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This study considers the distributed affine formation control problem of networked

multi-agent systems. In affine formation manoeuvre control, the agents are to be

capable of producing specified geometric patterns and simultaneously accomplish re-

quired manoeuvres, such as scales, translations and rotations. Here, the formation

control problem is studied using the stress matrix approach which has similar proper-

ties as the Laplacian matrix of a graph. The major difference is that the edge weights

can have positive or negative values and can be considered as the generalized Laplacian

matrix of a graph.

In this study, we commence by considering the scenario where the dynamics of the

agents are defined using triple-integrator dynamics. This is inspired by the considera-

tion that a broad range of systems can be modelled by triple-integrator dynamics. For

instance, the DC motor which serves as actuator in most mechanical control systems.

The longitudinal dynamics of individual vehicles in an n-vehicle system travelling on

a single lane in a drive-train model is approximated by triple-integrator dynamics in

some existing literature. It is therefore important to widen the application area by

considering triple-integrator agent dynamics. Here, the cases where the inter-agent

communications are in continuous-time and sampled-data are considered. Under the

proposed control laws, the group of agents are able to track time-varying targets that

are affine transformations of a given nominal formation, and the desired formation

maneuvers are only known by the leaders.

Furthermore, the affine formation control problem of general linear systems with un-

certainty is considered. A variety of control laws are presented to address different

cases. The proposed laws consider the general linear case, the case with uncertainty

11



and the fully distributed case using robust and adaptive strategies. Under the pro-

posed laws, the collection of agents can track any targets that are affine transforms of

a defined reference configuration. Experimental results are presented to demonstrate

the effectiveness of the proposed control laws.
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Chapter 1

Introduction

1.1 Background

Control of multi-agent systems has attracted researchers in the control system com-

munity in the last two decades because of its potential to resolve some complicated

control problems, both theoretical and application problems. For instance, a complex

control problem involving multiple tasks could be broken down into a collection of

smaller sub-tasks and each set of sub-task can be modelled as an agent of the overall

multi-agent system. A distributed control protocol can then be developed to govern

the entire multi-agent system causing the overall goal to be achieved.

Foundational work on multi-agent system coordination has been carried out by sev-

eral researchers. For instance, consensus control of multi-agent system described

by continuous-time first order dynamics is studied in [1–4] and [4–6] addressed the

discrete-time version. Following these results, there was a need to study the consensus

control problem of agents with double-integrator dynamics since a broad range of prac-

tical problems are modelled by double-integrator dynamics. The control gain under

which the interaction topology is stable for double-integrator dynamics is derived in [7].

Formation keeping problem of a multi-agent system is studied in [8] while flocking is

studied in [9–11]. These double-integrator studies are limited to continuous-time dy-

namics setting. Consensus based formation control for discrete-time double-integrator
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dynamics is studied in [12].

Some practical applications of multi-agent systems (MASs) control includes unmanned

aerial vehicles (UAV) control, smart grids control, sensor networks, medicine, military

observation, etc [13–15].

1.2 Related Works

1.2.1 Consensus Control Protocol

The consensus protocol is a fundamental technique in the coordination of multi-agent

systems. It has applications in a broad area of multi-agent coordination schemes such

as distributed optimization [16–23], estimation [24, 25] and formation control. Some

reviews on consensus-based formation control are presented in [26–33]. Consensus

control protocols aim to synchronize the states of the agents of a multi-agent system to

some common state. Some studies on consensus coordination are carried out in [34–37].

The problem of constrained optimization has been studied by researchers in recent

times. For example, consensus subject to communication constraint (e.g. delay) is

studied in [38–50]. The leader-following consensus is studied in [51–59]. Group con-

sensus is studied in [60–72]. Consensus based on event-trigger mechanism is considered

in [73–81]. Finite-time consensus is studied in [82,83].

1.2.2 Average Consensus (For Balanced Graphs)

The consensus value of a set of agents is a function of the left eigenvector of the Lapla-

cian matrix derived from the agent’s communication graph. Unfortunately, allowing

the consensus value to depend on the respective graph topology is not always desirable.

From [84–86], the consensus value for balanced graphs is given by
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c =
1

N

N∑
i=1

xi(0) (1.1)

where c is independent of the graph structure. It is worth noting that a graph is said to

be (weight) balanced if the ”in-degree” and ”out-degree” are equal for each respective

node of a given graph. The term in-degree has been used to denote the number of

agents a given agent receives information from and the out-degree denotes the number

of agents it sends information to.

1.2.3 Formation Control

The multi-agent system (MAS) formation control problem has attracted increased

attention from researchers in recent times because of its application to a wide range

of areas. This includes the control of unmanned aerial vehicles, satellite clusters,

coordination of teams of mobile robots, and so on. The ultimate goal of formation

control is to design distributed control laws that ensure that the agents of a given MAS

both form desired geometric patterns and collectively achieve any required maneuver.

Different strategies have been proposed to address the formation control problem of

MASs. For example, the consensus-based strategy is used to address the formation

control problem in [87], [88]. This strategy is grouped into three approaches by conven-

tion. They are the bearing-based [89], displacement-based [90] and distance-based [91]

approaches. These approaches achieve the defined formation by defining constant

constraints on the inter-agent bearing, displacement and distance. These predefined

(preset) constant offsets in turn negatively impose limitations on the maneuvers the

formation, as a whole, can carry out. For instance, consensus-based formation control

laws based on the displacement approach can track target functions having time-

varying translations [92], [93] but carrying out scales on the formation would require a

redesign of the displacements. Similarly, formation control laws based on distance can

track formation targets with time-varying translations and orientations [94], [95], but

have difficulties in tracking target formations having time-varying scales. Also, the

bearing-based formation control laws can track time-varying formation translations
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and scales [91], [89], but have difficulties in tracking time-varying formation orienta-

tions. Thus, simultaneously achieving translation, rotation and scaling maneuvers by

any of these methods are involving. The Complex Laplacian-based strategy [96], [97],

has been proposed to extend the maneuverability of formation of MASs. This strategy

is able to carry out maneuvers such as rotation, translation and scaling. Unfortunately,

the strategy is only able to address two-dimensional systems. This inadequacy moti-

vated further research which led to the development of the strategy based on the stress

matrix.

The prospect of the stress matrix based strategy is good with the promise of being

able to achieve general formation maneuvers in all dimensions. Both Laplacian and

stress matrices have similar properties. However, the respective edge entries produc-

ing the stress matrix need to be jointly determined by the formation configuration.

Furthermore, the respective values of the weight (edge) entries of the stress matrix

can be either positive or negative.

1.2.4 Affine Formation Control

Recently, the formation control strategy based on the stress matrix has been applied to

the affine formations control of MASs. An affine transformation is viewed as a general

linear transformation corresponding to translation, rotation, shearing, scaling, or any

combination of them. The affine formation control problem based on the stress matrix

with stationary leaders is studied for agent dynamics described by single-integrator

in [98]. Formation scaling is considered in [99]. The affine formation control problem

where the leaders are dynamic or modelled with double-integrator agent dynamics is

addressed in [100]. These studies only considered the case where inter-agent commu-

nication (or sensing) occur continuously in time and the agents’ dynamics are limited

to double-integrators. Furthermore, they all assumed the dynamics of the agents are

governed by mere network of integrators.
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1.3 Adopted Approach

This study adopts a leader-follower strategy to accomplish the required formation

maneuver control in a distributed manner based on stress matrices. Here, only the

leaders need to know the exact maneuvers to be accomplished in advance. This is

achieved using matching knowledge of the Υ(t) and b(t) matrices for the leaders. The

time-varying affine target position of agent i is defined by

p∗i (t) = Υ(t)ri + b(t),

where both Υ(t) ∈ Rd×d and b(t) ∈ Rd vary with time and ri ∈ Rd denotes a constant

reference (or nominal) configuration of the ith agent. Note that the required affine

transformation is accomplished for the leaders by varying the Υ(t) and b(t) matrices

for the leaders. The followers do not need to know these matrices, but will track their

own corresponding position using the variety of distributed control protocol proposed

in this study. The control protocol facilitates the corresponding affine transformations

for the followers without using the Υ(t) ∈ Rd×d and b(t) ∈ Rd terms.

In practical situations, the exact values of the Υ(t) and b(t) matrices can be defined

based on the required maneuvers and the leaders can be virtual nodes. The followers

only require a knowledge of their own states and those of their respective neighbours.

1.4 Main Contributions

This research investigates the formation control problem of networked multi-agent sys-

tems. The approach of this study is to use stress matrices to accomplish formation

(unlike the Laplacian matrix based approach). The approach allows the use of a sin-

gle protocol to accomplish several formation maneuvers of the agents as a whole in

any dimension. The possible maneuvers that can be accomplished by a single proto-

col using the approach includes scaling, shearing, translation, rotation, and all other

maneuvers that are affine transforms of a defined reference configuration. The main

novelty of the approach is the ability to use a single control protocol for general affine

formation control in any dimension unlike other approaches. The main contributions
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of this study are summarised as follows.

� The affine formation control problem of networked multi-agent systems with

periodic inter-agent communication is studied.

1. The formation control case where the networked multi-agent systems are

governed by single integrator dynamics are studied. Two control laws are

proposed to address the cases where the leaders are stationary and dy-

namic are presented. Sufficient conditions to guarantee the stability of the

proposed laws are derived.

2. The case where agent dynamics are governed by double-integrator dynamics

is studied. A control law is proposed to accomplish the required formation

control. Sufficient conditions to guarantee the stability of the proposed law

are derived.

� The affine formation control problem of networked multi-agent systems with

models described with triple-integrator dynamics is studied.

1. The formation control case where the networked multi-agent systems com-

municate in continuous-time is studied. A control law is proposed to ac-

complish the required formation control. Sufficient conditions to guarantee

the stability of the proposed law are derived.

2. The case where the inter-agent communication is periodic is similarly in-

vestigated. A control law is proposed to accomplish the required formation

control. Sufficient conditions to guarantee the stability of the proposed law

are derived.

3. Steps on the implementation of the proposed control laws are provided.

Simulation studies are derived.

� The affine formation control problem of networked general linear multi-agent

systems is investigated.
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1. A fundamental case of the problem is studied. Two control laws are pro-

posed to address the problem. Sufficient conditions to guarantee the sta-

bility of the proposed law are derived.

2. The problem is studied using an adaptive scheme to address the problem

of the coupling gain requiring global information. This is to facilitate the

design of a fully distributed control law. The stability analysis is carried

out using Lyapunov theory.

3. The case where the agent dynamics contain uncertainties are investigated.

A control law is proposed to accomplish the required formation control.

Sufficient conditions to guarantee the stability of the proposed law are de-

rived.

4. Experiments are carried out to demonstrate the procedure for the imple-

mentation of the proposed control laws.

1.5 Thesis Organization

This section presents the structural organization of the entire thesis. In this research,

the affine formation control problem of networked multi-agent systems with triple-

integrator dynamics is first studied. The study is then extended to the general affine

formation control problem of general linear multi-agent systems. Further studies are

then carried out to consider the case with uncertainty.

To facilitate an easy study of this thesis, a general overview of the thesis structure is

presented as follows.

Chapter 1 presents a brief background on networked multi-agent systems coordina-

tion. A brief review of consensus and formation control schemes are presented. The

contributions of the research are also discussed.

Chapter 2 presents notations and some preliminaries used throughout this thesis.

Chapter 3 studies the problem of affine formation control of networked multi-agent
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systems for stationary and dynamic leaders with periodic inter-agent communication.

Three control laws are proposed to address cases of single- and double-integrator dy-

namics. The stability analysis of the proposed laws are given.

Chapter 4 studies the problem of affine formation control of networked multi-agent

systems with triple-integrator dynamics. The cases of continuous-time and sampled-

data inter-agent communications are considered. Two control laws are presented to

address the two cases. Sufficient conditions to guarantee the system stability are

derived. Procedures for the implementation of the proposed control laws are provided.

Chapter 5 studies the affine formation control problem of general linear multi-agent

systems.

Chapter 6 further investigates the problem of affine formation control of general

linear multi-agent systems. The problem of the coupling gains requiring global infor-

mation is addressed by using an adaptive scheme. The cases of the model containing

uncertainties are also studied. A variety of control laws are proposed to deal with

the different cases are presented. The stability of the proposed laws are studied using

Lyapunov theory. Finally, experimental study results are presented.

Chapter 7 presents suggestions for future work.



Chapter 2

Preliminaries

2.1 Notations

This Section presents some notations used in the rest of this thesis. The notations

are standard and have been used in the existing literature, e.g. in [101, 102]. Let

Rn×m, Rn, and R denote the sets of real matrices (of dimensions n×m), real vectors (of

dimensions n) and real numbers, respectively. The vector of dimension n with elements

of all ones and the n×n identity matrix are denoted with 1n and In, respectively. The

Kronecker product is denoted with ⊗ and has the following properties (A ⊗ B)(G ⊗

H) = (AG)⊗ (BH), and (A⊗ B)T = AT ⊗ BT , where A, B, G and H are matrices

of proper dimensions.

2.2 Graph Theory

The dynamic behaviour of a multi-agent system can be effectively modelled using

graph theory. This makes the study of graph theory important for the study of multi-

agent systems. This section discusses some important areas of graph theory necessary

for a study on multi-agent systems.

27
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2.2.1 Graph Basics

Some very fundamental definitions in graph theory are presented in this subsection.

Graph, Node and Edge

A graph G is a set of Nodes (also called Vertices, V ) and Edges, E. In the study of

multi-agent system, the agents are represented as nodes (vertices) and the communi-

cation between nodes are represented as the edges of the graph.

Edge

With a graph having v1 and v2 as vertices, v1v2 refers to a connection from v1 to v2

and not from v2 to v1. If this connection from v1 to v2 exists, then v1v2 is said to be

an edge and the edge is said to be ”in-coming to v2 and out-going from v1.” Also, if

v1v2 and v2v1 are both edges, ”the edge” is said to be undirected but if only one pair

is an edge, it is said to be directed. The neighbours of a vertice (Ni) is a collection of

vertices the given vertice can receive information from directly.

Figure 2.1: A simple graph

As shown in figure 2.1, v1, v2, ..., v5 are all nodes (vertices) of the graph and v1v5 is an

edge but v5v1 is not. v2 has v1 and v3 as its neighbours.
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Connection Notations

In a graph, a path is an ordered sequence of nodes, with edges between each pair of

consecutive nodes in the sequence. A given graph is said to be connected if there is

a path that has every pair of nodes as its end nodes in the graph. If otherwise, the

graph is said to be disconnected. A cycle is a path that contains two or more nodes

and it starts and ends at the same node. A connected graph is considered to be an

undirected graph if the graph is connected and all the edges are undirected. The term

connected mixed graph has been used by some researchers to refer to connected graphs

with both directed and undirected edges, and then the term directed graph to refer

to connected graphs with directed edges. In this study, mixed graphs are considered

to be directed graphs. A graph that is connected and has no cycle is called a tree.

It is also worth noting that a connected graph is a tree if and only if the number of

nodes equals the number edges plus one, that is, |N | = |E| + 1. A directed graph is

said to be strongly connected if a path exists between every node in the graph. That

is, from any chosen node, every other node can be reached. A graph is complete if

there is an edge between every two nodes of the graph. That is, there is an undirected

connection between every two nodes of the graph. A rooted directed graph is a graph

in which every node has exactly one parent node except a node, called the root node,

that has no parent and has a path to every other node in the graph. A spanning tree

is a connected, rooted directed graph.

2.2.2 Graph Matrices

Every graph can be represented by a matrix, and the structural properties of the given

graph are also contained in the matrix. The study of graphs through the study of their

corresponding matrix is called algebraic graph theory.

A given graph can be represented by its adjacency (or connectivity) matrix, A, given

by A = [aij], where aij is the weight of the edge (vj, vi). aij > 0 if aij ∈ E and 0

otherwise.

Laplacian Matrix

A given graph can be conveniently represented as a Laplacian Matrix, which is a
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matrix representation of the given graph. Here, it is defined by

L = D − A, (2.1)

where L is the Laplacian matrix, A is the Adjacency matrix and D the Diagonal

matrix defined by:

D = diag

{
N∑
j=1

aij

}
(2.2)

For example, given the graph shown in Figure 2.2, assuming the weight of each edge

is 1, then the corresponding Adjacency matrix, A, Diagonal matrix, D and Laplacian

matrix, L, are

A =


0 0 1 0

1 0 0 0

1 1 0 0

0 0 1 0

 , D =


1 0 0 0

0 1 0 0

0 0 2 0

0 0 0 1


and

L = D − A =


1 0 −1 0

−1 1 0 0

−1 −1 2 0

0 0 −1 1



2.3 Graph Theory for Affine Formation Control

Consider a multi-agent system composed of n agents. The number of leaders and

followers are denoted by nl and nf , respectively. Denote the first nl agents as leaders.

This study assumes that each agent knows its own states and those of its neighbours.

A configuration refers to a collection of nodes described by their positions in the

Euclidean coordinate space p = [pT1 , ..., p
T
n ]T ∈ Rnd, where pi ∈ Rd. A framework

F = (G, p) in Rd denotes a graph defined with its configuration. Frameworks, (G, q)

and (G, p) are considered equivalent, i.e., (G, q) ≡ (G, p), if and only if
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Figure 2.2: Graph with four nodes

‖ qi − qj ‖=‖ pi − pj ‖, ∀(i, j) ∈ E .

Frameworks, (G, q) and (G, p), are considered congruent, i.e., (G, p) ∼= (G, q), iff

‖ qi − qj ‖=‖ pi − pj ‖, ∀i, j ∈ V .
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A framework in Rd is said to be globally rigid if (G, p) ≡ (G, q) implies (G, p) ∼= (G, q).

This implies, any framework in Rd equivalent to (G, p) is congruent to it also. A

configuration p is considered universally rigid if for all Rd1 , where d1 denotes any

positive integer, (G, p) ≡ (G, q) implies (G, p) ∼= (G, q). That is, universal rigidity

implies global rigidity. However, global rigidity does not confer universal rigidity.

More details can be found in [98,101,103].

2.4 Affine Span

A collection of points, {pi}ni=1 ∈ Rd, have an affine span S given by

S =

{
n∑
i=1

aipi : ai ∈ R ∀i and
n∑
i=1

ai = 1

}
.

To affinely span any d-dimensional space, a set of d+1 affinely independent points are

required. Note that, the affine span of any two distinct points is a line connecting the

points. Also, three unique points that are not collinear have an affine span that is a

2-dimensional plane passing through the points. Higher dimensions follow the analogy.

A given affine span can be translated to contain the origin, and hence, a linear space

having the same dimension as the affine space. Thus, given a d-dimensional affine

span, one can say they span Rd affinely. In this study, d+ 1 leaders that span Rd are

to be chosen for the affine formation manoeuvre control of a d-dimensional space [101].

2.5 Stress Matrix

Given a framework F = (G, p) for affine formation control, we denote the stress as the

collection of scalars associated with the weights wij of the edges (i, j) of the graph. A

stress satisfying



CHAPTER 2. PRELIMINARIES 33

−
∑
j∈Ni

wij(pi − pj) = 0, i ∈ V , (2.3)

is considered an equilibrium stress [104], [103]. The concept can be visualized when

considered in the light of mechanically stress where wij > 0 denotes an attractive force

and wij < 0 denotes a repulsive force, and the equilibrium force is given by (2.3).

Equation (2.3) can be written in matrix form as

−(Ω⊗ Id)p = 0,

where the stress matrix, Ω ∈ Rn×n, is given by

Ωij =



∑
j∈Ni

wij(k), for i = j,

−wij, for i 6= j, (j, i) ∈ E ,

0, for i 6= j, (j, i) /∈ E .

(2.4)

The stress matrix Ω is commonly partitioned, for convenience, as

Ω =

Ωll Ωlf

Ωfl Ωff

 , (2.5)

where Ωff and Ωll are respectively nf × nf and nl × nl sub-matrices. Note that the

value of every wij is to be computed.

2.6 Stress Matrix Design

Stress-matrix plays a pivotal role in affine formation control. For an affine formation

to be stabilizable, the underlining framework (G, p) needs to be universally rigid. The

universal rigidity of a framework guarantees its uniqueness in all dimensions. There-

fore, to guarantee the accomplishment of affine formation control, the framework needs

to be unique. That is, the framework needs to be rigid (universally) to facilitate proper

stabilization. The required universal rigidity is achieved via the design of a suitable

stress matrix. Note that, a framework, F = (G, p), denotes a communication graph

defined along with the positions of the nodes. Rigidity generally plays a crucial role in
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stress-matrix based formation control. Universal rigidity is stricter than global rigid-

ity. Global rigidity guarantees the uniqueness of a framework in the entire space of a

defined dimension. Unfortunately, the necessary and sufficient conditions to guarantee

universal (or global) rigidity is still lacking in existing literature.

Studies mostly concerned with the coordination of multi-agent systems commonly

focus on the special universal and global rigidity cases where the framework has a

generic configuration. A configuration is considered generic if it has coordinates that

are algebraically independent over the integer [105,106]. For frameworks having generic

configurations, studies, e.g., in [104–106] present sufficient conditions to guarantee

universal (or global) rigidity.

A key feature of a generic framework (or configuration) is that the necessary and

sufficient conditions for universal rigidity is that the associated stress matrix is positive

semi-definite with a rank of n−d−1 [107]. Here, n and d have been used to respectively

denote the number of agents (or nodes) and the dimension of the space considered.

Note that in the traditional consensus control (or consensus-based formation control),

the Laplacian matrix of a connected graph is positive semi-definite and has rank n−1.

The entries of both the Laplacian and stress matrices are populated in similar manner,

i.e., the off-diagonal entries are populated with −wij and the diagonal entries with∑
j∈Ni

wij. However, since the wij entries of the stress matrix can have either a positive

or negative entry, there is no guarantee that the stress matrix would be positive semi-

definite, unless the matrix is carefully designed subject to some constraints. An obvious

requirement is that d + 1 nodes (denoted as leaders) need to be selected so that the

other nodes can be uniquely defined [107]. In the rest of this study, we assume that

our configurations are generic.

Consider a framework with an undirected communication graph, universally rigid and

with a generic configuration. Let $1, ..., $d denote the 1st, ..., dth components of

the configuration having d-dimensional nodes. For instance, consider a 3-dimensional

configuration (x, y and z) of three unique nodes, p1(4, 0, 3), p2(9, 1, 3) and p3(7, 0, 0),

i.e., pi(x, y, z). This follows that $1 = [4, 9, 7]T , $2 = [0, 1, 0]T and $3 = [3, 3, 0]T .

Note that 1n, $1, .., $d are linearly independent considering that the configuration is
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generic.

Lemma 2.6.1. [104–106]: A framework (G, p) whose graph is undirected and has a

generic configuration in Rd with n ≥ d + 2 nodes is universally rigid if and only if

its communication graph is (d+ 1)-connected with a stress matrix, Ω, that is positive

semi-definite and has a rank of n− d− 1.

Assumption 1. The framework (G, p) is assumed to be generically universally rigid.

Remark 2.6.1. Assumption 1 guarantees that the rank(Ω) of the stress matrix is

n− d− 1.

Assumption 2. [108] Let Assumption 1 hold, then all the eigenvalues of Ωff have

positive real parts.

A method for the computation of the stress matrix as given in [100] is presented. Let w

denote the stress vector of the reference formation whose communication is modelled

with an undirected graph having m undirected edges. Choose any orientation for the

graph and let the incidence matrix be denoted by H ∈ Rm×n. Let hi ∈ Rm denote the

ith column of HT , so that HT = [h1, ..., hn]. Choose

Z =


P̄ T (r)HTdiag(h1)

...

P̄ T (r)HTdiag(hn)

 ,∈ Rn(d+1)×m,

where P̄ (r) denotes the matrix [$1, ..., $d,1n]T . Denote the basis of the null space

of Z, null(Z) by z1, ..., zn ∈ Rm. Let the singular value decomposition (SVD) of

P̄ (r) = U
∑
V . Let U = [U1 U2], where the first d + 1 columns of U are used to

compose U1. By defining

Ψi = UT
2 H

Tdiag(zi)HU2, ∀i = 1, .., $

and choosing c1, ..., c$ such that,

ciΨi > 0,

the stress vector is given by

w =
$∑
i=1

cizi. (2.6)
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See [100] for more details. Furthermore, studies in [109] present some useful guide on

constructing universally rigid frameworks.

2.7 Affine Realizability and Leaders Selection

This subsection presents a guideline on choosing the leaders for affine formation con-

trol. Note that, for control in a d−dimensional space, d + 1 number of leaders that

span the entire d space affinely need to be selected [104–106].

Lemma 2.7.1. [100]: Let the reference formation of the framework (G, p) comprise

of nl leaders and nf followers. Then, the target positions of the followers p∗f can be

uniquely computed from the relation

p∗f (t) = −(Ω−1ff Ωfl ⊗ Id)p∗l (t),

for any p = [pTl , p
T
f ]T belonging to the set of affine transform of the reference and, if

Ωff is nonsingular.

Note that we have used pf and pl to respectively denote the positions of the followers

and leaders, p∗f and p∗l to respectively denote the target positions of the followers and

leaders. Let the tracking errors of the followers be defined by

δpf (t) = pf (t)− p∗f (t) = pf (t) + (Ω−1ff Ωfl ⊗ Id)p∗l (t). (2.7)

Next, an assumption on the leaders is presented.

Assumption 3. Assume that the d + 1 (number of) leaders are selected such that

they span the Rd space affinely.



Chapter 3

Distributed Affine Formation

Control of Multi-Agent Systems

with Periodic Communication

3.1 INTRODUCTION

In this study, a leader-follower strategy is used to study the affine formation con-

trol of multi-agent systems with periodic information exchange among the agents. In

existing literature, affine formation control of multi-agent system has been studied

in continuous-time settings for single- and double-integrator dynamics. However, in

practical situations, agents may only be able to communicate in a periodic time in-

terval. In this study, we proposed a variety of distributed laws for the coordination of

multi-agent systems with single- and double-integrator dynamics. We show conditions

on the control gain and sampling period for the overall stability of the system. The

proposed control protocols are globally stable and able to track time-varying forma-

tions targets that are affine images of the nominal formation. The results contained in

this chapter form part of the results being considered for submission in a paper pro-

visionally titled ”Distributed Affine Formation Control of Multi-Agent Systems with

Periodic Communication.”

37
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3.2 Problem Formulation

Consider a MAS with n agents. Let the position of the ith agent be denoted by

x1, ..., xn ∈ Rd, so that the ith agent’s target position in the time-varying formation is

given by

x∗i (t) = A(t)ri + b(t) (3.1)

where both b(t) ∈ Rd and A(t) ∈ Rd×d are time-varying and the nominal (constant

reference) configuration is denoted by ri ∈ Rd. Equation (3.1) is written in global form

as

x∗(t) = [In ⊗ A(t)]r + 1n ⊗ b(t) (3.2)

where r = [rT1 , ..., r
T
n ] ∈ Rnd and x∗(t) ∈ Rnd respectively denote the reference config-

uration and the targets (time-varying) to be tracked. The affine image is the set of

all affine transform of the nominal configuration. Note that the tracked time-varying

targets are affine images of the nominal configuration r.

We define the affine image as a collection of all the affine transformation of the reference

configuration r. Note that the time-varying targets are affine images of the reference

configuration. The affine image is given in global form by [98]

A(r) = {x ∈ Rdn : x = (In ⊗ A)r + 1n ⊗ b, A ∈ Rd×d, b ∈ Rd}. (3.3)

The overall goal is to find conditions that guarantees that

lim
x→∞

x(t) = x∗(t), ∀x∗(t) ∈ A(r).

3.2.1 Preamble

Consider a multi-agent system comprising of n agents. Assume that the agents have

continuous-time dynamics, but sense their neighbours at discrete sampling time inter-

vals and have control inputs that are based on zero-order hold. Such that,

ui(t) = ui[k], kT ≤ t < (k + 1)T,



CHAPTER 3. AFFINE FORMATION WITH PERIODIC COMMUNICATION 39

where ui(t), k, T and ui[k] respectively denote control input at time t (continuous-time),

discrete-time index, sampling period, and control input at t = kT . The following

Lemmas would be required in this study.

Lemma 3.2.1. The polynomial

s+ a = 0, (3.4)

where a ∈ C, has its root within a unit circle if and only if

(a+ 1)t− (a− 1) = 0 (3.5)

has its roots in the open left half plane.

Proof 3.2.1. : By using bilinear transformation s = t+1
t−1 [110], (3.4) can be rewritten

as

(a+ 1)t− (a− 1) = 0 (3.6)

Note that there is a one-to-one mapping of the open left half plane of a polynomial

onto the interior of unit circle using bilinear transformation.

Lemma 3.2.2. [111]: The polynomial

s2 + as+ b = 0, (3.7)

where b, c ∈ C, has all of its root with within a unit circle if and only if

(1 + a+ b)t2 + 2(1− b)t+ b− a+ 1 = 0 (3.8)

has all of its roots in the open left half plane.

We assume that the multi-agent system is composed of nl leaders and nf followers and

begin our study with the case were the agents are modelled using single-integrator

dynamics.

3.2.2 Single-integrator System

Consider a multi-agent with each agent modelled with single-integrator dynamics de-

scribed respectively in continuous- and discrete-time by

ẋi(t) = ui(t), i = 1, ..., n (3.9)
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and

xi(k+1) = xi(k) + Tui(k), i = 1, ..., n, (3.10)

where xi denotes the state of agent i. Note that (3.10) can be written in global form

for all agents as

x(k+1) = x(k) + Tu(k),

and for all follower agents as

xf(k+1) = xf(k) + Tuf(k), ∀i ∈ f (3.11)

Note that x = [xTl , x
T
f ]T , where the first d + 1 agents denote the set of leaders and

their states are denoted by xTl . The remaining agents are the followers and their states

are denoted by xTf .

We now consider the case where the leaders are respectively stationary and dynamic.

Stationary Leaders

In this case, the leaders are stationary, i.e. xi(k+1) = xi(k), ∀i ∈ Vl. In the continuous-

time setting, this is given by ẋi = 0, ∀i ∈ Vl. Note that Vl and Vf respectively denote

the sets of leaders and followers. We study the sampled-data affine formation control

problem using the protocol

ui(k) = −
∑

wij(xi(k) − xj(k)), i ∈ Vf . (3.12)

Equation (3.12) can be written in global form for all agents as

u(k) = −(Ω⊗ Id)x(k). (3.13)

By noting how the stress matrix is partitioned in (2.5), repeated for convenience here

as

Ω =

Ωll Ωlf

Ωfl Ωff

 , (3.14)
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we can write (3.13) for only the followers as

uf(k) = −(Ωfl ⊗ Id)x∗l(k) − (Ωff ⊗ Id)xf(k). (3.15)

Using (3.15), (3.11) can be written in matrix form for all followers as

xf(k+1) = [Idnf
− T (Ωff ⊗ Id)]xf(k) − T (Ωfl ⊗ Id)x∗l(k) (3.16)

Theorem 3.2.1. Assume that the leaders are stationary, i.e. xi[k] = xi[k+1] ∀i ∈ Vl;

the communication graph of the agents is universally rigid, such that the rank of the

stress matrix rank(Ω) = n− d− 1; and the d+ 1 leaders have been chosen such that

they span the Rd space. Let µi denote the ith eigenvalue of −Ωff . Then, by choosing

Tµmin > −2, control law (3.16) stabilizes each respective follower to the desired target.

Proof 3.2.2. Define the global disagreement of all followers by

δxf [k+1] = xf [k+1] − x∗f [k+1] = xf [k+1] − [−(Ω−1ff Ωfl ⊗ Id)]x∗l[k+1]

= xf [k+1] + (Ω−1ff Ωfl ⊗ Id)x∗l[k+1] (3.17)

Similarly,

δxf [k] = xf [k] + (Ω−1ff Ωfl ⊗ Id)x∗l[k]. (3.18)

Substitute for xf [k+1] in (3.17) using (3.16) and note that xl[k+1] = xl[k] = xl∗[k] (since

the leaders are already at their target positions), to obtain the expression

δxf [k+1]
= xf [k] − T (Ωff ⊗ Id)xf [k] − T (Ωfl ⊗ Id)x∗l[k] + (Ω−1ff Ωfl ⊗ Id)x∗l[k]

= −T (Ωff ⊗ Id)[xf [k] + (Ω−1ff Ωfl ⊗ Id)x∗l[k]] + [xf [k] + (Ω−1ff Ωfl ⊗ Id)x∗l[k]]

= −T (Ωff ⊗ Id)δf [k] + δf [k] = [(−TΩff + Inf
)⊗ Id]δf [k]. (3.19)

Note that (3.18) has been used to obtain (3.19).

To ensure that the followers track their targets, (3.19) needs to be stabilized to the

origin. This is achieved if the term (−TΩff + Inf
) have negative eigenvalues. Its

characteristic polynomial is given by det(sInf − Inf + TΩff )). Let µi denote the ith

eigenvalue of −Ωff , so that

det(sInf − Inf + TΩff )) = Πn
i=1(s− 1− Tµi)



CHAPTER 3. AFFINE FORMATION WITH PERIODIC COMMUNICATION 42

This requires that

s− 1− Tµi = 0. (3.20)

By substituting a for (−1− Tµi) in (3.20) and considering Lemma (3.2.1), we obtain

−Tµit+ Tµi + 2 = 0. (3.21)

Since, −Tµi > 0, then Tµi+2 needs to be greater than zero to have the roots of (3.21)

in the left half plane and (3.20) within a unit circle. This implies Tµmin > −2, where

µmin is chosen to denote the lower bound.

Next, we present another control law to deal with the case where the leaders positions

are dynamic.

Dynamic Leaders

The control law proposed in (3.16) is unable to guarantee that the tracking errors

reduce to zero for systems with dynamic leaders. To deal with this, we propose another

control law. Using the algorithm,

ui[k] = −1

γ

∑
j∈Ni

wij(xi[k] − xj[k] −
1

T
(xj[k+1] − xj[k])), i ∈ Vf , (3.22)

where γ =
∑

j∈Ni
wij. By substituting for ui[k] in (3.11) using (3.22) and performing

some algebraic simplification, the closed loop expression

∑
j∈Ni

wij(xi[k+1] − xj[k+1]) = (1− T )
∑
j∈Ni

wij(xi[k] − xj[k]), i ∈ Vf , (3.23)

is obtained.

Next, the stability of control law (3.23) is analysed.

Theorem 3.2.2. Assume that the communication graph of the agents is universally

rigid, such that the rank of the stress matrix rank(Ω) = n−d−1; and the d+1 leaders

have been chosen such that they span the Rd space. Then, by choosing T < 2, the

tracking error of all follower nodes is stabilized to the origin by the action of control

law (3.23).
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Proof 3.2.3. Equation (3.23) can be written in global form as

(Ω⊗ Id)x(k+1) = (1− T )(Ω⊗ Id)x(k). (3.24)

By noting (3.14), (3.24) can be written for the followers as

(Ωfl⊗ Id)xl(k+1) + (Ωff ⊗ Id)xf(k+1) = (1− T )[(Ωfl⊗ Id)xl(k+1) + (Ωff ⊗ Id)xf(k+1)].

Multiplying through by (Ω−1ff ⊗ Id) from the left hand side, the expression

(Ω−1ff Ωfl ⊗ Id)xl(k+1) + xf(k+1) = (1− T )[(Ω−1ff Ωfl ⊗ Id)xl(k+1) + xf(k+1)] (3.25)

is obtained. Define the error as δxf [k] = xf [k]−x∗f [k] = xf [k]+Ω−1ff Ωflx
∗
l[k]. This allows us

to write control law (3.25) in terms of the disagreements as δxf [k+1] = (1−T )Idnf
δxf [k].

The characteristic equation satisfies s+T−1 = 0. Applying the bilinear transformation

s = t+1
t−1 , to obtain

Tt− T + 2 = 0.

Since Tt > 0, then −T +2 needs to be greater then zero to satisfy the systems stability

requirement. This is satisfied by choosing the sampling period T , such that T < 2.

3.2.3 Double-Integrator Dynamics

Consider the case where each agent is modelled with double-integrator dynamics de-

scribed in continuous-time by:

ẋi(t) = vi(t), v̇i(t) = ui(t). (3.26)

Discretizing (3.26) (based on Taylor series second order integral approximation) results

in:

xi[k+1] = xi[k] + Tvi[k] + T 2

2
ui[k]

vi[k+1] = vi(k) + Tui[k], i ∈ Vf ,
(3.27)

where xi and vi respectively denote the position and velocity of agent i. We now

consider the cases where the leaders’ acceleration are constantly zero and dynamically

changing.
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Dynamic Leaders with Zero Acceleration

Here, the case where the acceleration of the leaders are constantly zero is considered.

Consider the control protocol

ui[k] = −
∑
j∈Ni

wij[(xi[k] − xj[k]) + β(vi[k] − vj[k])], i ∈ Vf , (3.28)

whose global form is given by

u(k) = −(Ω⊗ Id)x(k) − β(Ω⊗ Id)v(k). (3.29)

By considering how the stress matrix Ω is partitioned in (3.14), (3.29) can be rewritten

for the followers as

uf = −[(Ωff ⊗ Id)xf [k] + (Ωfl ⊗ Id)xl[k]]− β[(Ωff ⊗ Id)vf [k] + (Ωfl ⊗ Id)vl[k]] (3.30)

With (3.30), (3.27) can be written in matrix-vector form as



xf [k+1] = [((Inf − T 2

2
Ωff )⊗ Id)xf [k] − T 2

2
(Ωfl ⊗ Id)x∗l[k]]

+[((TInf − T 2β
2

Ωff )⊗ Id)vf [k] − T 2β
2

(Ωfl ⊗ Id)v∗l[k]]

vf [k+1] = −T [(Ωff ⊗ Id)xf [k] + (Ωfl ⊗ Id)x∗l[k]] + [(Inf − TβΩff )⊗ Id]vf [k]

−Tβ(Ωfl ⊗ Id)v∗l[k]

(3.31)

i.e.,

xf [k+1]

vf [k+1]

 =

(Inf − T 2

2
Ωff ) (TInf − βT 2

2
Ωff )

−TΩff (Inf − βTΩff )

⊗ Id
xf [k]

vf [k]


+

−T 2

2
Ωfl −βT 2

2
Ωfl

−TΩfl −βTΩfl

⊗ Id
x∗l[k]

v∗l[k]

 (3.32)

where vf ∈ Rdnf and v∗l ∈ Rdnl respectively denote the velocities of the followers and

leaders. Next, the stability of control law (3.32) is analysed.
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Theorem 3.2.3. Assume that the communication graph of the agents is universally

rigid, such that the rank of the stress matrix rank(Ω) = n − d − 1; and the d + 1

leaders have been chosen such that they span the Rd space, and the leaders have zero

acceleration, i.e., vi[k] = vi[k+1] ∀i ∈ Vl, then by choosing T and β such that

 −(T 2µi + 2βµiT ) < 6, and

− (Tµi + T 2µi − T 2βµ2
i − T 3βµ2

i ) < 4,

control law (3.32) stabilize the tracking error of all followers to zero.

Proof 3.2.4. By defining the velocity and position disagreements respectively as

δvf [k+1] = vf [k+1] − v∗f [k+1],

δxf [k+1] = xf [k+1] − x∗f [k+1],

(3.33)

control law (3.32) can then be rewritten in terms of the follower agents disagreements

as

δxf [k+1]

δvf [k+1]

 =


(Inf

− T 2

2
Ωff ) (TInf

− βT 2

2
Ωff )

−TΩff (Inf
− βTΩff )


︸ ︷︷ ︸

H

⊗Id


δxf [k]
δvf [k]

 (3.34)

The characteristic polynomial of H in (3.34) is det(sI2nf
−H), i.e.,

det

sInf
− (Inf

− T 2

2
Ωff ) (TInf

− βT 2

2
Ωff )

TΩff sInf
− (Inf

− βTΩff )



=[sInf
− (Inf

− T 2

2
Ωff )][sInf

− (Inf
− βTΩff )] − [TΩff (TInf

− βT 2

2
Ωff )]

=s2Inf
− (Inf

− T 2

2
Ωff + Inf

− βTΩff )s+ (Inf
− T 2

2
Ωff )(Inf

− βTΩff )

− TΩff (TInf
− βT 2

2
Ωff ). (3.35)
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Denoting the ith eigenvalue of −Ωff by µi, so that det(sIn + Ωff ) = Πn
i=1(s − µi), it

follows that (3.35) must satisfy

s2 + (
T 2βµ2

i

2
− T 2µi −

Tµi
2

+
T 3βµ2

i

2
− Tβµi + 1)s + (−T

2µ2
i

2
− Tβµi − 2) = 0.

(3.36)

By setting a =
T 2βµ2i

2
− T 2µi − Tµi

2
+

T 3βµ2i
2
− Tβµi + 1, b = −T 2µ2i

2
− Tβµi − 2

and considering lemma 3.2.2, using the bi-linear transformation s = t+1
t−1 for (3.36), the

expression

1

2

(
T 2βµ2

i − 3T 2µi − Tµi + T 3βµ2
i − 4Tβµi

)
t2

+
(
T 2µi + 2βµiT + 6

)
+

1

2

(
Tµi + T 2µi − T 2βµ2

i − T 3βµ2
i + 4

)
= 0 (3.37)

is derived. Note that T, β > 0 and µi < 0. Also note that all the roots of (3.35) are

within a unit circle if all the roots of (3.37) are in the open left half plane. Since

(T 2βµ2
i − 3T 2µi − Tµi + T 3βµ2

i − 4Tβµi) > 0, considering that µi is always negative,

then ensuring that

 −(T 2µi + 2βµiT ) < 6, and

− (Tµi + T 2µi − T 2βµ2
i − T 3βµ2

i ) < 4.

ensures that the roots of (3.35) are within the unit circle.

3.2.4 Summary

In this Chapter, we have studied the affine formation control of multi-agent systems

with single- and double-integrator dynamics in the sampled-data setting. We showed

condition on control gains and sampling time to guarantee the stability of the overall

system and proposed control laws that are distributed and able to track time-varying

targets that are affine formation of the nominal formations.



Chapter 4

Affine Formation Algorithms and

Implementation Based on

Triple-Integrator Dynamics

4.1 INTRODUCTION

In this chapter, we study the affine formation maneuver control problem of multi-agent

systems (MASs) described by triple-integrator agent dynamics. Previous studies on

affine formation control of MASs only considered the case where inter-agent communi-

cation (or sensing) occur continuously in time and the agents’ dynamics are limited to

double-integrators. In real-life situations, however, agents may only communicate in

periodic time intervals and may have agent dynamics described by triple-integrators.

Triple-integrator agent dynamics have found applications in robot motion control, air-

craft control, lifts and a wide range of mechanical control systems. For example, the

DC motor which features as an actuator in a vast majority of mechanical control sys-

tems is normally modelled with triple-integrator agent dynamics when the motor load

is considered. Triple-integrator agent dynamics are used to approximate the individual

agent dynamics in an n-vehicle system of travelling along a single lane for a drive-train

model in [112]. A broad range of systems could be modelled using triple-integrator

47
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agent dynamics, see [113], [114]. Therefore, it is important to broaden the applica-

tion area by considering the stability conditions for MASs with triple-integrator agent

dynamics.

Here, we propose two control laws based on periodic and continuous communications.

Sufficient conditions are presented to guarantee the global stability of the proposed

control laws. The proposed laws are implemented for four cases consisting of two

scenarios each considered for both sampled-data and continuous-time agent communi-

cation cases. Please not that the results contained in this chapter have been published

in the paper titled ”Affine Formation Maneuver Control of Multi-Agent Systems with

Triple-Integrator Dynamics, and ”Affine Formation Algorithms and Implementation

Based on Triple-Integrator Dynamics.”

4.2 Problem Formulation

Consider a MAS with n agents. Let the position of the ith agent be denoted by

x1, ..., xn ∈ Rd, so that the ith agent’s target position in the time-varying formation is

given by

x∗i (t) = A(t)ri + b(t) (4.1)

where both b(t) ∈ Rd and A(t) ∈ Rd×d are time-varying and the nominal (constant

reference) configuration is denoted by ri ∈ Rd. Equation (4.1) is written in global form

as

x∗(t) = [In ⊗ A(t)]r + 1n ⊗ b(t) (4.2)

where r = [rT1 , ..., r
T
n ] ∈ Rnd and x∗(t) ∈ Rnd respectively denote the reference config-

uration and the targets (time-varying) to be tracked. The affine image is the set of

all affine transform of the nominal configuration. Note that the tracked time-varying

targets are affine images of the nominal configuration r.

We define the affine image as a collection of all the affine transformation of the reference

configuration r. Note that the time-varying targets are affine images of the reference
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configuration. The affine image is given in global form by [98]

A(r) = {x ∈ Rdn : x = (In ⊗ A)r + 1n ⊗ b, A ∈ Rd×d, b ∈ Rd}. (4.3)

The overall goal is to find conditions that guarantees that

lim
x→∞

x(t) = x∗(t), ∀x∗(t) ∈ A(r).

4.3 Affine Formation Control Law for Continuous-

time Coordination of Multi-agent Systems De-

scribed by Triple-Integrator Agent Dynamics

Consider the MAS where the agents communicate continuously in time, their inter-

agent communication is modelled using an undirected graph, and each agent has dy-

namics described using triple-integrator, such that



ẋi(t) = vi(t),

v̇i(t) = ai(t),

ȧi(t) = −
∑

j∈Ni
wij[kx(xi(t) − xj(t)) + kv(vi(t) − vj(t))

+ka(ai(t) − aj(t))], i ∈ Vf ,

(4.4)

where ka, kv and kx are positive constant control gains. Note that, for brevity, we

have dropped the subscript (t) in (4.4) for the remainder of this section. System (4.4)

can be given in matrix-vector form by



ẋf = vf ,

v̇f = af ,

ȧf = −kx[(Ωff ⊗ Id)xf + (Ωfl ⊗ Id)x∗l ]

−kv[(Ωff ⊗ Id)vf + (Ωfl ⊗ Id)v∗l ]

−ka[(Ωff ⊗ Id)af + (Ωfl ⊗ Id)a∗l ],

(4.5)
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where the states xf , vf , af ∈ Rdnf respectively denote the position, velocity and accel-

eration of the followers while x∗l , v
∗
l = ẋl and a∗l = v̇l have been used to denote those

of the leaders respectively. Define the position tracking error as

δxf = xf − x∗f = xf + (Ω−1ff Ωfl ⊗ Id)x∗l ,

where x∗f denotes the target positions of the followers. Next, the stability of control

law (4.5) is investigated. Let µi denote the ith eigenvalue of −Ωff .

Theorem 4.3.1. Assume that Assumptions 1, 2 and 3 (the Assumptions are in Sec-

tions 2.6 and 2.7) hold, and the leaders’ jerk ȧl are constantly zero, then by choosing

the control gains such that −kvkaµi > kp,∀i, control law (4.5) guarantees that the

errors in the followers positions δxf converge to zero.

Proof. Define the disagreements of the position, velocity and acceleration respectively

by δxf = xf+(Ω−1ff Ωfl⊗Id)x∗l , δvf = vf+(Ω−1ff Ωfl⊗Id)v∗l and δaf = af+(Ω−1ff Ωfl⊗Id)a∗l
so that (4.5) can be re-written as functions of their disagreements as


δ̇xf

δ̇vf

δ̇af

 =




0nf×nf

Inf
0nf×nf

0nf×nf
0nf×nf

Inf

−kpΩff −kvΩff −kaΩff


︸ ︷︷ ︸

F1

⊗Id




δxf

δvf

δaf



+




0nf×nf

0nf×nf

Ω−1ff Ωfl

⊗ Id
 ȧ∗l . (4.6)

Note that ȧ∗l = 0 for this study. The system matrix of (4.6) has the characteristic

polynomial given by

det([sI3nf
− F1]⊗ Id) =

det



sInf

−Inf
0nf×nf

0nf×nf
sInf

−Inf

kpΩff kvΩff (sInf
+ kaΩff )

⊗ Id
 .
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Note that µi denotes the ith eigenvalue of −Ωff . Thus,

det(sIn + Ωff ) = Πn
i=1(s− µi). (4.7)

This implies that

det([sI3nf
− F1]⊗ Id) = det(sI3nf − F1).

By noting (4.6) and (4.7), the expression

det([sI3nf
− F1]⊗ Id) = Πn

i=1

[
s3 − kaµis2 − kvµis− kpµi

]
.

is obtained. Therefore, the eigenvalues satisfy

s3 − kaµis2 − kvµis− kpµi = 0. (4.8)

Since ka, kv, kx > 0 and −µi > 0,∀i , all errors converge to zero if the control gains

ka, kv and kx are chosen such that −kvkaµi > kp, ∀i ∈ Vf .

Remark 4.3.1. The choice of −kvkaµmax > kp satisfies the convergence requirement

−kvkaµi > kp for all followers. Note that µmax has been used to denote the greatest

eigenvalue of −Ωff , i.e., the greatest µi.

Remark 4.3.2. Note that the case of time-varying jeck can be studied using the

protocol 

ẋi(t) = vi(t),

v̇i(t) = ai(t),

ȧi(t) = − 1
γ

∑
j∈Ni

wij[kx(xi(t) − xj(t)) + kv(vi(t) − vj(t))

+ka(ai(t) − aj(t))− ȧj], i ∈ Vf ,

where γ =
∑

j∈Ni
. Further stability analysis is not included here for brevity.
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4.4 Affine Formation Control Law for Sampled-data

Coordination of Multi-agent Systems Described

by Triple-Integrator Agent Dynamics

Consider the MAS coordination case where the agents are described with triple-

integrator dynamics modelled in continuous-time by

ẋi(t) = vi(t), v̇i(t) = ai(t), ȧi(t) = ui(t). (4.9)

Assume that each agent has continuous-time dynamics, but communicate with (or

sense) their neighbours at periodic time intervals and their control inputs are zero-

order hold based. Such that, following [115],

ui(t) = ui(kT ), kT ≤ t < (k + 1)T,

where T, k, ui(t), and ui[k] respectively denote sampling period, discrete-time index,

control input at time t (continuous-time), and control input at t = kT .

Discretization of (4.9) yields


xi[k+1] = xi[k] + Tvi[k] + T 2

2
ai[k] + T 3

6
ui[k],

vi[k+1] = vi[k] + Tai[k] + T 2

2
ui[k],

ai[k+1] = ai[k] + Tui[k], i ∈ Vf ,

(4.10)

where ai, vi and xi have respectively been used to denote the acceleration, velocity and

position of agent i. Next, we study the sampled-data case where the jerk of leaders

are constantly zero. Consider the protocol,

ui[k] =−
∑
j∈Ni

wij[kx(xi[k] − xj[k]) + kv(vi[k] − vj[k])

+ ka(ai[k] − aj[k])], i ∈ Vf ,
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which is given in closed-loop form by

uf =− kx[(Ωff ⊗ Id)xf + (Ωfl ⊗ Id)x∗l ]

− kv[(Ωff ⊗ Id)vf + (Ωfl ⊗ Id)v∗l ]

− ka[(Ωff ⊗ Id)af + (Ωfl ⊗ Id)a∗l ]. (4.11)

Using (4.11), (4.10) can be re-written in matrix form as


xf [k+1]

vf [k+1]

af [k+1]

 =




(Inf − T 3

6
kxΩff ) (TInf

− T 3

6
kvΩff ) (T

2

2
Inf − T 3

6
kaΩff )

−T 2

2
kxΩff (Inf − T 2

2
kvΩff ) (TInf

− T 2

2
kaΩff )

−TkxΩff −TkvΩff (Inf − TkaΩff )


︸ ︷︷ ︸

F2

⊗Id



×


xf [k]

vf [k]

af [k]



+



−T 3

6
kxΩfl −T 3

6
kvΩfl −T 3

6
kaΩfl

−T 2

2
kxΩfl −T 2

2
kvΩfl −T 2

2
kaΩfl

−TkxΩfl −TkvΩfl −TkaΩfl

⊗ Id


x∗l[k]

v∗l[k]

a∗l[k]

 (4.12)

where v∗l ∈ Rdnl and vf ∈ Rdnf is used to respectively denote the velocities of the

leaders and followers. Define the position tracking error as

δf [k] = xf [k] − x∗f [k] = xf [k] + (Ω−1ff Ωfl ⊗ Id)x∗l[k],

where x∗f [k] denotes the target positions of the followers. Next, we analyse the stability

of control law (4.12).

Theorem 4.4.1. Assume that Assumptions 1, 2 and 3 (the Assumptions are in Sec-

tions 2.6 and 2.7) hold, and the leaders jerk is constantly zero, by choosing kx, ka, kv
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and T such that (2kv−Tkx) > 0 and kv(3Tkv−T 2kx− 6ka)µi− 6kx > 0, the tracking

error δxf [k] of all followers is guaranteed to stabilize to the origin by control law (4.12).

Proof. Let the state errors (or disagreements) of the followers be defined by

[
δTxf [k], δ

T
vf [k]

, δTaf [k]

]T
=
[
xTf [k], v

T
f [k], a

T
f [k]

]T − [
x∗Tf [k], v

∗T
f [k], a

∗T
f [k]

]T
, (4.13)

where a∗f , v
∗
f , x

∗
f ∈ Rdnf respectively denote the target accelerations, velocities and

positions of the followers. By taking (4.13) and control law (4.12) into consideration,

the system matrix of the error dynamics is defined by


(Inf − T 3

6
kxΩff ) (TInf

− T 3

6
kvΩff ) (T

2

2
Inf − T 3

6
kaΩff )

−T 2

2
kxΩff (Inf − T 2

2
kvΩff ) (TInf

− T 2

2
kaΩff )

−TkxΩff −TkvΩff (Inf − TkaΩff )


︸ ︷︷ ︸

F2

⊗Id. (4.14)

The characteristic polynomial of F2 ⊗ Id in (4.14) is given by det([sI3nf − F2] ⊗ Id),

which equals det(sI3nf − F2). Note that µi is used to denote the ith eigenvalue of

−Ωff . Thus, det(sIn + Ωff ) = Πn
i=1(s− µi).

Therefore, the characteristic equation of (4.14) satisfies

s3 − (
T 3

6
kxµi +

T 2

2
kvµi + Tkaµi + 3)s2

+ (−2T 3

3
kxµi + 2Tkaµi + 3)s

− (
T 3

6
kxµi −

T 2

2
kvµi + Tkaµi + 1) = 0. (4.15)

Using the bi-linear transform s = t+1
t−1 , for (4.15), the expression

− 3T 3kxµit
3 + (3T 3kxµi − 6T 2kvµi)t

2

+ (T 3kxµi + 6T 2kvµi − 12Tkaµi)t

+ (−T 3kxµi + 12Tkaµi + 24) = 0 (4.16)
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is obtained. Thus, a sufficient condition for the stability of (4.12) is for all the roots

of (4.16) to be on the left half plane. Note that the entire roots of (4.15) fall within

a unit circle if the entire roots of (4.16) are situated in the open left half plane. Note

that −3T 3kxµi > 0, because µi is always negative. Thus, based on the Routh-Hurwitz

stability criterion, ensuring that

3T 3kxµi − 6T 2kvµi > 0, and

(3T 3kxµi − 6T 2kvµi)(T
3kxµi + 6T 2kvµi − 12Tkaµi)

+ 3T 3kxµi(−T 3kxµi + 12Tkaµi + 24) > 0,

guarantees that the roots of (4.15) are within the unit circle. By further algebraic

simplification, these requirements are respectively reduced to (2kv − Tkx) > 0 and

kv(3Tkv − T 2kx − 6ka)µi − 6kx > 0.

4.5 Implementation

The first step in the implementation of the proposed algorithms is the design of a

reference formation that satisfies Assumptions 1 and 2. That is, the reference formation

should be both generically universally rigid and have at least d + 1 nodes, that span

the Rd space affinely, to be selected as leaders. The next step is to compute the stress

matrix Ω. Equation (2.6) is used to compute the stress matrix in this study.

The simulations were done in obstacle avoidance scenarios. The acceleration varied

slowly at some points, however, the control algorithms are still effective in these cases.

We now present the results of our four implemention cases grouped into two scenarios.

Note that, the agents’ connections in the framework (e.g. in Fig.4.6) are denoted with

straight lines and (2, 0) is used to denote that the agent’s position on the x- and y-axis

are respectively 2 and 0.
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4.5.1 Scenario One

Consider a five-agent MAS where each agent is modelled as triple-integrators. Assume

that the agents are denoted by i = 1, 2, ..., 5. Let Fig. 4.1 denote the communication

graph of the agents.

5 14

2

3

(-2,0)

(0,-1)

(-1,0)

(1,0)

(0,1)

Figure 4.1: Framework showing agent communication along with their 2-dimensional
reference positions.

Agents 1 to 3 are selected as leaders while the rest are followers. The stress matrix of

the graph is given by

Ω =

 Ωll Ωlf

Ωfl Ωff


where
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Ωll =


0.2919 −0.2919 −0.2919

−0.2919 0.3544 0.3544

−0.2919 0.3544 0.3544

 ,

Ωff =

 1.2919 −0.5000

−0.5000 0.2500

 ,
Ωfl =

 0.2919 −0.5419 −0.5419

0 0.1250 0.1250

 and

Ωlf =


0.2919 0

−0.5419 0.1250

−0.5419 0.1250

 .

(4.17)

The largest eigenvalue of −Ωff , µmax = −0.049. The leaders’ initial positions are

their respective nominal positions while the followers are initialized to the following

positions: P4(−3, 1) and P5(−1, 2), where P5(−1, 2) implies that the position of agent

5 is (−1, 2). We now present the results of two simulation studies where the leaders’

paths are generated in advance.

Continuous-time Inter-Agent Communication Case

This study considers the case where inter-agent communication occurs continuously

in time. We use control law (4.5) in this study. The control parameters are chosen

to satisfy the requirement of Theorem 6.3, i.e., −kvkaµi > kp,∀i. Here, we consider

−kvkaµmax > kp, which is the lower bound. From (4.17), µmax = −0.049 for −Ωff . It

is easy to verify that the choice of the control gains kx = 0.8, kv = 8 and ka = 10 with

µmax = −0.049 satisfy the requirement of Theorem 6.3 (−kvkaµi > kp,∀i ). These

parameters are used in the simulation.

In the simulation study, the velocities and accelerations of the leaders are estimated

using discrete differentiators (zero-order hold based). Note that the trajectories of the

leaders is assumed to be piecewise continuous and differentiable.
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The simulation result showing the agents’ positions is presented in Fig. 4.2. It shows

the formation maneuver around obstacles on its path. The trajectories of the agents’

velocities and accelerations are presented in Fig. 4.12 and the tracking errors of the

followers’ positions are presented in Fig. 4.3.
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Figure 4.2: Simulation illustrating the agents’ positions in the continuous-time case of
scenario one, based on control law (4.5). The simulation is carried out in a collision
scenario. Here, the leaders are able to sense obstacles but the followers can not. The
leaders are to steer the followers through the journey and simultaneously avoid any
obstacles on their path. The leaders formation is changed to maneuver the overall
formation. The followers are able to track their new formation following any change
based on control law (4.5).

Sampled-data Inter-Agent Communication Case

This study considers the case where inter-agent communication occurs in periodic time

intervals. We use control law (4.12) in this study. The control parameters are chosen

to satisfy the requirements of Theorem 4.4.1. Denote the least eigenvalue of −Ωff

by µmin. It can be verified from (4.17), that µmax = −0.049 and µmin = −1.493

in this case. It is easy to verify that the choices of T = 0.1, kx = 0.8, kv = 8

and ka = 8 satisfy the requirements of Theorem 4.4.1, i.e., (2kv − Tkx) > 0 and

kv(3Tkv − T 2kx − 6ka)µi − 6kx > 0, ∀i. Note that both µmax and µmin are used

because they form the boundary.
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Figure 4.3: Simulation illustrating the positions error dynamics for the continuous-
time case of scenario one

The simulation result showing the agents’ positions is presented in Fig. 4.4. It shows

the formation maneuver around obstacles on its path. The trajectories of the agents’

velocities and accelerations are presented in Fig. 4.13 and the tracking errors of the

followers’ positions are shown in Fig. 4.5.

4.5.2 Scenario Two

Consider a seven-agent MAS where each agent is modelled as triple-integrators. As-

sume that the agents are denoted by i = 1, 2, ..., 7. Let Fig. 4.6 denote the communi-

cation graph of the agents.

Agents 1 to 3 are selected as leaders while the rest are followers. The stress matrix of

the graph is given by [100].

Ω =

 Ωll Ωlf

Ωfl Ωff


where
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Figure 4.4: Simulation illustrating the agents’ positions in the sampled-data case of
scenario one, based on control law (4.12). The simulation is carried out in a collision
scenario. Here, the leaders are able to sense obstacles but the followers can not. The
leaders are to steer the followers through the journey and simultaneously avoid any
obstacles on their path. The leaders formation is changed to maneuver the overall
formation. The followers are able to track their new formation following any change
based on control law (4.12).



Ωll =


0.2742 −0.2741 −0.2741

−0.2741 0.6853 0

−0.2741 0 0.6853

 ,

Ωff =



0.7538 −0.0685 −0.2741 0

−0.0685 0.7538 0 −0.2741

−0.2741 0 0.2741 −0.1370

0 −0.2741 −0.1370 0.2741


,

Ωfl =



0.1370 −0.5482 0

0.1370 0 −0.5482

0 0 0.1370

0 0.1370 0


and

Ωlf =


0.1370 0 0

0 0 0.1370

−0.5482 0.1370 0

 .

(4.18)
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Figure 4.5: Simulation illustrating the positions error dynamics for the sampled-data
case of scenario one.
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Figure 4.6: Framework showing agent communication along with their 2-dimensional
reference positions.

The largest eigenvalue of −Ωff , µmax = −0.024. The leaders’ initial positions are

their respective nominal positions while the followers are initialized to the following
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positions: P4(0, 2), P5(0,−2), P6(−1, 3) and P7(−1, 3), where P5(0,−2) implies that

the position of agent 5 is (0,−2). We now present the results of two simulation studies

where the leaders’ paths are generated in advance.

Continuous-time Inter-Agent Communication Case

This study considers the case where inter-agent communication occurs continuously

in time. We use control law (4.5) in this study. Note that in this case µmax = −0.024.

The control gains kx, kv and ka are respectively chosen to be 0.8, 8 and 9. It is easy to

verify that this satisfies the requirement of Theorem 6.3, i.e.,−kvkaµi > kp,∀i. These

parameters are used in the simulation.

In the simulation study, the velocities and accelerations of the leaders are estimated

using discrete differentiators (zero-order hold based). Note that the trajectories of the

leaders is assumed to be piecewise continuous and differentiable.

The simulation result showing the agents’ positions is presented in Fig. 4.7. It shows

the formation maneuver around obstacles on its path. The trajectories of the agents’

velocities and accelerations are presented in Fig. 4.14 and the tracking errors of the

followers’ positions are presented in Fig. 4.8.

Sampled-data Inter-Agent Communication Case

This study considers the case where inter-agent communication occurs in periodic

time intervals. We use control law (4.12) in this study. Denote the least eigenvalue of

−Ωff by µmin. It can be verified from (4.18) that µmax = −0.024 and µmin = −0.96

in this case. Thus, the choices of T = 0.1, kx = 0.8, kv = 8 and ka = 8 can

be verified to satisfy the requirements of Theorem 4.4.1, i.e., (2kv − Tkx) > 0 and

kv(3Tkv − T 2kx − 6ka)µi − 6kx > 0, ∀i. Note that both µmax and µmin are used

because they form the boundary.

The simulation result showing the agents’ positions is presented in Fig. 4.9. It shows

the formation maneuver around obstacles on its path. The trajectories of the agents’
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Figure 4.7: Simulation illustrating the agents’ positions in the continuous-time case of
scenario two, based on control law (4.5). The simulation is carried out in a collision
scenario. Here, the leaders are able to sense obstacles but the followers can not. The
leaders are to steer the followers through the journey and simultaneously avoid any
obstacles on their path. The leaders formation is changed to maneuver the overall
formation. The followers are able to track their new formation following any change
based on control law (4.5).

Figure 4.8: Simulation illustrating the positions error dynamics for the continuous-
time case of scenario two.
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velocities and accelerations are presented in Fig. 4.11 and the tracking errors of the

followers’ positions are presented in Fig. 4.10.
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Figure 4.9: Simulation illustrating the agents’ positions in the sampled-data case of
scenario two, based on control law (4.12). The simulation is carried out in a collision
scenario. Here, the leaders are able to sense obstacles but the followers can not. The
leaders are to steer the followers through the journey and simultaneously avoid any
obstacles on their path. The leaders formation is changed to maneuver the overall
formation. The followers are able to track their new formation following any change
based on control law (4.12).

4.6 Summary

In this chapter, we have studied the affine formation control of MASs with triple-

integrator agent dynamics in both sampled-data and continuous-time settings. Al-

gorithms, based on stress matrix, are proposed to accomplish formation control in

each setting. Sufficient conditions on the sampling intervals and control gains for the

overall stability of the formation are presented. Implementations were carried out for

four cases. The results obtained in all four cases are in agreement with the proposed

algorithms. The proposed control algorithms are capable of tracking time-varying

transformations that are the affine transform of the nominal formation if the jerk of
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Figure 4.10: Simulation illustrating the positions error dynamics for the sampled-data
case of scenario two.

the agents is zero. An ongoing study is on extending the scheme to the general linear

multi-agent system case.
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Figure 4.11: Simulation depicting the agents’ velocity and acceleration trajectories for
the sampled-data case of Scenario two.
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Figure 4.12: Simulation depicting the agents’ velocity and acceleration trajectories for
the continuous-time case of Scenario one.
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Figure 4.13: Simulation depicting the agents’ velocity and acceleration trajectories for
the sampled-data case of Scenario one.
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Figure 4.14: Simulation depicting the agents’ velocity and acceleration trajectories for
the continuous-time case of Scenario two.



Chapter 5

Optimal Affine Formation Control

of Linear Multi-agent Systems

This study considers the affine formation control problem of linear multi-agent systems.

Previous studies are limited to the cases where the dynamics of the agents are described

by mere network of integrators. Note that the results contained in this chapter have

been published in the paper titled ”Optimal Affine Formation Control of Linear Multi-

agent Systems.”

5.1 Problem Formulation

Consider a group of multi-agent system composed of n agents (nl leaders and nf fol-

lowers) with every agent described by a similar linear time invariant dynamic equation

ẋi = Axi +Bui, (5.1)

where ui and xi ∈ Rd respectively denote the control input and the state of agent i

while A and B are constant matrices of appropriate dimensions.

Assumption 4. Assume that the pair (A,B) is controllable.

70
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Equation (5.1) is given in global form by

ẋ = (In ⊗ A)x+ (In ⊗B)u. (5.2)

Let r = [rT1 , . . . , r
T
n ]T = [rTl , r

T
f ]T ∈ Rnd denote a constant configuration, where rl and

rf respectively denote the configuration of the leaders and followers. We define the

target configuration, r∗ as

r∗ = (In ⊗ Λ)r + 1n ⊗ β,

knowing that by choosing appropriate values for Λ and β we can achieve our desired

target configuration. By singular value decomposition, a real matrix Λ can be de-

composed into U∑V , where V and U are unitary matrices and ∑ is a diagonal n× n

matrix. Thus, the desired target configuration is attained by an appropriate trans-

lation β, followed by rotation V , scaling ∑ and then rotation U . All these together

achieve the affine transformation.

We propose a following affine formation control protocol for multi-agent systems mod-

elled with undirected communication graph under the distributed control protocol

ξi = −cK2

∑
wij(xi − xj), i ∈ f, (5.3)

where c > 0 and K2 ∈ Rm×n respectively denote the coupling gain and local feedback

gain.

The agents are considered to have achieved affine formation if

lim
t→∞
‖xi − x∗i ‖ = 0,

where x∗i is the target position of agent i.

The goal of this study is to design a control in the form u = −c(Ω⊗K2)x that ensures

each follower agent in the affine formation tracks its target state using a distributed

framework that is globally stabilizing and optimal with respect to an LQR performance

index.
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5.2 Main Results

The globally optimal affine formation control problem is to design a distributed pro-

tocol ui for all follower nodes, such that each follower node tracks its target state in

the affine formation and simultaneously optimize some global performance indexes.

Consider a multi-agent system with each agent having similar dynamic model described

by (5.1). Consider the protocol

ξi = −
∑

wij(xi − xj), ∀i ∈ f,

whose closed loop form is given by

ξf = −(Ωff ⊗ Id)xf − (Ωfl ⊗ Id)xl (5.4)

Note that ξ = [ξTl , ξ
T
f ]T where ξf (ξl) denotes the set of ξi for all i that are follower

(leader) nodes.

Define the error of the followers as

e = xf − x∗f

= xf + (Ω−1ff Ωfl ⊗ Id)x∗l ,

so that (5.4) can be re-written in terms of the error as ξf = −(Ωff ⊗ Id)e. Thus, a

suitable control that guarantees stabilization at each node is given in global form by

u = −cΩff ⊗K2e, (5.5)

where c and K2 are respectively coupling and local feedback gains. To accomplish

global stabilization of the follower agents to their targets, (5.2) is redefined in terms

of the global error dynamics of the followers as

ė = (Inf
⊗ A)e− (Inf

⊗B)u, (5.6)

and by considering (5.5), the expression

ė = (Inf
⊗ A− cΩff ⊗BK2)e (5.7)



CHAPTER 5. OPTIMAL AFFINE FORMATION CONTROL 73

is obtained. For the desired affine formation to be achieved, (5.7) needs to be stabilised

to the origin, this is equivalent to the follower agents attaining their respective targets

in the formation. Next, sufficient conditions to guarantee the required stabilizations

are given.

Theorem 5.2.1. Assume that the error dynamics of the system is given by (5.6)

and Assumptions 1, 2 and 3 hold (the Assumptions are in Sections 2.6 and 2.7). Let

P1, P2, R1, R2 and Q2 be symmetric positive definite matrices such that

P1 = cR1Ωff , (5.8)

0 = P2A+ ATP2 +Q2 − P2BR
−1
2 BTP2. (5.9)

Note that under Assumption 1 − 3, Ωff is positive definite and symmetric since the

communication graph is undirected.

By choosing

c >
σmax(R1Ωff ⊗ (Q2 − P2BR

−1
2 BTP2))

σmin(ΩT
ffR1Ωff ⊗ P2BR

−1
2 BTP2)

and (5.10)

K2 = R−12 BTP2, (5.11)

the control u = −c(Ωff ⊗K2)e is stabilizing to the target state of each follower (i.e.

the origin of (5.6)) and globally optimal with respect to the LQR performance index

J =

∫ ∞
0

(eTQe+ uTRu)dt,

where σmax(.) and σmin(.) respectively denote the largest and smallest eigenvalues

of (.), P = P1 ⊗ P2, R = R1 ⊗ R2 and Q = −(P1 ⊗ (P2A + ATP2) − P1R
−1
1 P1 ⊗

P2BR
−1
2 BTP2). Note that Q is guaranteed to be positive definite, assuming that

(5.10) holds.

Proof 5.2.1. Let Q be a symmetric positive definite matrix. Also, let P = P1 ⊗ P2,

where P2 is nonsingular. Since both P1 and P2 are nonsingular, the Lyapunov function

Ve = eTPe = eT (P1 ⊗ P2)e > 0, since P = (P1 ⊗ P2) is positive definite. The regular

form of Algebraic Riccati Equation (ARE), Q + PA + ATP − PBR−1BTP = 0 is

written in the global form for the follower agents as
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Q+ (P1 ⊗ P2)(Inf ⊗ A) + (Inf ⊗ AT )(P1 ⊗ P2)

− (P1 ⊗ P2)(Inf ⊗B)(R−11 ⊗R−12 )(Inf ⊗BT )(P1 ⊗ P2) = 0 (5.12)

or

Q =− (P1 ⊗ (P2A+ ATP2)− P1R
−1
1 P1 ⊗ P2BR

−1
2 BTP2)

=− (cR1Ωff ⊗ (P2A+ ATP2)− c2ΩT
ffR1Ωff ⊗ P2BR

−1
2 BTP2). (5.13)

Rearranging (5.10), we have

c(σmin(ΩT
ffR1Ωff ⊗ P2BR

−1
2 BTP2)) > σmax(R1Ωff ⊗ (Q2 − P2BR

−1
2 BTP2)),

which is equivalent to

c2(σmin(ΩT
ffR1Ωff ⊗ P2BR

−1
2 BTP2)) > cσmax(R1Ωff ⊗ (Q2 − P2BR

−1
2 BTP2)).

(5.14)

Comparing this to (5.13), it follows that Q � 0. Hence, eTQe > 0.

Equation (5.12) which denotes the system’s ARE is satisfied by P = P1 ⊗ P2. The

resulting global optimal control

u = −R−1BTPe = −(R−11 ⊗R−12 )(Inf ⊗BT )(P1 ⊗ P2)e,

= −R−11 P1 ⊗R−12 BTP2e = −cΩff ⊗K2e.

Furthermore,

V̇(e) = ėTPe+ eTP ė,

= eT (Inf ⊗ A− cΩff ⊗BK2)
TPe,

+ eTP (Inf ⊗ A− cΩff ⊗BK2)e,

= eT (P1 ⊗ (ATP2 + P2A)− cΩT
ffP1 ⊗KT

2 B
TP2,

− cP1Ωff ⊗ P2BK2)e.

Simplification using (5.8) and (5.13) yields

V̇(e) = −eT (Q+ c2ΩT
ffR1Ωff ⊗KT

2 R2K2)e < 0,

which shows asymptotic stability to the desired target formation. It is easy to verify

that the LQR optimality requirements are satisfied.
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5.3 Simulation Study

Consider a multi-agent system composed of 5 agents with every agent having similar

linear time invariant dynamics. Each agent’s dynamics is discribed by

ẋi = Axi +Bui, i = 1, 2, ..., 5,

where

A =

0 1

4 −5

 , B =

1 0

0 2

 . (5.15)

The agents communication graph along with their configuration for the nominal for-

mation is given in Fig. 4.1.
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Figure 5.1: Formation of agents

Agents 1 to 3 are selected as leaders while the rest are followers. The stress matrix of

the graph is given by [116].
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Figure 5.2: Error of follower nodes

Ω =



0.292 −0.292 −0.292 0.292 0

−0.292 0.354 0.354 −0.542 0.125

−0.292 0.354 0.354 −0.542 0.125

0.292 −0.542 −0.542 1.292 −0.500

0 0.125 0.125 −0.500 0.250


Compute the feedback gain,

K2 =

 1.7755 0.3204

0.6407 0.2907


from (5.9) and (5.11) by choosing R2 = I2, and Q2 = I2. Let R1 = I2 then the

choice c = 900 satisfies (5.10). The initial states of the leaders are their nominal

configurations. Fig. 5.1 shows the follower nodes attain the desired targets in the

formation while Fig. 5.2 shows the followers error converge to zero.
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5.4 Summary

In this chapter, the problem of optimal formation control of the linear time-invariant

multi-agent system with single-integrator dynamics and undirected graph have been

studied. A control law design that guarantees both global optimality for some LQR

performance index and stability for the entire follower nodes of a multi-agent system

has been presented. The result extends earlier studies on affine formation control to

some cases where the input and system matrices may not respectively be the identity

and zero matrices. Ongoing research is on extending the scheme to systems with

sampled-data communication.



Chapter 6

Fully Distributed Affine Formation

Control of General Linear Systems

with Uncertainty

6.1 Introduction

This chapter studies the distributed adaptive affine formation manoeuvre control prob-

lem of MASs with general linear dynamics and parametric uncertainty. The main con-

tributions of this study are in three folds. Firstly, we consider the problem for systems

with static, and dynamic coupling gains. Two control laws are proposed to address the

different cases. The study extends our previous work in chapter 4, which only consid-

ers the static coupling gain case requiring global information in its design. Secondly,

the case of linear systems with uncertainties are considered. Two control laws with

robustness to uncertainties are presented to address systems with static and dynamic

coupling gains. Finally, an experimental study is used to verify the effectiveness of

the design. Note that the results contained in this chapter have been accepted for

publication in the paper titled ”Fully Distributed Affine Formation Control of General

Linear Systems with Uncertainty.”
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6.2 Problem Description

Consider a multi-agent system comprising n subsystems referred to as agents. Let the

n-agents comprise of nl leaders and nf followers (note that nf = n − nl) where each

follower agent (for the case without uncertainties) has similar linear time-invariant

dynamics described by

ṗi = Api +Bui. (6.1)

In (6.1), A and B denote constant matrices of appropriate dimensions, ui and pi ∈ Rd

respectively denote the control input and position (state) of agent i. Equation (6.1)

can be written in global form for all agents as

ṗ = (In ⊗ A)p+ (In ⊗B)u, (6.2)

and for all follower agents as

ṗf = (Inf
⊗ A)pf + (Inf

⊗B)uf , (6.3)

where p = [pT1 , ..., p
T
n ]T , pf = [pTnl+1, ..., p

T
n ]T , u = [u1, ..., un]Tand uf = [unl+1, ..., un]T .

In this study, the time-varying affine target position of agent i is defined by

p∗i (t) = Υ(t)ri + b(t), (6.4)

where both Υ(t) ∈ Rd×d and b(t) ∈ Rd vary with time and ri ∈ Rd denotes a constant

reference (or nominal) configuration of ith agent. Equation (6.4) can be written in

global form for all agents as

p∗(t) = [In ⊗Υ(t)]r + 1n ⊗ b(t), (6.5)

and for all follower agents as

p∗f (t) = [Inf
⊗Υ(t)]rnf

+ 1nf
⊗ b(t), (6.6)

where 1n, p
∗(t) ∈ Rnd and r = [rT1 , ..., r

T
n ] ∈ Rnd denote an n-length vector whose

elements (entries) are all ones, the time-varying affine targets to be tracked and the

nominal (reference) configuration of the agents respectively. Note that a trivial strat-

egy of accomplishing any required affine formation control is to define the Υ(t) and
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b(t) (for the entire tractory) for all agents in (6.4). A challenge with this strategy is

that all the agents will require knowledge of Υ(t) and b(t) values in advance. This,

in turn, limits the ability of the formation of agents to respond to any unexpected

situation, e.g., an unanticipated obstacle requiring a change in the formation to avoid.

This would require the values of Υ(t) and b(t) to be simultaneously changed for all

agents.

Let the affine image of the agents denote the set of all the affine transform of the

defined reference configuration r. Note that the time-varying targets are always affine

images of the defined reference configuration. The affine image is given in the global

form as [98]

A(r) = {p ∈ Rdn : p = (In ⊗ A)r + 1n ⊗ b, A ∈ Rd×d, b ∈ Rd}. (6.7)

Therefore, the overall aim is to steer the entire followers such that as t →∞, p(t) =

p∗(t). That is,

lim
t→∞

pf (t) = p∗f (t), ∀p∗f (t) ∈ A(r).

This study make the following assumption.

Assumption 5. For every agent, the pair (A,B) is controllable.

Remark 6.2.1. Assumption 5 is to facilitate full manipulation of the states using the

control input.

Remark 6.2.2. The agent dynamics given in (6.1) can be used to study the case

of heterogeneous multi-agent systems, i.e., the multi-agent system where the A and

B matrices may not be identical. However, when they are different, the kronecker

product ⊗ used in e.g. (6.2) is not suitable for use. To simplify our presentation in

this study, the case where A and B matrices are the same is used.

For brevity, pi(t) (including, pf (t), p
∗
l (t), ...) is written as pi (including, pf , p

∗
l , ...) in

the rest of this chapter.
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6.3 General Linear Multi-agent System Case

Consider a multi-agent system comprising n subsystems referred to as agents. The n-

agents comprise of nl leaders and nf followers each having similar linear-time invariant

dynamics described by (6.1) repeated here as

ṗi = Api +Bui.

Let the control input be defined by

ui = ϕiK
∑
j∈Ni

wij(pi − pj), ∀i ∈ f, (6.8)

where f denotes the set of followers. Assume that the leaders are at their targets, i.e.,

pl = p∗l , where p∗l denotes the target of the leaders. Then, the closed loop form of (6.8)

is given by

uf = (ΦΩff ⊗K)pf + (ΦΩfl ⊗K)p∗l , (6.9)

where ϕi, Φ and K denote the coupling gain of agent i, diag[ϕnl+1
, ..., ϕn] and local

feedback gain, respectively.

The followers are considered to have accomplished the required affine formation if

lim
t→∞
‖pi − p∗i ‖ = 0, ∀i ∈ f, (6.10)

where p∗i is the target position of agent i. The objective of this Section is to design

distributed control uf , such that (6.10) is achieved.

Using (6.9), network (6.3) can be written as

ṗf = (In ⊗ A+ ΦΩff ⊗BK)pf + (ΦΩfl ⊗BK)p∗l (6.11)

Next, we present sufficient conditions to guarantee (6.10) is accomplished.

Theorem 6.3.1. Under Assumptions 1 − 3 (the Assumptions are in Sections 2.6

and 2.7), by choosing ϕi >
1

2min<(λi) and K = −BTQ, where min<(λi) denotes the

minimum real eigenvalue of Ωff and Q = QT > 0 is the solution of

QA+ ATQ−QBBTQ < 0, (6.12)
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control law (6.9) solves the affine formation control problem by ensuring that the

tracking error of the followers δpf are stabilised to the origin.

Proof. Define the disagreements of the followers as

δpf = pf − p∗f

= pf + (Ω−1ff Ωfl ⊗ Id)p∗l , (6.13)

(disagreement as defined in (2.7)) where d denotes the dimension of the space. Using

(6.9) and (6.13), (6.3) can be written as

δ̇pf = (Inf ⊗ A+ ΦΩff ⊗BK)δpf . (6.14)

Therefore, the task of achieving (6.10) reduces to ensuring that the disagreement in

(6.14) stabilises to the origin. Define the unitary matrix U , such that

UTΩffU = Λ, (6.15)

where Λ is a diagonal matrix with diagonal entries λi, such that i = 1, ..., nf . Let

δ̃pf = (UT ⊗ I)δpf . (6.16)

So that by using (6.16), (6.14) can be written as

˙̃δpf = (Inf ⊗ A+ ΦΛ⊗BK)δ̃pf

or for each agent as

˙̃δi = (A+ ϕiλiBK)δ̃i, ∀i ∈ f.

Let the eigenvalues of Ωff be λi = ηi + kσi, where ηi = <(λi), k
2 = −1 and σi denotes

the imaginary part of λi. By Lemma 2, ηi > 0. There exists a Q, such that

Q(A+ ϕiλiBK) + (A+ ϕiλiBK)∗Q < 0, (6.17)

by noting that Assumption 5 implies that (6.1) is stabilisable. Straigthforward alge-

braic manipulation of (6.17) using λi = ηi + kσi, K = −BTQ and (6.12) gives

−(2ϕiηi − 1)QBBTQ < 0. (6.18)
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It is easy to verify that (6.18) holds by considering that ϕi >
1
2ηi

.

Thus, by choosing K and ϕi as presented in Theorem 6.3.1, control law (6.11) guar-

antees that the respective target functions of the followers are tracked.

Remark 6.3.1. Equation (6.12) can also be written in the formQA+ATQ−QBTBQ+

Q2 = 0, where Q2 = QT
2 > 0. Therefore, an algebraic manipulation of (6.17) using

λi = ηi + kσi, K = −BTQ and (6.12) gives

−Q2 − (2ϕiηi − 1)QBBTQ < 0.

6.4 Distributed General Linear System

The control law designed in the previous section requires the knowledge of the smallest

eigenvalue of Ωff , which is considered to be a global parameter, in the choice of

suitable coupling gains. This section considers an adaptive technique which obviates

the need for this global information in designing the coupling gain ϕi. To simplify the

presentation, ϕi is rewritten for the agents state as ϕpi and the diagreement as ϕδi .

Consider a multi-agent system with each agent governed by similar dynamics described

by

ṗi = Api +Bui, (6.19)

and protocol
ui = ϕpiK

∑
j∈Ni

wij(pi − pj),

ϕ̇pi =

[ ∑
j∈Ni

wij(pi − pj)T
]

Γ

[ ∑
j∈Ni

wij(pi − pj)

]
, ∀i ∈ f,

(6.20)

where ϕpi is a coupling gain and Γ is a local feedback gain and the other terms are as

defined in (6.1) and (6.3). Networks (6.19) and (6.20) can be rewritten as

ṗf = (Inf
⊗ A)pf + (Inf

⊗B)uf ,

uf = (ΦΩff ⊗K)pf + (ΦΩfl ⊗K)p∗l ,

ϕ̇pi =

(
n∑
j=1

Ωijp
T
j

)
Γ

(
n∑
j=1

Ωijpj

)
, ∀i ∈ f,

(6.21)
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where Ωij = −wij. With some algebraic manipulations, (6.21) can be written as
ṗf = (Inf

⊗ A+ ΦΩff ⊗BK)pf + (ΦΩfl ⊗BK)p∗l ,

ϕ̇pi =

(
n∑
j=1

Ωijp
T
j

)
Γ

(
n∑
j=1

Ωijpj

)
, ∀i ∈ f,

(6.22)

Next, sufficient conditions to guarantee the global stability of the network (6.22) are

presented.

Theorem 6.4.1. Under Assumptions 1− 3 (the Assumptions are in Sections 2.6 and

2.7), by choosing K = −BTQ and Γ = QBBTQ, where Q = QT > 0 is the solution of

QA+ ATQ+ I −QBBTQ = 0,

control law (6.20) solves the affine formation control problem.

Proof. Define the disagreements of the followers as δpf = pf − p∗f = pf + (Ω−1ff Ωfl ⊗

Id)p
∗
l (defined in (6.13)). Therefore, network (6.22) can be written in terms of the

disagreement dynamics as
δ̇pf = (Inf

⊗ A+ ΦΩff ⊗BK)δpf ,

ϕ̇δi =

(
n∑
j=1

Ωijδ
T
j

)
Γ

(
n∑
j=1

Ωijδj

)
, ∀i ∈ f

(6.23)

Therefore, the task of achieving (6.10) reduces to ensuring that the disagreement in

(6.23) stabilises to the origin. Consider the Lyapunov function candidate

V2 =
1

2
δTpf (Ωff ⊗Q)δpf +

1

2

n∑
i=nl+1

(ϕδi − β2)
2 , (6.24)

where β2 is a parameter to be defined later. It is easy to verify that (6.24) is positive

definite by noting Lemma 2 and that Q > 0. The derivative of V2 along the trajectory

of (6.23) implies that

V̇2 =δTpf [(Ωff ⊗Q)(Inf
⊗ A+ ΦΩff ⊗BK)]δpf

+
n∑

i=nl+1

[ϕδi − β2]

[
(
n∑
j=1

Ωijδ
T
j )Γ(

n∑
j=1

Ωijδj)

]
. (6.25)

By noting that K = −BTQ and Γ = QBBTQ, it can be verified that

δTpf [(ΩffΦΩff ⊗QBK)]δpf =
n∑

i=nl+1

ϕδi(
n∑
j=1

Ωijδ
T
j )QBBTQ(

n∑
j=1

Ωijδj), (6.26)
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where Φ = diag(ϕδnl+1 , ..., ϕδn).

Considering (6.26), (6.25) can be rewritten as

V̇2 = δTpf (Ωff ⊗QA− β2Ω2
ff ⊗QBBTQ)δpf . (6.27)

Let δ̃pf = (UT ⊗ I)δpf , where U is as defined in (6.15). It follows that, (6.27) can be

written as

V̇2 =δ̃Tpf (Λ⊗QA− β2Λ2 ⊗QBBTQ)δ̃pf

=
1

2
δ̃Tpf [Λ⊗ (QA+ ATQ)− 2β2Λ

2 ⊗QBBTQ]δ̃pf ,

that is,

V̇2 =
1

2

∑
∀i∈f

δ̃Ti [λi ⊗ (QA+ ATQ− 2β2λiQBB
TQ)]δ̃i. (6.28)

By choosing β2 ≥ 1
2λi

and noting that QA+ATQ+ I−QBBTQ = 0, it can be verified

that V̇2 < 0. Therefore, by choosing K and Γ as presented in Theorem 6.5.1, V2 > 0

and V̇2 < 0 ensuring that the disagreements(errors) of all follower nodes asymptotically

stabilise to the origin by the action of (6.21) and guarantees that the affine formation

control is accomplished.

6.5 Systems with Uncertainty

This section considers general linear systems with uncertainty.

6.5.1 General Linear System with Uncertainty

Consider the case where each agent has a model given by

ṗi = (A+ ∆Ai)pi +Bui, ∀i ∈ f, (6.29)

where ∆Ai denotes a time-varying uncertainty associated with agent i and considered

to be in the form

∆Ai = DεiM, (6.30)
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where εi ∈ Ry×z is an uncertainty satisfying

εTi εi ≤ α2I, ∀i ∈ f, (6.31)

α is a constant while D and M are known matrices characterizing the structure of

∆Ai. Assume that each agent communicate with its neighbours using protocol (6.8),

which is given in closed loop form for all followers as (6.9). Using (6.9) and (6.30),

(6.29) can be written in global form for all followers as

ṗf = [Inf
⊗ A+ ΦΩff ⊗BK + (Inf

⊗D)∆(Inf
⊗M)]pf

+ [ΦΩff ⊗BK]p∗l , (6.32)

where ∆ = diag(εi), ∀i ∈ f ; D and M are defined in (6.30); and then Φ and K are

defined in (6.9). Before moving on, we introduce an important concept and some

Lemmas on quadratic stability.

Definition 1. [117]: System (6.29) with ui = 0 is quadratically stable if a common

Lyapunov matrix with P > 0 exist for all admissible uncertainty ∆Ai, such that,

(A+ ∆Ai)
TP + P (A+ ∆Ai) > 0.

Lemma 6.5.1. [118]: System (6.29) with ui = 0 is quadratically stable for the entire

admissible uncertainties εi satisfying (6.30) if and only if:

1. the matrices A+ ϕiλiBK are Hurwitz, and

2. ‖M(sI − A)−1D‖∞ < 1
α

,

where α > 0.

Lemma 6.5.2 (Bounded Real Lemma [119]). The following statements are equivalent:

1. if the matrix A+ ϕiλiBK are Hurwitz and ‖M(sI − A)−1D‖∞ < 1
α

.

2. Then, there exists a Q > 0 such that

ATQ+QA+ α2DDT +QMTMQ < 0.
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Theorem 6.5.1. Under Assumptions 1− 3, by choosing ϕi ≥ 1
2<(λi) and K = −BTQ,

network (6.32) solves the affine formation control problem for all admissible uncertain-

ties εi, ∀i ∈ f , satisfying (6.31) if there exists a Q = QT > 0 such that

ATQ+QA−QBBTQ+ α2DDT +QMTMQ < 0. (6.33)

Proof. Let the disagreement be as given in (6.13) so that (6.32) can be re-written in

terms of disagreements as

δ̇pf = [Inf
⊗ A+ ΦΩff ⊗BK + (Inf

⊗D)∆(Inf
⊗M)]δpf , (6.34)

so that the task of accomplishing the required affine formation reduces to quadratically

stabilising (6.34). Consider a unitary matrix U , as defined in (6.15), and let δ̃ be as

given in (6.16) so that (6.34) can be written as

˙̃δpf = [Inf
⊗ A+ ΦΛ⊗BK + (Inf

⊗DεiM)]δpf , (6.35)

that is,

˙̃δi =
n∑

i=nl+1

(A+ ϕiλiBK +DεiM)δi. (6.36)

Note that (6.35) is block diagonal and is quadratically stable if every i in (6.36) is

quadratically stable. Thus, a necessary requirement for quadratic stability of (6.34)

for all admissible uncertainties satisfying (6.31) is that for every following ith agent,

A+ϕiλiBK is Hurwitz and ‖M(sI−A−ϕiλiBK)−1D‖∞ < 1
α

by considering Lemma

6.5.1. We are to design K to satisfy these requirements. By considering Lemma 6.5.2,

these requirements can be satisfied if there exits a Q such that

(A+ ϕiλiBK)∗Q+Q(A+ ϕiλiBK) + α2DD +QMTMQ < 0.

That is,

ATQ+QA+ 2ϕi<(λi)K
TBTQ+ α2DD +QMTMQ < 0. (6.37)

(Sufficiency) Choosing ϕi ≥ 1
2<(λi) and K = −BTQ simplifies (6.37) to

ATQ+QA−QBBTQ+ α2DD +QMTMQ < 0,

which by Lemma 6.5.2 implies thatA+ϕiλiBK is Hurwitz and ‖M(sI−A−ϕiλiBK)−1D‖∞ <

1
α

, or in global form for all followers implies Inf
⊗ A + ΦΩff ⊗ BK is Hurwitz and
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‖(Inf
⊗M)(sInf

−Inf
⊗A−ΦΩff⊗BK)−1(Inf

⊗D)‖∞ < 1
α

. Thus, quadratically stable

by Lemma 6.5.1. Therefore, the disagreement of each follower nodes are stabilised to

the origin and hence the tracking of the respective follower targets are accomplished

by the action of (6.32) with K and ϕi chosen as presented in Theorem 6.5.1.

6.5.2 Distributed Linear System with Uncertainties

Consider a multi-agent system with each agent governed by similar dynamics described

by

ṗi = (A+ ∆Ai)pi +Bui, (6.38)

and the protocolui = ϕpiK
∑
wij(pi − pj),

ϕ̇pi =
[∑

wij(pi − pj)T
]

Γ [
∑
wij(pi − pj)] , ∀i ∈ f,

(6.39)

where the terms are as defined in (6.1), (6.8) and (6.29). Control laws (6.38) and

(6.39) can be rewritten in closed loop form for all followers as
ṗf = [Inf

⊗ A+ (Inf
⊗D)∆(Inf

⊗M)]pf + (Inf
⊗B)uf ,

uf = (ΦΩff ⊗K)pf + (ΦΩfl ⊗K)p∗l ,

ϕ̇pf = [(Ωff ⊗ Id)pf ]TΓ[(Ωff ⊗ Id)pf ] + [(Ωfl ⊗ Id)p∗l ]TΓ[(Ωfl ⊗ Id)p∗l ],

(6.40)

and with some algebraic manipulations, (6.40) can be written asṗf = [Inf
⊗ A+ ΦΩff ⊗BK + (Inf

⊗D)∆(Inf
⊗M)]pf + [ΦΩff ⊗BK]p∗l ,

ϕ̇pf = pTf (Ω2
ff ⊗ Γ)pf + p∗Tl (Ω2

fl ⊗ Γ)p∗l ,

(6.41)

Theorem 6.5.2. Under Assumptions 1 − 3, by choosing K = −BTQ, control law

(6.39) solves the affine formation control problem for all admissible uncertainties

εi, ∀i ∈ f , satisfying (6.31) if there exists a Q = QT > 0 such that

ATQ+QA−QBBTQ+ α2DDT +QMTMQ < 0. (6.42)

Proof. The proof of this Theorem is similar to the combination of the proofs of The-

orems 6.4.1 and 6.5.1. Thus, it is omitted for brevity.
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6.6 Experimental Study with Mona Mobile Robots

6.6.1 Experimental Platform

An experimental testbed comprising Mona robots [120] as agents, a network of six

cameras and a central computer for robots localization and mapping are used. Each

robot has a unique arrangement of markers to facilitate its identification (see Fig. 6.6).

The camera network videos real-time motion of the robots and transmits the image

to a central computer for storage. A computer monitor (see Fig. 6.3) is connected to

the computer to facilitate remote monitoring of the activities of the robots.

6.6.2 Kinematic Model of Mona Robot

This experiment utilises a Mona robot whose model is feedback linearized. Some

details are provided as follows. Let the position of the robot in the global inertial

frame be as described in Fig. 6.1, where (κi, yi), vi, wi and θi respectively denote

the cartesian coordinates, linear velocity, angular velocity and orientation of robot i.

Note that x = (κi, yi) and x̂ = (κhi , yhi) respectively denote the position and head

position of the robot in the cartesian coordinate. Then, we can describe the Mona

robot kinematic model as 
κ̇i
ẏi

θ̇i

 =


cosθi 0

sinθi 0

0 1


vi
wi

 . (6.43)

By considering the nonholonomic constraint of our robot, (6.43) can be rewritten in

terms of the head position as
κ̇hi
ẏhi

θ̇i

 =


cosθi − r sinθi

sinθi r cosθi

0 1


vi
wi

 , (6.44)
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where r is the distance between the inertial position and the head position (see Fig.

6.1), and vi
wi

 =

 cosθi sinθi

−1
r
sinθi

1
r
cosθi

uκi

uyi

 . (6.45)

Note that ui = [uκi, uyi ]
T and ˙̂xi = ui. Thus, compared to (6.1), it follows that

A =

0 0

0 0

 , B =

1 0

0 1

 . (6.46)

For more details on Mona mobile robots, see [120].

!

!

!

Figure 6.1: Mona robot

6.6.3 Formation Control with Seven Robots

Normally, the first step in the implementation of the proposed control laws is the

design of suitable stress matrices. For this, a system comprising seven agents is chosen.

Figure 6.2 is chosen as the reference configuration with agents 1−3 designated leaders.

Following the procedure presented in Subsection 2.6, the stress matrix is computed as

Ω =

 Ωll Ωlf

Ωfl Ωff
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Figure 6.2: Agents’ configuration and communication graph. The inter-agent commu-
nications are denoted by straight lines

where

Ωll =


0.1368 −0.2052 −0.2052

−0.2052 0.7182 0

−0.2052 0 0.7182

 ,

Ωff =


0.7524 −0.0684 −0.2052 0

−0.0684 0.7524 0 −0.2052

−0.2052 0 0.2052 −0.1026

0 −0.2052 −0.1026 0.2052

 ,

Ωfl =


0.1368 −0.6156 0

0.1368 0 −0.6156

0 0 0.1026

0 0.1026 0

 and

Ωlf =


0.1368 0.1368 0 0

−0.6156 0 0 0.1026

0 −0.6156 0.1026 0

 .
The experiment is carried out using control law (6.11). To satisfy Theorem 6.3 for

the A and B given in (6.46), compute Q using (6.12), modified here as QA+ ATQ−
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QBTBQ+ 0.22I2 = 0. Then, compute the feedback gain

K =

−0.47 0

0 −0.47

 ,
from the relation K = −BTQ. Also, compute the minimum eigenvalue of Ωff as

0.0375, thus choose ϕi = 13.90, ∀i ∈ f .

6.6.4 Result

A scenario to provide dynamic landing platforms for multiple unmanned aerial vehicles

(UAVs) is considered. The platform is to be able to handle UAVs having landing

platforms of different widths.

Figure 6.3: Image display of monitoring system
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Figure 6.4: Formations of robot. The robots first produced the reference formation
(depicted with squares) and then execute scales to produce another formation (de-
picted with circles)

.
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Figure 6.5: Follower agents error dynamics over two formations. At the beginning of
the experiment, the leaders were first placed at their target positions in the reference
formation and follower tracked their own respective targets. Then, after about 75 sec-
onds, the leaders changed there positions and the followers tracked their corresponding
positions in the new formation.
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Figure 6.6: Mona robot
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Pictures of experiment illustrating team of robots executing affine formation control

under the action of Theorem 6.3. A short video of the formation control is available

at https://www.youtube.com/watch?v=54xi6l4KBTs

Figure 6.7: Initial positions of robots

Figure 6.8: Robots form reference formation

Figure 6.9: The leader execute scaling formation
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The plot of the robots as they first form their reference formation, from their initial

positions, followed by a scaling formation manoeuvre is presented in Fig. 6.4. The

dynamics of the error is presented in Fig. 6.5 and the photographs of these are pre-

sented in Figs. 6.7, 6.8 and 6.9. The errors of the followers stabilise to the origin with

each manoeuvre and the follower tracked their respective targets. The follower agents

(robots) in the experiment are able to scale to any matching width of the UAVs land-

ing platform. From the experimental results, our proposed method demonstrates that

the desired formation of robots can be achieved from any arbitrary initial positions

of the followers. Furthermore, instead of specifying the coordinates of all robots, one

could easily transform the desired formation pattern only by changing the positions

of the leaders.

6.7 Summary

In this chapter, we have investigated the affine formation control of general linear

multi-agent system based on the stress matrix approach which allows a team of agents

to simultaneously accomplish general formation manoeuvres. Four control laws are

presented to deal with basic general linear systems case, the case with uncertainties,

a fully distributed case, and the fully distributed case with uncertainties. Sufficient

conditions are presented to guarantee the global stability of the proposed control laws.

Results of experimental studies are presented to demonstrating the effectiveness of

the study. Future work focuses on achieving absolute controllability for multi-agent

systems.



Chapter 7

Conclusions and Future Works

This chapter presents a general conclusions as well as the perspective of future works

considered interesting.

7.1 Conclusions

This thesis addresses the affine formation control problem of multi-agent systems

(MASs).

Firstly, the affine formation control of multi-agent systems with periodic inter-agent

communication is studied. The cases where the agent dynamics are modelled as single-

and double-integrators are studied. A variety of control laws are provided. Sufficient

conditions to guarantee the system stability are established.

Secondly, the cases where the agents of a multi-agent system are described by triple-

integrator dynamics are considered. Two control laws are given to address the situa-

tions where the inter-agent communications are in continuous-time and discrete-time

settings. Sufficient conditions are derived to guarantee the overall stability of the sys-

tem. Procedures of the implementation of the system are also given. Simulations are

used to demonstrate the efficacy of the formulated control laws.

Thirdly, the case of agents with general linear system dynamics are considered. The

98
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scenarios where the agent dynamics have uncertainties are also considered. A variety

of control laws are given to deal with the different scenarios. Sufficient conditions are

given to guarantee the stability of the overall system. The stability analysis are carried

out using Lyapunov theorem. Experiments are carried out to demonstrate the efficacy

of the proposed control laws.
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7.2 Future Research

The following are some interesting open problems in affine formation control of multi-

agent systems.

1. How to reduce the number of leaders that need to have advance knowledge of

the maneuvres to be executed. As shown in the studies, to carry out maneuvres

in d-dimensional space, d+ 1 number of leaders need to be selected for the affine

formation control. A strategy that incorporates learning algorithms for some

leaders to estimate their trajectories will help reduce the number of leaders that

need advance knowledge of the maneuvres. For example, devising a method for

d leaders to estimate their trajectories will reduce the number agents (or leaders)

to just one and this can improve the ease of maneuvring the entire formation.

2. How to construct stress matrices for formation control in real-time. As presented

in this study, the current affine formation control is limited to the affine trans-

formation of reference configuration used in the design of the stress matrix. This

implies that the formation control that can be accomplished with the scheme

is limited to the affine images of the chosen reference configuration. Therefore,

a method of constructing stress matrices in real-time will facilitate the accom-

plishment of a broader class of formations. This is possible since to accomplish a

desired formation we would just construct a stress matrix whose affine transform

contains the desired target formation.

7.3 Reflections

The proposed approach to formation control studied in this work allows a single control

protocol to be used to simultaneously accomplish general affine formation control

of multi-agent formations in any dimension. This is very significant in formation

control. However, the work has some limitation that can be improved on. Some of the

limitations are as follows.
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1. The construction of the stress matrix is not fully distributed.

2. The communication requirement, through the number of required inter-agent

connections due to the Assumptions, is high.
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