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Abstract

In this paper, some recent advances on the estimation, filtering and fusion for networked systems are re-

viewed. Firstly, the network-induced phenomena under consideration are briefly recalled including missing/fading

measurements, signal quantization, sensor saturations, communication delays, and randomly occurring incomplete

information. Secondly, the developments of the estimation, filtering and fusion for networked systems from four

aspects (linear networked systems, nonlinear networked systems, complex networks and sensor networks) are

reviewed comprehensively. Subsequently, some recent results on the estimation, filtering and fusion for systems

with the network-induced phenomena are reviewed in great detail. In particular, some latest results on the multi-

objective filtering problems for time-varying nonlinear networked systems are summarized. Finally, conclusions

are given and several possible research directions concerning the estimation, filtering, and fusion for networked

systems are highlighted.
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I. INTRODUCTION

The networked systems have attracted increasing research attention due to their successful applications in

a wide range of areas, such as aircraft, space and terrestrial exploration, access in hazardous environments,

factory automation, remote diagnostics and troubleshooting, automated highway systems, unmanned aerial

vehicles, manufacturing plant monitoring and condition-based maintenance of complex machinery [1]. The
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advantages of the usage of networked systems include flexible architecture, the reduction of installation and

maintenance costs, decreasing the implementation difficulties and so on. However, the network-induced

phenomena arise inevitably due to the insertion of the communication network with limited communication

capacity [2]–[5]. Such network-induced phenomena include, but are not limited to, communication delays,

missing/fading measurements, signal quantization, sensor saturations, variable sampling/transmission in-

tervals, and out-of-sequence-measurement updates. Recently, a class of newly emerged network-induced

phenomena (randomly occurring incomplete information) has gained some initial research interest in

signal processing and control areas. Note that the network-induced phenomena could greatly degrade the

performance of the networked systems and may even lead to theinstability of the controlled systems [6],

[7]. Consequently, it is not surprising that both analysis and synthesis problems for networked systems

have received considerable research attention in the past decade.

The filtering problem has long been one of the foundational research problems in signal processing and

control engineering [8]–[12]. The past two decades have witnessed the rapid developments and extensive

applications of the filtering algorithms in practice, such as guidance, navigation, target tracking, remote

sensing, image processing, econometrics, and monitoring of manufacturing processes. Therefore, the design

of the filtering algorithms has received increasing research attention. According to different performance

indices (minimized variance constraint, set-valued constraints, guaranteedH∞ performance requirements

and so on), a great number of filtering algorithms have been developed for networked systems, such

as Kalman filtering [13], [14], extended Kalman filtering [15]–[18], set-valued filtering [19], [20], set-

membership filtering [21],H2 filtering [22]–[24], H∞ filtering [25], [26], and consensus filtering [27],

[28]. On the other hand, the design of linear optimal estimators (including filter, predictor and smoother)

for networked systems has gained a great deal of research attention as conducted in [29]–[32].

On another research frontier, it is well known that the data fusion techniques can provide the fusion

schemes by combining the information from different sources so as to achieve a satisfactory performance.

Over the past decades, the data fusion techniques have been successfully applied in a variety of areas such

as the target tracking, navigation, detection, robotics, video and image processing, business intelligence,

and sensor networks. Therefore, considerable research effort has been devoted to the multi-sensor data

fusion problems for complex dynamical systems. In fact, as mentioned in [33], there are a great number

of challenging issues in the multi-sensor data fusion fieldsincluding data imperfection, outliers and

spurious data, conflicting data, data modality, data correlation, data association, data alignment/registration,

processing framework, operational timing, static versus dynamic phenomena, data dimensionality and so

on. For more information about the challenging problems of the multi-sensor data fusion, we refer the

readers to the survey paper [33] where more comprehensive interpretations have been provided. In what

follows, we confine the addressed topic to the multi-sensor data fusion for networked systems and endeavor

to introduce some recent advances on the network-based multi-sensor data fusion approaches from the

perspective of algorithm developments. The multi-sensor data fusion algorithms can be generally classified

into two types: centralized fusion and distributed fusion algorithms, where the schematic diagrams of

centralized and distributed fusions in network environment are given as in Figs. 1–2 respectively. We will
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further discuss the recent developments of the multi-sensor fusion of networked systems later.
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Fig. 1. Schematic structure of centralized fusion over network
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Fig. 2. Schematic structure of distributed fusion over network

In this paper, we aim to provide a timely review on the recent advances of the estimation, filtering

and fusion algorithms for networked systems with network-induced phenomena. The addressed network-

induced phenomena include missing/fading measurements, communication delays, signal quantization,

sensor saturations, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occur-

ring signal quantization, randomly occurring sensor saturations and so on. The recent developments of the

network-induced phenomena are firstly discussed. Secondly, we review the analysis and synthesis problems

of the networked systems from four aspects, including linear networked systems, nonlinear networked

systems, complex networks and sensor networks. In the same section, several estimation, filtering and

fusion schemes for networked systems are surveyed in great detail. Thirdly, latest results on estimation,

filtering and fusion approaches for networked systems with network-induced phenomena are reviewed.

Finally, conclusions are drawn and some possible research directions are pointed out.

The remainder of this paper is organized as follows. In Section II, the network-induced phenomena

are discussed. In section III, the developments of the estimation, filtering, fusion problems for networked

systems are summarized. In section IV, some latest results on the estimation, filtering and fusion problems

for complex dynamical systems with network-induced phenomena are reviewed. Both conclusions and

some future research topics are provided in section V.
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II. NETWORK-INDUCED PHENOMENA

Over the past decade, a great deal of research attention has been received regarding the modeling

and analysis of the network-induced phenomena including missing/fading measurements, signal quantiza-

tion, sensor saturations, communication delays, variablesampling/transmission intervals, out-of-sequence-

measurement updates, randomly occurring incomplete information etc. Accordingly, many important

approaches have been given to examine the effects from the network-induced phenomena onto the system

performance. In this section, some representative network-induced phenomena will be briefly reviewed.

A. Missing/Fading Measurements

The traditional estimation and filtering algorithms rely onan ideal assumption that the measurement

outputs are available always. Nevertheless, the imperfectcommunication would occur in practical engi-

neering especially in the networked systems, namely, the measurement outputs may contain noise only at

certain instants and the desired signals are missing due probably to temporal sensor failures or network

transmission delay/loss [34]–[39]. During the past two decades, among the probabilistic ways for modeling

the missing measurements, the Bernoulli probability distribution has been extensively employed due to

its simplicity and practicality, where the Bernoulli random variable takes value on 1 representing the

perfect signal delivery and it takes value on 0 standing for the measurement missing. Accordingly, many

important papers have been published concerning on the estimation, filtering and fusion for networked

systems based on several methods such as the linear matrix inequality method [25], difference linear matrix

inequality method [27], innovation analysis approach [30], Hamilton-Jacobi-Isaacs inequality approach

[35], and backward/forward Riccati difference equation method [7], [37]. When comparing between

different approaches, it is worth mentioning that the linear matrix inequality (difference linear matrix

inequality) method is applicable for the analysis problem of time-invariant (time-varying) linear/nonlinear

networkedcomplex dynamical systemsand gives the feasible solutions, the innovation analysis approach

is suitable for handling the analysis problem of linear time-invariant/time-varying networked systems

and can provide theoptimal solutionsin the minimum mean-square error sense, the Hamilton-Jacobi-

Isaacs inequality approach is helpful for addressing the analysis and synthesis problems of time-invariant

networked systems withgeneral nonlinearitiesbut it is commonly difficult to obtain the feasible solution,

and backward/forward Riccati difference equation method has the advantage to deal with the analysis

and synthesis problem fortime-varyinglinear/nonlinear networked systems and provide the sub-optimal

solutions. A more detailed comparison is given in Table I with hope to better understand the differences

among the existing methods.

On the other hand, the measurement signals during the network transmissions may fade/degrade in a

probabilistic way rather than be lost completely [49], [51], [52], [55]–[57]. It is easy to see that the missing

measurements are extreme cases of the fading measurements.By using sequences of random variables

obeying a certain probability distribution over known intervals with available conditional probabilities, the

phenomena of the multiple fading measurements have been modeled in [52] and a Kalman-like recursive

filtering algorithm has been developed via the forward Riccati difference equation approach. Besides, in
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TABLE I

COMPARISONS AMONG DIFFERENT METHODS

Methods Applications Solutions References

Linear matrix inequality method time-invariantcomplex dynamical systems feasible [25], [40]–[44]

Difference linear matrix inequality method time-varyingcomplex dynamical systems feasible [21], [27], [45], [46]

Innovation analysis approach linear time-invariant/time-varyingsystems optimal [30]–[32], [39], [47], [48]

Hamilton-Jacobi-Isaacs inequality approach general nonlinear time-invariantsystems feasible [35]

Backward Riccati difference equation method nonlinear time-varyingsystems sub-optimal [37], [49], [50]

Forward Riccati difference equation method nonlinear time-varyingsystems sub-optimal [7], [16], [51]–[54]

[49], [56], [57], theN-order Rice fading channel has been modeled by sequences of independent and

identically distributed Gaussian random variables with known means and variances, where the multi-path

induced fading stemming mainly from multi-path propagation has been considered when dealing with the

control and estimation problems for networked systems and the impact from the fading measurements

onto the control/estimation performance has been examined.

B. Signal Quantization

In the networked environment, signals are often quantized before the transmissions because of the

finite-word length of the packets [58]–[61]. During the implementation, a device or algorithmic function

performing the quantization is called a quantizer and an analog-to-digital converter can be seen as an

example of a quantizer. Note that the signal quantization would affect the achievable performance of the

networked systems and, hence, there is a need to conduct the analysis on various quantizers and examine

the effects from the quantization onto the system performance. Recently, the signal quantization problem

has become a research focus and attracted an ever-increasing interest. Accordingly, some methods have

been proposed in [62]–[64] to handle the uniform quantization (the quantizers have same sensitivity) and

in [65]–[67] to deal with the logarithmic quantization (thequantization levels are linear in logarithmic

scale). As discussed in [68], a logarithmic quantizer can provide better efficiency in terms of the data

rate for system performance than a uniform quantizer. So far, a great deal of effort has been devoted to

address the filtering problems for networked systems with signal quantization and some effective filtering

algorithms have been developed in [53] with variance constraints and in [69], [70] withH∞ performance

requirements. For example, the fault detection filtering algorithms have been given in [69], [70] for

linear networked systems with logarithmic quantization byusing the linear matrix inequality technique.

However, it is worthwhile to mention that most reported results have been concerned with time-invariant

networked systems with signal quantization only and the corresponding filter design problem fortime-

varying networked systems has not been paid adequate research attention.

C. Sensor Saturations

As is well known, sensors may not always be capable of providing signals with unlimited amplitudes

due to physical/technological restrictions. The occurrence of the sensor saturations could affect the imple-
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mentation precision of the developed filtering algorithms and may even cause severe degradation of the

filtering performance if not handled properly. In the past ten years, the filtering problems for networked

systems with sensor saturations have gained some initial research attention and some preliminary results

have appeared handling the sensor saturations in recent literature [71], [72]. The main challenge with

this topic is how to design a filtering algorithm by making full use of the available information about

the sensor saturations subject to specified performance requirements (minimized variance, guaranteedH∞

constraints etc). Recently, by using the sector-bounded approach in [73], [74], a decomposition technique

has been given to facilitate the filter design for networked systems and a great number of papers have been

published. For example, in [75], a probability-guaranteedH∞ performance index has been defined over

a finite-horizon, and a probability-guaranteedH∞ filtering algorithm has been developed for a class of

time-varying nonlinear networked systems subject to random parameter matrices and sensor saturations.

However, when it comes to the variance-constrained filtering and estimation problems fortime-varying

nonlinear networked systems with sensor saturations, the related results are very few and the situation is

even worse when the randomly occurring incomplete information is also considered.

D. Communication Delays

The communication delays are frequently encountered in modern industrial systems (chemical process,

long transmission lines in pneumatic, and communication networks) due to the finite switching speed of

amplifiers or finite speed of information processing [76]–[84]. In the past two decades, many efficient

approaches have been given to reduce the conservatism caused by the time delays, such as the bounding

technique [85], the descriptor system method [86], the slack matrix variables technique [87] and the delay-

fractioning approach [88], [89]. Generally speaking, the objective of conducting the delay-dependent

analysis includes two aspects (conservatism and complexity): 1) development of the delay-dependent

conditions to provide a maximal allowable delay; and 2) development of the delay-dependent conditions

by using as few decision variables as possible while achieving the same maximal allowable delay. When

comparing between different methods, both the conservatism and the complexity serve as the criteria, and

there exists a tradeoff between the conservatism and the complexity. Hence, it is difficult to look for a

globally optimal approach which is least conservative yet with least computational burden. Compared with

the bounding technique, the slack matrix variables technique and the descriptor system method, the delay-

fractioning approach is efficient in reducing the conservatism caused by the time-delays at the cost of

introducing more computational complexity especially when the number of fractions goes up. Fortunately,

it is not difficult to handle the computational complexity problem nowadays due to the rapid developments

of the computing techniques. Based on the reported delay analysis methods, a great number of results have

been published concerning the synthesis problem of the time-delay systems. Note that most of the relevant

results have been concerned with thedeterministic delaysonly, while the communication delays induced by

network transmissions would be random and time-varying. Assuch, the random communication delays

have received some initial research interests and the problems of estimation, filtering and fusion have

been studied for networked systems with random communication delays [39], [90]–[93]. For example,
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the filtering problems have been studied in [39], [90], [92],[93] for networked systems with random

communication delays modeled by Bernoulli random variables. In [91], the optimal filtering problem has

been investigated for networked systems with random communication delays modeled by Markov chain.

E. Randomly Occurring Incomplete Information

Recently, accompanying with the increasing of the network scale, the randomly occurring incomplete

information has become a hot research topic that has gained some initial research attention. The randomly

occurring incomplete information may occur intermittently in a probabilistic way with certain types and

intensity. For example, in a networked system such as the internet-based three-tank system for leakage

fault diagnosis, the nonlinearities may occur in a probabilistic way due to random abrupt variations

and the occurrence probability can be estimated via the statistical tests [94]. It is well recognized that the

existence of the randomly occurring incomplete information would highly degrade the system performance

if not handled properly. So far, a series of estimation and filtering schemes has been developed for

networked systems with randomly occurring incomplete information in the literature, and great efforts

have been made to deal with the randomly occurring nonlinearities in [49], [95]–[99], the randomly

occurring uncertainties in [94], [97], the randomly occurring sensor saturations in [40], [72], the randomly

occurring sensor delays in [31], [32], [38], [100], [101], the randomly occurring signal quantization in

[41], [102], and the randomly occurring faults in [103]. Accordingly, several techniques for analysis and

synthesis of the networked systems have been given, including innovation analysis approach [31], [32],

linear matrix inequality approach [97], Hamilton-Jacobi-Isaacs inequality method [100], difference linear

matrix inequality method [41], Riccati difference equation approach [101], [102], and game theory method

[54].

III. A NALYSIS AND SYNTHESIS OFNETWORKED SYSTEMS

Over the past two decades, the networked systems have been received an ever-increasing research

attention due to its engineering insights in a variety of areas such as the guidance and navigation, air

traffic control, factory automation, remote diagnostics and troubleshooting and automated highway systems

[104]–[107]. In this section, the methodologies of modeling, estimation, filtering and fusion for networked

systems in the literature are briefly surveyed.

A. Linear Networked Systems

During the past decade, the estimation problems of the linear networked systems have gained consid-

erable research attention and a great number of methods havebeen given including innovation analysis

approach, linear matrix inequality method, game theory approach, etc. For example, the linear optimal

estimation problems have been studied in [30]–[32], [39] for linear discrete time-varying networked

systems with packet dropouts, and the linear optimal estimators (including filter, predictor and smoother)

have been designed based on the innovation analysis approach. Due to the limited capacity of the

communication networks, the multiple network-induced phenomena (random transmission delays, packet
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dropouts) may occur simultaneously during the signal transmissions. For instance, in [31], [32], both

the random transmission delays and the packet dropouts havebeen discussed in a unified framework.

Compared with the results in [30], it is worth mentioning that the consecutive packet dropouts in [31] are

finite and the consecutive packet dropouts in [32] can be infinite. In contrast to the modeling method

of the random transmission delays based on the Bernoulli probability distribution in [31], [32], the

phenomenon of random transmission delays has been modeled in [91] by a multi-state Markov chain

and the optimal filtering problem has been studied for networked systems subject to random transmission

delays. To further reflect the engineering reality and improve the estimation performance, the phenomena

of random transmission delays and packet dropouts occurring in two sides (from sensor to estimator

and from controller to actuator) have been modeled in [92] within a unified framework, and the optimal

estimators (including filter, predictor and smoother) in the linear minimum variance sense have been

designed by using the orthogonal projection approach.

When the state-space model of the signal is unknown, some estimation algorithms for linear networked

systems can be found in the literature [47], [48]. To be specific, based on the innovation analysis

approach, the linear recursive filtering and smoothing algorithms have been presented in [47] to handle the

phenomenon of multiple random delayed measurements with different delay rates, and the recursive least-

squares linear estimation algorithms have been given in [48] to deal with uncertain observations, one-step

delay and packet dropouts in a unified framework. On the otherhand, by employing the linear matrix

inequality technique, the design problems of optimalH∞ andH2 filters have been investigated in [24], [42]

for linear networked systems with multiple packet dropouts. Based on the quasi Markov-chain approach,

the filtering algorithms have been given in [108] for linear networked systems in the simultaneous presence

of random delay, packet dropouts and missing measurements.Besides, in [54], a robust filtering scheme

has been provided for a class of linear time-varying systemswith stochastic uncertainties, finite-step

correlated process noises and missing measurements via themin-max game theory approach.

B. Nonlinear Networked Systems

As is well known, the nonlinearity is a ubiquitous feature existing in almost all practical systems that

contributes significantly to the complexity of system modeling [89], [103], [109]–[112]. The occurrence of

the nonlinearity would cause undesirable dynamic behaviors. Therefore, the filtering problems for general

nonlinear networked systems have received considerable research attention and some useful methods have

been given in [17], [35], [100], [113]–[116]. In terms of theHamilton-Jacobi-Isaacs inequality method, the

H∞ filtering problems have been investigated in [35], [100] fora general class of discrete-time nonlinear

stochastic systems with missing measurements and random sensor delays, where sufficient criteria have

been proposed to guarantee that the filtering error dynamicsis stochastically stable irrespective of the

presence of the missing measurements and random sensor delays. In [17], [113], [114], the extended

Kalman filtering approaches have been given for general nonlinear networked systems with intermittent

observations, state delay, and sensor failures, respectively. By using the Riccati equation method, the

unscented Kalman filtering problems have been studied in [115], [116] for nonlinear networked systems
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with intermittent observations and packet dropout respectively, and sufficient conditions have been given

to ensure the stochastic stability of the filtering error covariance, where the intermittent observations

phenomenon in [115] is modeled by a Bernoulli random variable and the packet dropout phenomenon in

[116] is characterized by a time-homogeneous Markov process.

In contrast to general nonlinearities, another class of nonlinearities (stochastic nonlinearities) deserves

particular research attention since they occur randomly due probably to sudden environment changes,

intermittent network congestion, changes in the interconnections of subsystems, random failures and repairs

of the components, modification of the operating point of a linearized model of nonlinear systems [117].

Such stochastic nonlinearities include the state-dependent multiplicative noise disturbance as a special

case. The filtering problems for networked systems with stochastic nonlinearities have already stirred

some research interests and some latest results can be foundin [16], [43], [45], [52], [101] based on

several analysis techniques. For example, by using the Riccati-like difference equation approach, the

extended Kalman filter has been designed in [16] for a class oftime-varying networked systems with

stochastic nonlinearities and multiple missing measurements. Moreover, the locally optimal Kalman-like

filtering algorithms have been developed in [52], [101] for time-varying networked systems with stochastic

nonlinearities, where the compensation schemes have been proposed to attenuate the effects from random

sensor delays, random parameter matrices and gain-constraints onto the filtering performance. By using

the recursive linear matrix inequality method, the robustH∞ filter has been constructed in [45] for a class

of time-varying networked systems with stochastic nonlinearities and variance constraints. In [43], the

filtering algorithm has been given for a class of discrete time-delay systems with stochastic nonlinearities

by employing the semi-definite programme method.

Over the past two decades, as discussed in [118]–[120], the fuzzy-logic scheme has proven to be

one of effective approaches for modeling the nonlinear networked systems. Therefore, the multi-objective

filtering problems for nonlinear networked systems via the fuzzy method have gained considerable research

attention. For example, based on the fuzzy interpolation method, a fuzzy stochastic partial differential

system has been introduced in [121] to approximate the nonlinear stochastic partial differential system

with random external disturbance and measurement noise, and a robustH∞ filtering algorithm has been

developed by solving the linear matrix inequalities. In [57], a sequence of random variables obeying the

Bernoulli distribution has been employed to model the phenomena of the randomly occurring uncertainties

and the randomly occurring interval time-varying delays, and the fuzzy filtering problem has been studied

for a class of nonlinear networked systems with channel fadings characterized by the Rice fading model.

In addition, the intermittent measurements have been modeled in [44], [122] by using Bernoulli random

variables with known occurrence probabilities andH∞ filtering algorithms have been developed for

nonlinear networked systems based on the T-S fuzzy-model approach. In contrast to the modeling of the

network-induced phenomena by using the Bernoulli probability distribution, a different modeling method

has been introduced in [23], where the Markov chain has been used to model the random transmission

delays and theH2/H∞ filtering problem within fuzzy setting has been investigated for a class of nonlinear

networked systems. Moreover, the event-triggered fuzzy filtering methods have been given in [123], [124]
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for nonlinear networked systems, where the developed filtering algorithms are capable of decreasing the

communication load and energy consumption during the signal transmissions.

C. Complex Networks and Sensor Networks

Complex networks are composed of a group of interconnected nodes under certain topological structures

[125], [126]. As is well known, the scale-free networks and small-world networks are two popular classes

of complex networks characterized by the power-law degree distributions [127] and the short path lengths

as well as high clustering [128]. During the past decade, thedynamical behavior analysis of the complex

networks has become a very active research topic due to its application potentials in a wide range of real-

world networks such as biological networks, computer networks, electrical power grids, cyber-physical

systems, technological networks and social networks. Because of the importance and popularity of the

complex networks, a rich body of research results has been published concerning various aspects of

the network structure [129], [130]. Note that the system states are not always available in reality due

to physical constraints, technological restrictions or expensive cost for measuring. Hence, it is also of

great significance to estimate the states of the network nodes based on the available measurements.

Accordingly, increasing research attention has been devoted to deal with the state estimation problems

for time-invariant/time-varyingcomplex networks with network-induced phenomena, see [131], [132] for

some recent results.

On the other hand, the sensor networks equipped with distributed autonomous sensors have proven

to be persistent research focuses which have gained an increasing attention in a variety of areas, and

a great number of estimation schemes have been given in the literature [133]. It should be pointed out

that the network-induced phenomena are inevitable in the sensor measurement outputs due to the noisy

environment and limited communication capacity. The occurrence of the network-induced phenomena

would greatly degrade the networked system performance or even lead to the divergence of the developed

estimation schemes if not tackled properly. Hence, much work has been done on the topics of estimation,

fusion, and distributedH∞ filtering for networked systems over sensor networks in [134]–[137] and the

references therein. For example, the estimation and fusionproblems have been studied for networked

systems over sensor networks in [36], [136], [138], [139] with missing measurements, in [136], [139]–

[141] with time-delays, in [142] with sensor saturations, in [143] with signal quantization, and in [144]

with channel errors. We will return to the topics of estimation and fusion for complex networks/sensor

networks later, and more details concerning the recent advances will be presented in the following section.

IV. L ATEST PROGRESS

Recently, the study on estimation, filtering and fusion for networked systems has attracted an increasing

research interest and some important results have been reported in the literature. Here, we highlight some

of the newest work, where the estimation, filtering and fusion algorithms have been presented to attenuate

the effects from the network-induced phenomena onto the estimation performance under variance orH∞

constraints.
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A. Filtering and Estimation for Networked Systems

1) Filtering for Networked Systems:Recently, the modeling and filtering problems fortime-varying

systems have received increasing research attention owingto the fact that almost all real-world systems

have certain parameters/structures that are time-varying. Therefore, some efficient filtering algorithms

have been proposed for time-varying networked systems based on the Riccati-like difference equation

approach or difference linear matrix inequality method. Tomention a few, a Kalman-type filter has been

designed in [52] for a class of time-varying nonlinear systems with random parameter matrices, correlated

noises and fading measurements. Based on the result in [52],the recursive filtering problem has been

investigated in [101] for time-varying nonlinear systems subject to finite-step correlated measurement

noises, probabilistic sensor delays and gain-constraint.The developed filtering algorithm in [101] has

the ability to attenuate the effects from the random sensor delays and gain-constraint onto the filtering

performance and, moreover, it could be useful for addressing the gain-constrained issues arose in practical

engineering with specified objectives, for example, to guarantee the unbiasedness property of the state

estimates, simplify filter structure and handle the case of state estimates with linear equality constraint.

In [145], the robust non-fragile filtering problem has been investigated for a class of linear time-varying

systems subject to multiple packet dropouts and finite-stepauto-correlated measurement noises, and a

locally optimal filtering algorithm has been given. Subsequently, a globally optimal filtering scheme in the

minimum mean-square error sense has been proposed in [146] by properly taking the statistical properties

of correlated noises into account for the same addressed systems as in [145]. In [147], an optimal filtering

algorithm has been given for linear time-varying system in the presence of the stochastic sensor gain

degradations. Very recently, by using the backward Riccatiequation method, an effectiveH∞ filtering

scheme has been presented in [37] to handle the missing measurements and quantization effects in a same

framework, and the developed result has been applied to address the mobile robot localization problem.

Parallel to the filtering problems for linear time-varying networked systems, the filtering problems for

nonlinear time-varying networked systems have started to stir the initial research interest. For example,

the recursive filtering problems have been studied in [16], [53] for two general classes of nonlinear

networked time-varying systems with the multiple missing measurements and quantization measurements

respectively, where some new recursive filtering algorithms have been developed by properly estimating

the linearization error and based on the stochastic analysis technique. It has been shown that an optimal

upper bound of the filtering error covariance can be obtainedat each sampling instant by employing the

filtering schemes in [16], [53]. In addition, more freedom degree and better filtering performance can be

achieved by tuning the weight parameters, and the explicit forms of the filter parameters have been given

in terms of the solutions to Riccati-like difference equations. Furthermore, a new non-fragile filter has been

designed in [102] for a class of nonlinear time-varying networked systems with incomplete measurements

consisting of the randomly occurring missing measurementsand signal quantization, and a new filtering

compensation algorithm has been given based on the Riccati-like difference equation approach. In addition,

a probability-guaranteedH∞ finite-horizon filtering methodhas been proposed in [75] for a class oftime-

varyingnonlinear systems with sensor saturations by utilizing difference linear matrix inequality technique,



REVISION 12

where the uniform distribution has been used to characterize the stochastic uncertainties in the system

matrices and a newH∞ performance index with probability performance constraint has been introduced for

time-varying systems in order to meet the specified engineering requirements. Very recently, in [148], the

envelope-constrainedH∞ filter has been constructed for a class of discrete time-varying networked systems

with fading measurements and randomly occurring nonlinearities, where a novel envelope-constrained

performance criterion over a finite horizon has been defined to further quantify the transient behavior of

the filtering error.

2) State Estimation for Complex Networks:With respect to the state estimation problem for complex

networks with network-induced phenomena, we mention some representative results as follows. In [149],

the state estimator has been designed for an array of coupleddiscrete-time complex networks with discrete

and distributed time delays. In [132], [150], the state estimation problems have been studied for complex

networks with missing measurements, and sufficient criteria have been given to ensure the asymptotical

stability of the estimation error in the mean-square sense by verifying the feasibility of certain linear

matrix inequalities. The state estimation problem has beenstudied in [72] for a class of discrete nonlinear

complex networks with randomly occurring phenomena, wherethe randomly occurring sensor saturations

and randomly varying sensor delays have been addressed in a unified framework. In [151], the state

estimation problem has been investigated for two-dimensional complex networks with randomly occurring

nonlinearities and randomly varying sensor delays, where sufficient criteria have been given to guarantee

the globally asymptotical stability of the two-dimensional estimation error dynamics in the mean square

sense and the explicit expression of the estimator gains hasalso been provided. Based on the recursive

linear matrix inequality approach, the state estimation algorithms have been given in [41], [152] for discrete

time-varyingcomplex networks. It is worth mentioning that, in [41], the authors have made the first attempt

to discuss the uncertainties entering into the inner coupling matrix and introduce a new measurement model

which can characterize the sensor saturations, signal quantization, and missing measurements in a unified

framework. Very recently, in [153], the recursive state estimation problem has been investigated for an

array of discrete time-varying coupled stochastic complexnetworks with missing measurements. By using

the Riccati-like difference equations approach, new stateestimation algorithm withcovariance constraint

has been developed for the first time and the estimator parameter has been characterized by the solutions

to two Riccati-like difference equations.

B. Distributed Filtering and Fusion for Networked Systems over Sensor Networks

1) Distributed Estimation and Filtering for Networked Systems over Sensor Networks:In parallel to the

recent developments of the networked control systems, in recent years, some initiatives have been made on

the problems of distributed estimation and filtering for time-invariant/time-varying networked systems over

sensor networks. Accordingly, several techniques have been proposed including linear matrix inequality

method, recursive/parameter-dependent linear matrix inequality approach, and backward/forward Riccati

difference equation method and so on. For example, by using the linear matrix inequality approach, a

stochastic sampled-data scheme has been proposed in [154] to address the distributed filtering problem
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for time-invariant nonlinear systems over sensor networks, a distributed state estimator has been designed

in [155] for discrete-time systems over sensor networks with randomly varying nonlinearities and missing

measurements, and the distributed filters have been constructed in [25], [142] for nonlinear systems over

sensor networks with randomly occurring saturations, quantization errors and successive packet dropouts.

Besides, in [97], [99], the event-triggered distributed state estimation problems have been investigated

for nonlinear systems over sensor networks with randomly occurring uncertainties, randomly occurring

nonlinearities and packet dropouts.

Parallel to the distributed state estimation and filtering problems for time-invariant networked systems

over sensor networks, the corresponding research fortime-varyingsystems has gained the preliminary

attention due to its engineering insights. By using the difference linear matrix inequality method, the

H∞ filtering problems have been studied for time-varying systems over sensor networks in [156] with

multiple missing measurements and in [46] with quantization errors as well as successive packet dropouts,

where sufficient conditions have been given to ensure the pre-specifiedH∞ performance requirements by

testing the feasibility of a set of linear matrix inequalities. By using the backward Riccati difference

equation method, the distributedH∞ state estimation problem has been studied in [50] for a classof

discrete time-varying nonlinear systems over sensor networks with stochastic parameters and stochastic

nonlinearities, and a necessary and sufficient condition has been given to ensure the pre-definedH∞

performance constraint. In [157], a distributed filter has been designed for a class of linear discrete time-

varying stochastic systems via event-based communicationmechanism, and a locally optimal distributed

filtering algorithm has been given based on the forward Riccati difference equation approach which is

suitable foronline applications.

2) Multi-Sensor Fusion for Networked Systems:As mentioned above, the multi-sensor data fusion

algorithms can be generally classified into two types: centralized fusion and distributed fusion algorithms.

In this section, some new multi-sensor fusion schemes basedon different weighted fusion mechanisms

for networked systems are reviewed. In [158], by using the innovation analysis technique and augmenta-

tion approach, the optimal centralized fusion estimators (including filter, predictor and smoother) in the

minimum variance sense have been designed for a class of linear discrete time-varying stochastic systems

with random delays, packet dropouts and uncertain observations, where the stability of the developed

estimation algorithms has been discussed and sufficient criterion has been given to verify the existence of

the centralized fusion steady-state estimators. Recently, by employing similar technique as in [158], the

optimal centralized and distributed fusion estimation problems have been addressed in [159] for linear

discrete time-varying multi-sensor system with differentpacket dropout rates, and the centralized fusion

estimators (including filter, predictor and smoother) in the linear minimum variance sense have been firstly

designed and, subsequently, the distributed fusion estimation algorithm based on the scalar-weighted fusion

mechanism has also been provided in order to decrease the computational cost and improve the reliability.

On the other hand, according to the matrix-weighted fusion mechanism, several distributed fusion

algorithms have been developed in order to improve the fault-tolerance ability [160]–[163]. To be more

specific, the Kalman-like distributed fusion filters (one-step predictors) have been constructed in [160]
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for linear multi-sensor time-varying stochastic system inthe simultaneous presence of parameter uncer-

tainties, missing measurements and unknown measurement disturbances, and the optimal filter gains have

been obtained based on the linear unbiased minimum variancecriterion. In [161], the distributed fusion

estimation algorithm has been given for linear discrete time-varying stochastic systems with multi-sensor

missing observations, where the case of the finite-step observations missing has been discussed. Moreover,

a multi-sensor distributed fusion estimation algorithm has been developed in [162] for networked systems,

where the measurements of all sensors are transmitted individually over different communication channels

with individual random delay and packet dropout rates. Besides, when there exist the auto-correlated and

cross-correlated noises, a robust distributed weighted Kalman filter fusion method has been presented in

[163] for a class of uncertain time-varying systems with stochastic uncertainties without resorting the

state augmentation method. By using the projection theory,an optimal fusion algorithm has been given in

[164] for a class of multi-sensor stochastic singular systems with multiple state delays and measurement

delays.

In [165], based on the federated filtering algorithm, a novelnetworked multi-sensor data-fusion scheme

has been proposed to deal with the effects from both the packet losses and the transmission delays. A

globally optimal distributed Kalman filtering fusion method has been proposed in [166] for a class of time-

varying systems, where the developed fusion algorithm has the advantage to decrease the computational

burden and address the case when the filtering error covariance is singular. For the case that the state-space

model of the signal is unavailable, both distributed and centralized fusion schemes have been developed

in [167] to deal with the phenomena of the multi-sensor random measurement delays which are modeled

by the homogeneous Markov chains and, subsequently, the extended result has been given in [168] to

handle the missing measurements and random measurement delays with individual delay rate in a unified

framework. Moreover, the distributed Kalman filtering fusion problems have been studied in [38], [169]

for networked systems with missing measurements, random transmission delays and packet dropouts, new

distributed fusion Kalman filters have been designed based on the innovation analysis method and matrix-

weighted fusion mechanism. With respect to the multi-sensor fusion for nonlinear networked systems, a

few results can be found in the literature. In [170], the centralized and distributedH∞ fusion filters have

been designed for a class of discrete nonlinear stochastic systems with time-invariant delay and missing

measurements. It has been shown that, for both missing measurements and time-delay, the fusion error

in [170] is globally asymptotically stable in the mean-square sense and the prescribedH∞ performance

can be achieved.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have reviewed some recent advances on estimation, filtering and fusion for time-

invariant/time-varying stochastic networked systems. Firstly, the developments of the network-induced

phenomena have been surveyed. Secondly, the analysis and synthesis of the networked systems have

been discussed, where the linear/nonlinear networked systems, complex networks and sensor networks

with network-induced phenomena have been mainly summarized. Subsequently, some recent advances
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on estimation, filtering and fusion for networked systems have been reviewed. In particular, the multi-

objective filtering algorithms (involving variance constraint,H∞ performance requirement, and probability

performance constraint) have been surveyed for time-varying nonlinear networked systems. Based on the

literature review, some related topics for further research work can be listed as follows.

• The estimation and filtering problems for networked systemswith more general nonlinearities would

be one of future research topics, especially when both variance constraint and multiple network-

induced phenomena are considered simultaneously.

• The distributed filtering problem for networked systems is of engineering significance, especially

when it comes to the distributed filtering problem for time-varying nonlinear networked systems.

Hence, the design of distributed filter for time-varying nonlinear networked systems would be an

interesting research direction.

• The multi-sensor fusion problem for nonlinear networked systems would be a challenging research

topic.

• A potential trend for future research is to generalize the current methods to tackle the estimation and

filtering problems for nonlinear networked systems under the event-triggered mechanism.

• Another interesting research direction is to address the estimation and filtering problems for nonlinear

networked systems under different communication protocols (round-robin protocol and try-once-

discard protocol).

• The performance analysis of the estimation/filtering algorithm constitutes one of future research

topics, such as the convergence of the developed algorithm and the monotonicity/sensibility with

respect to the statistical information of the network-induced phenomena.
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[29] R. Caballero-́Aguila, A. Hermoso-Carazo, and J. Linares-Pérez, Optimalstate estimation for networked systems with random parameter

matrices, correlated noises and delayed measurements,International Journal of General Systems, vol. 44, no. 2, pp. 142–154, 2015.

[30] S. Sun, L. Xie, W. Xiao, and Y. C. Soh, Optimal linear estimation for systems with multiple packet dropouts,Automatica, vol. 44,

no. 5, pp. 1333–1342, 2008.

[31] S. Sun, Linear minimum variance estimators for systemswith bounded random measurement delays and packet dropouts, Signal

Processing, vol. 89, no. 7, pp. 1457–1466, 2009.

[32] S. Sun and W. Xiao, Optimal linear estimators for systems with multiple random measurement delays and packet dropouts, International

Journal of Systems Science, vol. 44, no. 2, pp. 358–370, 2013.

[33] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, Multisensor data fusion: a review of the state-of-the-art,Information Fusion,

vol. 14, no. 1, pp. 28–44, 2013.



REVISION 17

[34] D. Ding, Z. Wang, F. E. Alsaadi, and B. Shen, Receding horizon filtering for a class of discrete time-varying nonlinear systems with

multiple missing measurements,International Journal of General Systems, vol. 44, no. 2, pp. 198–211, 2015.

[35] B. Shen, Z. Wang, H. Shu, and G. Wei, On nonlinearH∞ filtering for discrete-time stochastic systems with missing measurements,

IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2170–2180, 2008.

[36] H. Geng, Y. Liang, and X. Zhang, Linear-minimum-mean-square-error observer for multi-rate sensor fusion with missing measurements,

IET Control Theory and Applications, vol. 8, no. 14, pp. 1375–1383, 2014.

[37] Z. Wang, H. Dong, B. Shen, and H. Gao, Finite-horizonH∞ filtering with missing measurements and quantization effects, IEEE

Transactions on Automatic Control, vol. 58, no. 7, pp. 1707–1718, 2013.

[38] B. Chen, W. Zhang, and L. Yu, Distributed fusion estimation with missing measurements, random transmission delaysand packet

dropouts,IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1961–1967, 2014.

[39] S. Sun and G. Wang, Modeling and estimation for networked systems with multiple random transmission delays and packet losses,

Systems& Control Letters, vol. 73, pp. 6–16, 2014.

[40] Z. Wang, B. Shen, and X. Liu,H∞ filtering with randomly occurring sensor saturations and missing measurements,Automatica,

vol. 48, no. 3, pp. 556–562, 2012.

[41] B. Shen, Z. Wang, D. Ding, and H. Shu,H∞ state estimation for complex networks with uncertain innercoupling and incomplete

measurements,IEEE Transactions on Neural Networks and Learning Systems, vol. 24, no. 12, pp. 2027–2037, 2013.

[42] M. Sahebsara, T. Chen, and S. L. Shah, OptimalH∞ filtering in networked control systems with multiple packetdropouts,Systems

& Control Letters, vol. 57, no. 9, pp. 696–702, 2008.

[43] G. Wei, Z. Wang, and H. Shu, Robust filtering with stochastic nonlinearities and multiple missing measurements,Automatica, vol. 45,

no. 3, pp. 836–841, 2009.

[44] H. Gao, Y. Zhao, J. Lam, K. Chen,H∞ fuzzy filtering of nonlinear systems with intermittent measurements,IEEE Transactions on

Fuzzy Systems, vol. 17, no. 2, pp. 291–300, 2009.

[45] H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, Variance-constrainedH∞ filtering for a class of nonlinear time-varying systems with

multiple missing measurements: the finite-horizon case,IEEE Transactions on Signal Processing, vol. 58, no. 5, pp. 2534–2543, 2010.

[46] H. Dong, Z. Wang, and H. Gao, Distributed filtering for a class of time-varying systems over sensor networks with quantization errors

and successive packet dropouts,IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164–3173, 2012.

[47] R. Caballero-́Aguila, A. Hermoso-Carazo, J. D. Jiménez-López, J. Linares-Pérez, and S. Nakamori, Signal estimation with multiple

delayed sensors using covariance information,Digital Signal Processing, vol. 20, no. 2, pp. 528–540, 2010.
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