenous disturbances as outlined in [54] and [55]. Specifically,

these systems do not have a centralized mechanism to monitor for agent failures, malicious

attacks, network link failures, and other disturbances, which can lead to system instability

and failure to achieve the system-level goals as described in [54] and [56].

While several approaches have been presented in order to mitigate the effects of

exogenous disturbances in distributed sensing, notably [57]–[60], they make the assumption

that an agent’s information is no longer usable and all information from the agent is ignored,

which may not be appropriate in scenarios where the effect of the disturbance can be

suppressed. The authors of [59] and [61] assume that the structure of the underlying

communication network is known in order to mitigate disturbance effects, which is not

practical for many situations. In addition, [58], [61], and [62] assume that a maximum

number of agents are disturbed, which can be a strict assumption in hostile environments.

Computationally expensive observer techniques are considered in [59] and [60]. In [63],

the authors focus on discovering subsets of disturbed agents and require neighboring agents

to mitigate the disturbance effects.

To address these challenges, the final contribution of this dissertation, given in

Paper VI, considers a state emulator based adaptive control approach to mitigate the effects of

an exogenous disturbance on a network of general linear time-invariant agents. Specifically,

we utilize an undisturbed system state emulator as a reference trajectory to drive the states

of all agents to a close neighborhood of the average of a quantity of interest. In contrast to

the rest of this dissertation, the results of Paper VI only consider static consensus in order

to more clearly demonstrate the outlined adaptive control approach.
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1.6. ORGANIZATION

The organization of this dissertation is as follows. Paper I presents the proposed

active–passive dynamic consensus filters approach to dynamic information fusion. In

Paper II and Paper III, we demonstrate the efficacy of the presented active-passive dynamic

consensus filter approach to distributed sensing with several experimental studies. Paper IV

presents extensions to the active-passive dynamic consensus filters approach to dynamic

information fusion to account for heterogeneity in the ability of agents to sense a time-

varying quantity of interest. Next, Paper V draws on the ideas and tools of event-triggered

control theory in order to reduce the cost of inter-agent information exchange and relax the

requirement that agents synchronize their information update intervals. In Paper VI, we

utilize a state emulator based adaptive information filter to allow agents to reach a consensus

in the presence of exogenous disturbances, even if all agents are subjected to disturbances.

Finally, Paper VII extends the presented active-passive dynamic consensus filters using the

tools and ideas presented in Paper VI in order to account for agents with general linear

time-invariant dynamics. Our conclusions and future research prospects are summarized in

Section 2.

1.7. NOTATION

The necessary notations are introduced in the individual papers.
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PAPER

I. DISTRIBUTED CONTROL OF ACTIVE–PASSIVE NETWORKED
MULTIAGENT SYSTEMS

Tansel Yucelen and John Daniel Peterson

ABSTRACT

An active–passive networked multiagent system framework is introduced and an-

alyzed, which consists of agents subject to exogenous inputs (active agents) and agents

without any inputs (passive agents). Specifically, we propose an integral action-based

distributed control approach and establish its transient time and steady state performance

characteristics using results from graph theory, matrix mathematics, Lyapunov stability, and

L stability. Apart from the existing relevant literature, where either none of the agents are

subject to exogenous inputs (i.e., average consensus problem) or all agents are subject to

these inputs (i.e., dynamic average consensus problem), the key feature of our approach is

that the states of all agents converge to the average of the exogenous inputs applied only to

the active agents. We further discuss the conditions when the performance of the proposed

distributed controller specializes to the performance of standard distributed controllers used

for average consensus and dynamic average consensus of leaderless networks, and also draw

connections between pinning control and containment control of leader–follower networks.

Several illustrative numerical examples are provided to demonstrate the efficacy of the

proposed distributed control approach.
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1. INTRODUCTION

The agreement of networked agents upon certain initial quantities of interest is called

average consensus, which is a well studied class of leaderless networks (see, for example,

[1]–[5] and references therein). Since this class of leaderless networks is insufficient for

applications in dynamic environments, such as average consensus of distance measurements

between static sensors and a moving target, [6]–[11] consider the dynamic average consensus

problem – a problem that deals with the agreement of networked agents, where each agent

is subject to an exogenous input. Throughout this paper, we say that an agent is active

when it is subject to an exogenous input, otherwise we say that an agent is passive. From

this point of view, the agents considered for the average consensus problem are all passive,

whereas the agents considered for the dynamic average consensus problem are all active.

However, it should be noted that it can be of practical importance to reach the average of

the exogenous inputs only applied to a specific set of agents in the network. For example, a

motivating scenario for this case include a distributed sensor network, where only a set of

agents that are close to a target of interest can sense this target, and hence, they are active,

whereas the rest are passive since they cannot sense this target and collect information. For

such cases the networked multiagent system is in fact heterogenous and consists of both

active and passive agents.

The contribution of this paper is to introduce and analyze an active–passive net-

worked multiagent system framework. Specifically, we propose an integral action-based

distributed control approach and establish its transient time and steady state performance

characteristics using results from graph theory, matrix mathematics, Lyapunov stability,

and L stability. Apart from the existing relevant literature on leaderless networks, where

either none of the agents are subject to exogenous inputs or all agents are subject to these

inputs, the key feature of our approach is that the states of all agents converge to the average

of the exogenous inputs applied only to the active agents, where these inputs may or may

not overlap within the active agents. We further show that the proposed algorithm acts as
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an average consensus algorithm only when there are no active agents, and as a dynamic

average consensus algorithm only when all agents are active. In addition, we draw con-

nections between leader–follower networks; for example, the proposed algorithm acts as a

pinning control algorithm [12]–[17] only when there is one active agent or multiple active

agents subject to same inputs, and as a containment control algorithm [18]–[23] only when

the effect of the proposed distributed control approach’s integral action is nullified – since

in this case the states of passive agents converge to the convex hull spanned by those of

the active agents. Several illustrative numerical examples are provided to demonstrate the

efficacy of the proposed distributed control approach.

The organization of the paper is as follows. Section II introduces the notation used

throughout the paper and recalls some of the basic notions from graph theory. Section III

presents the problem formulation for active–passive networked multiagent systems along

with necessary definitions and illustrations. Section IV and V analyze the proposed dis-

tributed control approach in the presence of constant and time-varying exogenous inputs,

respectively. We draw connections between the proposed distributed control approach and

others in Section VI and summarize conclusions in Section VII. Finally, it should be noted

that an earlier version of this paper is appeared in [24]. This paper significantly goes

beyond the results documented in [24] in that a) we propose and analyze a generalized

integral action-based distributed control approach with added key design parameters to

control the bandwidth of the overall network independently from the connectivity of a given

graph topology (see Theorem 1), b) we analytically establish transient time performance

characteristics of the proposed methodology and theoretically reveal the effect of design

parameters on the overall network performance (see Corollary 1), c) we consider not only

constant exogenous inputs case but also time-varying exogenous inputs case that is of prac-

tical importance for applications in dynamic environments (see Theorem 2 and Corollary

2), d) we comprehensively compare the proposed approach with the existing notable results
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in the related literature (see the detailed discussions in Section VI and Theorem 3), and e)

we include several important details and key examples to further elucidate the results of our

paper (see Remarks 1 and 2 and Examples 3, 4, and 5).

2. PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, R denotes the set of

real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m

real matrices, R+ denotes the set of positive real numbers, Rn×n
+ (resp., R

n×n
+ ) denotes the

set of n × n positive-definite (resp., nonnegative-definite) real matrices, ISn×n
+ (resp., IS

n×n
+ )

denotes the set of n× n symmetric positive-definite (resp., symmetric nonnegative-definite)

real matrices, Z denotes the set of integers, Z+ (resp., Z+) denotes the set of positive (resp.,

nonnegative) integers, 0n denotes the n × 1 vector of all zeros, 1n denotes the n × 1 vector

of all ones, 0n×n denotes the n × n zero matrix, and In denotes the n × n identity matrix. In

addition, we write (·)T for transpose, (·)−1 for inverse, (·)† for Moore-Penrose generalized

inverse, ‖ · ‖2 for the Euclidian norm, λmin(A) (resp., λmax(A)) for the minimum (resp.,

maximum) eigenvalue of the Hermitian matrix A, λi(A) for the i-th eigenvalue of A (A is

symmetric and the eigenvalues are ordered from least to greatest value), diag(a) for the

diagonal matrix with the vector a on its diagonal, and [A]i j for the entry of the matrix A on

the i-th row and j-th column. Furthermore, for a signal x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn,

defined for all t ≥ 0, L2 norm and the L∞ norm [25] are defined, respectively, as

‖x(t)‖L2 ,

√√∫ ∞

0

n∑
i=1

x2
i (t)dt, (1)

‖x(t)‖L∞
, max

1≤i≤n
(sup

t≥0
|xi(t)|). (2)

Next, we recall some of the basic notions from graph theory, where we refer to

[1], [26] for further details. In the multiagent literature, graphs are broadly adopted to

encode interactions in networked systems. An undirected graph G is defined by a set

VG = {1, . . . ,n} of nodes and a set EG ⊂ VG ×VG of edges. If (i, j) ∈ EG , then the nodes
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i and j are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a

node is given by the number of its neighbors. Letting di be the degree of node i, then the

degree matrix of a graph G, D(G) ∈ Rn×n, is given by

D(G) , diag(d), d = [d1, . . . , dn]
T. (3)

A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph

G is connected if there is a path between any pair of distinct nodes. The adjacency matrix

of a graph G, A(G) ∈ Rn×n, is given by

[A(G)]i j ,


1, if (i, j) ∈ EG,

0, otherwise.
(4)

The Laplacian matrix of a graph, L(G) ∈ IS
n×n
+ , playing a central role in many graph

theoretic treatments of multiagent systems, is given by

L(G) , D(G) − A(G). (5)

Throughout this paper, we model a given multiagent system by a connected, undirected

graph G, where nodes and edges represent agents and inter-agent communication links,

respectively, and use the following lemmas.

Lemma 1 [1]. The spectrum of the Laplacian of a connected, undirected graph can

be ordered as 0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)) with 1n as the eigenvector

corresponding to the zero eigenvalue λ1(L(G)) and L(G)1n = 0n and eL(G)1n = 1n.

Lemma 2 [1]. Let K = diag(k), k = [k1, k2, . . . , kn]
T, ki ∈ Z+, i = 1, . . . ,n, and

assume that at least one element of k is nonzero. Then, for the Laplacian of a connected,

undirected graph, F (G) , L(G) + K ∈ ISn×n
+ and det(F (G)) , 0.

Lemma 3 [27]. The Laplacian of a connected, undirected graph satisfiesL(G)L†(G) =

In −
1
n1n1T

n .
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a) b) c) 

Figure 1. An active-passive networked multiagent system with a) two non-overlapping non-
isolated inputs, b) two overlapping non-isolated inputs, and c) two non-overlapping inputs,
where one of them is isolated and the other one is non-isolated (lines denote communication
links, gray circles denote active agents, white circles denote passive agents, and shaded areas
denote the exogenous inputs interacting with this system).

3. PROBLEM FORMULATION FOR ACTIVE–PASSIVE NETWORKED
MULTIAGENT SYSTEMS

Consider a system of n agents exchanging information among each other using their

local measurements according to a connected, undirected graph G. In addition, consider

that there exists m ≥ 1 exogenous inputs that interact with this system.

Definition 1. If agent i, i = 1, . . . ,n, is subject to one or more exogenous inputs

(resp., no exogenous inputs), then it is an active agent (resp., passive agent).

Definition 2. If an exogenous input interacts with only one agent (resp., multiple

agents), then it is an isolated input (resp., non-isolated input).

An illustration of Definition 2 is given in Figure 1, where it also highlights that the

exogenous inputs may or may not overlap within the active agents.

In this paper, we are interested in the problem of driving the states of all (active

and passive) agents to the average of the applied exogenous inputs. Motivating from this

standpoint, we propose an integral action-based distributed control approach given by

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−α

∑
i∼h

(
xi(t) − ch(t)

)
, xi(0) = xi0, (6)

Ûξi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (7)
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x1(t)
x2(t)

x3(t)

c1(t)

c2(t)

Figure 2. The active-passive networked multiagent system in Example 1 (lines denote
communication links, two gray circles denote active agents x2(t) and x3(t), white circle
denotes the passive agent x1(t), and two shaded areas denote applied two exogenous inputs
c1(t) and c2(t)).

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . ,n,

respectively, ch(t) ∈ R, h = 1, . . . ,m, denotes an exogenous input applied to this agent,

and α ∈ R+ and γ ∈ R+. Similar to the i ∼ j notation indicating the neighboring relation

between agents, we use i ∼ h to indicate the exogenous inputs that an agent is subject to.

To elucidate this point, we give the following example.

Example 1. Consider the active-passive networked multiagent system given in Figure 2.

It follows from (6) and (7) with α = γ = 1 that three agents implement the following

distributed control approaches locally

Ûx1(t) = −
(
x1(t) − x2(t)

)
+
(
ξ1(t) − ξ2(t)

)
, (8)

Ûξ1(t) = −
(
x1(t) − x2(t)

)
, (9)

Ûx2(t) = −
(
x2(t) − x1(t)

)
−
(
x2(t) − x3(t)

)
+
(
ξ2(t) − ξ1(t)

)
+
(
ξ2(t) − ξ3(t)

)
−

(
x2(t) − c1(t)

)
−
(
x2(t) − c2(t)

)
, (10)

Ûξ2(t) = −
(
x2(t) − x1(t)

)
−
(
x2(t) − x3(t)

)
, (11)

Ûx3(t) = −
(
x3(t) − x2(t)

)
+
(
ξ3(t) − ξ2(t)

)
−
(
x3(t) − c2(t)

)
, (12)

Ûξ3(t) = −
(
x3(t) − x2(t)

)
, (13)

since agent 1 is passive, agent 2 is active and subject to c1(t) and c2(t), and agent 3 is active

and subject to c2(t).
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Next, let

x(t) =
[
x1(t), x2(t), . . . , xn(t)

] T
∈ Rn, (14)

ξ(t) =
[
ξ1(t), ξ2(t), . . . , ξn(t)

] T
∈ Rn, (15)

c(t) =
[
c1(t), c2(t), . . . , cm(t),0, . . . ,0

]
∈ Rn, (16)

where we assume m ≤ n for the ease of the following notation and without loss of generality.

We can now write (6) and (7) in a compact form as

Ûx(t) = − αL(G)x(t) + L(G)ξ(t) − αK1x(t) + αK2c(t), x(0) = x0, (17)

Ûξ(t) = − γL(G)x(t), ξ(0) = ξ0, (18)

where L(G) ∈ IS
n×n
+ satisfies Lemma 1,

K1 , diag([k1,1, k1,2, . . . , k1,n]
T) ∈ IS

n×n
+ , (19)

with k1,i ∈ Z+ denoting the number of the exogenous inputs applied to agent i, i = 1, . . . ,n,

and

K2 ,



k2,11 k2,12 · · · k2,1n

k2,21 k2,22 · · · k2,2n

...
...
. . .

...

k2,n1 k2,n2 · · · k2,nn


∈ Rn×n, (20)

with k2,ih = 1 if the exogenous input ch(t), h = 1, . . . ,m, is applied to agent i, i = 1, . . . ,n,

and k2,ih = 0 otherwise. Note that

k1,i =
n∑

j=1
k2,i j . (21)

To visualize this representation, we now give an example.

Example 2. For the active-passive networked multiagent system given Figure 2, one can

write

K1 =


0 0 0

0 2 0

0 0 1


, K2 =


0 0 0

1 1 0

0 1 0


, (22)
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since n = 3, m = 2, and c(t) = [c1(t), c2(t),0]T.

Since we are interested in driving the states of all (active and passive) agents to the

average of the applied exogenous inputs, let

δ(t) , x(t) − ε(t)1n ∈ Rn, (23)

ε(t) ,
1T

n K2c(t)
1T

n K21n
∈ R, (24)

be the error between xi(t), i = 1, . . . ,n, and the average of the applied exogenous inputs ε(t).

Based on (24), ε(t) can be equivalently written as

ε(t) =
k2,11c1(t) + k2,12c2(t) + · · · + k2,21c1(t) + k2,22c2(t) + · · ·

k2,11 + k2,12 + · · · + k2,21 + k2,21 + · · ·
, (25)

which clearly shows the average of the applied exogenous inputs. Furthermore, note for the

special case of isolated exogenous inputs that

ε(t) =
(
c1(t) + c2(t) + · · · + cm(t))

)
/m. (26)

For specific applications with non-isolated exogenous inputs, if it is of interest to drive the

states of all agents to (26) instead of (25), then agents subject to non-isolated exogenous

inputs can communicate to achieve this objective by avoiding non-isolated exogenous inputs

under the assumption that these agents are neighbors on a given graph topology as illustrated

in Figure 1. Based on the problem formulation introduced in this section and the new

proposed distributed control architecture, the next section and Section V analyze the stability

properties of the error given by (23) in the presence of constant inputs and time-varying

inputs, respectively.

4. CONSENSUS IN THE PRESENCE OF ACTIVE AGENTS WITH CONSTANT
INPUTS

Let ch(t) = ch, h = 1, . . . ,m, be a constant exogenous input. Since c(t) = c, and

hence, ε(t) = ε from (24), it follows from (23) and L(G)1n = 0n of Lemma 1 that

Ûδ(t) = − αL(G)
[
δ(t) + ε1n

]
+L(G)ξ(t) − αK1

[
δ(t) + ε1n

]
+αK2c(t)
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= − αF (G)δ(t) + L(G)ξ(t) − α
[
K11nε − K2c

]
= − αF (G)δ(t) + L(G)ξ(t) − α

[
K11n1T

n K2c
1T

n K21n
− K2c

]
= − αF (G)δ(t) + L(G)ξ(t) − αLcK2c, (27)

where F (G) , L(G) + K1 and

Lc ,
K11n1T

n

1T
n K21n

− In. (28)

Note that F (G) ∈ ISn×n
+ from Lemma 2 and

1T
n Lc = 1T

n

[
K11n1T

n

1T
n K21n

− In

]
=

1T
n K11n

1T
n K21n

1T
n − 1T

n = 0, (29)

since 1T
nK11n

1T
nK21n

= 1 from (21).

Next, letting

e(t) , ξ(t) − αL†(G)LcK2c, (30)

and using (30) in (27) along with Lemma 3 yields

Ûδ(t) = − αF (G)δ(t) + L(G)
[
e(t) + αL†(G)LcK2c

]
−αLcK2c

= − αF (G)δ(t) + L(G)e(t) + α
[
In −

1
n

1n1T
n

]
LcK2c − αLcK2c

= − αF (G)δ(t) + L(G)e(t), (31)

since 1
n1n1T

n LcK2c = 0, as a direct consequence of (29). In addition, differentiating (30)

with respect to time yields

Ûe(t) = −γL(G)
[
δ(t) + ε1n

]
= −γL(G)δ(t), (32)

where L(G)1n = 0n of Lemma 1 is used. The next theorem, which can be viewed as a

generalized version of Theorem 1 in [24], shows that the state of all agents xi(t), i = 1, . . . ,n

asymptotically converge to ε .
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Theorem 4.1. Consider the networked multiagent system given by (6) and (7), where

agents exchange information using local measurements and with G defining a connected,

undirected graph topology. Then, the closed-loop error dynamics defined by (31) and (32)

are Lyapunov stable for all initial conditions and δ(t) asymptotically vanishes.

Proof. Consider the Lyapunov function candidate given by

V(δ, e) =
1

2α
δTδ +

1
2αγ

eTe, (33)

and note that V(0,0) = 0 and V(δ, e) > 0 for all (δ, e) , (0,0). Differentiating (33) along

the trajectories of (31) and (32) yields

ÛV(δ(t), e(t)) = −δT(t)F (G)δ(t) ≤ 0. (34)

The rest of the proof is identical to the proof of Theorem 1 in [24], and hence, is omitted. �

In Theorem 1, we establish the steady state performance characteristics of the

proposed integral action-based distributed control approach, i.e., we show that all xi(t),

i = 1, . . . ,n asymptotically converge to ε . In the next corollary, we also establish the

transient time performance characteristics of our approach using L stability.

Corollary 1. Consider the networked multiagent system given by (6) and (7), where agents

exchange information using local measurements and withG defining a connected, undirected

graph topology. Then, the L2 and L∞ bounds of δ(t) in (23) are given as

‖δ(t)‖2
L2

≤
1

2αλmin(F (G))
‖δ(t)‖2

L∞
, (35)

‖δ(t)‖2
L∞

≤ ‖x(0) − ε1n‖
2
2 + γ

−1‖ξ(0) − αL†(G)LcK2c‖2
2 . (36)

Proof. Consider the Lyapunov function candidate given by (33) and ÛV(δ(t), e(t)) ≤ 0 as a

direct consequence of Theorem 1, where we can equivalently write

V(δ(t), e(t)) ≤ V(δ(0), e(0))

=
1

2α
‖x(0) − ε1n‖

2
2 +

1
2αγ

‖ξ(0) − αL†(G)LcK2c‖2
2 . (37)



20

Noting

1
2α
δT(t)δ(t) ≤ V(δ(t), e(t)), (38)

it follows from (37) and (38) that (36) holds due to the fact that ‖ · ‖∞ ≤ ‖ · ‖2 holds

uniformly. To show (35), we first write −
∫ t
0
ÛV(δ(τ), e(τ))dτ = V(δ(0), e(0))−V(δ(t), e(t)) ≤

V(δ(0), e(0)) that yields

−

∫ t

0
ÛV(δ(τ), e(τ))dτ =

1
2α

‖x(0) − ε1n‖
2
2 +

1
2αγ

‖ξ(0) − αL†(G)LcK2c‖2
2 . (39)

Now, using ÛV(δ(t), e(t)) = −δT(t)F (G)δ(t) in the left hand side of (39) with

λmin(F (G))δT(t)δ(t) ≤ δT(t)F (G)δ(t) and then taking the limit as t → ∞, (35) follows. �

Remark 1. Letting ξ(0) = 0 for the ease of the exposition (this is doable since the initial

condition of the integrators can be viewed as design parameters), it follows from (35) and

(36) that

‖δ(t)‖2
L2

≤
1

2λmin(F (G))

[
α−1‖x(0) − ε1n‖

2
2 + γ

−1α‖L†(G)LcK2c‖2
2

]
, (40)

‖δ(t)‖2
L∞

≤ ‖x(0) − ε1n‖
2
2 + γ

−1α2‖L†(G)LcK2c‖2
2 . (41)

If we choose α and γ such that both α2/γ and 1/α are small, then both L norms in (40)

and (41) are minimized. This implies that agents can converge faster to a sufficiently close

neighborhood of δ(t) = 0 provided that α2/γ and 1/α are small (this is illustrated in the

next example). Finally, it should be also mentioned that one can rewrite the closed-loop

error dynamics given by (31) and (32) in a compact form as
Ûδ(t)

Ûe(t)

 =

−αF (G) L(G)

−γL(G) 0



δ(t)

e(t)

 , (42)

and relate the convergence rate of the closed-loop error dynamics to the eigenvalues of the

matrix in (42).

Example 3. Consider a networked multiagent system represented by the graph shown in

Figure 3 with 5 active agents and 20 passive agents. Let the active agents be subject to

random and isolated constant inputs and let all agents have arbitrary initial conditions and
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Figure 3. Graph used in Example 3 (lines denote communication links, gray circles denote
active agents, and white circles denote passive agents).

ξi(0) = 0, i = 1, . . . ,n. Figure 4 shows the response with the proposed distributed controller

given by (6) and (7) with α = 1 and γ = 1, where all agents converge to the average

of the applied exogenous inputs as expected. In this case, we have ‖δ(t)‖L2 ≤ 9.01 and

‖δ(t)‖L∞
≤ 3.87. Figure 5 shows the response with α = 5 and γ = 50, where all agents

converge to the average of the applied exogenous inputs significantly faster. Note that we

choose α and γ to obtain smaller α2/γ and 1/α values for this case as they are compared

with the ratios used to generate the results in Figure 4. In this case, we have ‖δ(t)‖L2 ≤ 3.74

and ‖δ(t)‖L∞
≤ 3.59. Even though the L∞ norm is improved slightly in Figure 5 (this is

expected since the selection of α and γ only affects the second term on the right hand side

of (41)), the L2 norm is improved substantially as compared with the result in Figure 4 (this

is also expected since the selection of α and γ affect both terms on the right hand side of

(40)).
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Figure 4. Response of the networked multiagent system in Example 3 with the distributed
controller given by (6) and (7) with α = 1 and γ = 1 (solid lines denote agent positions and
dashed line denotes the average of applied constant inputs).

5. QUASI-CONSENSUS IN THE PRESENCE OF ACTIVE AGENTS WITH
TIME-VARYING INPUTS

This section deals with the case when active agents are subject to time-varying

exogenous inputs ch(t), h = 1, . . . ,m. We assume that both ch(t) and Ûch(t) are bounded

for each input h, h = 1, . . . ,m. In this case, we slightly modify the integral action-based

distributed control approach in (6) and (7) to the following

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−α

∑
i∼h

(
xi(t) − ch(t)

)
, xi(0) = xi0,

(43)

Ûξi(t) = − γ

[∑
i∼ j

(
xi(t) − x j(t)

)
+σξi(t)

]
, ξi(0) = ξi0, (44)

where α ∈ R+, γ ∈ R+, and σ ∈ R+.
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Figure 5. Response of the networked multiagent system in Example 3 with the distributed
controller given by (6) and (7) with α = 5 and γ = 50 (solid lines denote agent positions
and dashed line denotes the average of applied constant inputs).

Next, using (23) and (30) and following the steps highlighted in the previous section,

the closed-loop error dynamics are given by

Ûδ(t) = −αF (G)δ(t) + L(G)e(t) + p1(t), (45)

Ûe(t) = −γ
[
L(G)δ(t) + σe(t)

]
+p2(t), (46)

where p1(t) and p2(t) represent the perturbation terms of the form

p1(t) , − Ûε(t)1n, (47)

p2(t) , −αL†(G)LcK2
[
Ûc(t) + γσc(t)

]
, (48)

that satisfy ‖p1(t)‖2 ≤ p∗1 , n Ûε∗ and ‖p2(t)‖2 ≤ p∗2 , α‖L†(G)LcK2‖Fc̄∗ with ‖ Ûε(t)‖2 ≤

Ûε∗2 and ‖ Ûc(t)+ µc(t)‖2 ≤ c̄∗. Notice that p1(t) and p2(t) are bounded since c(t) and Ûc(t) are

assumed to be bounded. The next theorem presents the first result of this section.
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Theorem 5.1. Consider the networked multiagent system given by (43) and (44), where

agents exchange information using local measurements and with G defining a connected,

undirected graph topology. Then, the closed-loop error dynamics defined by (45) and (46)

are bounded.

Proof. Consider the Lyapunov function candidate given by (33) and note that V(0,0) = 0

and V(δ, e) > 0 for all (δ, e) , (0,0). Differentiating (33) along the trajectories of (45) and

(46) yields

ÛV(δ(t), e(t)) = − δT(t)F (G)δ(t) − σα−1eT(t)e(t) + α−1δT(t)p1(t) + α−1γ−1eT(t)p2(t)

≤ − c1‖δ(t)‖2
2 − c2‖e(t)‖2

2 + c3‖δ(t)‖2 + c4‖e(t)‖2, (49)

where c1 , λmin(F (G)), c2 , σα−1, c3 , α−1p∗1, and c4 , α−1γ−1p∗2. Note that (49) can

be rearranged as

ÛV(δ(t), e(t)) ≤ − c1‖δ(t)‖2

(
‖δ(t)‖2 −

c3
c1

)
−c2‖e(t)‖2

(
‖e(t)‖2 −

c4
c2

)
. (50)

Since ÛV(δ(t), e(t)) ≤ 0 when ‖δ(t)‖2 ≥ c3/c1 and ‖e(t)‖2 ≥ c4/c2, it follows that the

closed-loop error dynamics defined by (45) and (46) are bounded. �

If the modified distributed control approach given by (43) and (44) is compared

with its original version given by (6) and (7), it can be seen that we added a term to (7) that

results in (44). From the proof of Theorem 2, the purpose of this added term in (44) is to

keep ξi(t) bounded in the presence of time-varying exogenous inputs.

In the next corollary presenting the second result of this section, we determine the

bound of δ(t) for t ≥ T characterizing the ultimate distance between x(t) and ε(t)1n, which

is important for the applications involving time-varying exogenous inputs.

Corollary 2. Consider the networked multiagent system given by (43) and (44), where

agents exchange information using local measurements and with G defining a connected,

undirected graph topology. Then, the bound of δ(t) for t ≥ T is given by

‖δ(t)‖2
2 ≤

1
α2

[
n2 Ûε∗2

λ2
min(F (G))

]
+
α2

γ

[
‖Q(G)‖2

Fc̄∗2

µ2

]
, (51)
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where Q(G) , L†(G)LcK2 and σ = µ/γ, µ ∈ R+.

Proof. In the proof of Theorem 1, we showed that ÛV(δ(t), e(t)) ≤ 0 when ‖δ(t)‖2 ≥ c3/c1

and ‖e(t)‖2 ≥ c4/c2. Note that this implies ÛV(δ(t), e(t)) ≤ 0 outside the compact set

S ,
{
(δ(t), e(t)) : ‖δ(t)‖2 ≤

c3
c1

}⋂{
(δ(t), e(t)) : ‖e(t)‖2 ≤

c4
c2

}
. (52)

Since V(δ(t), e(t)) cannot grow outside S, the evolution of V(δ(t), e(t)) is upper bounded by

V(δ(t), e(t)) ≤ max
(δ(t),e(t))∈S

V(δ(t), e(t))

=
1

2α
c2

3

c2
1
+

1
2αγ

c2
4

c2
2
, t ≥ T . (53)

Using (38) in (53), (51) follows. �

Remark 2. Corollary 2 implies that if we choose α and γ such that both 1/α2 and α2/γ are

small, then (51) is small for t ≥ T . Note that if (δ0, e0) ∈ S, then T = 0 in (51). In addition,

if (δ0, e0) 6∈ S and since ÛV(δ(t), e(t)) ≤ 0 outside S, then it similarly follows from Corollary

1 that small 1/α2 and α2/γ implies a tighter bound for t < T . This is illustrated in the next

example.

Example 4. Consider a networked multiagent system represented by the graph shown in

Figure 3 with 5 active agents and 20 passive agents. Let the active agents be subject

to isolated time-varying inputs given by c1(t) = sin(0.05t), c2(t) = sin(0.1t), c3(t) =

sin(0.15t), c4(t) = sin(0.2t), and c5(t) = sin(0.25t), and let all agents have arbitrary initial

conditions and ξi(0) = 0, i = 1, . . . ,n. Figure 6 shows the response with the proposed

distributed controller given by (43) and (44) with α = 1, γ = 1, and σ = 0.1/γ (we have

‖δ(t)‖2 ≤ 52.39 for this case), whereas Figure 7 shows the response with α = 5, γ = 50, and

σ = 0.1/γ (we have ‖δ(t)‖2 ≤ 24.74 for this case). Following the discussion in Remark 2,

the networked multiagent system in Figure 7 is able to fuse and track the given time-varying

inputs closely since we choose α and γ to obtain smaller 1/α2 and α2/γ values for this case.
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Figure 6. Response of the networked multiagent system in Example 4 with the distributed
controller given by (43) and (44) with α = 1, γ = 1, and σ = 0.1/γ (solid lines denote
agent positions and dashed line denote the average of applied time-varying inputs).

6. OBSERVATIONS AND DISCUSSION

We next draw connections between the proposed distributed control approach and

other approaches to highlight why our methodology presents a unification among those

approaches. Consider the proposed algorithm given by (6) and (7) and let α = γ = 1

without loss of generality. As the first special case, assume that there does not exist any

active agent in the network. In this case, the proposed algorithm acts as an integral-based

average consensus algorithm, where all passive agents converge to the average of their initial

conditions.

Theorem 6.1. Consider the networked multiagent system given by (6) and (7) with α =

γ = 1, where agents exchange information using local measurements and with G defining

a connected, undirected graph topology. In addition, assume that there does not exist any
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Figure 7. Response of the networked multiagent system in Example 4 with the distributed
controller given by (43) and (44) with α = 5, γ = 50, and σ = 0.1/γ (solid lines denote
agent positions and dashed line denote the average of applied time-varying inputs).

active agent in the network. Then, the closed-loop error dynamics defined by

Ûδ(t) = −L(G)δ(t) + L(G)ξ(t), (54)

Ûξ(t) = −L(G)δ(t), (55)

are Lyapunov stable for all initial conditions and δ(t) = x(t) − 1n x̄ asymptotically vanishes,

where x̄ = 1
n1T

n x0 denotes the average of all agents initial conditions.

Proof. The time derivative of the average of the agents’ states is zero in this case, i.e.,

1
n

1T
n Ûx(t) =

1
n

1T
n
[
−L(G)x(t) + L(G)ξ(t)

]
= 0, (56)

as a direct consequence of Lemma 1, and hence, 1
n1n1T

n x(t) = 1n x̄ holds for all t ∈ R+.

Note that if we show that

lim
t→∞
δ(t) = 0, (57)
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then this proves the result since (57) implies [28]

lim
t→∞

x(t) =
1
n

1n1T
n x(t) = 1n x̄. (58)

For this purpose, consider the Lyapunov function candidate given by

V(δ, ξ) =
1
2
δTδ +

1
2
ξTξ, (59)

and note that V(0,0) = 0 and V(δ, ξ) > 0 for all (δ, ξ) , (0,0). Differentiating (59) along

the trajectories of (54) and (55) yields

ÛV(δ(t), ξ(t)) = −δT(t)L(G)δ(t) ≤ 0. (60)

This shows that the closed-loop error dynamics given by (54) and (55) are Lyapunov stable

for all initial conditions. Now, let R ,
{
(δ(t), ξ(t)) : ÛV(δ(t), e(t)) = 0

}
and let M be the

largest invariant set contained in R. Note that, in this case, since L(G)δ(t) = 0, it follows

that
∑

i∼ j
(
δi(t) − δ j(t)

)
= 0 for all (i, j) ∈ EG . Using similar arguments as in Theorem 3

of [29], it follows from the connectivity of the graph G that δi(t) = δ j(t) for all i, j ∈ VG .

Furthermore, by δ(t) = x(t) − 1n x̄, which implies that
∑n

i=1 δi(t) = 0. Therefore, as noted,

x(t) → 1n x̄ as t → ∞. �

Example 5. Consider a networked multiagent system represented by the graph shown in

Figure 3 without any active agents and let all agents have arbitrary initial conditions and

ξi(0) = 0, i = 1, . . . ,n. Then, Figure 8 illustrates Theorem 3, where all agents converge to

the average of their initial conditions.

In this case, it follows from (6) and (7) that

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−α

(
xi(t) − ci(t)

)
, xi(0) = xi0, (61)

Ûξi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (62)

where we recover a form of the dynamic average consensus algorithm in [6]–[11].
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Figure 8. Response of the networked multiagent system in Example 5 with the distributed
controller given by (54) and (55) without any inputs (solid lines denote agent positions and
dashed line denote the average of the initial conditions of agents).

The first and second special cases can be viewed in the context of leaderless networks.

In order to draw connections between leader–follower networks; for example, the proposed

algorithm (6) and (7) acts as a pinning control algorithm [12]–[17] only when there is one

active agent or multiple active agents subject to same inputs (e.g., pins). However, the

algorithms in [12]–[17] do not have an integral action in their formulation, and hence, they

do not provide robustness for instances when there are multiple pins that are not perfectly

aligned with each other. Note that the proposed algorithm will still lead to an agreement,

even if these pins are not exactly the same (Theorem 1).

It should be also noted that (6) and (7) acts as a containment control algorithm [18]–

[23] only when the effect of the proposed distributed control approach’s integral action is

nullified – since in this case the states of passive agents converge to the convex hull spanned

by those of the active agents. This is an important property and can be used to make a trade-
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off between the containment problem (network segregation) and the consensus problem

(network integration) via introducing a scalar switching between 0 to 1 that multiplies the

integral action. This will be considered as a part of future research. To summarize, the

proposed distributed control approach presents both unification and generalization to the

results of several classes of leaderless and leader-follower network approaches.

Finally, we also note that the authors of [30], [31] propose a selective gossip al-

gorithm in the context of efficiently computing spare approximations of network data via

considering nodes that contain significant energy, which is similar in spirit to the problem

considered in this paper. However, our results go beyond [30], [31] in that the proposed

framework of this paper is applicable to situations where applied exogenous inputs may over-

lap within the active agents and, more importantly, such inputs can be time-varying, which

is important for applications in dynamic environments. Furthermore, we not only show

the steady state performance characteristics but also rigorously analyze the transient time

performance characteristics of the proposed approaches, and the effect of design parameters

on overall network performance.

7. CONCLUSION

To contribute to the previous studies in networked multiagent systems, we investi-

gated a system consisting of agents subject to exogenous inputs (active agents) and agents

without any inputs (passive agents). Specifically, we proposed and analyzed a new integral

action-based distributed control approach that drives the states of all agents to the average

of the exogenous inputs applied only to the active agents, where these inputs may or may

not overlap within the active agents. In addition, we discussed in detail that the proposed

approach not only generalizes but also unifies the results of several classes of leaderless

and leader-follower network approaches. Illustrative examples indicated that the presented

theory and its numerical results are compatible. Future research will include extensions
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of the proposed integral action-based distributed control approach given by (6) and (7)

(and (43) and (44)) to agents having high-order (linear and nonlinear) dynamics and graph

topologies that vary in time.
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II. AN ACTIVE–PASSIVE NETWORKED MULTIAGENT SYSTEMS APPROACH
TO ENVIRONMENT SURVEILLANCE

John Daniel Peterson and Tansel Yucelen

ABSTRACT

This paper presents a novel application of multiagent systems to environment surveil-

lance and develops a robust network wherein there is no need for a gateway node, which

fuses information received from each node to construct a global map on a single location,

and may cause a communication bottleneck. Recognizing the fact that network nodes may

be heterogeneous with respect to the number of exogenous inputs such that a node may not

sense a quantity or can sense multiple quantities for certain time instants, we utilize a re-

cently developed active-passive networked multiagent systems approach. Specifically, this

approach consists of agents subject to exogenous inputs (active agents) and agents without

any inputs (passive agents). The key feature of this approach is that the states of all nodes

converge to the average of the exogenous inputs, where these inputs may or may not overlap

within the active agents. A detailed illustrative study is provided to demonstrate the efficacy

of this approach as applied to environment surveillance.

1. INTRODUCTION

Distributed control of networked multiagent systems has attracted increasing at-

tention from many multidisciplinary researchers in systems and control science, wireless

communication networks, and computer science, due to their broad applications in surveil-

lance, reconnaissance, collaborative processing of information, and gathering scientific

data from spatially distributed sources (see, for example, [1]–[9] and references therein).

Distributed control is performed by a few to several hundreds of agents, where each agent
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locally estimates the environment, processes information, and utilizes control algorithms

via peer-to-peer communications to achieve a global objective. Distributed control offers

significant advantages over centralized control such as robustness against agent failures and

network bottlenecks, as it does not rely on any specific network topology or data fusion

centers [4], [10]. Since distributed control does not require nodes with global information

sharing ability, overall communication cost is also lower than that of centralized sensing in

many situations [11], [12].

This paper presents a novel application of multiagent systems to environment surveil-

lance and develops a robust network wherein there is no need for a gateway node, which

fuses information received from each node to construct a global map on a single location,

and may cause a communication bottleneck. Recognizing the fact that network nodes may

be heterogeneous with respect to the number of exogenous inputs such that a node may not

sense a quantity or can sense multiple quantities for certain time instants, we utilize a re-

cently developed active-passive networked multiagent systems approach presented in [13].

Specifically, this approach consists of agents subject to exogenous inputs (active agents)

and agents without any inputs (passive agents). The key feature of this approach is that

the states of all nodes converge to the average of the exogenous inputs, where these inputs

may or may not overlap within the active agents. A detailed illustrative study is provided to

demonstrate the efficacy of this approach as applied to environment surveillance.

The notation used in this paper is fairly standard. Specifically, R denotes the set of

real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m

real matrices, R+ denotes the set of positive real numbers, Rn×n
+ (resp., R

n×n
+ ) denotes the

set of n × n positive-definite (resp., nonnegative-definite) real matrices, ISn×n
+ (resp., IS

n×n
+ )

denotes the set of n× n symmetric positive-definite (resp., symmetric nonnegative-definite)

real matrices, Z denotes the set of integers, Z+ (resp., Z+) denotes the set of positive (resp.,

nonnegative) integers, 0n denotes the n × 1 vector of all zeros, 1n denotes the n × 1 vector
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of all ones, 0n×n denotes the n × n zero matrix, In denotes the n × n identity matrix, (·)T

denotes transpose, (·)−1 denotes inverse, (·)† denotes generalized inverse, and ‖ · ‖2 denotes

the Euclidian norm.

Next, we recall some of the basic notions from graph theory, where we refer to

[14] and [15] for further details. In the multiagent literature, graphs are broadly adopted

to encode interactions in networked systems. An undirected graph G is defined by a set

VG = {1, . . . ,n} of nodes and a set EG ⊂ VG ×VG of edges. If (i, j) ∈ EG , then the nodes

i and j are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a

node is given by the number of its neighbors. Letting di be the degree of node i, then the

degree matrix of a graph G, D(G) ∈ Rn×n, is given by D(G) , diag(d), d = [d1, . . . , dn]
T.

A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph

G is connected if there is a path between any pair of distinct nodes. The adjacency matrix

of a graph G, A(G) ∈ Rn×n, is given by [A(G)]i j = 1 if (i, j) ∈ EG and 0 otherwise. The

Laplacian matrix of a graph, L(G) ∈ IS
n×n
+ , playing a central role in many graph theoretic

treatments of multiagent systems, is given by L(G) , D(G) − A(G). Throughout this

paper, we model a given multiagent system by a connected, undirected graph G, where

nodes and edges represent agents and inter-agent communication links, respectively.

2. ACTIVE–PASSIVE NETWORKED MULTIAGENT SYSTEMS OVERVIEW

This section overviews the active-passive multiagent systems approach introduced in

[13]. In particular, consider a system of n agents exchanging information among each other

using their local measurements according to a connected, undirected graph G. In addition,

consider that there exists m ≥ 1 exogenous inputs that interact with this system. We say

that if agent i is subject to one or more exogenous inputs (resp., no exogenous inputs), then

it is an active agent (resp., passive agent). In addition, we say that if an exogenous input

interacts with only one agent (resp., multiple agents), then it is an isolated input (resp.,

non-isolated input). These definitions are illustrated in Figure 1.
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a) b) c) 

Figure 1. An active-passive networked multiagent system with a) two non-overlapping non-
isolated inputs, b) two overlapping non-isolated inputs, and c) two non-overlapping inputs,
where one of them is isolated and the other one is non-isolated (lines denote communication
links, gray circles denote active agents, white circles denote passive agents, and shaded areas
denote the exogenous inputs interacting with this system).

Considering environment surveillance, it is of interest to drive the states of all (active

and passive) agents to the average of the applied exogenous inputs. Motivating from this

standpoint, we use the integral action-based distributed control approach of [13] given by

Ûxi(t) = −
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−

∑
i∼h

(
xi(t) − ch(t)

)
, xi(0) = xi0, (1)

Ûξi(t) = −
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (2)

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . ,n,

respectively, and ch(t) ∈ R, h = 1, . . . ,m, denotes an exogenous input applied to this

agent. Similar to the i ∼ j notation indicating the neighboring relation between agents,

we use i ∼ h to indicate the exogenous inputs that an agent is subject to. Next, let x(t) =[
x1(t), x2(t), . . . , xn(t)

] T
∈ Rn, ξ(t) =

[
ξ1(t), ξ2(t), . . . , ξn(t)

] T
∈ Rn, and c(t) =

[
c1(t), c2(t),

. . . , cm(t),0, . . . ,0
]
∈ Rn, where we assume m ≤ n for the ease of the following notation and

without loss of generality. We can now write (1) and (2) in a compact form as

Ûx(t) = −L(G)x(t) + L(G)ξ(t) − K1x(t) + K2c(t), x(0) = x0, (3)

Ûξ(t) = −L(G)x(t), ξ(0) = ξ0, (4)

where L(G) ∈ IS
n×n
+ ,

K1 , diag([k1,1, k1,2, . . . , k1,n]
T) ∈ IS

n×n
+ , (5)
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with k1,i ∈ Z+ denoting the number of the exogenous inputs applied to agent i, i = 1, . . . ,n,

and

K2 ,



k2,11 k2,12 · · · k2,1n

k2,21 k2,22 · · · k2,2n

...
...
. . .

...

k2,n1 k2,n2 · · · k2,nn


∈ Rn×n, (6)

with k2,ih = 1 if the exogenous input ch(t), h = 1, . . . ,m, is applied to agent i, i = 1, . . . ,n,

and k2,ih = 0 otherwise. Note that k1,i =
∑n

j=1 k2,i j .

Since we are interested in driving the states of all (active and passive) agents to the

average of the applied exogenous inputs, let

δ(t) , x(t) − ε(t)1n ∈ Rn, (7)

ε(t) ,
1T

n K2c(t)
1T

n K21n
∈ R, (8)

be the error between xi(t), i = 1, . . . ,n, and the average of the applied exogenous inputs ε(t).

Based on (8), ε(t) can be equivalently written as

ε(t) =
(k2,11c1(t) + k2,12c2(t) + · · · + k2,21c1(t) + k2,22c2(t) + · · · )

(k2,11 + k2,12 + · · · + k2,21 + k2,21 + · · · )
, (9)

which is the average of the applied exogenous inputs. Furthermore, note for the special case

of isolated exogenous inputs that

ε(t) =
(c1(t) + c2(t) + · · · + cm(t))

m
. (10)

2.1. CASE 1: CONSTANT EXOGENOUS INPUTS IN ACTIVE AGENTS

Let ch(t) = ch, h = 1, . . . ,m, be a constant exogenous input. Since c(t) = c, and

hence, ε(t) = ε from (8), it follows from (7) and L(G)1n = 0n that

Ûδ(t) = −L(G)
[
δ(t) + ε1n

]
+L(G)ξ(t) − K1

[
δ(t) + ε1n

]
+K2c(t)

= −F (G)δ(t) + L(G)ξ(t) − LcK2c, (11)
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where F (G) , L(G) + K1 and

Lc ,
K11n1T

n

1T
n K21n

− In. (12)

Note that F (G) ∈ ISn×n
+ from [13] and

1T
n Lc = 1T

n

[
K11n1T

n

1T
n K21n

− In

]
=

1T
n K11n

1T
n K21n

1T
n − 1T

n = 0, (13)

since (1T
n K11n)/(1T

n K21n) = 1 from k1,i =
∑n

j=1 k2,i j . Next, letting

e(t) , ξ(t) − L†(G)LcK2c, (14)

and using (14) in (11) yields (see [13] for details)

Ûδ(t) = −F (G)δ(t) + L(G)
[
e(t) + L†(G)LcK2c

]
−LcK2c

= −F (G)δ(t) + L(G)e(t). (15)

In addition, differentiating (14) with respect to time yields

Ûe(t) = −L(G)
[
δ(t) + ε1n

]
= −L(G)δ(t), (16)

where L(G)1n = 0n of Lemma 1 in [13] is used. The next theorem shows that the state of

all agents xi(t), i = 1, . . . ,n asymptotically converge to ε .

Theorem 2.1. Consider the networked multiagent system given by (1) and (2), where

agents exchange information using local measurements and with G defining a connected,

undirected graph topology. Then, the closed-loop error dynamics defined by (15) and (16)

are Lyapunov stable for all initial conditions and δ(t) asymptotically vanishes.

Proof. See the proof of Theorem 2.1 in [13]. �

A generalized version of the proposed integral action-based distributed control

approach can be given by

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−α

∑
i∼h

(
xi(t) − ch

)
, xi(0) = xi0, (17)

Ûξi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (18)
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Corollary 1 in [13] proves that (17) and (18) asymptotically converges. In addition, Corollary

2 in [13] shows that if α and γ are chosen such that α2/γ and 1/α are small, then the transient

response of the overall network is improved.

2.2. CASE 2: TIME-VARYING EXOGENOUS INPUTS IN ACTIVE AGENTS

This section deals with the case when active agents are subject to time-varying

exogenous inputs ch(t), h = 1, . . . ,m. Let ch(t) and Ûch(t) be bounded for each input h,

h = 1, . . . ,m. In this case, we slightly modify the integral action-based distributed control

approach in (17) and (18) to the following

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−α

∑
i∼h

(
xi(t) − ch(t)

)
, xi(0) = xi0, (19)

Ûξi(t) = − γ

[∑
i∼ j

(
xi(t) − x j(t)

)
+σξi(t)

]
, ξi(0) = ξi0, (20)

where α ∈ R+, γ ∈ R+, and σ ∈ R+. Next, the closed-loop error dynamics are given by

Ûδ(t) = − αF (G)δ(t) + L(G)e(t) + p1(t), (21)

Ûe(t) = − γ
[
L(G)δ(t) + σe(t)

]
+p2(t), (22)

where p1(t) and p2(t) represent the perturbation terms of the form

p1(t) , − Ûε(t)1n, (23)

p2(t) , − αL†(G)LcK2
[
Ûc(t) + γσc(t)

]
, (24)

that satisfy

‖p1(t)‖2 ≤ p∗1 , n Ûε∗, (25)

‖p2(t)‖2 ≤ p∗2 , α‖L†(G)LcK2‖Fc̄∗, (26)

with ‖ Ûε(t)‖2 ≤ Ûε∗2 and ‖ Ûc(t) + µc(t)‖2 ≤ c̄∗. Notice that p1(t) and p2(t) are bounded since

c(t) and Ûc(t) are assumed to be bounded.
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Theorem 2.2. Consider the networked multiagent system given by (19) and (20), where

agents exchange information using local measurements and with G defining a connected,

undirected graph topology. Then, the closed-loop error dynamics defined by (21) and (22)

are bounded.

Proof. This can be easily shown by extending the proof of Theorem 2.1. �

Similar to the constant exogenous inputs case, if α and γ are chosen such that α2/γ

and 1/α are small, then the transient response of the overall network is improved (see

Corollary 3 of [13]).

3. ILLUSTRATIVE ENVIRONMENT SURVEILLANCE STUDY

In this section, we present two illustrative examples of environment surveillance

using the active-passive networked multiagent systems stated in Section 2. Our aim is

to make each agent aware of an unknown global environment through local peer-to-peer

communications. We consider the case in Section II.A where the environment is static

with respect to time, as well as the case in Section II.B where the environment is dynamic

with respect to time. To elucidate the application of the proposed approach to environment

surveillance, consider Figure 2. In particular, the upper layer of this figure shows how

agent xi,j (we use the subscript i, j to denote the state of an agent in this two-dimensional

environment) uses the algorithm given by (1) and (2). This agent implements the proposed

algorithm for its own (blue) environment (where it is subject to the exogenous input ci,j ,

and hence, active) and exchanges its state associated with this environment, xi,j , with its

peers so that other neighboring agents can use the state of this agent to compute (1) and

(2) simultaneously (note that neighbors of agent xi,j are passive with respect to this part

of the environment). Likewise, this agent also utilizes (1) and (2) for the neighboring

(green) environments, where it is passive, by using the state information received from its
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neighbors. Therefore, the stated results of Section 2 still hold for this agent as well as the

entire multiagent system to achieve a global awareness of the unknown environment. A

similar discussion can be given for the bottom layer of this figure for agent xi+1,j+1.

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

…
…

.…
 

ci,j 

Di,j 

xi,j 

… 

… 

… 

… 

… 

… 

… 

…
…

.…
 

… 

… 

… 

… 

… 

ci+1,j+1 

Di+1,j+1 

xi+1,j+1 

…
…

.…
 

Figure 2. Agents arranged in a grid network sampling a plane. White circles denote passive
agents with respect to a particular network layer. Purple circles denote active agents with
respect to a particular network layer. Blue squares denote an agent’s local environment.
Red lines denote communication between nodes.

Case 1: For the unknown static environment depicted in Figure 3, a 16 × 16 sensor

grid is placed to perform environment surveillance. Each agent uses (1) and (2) for their

own local environment (where they act as active agents) as well as for other parts of the

global environment (where they act as a passive agent since they do not have a priori

knowledge on those parts). Figure 4 shows that nodes first become aware of the unknown

neighboring environments during the transient response of the entire multiagent network
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and Figure 5 shows that all nodes achieve global awareness of the unknown environment in

Figure 3 at their steady-state. Therefore, this study illustrates the efficacy of the proposed

active-passive networked multiagent system framework for static environment surveillance.

Figure 3. Unknown static environment used for surveillance.

Figure 4. Environment as seen node 20 shortly after the simulation begins. Notice that the
geographically close exogenous inputs are much clearer than the far inputs. Network gains
are set as α = 1 and γ = 1.
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Figure 5. Final state of the network take from node 20.

Case 2: We now turn our focus to the case when agents are monitoring the dynamic

environment in Figure 6. For this purpose, each agent utilizes (19) and (20) for their own

local environment (where they act as active agents) and for the other parts of the global

environment (where they act as passive agents since they have no real-time knowledge

of those parts). An 8 × 8 sensor grid is placed to perform environment surveillance. In

Figure 6 agents closely track the environment dynamics, demonstrating the efficacy of the

proposed active-passive networked multiagent system framework for dynamic environment

surveillance.

4. CONCLUSIONS

We proposed an active-passive networked multiagent systems approach to environ-

ment surveillance without requiring a gateaway node in the network, where this framework

allows the states of all nodes to converge to the average of the exogenous inputs applied only

to the active agents. Future work will concentrate on extending the proposed surveillance

methodology to dynamic environments in the presence of nonstationary mobile nodes with

system-theoretic guarantees.



45

(a)

(b)

Figure 6. Comparison of the environment with the multiagent reconstruction where the
network gains are α = 70, γ = 700, and σ = 0.1/γ. The reconstruction is performed by
the agent in the far west corner.
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(c)

(d)

Figure 6. Comparison of the environment with the multiagent reconstruction where the
network gains are α = 70, γ = 700, and σ = 0.1/γ. The reconstruction is performed by
the agent in the far west corner. (cont.)
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III. APPLICATION OF AN ACTIVE–PASSIVE DYNAMIC CONSENSUS
FILTERS APPROACH TO THE MULTIAGENT TRACKING PROBLEM FOR

SITUATIONAL AWARENESS IN UNKNOWN ENVIRONMENTS

John Daniel Peterson and Tansel Yucelen

ABSTRACT

In this paper, we present an application of multiagent systems to the multitarget tracking

problem, where networked nodes exchange their local information to construct a global map

of an unknown environment for situational awareness. Recognizing the fact that networked

nodes can be heterogeneous with respect to the number of targets sensed in their respective

local environments, we utilize a recently developed active–passive dynamic consensus filters

approach ([1], [2]). Specifically, a node is considered active for targets it is able to sense

and passive for targets it is unable to sense. We use two ground robots equipped with

object detection sensors to track local targets in a global frame. Networked nodes use the

active–passive dynamic consensus filters approach to distribute and fuse information to

make all networked nodes aware of all targets in the environment.

1. INTRODUCTION

Distributed sensing has attracted much attention from researchers in recent years

in multidisciplinary areas such as systems and control science, wireless communication

networks, and computer science, due to their broad applications in surveillance, reconnais-

sance, collaborative processing of information, and gathering scientific data from spatially

distributed sources (see, for example, [3]–[11]). In particular, multiagent systems are well

suited for multitarget tracking ([12]–[17]). Target tracking is performed by several to a few

hundred networked nodes, where each node locally estimates their environment and use
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local information exchange to become aware of a global environment. Distributed target

tracking offers significant advantages over classical methods such as robustness to commu-

nication link and node failures, do not rely on specific network topologies or central fusion

nodes, and allow for nodes to be added or removed form the network. In the absence of a

central fusion node, dynamic distributed fusion algorithms are challenged by heterogeneity

with respect to the number of targets each networked node can sense and overlap within the

targets each node senses.

In this paper, we present an application of multiagent systems to multitarget tracking

which is robust to link and node failures and does not require a gateway node. Recognizing

that networked nodes may be heterogeneous with respect to the number of targets they

are able to sense, we utilize a recently developed active–passive dynamic consensus filter

approach ([1], [2]), where networked nodes are considered active for the targets they sense

and passive for targets they cannot sense. This key feature makes nodes aware of the

location of all targets in a global sense even though they cannot sense all targets, or multiple

nodes sense the same target. We demonstrate the efficacy of our approach with a real world

example. Specifically, we utilize a network of two mobile ground robots equipped with

object tracking sensors to track multiple unknown static targets and build a global map of

the unknown environment.

2. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, R denotes the set of

real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m

real matrices, R+ denotes the set of positive real numbers, Rn×n
+ (resp., R

n×n
+ ) denotes the

set of n × n positive-definite (resp., nonnegative-definite) real matrices, ISn×n
+ (resp., IS

n×n
+ )

denotes the set of n× n symmetric positive-definite (resp., symmetric nonnegative-definite)

real matrices, Z denotes the set of integers, Z+ (resp., Z+) denotes the set of positive (resp.,

nonnegative) integers, 0n denotes the n × 1 vector of all zeros, 1n denotes the n × 1 vector
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of all ones, 0n×n denotes the n × n zero matrix, In denotes the n × n identity matrix, (·)T

denotes transpose, (·)−1 denotes inverse, (·)† denotes generalized inverse, and ‖ · ‖2 denotes

the Euclidian norm.

Next, we recall some of the basic notions from graph theory, where we refer to

[18] and [19] for further details. In the multiagent literature, graphs are broadly adopted

to encode interactions in networked systems. An undirected graph G is defined by a set

VG = {1, . . . ,n} of nodes and a set EG ⊂ VG ×VG of edges. If (i, j) ∈ EG , then the nodes

i and j are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a

node is given by the number of its neighbors. Letting di be the degree of node i, then the

degree matrix of a graph G, D(G) ∈ Rn×n, is given by D(G) , diag(d), d = [d1, . . . , dn]
T.

A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph

G is connected if there is a path between any pair of distinct nodes. The adjacency matrix

of a graph G, A(G) ∈ Rn×n, is given by [A(G)]i j = 1 if (i, j) ∈ EG and 0 otherwise. The

Laplacian matrix of a graph, L(G) ∈ IS
n×n
+ , playing a central role in many graph theoretic

treatments of multiagent systems, is given byL(G) , D(G)−A(G). Throughout this paper,

we model a given multiagent system by a connected, undirected graph G, where nodes and

edges represent networked nodes and inter-agent communication links, respectively.

3. ACTIVE–PASSIVE DYNAMIC CONSENSUS FILTERS OVERVIEW

This section overviews active-passive dynamic consensus filters introduced in [1]

and [2]. In particular, consider a system of n networked nodes exchanging information

among each other using their local measurements according to a connected, undirected

graph G. In addition, consider that there exists m ≥ 1 exogenous inputs that interact with

this system. We say that if node i senses to one or more targets (resp., no targets), then it is

an active node (resp., passive node). In addition, we say that if a target is tracked by only

one node (resp., multiple nodes), then it is an isolated target (resp., non-isolated target).

These definitions are illustrated in Figure 1.
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a) b) c) 

Figure 1. An active-passive dynamic consensus filter tracking a) two non-overlapping non-
isolated targets, b) two overlapping non-isolated targets, and c) two non-overlapping targets,
where one of them is isolated and the other one is non-isolated (lines denote communication
links, gray circles denote active networked nodes, white circles denote passive networked
nodes, and shaded areas denote the targets tracked by this system).

Considering the multiagent target tracking problem, it is of interest to drive the

states of all (active and passive) networked nodes to the average of the locations of the

global targets. Motivating from this standpoint, we use the integral action-based distributed

control approach of [1] and [2] given by

Ûxi(t) = −
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−

∑
i∼h

(
xi(t) − ch(t)

)
, xi(0) = xi0, (1)

Ûξi(t) = −
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (2)

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of networked

node i, i = 1, . . . ,n, respectively, and ch(t) ∈ R, h = 1, . . . ,m, denotes an tracked by

this networked node. Similar to the i ∼ j notation indicating the neighboring relation

between networked nodes, we use i ∼ h to indicate the targets tracked by that node.

Next, let x(t) =
[
x1(t), x2(t), . . . , xn(t)

] T
∈ Rn, ξ(t) =

[
ξ1(t), ξ2(t), . . . , ξn(t)

] T
∈ Rn, and

c(t) =
[
c1(t), c2(t), . . . , cm(t),0, . . . ,0

]
∈ Rn, where we assume m ≤ n for the ease of the

following notation and without loss of generality. We can now write (1) and (2) in a compact

form as

Ûx(t) = −L(G)x(t) + L(G)ξ(t) − K1x(t) + K2c(t), x(0) = x0, (3)

Ûξ(t) = −L(G)x(t), ξ(0) = ξ0, (4)
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where L(G) ∈ IS
n×n
+ ,

K1 , diag([k1,1, k1,2, . . . , k1,n]
T) ∈ IS

n×n
+ , (5)

with k1,i ∈ Z+ denoting the number of targets tracked by node i, i = 1, . . . ,n, and

K2 ,



k2,11 k2,12 · · · k2,1n

k2,21 k2,22 · · · k2,2n

...
...
. . .

...

k2,n1 k2,n2 · · · k2,nn


∈ Rn×n, (6)

with k2,ih = 1 if the target ch(t), h = 1, . . . ,m, is tracked by node i, i = 1, . . . ,n, and k2,ih = 0

otherwise. Note that k1,i =
∑n

j=1 k2,i j .

Since we are interested in driving the states of all (active and passive) networked

nodes to the location of global targets, let

δ(t) , x(t) − ε(t)1n ∈ Rn, (7)

ε(t) ,
1T

n K2c(t)
1T

n K21n
∈ R, (8)

be the error between xi(t), i = 1, . . . ,n, and the location of the global targets ε(t). Based on

(8), ε(t) can be equivalently written as

ε(t) =
(k2,11c1(t) + k2,12c2(t) + · · · + k2,21c1(t) + k2,22c2(t) + · · · )

(k2,11 + k2,12 + · · · + k2,21 + k2,21 + · · · )
, (9)

which is the location of the global targets. Furthermore, note for the special case of isolated

target that

ε(t) =
(c1(t) + c2(t) + · · · + cm(t))

m
. (10)

For the purposes of practical multitarget tracking, we consider static targets. We let

ch(t) = ch, h = 1, . . . ,m, be a static target. Since c(t) = c, and hence, ε(t) = ε from (8), it

follows from (7) and L(G)1n = 0n that

Ûδ(t) = −L(G)
[
δ(t) + ε1n

]
+L(G)ξ(t) − K1

[
δ(t) + ε1n

]
+K2c(t)

= −F (G)δ(t) + L(G)ξ(t) − LcK2c, (11)
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where F (G) , L(G) + K1 and

Lc ,
K11n1T

n

1T
n K21n

− In. (12)

Note that F (G) ∈ ISn×n
+ from [1] and

1T
n Lc = 1T

n

[
K11n1T

n

1T
n K21n

− In

]
=

1T
n K11n

1T
n K21n

1T
n − 1T

n = 0, (13)

since (1T
n K11n)/(1T

n K21n) = 1 from k1,i =
∑n

j=1 k2,i j . Next, letting

e(t) , ξ(t) − L†(G)LcK2c, (14)

and using (14) in (11) yields (see [1], [2] for details)

Ûδ(t) = −F (G)δ(t) + L(G)
[
e(t) + L†(G)LcK2c

]
−LcK2c

= −F (G)δ(t) + L(G)e(t). (15)

In addition, differentiating (14) with respect to time yields

Ûe(t) = −L(G)
[
δ(t) + ε1n

]
= −L(G)δ(t), (16)

where L(G)1n = 0n of Lemma 1 in [1] is used. The next theorem shows that the state of all

networked nodes xi(t), i = 1, . . . ,n asymptotically converge to ε .

Theorem 3.1 ([1]). Consider the networked multiagent system given by (1) and (2), where

networked nodes exchange information using local measurements and with G defining a

connected, undirected graph topology. Then, the closed-loop error dynamics defined by

(15) and (16) are Lyapunov stable for all initial conditions and δ(t) asymptotically vanishes.

A generalized version of the proposed integral action-based distributed control

approach can be given by

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
−α

∑
i∼h

(
xi(t) − ch

)
, xi(0) = xi0, (17)

Ûξi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (18)

where it can be shown that δ(t) asymptotically vanishes. In addition, if α and γ are chosen

such that α2/γ and 1/α are small, then the transient response of the overall network is

improved (see [1]).
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Figure 2. Quanser ground robot.

4. APPLICATION TO MULTITARGET TRACKING

In this section, we perform multitarget tracking utilizing the active–passive dynamic

consensus filters approach overviewed in ??. Using only local information exchange, all

agents become aware of the global environment event thought they are only aware of their

local information. Specifically, a network of two Quanser ground robots (Figure 2) track

static targets. A motion capture system makes the ground robots aware of their global

location. Through the use of a Microsoft Kinect, networked nodes track the location of

red targets as seen in Figure 3 and Figure 4 and calculate their global position (Figure 5).

Networked nodes then employ the active–passive dynamic consensus filters information

fusion approach of ??, which allows each node to know the global location of each target.

Utilizing the proposed algorithm in (17) and (18), each networked node builds a map of the

global environment as seen in Figure 6. Targets close to the robots match almost perfectly.

Targets further from the robots do not match perfectly due to non-linearities in sensors

that cause unreliable information, which will be accounted for un future work using the

Active–Passive Dynamic Consensus Filters approach of [2] that specifically considers the

value of sensed information to achieve better multitarget tracking performance.
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(a) Environment sensed by ground robot.
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(b) Environment sensed by ground robot.

Figure 3. Environment sensed by ground robot.
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(a) Targets tracked by a ground robot. White
squares indicate a target.
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(b) Targets tracked by a ground robot. White
squares indicate a target.

Figure 4. Targets tracked by ground robots.



57

Figure 5. Two Quanser ground robots tracking objects in a cluttered environment. Each
networked node tracks the targets within its field of view and shares the target’s global
location with neighboring nodes. Locations are then fused using the active–passive dynamic
consensus filters approach.
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(a) Global map as constructed by robot 1.
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(b) Global map as constructed by robot 2.

Figure 6. Global environment map as reconstructed by each robot. Red numbers denote
robots. Blue squares denote true target positions. Green squares denote the position of
targets as sensed by this robot. Black squares denote the position of targets sensed by
neighboring robots.
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5. CONCLUSION

We performed a multitarget tracking experiment using the active–passive dynamic

consensus filters approach in [1] and [2]. We constructed a global map of an environment

using two ground robots equipped with object tracking sensors. Networked nodes track

targets they are able to locally sense, and build a global map using local information

exchange. Building on these preliminary experimental studies, future research will involve

a more comprehensive target tracking experiment involving more robotic nodes as well as

time-varying targets.
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IV. EXPLOITATION OF HETEROGENEITY IN DISTRIBUTED SENSING: AN
ACTIVE-PASSIVE NETWORKED MULTIAGENT SYSTEMS APPROACH

John Daniel Peterson, Tansel Yucelen, Suresh Kannan, and Girish Chowdhary

ABSTRACT

Current distributed sensing methods have a lack of insight and formal guarantees

to deal with heterogeneity in a dynamic environment. These methods assume that the

expected value of sensed information is same for all agents – ignoring differences in sensor

capabilities due to, for example, environmental factors and sensors’ quality and condition.

Motivated from this standpoint, we present a distributed sensing framework, with system-

theoretic performance guarantees, to exploit heterogeneity in information provided about

a dynamic environment using an active-passive networked multiagent systems approach.

Specifically, this approach consists of agents subject to exogenous inputs (active agents) and

agents without any inputs (passive agents). In addition, if an active agent senses a quantity

accurately (resp., not accurately), then it is weighted high (resp., low) in the network such

that these weights can be a function of time due to varying environmental factors. The key

feature of our approach is that the states of all agents converge to an adjustable neighborhood

of the weighted average of the sensed exogenous inputs by the active agents. Illustrative

numerical examples are further provided to demonstrate that utilizing heterogeneity allows

the networked multiagent system to achieve better distributed sensing performance.
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1. INTRODUCTION

1.1. BACKGROUND

Distributed sensing is performed by a few to several hundred agents, where each

agent senses the environment and utilizes peer-to-peer communications to perform informa-

tion fusion. It has broad applications in robotics, collaborative processing of information,

and gathering of scientific data (see, for example, [1]–[12]). Classical distributed sens-

ing methods assume instantaneous communication, which is not practical for situations

involving a large number of agents, high-dimensional measurements, and unpredictable

low-bandwidth networks [2], [13], [14]. Unlike classical methods, system-theoretical dis-

tributed sensing approaches involve equations of motion to describe dynamic behavior of

the information fusion process, which allow one to understand overall network behavior, and

can also have better robustness to uncertainties (e.g., asynchronous operations, time-varying

link availability, and measurement noise) [1], [2], [13], [15]–[18]. A key component of

system-theoretical distributed sensing is a consensus algorithm needed for the information

fusion process. Among two widely-used classes of consensus algorithms, static and dynamic

consensus algorithms, dynamic ones consider agreement upon time-varying quantities and

are well-suited for dynamic environment applications.

Existing dynamic consensus algorithms are suitable for applications where each

agent is subject to one input measurement [1], [3], [5], [7]–[9]. However, network nodes

may differ in the number of input measurements; for example, one agent may not sense a

quantity and another may sense multiple quantities for certain time instants. While [19]–[22]

present methods that cover applications when a portion of the agents do not perform sensing

(they still assume that the rest of the agents are subject to one input measurement only),

[19], [20] consider static consensus algorithms (i.e., not suitable for dynamic environments)

and [21], [22] consider homogenous sensing capability across nodes.
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It is important to point out that sensing capability of each agent, measured by

the value of information, may not be the same for all agents due to variations in quality

and condition of sensors and/or simply distance to the available information, and therefore,

some agents can have better sensing power and less sensing error than others. Consequently,

heterogeneity in sensing capability needs to be considered to achieve reliable and correct

network performance. Even though there exist a few works [10], [18], [21]–[24] that

consider the value of information, these results either deal with analysis in the context

of static consensus algorithms (e.g., assume that location of nodes and targets remain

constant) or consider mission-specific scenarios (e.g., sensor placement, target tracking, or

information broadcasting).

To elucidate the above points, consider two distributed sensing scenarios in Figure

1. Considering the load delivery scenario, six mobile ground robots (nodes) collaboratively

hold a massive load for a delivery operation guided by two targets. In this case, targets 1 and

2 are only visible to nodes 1, 2, and 3, but the position vectors of all mobile ground robots

(including nodes 4, 5, and 6) must agree and direct the centroid of the targets (otherwise

the operation may fail). Furthermore, node 2 can sense both targets, and hence, is subject

to more than one input. It is also clear that node 2 senses target 2 more accurately than

target 1 since it is closer. Likewise, node 1 has a higher sensing value for target 1 than does

node 2 for target 1. Considering surveillance, four quadcopters (nodes) sense a portion of

an unknown environment and their aim is to construct a global map via local information

exchange [25]. In particular, when two or more nodes move closer to one another, they form

a network to share their local maps to reach an agreement on the global map. Note that

when node 1 and 2 need to exchange their map information, node 1 (resp., node 2) has no

sensor information (input) on C3, D3, E3, F3, D4, E4, and F4 (resp., A1, B1, C1, D1, E1,

F1, A2, and B2) parts of the environment, and they are both subject to overlapping inputs
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Figure 1. Load delivery (top) and surveillance (bottom) scenarios.

on C2, D2, E2, and F2 parts. In addition, node 1 senses C2, D2, E2, and F2 more accurately

than node 2 since it flies closer to the ground than the other node. Similar situations hold

when other nodes interact.



64

1.2. CONTRIBUTION

In this paper, we present a distributed sensing framework, with system-theoretic

performance guarantees, to exploit heterogeneity in information provided about a dynamic

environment using an active-passive networked multiagent systems approach. This approach

is introduced in [26] to remove the assumption that each agent is subject to one input

measurement, which is common among the class of dynamic consensus algorithms as

discussed in Section I−A. In particular, the approach in [26] consists of agents subject

to exogenous inputs (active agents) and agents without any inputs (passive agents), where

these inputs may or may not overlap within the active agents.

This paper utilizes and generalizes the active-passive networked multiagent systems

approach to account for heterogeneity in agents’ sensing capability measured by the value

of information, where the contribution of this paper versus the results in [26] are pictorially

compared in Figure 2. Specifically, if an active agent senses a quantity accurately (resp.,

not accurately), then it reports a high (resp., low) value of information, and hence, it is

weighted high (resp., low) in the network as compared to other agents. In addition, these

weights can be a function of time due to varying environmental factors and/or changes in

sensors’ quality and condition. The key feature of our approach is that the states of all agents

converge to an adjustable neighborhood of the weighted average of the sensed exogenous

inputs by the active agents with heterogeneous sensing capabilities.

The organization of the paper is as follows. Section II states the notation used

throughout the paper, recalls some of the basic notions from graph theory, and introduces

several necessary lemmas. Section III overviews the active-passive networked multiagent

systems approach introduced in [26]. Section IV presents the main contribution of this

paper to exploit heterogeneity in distributed sensing. Illustrative numerical examples are

provided in Section V to demonstrate that utilizing heterogeneity allows the networked

multiagent system to achieve better distributed sensing performance. Finally, conclusions

are summarized in Section VI.
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a) 

b) 

Active!
Passive!

Active!
Passive!

Figure 2. A networked multiagent system represented on a graph. Figure a) shows active
and passive agents, where all active agents have the same value of sensed information, and
hence, are weighted identically. Figure b) shows a more realistic situation, where active
agents have heterogeneous value of sensed information, and hence, their weights differ due
to varying environmental factors and/or changes in sensors’ quality and condition.

2. MATHEMATICAL PRELIMINARIES

2.1. NOTATION

The notation used in this paper is fairly standard. Specifically, R denotes the set of

real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m

real matrices, R+ denotes the set of positive real numbers, Rn×n
+ (resp., R

n×n
+ ) denotes the

set of n × n positive-definite (resp., nonnegative-definite) real matrices, ISn×n
+ (resp., IS

n×n
+ )

denotes the set of n× n symmetric positive-definite (resp., symmetric nonnegative-definite)

real matrices, Z denotes the set of integers, Z+ (resp., Z+) denotes the set of positive (resp.,

nonnegative) integers, 0n denotes the n × 1 vector of all zeros, 1n denotes the n × 1 vector

of all ones, 0n×n denotes the n × n zero matrix, and In denotes the n × n identity matrix.
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Furthermore, we write (·)T for transpose, (·)−1 for inverse, (·)† for generalized inverse,

‖ · ‖2 for the Euclidian norm, λmin(A) (resp., λmax(A)) for the minimum (resp., maximum)

eigenvalue of the Hermitian matrix A, λi(A) for the i-th eigenvalue of A (A is symmetric

and the eigenvalues are ordered from least to greatest value), diag(a) for the diagonal matrix

with the vector a on its diagonal, and [A]i j for the entry of the matrix A on the i-th row and

j-th column.

2.2. GRAPH THEORY

Next, we recall some of the basic notions from graph theory, where we refer to

[14], [27] for further details. In the multiagent literature, graphs are broadly adopted to

encode interactions in networked systems. An undirected graph G is defined by a set

VG = {1, . . . ,n} of nodes and a set EG ⊂ VG ×VG of edges. If (i, j) ∈ EG , then the nodes

i and j are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a

node is given by the number of its neighbors. Letting di be the degree of node i, then the

degree matrix of a graph G, D(G) ∈ Rn×n, is given by D(G) , diag(d), d = [d1, . . . , dn]
T.

A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph

G is connected if there is a path between any pair of distinct nodes. The adjacency matrix

of a graph G, A(G) ∈ Rn×n, is given by

[A(G)]i j ,


1, if (i, j) ∈ EG,

0, otherwise.
(1)

The Laplacian matrix of a graph, L(G) ∈ IS
n×n
+ , playing a central role in many graph

theoretic treatments of multiagent systems, is given by L(G) , D(G)−A(G). Throughout

this paper, we model a given multiagent system by a connected, undirected graph G, where

nodes and edges represent agents and inter-agent communication links, respectively.
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2.3. NECESSARY LEMMAS

We now introduce several necessary lemmas used in the main results of this paper.

Lemma 1 ([14]). The spectrum of the Laplacian of a connected, undirected graph can be

ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)), (2)

with 1n as the eigenvector corresponding to the zero eigenvalue λ1(L(G)) and L(G)1n = 0n

and eL(G)1n = 1n.

Lemma 2 ([28]). The Laplacian of a connected, undirected graph satisfies L(G)L†(G) =

In −
1
n1n1T

n .

Lemma 3. Let K = diag(k), k = [k1, k2, . . . , kn]
T, ki ∈ R+, i = 1, . . . ,n, and assume that

at least one element of k is nonzero. Then, for the Laplacian of a connected, undirected

graph,

F (G) , L(G) + K ∈ ISn×n
+ , (3)

and det(F (G)) , 0.

Proof. Consider the decomposition K = K1 +K2, where K1 , diag([0, . . . ,0, φi,0, . . . ,0]T)

and K2 , K − K1, where φi denotes the smallest nonzero diagonal element of K appearing

on its i-th diagonal, so that K2 ∈ IS
n×n
+ . From the Rayleigh’s Quotient [29], the minimum

eigenvalue of L(G) + K1 can be given by

λmin(L(G) + K1) = min
x
{xT (

L(G) + K1
)

x | xTx = 1}, (4)

where x is the eigenvector corresponding to this minimum eigenvalue. Note that since

L(G) ∈ IS
n×n
+ and K1 ∈ IS

n×n
+ , and hence, L(G) + K1 is real and symmetric, x is a real

eigenvector. Now, expanding (4) as

xT (L(G) + K1) x =
∑
i∼ j

ai j(xi − x j)
2 + φi x2

i , (5)
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and noting that the right hand side of (5) is zero only if x ≡ 0, it follows that λmin(L(G) +

K1) > 0, and hence, L(G) + K1 ∈ ISn×n
+ . Finally, let λ be an eigenvalue of F (G) =

L(G) + K1 + K2. Since λmin(L(G) + K1) > 0 and λmin(K2) = 0, it follows from Fact 5.11.3

of [30] that λmin(L(G)+K1)+λmin(K2) ≤ λ, and hence, λ > 0, which implies that (3) holds

and det(F (G)) , 0. �

3. OVERVIEW OF ACTIVE-PASSIVE NETWORKED MULTIAGENT SYSTEMS

In this section, we briefly overview the active-passive networked multiagent systems

approach of [26]. In particular, consider a system of n agents exchanging information among

each other using their local measurements according to a connected, undirected graph G.

In addition, consider that there exists m ≥ 1 exogenous inputs that interact with this system.

Definition 1. If agent i, i = 1, . . . ,n, is subject to one or more exogenous inputs

(resp., no exogenous inputs), then it is an active agent (resp., passive agent).

Definition 2. If an exogenous input interacts with only one agent (resp., multiple

agents), then it is an isolated input (resp., non-isolated input).

The approach presented in [26] deals with the problem of driving the states of all

(active and passive) agents to the average of the applied exogenous inputs. For this purpose,

the following integral action-based distributed sensing algorithm is proposed

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
− α

∑
i∼h

(xi(t) − ch(t)) , xi(0) = xi0, (6)

Ûξi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (7)

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . ,n,

respectively, ch(t) ∈ R, h = 1, . . . ,m, denotes an exogenous input sensed by this agent,

α ∈ R+, and γ ∈ R+. Note that i ∼ h notation indicates the exogenous inputs that an agent is

subject to, which is similar to the i ∼ j notation indicating the neighboring relation between

agents.
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Remark 3. Theorem 4.1 of [26] shows that the states of all agents converge to the average

of the exogenous inputs applied to active agents under the assumption that all active agents

have the same value of sensed information, and hence, are weighted identically.

Remark 4. The proposed integral action-based distributed algorithm in (6) is applied to

agents having dynamics of the form Ûxi(t) = ui(t), where ui(t) ∈ R denotes the input of

agent i, i = 1, . . . ,n, satisfying the right hand side of (6) along with (7). For agents

having complex dynamics, one can design low-level feedback controllers (or assume their

existence) for suppressing existing dynamics and enforcing Ûxi(t) = ui(t) (see, for example,

Example 6.3 of [31]).

4. EXPLOITATION OF HETEROGENEITY

The value of sensed information is not necessarily identical for all active agents

due to environmental factors and/or sensors’ quality and condition, as previously discussed.

To that end, this section utilizes and generalizes the active-passive networked multiagent

systems to account for heterogeneity in active agents’ sensing capability.

4.1. PROBLEM SETUP

We begin with proposing the following integral action-based distributed sensing

algorithm

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
− α

∑
i∼h

wih(t) (xi(t) − ch(t)) , xi(0) = xi0,

(8)

Ûξi(t) = − γ

[∑
i∼ j

(
xi(t) − x j(t)

)
+ σξi(t)

]
, ξi(0) = ξi0, (9)
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Figure 3. Active-passive networked multiagent system with one target and three agents with
nodes 1 and 2 being active and node 3 being passive.

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . ,n,

respectively, ch(t) ∈ R, h = 1, . . . ,m, denotes an exogenous input sensed by this agent,

α ∈ R+, γ ∈ R+, and σ ∈ R+. Note that wih(t) ∈ R+ is a weight capturing the expected

value of information of the exogenous input with respect to agent i.

Remark 5. To elucidate (8) and (9), consider the active-passive networked multiagent

system given in Figure 3 with α = 1, γ = 1, and σ = 1. Let qT be the actual target quantity

sensed by active nodes 1 and 2. In addition, for the ease of exposition, let the value of

information and the exogenous inputs be time-invariant, the location of nodes be fixed at

point pxi , and the target be stationary at point pT. Assume that the accuracy of the sensed

target quantity decreases (resp., increases) as the distance between a node and the target
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gets larger (resp., smaller). In this scenario, it follows from (8) and (9) that

Ûx1(t) = −
(
x1(t) − x2(t)

)
+
(
ξ1(t) − ξ2(t)

)
−w11(x1(t) − c1), (10)

Ûξ1(t) = −
(
x1(t) − x2(t)

)
−ξ1(t), (11)

Ûx2(t) = −
(
x2(t) − x1(t)

)
−
(
x2(t) − x3(t)

)
+

(
ξ2(t) − ξ1(t)

)
+
(
ξ2(t) − ξ3(t)

)
−w22(x2(t) − c2), (12)

Ûξ2(t) = −
(
x2(t) − x1(t)

)
−
(
x2(t) − x3(t)

)
−ξ2(t), (13)

Ûx3(t) = −
(
x3(t) − x2(t)

)
+
(
ξ3(t) − ξ2(t)

)
, (14)

Ûξ3(t) = −
(
x3(t) − x2(t)

)
−ξ3(t), (15)

where c1 = f (qT, | |px1−pT | |2) represents a higher value sensing than c2 = f (qT, | |px2−pT | |2),

since | |px1 − pT | |2 ≤ ||px2 − pT | |2. Therefore, w11 > w22 for this example.

Remark 6. The focus of this paper is to develop a distributed sensing framework, with

system-theoretic performance guarantees, to exploit heterogeneity in sensed information.

For this reason, we implicitly assume that the value of sensed information is already modeled

and known by respective agents in the network. Note that each sensor can obtain the value

of information through analysis of its own measurement using relative entropy measures

such as Kullback-Liebler divergence [22]. In addition, considering the scenario highlighted

in Remark 3, the Fisher information metrics [10], [23] can be used to model the value of

information in active nodes 1 and 2 as a function of node-target distance.

Next, let

x(t) =
[
x1(t), x2(t), . . . , xn(t)

] T
∈ Rn, (16)

ξ(t) =
[
ξ1(t), ξ2(t), . . . , ξn(t)

] T
∈ Rn, (17)

c(t) =
[
c1(t), c2(t), . . . , cm(t),0, . . . ,0

]
∈ Rn, (18)
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N 2!

T 1!N 1! Node (N)!

Target (T)!

High Value Sensing!

Low Value Sensing!

Communication!

N 3! T 2!

Figure 4. Active-passive networked multiagent system with two targets and three agents
with nodes 1 and 2 being active and node 3 being passive.

where m ≤ n is assumed to ease notation without loss of generality. We can now rewrite

(8) and (9) in the compact form given by

Ûx(t) = − αL(G)x(t) + L(G)ξ(t) − αK1(t)x(t) + αK2(t)c(t), x(0) = x0, (19)

Ûξ(t) = − γL(G)x(t) − γσξ(t), ξ(0) = ξ0, (20)

where L(G) ∈ IS
n×n
+ satisfies Lemma 1,

K1(t) , diag([k1,1(t), . . . , k1,n(t)]T) ∈ IS
n×n
+ , (21)

with k1,i ∈ R+ denoting the number of the exogenous inputs applied to agent i, i = 1, . . . ,n,
and

K2(t) ,



k2,11(t) · · · k2,1n(t)

k2,21(t) · · · k2,2n(t)
...

. . .
...

k2,n1(t) · · · k2,nn(t)


∈ Rn×n, (22)

with

k1,i(t) =
n∑

j=1
k2,i j(t). (23)

Remark 7. In (19) and (20), the elements of K1(t) and K2(t) are related to the weights

wih(t) ∈ R+ capturing the expected value of information. To elucidate this point, consider

the active-passive networked multiagent system given in Figure 4. Let c = [c1, c2,0]T, where

c1 = f (qT1, | |px1 − pT1 | |2) = f (qT1, | |px2 − pT1 | |2) (assuming | |px1 − pT1 | |2 = | |px2 − pT1 | |2)
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and c2 = f (qT2, | |px2 − pT2 | |2), with qTi , i = 1,2, representing the actual target quantities

and pxi , i = 1,2,3, representing the location of nodes. In this case, if w11(t), w21(t), and

w22(t) respectively denote the value of information of input c1 with respect to agent 1, input

c1 with respect to agent 2, and input c2 with respect to agent 2 (note that w11(t) = w21(t)),

then one can write

K1(t) =


w11(t) 0 0

0 w21(t) + w22(t) 0

0 0 0


, (24)

K2(t) =


w11(t) 0 0

w21(t) w22(t) 0

0 0 0


. (25)

As an another example, consider the case | |px1−pT1 | |2 , | |px2−pT1 | |2 and let c = [c1, c2, c3]
T,

where c1 = f (qT1, | |px1 − pT1 | |2), c2 = f (qT1, | |px2 − pT1 | |2), and c3 = f (qT2, | |px2 − pT2 | |2).

In this case, if w11(t), w22(t), and w23(t) respectively denote the value of information of

input c1 with respect to agent 1, input c2 with respect to agent 2, and input c3 with respect

to agent 2, then one can write

K1(t) =


w11(t) 0 0

0 w22(t) + w23(t) 0

0 0 0


, (26)

K2(t) =


w11(t) 0 0

0 w22(t) w23(t)

0 0 0


. (27)

Without loss of generality, assume that k2,i j ∈ [0,1], which corresponds to the

fact that each value of information can take values from the scaled interval [0,1] (i.e., as

agents’ value of information increase about exogenous inputs, k2,i j increases from 0 toward

1). Since we are interested in driving the states of all (active and passive) agents to an

adjustable neighborhood of the weighted average of the exogenous inputs applied to the
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active agents, let

δ(t) , x(t) − ε(t)1n ∈ Rn, (28)

ε(t) ,
1T

n K2(t)c(t)
1T

n K2(t)1n
∈ R, (29)

be the error between xi(t), i = 1, . . . ,n, and the weighted average of the applied exogenous

inputs ε(t). Based on (29), ε(t) can be equivalently written as

ε(t) =
k2,11(t)c1(t) + k2,12(t)c2(t) + · · · + k2,21(t)c1(t) + k2,22(t)c2(t) + · · ·(

k2,11(t) + k2,12(t) + · · · + k2,21(t) + k2,22(t) + · · ·
. (30)

Note that the denominator of (30) is nonzero, since we assume that there exists m ≥ 1

exogenous inputs, and hence, there exists at least one nonzero value of information weight.

Furthermore, let this nonzero weight be lower bounded by φi ∈ R+ and consider the

decomposition

K1(t) = K0 + K̃(t), (31)

where K0 , diag([0, . . . ,0, φi,0, . . . ,0]T) and K̃(t) , K1(t) − K0 such that K̃ ∈ IS
n×n
+ . Note

that for situations where there exists more than one nonzero value of information weights,

then we can either include the lower bounds of these nonzero weights to K0 or we simply

let φi to represent the smallest lower bound of these nonzero weights, and hence, we can

perform this decomposition. This concludes the setup of our problem. Next, we present the

stability and performance guarantees of the distributed sensing algorithm given by (8) and

(9).

4.2. STABILITY AND PERFORMANCE GUARANTEES

Consider the error between xi(t), i = 1, . . . ,n, and the weighted average of the sensed

exogenous inputs ε(t) given by (28). Using Lemma 1, the time derivative of (28) can be

given by

Ûδ(t) = − αF̃(G, t)δ(t) + L(G)ξ(t) − αLc(t)K2(t)c(t) − Ûε(t)1n, δ(0) = δ0, (32)
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where

F̃(G, t) , L(G) + K1(t), (33)

Lc(t) ,
K1(t)1n1T

n

1T
n K2(t)1n

− In. (34)

Now consider

e(t) , ξ(t) − αL†(G)Lc(t)K2(t)c(t). (35)

Using Lemma 2 and noting that 1T
n Lc(t) = 1T

n
[
K1(t)1n1T

n/(1T
n K2(t)1n) − In

]
= 0, (32) can be

rewritten by

Ûδ(t) = −αF̃(G, t)δ(t) + L(G)e(t) − Ûε(t)1n. (36)

Furthermore, applying the decomposition (31) to (36), it follows that

Ûδ(t) = −αF(G)δ(t) − αK̃(t)δ(t) + L(G)e(t) − Ûε(t)1n, (37)

where F(G) , L(G) + K0 ∈ ISn×n
+ is a direct consequence of Lemma 3. Finally, the time

derivative of (35) can be given by

Ûe(t) = − γL(G)δ(t) − γσe(t) − αγσL†(G)Kc(t)c(t) − αL†(G) ÛKc(t)c(t)

− αL†(G)Kc(t) Ûc(t), e(0) = e0, (38)

where Kc(t) , Lc(t)K2(t).

Next, the closed-loop error dynamics given by (37) and (38) can be rewritten as

Ûδ(t) = − αF(G)δ(t) − αK̃(t)δ(t) + L(G)e(t) + s1(t), (39)

Ûe(t) = − γL(G)δ(t) − γσe(t) + s2(t), (40)

where the perturbation terms are given by s1(t) , − Ûε(t)1n and s2(t) , −αγσL†(G)Kc(t)c(t)−

αL†(G) ÛKc(t)c(t) − αL†(G)Kc(t) Ûc(t). For the following results, we assume | |s1(t)| |2 ≤ s∗1

and | |s2(t)| |2 ≤ s∗2.

Theorem 4.1. Consider the networked multiagent system given by (8) and (9), where agents

exchange information using local measurements through a connected and undirected graph

topology. Then, the closed-loop error dynamics given by (39) and (40) are bounded.
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Proof. Consider the Lyapunov function candidate given by

V(δ, e) =
1

2α
δTδ +

1
2αγ

eTe, (41)

and note that V(0,0) = 0 and V(δ, e) > 0 for all (δ, e) , (0,0). Time derivative of (41) along

the trajectories of (39) and (40) yields

ÛV(·) =
1
α
δT(t)

[
−αF(G)δ(t) − αK̃(t)δ(t) + L(G)e(t) + s1(t)

]
,

+
1
αγ

eT(t)
[
−γL(G)δ(t) − γσe(t) + s2(t)

]
,

= − δT(t)F(G)δ(t) − δT(t)K̃(t)δ(t)α−1σeT(t)e(t) + α−1δT(t)s1(t) + α−1γ−1eT(t)s2(t),

which implies

ÛV(·) ≤ − δT(t)F(G)δ(t) − α−1σeT(t)e(t) + α−1δT(t)s1(t) + α−1γ−1eT(t)s2(t)

≤ − d1‖δ(t)‖2

(
‖δ(t)‖2 −

d3
d1

)
−d2‖e(t)‖2

(
‖e(t)‖2 −

d4
d2

)
, (42)

where d1 , λmin(F (G)), d2 , σα−1, d3 , α−1s∗1, and d4 , α−1γ−1s∗2. Since ÛV(δ(t), e(t)) ≤

0 when ‖δ(t)‖2 ≥ d3/d1 and ‖e(t)‖2 ≥ d4/d2, it follows that the closed-loop error dynamics

given by (39) and (40) are bounded. �

In the next theorem, we determine the bound of δ(t) for t ≥ T characterizing the

ultimate distance between x(t) and ε(t)1n, which is of practical importance for distributed

sensing applications.

Theorem 4.2. Consider the networked multiagent system given by (8) and (9), where agents

exchange information using local measurements through a connected and undirected graph

topology. Then, the bound of δ(t) for t ≥ T is

‖δ(t)‖2
2 ≤

1
α2

[
n2 Ûε∗2

λ2
min(F (G))

]
+
α2

γ

[
p∗21 +

2p∗1p∗2
γσ

+
p∗22
γ2σ2

]
, (43)

where | | Ûε(t)| |2 ≤ Ûε∗, | |L†(G)Kc(t)c(t)| |2 ≤ p∗1, and | |L†(G) ÛKc(t)c(t)+L†(G)Kc(t) Ûc(t)| |2 ≤

p∗2.
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Proof. In the proof of Theorem 4.1, we showed that ÛV(δ(t), e(t)) ≤ 0 when ‖δ(t)‖2 ≥

d3/d1 and ‖e(t)‖2 ≥ d4/d2. Note that this implies ÛV(δ(t), e(t)) ≤ 0 outside the compact

set S ,
{
(δ(t), e(t)) : ‖δ(t)‖2 ≤

d3
d1

}⋂{
(δ(t), e(t)) : ‖e(t)‖2 ≤

d4
d2

}
. Since V(δ(t), e(t))

cannot grow outside S, the evolution of V(δ(t), e(t)) is upper bounded by V(δ(t), e(t)) ≤

max(δ(t),e(t))∈S V(δ(t), e(t)) = 1
2α

d2
3

d2
1
+ 1

2αγ
d2

4
d2

2
, t ≥ T , where using 1

2αδ
T(t)δ(t) ≤ V(δ(t), e(t))

in this expression, (43) follows. �

Remark 8. Theorem 4.2 implies that if we choose α and γ such that both 1/α2 and α2/γ

are small, then (43) is small for t ≥ T .

4.3. SPECIAL CASE COROLLARIES

It is shown in Theorem 4.1 and Theorem 4.2 that the states of all agents can be driven

to an adjustable neighborhood of the weighted average of the sensed exogenous inputs by

the active agents for the case of time-varying sensed exogenous inputs, which is due to

a dynamic environment, with time-varying value of information. In this section, several

corollaries are stated that present special cases of Theorem 4.1 and Theorem 4.2. We begin

with the case of time-varying sensed exogenous inputs and constant value of information.

Corollary 3. Consider the networked multiagent system given by (8) and (9), where agents

exchange information using local measurements through a connected and undirected graph

topology. Let the value of information be constant. Then, the closed-loop error dynamics

given by (39) and (40) are bounded and the bound of δ(t) for t ≥ T is given by (43)

with Ûε∗ = Ûc∗ | |1T
n K2 | |2/(1T

n K21n), p∗1 = c∗ | |L†(G)Kc | |F, and p∗2 = Ûc∗ | |L†(G)Kc | |F, where

| |c(t)| |2 ≤ c∗ and | | Ûc(t)| |2 ≤ Ûc∗.

Proof. See the proof of Theorem 4.1 and Theorem 4.2. �

The next corollary presents the case of constant sensed exogenous inputs and time-

varying value of information.
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Corollary 4. Consider the networked multiagent system given by (8) and (9), where agents

exchange information using local measurements through a connected and undirected graph

topology. Let the sensed exogenous inputs be constant. Then, the closed-loop error

dynamics given by (39) and (40) are bounded and the bound of δ(t) for t ≥ T is given by (43)

with Ûε∗ ≥ ||1T
n K2(t)

[
1n1T

n
ÛK2(t)c − c1T

n
ÛK2(t)1n

]
/(1T

n K2(t)1n)
2 | |2, p∗1 = | |L†(G)| |F | |c | |2k∗c ,

and p∗2 = | |L†(G)| |F | |c | |2 Ûk∗c , where | |K2(t)| |F ≤ k∗c and | | ÛK2(t)| |F ≤ Ûk∗c .

Proof. See the proof of Theorem 4.1 and Theorem 4.2. �

The bounds included in Corollaries 1 and 2 clearly show how the time rate of

change of the exogenous inputs and the value of information affect (43), respectively.

We now present the final case of constant sensed exogenous inputs and constant value of

information.

Corollary 5. Consider the networked multiagent system given by (8) and (9) with σ = 0,

where agents exchange information using local measurements through a connected and

undirected graph topology. Let both the value of information and the sensed exogenous

inputs be constant. Then, the closed-loop error dynamics given by (39) and (40) are

Lyapunov stable for all initial conditions and δ(t) asymptotically vanishes.

Proof. We first note that the closed-loop error dynamics in (39) and (40) simplify to

Ûδ(t) = −αF(G)δ(t) − αK̃δ(t) + L(G)e(t), (44)

Ûe(t) = −γL(G)δ(t), (45)

since σ = 0 and both the value of information and the exogenous inputs are constant,

that is s1(t) = s2(t) = 0. It now follows from the Lyapunov function candidate given by

(41) that ÛV(·) ≤ −d1‖δ(t)‖2
2 , d1 , λmin(F (G)), which shows the Lyapunov stability of

the closed-loop error dynamics for all initial conditions. Because ÜV(δ(t), e(t)) is bounded

for all t ∈ R+, it follows from Barbalat’s lemma [32] that limt→∞
ÛV(δ(t), e(t)) = 0, which

consequently shows that δ(t) asymptotically vanishes. �
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N 1! N 2!

N 3! N 4!

T 1! T 2! Node (N)!

Target (T)!

High Value Sensing!

Low Value Sensing!

Communication!

Figure 5. Active-passive networked multiagent system with two targets and four agents with
nodes 1 and 2 being active and nodes 3 and 4 being passive.
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Figure 6. Response of the networked multiagent system in Figure 5 with identical value
of information (top) and heterogeneous value of information (bottom) (dashed lines denote
the actual average of the target quantities and solid lines denote the agent states).

5. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, the efficacy of the proposed distributed sensing algorithm given by

(8) and (9) is illustrated using two examples. For the first example, consider the active-

passive networked multiagent system given in Figure 5. Let the value of information and
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the exogenous inputs be constant, and the accuracy of the sensed target quantity decreases

(resp., increases) as the distance between a node and the target gets larger (resp., smaller).

In addition, let nodes 1 and 2 be sense targets 1 and 2 with perfect accuracy, respectively,

and sense targets 2 and 1 with 50% accuracy, respectively. For this purpose, we set c1 = 1

(node 1 measure of target 1 with perfect accuracy), c2 = 1 (node 1 measure of target 2 with

50% accuracy), c3 = 0.5 (node 2 measure of target 1 with 50% accuracy), c4 = 2 (node

2 measure of target 2 with perfect accuracy). Figure 6 presents the results with α = 5,

γ = 10, and σ = 0 in (8) and (9). Specifically, the top figure shows the network response

with identical value of information (i.e., we set w11 = w12 = w23 = w24 = 1) and the

bottom figure shows the same response with heterogeneous value of information (i.e., we

set w11 = 1, w12 = 0.1, w23 = 0.1, and w24 = 1). As expected, utilizing heterogeneity

in the value of information allows network to converge a close neighborhood of the actual

average of the target quantities sensed by agents.

For the second example, we consider a networked multiagent system tracking a

moving target shown in Figure 7. Each agent has a sensing radius, where the value of

information obtained by the agents decrease as the target moves away from them. In

this study, we set α = 20, γ = 150, and σ = 0.1 in (8) and (9). Figure 8 shows the

network response both with identical value of information and with heterogeneous value

of information. Once again, utilizing heterogeneity in the value of information allows the

network to sense the actual trajectory with improved tracking accuracy.

6. CONCLUSION

In this paper, we utilized the active-passive networked multiagent systems approach

to develop a distributed sensing framework that accounts for the heterogeneity in agents’

sensing capability measured by the value of information. Specifically, we showed that

the states of all agents converge to an adjustable neighborhood of the weighted average

of the sensed exogenous inputs by the active agents when there exists time-variation in
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Figure 7. Active-passive networked multiagent system with one non-stationary target and
nine fixed agents (dots denote the agents, circles denote the sensing radius of agents, and
solid line denote the actual target trajectory).

both agents’ sensing capability and the sensed exogenous inputs. In addition, we formally

discussed several cases when agents’ sensing capability and the exogenous inputs are time-

invariant, which yields asymptotic stability of the error dynamics between the states of

all agents and the weighted average of the sensed exogenous inputs. Illustrative examples

indicated that utilizing heterogeneity allows the networked multiagent system to achieve

better distributed sensing performance.

As noted in Remark 6, it was assumed in this paper that the value of sensed

information is modeled and known by respective agents in the network. Future research

will include the integration of the proposed framework exploiting heterogeneity in sensed

information with the metrics that model the value of sensed information.
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Actual Trajectory!
Sensed Trajectory with iden-!
     tical value of information!
Sensed Trajectory with hete-!
     rogeneous value of info.!

Figure 8. Response of the networked multiagent system in Figure 7 with identical value of
information and heterogeneous value of information.
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V. ACTIVE-PASSIVE DYNAMIC CONSENSUS FILTERS WITH REDUCED
INFORMATION EXCHANGE AND TIME-VARYING AGENT ROLES

J. Daniel Peterson, Tansel Yucelen, Jagannathan Sarangapani, and Eduardo Pasiliao

ABSTRACT

Active-passive dynamic consensus filters consist of agents subject to local obser-

vations of a process (i.e., active agents) and agents without any observations (i.e., passive

agents). The key feature of these filters is that they enable the states of all agents to con-

verge to the average of the observations only sensed by the active agents. Two sweeping

generalizations can be made about existing active-passive dynamic consensus filters: i)

They utilize integral action-based distributed control algorithms such that each agent is

required to continuously exchange both its current state and integral state information with

its neighbors. ii) They assume that the roles of active and passive agents are fixed; hence,

these roles do not change with respect to time.

The contribution of this paper is to introduce and analyze a new class of active-

passive dynamic consensus filters using results from graph theory and systems science.

Specifically, the proposed filters only require agents to exchange their current state infor-

mation with neighbors in a simple and isotropic manner to reduce the overall information

exchange cost of the network. In addition, we allow the roles of active and passive agents

to be time-varying for making these filters suitable for a wide range of multiagent systems

applications. We show that the proposed active-passive dynamic consensus filters enable

the states of all agents to converge to an user-adjustable neighborhood of the average of

the observations sensed by a time-varying set of active agents. We also generalize our

results using event-triggered control theory such that agents schedule information exchange

dependent on errors exceeding user-defined thresholds (not continuously). This generaliza-
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Figure 1. Illustration of heterogeneity in a sensor network for a target tracking problem.

tion allows agents to further reduce the overall cost of interagent information exchange and

to determine when to broadcast their information to their neighbors thus eliminating the

need to synchronize their states. Four illustrative numerical examples and one experimental

study are also presented to demonstrate our theoretical findings.

1. INTRODUCTION

1.1. LITERATURE REVIEW

Distributed information fusion is a task performed by a group of agents that locally

exchange information with each other. Owing to the distributed nature, it can impact a

wide array of applications that range from surveillance and reconnaissance to guidance and

control of autonomous vehicles. Classical distributed information fusion methods assume

instantaneous communication, rely on high bandwidth networks, and do not necessarily

account for system dynamics. For example, one common method for classical distributed

information fusion is flooding, where agents broadcast all their information to their neigh-
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bors and store all the relayed information. It clearly requires significant memory to handle

large amounts of information exchange [1]. On the other hand, system theoretic methods

are based on the dynamics of the information fusion process (see, for example, [2], [3]),

where each agent only shares its current information with its neighbors. In addition, sys-

tem theoretic methods can naturally provide a level of robustness against modeling errors,

changes in information paths, and measurement noise [4], [5]. The key component of

system-theoretic distributed algorithms is a consensus or consensus-like algorithm needed

for the information fusion process. Among two classes of consensus algorithms, static and

dynamic consensus algorithms, the latter consider agreement upon time-varying quantities,

which is more appropriate for applications driven by dynamic data.

Existing dynamic consensus filters (see, for example, [6]–[11]) are suitable for

multiagent systems applications, where each agent is active in the sense that it is subject to

an observation of a process of interest. From a practical standpoint, however, an agent can be

passive for certain time instants owing to its heterogeneous sensing capability in that it may

not be able to sense the process and collect information. To elucidate this point, consider a

target tracking problem in Figure 1. In particular, agents 1, 2, and 5 are active in the sense

that they are subject to observations of the target for the time instant depicted in this figure,

whereas other nodes are passive as they have no observations. Consequently, a dynamic

consensus algorithm needs have the capability to account for heterogeneity resulting from

active and passive roles of networked agents.

Distributed control algorithms proposed in [12]–[17] make notable contributions to

address this problem. While the authors of [12]–[14] present methods that cover specific

applications, where a portion of the networked nodes are passive (and the remaining of

nodes are active), their results are in the context of static consensus. In other words,

their distributed control algorithms may not be suitable in their current form for dynamic

environments as in the motivating example depicted in Figure 1. More recently, the authors

of [15]–[17] propose active-passive dynamic consensus filters, where these filters not only
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allow the states of all agents to converge to the average of the observations only sensed

by the active agents, but are also suitable for multiagent systems applications in dynamic

environments.

The results in [15]–[17] utilize integral-action based distributed control algorithms

for dynamic information fusion. While several other studies exist on integral-action based

distributed control algorithms, notably [18]–[22], the authors of [18], [19] only consider

specific cases where all agents are active with respect to a set of applied exogenous inputs.

In addition, agents are required to have knowledge of the derivative of the applied exogenous

inputs. The authors of [20] overview several dynamic consensus algorithms, but are com-

monly interested in optimizing the network feedback gains and do not consider exogenous

inputs. In [21], the authors consider an integral-action based distributed control algorithm,

where agents are able to estimate their neighboring agents’ integral-action terms to reduce

the cost of network information exchange, but only consider agents having no observations.

The results of [22] present a distributed proportional-integral-derivative control algorithm,

where agents track locally generated reference velocity and acceleration signals. Yet, all

agents are only able to sense one corresponding velocity and acceleration pair, which may

not be suitable for applications where agents are required to change their active and passive

roles. Finally, the results of [23], [24] address tracking a target in camera networks, where

some cameras are naiive (unable to sense the target) for some time intervals, utilizing a dis-

crete extended Kalman filter approach, which can require large communication bandwidths

and agents to synchronize their states. To address these problems, this paper presents a new

active-passive dynamic consensus filter approach to dynamic information fusion.
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1.2. CONTRIBUTION

The contribution of this paper is to present and analyze a new class of active-passive

dynamic consensus filters using methods from graph theory and systems science, which goes

beyond the existing state-of-the-art literature results overviewed in the above subsection.

Specifically:

• In contrast to the most closely related literature results in [15]–[17], the proposed

filters presented in this paper only require agents to exchange their current state

information with neighbors in a simple and isotropic manner to reduce the overall

information exchange cost of the network.

• The authors of [15]–[17] require that agents are fixed with respect to their active and

passive roles, which can be impractical for many multiagent systems applications

where it is necessary to allow the roles of active and passive agents to change with

respect to time as in the motivating example depicted in Figure 1. The proposed

active-passive dynamic consensus filters allows the roles of active and passive agents

to be time-varying. In addition, we show that the proposed active-passive dynamic

consensus filters enable the states of all agents to converge to an user-adjustable

neighborhood of the average of the observations sensed by a time-varying set of

active agents.

• We also generalize our results here using event-triggered control theory (see, for

example, [25]–[29] and references therein) such that agents can schedule information

exchange dependent on errors exceeding user-defined thresholds (not continuously).

This generalization allows agents to further reduce the overall cost of interagent

information exchange and to determine when to broadcast their information to their

immediate neighbors thus eliminating the need to synchronize their states.
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• Finally, we present numerical and experimental results to demonstrate the efficacy of

our theoretical findings.

Note that two preliminary conference versions of this paper appeared in [30], [31].

The present paper considerably expands on [30], [31] by providing system-theoretical proofs

of the results with additional motivation, examples, and an experimental study.

1.3. CONTENTS

The contents of this paper are as follows. Section 2 defines the notations used

throughout this paper, recalls some basic results from graph theory, and introduces several

necessary lemmas. Section 3 reviews the active-passive dynamic consensus filters presented

in [15]–[17]. In Section 4, we present and analyze the new class of active-passive dynamic

consensus filters. In Section 5, we then generalize the results of Section 4 using event-

triggered control theory. Four illustrative numerical examples and one experimental study

are also presented respectively in Section 6 and in Section 7 to demonstrate our theoretical

findings, and our conclusions are summarized in Section 8.

2. MATHEMATICAL PRELIMINARIES

The notations used in this paper are fairly standard. Specifically, R denotes the set of

real numbers, Rn denotes the set of n× 1 real column vectors, Rn×m denotes the set of n×m

real matrices, R+ denotes the set of positive real numbers, Rn×n
+ (resp., R

n×n
+ ) denotes the

set of n × n positive-definite (resp., nonnegative-definite) real matrices, ISn×n
+ (resp., IS

n×n
+ )

denotes the set of n× n symmetric positive-definite (resp., symmetric nonnegative-definite)

real matrices, N denotes the set of natural numbers, 0n denotes the n× 1 vector of all zeros,

1n denotes the n × 1 vector of all ones, 0n×n denotes the n × n zero matrix, and In denotes

the n × n identity matrix. In addition, we write (·)T for transpose, (·)−1 for inverse, (·)† for

generalized inverse, ‖ · ‖2 for the Euclidian norm, λmin(A) (resp., λmax(A)) for the minimum
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(resp., maximum) eigenvalue of the Hermitian matrix A, λi(A) for the i-th eigenvalue of A

(A is symmetric and the eigenvalues are ordered from least to greatest value), diag(a) for

the diagonal matrix with the vector a on its diagonal, and [A]i j for the entry of the matrix A

on the i-th row and j-th column. Furthermore, each agent holds its local and neighboring

agent’s states in a zero-order-hold (ZOH) operator until a predefined event sri occurs with

r ∈ R denoting the time at which the event occurs, i = 1,2, . . . ,n denoting an agent, and s

denoting a predefined monotonic sequence {sri}
∞
r=1 ∈ R of events (see, for example, [29] as

well as [25]–[28]).

Next, we concisely overview some necessary notions from graph theory and refer

the readers to [4], [32] for further details. In particular, graphs are broadly adopted to

encode interactions in multiagent systems. An undirected graph G is defined by a set

VG = {1, . . . ,n} of nodes and a set EG ⊂ VG ×VG of edges. If (i, j) ∈ EG , then the nodes

i and j are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a

node is given by the number of its neighbors. Letting di be the degree of node i, then the

degree matrix of a graph G, D(G) ∈ Rn×n, is given by D(G) , diag(d), d = [d1, . . . , dn]
T.

A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph G

is connected if there is a path between any pair of distinct nodes. We write A(G) ∈ Rn×n for

the adjacency matrix of a graph G defined by [A(G)]i j , 1 if (i, j) ∈ EG and [A(G)]i j , 0

otherwise. Furthermore, we write B(G) ∈ Rn×m for the incidence matrix of a graph G

defined by [B(G)]i j , −1 if node i is the tail of edge j, [B(G)]i j , 1 if node i is the head of

edge j, and [B(G)]i j , 0 otherwise, where m is the number of edges, i is an index for the

node set, and j is an index for the edge set (under the common consideration that directions

have been arbitrarily assigned to label the edges). By definition, note that BT(G)1n = 0m.

The graph Laplacian matrix, denoted by L(G) ∈ IS
n×n
+ , is defined by L(G) , D(G)−A(G)

or equivalently

L(G) , B(G)BT(G), (1)
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and note the spectrum of L(G) for a connected, undirected graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)), (2)

with 1n as the eigenvector corresponding to the zero eigenvalue,L(G)1n = 0n, and eL(G)1n =

1n. Throughout this paper, we model a given multiagent system by a connected, undirected

graph G, where nodes and edges represent agents and interagent communication links,

respectively.

Finally, we present two necessary lemmas used in the main results of this paper.

Lemma 4 ([17]). Let K = diag(k), k = [k1, k2, . . . , kn]
T, ki ∈ R+, i = 1, . . . ,n, and assume

that at least one element of k is nonzero. Then, for a connected, undirected graph,

F (G) , L(G) + K ∈ ISn×n
+ , (3)

holds and det(F (G)) , 0.

Lemma 5 ([33]). For a connected, undirected graph, the following equality holds:

L(G)L†(G) = In −
1
n

1n1T
n . (4)

3. OVERVIEW OF ACTIVE-PASSIVE DYNAMIC CONSENSUS FILTERS

We now overview the active-passive dynamic consensus filter architecture intro-

duced in [15]–[17], where we refer to these references for further details. Specifically,

consider a system of n agents exchanging information among each other using their local

measurements according to a connected, undirected graph G. In addition, consider that

there exists m ≥ 1 inputs that interact with (i.e., are sensed by) this system in the sense that

they represent local observations of agents.

Definition 1. If agent i, i = 1, . . . ,n, is subject to (i.e., senses) one or more inputs (resp., no

inputs), then it is an active agent (resp., passive agent).

Definition 2. If an input interacts with (i.e., is sensed by) only one agent (resp., multiple

agents), then it is an isolated input (resp., nonisolated input).
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The active-passive dynamic consensus filter architecture focuses on the problem

of driving the states of all (active and passive) agents to the average of the inputs only

sensed by the active agents. For this purpose, the authors of [15]–[17] propose the integral

action-based distributed control algorithm given by

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
+

∑
i∼ j

(
ξi(t) − ξ j(t)

)
− α

∑
i∼h

(xi(t) − ch(t)) , xi(0) = xi0, (5)

Ûξi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
, ξi(0) = ξi0, (6)

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . ,n,

respectively, that are exchanged with the neighbors of this agent, ch(t) ∈ R, h = 1, . . . ,m,

denotes an input sensed by this agent, α ∈ R+, and γ ∈ R+. Note that i ∼ h notation

indicates the exogenous inputs that an agent is subject to, which is similar to the i ∼ j

notation indicating the neighboring relation between agents.

Remark 9. The results of [15]–[17] show that the states of all agents converge to (resp.,

converge to an user-adjustable neighborhood of) the average of the constant (resp., time-

varying) inputs applied to active agents under the assumption that the roles of active and

passive agents are fixed; hence, does not change with respect to time.

4. REDUCED INFORMATION EXCHANGE AND TIME-VARYING AGENT
ROLES

In this section, we propose a new class of active-passive dynamic consensus filters

that only require agents to exchange their current state information with neighbors in a

simple and isotropic manner in order to reduce the overall information exchange cost of the

network, which also allows the roles of active and passive agents to be time-varying (see
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Section 4.1). In addition, we show that the proposed filters enable the states of all agents to

converge to an user-adjustable neighborhood of the average of the observations sensed by

a time-varying set of active agents (see Section 4.2).

4.1. PROPOSED ACTIVE-PASSIVE DYNAMIC CONSENSUS FILTERS

We propose the new integral action-based distributed control algorithm given by

Ûxi(t) = − α

[∑
i∼ j

(
xi(t) − x j(t)

)
+ βi xi(t)

]
+pi(t) − e−γσt pi(0)

− α
∑
i∼h

kih(t) (xi(t) − ch(t)) , xi(0) = xi0, (7)

Ûpi(t) = − γ

[∑
i∼ j

(
xi(t) − x j(t)

)
+ σpi(t)

]
, pi(0) = pi0, (8)

where xi(t) ∈ R and pi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . ,n,

respectively, with xi(t) being the only information exchanged with the neighbors of this

agent, ch(t) ∈ R, h = 1,2, . . . ,m denotes an input sensed by this agent, α ∈ R+, γ ∈ R+,

σ ∈ R+, and βi ∈ R+. Here, we require that there exists at least one positive βi, i = 1, . . . ,n.

In (7), kih(t) denotes a smooth function1 varying on the interval [0,1].

Remark 10. From a theoretical standpoint (see the next subsection), the term “e−γσt pi(0)”

is needed to preserve the generality of the proposed algorithm. From a practical standpoint,

however, this term can be removed by simply initializing (8) as pi(0) = 0 for all agents.

Remark 11. While (7) and (8) require the knowledge of common parameters α, γ, and σ,

the execution of (7) and (8) is clearly distributed in practice. In addition, for applications

when the considered graph provides sufficient network bandwidth, one can simply set α

and γ to one for all agents in order to remove these two common gains from (7) and (8).

Moreover, the other common parameter σ is associated with the leakage term in (8) that is

used to preserve the stability of the proposed algorithm (see the next subsection). As such,

1Considering the target tracking problem given in Figure 1 as an illustrative example, this function
approaches to one as the target gets closer to an agent and otherwise it approaches to zero.
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it can be set to a sufficiently small number for all agents by default if a control designer

wants to avoid this particular common term. Here, we also would like to mention that the

authors of [34] propose a new distributed control method using networks having multiple

layers (multiplex networks) to avoid similar common terms in distributed system-theoretical

algorithms. While it is outside the scope of this current paper, one may use the ideas and

tools from [34] in order to completely avoid α, γ, and σ in (7) and (8) with a multiplex

networks approach.

Remark 12. The integral action-based distributed control algorithm given by (7) is applied

to agents with dynamics of the form Ûxi(t) = ui(t), where ui(t) ∈ R denotes the control signal

of agent i, i = 1, . . . ,n, that satisfies the right hand side of (7) along with (8).

Next, let

x(t) , [x1(t), x2(t), . . . , xn(t)]T ∈ Rn, (9)

p(t) , [p1(t), p2(t), . . . , pn(t)]T ∈ Rn, (10)

c(t) , [c1(t), c2(t), . . . , cm(t),0, . . . ,0]T ∈ Rn, (11)

where m ≤ n is considered to ease notation without loss of generality. We can now rewrite

(7) and (8) in the compact form given by

Ûx(t) = − αL(G)x(t) − αK1(t)x(t) − αβx(t) + p(t) − eγσInt p0

+ αK2(t)c(t), x(0) = x0, (12)

Ûp(t) = − γL(G)x(t) − γσp(t), p(0) = p0, (13)

where L(G) ∈ IS
n×n
+ satisfies (2),

β , diag([β1, β2, . . . , βn]
T) ∈ IS

n×n
+ , (14)

K1(t) , diag([k1,1(t), . . . , k1,n(t)]T) ∈ IS
n×n
+ , (15)

with

k1,i(t) ,
∑
i∼h

kih(t) ∈ R+, (16)
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denoting the number of the inputs applied to agent i, i = 1, . . . ,n, and

K2(t) ,



k2,11(t) · · · k2,1n(t)

k2,21(t) · · · k2,2n(t)
...

. . .
...

k2,n1(t) · · · k2,nn(t)


∈ Rn×n, (17)

with

k1,i(t) =
n∑

j=1
k2,i j(t). (18)

We refer the reader to [16], [17] for specific examples illustrating the construction of K1(t)

and K2(t) matrices.

Since we are interested in driving the states of all (active and passive) agents to an

user-adjustable neighborhood of the average of the inputs applied to the active agents, we

define

δ(t) , x(t) − ε(t)1n ∈ Rn, (19)

ε(t) ,
1T

n K2(t)c(t)
1T

n K2(t)1n
∈ R, (20)

where δ(t) is the error between xi(t), i = 1, . . . ,n, and the average of the applied inputs ε(t).

Using (20), ε(t) can be equivalently written as

ε(t) =
k2,11(t)c1(t) + k2,12(t)c2(t) + · · · + k2,21(t)c1(t) + k2,22(t)c2(t) + · · ·

k2,11(t) + k2,12(t) + · · · + k2,21(t) + k2,22(t) + · · ·
, (21)

that clearly shows the average of the applied inputs. Note that the denominator of (21) is

nonzero, since we assume that there exists m ≥ 1 inputs, and hence, there exists at least

one nonzero value on the denominator of (21). This concludes the algorithmic setup of the

proposed active-passive dynamic consensus filters.
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4.2. STABILITY AND PERFORMANCE GUARANTEES

To analyze stability and performance guarantees of the proposed active-passive

dynamic consensus filters introduced in Section 4.1, we first note that (13) can be rewritten

as

p(t) = e−γσInt p0 +

∫ t

0
−γe−γσIn(t−τ)L(G)x(τ)dτ,

= Ine−γσt p0 +

∫ t

0
−γIne−γσ(t−τ)L(G)x(τ)dτ, (22)

where eφIn = Ineφ, φ ∈ R, is used [35]. In addition, using (22), (12) can be rewritten as

Ûx(t) = − αL(G)x(t) − αK1(t)x(t) − αβx(t) +
∫ t

0
−γe−γσ(t−τ)L(G)x(τ)dτ

+ αK2(t)c(t), x(0) = x0. (23)

We now define

z(t) ,
∫ t

0
−γe−γσ(t−τ)BT(G)x(τ)dτ. (24)

Since (1) holds, then

Ûx(t) = − αL(G)x(t) − αK1(t)x(t) − αβx(t) + B(G)z(t) + αK2(t)c(t), x(0) = x0, (25)

Ûz(t) = − γBT(G)x(t) − γσz(t), z(0) = 0. (26)

follows from (23) and (24).

Next, using (25), the time derivative of the error (19) is given by

Ûδ(t) = − αF (G)δ(t) − αK1(t)δ(t) + B(G)z(t) + Lc(t)K2(t)c(t) − αβ1nε(t) − 1n Ûε(t),

δ(0) = δ0, (27)

where

F (G) , L(G) + β ∈ IS+, (28)

as a direct consequence of Lemma 4, and

Lc(t) =
K1(t)1n1T

n

1T
n K2(t)1n

− In. (29)
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Now, considering

e(t) , z(t) − αBT(G)L†(G)Lc(t)K2(t)c(t), (30)

and noting from (18) that

1T
n Lc(t) = 1T

n
[
K1(t)1n1T

n/(1T
n K2(t)1n) − In

]
= 0, (31)

(27) can be rewritten as

Ûδ(t) = − αF (G)δ(t) − αK1(t)δ(t) + B(G)e(t) − αβ1nε(t) − 1n Ûε(t). (32)

Finally, the time derivative of (30) is given by

Ûe(t) = − γBT(G)δ(t) − γσe(t) − αγσKc(t)c(t) − α ÛKc(t)c(t) − αKc(t) Ûc(t), e(0) = e0,

(33)

with

Kc(t) , BT(G)L†(G)Lc(t)K2(t). (34)

For the following result, the closed-loop error dynamics given by (32) and (33) can

be rewritten as

Ûδ(t) = − αF (G)δ(t) − αK1(t)δ(t) + B(G)e(t) + s1(t), (35)

Ûe(t) = − γBT(G)δ(t) − γσe(t) + s2(t), (36)

where the perturbation terms2 are given by

s1(t) , − αβ1nε(t) − 1n Ûε(t), (37)

s2(t) , − αγσKc(t)c(t) − α ÛKc(t)c(t) − αKc(t) Ûc(t). (38)

Theorem 4.1. Consider the active-passive dynamic consensus filter given by (7) and (8),

where nodes exchange information using local measurements though a connected, undi-

rected graph topology. Then, the closed-loop error dynamics given by (35) and (36) are

bounded.
2It is assumed here that there exist positive constants s∗1 and s∗2 such that ‖s1(t)‖2

2 ≤ s∗1 and ‖s2(t)‖2
2 ≤ s∗2

hold.
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Proof. Consider the Lyapunov-like function given by

V (δ(t), e(t)) =
1

2α
δT(t)δ(t) +

1
2αγ

eT(t)e(t), (39)

and note that V (0,0) = 0 and

V (δ(t), e(t)) > 0, ∀ (δ(t), e(t)) , (0,0) . (40)

The time-derivative of (39) along the trajectories of (35) and (36) can be given by

ÛV(·) =
1
α
δT(t)

[
−αF (G)δ(t) − αK1(t)δ(t) + B(G)e(t) + s1(t)

]
+

1
αγ

eT(t)
[
−γBT(G)δ(t) − γσe(t) + s2(t)

]
,

= − δT(t)F (G)δ(t) − δT(t)K1(t)δ(t) +
1
α
δT(t)s1(t) −

σ

α
eT(t)e(t) +

1
αγ

eT(t)s2(t),

≤ − δT(t)F (G)δ(t) −
σ

α
eT(t)e(t) +

1
α
δT(t)s1(t) +

1
αγ

eT(t)s2(t),

≤ − d1‖δ(t)‖2

(
‖δ(t)‖2 −

d3
d1

)
− d2‖e(t)‖2

(
‖e(t)‖2 −

d4
d2

)
, (41)

where

d1 , λmin (F (G)) , d2 ,
σ

α
, d3 ,

s∗1
α
, d4 ,

s∗2
αγ
.

Since

ÛV (δ(t), e(t)) ≤ 0, (42)

when ‖δ(t)‖2 ≥
d3
d1

and ‖e(t)‖2 ≥
d4
d2

, it follows that the closed-loop error dynamics given

by (35) and (36) are bounded [36], [37]. �

In the next corollary, we determine the bound of δ(t) for t ≥ T characterizing the

ultimate distance between x(t) and 1nε(t), which is of practical importance for multiagent

systems applications.
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Corollary 6. Consider the active-passive dynamic consensus filter given by (7) and (8),

where nodes exchange information using local measurements though a connected, undi-

rected graph topology. Then, the bound of δ(t) for t ≥ T is given by

‖δ(t)‖2
2 ≤

‖β‖2
2ε

∗2

λ2
min(F (G))

+
2‖β‖2nε∗ Ûε∗

αλ2
min(F (G))

+
n2 Ûε∗2

α2λ2
min(F (G))

+
α2

γ

[
p∗21 +

2p∗1p∗2
γσ

+
p∗22
γ2σ2

]
,

(43)

where ‖ε(t)‖2 ≤ ε∗, ‖ Ûε(t)‖2 ≤ Ûε∗, ‖BT(G)L†(G) ·Kc(t)c(t)‖2 ≤ p∗1, and

| |BT(G)L†(G) ÛKc(t)c(t) + BT(G)L†(G)Kc(t) Ûc(t)| |2 ≤ p∗2.

Proof. In the proof of Theorem 4.1, we show that (42) holds when ‖δ(t)‖2 ≥ d3/d1 and

‖e(t)‖2 ≥ d4/d2. Note that this implies

ÛV(δ(t), e(t)) < 0, (44)

outside the compact set defined by

S ,
{
(δ(t), e(t)) : ‖δ(t)‖2 ≤

d3
d1

}⋂{
(δ(t), e(t)) : ‖e(t)‖2 ≤

d4
d2

}
. (45)

Since V(δ(t), e(t)) cannot grow outside S, the evolution of V(δ(t), e(t)) is upper bounded by

V(δ(t), e(t)) ≤ max
(δ(t),e(t))∈S

V(δ(t), e(t))

=
1

2α
d2

3

d2
1
+

1
2αγ

d2
4

d2
2
, t ≥ T, (46)

where using

1
2α
δT(t)δ(t) ≤ V(δ(t), e(t)), (47)

in (46), (43) follows. �

Remark 13. The bound of δ(t) given by (43) shows the effect of the design parameters

α, γ, σ, and βi of the active-passive dynamic consensus filter given by (7) and (8) on the

overall network performance. In particular, it can be seen that when α and γ are chosen

such that 1
α2 and α2

γ are small, then (43) is small for t ≥ T . This provides a parameter tuning

guideline for the proposed filter in (7) and (8).
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5. EVENT-TRIGGERED ACTIVE-PASSIVE DYNAMIC CONSENSUS FILTERS

While the results of Section 4 go beyond [15]–[17] in terms of reducing the infor-

mation exchange in active-passive dynamic consensus filters and allowing for time-varying

agent roles, agents still need to continuously exchange information among themselves. This

often incurs a high cost of interagent information exchange, which may not always be prac-

tical, especially for applications in low bandwidth environments. In addition, agents must

synchronously update their states in (7) and (8). This requirement may not be trivially

satisfied without an enforcing mechanism keeping the agent states synchronized.

For addressing these practical shortcomings, Section 5.1 generalizes the results of the

previous section using event-triggered control theory such that agents schedule information

exchange dependent on errors exceeding user-defined thresholds (not continuously). This

generalization allows agents to further reduce the overall cost of interagent information

exchange and to determine when to broadcast their information to their neighbors thus

eliminating the need to synchronize their states. Furthermore, Section 5.2 shows that the

proposed generalization still enables the states of all agents to converge to an user-adjustable

neighborhood of the average of the exogenous inputs applied to a time-varying set of active

agents.

5.1. PROPOSED ACTIVE-PASSIVE DYNAMIC CONSENSUS
FILTERS WITH EVENT-TRIGGERING

Building on the results of Section 4, we now propose the new event-triggered integral

action-based distributed control algorithm given by

Ûxi(t) = − α
∑
i∼ j

(
x̂i(t) − x̂ j(t)

)
− αβi x̂i(t) + pi(t) − e−γσt pi(0)

− α
∑
i∼h

kih(t) (x̂i(t) − ch(t)) , x̂i(0) = x0i, (48)

Ûpi(t) = − γ
∑
i∼ j

(
x̂i(t) − x̂ j(t)

)
− σγpi(t), pi(0) = p0i, (49)
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where x̂i(t) ∈ R denotes an event-triggered agent state that is the only information exchanged

with the neighbors of this agent. Here, since we are interested in scheduling the exchanged

information dependent on errors exceeding a user-defined threshold, let

‖xi(t) − x̂i(t)‖2 ≤ τi, τi > 0, (50)

where τi is a user-defined local threshold (upper bound) on the distance between the agent’s

state and the agent’s event-triggered state. An agent updates and broadcasts its event-

triggered state to neighboring agents when the local event-trigger in (50) is violated.

Next, let

x(t) , [x1(t), x2(t), . . . , xn(t)]T ∈ Rn, (51)

x̂(t) , [x̂1(t), x̂2(t), . . . , x̂n(t)]T ∈ Rn, (52)

p(t) , [p1(t), p2(t), . . . , pn(t)]T ∈ Rn, (53)

c(t) , [c1(t), c2(t), . . . , cm(t),0, . . . ,0]T ∈ Rn, (54)

where m ≤ n. We can now rewrite (48) and (49) in the compact form given by

Ûx(t) = − αL(G)x̂(t) − αK1(t)x̂(t) − αβ x̂(t) + p(t) − eγσInt p0

+ αK2(t)c(t), x(0) = x0, (55)

Ûp(t) = − γL(G)x̂(t) − γσp(t), p(0) = p0. (56)

In addition, we define

∆(t) , x̂(t) − x(t) ∈ Rn, (57)

where ∆(t) is the error between the state x(t) and the event-triggered state x̂(t). Using (19),

note that ∆(t) can be equivalently written as

∆(t) = x̂(t) − δ(t) − ε(t)1n. (58)

This concludes the algorithmic setup of the proposed event-triggered active-passive dynamic

consensus filters.
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5.2. STABILITY AND PERFORMANCE GUARANTEES

Similar to Section 4.2, we first note that (56) has the solution given by

p(t) = e−γσInt p0 +

∫ t

0
−γe−γσIn(t−τ)L(G)x̂(τ)dτ,

= Ine−γσt p0 +

∫ t

0
−γIne−γσ(t−τ)L(G)x̂(τ)dτ, (59)

Using (59), (55) can be given by

Ûx(t) = − αL(G)x̂(t) − αK1(t)x̂(t) − αβ x̂(t) + αK2(t)c(t)

+

∫ t

0
−γe−γσ(t−τ)L(G)x̂(τ)dτ, x(0) = x0, (60)

Now, let

z(t) ,
∫ t

0
−γe−γσ(t−τ)BT(G)x̂(τ)dτ. (61)

Since (1) holds, then

Ûx(t) = − αL(G)x̂(t) − αK1(t)x̂(t) − αβ x̂(t) + B(G)z(t) + αK2(t)c(t), x(0) = x0, (62)

Ûz(t) = − γBT(G)x̂(t) − γσz(t), z(0) = 0, (63)

follows from (60) and (61). Using (62) and following the steps highlighted in Section 4.2,

the closed-loop error dynamics can now be written as

Ûδ(t) = − αF (G)(∆(t) + δ(t)) − αK1(t)(∆(t) + δ(t)) + B(G)e(t) + s1(t), (64)

Ûe(t) = − γBT(G)(∆(t) + δ(t)) − γσe(t) + s2(t). (65)

In the following theorem, we demonstrate the boundedness of the error dynamics given by

(64) and (65).

Theorem 5.1. Consider the event-triggered active-passive dynamic consensus filter given

by (48) and (49) subject to the event-triggering condition in (50), where nodes exchange

local information over a connected, undirected graph topology G. Then, the error dynamics

given by (64) and (65) are bounded.
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Proof. Consider the Lyapunov-like function given by (39). The time-derivative of (39)

along the trajectories of (64) and (65) can be given by

ÛV(·) =
1
α
δT(t)

[
−α (F (G) + K1(t)) (∆(t) + δ(t)) + s1(t) + B(G)e(t)

]
+

1
αγ

eT(t)
[
−γBT(G)(∆(t) + δ(t)) − γσe(t) + s2(t)

]
,

≤ − δT(t)F (G)δ(t) −
σ

α
eT(t)e(t) +

1
α
δT(t)s1(t) −

1
α

eT(t)BT(G)∆(t) +
1
αγ

eT(t)s2(t)

− δT(t) (F (G) + K1(t))∆(t),

≤ − d1‖δ(t)‖2

(
‖δ(t)‖2 −

d3
d1

)
− d2‖e(t)‖2

(
‖e(t)‖2 −

d4
d2

)
, (66)

where d1 , λmin(F (G)), d2 , σ
α , d3 , (‖F (G)‖F + mn)·τ∗+

s∗1
α , and d4 , τ∗

σ ‖B(G)‖F+
s∗2
σα ,

with τ∗ , n maxi τi. Note that ‖∆(t)‖ ≤ τ∗ follows from (50) and ‖K1(t)‖F < mn can be

obtained by summing the entries of (18). Since

ÛV (δ(t), e(t)) ≤ 0, (67)

when ‖δ(t)‖2 ≥ d3/d1 and ‖e(t)‖2 ≥ d4/d2, it follows that the closed-loop error dynamics

given by (64) and (65) are bounded ([36], [37]). �

Next, we determine the bound of δ(t) for t ≥ T characterizing the ultimate distance

between x(t) and 1nε(t).

Corollary 7. Consider the active-passive dynamic consensus filter given by (48) and (49)

subject to the event-triggering condition in (50), where nodes exchange information using

local measurements though a connected, undirected graph topology. Then, the bound of

δ(t) for t ≥ T is given by

‖δ(t)‖2
2 ≤

p∗21 τ
∗2

λmin(F ((G))2
+

p∗1τ
∗s∗1

αλmin(F ((G))
+

s∗21
α2λmin(F ((G))2

+
α2τ∗‖B(G)‖2

F
γ

+
2s∗2τ

∗‖B(G)‖2
F

γ
+

2αs∗22
γ
, (68)

where ‖F (G) + mn‖F ≤ p∗1.
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Proof. In the proof of Theorem 5.1, we showed that (66) holds when ‖δ(t)‖2 ≥ d3/d1 and

‖e(t)‖2 ≥ d4/d2. Note that this implies ÛV(δ(t), e(t)) < 0 outside the compact set

S ,
{
(δ(t), e(t)) : ‖δ(t)‖2 ≤

d3
d1

}⋂{
(δ(t), e(t)) : ‖e(t)‖2 ≤

d4
d2

}
. (69)

Since V(δ(t), e(t)) cannot grow outside S, the evolution of V(δ(t), e(t)) is upper bounded by

V(δ(t), e(t)) ≤ max
(δ(t),e(t))∈S

V(δ(t), e(t))

=
1

2α
d2

3

d2
1
+

1
2αγ

d2
4

d2
2
, t ≥ T, (70)

where using (47) in (70), (68) follows. �

Remark 14. The bound of δ(t) given by (68) shows the effect of the design parameters α

and γ of the event-triggered active-passive dynamic consensus filter given by (48) and (49)

on the overall network performance. In particular, when the design parameters α and γ are

chosen such that 1
α2 , α2

γ , and 1
γ are small, then (68) is small for t ≥ T .

Remark 15. The bound of δ(t) given by (68) shows that if τi is chosen to be small, then

‖δ(t)‖2
2 shrinks. However, choosing τi small causes the event-triggering condition in (50)

to be violated more frequently, increasing the total cost of interagent information exchange.

To this end, τi should be chosen such that the desired distance between the state of all agents

and the average of the applied exogenous inputs is maintained while keeping the total cost

of interagent information exchange low.

In the following corollary, we compute the lower bound of the event-triggered inter-

sample time, demonstrating that no Zeno behavior can occur.

Corollary 8. Consider the active-passive dynamic consensus filter given by (48) and (49)

subject to the event-triggering condition in (50), where agents communicate over a con-

nected, undirected graph topology G. Then, there exists positive scalars ai such that

si,k+1 − si,k ≥ ai, i = 1,2,3 . . . ,n, ∀k ∈ N. (71)
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Proof. Consider the time derivative of (50) over the interval t ∈
[
si,k, si,k+1

]
,∀k ∈ N, given

by

d
dt

‖ x̂i(t) − xi(t)‖ ≤ ‖ Û̂xi(t) − Ûxi(t)‖ = ‖ Ûxi(t)‖, (72)

which implies that

‖ Ûxi(t)‖ =






α∑
i∼ j

(
x̂ j(t) − x̂i(t)

)
− αβi x̂i(t) + pi(t) − e−γσt pi(0) + α

∑
i∼h

kih(t) (ch(t) − x̂i(t))






,
≤ α







∑i∼ j

x̂i(t) − x̂ j(t)







 + ‖pi(t)‖ + αβi‖ x̂i(t)‖

+ ‖e−γσt pi(0)‖ +






α∑
i∼h

kih(t)x̂i(t) − ch(t)






 . (73)

Next, let x̂i(t) < x∗ and pi(t) ≤ p∗ be the upper bounds of the the event-triggered state and

integral action trajectories respectively, where the existence of positive constants x∗ and p∗

are guaranteed by Theorem 5.1. Using x∗ and p∗ in (73) gives the upper bound of derivative

of the event-triggering as

d
dt

‖ · ‖ ≤ α







∑i∼ j

x̂i(t) − x̂ j(t)







 + αβi x∗ + p∗ + ‖pi(0)‖ +






α∑
i∼h

kih(t)x̂i(t) − ch(t)






 ,
≤ 2αN x∗ + αβi x∗ + 2 p∗ + αh

(




∑
i∼h

x̂i(t)






 +





∑

i∼h

ch(t)







)
,

≤ α (2N x∗ + βi) x∗ + 2 p∗ + αh2x∗ + αh2c∗,

≤ α
(
2N x∗ + βi + h2

)
x∗ + 2 p∗ + αh2c∗. (74)

Letting φ be an upper bound for (74) and since the initial conditions of each node satisfy

limt→si,k+ ‖ x̂i(t) − xi(t)‖ = 0, it follows from (74) that

‖ x̂i(t) − xi(t)‖ ≤ φ
(
t − si,k

)
, ∀t ∈

[
si,k, si,k+1

]
. (75)

Thus, if (50) is violated, then limt→s−
i,k+1

‖ x̂i(t) − xi(t)‖ = τi and it follows from (75) that

si,k+1 − si,k ≥ ai. �



107

Remark 16. Zeno behavior implies that an agent must update its local state infinitely fast.

In the context of the integral action-based distributed control algorithm presented in (7)

and (8), Zeno behavior also implies that agents must exchange information continuously.

Corollary 8 demonstrates that the inter-sample times for information exchange between

nodes are positive scalars; hence, the proposed event-triggered active-passive dynamic

consensus filter given by (48) and (49) does not yield Zeno behavior and reduces the total

cost of information exchange between nodes.

Remark 17. The results of this section also demonstrate that a node broadcasts its local

event-triggered state only when the distance between its current local state and its event-

triggered state grows more than a local user-defined error threshold τi, which gives agents

the ability to update their states asynchronously.

6. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we present four illustrative numerical examples. Specifically, Exam-

ples 1 and 2 demonstrate the results of Section 4 for the active-passive dynamic consensus

filter given by (7) and (8). In addition, Examples 3 and 4 demonstrate the results of Section 5

for the event-triggered active-passive dynamic consensus filter given by (48) and (49).

Example 6. We first consider a network with 25 agents exchanging information over

a connected, undirected ring graph topology, where there are 20 passive agents and 5

active agents. Specifically, each active agent is subject to an input with these inputs

given by c1(t) = sin(0.1t), c2(t) = cos(0.3t), c3(t) = cos(0.5t) + 2 sin(0.01t), c4(t) =

0.5 sin(0.2t)+1.5 cos(0.1t), and c5(t) = 2. Letting all agents have arbitrary initial conditions,

the bottom of Figure 2 shows the response of this network with the active-passive dynamic

consensus filter given by (7) and (8) subject to design parameters α = 1, γ = 1, σ = 0.1γ−1,

and ‖β‖2 = 0.001. To elucidate the results of Corollary 6 and Remark 13, the top of

Figure 2 shows the response of the network when we set α to 5 and γ to 50 such that 1
α2
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Figure 2. Response of a network with 25 agents communicating over a connected, undirected
ring graph topology with the active-passive dynamic consensus filter given by (7) and (8).
The bottom graph gives the agent response subject to design parameters α = 1, γ = 1,
σ = 0.1γ−1, and ‖β‖2 = 0.001 (solid lines denote local node states and the dashed line
denotes the actual average of the applied inputs). The top graph gives the agent response
subject to design parameters α = 5, γ = 50, σ = 0.1γ−1, and ‖β‖2 = 0.001.

and α2

γ are small; hence, (43) is small for t ≥ T . To summarize, (43) provides a systematic

way to tune the design parameters of the proposed active-passive dynamic consensus filter

as demonstrated in this example.
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Example 7. Consider a network with 24 agents exchanging information over four dif-

ferent connected, undirected graph topologies, where there are 5 active agents and 19

passive agents. Specifically, each active agent is subject to one of the inputs given by

c1(t) = sin(0.1t), c2(t) = cos(0.3t), c3(t) = cos(0.5t) + 2 sin(0.01t), c4(t) = 0.5 sin(0.2t) +

0.3 cos(0.1t), and c5(t) = 2. Letting all agents have arbitrary initial conditions, Figure 3

shows the response of the event-triggered active-passive dynamic consensus filter given in

(48) and (49) communicating over each network where all agents are subject to the design

parameters α = 3, γ = 15, τ = 0.03, σ = 0.1γ−1, and ‖β‖2 = 0.01. To elucidate the

results of Corollary 8 and following well-known results in literature (see, for example, [38],

[39]), Figure 3 demonstrates that networks with a high edge density, corresponding to a

large Fielder eigenvalue (λ) of the graph Laplacian, drive the states of all agents to a close

neighborhood of the weighted average of the applied exogenous inputs. In particular, the

bottom of Figure 3 considers a network where agents are only able to exchange information

with their nearest two neighbors in a ring topology, demonstrating that networks with low

edge densities are not able to track the weighted average of the applied exogenous inputs in a

sufficently close fashion. The top three networks in Figure 3 show that increasing the network

edge density, increasing the Fielder eigenvalue of the graph Laplacian, allows agents to

more closely track the weighted average of the set of applied exogenous inputs.

Example 8. We next consider a sensor network example with 9 agents tracking a dynamic

target as illustrated in Figure 4. In particular, each agent has a sensing radius; hence, the

roles of active and passive agents change with respect to time as the dynamic target moves in

this planar environment. Figure 5 shows the response of the sensor network with the active-

passive dynamic consensus filter given by (7) and (8) subject to design parameters α = 20,

γ = 150, σ = 0.1γ−1, and ‖β‖2 = 0.001. In this figure, the sensor network reconstructs

(i.e., estimates) the true trajectory of the target through local information exchange, where

this clearly illustrates the efficacy of the proposed active-passive dynamic consensus filter.
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Figure 3. States of 24 agents communicating over connected, undirected graphs. Note that
networks with a large edge density, corresponding to a large Fielder eigenvalue (λ) of the
graph Laplacian, allows agents to converge to a close neighborhood of the weighted average
of the applied exogenous inputs. Dashed lines denote the average of the set of applied
exogenous inputs and colored lines denote the agent states.

Example 9. We now consider a network of four agents communicating over a connected,

undirected Y graph topology using the event-triggered active-passive dynamic consensus

filter given by (48) and (49). Three agents are subject to filtered square wave inputs

with arbitrarily chosen frequencies and amplitudes, where agents are aiming to track the

average of the applied exogenous inputs. Figure 6 demonstrates that all agents converge to a

neighborhood of the average exogenous inputs for several different values of τi, i = 1,2,3,4.

Note that as the value of τi decreases, the agents converge closer to the average of the
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Figure 4. Sensor network with 9 agents tracking a dynamic target (dots denote the agents,
circles denote the sensing radius of agents, and the solid line denotes the target trajectory).

exogenous inputs. Figure 7 contrasts the total cost of interagent information exchange

required by the previous active-passive dynamic consensus filters in (7) and (8) with the

total cost of interagent information exchange required by the proposed filter given by (48)

and (49) for varying values of τi. As can be seen, as the value of τi increases, the total cost

of information exchange decreases.

Example 10. Finally, we demonstrate the benefits of using the event-triggered active-passive

dynamic consensus filters given by (48) and (49) as opposed to the active-passive dynamic

consensus filter proposed in (7) and (8) for a multiple target tracking scenario. Specifically,

consider a network of 19 agents, each responsible for sensing a portion of the environment

given in Figure 8, where the red and green balls move around the environment. An agent

is considered active for a certain ball if any portion of the ball is within the agent’s sensing
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Reconstructed Trajectory

True Trajectory

Figure 5. Response of the sensor network depicted in Figure 4 with 9 agents communicating
over a connected, undirected graph topology with the active-passive dynamic consensus
filter given by (7) and (8) subject to design parameters α = 20, γ = 150, σ = 0.1γ−1, and
‖β‖2 = 0.001.

field and passive otherwise. As can be seen from Figure 9, while both filters reconstruct the

position of both balls, the cost of interagent communication is lower for the event-triggered

filter3.

3A supplementary video can be viewed at https://youtu.be/fRdQ6if7fG8.

https://youtu.be/fRdQ6if7fG8
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Figure 6. Event-triggered states of 4 agents communicating over a connected, undirected Y
graph topology, where 3 agents are active and 1 is passive, with the values of τi, i = 1,2,3,4
as indicated. Note that as τi increases, the error between each agent’s event-triggered
state and the actual average of the applied inputs increases (the black dotted line indicates
the average of the actual applied exogenous inputs and solid colored lines represent the
event-triggered state of an agent).

7. EXPERIMENTAL STUDY

In this section, we apply the event-triggered active-passive dynamic consensus filter

given by (48) and (49) to a target tracking scenario. Specifically, we use a network of four

Raspberry Pi B+ model computers with Raspberry Pi camera modules to track a predefined
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Figure 7. Total cost of communication for a network of 4 agents communicating over a
connected, undirected ring graph with α = 5, γ = 50, σ = 0.1, and β = 0.001. The black
dotted line denotes the total cost of communication for the filter given by (7) and (8), and
the solid colored lines denote the total cost of communication for the proposed filter given
by (48) and (49) for a range of values of τi ∈ [0.0001,1], i = 1,2,3,4, with τi increasing as
the total number of required communications decreases.

target as it moves through an environment, where a camera is considered to be an active

agent if it is able to sense the target and passive if it is not able to sense the target. Each

computer is a standard Raspberry Pi computer with a Broadcom BCM2835 CPU clocked

at 700MHz and 1GB of RAM. Each computer has a dedicated 1080p camera module with
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Figure 8. Placement of 19 cameras for tracking two balls, red and green, as they move
through an environment. Orange dots denote cameras.

a 62 degree field of view, allowing four cameras to sense the entire test environment.

The cameras capture 640x480 pixel images at a rate of 10 frames per second to prevent

overloading the processor during image processing.

The OpenCV vision processing library was employed to track faces using the LBPH-

FaceRecognizer algorithm. The system was trained to recognize two faces, labeled ’0’ and

’1’, and with ’-1’ indicating an unknown face. If a ’-1’ is present in the recognition results,

the results are considered invalid and the agent is considered as passive in order to mitigate

the effects of noise in the system. When a valid face is recognized, the corresponding

label is used as an input into a Python implementation of the algorithm given in (48) and



116

Figure 9. Two norm of the error trajectories of each ball. The top panels compare the error
of the non-event-triggered trajectories with the error of the event-triggered trajectories.
The bottom panels give the two norm of the difference between the non-triggered state
trajectories and the triggered trajectories.

(49), where we have set α = 2, γ = 20, σ = 0.1γ−1, and τ = 0.1. Note that since the

event-triggered active-passive dynamic consensus filter is employed, agents do not need to

synchronize their update times.

Agents communicate over an IPV4 network, where some agents are wireless and

some agents are wired. Owing to the heterogeneous nature of the network, a Linksys

WRT54G2 router is used for communication. Note that a mesh network could be employed

for communication among agents, but was not utilized due to problems with the stock

Raspberry Pi wireless adapters not supporting all communication modes. When an agent

needs to broadcast new information, the information is sent to the network broadcast

address, allowing all agents to listen for new information. Figure 10 shows the view of the
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Figure 10. Four Raspberry Pi cameras sensing an environment, where one camera senses
a predefined target, and is thus considered as active, and three cameras do not sense any
targets, and are considered as passive. Note that the target is denoted with a green box
around the face with a label indicating the target’s name.

environment as seen from each camera, where one camera is active and the rest are passive.

Figure 11 demonstrates that while only one agent is active, all agents are able to report if a

target is sensed in the environment4.

8. CONCLUSION

In this paper, we proposed a new class of active-passive dynamic consensus filters.

The proposed filters only require agents to exchange their current state information with

neighbors in a simple and isotropic manner and, importantly, allow the roles of active

and passive agents to be time-varying for making them suitable for a wider range of

4A supplementary video can be viewed at https://youtu.be/p0SCOh2J1_U.

https://youtu.be/p0SCOh2J1_U
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Figure 11. State responses of four Raspberry Pi cameras tracking the predefined target,
where α = 2, γ = 20, σ = 0.1, and τ = 0.1. Agents exchange the ID of sensed target and
reach an agreement on which target is identified using the event-triggered active-passive
dynamic consensus filter given by (48) and (49) as seen in the 4 plots. Note that the target
in the photos has ID number 1 and the agents converge near the value 1.

multiagent systems applications. Specifically, we showed that the proposed active-passive

dynamic consensus filters enable the states of all agents to converge to a neighborhood

of the average of the observations sensed by a time-varying set of active agents and we

provided a systematic way to tune the design parameters of the proposed filters to make

this neighborhood small for achieving a desired overall network performance. In addition,
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we extended our results using tools and methods from event-triggered control theory to

further reduce the total cost of interagent information exchange and to remove the need for

agents to synchronize their information update intervals. Finally, four illustrative numerical

examples and an experimental study demonstrated the efficacy of the proposed theoretical

contribution.
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VI. RESILIENT CONTROL OF LINEAR TIME-INVARIANT NETWORKED
MULTIAGENT SYSTEMS

J. Daniel Peterson, Gerardo De La Torre, Tansel Yucelen, Dzung Tran, K. Merve Dogan,
and Drew McNeely

ABSTRACT

A local state emulator-based adaptive control law is proposed for multiagent systems

with agents having linear time-invariant dynamics. Specifically, we present and analyze

a distributed adaptive control architecture, where agents achieve system-level goals in the

presence of exogenous disturbances. Apart from existing relevant literature that makes

specific assumptions on network topologies, agent dynamics, and/or the fraction of agents

subjected to disturbances, the proposed approach allows agents to achieve system-level

goals — even when all agents are subject to exogenous disturbances. Several numerical

examples are provided to demonstrate the efficacy of our approach.

1. INTRODUCTION

The distributed control of networked multiagent systems, in which groups of agents

work together to achieve a common goal through local peer-to-peer information exchange,

has seen many advancements in the past decade (see, for example, [1], [2], and references

therein). Such networks are envisioned for applications in demanding, human interactive,

and safety critical systems where resilience in the presence of disturbances is required.

Until recently, however, much work has focused on fixed-gain distributed controllers, which

are unable to recover the desired performance in the presence of unknown exogenous

disturbances as outlined in [3] and [4]. Specifically, these systems do not have a centralized
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mechanism to monitor for node failures, malicious attacks, network link failures, and other

disturbances, which can lead to system instability and failure to achieve the system-level

goals as described in [3] and [5].

Several approaches, most notably in [6]–[9], have been developed to detect node

disturbances and mitigate their effects. These approaches simply assume that a node’s

information is no longer usable and all information from the node is ignored, which may

not be appropriate in scenarios where the effect of the disturbance can be suppressed.

The authors of [8] and [10] make assumptions on the network topology (other than the

standard assumption of connectedness) requiring the underlying communication network

to be known. In addition, [7], [10], and [11] assume that a maximum number of nodes

are disturbed, which can be a strict assumption in hostile environments. Computationally

expensive observer techniques are considered in [8] and [9]. In [12], the authors focus

on discovering subsets of disturbed nodes and require neighboring nodes to mitigate the

disturbance effects.

To address the short–comings of current approaches, we propose in this paper a

distributed adaptive control approach for a benchmark consensus problem, without loss of

generality, in the presence of exogenous disturbances for agents with linear time-invariant

dynamics. Specifically, in order to achieve the desired network performance, an adaptive

control approach utilizing local state emulators is employed. Similar approaches are re-

ported in [13] and [14], but only for the case where agents have single integrator dynamics.

While the authors of [15]–[17] consider the consensus problem for agents with disturbed

linear time-invariant dynamics, [15] only considers disturbances which are polytopic in na-

ture, [16] considers that agents must track an undisturbed leader, which is not practical for

leader–less networks, and [17] requires that agents exchange their disturbance estimates as

well as their state estimates, which incurs a higher communication cost, and which assumes
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that the communication channels are not disturbed. We show that for agents with linear

time invariant dynamics, the effects of exogenous disturbances affecting any subset (or all)

agents can be mitigated though local state information exchange.

The organization of this paper is as follows. First, we introduce some necessary

notation from linear algebra and graph theory used throughout this paper. We then present

the main results of this paper where we demonstrate the stability of the system in the

presence of constant disturbances. Finally, we demonstrate the efficacy of our proposed

control approach with several numerical examples.

2. MATHEMATICAL PRELIMINARIES

The notation used in this paper is fairly standard. Specifically, Rn denotes the set

of real n × 1 column vectors, Rm×n denotes the set of real m × n matrices, R+ denotes

a set of positive real numbers, Rm×n
+ (resp., R̄m×n

+ ) denotes a set of real m × n positive

definite (resp., nonnegative-definite) real matrices, ISm×n
+ (resp., ĪSm×n

+ ) denotes a set of real,

positive definite (resp., nonnegative definite) symmetric real matrices, Z the set of integers,

Z+ (resp., Z̄+) denotes the set of positive (resp., nonnegative) integers, 0n an n × 1 vector

with 0 entries, 1n an n×1 vector with all entries set to 1, 0m×n a m×n matrix with all entries

set to 0, 1m×n a m×n matrix with all entries set to 1, and In denotes the n×n identity matrix.

Furthermore, we write (·)T for the transpose, ‖ · ‖2 for the Euclidean norm, λi(A) for the i-th

eigenvalue of A (ordered from least to greatest), diag(a) for the diagonal matrix with the

vector a on its diagonal, [A]i j for the entry of the matrix A on the i-th row and j-th column,

spec(A) for the ordered spectrum of the matrix A, and JA for the Jordan decomposition of

the matrix A.

Next, we recall some of the basic notions from graph theory, where we refer to

references [4] and [18] for further details. An undirected graph G is defined by a set

VG = {1, . . . ,N} of nodes and a set EG ⊂ VG × VG of edges. Furthermore, the number

of agents, N , in the network is given by N = |VG |. If (i, j) ∈ EG , then the nodes i and j
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are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a node is

given by the number of its neighbors. Letting di be the degree of node i, then the degree

matrix of a graph G, D(G) ∈ Rn×n, is given by D(G) , diag(d), d = [d1, . . . , dN ]
T. A

path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph G

is connected if there is a path between any pair of distinct nodes. The adjacency matrix of

a graph G, A(G) ∈ Rn×n, is given by

[A(G)]i j ,


1, if (i, j) ∈ EG,

0, otherwise.

The Laplacian matrix of a graph, L(G) ∈ IS
n×n
+ , playing a central role in many graph

theoretic treatments of multiagent systems, is given by L(G) , D(G) − A(G). The

spectrum of the Laplacian of a connected, undirected graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)). (1)

Furthermore, there exist p, q ∈ Rn such that

qTL(G) = 0, L(G)p = 0, (2)

and qTp = 1.Note that q and p are normalized left and right eigenvectors associated with the

zero eigenvalue of L(G), respectively. For the ease of exposition, we will assume p = 1N

for the reminder of this paper without loss of generality. Throughout this paper, we model

a given multiagent system by a connected, undirected graph G, where nodes and edges

represent agents and inter-agent communication links, respectively. Finally, the results of

the following lemma will be used through this paper.

Lemma 6 (Theorem 2, [19]). Consider a group of agents communicating over a connected,

undirected graph G where each agent has local dynamics given by

Ûxi(t) = Axi(t) + Bui(t), xi(t0) = xi0, (3)

yi(t) = Cxi(t), (4)
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subject to the controller

ui(t) = −

[
K

∑
i∼ j

(yi(t) − y j(t))

]
. (5)

If

Rank(C) = Rank
©­­«

C

BTP̄

ª®®¬ , (6)

where P̄ ∈ ISn×n
+ satisfies

P̄A + ATP̄ − 2P̄BBTP̄ + In = 0, (7)

then, if the feedback gain matrix K = max{1, λ−1
k,min}K0, where λk,min is the minimum

non-zero eigenvalue (Fielder eigenvalue) of the associated Laplacian, and K0 is a solution

of

K0C = BTP̄, (8)

the eignevalues of

A − λk(L(G))BKC, k > 1, (9)

A − di BKC, i ∈ V(G), (10)

lie in the open left half plane, that is spec(A−λk(L(G))BKC) < 0, and spec(A−di BKC) < 0,

where λk(L(G)) are the non-zero eigenvalues of the associated Laplacian matrix.

3. RESILIENT NETWORKS FOR LINEAR TIME-INVARIANT
SYSTEMS

In this section, we propose a networked control approach for coordination of agents

with linear time-invariant dynamics in the presence of persistent local agent disturbances.

First, we present the local agent system dynamics and propose a novel method for mitigating

the effects of local agent disturbances. Next, we demonstrate that the agent dynamics

converge to the designed local state emulator dynamics. Finally, we characterize and

rigorously analyze the performance of the local agent state emulator.
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3.1. PROBLEM FORMULATION

Consider a networked multiagent system whose agents are subject to disturbances

such that their dynamics are given by

Ûxi(t) = Axi(t) + B(ui(t) + wi), xi(t0) = xi0, (11)

yi(t) = Cxi(t), (12)

where xi(t) ∈ Rn denotes the state of agent i, i = 1,2, . . . ,N , ui(t) ∈ Rm denotes the control

input to agent i, wi ∈ Rm denotes the constant unknown disturbance affecting agent i,

yi(t) ∈ Rl denotes the output of agent i, A ∈ Rn×n denotes the local agent state transition

matrix of agent i, B ∈ Rn×m denotes the control input matrix of agent i, C ∈ Rl×n denotes the

output matrix of agent i, and we assume the system (A,B,C) is stabilizable and detectable.

Remark 18. Note that a local controller may be used to place the eigenvalues of the local

state transition matrix A to achieve a desired response.

Since our aim is to mitigate the effect of local disturbances in order to synchronize

agent outputs, consider the relative output feedback controller

ui(t) = −

[
K

∑
i∼ j

(yi(t) − y j(t))

]
− ŵi(t), (13)

where K ∈ Rm×m is an output feedback gain matrix, y j(t) is the output of agent j, j =

1,2, . . . ,N , and ŵi(t) is the estimate of the disturbance of agent i to be designed. Using (12)

and (13) in (11), the local agent dynamics can be rewritten as

Ûxi(t) = Axi(t) − B
[
K

∑
i∼ j

(
Cxi(t) − Cx j(t)

)
+ ŵi(t) − wi

]
,

= Axi(t) − B
[
KC

∑
i∼ j

(
xi(t) − x j(t)

)
+ ŵi(t) − wi

]
. (14)

Next, consider the local state emulator for agent i, characterizing the desired local

behavior, given by

Û̂xi(t) = Ax̂i(t) − BKC
∑
i∼ j

(x̂i(t) − x j(t)), x̂i(t0) = xi0, (15)
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where x̂i(t) denotes the state emulator state of agent i, and note that while the state emulator

has no local disturbance sources, disturbances may enter through information exchange.

Our next objective is to design a local weight update law ŵi(t) to mitigate the effect

of the local disturbance wi. To this end, consider the weight update law given by

Û̂wi(t) = αBTPi x̃i(t), wi(t0) = wi0, (16)

with α > 0 being the system learning rate, x̃i(t) denoting the system error defined as

x̃i(t) , xi(t) − x̂i(t), (17)

and Pi ∈ ISn×n
+ satisfies the Lyapunov equation

Pi(A − di BKC) + (A − di BKC)TPi +Qi = 0, (18)

where Qi ∈ ISn×n
+ .

Remark 19. If K is chosen according to (8), then spec(A − di BKC) < 0 as a direct result

of Lemma 6, which implies solutions to (18) exist. Note that Lemma 6 only gives sufficient

conditions for solutions to exist, and there may be other methods to choose a valid stabilizing

matrix.

Now, using (14) and (15), the system error dynamics, characterizing the difference

between the local agent dynamics and the desired local state emulator dynamics, can be

given by

Û̃xi = (A − di BKC)x̃i(t) + Bw̃i(t), x̃i(t0) = 0, (19)

where the weight update error is defined as

w̃i(t) , wi − ŵi(t), (20)

and

Û̃wi(t) = − Û̂wi(t). (21)
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Finally, using (19), the local agent state emulator in (15) can be rewritten as

Û̂xi(t) = Ax̂i(t) − BKC
∑
i∼ j

(x̂i(t) − x j(t)) ± BKC
∑
i∼ j

x̂ j(t),

= Ax̂i(t) − BKC
∑
i∼ j

(x̂i(t) − x̂ j(t)) + BKC
∑
i∼ j

x̃ j(t). (22)

This concludes the setup of our problem. In the next section, we present the performance

and stability guarantees for the system given by (11) and (12) subject to the controller (13).

3.2. PERFORMANCE AND STABILITY ANALYSIS OF THE CLOSED-LOOP ER-
ROR DYNAMICS

In this section, we begin our analysis of the networked multiagent system. Specifi-

cally, we give sufficient conditions to demonstrate that the local agent dynamics converge to

the desired state emulator dynamics. Note that we will discuss the stability and performance

of the state emulator dynamics in the next section.

In the next theorem, we show that the system state xi(t) converges to the state

emulator x̂i(t).

Theorem 3.1. Consider an agent with uncertain dynamics given by (11) and (12), which

satisfy condition (6), subject to controller (13), where the feedback gain has been chosen

according to (8), with state emulator given by (15), and the adaptive feedback control law

given by (16), that exchange local information over a connected, undirected graph G. Then

the solution (x̃i(t),Bw̃i(t)) is uniformly exponentially stable for all (0,Bw̃i0) ∈ Rn × Rn.

Proof. Consider the Lyapunov function candidate for an individual agent given by

V(x̃i(t), w̃i(t)) = x̃T
i (t)Pi x̃i(t) +

1
α
w̃T

i (t)w̃i(t), (23)
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and note that V(0,0) = 0 and V(·) > 0, ∀x̃i(t), w̃i(t) ∈ R\{0}. Differentiating V(·) along

system trajectories (19) and (21) yields

ÛV(·) = Û̃xT
i (t)Pi x̃i(t) + x̃T

i (t)Pi Û̃xi(t) +
1
α
Û̃w

T
i (t)w̃i(t),

= x̃T
i (t)

[
(A − di BKC)TPi + Pi(A − di BKC)

]
x̃i(t) + 2xT

i (t)Pi Bw̃i(t) − 2x̃T
i (t)Pi Bw̃i(t),

= − x̃T
i (t)Qi x̃i(t),

≤ − λmin(Q)‖ x̃i(t)‖2
2 . (24)

Hence, the closed loop error dynamics given by (19) and (21) are Lyapunov stable for

all initial conditions. By evoking the Barbashin-Krasovskii-LaSalle Theorem ([20]), x̃i(t)

uniformly asymptotically vanishes as t → ∞, and as a result of (19), Bw̃i(t) → 0 as t → ∞.

Additionally, due to the system’s linear time-invariant dynamics, since (x̃i(t),Bw̃i(t)) is

uniformly asymptoticly stable, then it is also uniformly exponentially stable ([21]). �

Remark 20. Theorem 3.1 demonstrates that the error system dynamics (x̃i(t),Bw̃i(t)) are

exponentially stable, which is sufficient to show that the agent’s states, xi(t), converge to

the agent’s state emulator, x̂i(t). However, it is worth noting that, if, in addition to the

assumptions outlined in Theorem 3.1, BTB is invertible, then it can be shown that the

solution (x̃i(t), w̃i(t)) is uniformly exponentially stable for all (0, w̃i0) ∈ Rn × Rm.

Remark 21. Note that Theorem 3.1 assumes the local agent dynamics satisfy condition

(6), and the feedback gain matrix K has been chosen according to (8), which are sufficient

conditions for the existence of Pi ∈ IS+. If a feedback gain K can be found such that

solutions to (18) exist, then the results of Theorem 3.1 hold regardless of the results of

Lemma 6.
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3.3. PERFORMANCE AND STABILITY ANALYSIS OF THE STATE EMULATOR

In this section, we rigorously analyze the response of the system state emulator.

To begin, consider the aggregated state vectors given by

x(t) = [xT
1 (t), x

T
2 (t), . . . , x

T
N (t)]

T ∈ RnN, (25)

x̂(t) = [x̂T
1 (t), x̂

T
2 (t), . . . , x̂

T
N (t)]

T ∈ RnN, (26)

x̃(t) = [x̃T
1 (t), x̃

T
2 (t), . . . , x̃

T
N (t)]

T ∈ RnN, (27)

w̃(t) = [w̃T
1 (t), w̃

T
2 (t), . . . , w̃

T
N (t)]

T ∈ RmN, (28)

P = diag([BTP1, . . . ,BTPN ]) ∈ RmN×nN, (29)

and using (16), (19), and (22), the system dynamics can be written in the compact form

Û̂x(t) = Ux̂(t) + [A(G) ⊗ BKC]x̃(t), (30)

Û̃x(t) = [IN ⊗ A − ∆ ⊗ BKC]x̃(t) + [IN ⊗ B]w̃(t), (31)

Û̃w(t) = − αPx̃(t), (32)

with

U , IN ⊗ A − L(G) ⊗ BKC. (33)

Since we are interested in synchronizing the outputs of all agents, we investigate

the properties of the associated graph Laplacian as well as the local agent state transition

matrix A. To this end, consider the Jordan decompositions

L(G) = RJL(G)R−1, (34)

A = SJAS−1, (35)

where R and S are the transformation matrices of the associated graph Lapalcian v and

the local agent state transition matrix respectively, and the first column of R is denoted

as p = 1N and the first row of R−1 is denoted as qT. Because L(G) is connected and
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undirected,

JL =



λ1 . . . 0 0

0 λ2 . . . 0
...
...
. . .

...

0 0 . . . λN


,

=


0 0T

N−1

0N−1 J̄L

 , (36)

with λi being the i-th eigenvalue of the associated graph Laplacian ordered according to

(1), and

J̄L ,


λ2 . . . 0
...
. . .

...

0 . . . λN


. (37)

Similarly,

JA =


JA(0) 0T

n−r×r

0n−r×r J̄A

 , (38)

where JA(0) ∈ Rr×r are the aggregated Jordan blocks associated to the zero eigenvalue(s)

of the state transition matrix (if A has a non-zero null space), r is the algebraic multiplicity

of the zero eigenvalue of A and J̄A ∈ Rn−r×n−r being the Jordan blocks associated with the

non-zero eigenvalue(s) of A, which implies spec(J̄A) < 0. The number of Jordan blocks

associated to the zero eigenvalue is given by its geometric multiplicity.

Example 11. To elucidate this point, consider an agent who’s dynamics have a zero eigen-

value with geometric multiplicity of 2 and algebraic multiplicity of 3, JA(0) can be given

by

JA(0) =


0 1 0

0 0 0

0 0 0


.

N
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Using the decompositions given in (36) and (38), the state emulator transition matrix

U given by (33) can be decomposed as

JU = (R−1 ⊗ S−1)(IN ⊗ A − L(G) ⊗ BKC)(R ⊗ S),

= (R−1IN R ⊗ S−1 AS) − (R−1L(G)R ⊗ KS),

= (IN ⊗ JA) − (JL ⊗ KS),

=



JA . . . 0n 0n

0n JA − λ2KS . . . 0n

...
...

. . .
...

0n 0n . . . JA − λN KS


,

=


JA(0) 0T

N(n−r)

0N(n−r) J̄U

 , (39)

where KS = S−1BKCS, J̄U , IN−1 ⊗ JA − J̄L ⊗ KS, λk, k = 1,2, . . . ,N are the non-zero

eigenvalues of the associated Laplacian, and the system state emulator dynamics can be

equivalently given by

Û̂x(t) = T−1JUT x̂(t) + [A(G) ⊗ BKC]x̃(t), (40)

with T , R ⊗ S.

Next, the system given by (40) can be broken into convergent and non-convergent

dynamics, where the convergent dynamics exponentially decay to 0, and the non-convergent

dynamics are driven to a solution dependent on the local agent dynamics given by A, which

will be analyzed in Theorem 3.3. To this end, let

Û̂z(t) = JA(0)ẑ(t) + A1 x̃(t), ẑ(t0) = χ10, (41)

Û̂c(t) = J̄U ĉ(t) + A2 x̃(t), ĉ(t0) = χ20, (42)

where ẑ(t) denotes the non-convergent system dynamics, ĉ(t) denotes the convergent system
dynamics, χ10 ∈ Rr is given by the first r elements of x̂0, χ20 ∈ RNn−r is given by the last

Nn − r elements of x̂0, A1 ∈ Rr×Nn is given by the first r rows of T−1[A(G) ⊗ BKC]T , and

A2 ∈ Rr×Nn−r is given by the last Nn − r rows of T−1[A(G) ⊗ BKC]T .
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Finally, the closed-loop system dynamics given by (31), (32), and (40) can be written

in the compact form

Ûξ(t) = Mξ(t), ξ(t0) = [χT
10, χ

T
20,0, w̃

T
0 ]

T, (43)

with

ξ ,
[
ẑT(t), ĉT(t), x̃T(t), w̃T(t)

] T
∈ R2Nn+Nm, (44)

and

M =



JA(0) 0 A1 0

0 J̄U A2 0

0 0 IN ⊗ A − ∆ ⊗ BKC IN ⊗ B

0 0 −αP 0


, (45)

is the partitioned system matrix where the dimensions have been omitted for brevity. The

next theorem demonstrates the stability of the closed-loop system dynamics given by (43).

Theorem 3.2. Consider an agent with uncertain dynamics given by (11) and (12), which

satisfy condition (6), subject to controller (13), where the feedback gain has been chosen

according to (8), with state emulator given by (15), and the adaptive feedback control law

given by (16), that exchange local information over a connected, undirected graph G. Then,

the convergent system dynamics given by (42) are exponentially stable.

Proof. Consider the partitioned system transition matrix given by (45), which demonstrates

that the convergent and non-convergent dynamics can be decoupled, and the stability of the

convergent dynamics given by ĉ(t) depend only on

spec(J̄U)
⋃

spec
©­­«

IN ⊗ A − ∆ ⊗ BKC IN ⊗ B

−αP 0


ª®®¬ . (46)

Theorem 3.1 showed that

spec
©­­«

IN ⊗ A − ∆ ⊗ BKC IN ⊗ B

−αP 0


ª®®¬ < 0, (47)
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which implies that we only need demonstrate that spec(J̄U) < 0. Consider that spec(J̄U) is

given by

spec(J̄U) = {spec (JA − λk(L(G))Ks) : k ∈ [2,N]} ,

= {spec (A − λk(L(G))BKC) : k ∈ [2,N]} ,

< 0, (48)

as direct consequence of Lemma 6, and it follows that the convergent mode system dynamics

(42) are exponentially stable. �

Remark 22. Note that Theorem 3.2 assumes the local agent dynamics given satisfy con-

dition (6), and the feedback gain K has been chosen according to (8), which are sufficient

conditions for spec(J̄U) < 0. If a feedback gain K can be found such that spec(J̄U) < 0

holds, then the results of Theorem 3.2 hold regardless of the results of Lemma 6.

Remark 23. Theorem 3.2 implies that the states of the local agent system dynamics cor-

responding to the negative eigenvalues of the local agent system state transition matrix

A are exponentially stable and the corresponding shared states of xi(t) exponentially con-

verge. Note that the stability of the system then depends only on the stability of the states

corresponding to the zero eigenvalue(s) of the local agent system state transition matrix A.

In the next theorem, we analyze the stability of the system’s non-convergent dynam-

ics given by (41).

Theorem 3.3. Consider an agent with uncertain dynamics given by (11) and (12), which

satisfy condition (6), subject to controller (13), where the feedback gain has been chosen

according to (8), with state emulator given by (15), and the adaptive feedback control law

given by (16), that exchange local information over a connected, undirected graph G. Then,

all agents reach a consensus.
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Proof. Consider the non-convergent system dynamics given by (41). Then, the non-

convergent state emulator dynamics can be given by

Û̂xr(t) = (pT ⊗ S−1)JA(0)(q ⊗ S)x̂r(t) + A1 x̃(t), x̂r(0) = χ10, (49)

with x̂r(t) denoting the local state emulator states corresponding to zero eigenvalues(s) of

the local system transition matrix. Then, the solution to the system described by (49) can

be given by

x̂r(t) = (pT ⊗ S−1)eJA(0)t(q ⊗ S)χ10 +

∫ t

0
(pT ⊗ S−1)eJA(0)(t−τ)(q ⊗ S)A1 x̃(t)dτ. (50)

In Theorem 3.1, we demonstrated x̃(t) is uniformly exponentially stable, which implies∫ ∞

0
(pT ⊗ S−1)eJA(0)(t−τ)(q ⊗ S)A1 x̃(t)dτ = θ, (51)

such that ‖θ‖ < θ∗where θ ∈ Rr×1 and θ∗ is a computable upper bound. Then, the solution

(50) implies that the non-convergent system dynamics can be given by

x̂r(t) → (1N ⊗ S)eJA(0)t(qT ⊗ S−1)x̂(t0) + θ, (52)

and each individual agent’s state emulator converges to

x̂i(t) →
∑

k∈V(G)

qk SeJA(0)tS−1 x̂k(t0) + θi . (53)

Since θ is bounded, the non-convergent system dynamics are bounded and it follows that

all agents reach a consensus as t → ∞. �

Remark 24. Theorem 3.3 demonstrates that all agents will reach a consensus as t → ∞

on a quantity determined by the structure SeJA(0)tS−1, which represents the average of each

agent’s response to the local system dynamics corresponding to the zero eigenvalue(s) of the

local state transition matrix A, replicating well known results in literature (see, for example,

[22],[23]). In addition, if the system is undisturbed, the non-convergent system dynamics

will converge to the quantity given by

x̂i(t) →
∑

k∈V(G)

qk SeJA(0)tS−1 x̂k(t0). (54)
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Note that (54) may have a non-zero steady state response as demonstrated in the following

examples.

Example 12. Consider the case were each agent has first-order integrator dynamics given

as Ûxi = ui. In this case, S = 1 and JA(0) = 0 and, as a result, xi(t) → qTx(t0) as t → ∞.

Note this example only shows where the states of each agent corresponding to the zero

eigenvalue of the state transition matrix A will converge and does not include disturbances.

N

Example 13. Next, consider the case where local agent dynamics are second-order inte-

grators given as Üxi = ui with the Jordan decomposition of the local state transition matrix A

given by S = I2 and JA(0) =


0 1

0 0

 . The solution (54) can be given as Ûxi(t) → qT Ûx j(t0),

xi(t) → qTx j(t0) + qT Ûx j(t0)t as t → ∞. Note this example only shows where the states

of each agent corresponding to the zero eigenvalues of the state transition matrix A will

converge and does not include disturbances. N

Remark 25. Note that Theorem 3.3 assumes the local agent dynamics given satisfy con-

dition (6), and the feedback gain matrix K has been chosen according to (8), which are

sufficient conditions for the results of Theorem 3.1 to hold. If Theorem 3.1 holds, the results

of Theorem 3.3 hold regardless of the results of Lemma 6.

Remark 26. As shown in equation (50), x̃(t) acts as a vanishing disturbance to the system’s

non-convergent dynamics. Note, if ‖θ‖2 is sufficiently small, then agents not only achieve

consensus but consensus will occur near the undisturbed system consensus point, x̂i(t) →∑
k∈V(G) qk SeθtS−1 x̂k(t0). In addition, increasing α will decrease ‖θ‖2. For proof, consider

the summation of the Lyapunov function candidates in the proof of Theorem 3.1 given by

V(x̃(t), w̃(t)) =
∑

i∈V(G)

x̃T
i (t)Pi x̃i(t) + w̃i

T(t)w̃i(t)/α. (55)

Taking the time derivative yields

ÛV(x̃(t), w̃(t)) = −
∑

i∈V(G)

x̃T
i (t)Qi x̃i(t). (56)
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Therefore, V(x̃(t), w̃(t)) ≤ V(x̃(t0), w̃(t0)) = w̃T
0 w̃0/α and

∑
i∈V(G) x̃T

i (t)Pi x̃i(t) ≤ w̃T
0 w̃0/α.

As α is increased, the magnitude of the vanishing perturbation term ‖ x̃‖ becomes smaller,

decreasing ‖θ‖2. However, as with all adaptive control architectures, increasing the learning

rate excessively may result in reduced time delay margins, highly oscillatory control inputs,

and other implementation issues ([24], [25]).

4. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we demonstrate the efficacy of our approach through several numer-

ical examples. In particular, it is shown that agents achieve consensus in the presence of

constant, randomly selected disturbances. In our first example, we consider agents with

second order linear dynamics where output feedback is utilized to reach a consensus. In

our second example, we reach a consensus on the states of three F-16 aircraft with full state

feedback.

4.1. EXAMPLE 1: OUTPUT FEEDBACK

Consider a network of three agents whose dynamics are given by

A =


0 1

0 −2

 , B =


0

1

 , C = [2.99 1.94], (57)

which communicate according to the connected, undirected graph described by

L(G) =


1 −1 0

−1 2 −1

0 −1 1


. (58)

Solving for (7) for this system yields,

P̄ =


2.6458 1.0000

1.0000 0.6458

 , (59)
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Figure 1. States of each agent subject to constant disturbances with only the standard
consensus controller applied.

which satisfies (6) and gives K = 0.3333. Letting x1(0) = [4,−0.5], x2(0) = [−2,1],

and x3(0) = [1,−3], we see that without control, the states of each agent’s dynamics

naturally tends to x1(∞) = [3.75,0], x2(∞) = [−1.5,0], and x3(∞) = [−0.5,0]. Noting that

qT = 1
3 [1 1 1] is a left eigenvalue of (58) and solving (54), we find the undisturbed system

approaches xi1(∞) = 0.58 and xi2(∞) = 0 as t → ∞. With only the standard consensus

algorithm, Figure 1 shows that the agents cannot reach a consensus in the presence of

disturbances, where the constant disturbances are randomly selected as wi ∈ [−1,1]. Using

the controller in (13) and (16) with the parameters designed above and α = 1, the system

reaches a consensus even in the presence of constant disturbances as seen in Figure 2.

Increasing the learning gain α drives the system closer to the undisturbed system centroid

as shown in Figure 3. N
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Figure 2. States of each agent with the controller in (13) and (16) applied where α = 1.
The dashed line indicates the undisturbed system centroid.

Time (sec)
0 2 4 6 8 10 12 14 16

x
1

-2

0

2

4

Time (sec)
0 2 4 6 8 10 12 14 16

x
2

-4

-2

0

2

Figure 3. States of each agent with the controller in (13) and (16) applied where α = 15.
The dashed line indicates the undisturbed system centroid.
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4.2. EXAMPLE 2: F-16 AIRCRAFT

In this example, we consider the longitudinal dynamics of three identical F-16

aircraft whose dynamics are described by

A =



−0.0507 −3.8610 0 −32.2000

−0.0012 −0.5164 0.9283 −0.0975

−0.0001 1.4168 −2.1382 −2.2372

0 0 1.0000 0


, (60)

B =



0

−0.0717

−1.6450

0


, (61)

as given in [26], where the states µ,α,q, and θ are the change in aircraft speed, angle

of attack (AOA), pitch rate, and pitch, respectively. Agents exchange their states over a

connected, undirected line communication graph. Our aim is to synchronize the aircraft

µ values in the presence of disturbances, where the constant disturbances are randomly

selected as wi ∈ [−0.08,0.08]. Figure 4 demonstrates that the standard consensus controller

is insufficient to synchronize the system outputs. In Figure 5, we show that using the

controller in (13) and (16), the system converges to near the undisturbed system centroid

given by (54). Increasing the learning gain α brings the convergence point closer to the

undisturbed system centroid as shown in Figure 6. N

5. CONCLUSION

To contribute to resilient networked multiagent control, we have presented a novel

state emulator based adaptive control architecture. In particular, we have demonstrated the

proposed controller is able to mitigate the effects of constant disturbances and synchronize

the outputs of each agent. Unlike previous studies, which make assumptions on agent
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Figure 4. States of each aircraft subject to constant disturbances with only the standard
consensus controller applied.
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Figure 5. States of each aircraft with the controller in (13) and (16) applied where α = 1.
The dashed line indicates the undisturbed system centroid.
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Figure 6. States of each aircraft with the controller in (13) and (16) applied where α = 15.
The dashed line indicates the undisturbed system centroid.

dynamics and network topologies, the presented results hold for agents with general linear

time-invariant dynamics communicating over a connected undirected directed graph, even

when all agents are subject to disturbances.
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VII. ACTIVE-PASSIVE DYNAMIC CONSENSUS FILTERS FOR LINEAR
TIME-INVARIANT MULTIAGENT SYSTEMS

J. Daniel Peterson, Tansel Yucelen, and S. Jagannathan

ABSTRACT

Active-passive dynamic consensus filters consist of a group of agents, where a subset

of these agents are able to observe a quantity of interest (i.e. active agents) and the rest are

subject to no observations (i.e. passive agents). Specifically, the objective of these filters

is that the states of all agents are required to converge to the weighted average of the set of

observations sensed by the active agents. Existing active-passive dynamic consensus filters

in the classical sense assume that all agents can be modeled as having single integrator

dynamics, which may not always hold in practice. Motivating from this standpoint, the

contribution of this paper is to introduce a new class of active-passive dynamic consensus

filters, where agents have (homogeneous) linear time-invariant dynamics. We demonstrate

that for output controllable agents, the output of all active and passive agents converge to a

neighborhood of the weighted average of the set of applied exogenous inputs. A numerical

example is also given to illustrate the efficacy of the presented theoretical results.

1. INTRODUCTION

Distributed information fusion is a task performed by a collection of agents, where

agents communicate local information with neighbors to reach an agreement on a quantity

of interest. Owing to their distributed attributes, it can impact a wide array of applica-

tions that range from mission planning to surveillance and reconnaissance to guidance and

control of autonomous vehicles. At the core of many information fusion methods is a

consensus or consensus-like algorithm needed for the information fusion process. Among
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two important classes of consensus algorithms, static and dynamic consensus algorithms,

only dynamic consensus algorithms consider dynamic information, which is required for

many applications. Existing dynamic consensus filters, notably [1]–[5], are suitable for

applications where all agents are able to sense time-varying quantities of interest. From

a practical standpoint, an agent may be passive (unable to sense a quantity of interest)

for certain time instants. The distributed information fusion algorithms in [6]–[10] make

notable contributions to address this problem. However, these works assume all agents can

be modeled as single or double integrator dynamic systems which may not always hold in

practice.

The authors of [2], [11]–[17] make notable contributions to information fusion for

agents with linear time-invariant dynamics. However, only [2], [16], [17] consider agents

which are active for (able to sense) exogenous quantities of interest. Of these works, only

[17] considers the case where some agents are passive for certain time instants. The authors

of [17] only considers the case where the linear time-invariant dynamics (A,B,C) of the

exogenous system of interest are known. In addition, they consider their exogenous system

as a leader in a leader-follower paradigm, where this paper considers that active agents are

subjected to (possibly multiple) exogenous inputs with unknown dynamics.

The contribution of this paper is to present a new class of active-passive dynamic

consensus filters, where all agents have linear time-invariant dynamics. Specifically, we

build on the recent active-passive dynamic consensus filters presented in [6]–[10] as well

as utilize the tools and ideas of presented in [12], [15] to develop a static output feedback

algorithm for agents with linear time-invariant dynamics, which drives the outputs of all

active and passive agents to a neighborhood of the weighted average of a set of applied

exogenous inputs sensed by the active agents.
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2. PRELIMINARIES

In this paper, R denotes the set of real numbers, Rn denotes the set of n × 1 real

column vectors, Rn×m denotes the set of n × m real matrices, R+ denotes the set of positive

real numbers, Rn×n
+ denotes the set of n × n positive-definite real matrices, ISn×n

+ denotes

the set of n × n symmetric positive-definite real matrices, 0n denotes the n × 1 vector of

all zeros, 1n denotes the n × 1 vector of all ones, 0n×n denotes the n × n zero matrix, and

In denotes the n × n identity matrix. We also write (·)T for transpose, (·)−1 for inverse,

(·)† for generalized inverse, ‖ · ‖2 for the Euclidian norm, λmin(A) (resp., λmax(A)) for the

minimum (resp., maximum) eigenvalue of the matrix A, λi(A) for the i-th eigenvalue of

A (the eigenvalues of A are ordered from least to greatest value), diag(a) for the diagonal

matrix with the vector a on its diagonal, and [A]i j for the entry of the matrix A on the i-th

row and j-th column. The singular value decomposition of the positive definite matrix A is

given by A = SUST where U is a diagonal matrix with the eigenvalues of A on the diagonal,

the columns of S are the eigenvectors of A and SST = I.

Next, we concisely overview some key notions from graph theory (see, for example,

[18], [19] for details). In particular, an undirected graph G is defined by a set VG =

{1, . . . ,n} of nodes and a set EG ⊂ VG × VG of edges. If (i, j) ∈ EG , then the nodes i and

j are neighbors and i ∼ j indicates the neighboring relation. The degree of a node is the

number of its neighbors. Letting di be the degree of node i, then the degree matrix of a

graph G, D(G) ∈ Rn×n, is D(G) , diag(d), d = [d1, . . . , dn]
T. A path i0i1 . . . iL is a finite

sequence of nodes such that ik−1 ∼ ik , k = 1, . . . , L, and a graph G is said to be connected

when there exists a path between any pair of distinct nodes. We write A(G) ∈ Rn×n for

the adjacency matrix of a graph G, which is defined by [A(G)]i j , 1 if (i, j) ∈ EG and

[A(G)]i j , 0 otherwise. Moreover, we write B(G) ∈ Rn×m for the incidence matrix of a

graph G, which is defined by [B(G)]i j , −1 if node i is the tail of edge j, [B(G)]i j , 1 if

node i is the head of edge j, and [B(G)]i j , 0 otherwise, where m is the number of edges,

i is an index for the node set, and j is an index for the edge set (we assume that directions
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are arbitrarily assigned for labeling the edges). By definition, BT(G)1n = 0m. The graph

Laplacian matrix, denoted by L(G) ∈ IS
n×n
+ , is defined by L(G) , D(G) − A(G) or

equivalently

L(G) , B(G)BT(G). (1)

The spectrum of L(G) for a connected, undirected graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)), (2)

with 1n as the eigenvector corresponding to the zero eigenvalue and L(G)1n = 0n. The

results of this paper assume a connected, undirected graph G with nodes and edges re-

ceptively denoting agents and interagent communication links. Next, we introduce several

necessary lemmas.

Lemma 7 ([20]). The determinant of the block matrix

M ,


A B

C D

 , (3)

can be given as

det(M) = det(D) · det(A − BD−1C), (4)

where D is a non-singular matrix.

Lemma 8 ([21], p. 742). Consider a dynamic system whose dynamics are given by

Ûx(t) = Ax(t) + Bu(t), (5)

y(t) = Cx(t), (6)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the output, u(t) ∈ Rm is the input, A ∈ Rn×n is a

system state matrix, B ∈ Rn×m is a system input matrix, and C ∈ Rp×n is a system output

matrix. The system (A,B,C) is said to be output controllable when the output y(t) can

be driven from any initial output y(0) to any final output y(t f ) in the finite time interval
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0 ≤ t ≤ t f . The system given by (5) and (6) is output controllable when the matrix[
CB CAB CA2B · · · CAn−1B

]
, (7)

has rank p (i.e., has full row rank).

Lemma 9 ([22], Theorem 3.7.1). For any matrix C ∈ Rp×n with C having full row rank,

there is a n × p matrix C−1
R such that CC−1

R = Ip. Here, C−1
R is termed the right inverse of

C.

3. OVERVIEW OF ACTIVE-PASSIVE DYNAMIC CONSENSUS FILTERS

We now provide a concise an overview of the recent active-passive dynamic con-

sensus filters (see [9], [10] for further details). In particular, N agents exchange information

with each other through a connected, undirected graph G, and that there are l ≥ 1 inputs

(i.e local observations) that are received (i.e., sensed) by the active subset of agents. For

this setup, recall the following definitions from [9], [10].

Definition 3. If agent i, i = 1, . . . ,N , is subject to (i.e., senses) one or more inputs (resp.,

no inputs), then it is an active agent (resp., passive agent).

Definition 4. If an input interacts with (i.e., is sensed by) only one agent (resp., multiple

agents), then it is an isolated input (resp., nonisolated input).

The active-passive dynamic consensus filter architecture focuses on the problem of

driving the states of all agents, active and passive, to the weighed average of the exogenous

inputs applied to active agents. For this purpose, the authors of [9], [10] propose the integral

action-based distributed control algorithm given by

Ûxi(t) = − α
∑
i∼ j

(
xi(t) − x j(t)

)
− αβi xi(t) + pi(t) − e−γσt pi(0) − α

∑
i∼l

kil(t) (xi(t) − rl(t)) ,

xi(0) = xi0, (8)

Ûpi(t) = − γ
∑
i∼ j

(
xi(t) − x j(t)

)
− γσpi(t), pi(0) = pi0, (9)
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where xi(t) ∈ R denotes the state of agent i, i = 1, . . . ,N , that is exchanged with the

neighbors of this agent, and pi(t) ∈ R denotes the integral-action state of agent i, rl(t) ∈ R,

l = 1, . . . , h, denotes an input sensed by this agent, and α,σ, βi, and γ ∈ R+. Note that i ∼ l

notation indicates the exogenous inputs that an agent is subject to, which is similar to the

i ∼ j notation defined in Section 2.

4. LINEAR TIME-INVARIANT ACTIVE-PASSIVE DYNAMIC CONSENSUS
FILTER

In this section, we extend the active-passive dynamic consensus filters algorithm

presented in [9], [10] using the tools and ideas from [12], [15], to remove the restriction

that agents must be modeled as having single integrator dynamics. We demonstrate that, for

agents with output controllable linear time-invariant agents, the proposed controller drives

the outputs of all active and passive agents to a close neighborhood of the weighted average

of a set of applied exogenous inputs.

4.1. PROBLEM STATEMENT

Consider a network of agents with (homogeneous) linear time-invariant dynamics

given by

Ûxi(t) = Axi(t) + Bui(t), xi(0) = xi0, (10)

yi(t) = Cxi(t), (11)

where xi(t) ∈ Rn is the state of agent i, i = 1,2, . . . ,N , ui(t) ∈ Rm is the local input of agent

i, yi(t) ∈ Rp is the output of agent i, A ∈ Rn×n is a system matrix, B ∈ Rn×m is an input

matrix, and C ∈ Rp×n is an output matrix. In addition, consider the active-passive dynamic
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consensus filter given by

ui(t) = H
[
− α

∑
i∼ j

(
yi(t) − y j(t)

)
− βyi(t) + pi(t) − e−γσt pi0 −

∑
i∼l

kil (yi(t) − rl(t))
]
,

(12)

Ûpi(t) = − γ

[∑
i∼ j

(
yi(t) − y j(t)

)
+ σpi(t)

]
, pi(0) = pi0, (13)

where H ∈ Rm×p is a static feedback gain matrix, pi(t) ∈ Rp is the integral-action state of

agent i, α,σ, γ, β ∈ R+ are parameters, kil ∈ {0,1} is the weight of input l, l = 1,2, . . . h

applied to agent i, and rl(t) ∈ Rp is the l-th input applied to this agent. We also make the

following assumptions that are necessary for the results of this paper.

Assumption 1. The output matrix C has full row rank.

Assumption 2. There exists a static feedback controller H that stabilizes the family of

dynamic systems given by A − µBHC for β ≤ µ ≤ maxi di + Nh + β.

Assumption 3. There is a (unknown) constant r∗ ∈ R+ such that all of the applied exogenous

inputs satisfy ‖rl(t)‖ ≤ r∗.

Remark 27. This paper considers that the agent dynamics (A,B,C) are output controllable

[21]. However, designing the static output feedback gain, H, is an open problem in literature

and is beyond the scope of the results presented here. We refer the readers to [23]–[25] for

further study.

Remark 28. Owing to the distributed nature of the proposed output feedback active-passive

dynamic consensus filter, the stability of the proposed controller partially depends on agent

interactions, requiring that the feedback gain stabilize the family of dynamic systems in

assumption 2, where we discuss the necessity of assumption 2 below (see Remark 29).
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Since we are interested in driving the outputs of all agents to a close neighborhood

of the weighted average of a set of applied exogenous inputs, consider the error

∆i(t) , yi(t) − ε(t),

= C(xi(t) − C−1
R ε(t)), (14)

where C−1
R is the right inverse of the output matrix C defined in Lemma 9 and ε(t) is the

weighted average of the applied exogenous inputs given by

ε(t) ,
[
k11 + k12 + · · · + k1h + k21 + · · · + kNh

] −1 [k11r1(t) + k12r2(t) + · · ·

+ k1hrh(t) + k21r1(t) + · · · + kNhrh(t)
]
. (15)

Here, we consider that there are h ≥ 1 inputs. Note that the denominator of (15) is nonzero

owing to the existence of at least one exogenous input. In addition, it directly follows from

assumption 3 that there is a constant ε∗ ∈ R+ such that ‖ε(t)‖2 ≤ ε∗. This concludes our

problem setup.

4.2. ANALYSIS OF THE PROPOSED ACTIVE-PASSIVE DYNAMIC CONSENSUS
FILTERS

To analyze the proposed active-passive dynamic consensus filters, consider (14) in

the following equivalent form

∆i(t) = Cδi(t), (16)

with

δi(t) , xi(t) − C−1
R ε(t). (17)

Note that (16) implies when δi(t) is small, ∆i(t) is small; hence all agents converge to a

close neighborhood of the weighted average of the applied exogenous inputs. Motivating

from this standpoint, let

x(t) , [xT
1 (t), x

T
2 (t), · · · , x

T
N (t)]

T ∈ RNn, (18)

p(t) , [pT
1 (t), p

T
2 (t), · · · , p

T
N (t)]

T ∈ RNp, (19)
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y(t) , [yT
1 (t), y

T
2 (t), · · · , y

T
N (t)]

T ∈ RNp, (20)

r(t) , [rT
1 (t), · · · ,r

T
h (t),0

T
p×1, · · · ,0

T
p×1]

T ∈ RNp, (21)

δ(t) , [δT1 (t), δ
T
2 (t), · · · , δ

T
N (t)]

T ∈ RNn, (22)

and consider h ≤ N without loss of much generality. Applying (12) to (10) and (11), one

can compactly write

Ûx(t) = (IN ⊗ A)x(t) + (IN ⊗ BH)
[
− (βIN ⊗ C)x(t) − (K1 ⊗ C)x(t) − α(L(G) ⊗ C)x(t)

+ p(t) − eγσt p0 + (K2 ⊗ Ip)r(t)
]
, x(0) = x0, (23)

Ûp(t) = − γ(L(G) ⊗ C)x(t) − γσp(t), p(0) = p0. (24)

Next, δi(t) can be given in the compact form as

δ(t) = x(t) − 1N ⊗ C−1
R ε(t), (25)

whose time derivative is given by

Ûδ(t) =
(
IN ⊗ A − αL(G) ⊗ BHC − β ⊗ BHC − (K1 ⊗ BHC)

)
δ(t) + (K2 ⊗ BH) r(t)

+ (IN ⊗ BH)
[ (

p(t) + e−γσt p0
)
− ((K1 + βIN ) ⊗ C)

(
1N ⊗ C−1

R ε(t)
) ]

+ (IN ⊗ A)
(
1N ⊗ C−1

R ε(t)
)
, δ(0) = δ0, (26)

where L(G) ∈ IS
N×N
+ satisfies (2),

K1 , diag([k1,1, . . . , k1,N ]
T) ∈ IS

N×N
+ , (27)

with

k1,i ,
∑
i∼l

kil ∈ R+, (28)

denoting the total weight of the inputs applied to agent i, i = 1, . . . ,N , and

K2 ,



k2,11 · · · k2,1N

k2,21 · · · k2,2N

...
. . .

...

k2,N1 · · · k2,NN


∈ RN×N . (29)
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We refer the reader to [8], [26] for specific examples illustrating the construction of K1 and

K2 matrices.

Next, consider the solution of (24) given by

p(t) − e−γσt p0 =

∫ t

0
e−σγ(t−τ) (−γ (L(G) ⊗ C) x(τ)) dτ,

= γ
(
B(G) ⊗ Ip

)
q(t), (30)

where B(G) is the incidence matrix of the graph G satisfying (1), and

q(t) , −(BT(G) ⊗ C)

∫ t

0
e−σγ(t−τ)x(τ)dτ, (31)

is the transformed integral action state.

Since we are interested in the stability of (26), consider

ζ(t) , q(t) −
1
γ
(BT(G)L+(G) ⊗ Ip)

(
(K1 ⊗ Ip) (1N ⊗ ε(t)) − (K2 ⊗ Ip)r(t)

)
, (32)

with a time derivative given by

Ûζ(t) = Ûq(t) −
1
γ
(BT(G)L+(G) ⊗ Ip)

(
(K1 ⊗ Ip) (1N ⊗ Ûε(t)) − (K2 ⊗ Ip) Ûr(t)

)
= − γσζ(t) − (BT(G) ⊗ C)

(
e−σγ0δ(t)) − e−σγ(t−0)δ(0)

)
−

1
γ
(BT(G)L+(G) ⊗ Ip)·(

(K1 ⊗ Ip) (1N ⊗ Ûε(t)) − (K2 ⊗ Ip) Ûr(t)
)

= − (BT(G) ⊗ C)δ(t) − γσζ(t) + d1(t), ζ(0) = 0, (33)

where

d1(t) , (BT(G) ⊗ C)e−γσtδ(0) −
1
γ
(BT(G)L+(G) ⊗ Ip)·(

(K2 ⊗ Ip) Ûr(t) − (K1 ⊗ Ip) (1N ⊗ Ûε(t))
)
. (34)

Using the transformation given by (30), (26) becomes

Ûδ(t) =
(
IN ⊗ A − αL(G) ⊗ BHC − K1 ⊗ BHC − βIN ⊗ BHC

)
δ(t)

+ (IN ⊗ BH)

[
γ

(
B(G) ⊗ Ip

)
q(t) −

( (
IN − 1N1T

N

)
⊗ Ip

) [
(K1 ⊗ Ip) (1N ⊗ ε(t))

− (K2 ⊗ Ip)r(t)
] ]
+ d2(t),

= R δ(t) + γ (B(G) ⊗ BH) ζ(t) + d2(t), (35)



157

where

R , IN ⊗ A − (αL(G) + K1 + βIN ) ⊗ BHC, (36)

and

d2(t) ,
(
IN ⊗ AC−1

R ε(t)
)
− (β1N ⊗ BHε(t)) . (37)

In addition, it follows directly from assumption 3 that ‖d1(t)‖ ≤ d∗
1 and ‖d2(t)‖ ≤ d∗

2

for positive constants d∗
1 and d∗

2 .

Now, consider the compact form of the closed loop error dynamics in (35) and (33)

given by

Ûg(t) = Fg(t) + d(t), g(0) = g0, (38)

where

g(t) =


δ(t)

ζ(t)

 , d(t) =


d2(t)

d1(t)

 , (39)

with ‖d(t)‖2 ≤ d∗, and

F ,


R γ (B(G) ⊗ BH)

−(BT(G) ⊗ C) −γσINp

 , (40)

is a Hurwitz matrix for an output controllable system (A,B,C), where a static feedback gain

H can be designed according to assumption 2.

Remark 29. A sketch of the proof that (40) is Hurwitz is given in Appendix A. Here,

we would like to mention that F is Hurwitz when assumption 2 holds. In other words,

one needs to seek the existence of a static feedback gain H such that the real part of the

eigenvalues of

A − µBHC, (41)

are negative where µ is an eigenvalue of the matrix L(G) + K1(t) + βIN . Owing to its

dependency on the communication graph G and using the Gershgorin disk theorem ([22]),

it can be shown that
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β < µ < (max
i

di + β + Nh), (42)

under the assumption that 0 < β. While the design of H relies on global information, the

implementation of (12) and (13) is clearly distributed. Moreover, the parameter associated

with the leakage term β that is used to preserve stability of the proposed algorithm may be

set to a sufficiently small number.

In the next theorem, we demonstrate that the state of each agent xi(t) converges to a

neighborhood of the weighted average of the set of applied exogenous inputs.

Theorem 4.1. Consider a network of agents whose dynamics are given by (10) and (11)

subject to (12) and (13), communicating over a connected, undirected graph G, where the

local agents (A,B,C) are output controllable and a static feedback gain matrix H can be

designed. Then, the closed loop error dynamics given by (38) are ultimately bounded.

Proof. Consider the Lyapunov-like function candidate

V(g(t)) = gT(t)Pg(t), (43)

where V(g(t)) > 0,∀g(t) ∈ RN(n+p)×1 \ {0}, V(0) = 0, and P ∈ IS+ with appropriate

dimensions is a positive definite solution to the Lyapunov equation

FTP + PF = −Q, (44)

letting Q = IN(n+p) without loss of generality. Then, the time derivative of (43) along the

trajectories of (38) can be given by

ÛV(g(t)) = ÛgT(t)Pg(t) + gT(t)P Ûg(t),

= gT(t)
[
FTP + PF

]
g(t) + 2gT(t)Pd(t),

≤ − λmin(Q)‖g(t)‖2
2 + ‖g(t)‖2‖P‖F‖d(t)‖2,

≤ − λmin(Q)‖g(t)‖2

(
‖g(t)‖2 −

d∗‖P‖F
λmin(Q)

)
. (45)

Since

ÛV(g(t)) ≤ 0, (46)
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outside the compact set given by ‖g(t)‖2 > d∗‖P‖F/λmin(Q), the result follows from [27],

[28]. �

Remark 30. The proof of Theorem 4.1 demonstrates that the error trajectory δ(t) converges

to a neighborhood of zero. In turn, the error (16) is bounded since

‖∆i(t)‖2 ≤ ‖C‖F‖δi(t)‖2, (47)

and the outputs of all agents converge to a neighborhood of the weighted average of the set

of applied exogenous inputs.

In the next corollary, we determine the bound of g(t) for t ≥ T characterizing the

ultimate distance between x(t) and 1N ⊗ ε(t), and q(t) and d2(t), which is of practical

importance for multiagent systems applications.

Corollary 9. Consider a network of agents whose dynamics are given by (10) and (11)

subject to the controller (12) and (13), communicating over a connected, undirected graph

G, where the local agents (A,B,C) are output controllable and a static feedback gain matrix

H can be designed. Then, the ultimate bound of g(t) for t ≥ T is given by

‖g(t)‖2
2 ≤

[ (
1

λmin(Q)

) 2
(d∗2

2 + d∗2
1 )‖P‖2

F

]
λmax(P), (48)

where

d∗
2 ≤ ‖IN ⊗ AC−1

R ‖F ε
∗ + β‖1N ⊗ BH‖F ε

∗ (49)

d∗
1 ≤ ‖(BT(G) ⊗ C)δ(0)‖2 −

1
γ
‖(BT(G)L+(G) ⊗ Ip)‖F·(

‖K2 ⊗ Ip‖F r∗ − ‖K11N ⊗ Ip‖F Ûε∗
)

(50)

and

λmax(P) ≤

����� Nn∑
λ(Q)

����� ·
����� Nn∑
λ

(
F + FT

) �����−1

, (51)

from the results of [29].
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Proof. In the proof of Theorem 4.1, we show that (46) holds outside the compact set given

by ‖g(t)‖2 ≥ d∗/λmin(Q), which implies the evolution of V(g(t)) is upper bounded by

V(g(t)) ≤ max
g(t)

V(g(t)),

≤ ‖gmax‖
2
2λmax(P), (52)

where using ‖gmax‖2 ≤ d∗‖P‖F/λmin(Q), (48) follows. �

Remark 31. The bound of g(t) given by (48) shows the effects of the design parameters

α,γ, β, and H of the active-passive dynamic consensus filters controller given in (12) and

(13) on the overall network performance. In particular, it can be seen that if β and 1/γ

are small, then (48) is reduced for t ≥ T . Note that d∗
1 and d∗

2 both include uncontrolled

terms, which implies 1/γ only has a small effect on the bound size. However, since λmax(P)

is directly proportional to
��∑Nn λ

(
F + FT) ��−1, which is controlled by the static feedback

control gain H and β. To this end, we choose H = 1/βH0 for a suitable H0, such that the

eigenvalues of A − BH0C are large since we choose β small.

5. NUMERICAL EXAMPLE

We now present a numerical example to demonstrate the efficacy of the proposed

active-passive dynamic consensus filters algorithm. Specifically, consider a network of 25

agents communicating over a connected, undirected ring graph topology with dynamics

given by

A =


0 10 0

0 −10 0

0 −10 −10


,B =


0

1

1


,C =

[
1 0 0

]
, (53)

subject to the exogenous inputs r1(t) = sin(0.2t),r2(t) = cos(0.3t),r3(t) = −0.6+cos(0.5t)+

2 sin(0.01t),r4(t) = 0.5 sin(0.2t)+1.5 cos(0.1t), and r5(t) = 2. Note that the system dynam-

ics given in (53) are output controllable, satisfying all assumptions. Figure 1 demonstrates

that with low gains, agents are not able to closely track the average of the applied exogenous
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Figure 1. Output of 25 agents tracking 5 inputs subject to the gains α = 1, γ = 1,H = 1,
and β = 0.1 for all agents, where all inputs are weighted equally. The black dashed line
indicates the average of the applied exogenous inputs and the color lines represent the agent
outputs.

inputs. Figure 2 demonstrates that if α and H are chosen to be large, and 1/γ and β are

chosen to be small, agents converge to a closer neighborhood of the average of the applied

exogenous inputs as stated in Corollary 9.

6. CONCLUSION

To contribute to the state of the art in dynamic information fusion, we have pre-

sented a new active-passive dynamic consensus filters algorithm, where all agents have

(homogeneous) linear time-invariant dynamics. We demonstrated that the outputs of all

agents were able to closely track the weighted average of a set of applied exogenous inputs.
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Figure 2. Output of 25 agents tracking 5 inputs subject to the gains α = 3, γ = 8,H = 3,
and β = 0.001 for all agents, where all inputs are weighted equally. The black dashed line
indicates the average of the applied exogenous inputs and the color lines represent the agent
outputs.

A future research direction can include investigation of conditions and algorithm structures

that allow asymptotic convergence between the outputs of agents and the weighted average

of a set of applied exogenous inputs.

APPENDIX: PROOF SKETCH ERROR SYSTEMMATRIX F IS HURWITZ

Here, we give an sketch of the proof that the error system matrix F is Hurwitz.

Proof. We begin by calculating the eigenvalues of F. To this end, consider(
F − λIN(n+p)

)
v = 0, (A.1)
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where λ ∈ C is an eigenvalue and v ∈ CN(n+p) is an eigenvector of the matrix F. Using the

definition of a block matrix determinant in Lemma 7, the eigenvalues of (A.1) can be given

by the roots of the polynomials

γσ + λ = 0, (A.2)

and

0 = λ2INn + λF̄ + γF̂ . (A.3)

where

F̄ , γσINn − R, (A.4)

F̂ , γ((L(G) ⊗ BHC) − σR), (A.5)

and α,γ,σ, β,∈ R+ are the proposed active-passive dynamic consensus filters controller

gains. Next, we demonstrate that if eigenvalues of F̄ and F̂ have positive real parts, F is

Hurwitz. To this end, consider the eigendecomposition of the matrix

V , αL(G) + K1 + βIN = SUST, (A.6)

where SST = IN since V is symmetric and positive definite (see Lemma 1 of [7]), with

U = diag([µ0, µ1, . . . , µN ]), where µi are the eigenvalues of V . Using (A.6) in (36), F̄

becomes

F̄ = (S ⊗ In)
[
γσINn − IN ⊗ A +U ⊗ BHC

]
(ST ⊗ In), (A.7)

and eigenvalues of F̄ are given by the block diagonal matrix γσINn − IN ⊗ A +U ⊗ BHC,

where each block is given by γσIn − A+ µi BHC. Since the matrix A− µi BHC is Hurwitz

for a suitable static feedback gain H (see assumption 2), the real part of all eigenvalues of

F̄ must be positive. A similar construction is used to demonstrate that the eigenvalues of F̂

have positive real parts.
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Next, consider R ∈ ISNn×Nn
+ as a solution to the linear matrix inequalities

R(ε1INn + F̄) + (ε1INn + F̄)TR ≤ − ε1INn , W0,

R(ε2INn + F̂) + (ε2INn + F̂)TR ≤ − ε2INn , W1, (A.8)

for a sufficient ε1, ε2 ∈ R+, and with negative definite matrices W0 and W1. The eigenvalues

of F are given by the solutions λ of

0Nn = 2λ2R + λ(−W1) + γ(−W0), (A.9)

where all solutions have negative real parts from [30]. Since the real part of all the roots of

F lie in the open left half plane, F is Hurwitz. �
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SECTION

2. CONCLUSIONS AND FUTURE WORK

2.1. CONCLUDING REMARKS

Existing system theoretic information fusion filters can generally be categorized as

static where all agents are able to sense a constant exogenous input or dynamic where all

agents are able to sense a time-varying quantity of interest. Such systems are not suitable for

heterogeneous situations where some agents are active for (i.e able to sense) an exogenous

quantity of interest and some agents are passive for (i.e. are not able to sense) an exogenous

quantity of interest. Motivated from this standpoint, Paper I proposed a new active-passive

dynamic information fusion controller where the states of all agents are driven to the average

of the set of exogenous inputs sensed by the active agents. In addition, we discussed in

detail that the proposed approach not only generalizes but also unifies the results of several

classes of leaderless and leader-follower information fusion approaches approaches.

In Paper II and Paper III, we demonstrated the efficacy of the proposed active-passive

dynamic information fusion controller presented in Paper I by performing environment

surveillance, where this framework allows the states of all agents to converge to the average

of the exogenous inputs applied only to the active agents. In particular, we utilize two

ground robots equipped with Microsoft Kinect sensors to track objects in an environment

and exchange information over a local network in order to produce a global map detailing

object locations even though neither agent is able to sense all objects in the environment.

Additionally, we provide several numerical studies detailing how networks of agents may

reconstruct dynamic environments.
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In addition to heterogeneity in each agents’ ability to sense a quantity of interest,

each agent may be heterogeneous with respect to its sensing power which is captured by

adjusting the agent’s value-of-information parameter. To address this challenge, Paper IV

extended the active-passive dynamic information fusion controller presented in Paper I to

enable agents to locally weigh their information based on their sensing ability. Specifically,

we showed that the states of all agents converge to an adjustable neighborhood of the

weighted average of the set of applied exogenous inputs sensed by the active agents when

both the agents’ value of information and the applied exogenous inputs are time-varying.

In addition, we formally discussed several cases when agents’ sensing capability and the

exogenous inputs are time-invariant yielding asymptotic stability of the error dynamics

between the states of all agents and the weighted average of the sensed exogenous inputs.

Next Paper V, proposed a new class of active-passive dynamic consensus filters,

which only require agents to exchange their current measurement state information with

neighbors in a simple and isotropic manner, and importantly, allow the roles of active

and passive agents to be time-varying. This makes them suitable for a wider range of

multiagent systems applications. Specifically, we showed that the proposed active-passive

dynamic consensus filters enable the states of all agents to converge to a neighborhood

of the average of the observations sensed by a time-varying set of active agents and we

provided a systematic way to tune the design parameters of the proposed filters to make this

neighborhood small for achieving a desired overall network performance. In addition, we

extended our results using tools and methods from event-triggered control theory to further

reduce the total cost of inter-agent information exchange and to remove the need for agents

to synchronize their information update intervals.

Paper VI presented a new state emulator based adaptive control architecture which

allows agents to reach an agreement on a quantity of interest even when all agents are

subjected to exogenous disturbances. Unlike previous studies, which make assumptions
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on agent dynamics and network topologies, the presented results hold for agents with general

linear time-invariant dynamics communicating over a connected undirected graph.

Finally, Paper VII presented a new active-passive dynamic consensus filters algo-

rithm, where all agents have (homogeneous) linear time-invariant dynamics. We demon-

strated that the outputs of all agents were able to closely track the weighted average of a set

of applied exogenous inputs, allowing for agents where the sensor information and agent

dynamics cannot be decoupled.

2.2. FUTURE WORK

To contribute to the state of the art in dynamic information fusion, this dissertation

has presented a new class of dynamic consensus filters in which some agents are active

(able to sense a quantity of interest) and some are passive (not able to sense any quantities),

which make assumptions on the dynamics of local agents. Specifically, Paper VII presented

a network of active and passive agents where agents have general linear time-invariant

dynamics and fixed active and passive roles. We can improve on this control architecture

by utilizing the ideas and tools from switched systems theory to allow agents to change

their active and passive roles. In addition, using the results presented in [64], active-passive

dynamic consensus filters may be extended to include agents with non-linear dynamics.

We may also use the results of [65], [66] to consider agents which are heterogeneous with

respect to their dynamics.

Paper II, Paper III, and Paper V present applications of the presented active-passive

dynamic consensus filters in a highly controlled laboratory environment. To bridge the

gap between theory and applications, one possible future research direction is to utilize

the presented dynamic information fusion methods to allow agents to communicate across

rapid-deployment emergency networks. As an example, consider mine/cave rescue networks

where many repeater stations may be placed to overcome the difficultly of transmitting

signals in underground environments. With current systems, operators must take care to



170

place the stations in such a manner that a signal will be routed only one way through

the network and that a signal may not be caught in a loop, which may compromise the

entire network until the signal has been removed. In contrast, the proposed active-passive

dynamic consensus filters approach allows for signal input at any node and does not make

any assumptions on the underlying network topology, allowing for quick deployment and

maintenance free operation.

In addition to utilizing active-passive dynamic consensus filters in place of traditional

routing protocols, distributed sensing has been identified as a major research thrust area

by the National Oceanic and Atmospheric Agency for use in collecting, processing, and

analyzing large data sets [67]–[70]. Specifically, this research may be used to capture real-

time data of large-scale events for real-time emergency operations and model-creation and

validation for forecasting future events.

These examples are just a few research directions which may bridge the gap between

theoretical and practical distributed sensing to further our scientific understanding of our

environment.
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