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Abstract

Cooperative control of multi-agent systems has recently gained widespread attention

from the scientific communities due to numerous applications in areas such as the

formation control in unmanned vehicles, cooperative attitude control of spacecrafts,

clustering of micro-satellites, environmental monitoring and exploration by mobile

sensor networks, etc. The primary goal of a cooperative control problem for multi-agent

systems is to design a decentralized control algorithm for each agent, relying on the

local coordination of their actions to exhibit a collective behavior. Common challenges

encountered in the study of cooperative control problems are unavailable group-level

information, and limited bandwidth of the shared communication. In this dissertation,

we investigate one of such cooperative control problems, namely cooperative output

regulation, under various local and global level constraints coming from physical and

communication limitations.

The objective of the cooperative output regulation problem (CORP) for multi-

agent systems is to design a distributed control strategy for the agents to synchronize

their state with an external system, called the leader, in the presence of disturbance

inputs. For the problem at hand, we additionally consider the scenario in which none

of the agents can independently access the synchronization signal from their view

of the leader, and therefore it is not possible for the agents to achieve the group

objective by themselves unless they cooperate among members. To this end, we devise

a novel distributed estimation algorithm to collectively gather the leader states under

iv
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the discussed detectability constraint, and then use this estimation to synthesize a

distributed control solution to the problem.

Next, we extend our results in CORP to the case with uncertain agent dynamics

arising from modeling errors. In addition to the detectability constraint, we also as-

sumed that the local regulated error signals are not available to the agents for feedback,

and thus none of the agents have all the required measurements to independently

synthesize a control solution. By combining the distributed observer and a control

law based on the internal model principle for the agents, we offer a solution to the

robust CORP under these added constraints.

In practical applications of multi-agent systems, it is difficult to consistently main-

tain a reliable communication between the agents. By considering such challenge in the

communication, we study the CORP for the case when agents are connected through

a time-varying communication topology. Due to the presence of the detectability

constraint that none of the agents can independently access all the leader states at

any switching instant, we devise a distributed estimation algorithm for the agents to

collectively reconstruct the leader states. Then by using this estimation, a distributed

dynamic control solution is offered to solve the CORP under the added communication

constraint. Since the fixed communication network is a special case of this time-varying

counterpart, the offered control solution can be viewed as a generalization of the

former results.

For effective validation of previous theoretical results, we apply the control algo-

rithms to a practical case study problem on synchronizing the position of networked

motors under time-varying communication. Based on our experimental results, we

also demonstrate the uniqueness of derived control solutions.

Another communication constraint affecting the cooperative control performance

is the presence of network delays. To this regard, first we study the distributed

state estimation problem of an autonomous plant by a network of observers under



vi

heterogeneous time-invariant delays and then extend to the time-varying counterpart.

With the use of a low gain based estimation technique, we derive a sufficient stability

condition in terms of the upper bound of the low gain parameter or the time delay

to guarantee the convergence of estimation errors. Additionally, when the plant

measurements are subject to bounded disturbances, we find that that the local

estimation errors also remain bounded. Lastly, by using this estimation, we present

a distributed control solution for a leader-follower synchronization problem of a

multi-agent system.

Next, we present another case study concerning a synchronization control problem

of a group of distributed generators in an islanded microgrid under unknown time-

varying latency. Similar to the case of delayed communication in aforementioned works,

we offer a low gain based distributed control protocol to synchronize the terminal

voltage and inverter operating frequency.
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Chapter 1

Introduction

1.1 Cooperative Control of Multi-Agent Systems

Social behavior in animal groups are among the most remarkable phenomena observed

in nature. A flock of birds wheeling and turning in unison, and a school of fish gliding

spontaneously, are a few examples. These collective groups can achieve goals, like

migrating or avoiding predators and obstacles, that are beyond the potential of the

individual members. Such synchronized group behaviors emerge from instantaneous

decisions made by independent members of the group. Thus, for the group to behave

as a single entity, the actions of the agents must be coordinated through shared

information between local neighbors. These collective behaviors observed in nature

often serve as inspiration to engineers in the design of collaborating teams of mobile

robots and autonomous unmanned vehicles, which have made ways to the arenas of

air, sea, and space in support of missions pertaining to national defense, surveillance,

and environmental monitoring.

Multi-agent systems (MASs) refer to a group of simple subsystems, called agents,

with limited processing capabilities, locally sensed information, and limited inter-agent

communications. The Cooperative control problems are defined for these MASs, and

1
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aims to design control strategies for agents to achieve a collective objective of the

system. A MAS through cooperative control can perform complex tasks by coordinated

actions, which may be otherwise impossible by a single agent, thus offering several

advantages such as flexibility, reliability, improved efficiency and reduced cost. Because

of the great interdisciplinary interest, cooperative control problem of networked MAS

has attracted a great deal of attention in various fields of physics, mathematics, biology,

engineering and control theory.

The cooperative control of MAS finds applications in the areas of unmanned

vehicles, mobile robot systems, microsatellite clustering and sensor networks [4]. As a

consequence to the growing research interest in these areas, the various aspects of the

cooperative control problem actively studied in the literature include consensus [5],

formation control [4,6], leader tracking or synchronization [7], and coverage control [8,9].

While each of these areas of cooperative control problem offers a unique set of challenges,

the underlying goal of designing a decentralized control scheme for agents utilizing

the local interaction is common to all of them.

Consensus is one of the fundamental issues in cooperative control problem in which

the objective is to design a distributed control policy for each agent based on the local

information, such that all of them agree upon certain states of interest. For example,

such states may represent position, velocity, acceleration, or motor voltage of dynamic

mobile robots as shown in Fig. 1.1, in which they agree on a direction and heading

velocity to move with as a group. Surveys of the recent results can be found in the

works of [10–13] and the references therein. The consensus problem has been studied

under time-invariant communication networks in [14] and time-varying counterpart

in [15,16] and time-delay in [17–20].
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Figure 1.1: Swarm of mobile robots [1]

1.2 Cooperative Output Regulation

In this dissertation we study another important class of cooperative control problems,

namely cooperative output regulation problem (CORP), which is an extension of

the classical output regulation problem (ORP) to the multi-agent framework. The

objective of the ORP is to regulate a prescribed output signal to zero, while keeping all

the trajectories of the system bounded. The external signals affecting the system are

assumed to belong to a certain class of functions generated by an exosystem. These

exogenous signals generated by exosystem includes both the reference signals to be

tracked and the disturbances to be rejected. The ORP was first formulated for linear

systems in [21] and for nonlinear systems in [22,23].

The goal of the CORP is to design a control strategy for the follower agents to

synchronize their states with the exosystem, also referred to as leader in [24, 25],

in the presence of environmental disturbances. Therefore, CORP generalizes the

leader-follower tracking problems studied in [26,27]. Various other cooperative control

problems, such as output synchronization and leader tracking can also be formulated

in terms of the CORP.
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The MAS in the CORP may include agents which may not have direct access to

the leader information. In this case, the agents are required to cooperatively estimate

the leader states, and propagate this information to the rest of the group through a

communication network to achieve the control objectives. The solution to the CORP

must therefore incorporate information of the communication protocol to ensure the

propagation of estimated leader information among all the agents in the system.

A typical scenario of the CORP, as given in [28], is motivated by a practical

example where a group of tanks in a parading team is tasked to maintain a prescribed

formation relative to a leader tank. While some tanks, being near, can directly sense

the absolute position information from the leader, the others cannot. The tanks which

have a direct access to the leader tank position, are referred to as “informed” agents

in [29, 30]. The control challenge in this problem is to derive a distributed control law

for the agents such that the absolute leader position is properly disseminated among

the tank platoons while being subjected to noisy communication.

1.3 State of the Art in Cooperative Output Regu-

lation Problem

Traditionally the CORP for MAS has been handled by either a feedforward approach or

an internal model-based control. A preliminary form of the CORP, called synchronized

output regulation problem [31,32], was solved using a feedforward control approach for

homogeneous linear MASs. Based on this feedforward control structure, the seminal

works in [29, 30] proposed respectively a distributed state feedback and an output

feedback control solutions for CORP.

On the other hand, the idea of classical internal model based control (IMC) was

extended for MASs, and a distributed IMC approach was adopted in [28, 33] to solve

the robust CORP by an eigenstructure assignment. Since the nominal system is
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stabilized by an eigenvalue placement method in both these papers, the IMC approach

can tolerate only small variations of the uncertain parameters. The control solution

offered in these papers also rely on the assumption that a specific “virtual error signal”

is available to the agents for feedback. Additionally, in [28], a “no-cycle” assumption

on the communication topology was considered, while [33] replaced this constraint by

assuming instead identical nominal dynamics of the follower agents. In [34], authors

employed a new class of internal models to solve the robust CORP for linear MAS using

distributed output feedback control. For linear MAS with uniform and non-uniform

relative degrees respectively, the robust CORP was studied in [35,36]. Recently, the

IMC approach was also adapted to solve robust CORP for nonlinear agents in [33].

The same problem was considered in [37] for known leader dynamics, and in [38] for

unknown leaders.

The structure of the controller in all the above works exploits knowledge of the

global communication structure of the MASs. Based on an adaptive distributed state

estimation to reconstruct the leader states, a distributed control solution that is

independent of any global information on the communication graph was proposed

in [39].

A practical challenge of implementing a MAS is in maintaining a reliable com-

munication between the agents of the system. Interruption in the communication

links between agents can be caused due to noise, link failures/reconstructions, range

limitations, etc. The limited bandwidth of shared communication channels by the

agents can also cause problems like packet drop outs and network congestion [40].

Under a switching communication network, the CORP was studied for non-singular

MAS in [41] and for singular MAS in [42].

Although the aforementioned works implicitly consider that the agents in a multi-

agent framework coordinate in an instanteneous manner, the presence of latency in

the communication networks however is unavoidable. Therefore, various cooperative
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control problems have been studied over the last decade under time-invariant or

time-varying communication delays. Distributed estimation problem with multiple

stochastic communication delays appears in [43]. The consensus problem for first-order

agents with a time-varying communication delay was studied in [20], while the same

problem for second-order agents with nonlinear dynamics was investigated in [44] with

a fixed communication delay. For higher-order systems, the consensus problem was

studied in [19, 45] for fixed input and communication delays, and in [18] for unknown

communication delays.

1.4 Motivation

The solutions to the CORP proposed so far in the literature, build upon the assumption

that at least one of the agents in the system can independently estimate the leader

states from its own measurements. This decentralized estimation of the leader states

is then propagated to neighboring agents, until the entire system is synchronized.

This assumption can be a limitation in applications, where simple agents do not have

the sensing and computational resources required to estimate the full dynamics of

a complex leader. For example, in the case where the leader dynamics are spatially

distributed and follower agents can only collect localized measurements, the information

collected by individual agents may not be sufficient to reconstruct the leader states.

The information gathered by followers thus need to be integrated for the reconstruction

of leader states. In view of this application, the assumption on independent estimation

of leader states by an agent in [29, 30] appears restrictive. With this as motivation, in

the following section we briefly outline the objectives of this dissertation.
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1.5 Objectives of This Thesis

The primary objective of this dissertation is to address the central question: “is it

possible to solve the CORP in case when none of the follower agents receives sufficient

information to independently reconstruct the leader states?” The CORP with the

relaxed detectability requirement resulting from the above research question is defined

as “generalized CORP”. Motivated by the example in Section 1.4, our first task is

to derive a distributed estimation algorithm, differently from the works of [29, 30],

to collectively reconstruct the leader states, and use this estimation to design a

distributed control algorithm for solving the CORP. The results of this study are

reported in Chapter 2. Given the relaxed detectability assumption, next we aim to

extend the study of CORP for MAS by considering additional physical restrictions

such as uncertainty in the agent dynamics, actuator saturation and communication

constraints such as time-varying topology and network delay. The objectives of this

thesis are summarized below.

• Extend the solution to the CORP for nominal MAS to the case when agent

dynamics is associated with the parametric uncertainty resulting from modeling

error. This study is aimed at generalizing the results in [28,33], where a specific

“virtual error” signal was assumed to be available to the agents for feedback.

Since the access of the ”virtual error” signal may not always be possible in a

given application, from the distributed state estimation of the nominal case

we instead construct an estimate of the “regulated error” signal to use it as a

feedback to the control. Then, by deriving a distributed control algorithm based

on the internal model principle, we derive a solution to the robust CORP. The

results are presented in Chapter 3.

• Next, we will study the CORP under the time-varying communication topology

for the agents. The goal here is to derive a control solution to the CORP
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based on the distributed estimation of the leader states in case when the agents

group cannot independently solve the generalized CORP at any single switching

configuration. The results of this study will be reported in Chapter 4.

• For validating the effectiveness of the derived theoretical algorithms, we pursue

a case study where we implement the results on an experimental platform to

solve for a position synchronization problem of networked motors. The testing

platform is a network of motors, and the goal is to synchronize the motor shafts

positions to a prescribed signal provided by an external leader. Constraints

such as restricted access to the leader signal, and intermittent communication

between the agents, are added to the problem. Work is currently underway to

extend the experimental validation work to a leader-follower formation control

using a robotic platform with a couple of quadcopters and ground robots. This

experimental testing is reported in Chapter 5.

• We study the distributed state estimation/sensing problem for a network of

observer agents under time-invariant communication delays in Chapter 6. Com-

pared to the distributed observers in [46], which was formulated based on the

solution to a parametric Riccati equation, the results in our current work offer a

more general Hurwitz condition for the convergence of the state estimation. This

generalization is achieved by offering an alternative formulation and proof of the

main results. The new formulation also allows for the derivation of a closed-form

solution to the upper bound of the low-gain control parameter, while the same

parameter may only be searched numerically in [46]. The design of the feedback

correction gains for the distributed observers have also been streamlined with the

generalized stability condition, reducing the number of design parameters, and

presenting analytical methods for their selections. Finally, this work also investi-

gates the effect of external disturbances on the convergence of the observer error
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dynamics, and evaluates the distributed observer solution for the leader-follower

synchronization problem under measurement and inter-agent communication

delays. An extension of this result to the time-varying counterpart is given in

Chapter 7.

• Next, we pursue another case study where we extend the results of the cooperative

sensing problem to a practical control application problem with an aim to

synchronize a network of distributed generators (DG) in an islanded microgrid

under communication latencies. The objective is to synchronize the voltage and

frequency of a group of DGs over a time-delayed communication network. When

the microgrid is islanded from the utility grid, the transient voltage and frequency

instability is further worsened by the presence of a large time delay in the network.

As a means to achieve stability and satisfactory synchronization control for the

group of DGs within the MG, this work presents a consensus based distributed

voltage and frequency control protocol, in which the effects of time delays

associated with the exchange of information through the communication network

is considered. By using the low gain methodology, sufficient delay dependent

stability conditions and an upper bound for the low gain parameter were derived

to ensure the stability of the synchronization in the face of communication delays.

With the low gain parameter being selected from the derived bounds, we also

show that the control protocol can always achieve this synchronization for any

arbitrarily large delays. The results of this work are reported in Chapter 8.

• The future works of this dissertation, given in Chapter 9 are aimed at addressing

the CORP for multi-agent systems with intermittent outputs.



Chapter 2

Cooperative Output Regulation of

Multi-Agent Systems under

Exosystem Detectability

Constraint

2.1 Introduction

In this chapter, the CORP for linear MASs is investigated for the case when none

of the agents can estimate the exosystem states from its measurement. Due to this

detectability constraint, the agents cannot independently synchronize themselves

with the exosystem and the output regulation problem is not directly solvable. To

address this problem, we first develop a novel distributed estimation algorithm to

reconstruct the exosystem states from the collective measurements of the agents.

Stability conditions for the exosystem state estimation error dynamics are derived

using Lyapunov analysis. Then, from the estimation of the exosystem states by the

agents, distributed state feedback and output feedback control solutions are proposed.

10
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Numerical simulations are given to illustrate the theoretical analysis. A leader-follower

consensus problem is considered as a special case of this study.

The rest of the chapter is organized as follows. Some preliminaries are presented

in Section 2.2 with relevant terminologies on information graphs. In Section 2.3 we

formulate our control problem, and give necessary assumptions. The main results of

this chapter are derived in the subsequent sections. State feedback control solution

is proposed for the MAS in Section 2.4, and measurement feedback solutions are

provided in Section 2.5. The proposed solutions to the CORPs are validated with an

illustrative example in Section 2.6. Finally some concluding remarks are presented in

Section 2.7.

Throughout the text, the following notations are frequently used: ⊗ denotes the

Kronecker product of two matrices, Ir denotes an identity matrix of dimension r× r,

1N×1 denotes an N column vector with all elements being equal to 1 and 0m×n denotes

a zero matrix with dimension m×n.

2.2 Preliminaries

2.2.1 System Model

Consider the following system group, consisting of N linear subsystems with dynamics

ẋi = Aixi+Biui+Eiw,

ei = Cixi+Diui+Fiw,

ymi = Cwiw, i = 1,2,3, · · · ,N,

(2.1)

where xi ∈ Rni ,ui ∈ Rmi are the state and control input vectors, respectively, of the

ith subsystem. Signal ei ∈ Rp is the regulated output, i.e. the output that is to be

regulated to the origin, while ymi ∈ Rpi is an information signal that each subsystem
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receives from the exosystem to formulate the control. The external signal w ∈ Rq in

(2.1) represents both the reference input to be tracked and the disturbance input to

be rejected by the subsystems. The external signal is generated by the exosystem

ẇ = Sw. (2.2)

The control objective of the CORP is to design a distributed dynamic feedback

control law, such that the regulated output ei of each subsystem in (2.1) asymptotically

approaches zero for any arbitrary initial conditions. To achieve this, we decouple

our problem into two parts: the asymptotic stabilization of the nominal subsystem

dynamics, and the output regulation of the combined system (2.1) - (2.2). Before

we get into the assumptions regarding the network connections, some basic graph

terminologies are given below.

2.2.2 Information Graph

A digraph or a directed graph G = (V ,E) is a set of finite nodes V and edges E , where

V = {0,1,2, · · · ,N} and E ⊆ V× V . An edge directed from the ith node to the jth node

is given by (i, j), where i and j are the parent node and the child node, respectively.

The node i is also termed the neighbouring node of j. The neighbouring set of node i,

Ni ⊆ V , is the set of all its parent nodes.

A digraph is a directed tree if it has all nodes with a single parent, except for a root

node that has no parent and can reach any other node in the digraph. A subgraph

Gs = (V∫ ,E∫ ) of a digraph G = (V ,E) is a directed spanning tree if Gs is a directed tree

with V∫ = V and E∫ ⊆ E
⋂(V∫ ×V∫ ).

The adjacency matrix A = [aij ] ∈ R(N+1)×(N+1) of a digraph is a non-negative

matrix with aij > 0 when there is a directed edge from j to i, (j, i) ∈ E , and aij = 0

when (j, i) /∈ E . The Laplacian matrix L = [lij ] ∈ R(N+1)×(N+1) is a zero row sum
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matrix with elements
lij =−aij , if j 6= i,

lii =
N∑
j=1

aij , if j = i.

2.3 Problem Formulation

Similarly to the formulation of the CORP in [30], the system composed of (2.1) and

(2.2) is viewed as a MAS with leader agent (2.2) and N follower agents (2.1). We also

classify the follower agents (2.1) into two subgroups. For some integer l, 0< l ≤N ,

let the subsystems corresponding to i= l+ 1, l+ 2, · · · ,N form a subgroup of passive

agents with Cwi = 0. On the other hand, subsystems with i = 1,2, · · · , l form the

subgroup of active agents. An active agent i is in the neighbouring set of the leader if

Cwi 6= 0.

Let G = (V ,E) be the digraph representing the MAS composed by (2.1) and (2.2),

where V = {0,1, · · · ,N}. Without loss of generality, we let node 0 to be the exosystem

(2.2). Nodes 1 to l are the active agents, and nodes (l+ 1) to N correspond to the

passive agents.

Remark 2.3.1. Note here that our definition of the active subgroup is modified

from that of informed agents in [30], as it may include subsystems i with Cwi = 0.

Assumptions 2.3.4 and 2.3.5 to be introduced later in this section will make evident that

our definition of active agents includes all subsystems that actively participate in the

estimation of the exosystem states, rather than only based on the agents’ measurement

signal ymi. We also note that similarly to the uninformed agents in [29, 30], passive

agents rely on the collective estimation of the exosystem states by active agents for

control.

The following assumptions are commonly considered in the literature to guarantee

the solvability of the output regulation problem.
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Assumption 2.3.1. S has all eigenvalues on the imaginary axis.

Assumption 2.3.2. The pair (Ai,Bi) in (2.1) is stabilizable.

Assumption 2.3.3. For all λ ∈ σ(S), where σ(S) is the spectrum of S,

rank

Ai−λI Bi

Ci Di

= ni+p, i= 1,2, · · · ,N.

Remark 2.3.2. By Theorem 3.2 in [23], for any matrices Ei and Fi, the regulator

equations
XiS = AiXi+BiUi+Ei,

0 = CiXi+DiUi+Fi, i= 1,2,3, · · · ,N.
(2.3)

admit a unique solution pair (Xi,Ui) if and only if the Assumption 2.3.3 is satisfied.

The assumption on the exosystem dynamics in Assumption 2.3.1 does not pose

a stringent requirement on the implementability of our results since exponentially

increasing disturbance/reference signals are rare in practical applications. We also

neglect exponentially stable modes of the exosystem dynamics as they would result

in a trivial solution to the output regulation problem. Equation (2.3) is commonly

referred to as the regulator equation in the literature, solvability of which is necessary

and sufficient to achieve output regulation as stated in [23].

The solution to the CORP in [30] also requires all agents i in the “informed” group

to be able to reconstruct the exosystem states from their own measurement ymi. In

other words, this is equivalent to (S,Cwi) being detectable for some agent i. Here,

we aim to extend the results in [30] by relaxing this detectability requirement, and

we consider the case where (S,Cwi) is not detectable for any agent i, i.e. no agent

can estimate the exosystem trajectory from the individual measurements. Instead,

agents reach a consensus on the exosystem states from their combined individual
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measurement ymi’s, and the connectivity properties among the active agents. The

above discussion is summarized in the next two assumptions.

Assumption 2.3.4. Let the matrix C̄wa = col(Cw1 ,Cw2 ,Cw3 , · · · ,Cwl) and l be the

number of active followers, where col(Cw1 ,Cw2 ,Cw3 , . . . ,Cwl) = [CT
w1 C

T
w2 · · · C

T
wl

]T for

Cwi’s with appropriate dimensions. The pair (S,C̄wa) is detectable.

Remark 2.3.3. This assumption is referred to as the combined detectability property

throughout the text. Unlike [29, 30], which require at least an agent i such that ymi

is sufficient to reconstruct w(t), Assumption 2.3.4 states that the combined output

ym = col(ym1,ym2, · · · ,yml) must be sufficient to estimate the exosystem trajectory

w(t). The price of the relaxed detectability assumption comes as an added connectivity

requirement in Assumption 2.3.5.

Assumption 2.3.5. All the active followers form a strongly connected partition of

the digraph G, and at least one active follower is a child of node 0.

Remark 2.3.4. Due to the relaxed detectability assumption in Assumption 2.3.4,

active agents must rely on other active agents to complement their local measurement

in estimating w(t). This leads to the above connectivity assumption. Active agents with

output matrix Cwi = 0 can be viewed as agents that are not in the vicinity of the leader

to obtain direct measurement, but they contribute by permitting communication between

other active agents in the network. On the other hand, passive agents do not have

computational and sensing abilities to estimate w(t) themselves, and they are primarily

dependent on the estimation by the active agents. Note that by Assumption 2.3.5,

agents in the active subgroup cannot be children nodes of passive agents.

To illustrate further on the classification among agents, we consider for example

the digraph in Figure 2.1 where agents 1,2 and 3 are active agents and 4 is a passive

agent. Consider that agents 2 and 3 cannot individually estimate the full state vector

w from the information relayed by the leader. Even though Cw3 = 0 since agent 3 is not
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a child node of the leader, it actively takes part in the estimation process by allowing

the agent 2 to retrieve the missing exosystem information from agent 1 through the

network. Thus active agents work as a group to propagate the necessary information

in the strongly connected network so that all agents can arrive at a consensus with

the complementing information.

Figure 2.1: The network topology for the example (node 0 as leader)

Remark 2.3.5. In the case where there is only one agent in an active subgroup,

Assumptions 2.3.4, 2.3.5, and the definition of active agents reduce to equivalent

assumptions and the definition of informed agents in [29, 30].

In order to reconstruct the leader dynamics from the available measurements to

the followers, we now introduce the distributed dynamic compensator for active agents

as follows

η̇i = Sηi+µ

∑
j∈Ni

aij(ηj−ηi) +ai0Gi(ymi−Cwiηi)
 , (2.4)

for a real scalar µ > 0 and measured output signal ymi for a follower agent i being

defined in (2.1). Here Gi is the observer gain for the partial estimation of the leader

states by the ith node, ηj is the state vector of the dynamic compensator of the

neighbouring agent j ∈Ni. The last two terms in the right side of (2.4) correspond

to the correction terms where the first one is derived from the relative difference of
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inter-agent estimated information while the second term is the error between the

measured output and estimated output of an active agent i. Unlike [29,30] where w is

directly available to an agent i from its measurement ymi, we need an observer with

gain Gi to drive ηi in the direction guided by the estimation error of an agent’s own

output.

For passive followers, the proposed distributed dynamic compensator takes the

form

η̇i = Sηi+µ
∑
j∈Ni

aij(ηj−ηi)
 . (2.5)

Finally we define the CORP for MAS with follower agents’ dynamics (2.1) as

follows:

Problem 2.3.1. CORP-Given the MAS with agent dynamics (2.1), exosystem (2.2)

and communication graph G find a distributed dynamic feedback control law ui, i=

1,2, · · · ,N , such that

1. the subsystem (2.1) under the control ui is asymptotically stable when w = 0,

2. for any arbitrary initial conditions xi(0),ηi(0), and w(0), the regulated output

satisfies limt→∞ ei(t) = 0.

The following notation practices are introduced here, and they will be followed

throughout the remainder of this chapter unless specified otherwise. For a group of

vectors ξi, i= 1,2, · · · ,N ,

ξ = col(ξ1, ξ2, · · · , ξN ),

ξa = col(ξ1, ξ2, · · · , ξl),

ξp = col(ξl+1, ξl+2, · · · , ξN ).

(2.6)
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For a group of matrices Ξi, i= 1,2, · · · ,N ,

Ξ = blk diag(Ξ1,Ξ2, · · · ,ΞN ), Ξ̄ = col(Ξ1,Ξ2, · · · ,ΞN ),

Ξa = blk diag(Ξ1,Ξ2, · · · ,Ξl), Ξ̄a = col(Ξ1,Ξ2, · · · ,Ξl),

Ξp = blk diag(Ξl+1,Ξl+2, · · · ,ΞN ), Ξ̄p = col(Ξl+1,Ξl+2, · · · ,ΞN ),

(2.7)

where matrix Ξ is a block diagonal matrix with ith diagonal block Ξi. The identity

matrix and the all-ones matrix will be expressed as Ia ∈ Ra×a and 1a×b ∈ Ra×b,

respectively.

2.4 Distributed State Feedback Control

Based on the compensator equations (2.4) and (2.5), the control law for the follower

agent i is given as

ui =K1ixi+K2iηi, (2.8)

where xi is the state vector of the agent i. Feedback gain matrix K1i ∈ Rmi×ni is

selected such that (Ai +BiK1i) is Hurwitz and K2i ∈ Rmi×q is obtained from the

solution pair to the regulator equation (2.3),

K2i = Ui−K1iXi. (2.9)

For the digraph G corresponding to the MAS (2.1) with leader (2.2), let A= [aij ]

be its adjacency matrix, and let L be the Laplacian matrix,

L=


0 0 0

α21 α22 α23

α31 α32 α33

 ,
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where α21 ∈ R l, α31 ∈ R(N−l), α22 ∈ R l×l and α33 ∈ R(N−l)×(N−l). By definition,

passive agents cannot be a child node of the leader, which yields that α31 = 0. The

Laplacian matrix for the considered network can then be rewritten as

L=


0 0 0

α21 α22 α23

0 α32 α33

=

 0 0

∇1N H

,

where ∇ is an N ×N diagonal matrix with elements −ai0 along the diagonal and

1N is an N dimensional column vector whose elements are all 1. The zero row

sum property of the Laplacian matrix yields ∇1N = H1N . By Assumption 2.3.5,

L = α22 + diag(α21) corresponds to a strongly connected digraph G1 of G, where

diag(α21) denotes a diagonal matrix with the diagonal entries being the elements of

α21.

Lemma 2.4.1. H is nonsingular if and only if the digraph contains a directed spanning

tree with node 0 as the root. Additionally, if H is nonsingular, then the eigenvalues of

α22 and α33 have positive real parts.

Proof. By Lemma A in [30], H is nonsingular if and only if it is embedded with a

directed spanning tree with node zero as the root. Furthermore, the eigenvalues of H

have positive real parts when H is nonsingular. The second part of the lemma can be

shown by noting from Remark 2.3.4 that α23 = 0. Hence H nonsigular implies that

α22 and α33 are nonsingular, and they have eigenvalues with positive real parts.

Lemma 2.4.2. (Lemma 2.12 of [47]) Let L be a Laplacian matrix correspond-

ing to a strongly connected digraph. There exists a vector of positive numbers

ζ =
[
ζ1, ζ2, · · · , ζl

]T
such that 1T

l ζ = 1, and ζTL = 0. In addition, for the positive

definite diagonal matrix Σ = diag(ζ) with the elements of ζ along its diagonal, the

matrix L̂= ΣL+LTΣ is a symmetric matrix with zero row and column sums.
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We note that L̂ is the Laplacian matrix corresponding to an undirected graph.

Then from [17], L̂ is a positive semi-definite matrix with a simple zero eigenvalue and

corresponding eigenvector 1l.

Lemma 2.4.3. Consider the dynamic compensator (2.4) and (2.5) with digraph G

satisfying Assumption 2.3.5, gains Gi, scaling factor µ > 0 and a positive definite P

such that the matrix P (S−µGiCwi) + (S−µGiCwi)TP has non-positive eigenvalues

for all follower agents i and

R=
lS−µ l∑

i=1
G′iCwi



is Hurwitz, where G′i = ζiGi and ζi is the ith element of the left eigenvector ζ of L

corresponding to the eigenvalue 0. Then the compensator states ηi asymptotically

approaches the exosystem states,

lim
t→∞

(ηi(t)−w(t)) = 0, i= 1,2,3, · · · ,N,

if and only if the digraph G contains a directed spanning tree with node 0 as the root.

Proof. (If part.) Let η̃i = ηi−w,i= 1,2,3, · · · ,N , and the combined vectors η̃a, η̃p as

defined in (2.6). The convergence of the dynamic compensator states will be proven

first for the active agents, and later for the passive agents.

From dynamic compensator for the active agents (2.4) and exosystem (2.2), we

obtain

˙̃ηa = [(Il⊗S)−µ(GaCwa)−µ(L⊗ Iq)] η̃a = [ρ−µ(L⊗ Iq)] η̃a, (2.10)

where ρ= blk diag(ρ1,ρ2, · · · ,ρl), and ρi = S−µGiCwi . Consider the Lyapunov func-

tion V = η̃T
a (Σ⊗P ) η̃a, where a positive definite matrix P is the unique solution
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of

PRT +RP < 0. (2.11)

The existence and uniqueness of P is guaranteed since R is a Hurwitz matrix. Then

by differentiating the Lyapunov function we obtain

V̇ = η̃T
a

(
ρT (Σ⊗P ) + (Σ⊗P )ρ

)
η̃a−µη̃T

a

((
LTΣ + ΣL

)
⊗P

)
η̃a

= η̃T
a

(
ρT (Σ⊗P ) + (Σ⊗P )ρ

)
η̃a−µη̃T

a

(
L̂⊗P

)
η̃a. (2.12)

Since the matrix (Pρi+ρT
i P ) is negative semi-definite by assumption and (L̂⊗P ) is

positive semi-definite by virtue of Lemma 2.4.2, then from (2.12) we obtain, V̇ ≤ 0.

In addition η̃T
a

(
LT⊗P

)
η̃a = 0 only when η̃1 = η̃2 = · · ·= η̃l. By virtue of (2.11), V̇

in (2.12) reduces to

V̇ = η̃T
a

(
ρT (Σ⊗P ) + (Σ⊗P )ρ

)
η̃a = η̃T

1
(
PRT +RP

)
η̃1 < 0. (2.13)

Therefore V̇ < 0 for all η̃a 6= 0, and (2.10) is asymptotically stable.

Similarly, from the dynamic compensator (2.5) for passive agents, we obtain

˙̃ηp =−µ(α32⊗ Iq)η̃a+ [(IN−l⊗S)−µ(α33⊗ Iq)]η̃p,

=−µ(α32⊗ Iq)η̃a+P η̃p, (2.14)

where P = (IN−l⊗S)−µ(α33⊗ Iq). The eigenvalues of P are λi(S)−µλj(α33) : i ∈

1,2, · · · , q, j ∈ 1,2, · · · ,N − l, where λi(S) and λj(α33) are respectively the eigenvalues

of S and α33. Lemma 2.4.1 then yields that P is Hurwitz for µ > 0 and (2.14) is

asymptotically stable.
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(Only if part.) Suppose the digraph G does not have a spanning tree with node 0

as the root, then H is singular and either of α22 or α33 have a zero eigenvalue. Let

Ls =

 0 01×l

α21 α22



be a Laplacian matrix corresponding to a subgraph Gs of G, obtained by deleting

passive agent nodes. Then, −Ls is a Metzler matrix with zero row sum. Recall

that active agents, corresponding to nodes i= 1,2,3, · · · , l, form a strongly connected

partition of G with at least one child node of the node 0. Thus by the proof of Lemma

1 in [30], α22 is nonsingular, which yields that α33 has to be singular. As a result, P

in (2.14) is not Hurwitz, since all of its eigenvalues do not have strictly negative real

parts, and limt→∞ ˜̂η 6= 0.

Remark 2.4.1. R can be rewritten in the matrix form as

R= lS−µGC̄wa , (2.15)

where G = [G′1 G′2 · · · G′l] and C̄wa is defined in Assumption 2.3.4. By Assump-

tion 2.3.4, there is always a matrix G such that R is Hurwitz. The design procedure

for the distributed observer gain matrix Gi (2.4) is summarized as follows. Select Gi

in such a way that

• the matrix R (2.15) is Hurwitz and as a result there exists a unique positive

definite solution P to equation (2.11).

• the matrix Pρi+ρT
i P is negative semi-definite.

Remark 2.4.2. Lemma 2.4.3 shows that the distributed dynamic compensator (2.4)

can lead to a consensus on the exosystem states, even when none of the agents in the

system can reconstruct the exosystem states from local measurements. Additionally,
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for the particular case where the pairs (S,Cwi) are detectable for some active agent i,

the results in Lemma 2.4.3 and Assumptions 2.3.4 and 2.3.5 are equivalent to results

presented in [29].

Using the notation in (2.6) and (2.7), define the system state and the regulated

output of the overall system be xc = col(xa,xp, η̃a, η̃p) and e= col(ea, ep). The overall

closed-loop system under the control (2.4), (2.5) and (2.8) is represented by the

following state equations
ẋc =Acxc+Bcw,

e=Ccxc+Dcw,

(2.16)

with the system matrices being

Ac =

 Ac1 Ac2

0 Ac4

 , Ac1 =

 Aa+BaK1a 0

0 Ap+BpK1p

 ,

Ac2 =

 BaK2a 0

0 BpK2p

 , Ac4 =

 ρ−µ(L⊗ Iq) 0

−µ(α32⊗ Iq) P

 .

The input matrix is given by Bc = col(Bc1 ,Bc2), where

Bc1 = col(Ēa+BaK̄2a , Ēp+BpK̄2p), Bc2 = 0.

The output matrix

Cc =

 Ca+DaK1a 0 DaK2a 0

0 Cp+DpK1p 0 DpK2p

 ,

The static gain matrix Dc is

Dc = col(F̄a+DaK̄2a , F̄p+DpK̄2p).
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Remark 2.4.3. The block diagonal components of Ac1 can be made Hurwitz by

Assumption 2 and the selection of suitable feedback gain K1i. Similarly, the block

diagonal terms in Ac4 can be made Hurwitz by a gain Gi satisfying the necessary

conditions in Lemma 2.

Theorem 2.4.4. Under Assumptions 2.3.1 to 2.3.5, the CORP is solvable by the

feedback control law (2.8), with suitable gains Gi’s and K1i’s as described in Remarks

2.4.1 and 2.4.3, and scaling factor µ > 0, if and only if the digraph G contains a

directed spanning tree with node 0 as the root.

Proof. (If part). The linear regulator equation in (2.3) corresponding to the active

and passive agents can be rewritten as

X̄aS = (Aa+BaK1a)X̄a+BaK̄2a + Ēa,

0 = (Ca+DaK1a)X̄a+DaK̄2a + F̄a,

X̄pS = (Ap+BpK1p)X̄p+BpK̄2p + Ēp,

0 = (Cp+DpK1p)X̄p+DpK̄2p + F̄p,

(2.17)

where X̄a and X̄p follow the notation in (2.7). Let us define a new state variable in the

form x̃i = xi− X̄iw,i= 1,2, · · · ,N . Then by (2.17) we get the following state equation

for the active agents

˙̃xa = ẋa− X̄aẇ = (Aa+BaK1a)x̃a+BaK2a η̃a. (2.18)

Similarly for the passive agents

˙̃xp = ẋp− X̄pẇ = (Ap+BpK1p)x̃p+BpK2p η̃p. (2.19)
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By combining (2.18) and (2.19), the overall state space equation for the follower agents

can be rewritten as ẋe = Acxe, where xe = col(x̃a, x̃p, η̃a, η̃p). Since the system matrix

Ac is Hurwitz, we obtain that limt→∞ xe(t) = 0.

Now, it yields from (2.17) that the regulated output for the active agents equals

ea =(Ca+DaK1a)xa+DaK2a η̃a+ (F̃a+DaK̃2a)w,

=(Ca+DaK1a)x̃a+DaK2a η̃a. (2.20)

Similarly, for passive agents, the regulated error output become

ep =(Cp+DpK1p)x̃p+DpK2p η̃p+ (F̃p+DpK̃2p)w,

=(Cp+DpK1p)x̃p+DpK2p η̃p. (2.21)

Therefore the regulated output of the follower agents can be combined as e= Ccxe.

Since xe asymptotically converges to zero, limt→∞ ei(t) = 0 for all agent i. Thus the

CORP is solved.

(Only if part) Suppose the digraph G does not contain a spanning tree with node

0 as the root. Therefore from Lemma 2.4.3, limt→∞ ηi(t)−w(t) 6= 0 for any follower

i. Hence, Ac4 is not Hurwitz and as a result, Ac is not Hurwitz as well. Thus, the

output regulation problem is not solvable by the control law (2.8).

Remark 2.4.4. The solution to the CORP proposed in this work relies on the commu-

nication network between the active agents to complement the incomplete measurement

ymi. Under Assumptions 2.3.4 and 2.3.5, a path between the active agents is guaranteed

so that the incomplete measurements of one agent are complemented by the information

shared within the active subgroup. Indeed, the dynamic compensator in (2.4) can be

seen as a cooperative observer of the exosystem states from the local measurement ymi

and the observation ηj by neighbouring agent j.
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2.5 Distributed Output Feedback Control

We now propose a measurement output feedback solution to Problem 2.3.1.. Let the

measured output yi ∈ Rpi for the ith subsystem is given by

yi = Cxixi, i= 1,2,3, ...,N. (2.22)

Assumption 2.5.1. The pairs (Ai,Cxi) are detectable, i= 1,2, · · · ,N .

Additionally, we note that the signal ymi from the exosystem is available to agent i

through their communication to determine their cooperative estimation ηi(t) (2.4) and

(2.5) of the leader’s state w(t) in (2.2). For the MAS satisfying the above assumptions,

we consider the distributed dynamic measurement output feedback controller as

ui =K1ix̂i+K2iηi, i= 1,2,3, ...,N, (2.23)

where x̂i ∈Rni is the estimation of the state vector xi for the ith agent, ηi(t) is defined

for active agents in (2.4) and for passive agents in (2.5), and controller gain matrices

K1i and K2i are given in (2.8) and (2.9). For agents i= 1,2, · · · ,N , x̂i is defined as

˙̂xi = Aix̂i+Biui+Eiηi+Hi(Cxix̂i−yi), (2.24)

where the observer gain matrix Hi ∈ Rni×pi is selected such that (Ai+HiCxi) is a

Hurwitz matrix. The error equation corresponding to (2.24) can be found as

˙̃xi = (Ai+HiCxi) x̃i+Eiη̃i, (2.25)

where ˜̂xi = x̂i − xi, i = 1,2, · · · ,N . Since limt→∞ η̃i(t) = 0 by Lemma 2.4.3, then

limt→∞ ˜̂xi(t) = 0 by virtue of (Ai+HiCxi) being a Hurwitz matrix.
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Under the measurement feedback distributed control (2.23), define the overall

closed-loop system state as xc = col(x, ˜̂x, η̃) and e= col(ea, ep). The dynamics of the

overall closed-loop system then follows the state space equation (2.16) with

Ac =

 A+BK1 BKc

0 Ac3

 , Kc =
[
K1 K2

]

Ac3 =

 A+HCx E

0 Ac4

, Ac4 =

ρ−µ(L⊗ Iq) 0

−µ(α32⊗ Iq) P

 ,
Bc = col(Bc1 ,0), Bc1 = col(Ē+BK̄2),

Cc =
[
C+DK1 DK

]
, Dc = col(F̄ +DK̄2).

Remark 2.5.1. From the proof of Lemma 2.4.3, the matrix Ac4 is Hurwitz and so is

Ac3 by the suitable selection of observer gain H. Similarly from Assumption 2.3.2, the

choice of K1 makes the matrix A+BK1 Hurwitz and as a result Ac is also Hurwitz.

Therefore, the overall undisturbed (w = 0) closed-loop system matrix Ac is stable if

and only if Lemma 2.4.3 is satisfied and the controller and observer gains K1i,K2i,Hi

in (2.23) are properly selected.

Theorem 2.5.1. Under Assumptions 2.3.1-2.5.1, the CORP is solvable by the dis-

tributed dynamic measurement output feedback control law (2.23) with suitable con-

troller and observer gains as described in Remark 2.5.1, and a scaling factor µ > 0, if

and only if the digraph G contains a directed spanning tree with node 0 as the root.

Proof. (If part.) We define a state variable of the form x̃i = xi−Xiw,i= 1,2, · · · ,N,

and thereby we get the following state equations using (2.17)

˙̃x= (A+BK1)x̃+BK1 ˜̂x+BK2η̃. (2.26)
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The overall state space equation with state xe = col(x̃, ˜̂x, η̃) can be rewritten in the

form as ẋe = Acxe. It follows from Remark 2.5.1 that the system matrix Ac is Hurwitz

and hence limt→∞xe(t) = 0.

The regulated output of the agents, obtained using (2.17), reduce to the form

e= (C+DK1)x̃+DK1 ˜̂x+DK2η̃ = Ccxe.

Since xe asymptotically converges to zero, limt→∞ ei(t) = 0, i = 1,2, · · · ,N and thus

the output regulation problem is solved.

(Only if part.) Suppose the digraph G does not have a directed spanning tree

with node 0 as the root. Then there exists at least one node, which is not reachable

from node 0, implying that node must be a passive one because otherwise all the

active agents are strongly connected and by Assumption 2.3.5, all the active agents

are reachable from node 0. Therefore α33 is singular from Lemma 1 and limt→∞ η̃p 6= 0

by Assumption 2.3.1. Thus Ac4 can not be made Hurwitz and as a result Ac is also

not Hurwitz. Thus the output regulation problem is not solvable by the control law

(2.23). This concludes the proof.

2.6 Illustrative Example

In this section we present a numerical example to illustrate the design process of our

proposed solution. The follower agents are considered to be double integrator systems,

and the exosystem is assumed to be an unforced dual-frequency harmonic oscillator.

The system dynamics as given in (2.1) have the following state space matrices

Ai =

0 1

0 0

 ,Bi =

0

1

 ,Ei =

0 0 0 0

1 0 1 0

 ,
Ci =

[
1 0

]
,Di = 0,Fi =

[
0 1 0 1

]
, i= 1,2,3,4.
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The dynamics of the exosystem are captured by (2.2) with

S = blk diag(S1,S2) , S1 =

0 −1

1 0

 , S2 =

0 −2

2 0

 .

The communication network between the subsystems and the exosystem is illus-

trated in Fig. 2.1. The active followers i = 1, 2, and 3 form a strongly connected

network as in Assumption 2.3.5, while i= 4 corresponds to a passive agent. Subsystems

1 and 2 are children nodes of the exosystem, and agent 3 is a child node of agent 2

and the Laplacian matrix corresponding to Fig. 2.1 is found to be

L=



0 0 0 0 0

−1 2 −1 0 0

−1 0 2 −1 0

0 −1 0 1 0

0 0 0 −1 1


,

which satisfies the connectivity requirement in Assumption 2.3.5. The strongly-

connected graph Laplacian matrix L for the active agents is given as

L=


1 −1 0

0 1 −1

−1 0 1

 ,

which has the left eigenvector ζ =
[
1/3 1/3 1/3

]T
.

The measured output matrices are given as

Cw1 =

1 0 0 0

0 1 0 0

 , Cw2 =

0 0 1 0

0 0 0 1

 , Cw3 = 0.
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It is easy to check that the pair (S,C̄wa) is detectable, and thus Assumption 2.3.4 is

satisfied. Given the measurement output matrices Cwi , i= 1,2,3, the pair of matrices

(S,Cwi) is not detectable and thus the control algorithms developed in [29, 30] do not

apply to the current problem, i.e. from y1 =
[
w1,w2

]T
, y2 =

[
w3,w4

]T
and w3 = 0, it

is not possible for any active follower i= 1,2,3 to independently estimate the complete

exosystem state vector w. We choose the observer gain matrices Gi as follows

G1 =

1 0 1 0

0 1 0 0

 ,G2 =

0 0 1 0

0 0 0 1

 ,G3 = 0,

which satisfy the conditions in Lemma 2, i.e, R = 3S−µ∑3
i=1G

′
iCwi is a Hurwitz

matrix. Then from (2.11), we find P = 1.5I4 which renders (Pρi+ρT
i P ), i= 1,2,3 a

negative semi-definite matrix. By selecting µ= 1, the eigenvalues of matrix R can be

placed at −0.33± j3,−0.33± j6. For further increment of µ, the eigenvalues can be

moved further to the left half plane, assuring faster tracking of exosystem signal (2.2)

by the dynamic compensator states (2.4), (2.5).

The distributed control law yields the form (2.8) with

K1i =
[
−8 −4

]
,K2i =

[
−5 −7 −9 −4

]
,

for i= 1,2,3 and 4.

Applying the control law (2.8), we obtain the simulation result in Figure 2.2, which

shows the regulated output of the follower agents asymptotically converging to zero.

Figure 2.3 shows that all the followers’ estimation ηij , i= 1,2,3,4 of exosystem state

component wj successfully track the leader’s trajectory.
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Figure 2.2: Regulated error output of the overall system under the distributed state
feedback control

Next, we approach the same problem using distributed output feedback control

law (2.23) where

K1i =
[
−8 −4

]
,K2i =

[
−5 −7 −9 −4

]
,Hi =

[
−8 −4

]T
.

It is easy to verify that Assumptions 2.3.1-2.5.1 hold and thus it is possible to solve

the problem by using distributed output feedback control (2.23).

Applying the control law (2.23) we obtain the simulation result in Fig. 2.4,

which presents the regulated output of the follower agents as they converge to zero

asymptotically.

2.7 Conclusion

In this chapter, the CORP for linear MASs is considered. In particular, we investigate

the case where the agents in the system only receive limited information about the
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Figure 2.3: Tracking of the exosystem states w1,w3 by the follower agents under
distributed state feedback control law

exosystem states. The proposed solution to the regulation problem is a distributed

control law that incorporates a decentralized observation method to collectively

estimate the exosystem dynamics. Compared to previous works in the literature,

cooperative output regulation is achieved here under relaxed detectability assumption.

An illustrative example was offered to verify the theoretical results developed in

this chapter. Simulation results show that the regulated error outputs of the MAS are

synchronized and converges to zero. It is also seen in the illustrative example that the

distributed exosystem observer provides accurate estimations of the leader dynamics

to all follower agents in the system.
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Chapter 3

Robust Cooperative Output

Regulation of Multi-Agent Systems

3.1 Introduction

In this chapter, robust CORP for a class of linear uncertain MASs is studied under

the assumption that none of the agents can access sufficient exosystem measurements

and local regulated error signals for control. Due to these constraints, the agents in

the system cannot independently reconstruct the exosystem dynamics, or rely on their

own local measurements to achieve the objectives of the ORP. The solution to the

regulation problem proposed in this work is a distributed dynamic control law that

reconstructs the exosystem states, given a mild collective detectability assumption.

Furthermore, the proposed distributed control law incorporates an internal model of

the exosystem to allow for uncertain dynamics of the MAS A numerical example is

offered to illustrate the effectiveness of the proposed control solution.

The rest of the chapter is organized in the following way. Some preliminaries on

the MAS dynamics are presented in Section 3.2. In Section 3.2.1 we formulate our

control problem and introduce the problem objective. The state feedback control

34
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solutions are derived in Section 3.4 while the output feedback counterpart in Section

3.5. These results are validated with an illustrative example in Section 3.6. Finally,

some concluding remarks are presented in Section 3.7. Unless mentioned otherwise,

the symbol ‖.‖ in this chapter denotes the infinity norm of a vector.

3.2 Preliminaries

3.2.1 System Model

Consider the following system group, consisting of N linear subsystems with dynamics

ẋi = A∗ixi+B∗i ui+E∗i w,

ei = Cixi+Diui+Fiw,

ymi = Cwiw, i = 1,2,3, · · · ,N,

(3.1)

where xi ∈ Rni ,ui ∈ Rmi , ei ∈ Rp and ymi ∈ Rpi are respectively the state, control

input, regulated output and measurement output vectors of the ith subsystem as noted

in Chapter 2. We assume that the matrix Cwi is known, but the matrices A∗i ,B∗i and

E∗i are uncertain and defined as

A∗i = Ai+ δAi,

B∗i =Bi+ δBi,

E∗i = Ei+ δEi,

(3.2)

where Ai,Bi and Ei are known nominal values, and δAi, δBi and δEi are perturbations

from their respective nominal values. For convenience, define a row vector dw as

dw =[vec(δA1) vec(δA2) · · · vec(δAN )

vec(δB1) vec(δB2) · · · vec(δBN )
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vec(δE1) vec(δE2) · · · vec(δEN )] ∈ R
∑N
i=1ni(ni+mi+q), (3.3)

where vec(Λ) =
[
Λ1 Λ2 · · · Λm1

]
with Λi being the ith row of Λ∈Rm1×m2 , and dw = 0

corresponds to a nominal system. The external signal w ∈ Rq in (3.1), generated

by the exosystem (2.2) represents both the reference input to be tracked and the

disturbance input to be rejected by the subsystems.

The control objective of the considered problem is to design a robust distributed

dynamic feedback control law, such that the regulated output ei of each subsystem in

(3.1) asymptotically approaches zero for a small parameter perturbation dw. Similar

to Chapter 2, we decouple our problem into two parts: the asymptotic stabilisation of

the nominal subsystem dynamics, and the output regulation of the combined system

(3.1), (2.2) under perturbation dw. Next we mathematically formulate the proposed

problem with necessary underlying assumptions and define the problem objective.

3.3 Problem Formulation

Similar to the nominal case, we consider that the Assumptions 2.3.1-2.5.1 hold. With

the communication network between the follower agents captured by the digraph

G and the distributed observer dynamics (2.4) and (2.5), we introduce the current

problem objective.

Problem 3.3.1. Robust CORP - Given the MAS with agent dynamics (3.1), exosystem

(2.2) and communication graph G find a robust dynamic feedback control law ui, i=

1,2, · · · ,N , such that

1. the subsystem (3.1) under the control ui is asymptotically stable when w = 0,

2. for any arbitrary initial conditions xi(0),ηi(0), and w(0), the regulated output

satisfies limt→∞ ei(t) = 0.
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3.4 Distributed State Feedback Control

Consider the case when dw 6= 0 and we propose a solution to Problem 3.3.1 as follows

ui =K1ixi+K2izi,

żi = T1zi+T2êi, i= 1,2, · · · ,N,
(3.4)

where xi is the state vector of the agent, zi ∈ Rnz , and the pair of matrices (T1,T2)

is a p-copy internal model of S. The matrices of the pair (T1,T2) [23] are defined as

follows
T1 = blk diag [γ,γ, ...,γ]︸ ︷︷ ︸

p-tuple

,

T2 = blk diag
︷ ︸︸ ︷
[β,β, ...,β],

(3.5)

where γ is a square matrix and β is a column vector so that (γ,β) is controllable and

the characteristic polynomial of γ equals the minimal polynomial of S. The local

regulated error ei, i= 1,2, · · · , l is assumed not to be available through feedback in our

work, we instead make use of an estimated error variable êi, i= 1,2, · · · ,N defined as

êi = Cixi+Diui+Fiηi, (3.6)

where ηi is obtained from (2.4) and (2.5). The appropriate selection of control gain

matrices K1i ∈ Rmi×ni , and K2i ∈ Rmi×nz is noted in the next remark.

Remark 3.4.1. From the definition of internal model and Assumption 2.3.3, T1

satisfies

rank

Ai−λI Bi

Ci Di

= ni+p,∀λ ∈ σ̄(T1), i= 1,2, · · · ,N, (3.7)
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where σ̄(T1) denotes the eigenspectrum of T1. Furthermore, Lemma 1.26 from [23]

yields that the pairs


 Ai 0

T2Ci T1

 ,
 Bi

T2Di


 , i= 1,2, · · · ,N,

are stabilizable, and there exists
[
K1i K2i

]
such that

Anci =

 Ai 0

T2Ci T1

+

 Bi

T2Di

[K1i K2i

]
,

=

 Ai+BiK1i BiK2i

T2(Ci+DiK1i) T1 +T2DiK2i

 , i= 1,2, · · · ,N, (3.8)

is Hurwitz.

With a slight abuse of notation, we redefine the overall closed-loop state vector

as xc = col(x,z, η̃) and e= col(ea, ep). The overall closed-loop dynamics of the MAS

(3.1) and (2.2) under the control (2.4), (2.5) and (3.4) then follows the state equation

(2.16) with the system matrices

Ac =

 Ac1 Ac2

0 Ac4

 ,

where

Ac1 =

 A∗+B∗K1 B∗K2

(IN ⊗T2)(C+DK1) (IN ⊗T1) + (IN ⊗T2)DK2

 ,

Ac2 =

 0

(IN ⊗T2)F

 ,Ac4 =

 ρ−µ(L⊗ Iq) 0

−µ(α32⊗ Iq) P

 ,
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Bc = col(Bc1 ,0),Bc1 = col(Ē∗,(IN ⊗T2)F̄ ),

Cc =
[
Cc1 0

]
,Cc1 =

[
C+DK1 DK2

]
,

Dc = col(F̄a, F̄p).

It was noted in the proof of Lemma 2.4.3 that matrices ρ−µ(L⊗ Iq) and P are

Hurwitz and so is Ac4 . Therefore, the overall closed-loop system matrix Ac is Hurwitz

if Ac1 or equivalently the matrices

Aci =

 A∗i +B∗iK1i B∗iK2i

T2(Ci+DiK1i) T1 +T2DiK2i

 , i= 1,2, · · · ,N, (3.9)

can be made Hurwitz. Let xc = col(x,z) define states associated with Ac1 . The

regulation problem in (2.16) thus reduces to the regulation with reduced system

ẋc = Ac1xc+Bcw+Ac2 η̃,

e= Cc1xc+Dcw.

(3.10)

Remark 3.4.1 also states that Anci and the nominal value of Ac1 , given as

Anc1 =

 A+BK1 BK2

(IN ⊗T2)(C+DK1) (IN ⊗T1) + (IN ⊗T2)DK2

 , (3.11)

can be made Hurwitz by the selection of control gains K1 and K2 and block diagonal

matrices A and B are defined in (2.7).

Lemma 3.4.1. Under Assumption 2.3.1, consider the controller (3.4) incorporating

an internal model of the exosystem (2.2), so that the closed-loop system (3.10) has

asymptotically stable nominal dynamics. There exists an open neighbourhood W of

the origin such that Aci , i = 1,2, · · · ,N is Hurwitz for dw ∈W . Furthermore, there
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exists a unique matrix Xci that satisfies

XciS = AciXci +Bci ,

0 = CciXci +Fi.

(3.12)

where

Bci=

 E∗i

T2Fi

,Cci= [
Ci+DiK1i DiK2i

]
.

Proof. By Remark 3.4.1 and internal model (T1,T2) in (3.4), there exists
[
K1i K2i

]
, i=

1,2, · · · ,N , such that Anci , i = 1,2, · · · ,N are Hurwitz. In addition, there exists an

open neighbourhood W around the origin such that for any dw ∈W , (3.9) and Ac1

are also Hurwitz. It follows from Lemma 1.27 of [23] and Assumption 2.3.1 that, if

Aci and Ac1 are Hurwitz, then for any E∗i and Fi with appropriate dimensions, there

exist unique solutions Xi and Zi, i= 1,2, · · · ,N satisfying

XiS = (A∗i +B∗iK1i)Xi+B∗iK2iZi+E∗i ,

ZiS =T1Zi+T2((Ci+DiK1i)Xi+DiK2iZi+Fi),

0 = (Ci+DiK1i)Xi+DiK2iZi+Fi.

(3.13)

Let Xci = col(Xi,Zi), i= 1,2, · · · ,N . Then (3.13) implies (3.12), which concludes the

proof.

Theorem 3.4.2. For MAS (3.1) and (2.2), let Assumptions 2.3.1-2.3.5 be satisfied,

and its connectivity digraph contains a directed spanning tree with node 0 as the

root. The robust CORP is solvable by a p-copy internal model (T1,T2) in (3.5) and

a distributed dynamic feedback control law (3.4), if the conditions in Lemma 3 are

satisfied.
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Proof. Let system (3.1) and (2.2) satisfy Assumptions 2.3.4 and 2.3.5, and digraph

G contain a directed spanning tree. Then by Lemma 2, there exist Gi’s such that

limt→∞ η̃i(t) = 0. Additionally, the regulation of the overall system (2.16) reduces to

the regulation of (3.10). We transform the coordinates of the state variables (xi, zi)

as follows.
x̃i = xi−Xiw,

z̃i = zi−Ziw,i= 1,2, · · · ,N.
(3.14)

Then (3.14) in combination with (3.12) yields the state equations

˙̃xi =(A∗i +B∗iK1i)x̃i+B∗iK2i z̃i, (3.15)

˙̃zi =T2(Ci+DiK1i)x̃i+(T1+T2DiK2i)z̃i+T2Fiη̃i. (3.16)

The error equation in (3.10), combined with (3.12) and (3.14), can be rewritten to

the following form,

ei =(Ci+DiK1i)x̃i+ (DiK2i)z̃i. (3.17)

Let xci = col(xi, zi), x̃ci = col(x̃i, z̃i). Then (3.15), (3.16), and (3.17) yield that

˙̃xci = Acix̃ci +

 0

T2Fi

 η̃i,
ei = Ccix̃ci ,

(3.18)

and η̃i(t)→ 0 as t→∞. By Lemma 3, there exists an open neighbourhood W such

that Aci is Hurwitz for dw ∈W . Therefore limt→∞ ei(t) = 0. This concludes the

proof.

Remark 3.4.2. Our solution to the robust CORP takes advantage of the estimation

of the leader states by the active agent group as in Lemma 2.4.3 to reconstruct the local
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regulated error signals, rather than requiring specific structure for the local feedback

measurement. This extends the results presented in [33] to systems with arbitrary local

feedback measurements, as long as the assumptions of the control problem are satisfied.

Remark 3.4.3. The design procedure for the distributed feedback control law (3.4) is

summarized as follows:

• select (T1,T2) as a p-copy internal model of S;

• select K1i and K2i such that Anci in (3.8) is Hurwitz;

• choose an observer gain vector Gi which satisfies the conditions of Lemma 2.4.3

and R is Hurwitz;

• select the real positive valued parameter µ to regulate the convergence rate of η̃.

3.5 Distributed Output Feedback Control

We now present the measurement feedback solution to Problem 3.3.1 for the uncertain

MAS with dw 6= 0. Let the measured output yi ∈ Rpi for the ith subsystem be given

by

yi = Cixi, i= 1,2,3, . . . ,N.

The definition of the measurement signal is narrower than that in the nominal case

because the uncertainty in the measurement signal adds error to the state observation

of the subsystems, which then propagates to the regulation signal ei. Additionally, we

also note that the exosystem measurement ymi = Cwiw(t) is available to the active

agents through their communication to determine their cooperative estimation of the

leader’s state ηi (2.4).

Assumption 3.5.1. The pairs (Ai,Ci) are detectable, i= 1,2, · · · ,N .
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For the MAS satisfying the Assumptions 2.3.1-2.3.5, 3.5.1, we consider the dis-

tributed dynamic measurement output feedback control law for i= 1,2, · · · ,N as

ui =
[
K1i K2i

]
zi,

żi =

Ai+BiK1i+JiCi BiK2i

0 T1

zi+
−Ji
T2

 êi+
 0

T2Di

ui+
Ei

0

ηi,
êi = yi+Fiηi, i= 1,2, · · · ,N,

(3.19)

where ηi ∈ Rq are given in (2.4), (2.5), and K1i ∈ Rmi×ni and K2i ∈ Rmi×nz are the

controller gains to be defined later. The estimation of regulated error êi is obtained

by the measurement output yi and the distributed observer state ηi. The matrix Ji is

found such that Ai+JiCi is Hurwitz based on Assumption 3.5.1.

Remark 3.5.1. The selection of the measurement signals in this section is inspired

by [48], and it is needed to prevent the error caused by the uncertainty in the local

state equations to propagate to the regulated error signal. Differently from [48], the

control solution presented in this section incorporates the cooperative estimation of the

exosystem state vector w to allow for system with milder detectability properties as in

Assumption 2.3.4.

Under the measurement feedback distributed control law (3.19), and with a slight

abuse of notation as in previous sections, the state equations of the overall uncertain

closed-loop system yield the form (2.16) with xc = col(x,z, η̃), η̃i = ηi−w,e= col(ea, ep)

and the state space matrices

Ac =

 Ac1 Ac2

0 Ac4

 ,
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Ac1 =


A∗ B∗K1 B∗K2

−JC A+BK1 +JC BK2

(IN⊗T2)C (IN⊗T2)DK1 (IN⊗T1) + (IN⊗T2)DK2

 ,

Ac2 =


0

E−JF

(IN ⊗T2)F

 , Ac4 =

ρ−µ(L⊗ Iq) 0

−µ(α32⊗ Iq) P

 ,

Bc = col(Bc1 ,0), Bc1 = col(Ē∗, Ē−JF̄,(IN ⊗T2)F̄ ),

Cc =
[
Cc1 0

]
, Cc1 =

[
C DK1 DK2

]
,

Dc = col(F̄a, F̄p).

It is noted in the proof of Lemma 2.4.3 that ρ−µ(L⊗ Iq) and P are Hurwitz, and so

Ac4 is Hurwitz. Therefore the overall closed-loop system matrix Ac is Hurwitz if Ac1

can be made Hurwitz, or

Aci =


A∗i B∗iK1i B∗iK2i

−JiCi Ai+BiK1i+JiCi BiK2i

T2Ci T2DiK1i T1+T2DiK2i

 , (3.20)

is Hurwitz for all i= 1,2, · · · ,N .

Let xc = col(x,z) define the states associated with Ac1 . The regulation problem

in (2.16) then simplifies to the regulation of reduced system

ẋc = Ac1xc+Ac2 η̃+Bc1w,

e= Cc1xc+Dcw.

(3.21)
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By the transformation matrix

T =


INs 0 0

0 0 INz

−INs INs 0

 ,Ns =
N∑
i=1

ni,Nz =Nnz,

the nominal value of Ac1 is similar to

TAnc1T
−1 =



A+BK1 BK2 BK1

(IN⊗T2)(C+DK1) (IN ⊗T1) (IN⊗T2)DK1

+(IN⊗T2)DK2

0 0 A+JC


, (3.22)

which is Hurwitz by the selection of K1 and K2 as in Remark 3.4.1, and the selection

of Ji by Assumption 3.5.1.

Lemma 3.5.1. Under Assumption 2.3.1, consider the controller (3.19) incorporating

an internal model of the exosystem (2.2), so that the closed-loop system (3.21) has

asymptotically stable nominal dynamics. There exists an open neighbourhood W of the

origin such that Aci , i= 1,2, · · · ,N is Hurwitz for dw ∈W . Furthermore, there exists

a unique matrix Xci that satisfies

XciS = AciXci +Bci ,

0 = CciXci +Fi,

(3.23)

where

Bci = col(E∗i ,Ei−JiFi,T2Fi), Cci =
[
Ci DiK1i DiK2i

]
.
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Proof. By Remark 3.4.1 and internal model (T1,T2) in (3.19), there exists
[
K1i K2i

]
,

and Ji, i = 1,2, · · · ,N , such that the nominal value of Ac1 (3.22) is Hurwitz. In

addition there exists an open neighbourhood W around the origin such that for

any dw ∈W , Ac1 and (3.20) are also Hurwitz. It follows from Lemma 1.27 of [23]

and Assumption 2.3.1 that, if Ac1 and Aci are Hurwitz, then for any E∗i and Fi

with appropriate dimensions, there exist unique solutions Xi and Zi, i = 1,2, · · · ,N

satisfying
XiS = A∗iXi+B∗i

[
K1i K2i

]
Zi+E∗i ,

ZiS =

Ai+BiK1i+JiCi BiK2i

0 T1

Zi+
−JiCi
T2Ci

Xi

+

 0 0

T2DiK1i T2DiK2i

Zi+
Ei−JiFi

T2Fi

 ,
0 = CiXi+

[
DiK1i DiK2i

]
Zi+Fi.

(3.24)

Let Xci = col(Xi,Zi), i= 1,2, · · · ,N . Then (3.24) implies (3.23) which concludes the

proof.

Theorem 3.5.2. For MAS (3.1) and (2.2), let Assumptions 2.3.1-2.3.5 and 3.5.1 be

satisfied, and its connectivity digraph contains a directed spanning tree with node 0 as

the root. The robust CORP is solvable by a p-copy internal model (T1,T2) in (3.5) and

a distributed dynamic output feedback control law (3.19), if the conditions in Lemma

3.5.1 are satisfied.

Proof. Let system (3.1) and (2.2) satisfy Assumptions 2.3.4 and 2.3.5, and let digraph

G contain a directed spanning tree. Then by Lemma 2.4.3, there exists Gi’s such that

limt→∞ η̃i(t) = 0. Additionally, the regulation of the overall system (2.16) reduces

to the regulation of (3.21). Using the same coordinate transformation of the state
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variables (xi, zi) as in (3.14) results in

˙̃xci = Acix̃ci +


0

Ei−JiFi

T2Fi

 η̃i,

ei = Ccix̃ci .

(3.25)

where x̃ci = col(x̃i, z̃i), and η̃i(t)→ 0 as t→∞. From Lemma 3.5.1, there exists

an open neighbourhood W such that Aci (3.25) is Hurwitz for dw ∈W . Therefore

limt→∞ ei(t) = 0. This concludes the proof.

Remark 3.5.2. The design procedure for the distributed output feedback control law

(3.19) is summarized as follows:

• select (T1,T2) as a p-copy internal model of S;

• select K1i and K2i such that the nominal form of subsystem matrix Anci in (3.8)

is Hurwitz;

• choose an observer gain vector Gi which satisfies the conditions of Lemma 2.4.3

and R (2.15) is Hurwitz;

• select the real positive valued parameter µ to regulate the convergence rate of η̃.

So far we have considered that the measurement output yi and regulated output

ei do not have uncertainties in their equations. We now briefly investigate the effect

of uncertain parameters in the error equation, i.e, e∗i = C∗i xi +D∗i ui +F ∗i w, where

C∗i ,D
∗
i ,F

∗
i are defined in a similar manner as (3.2), and δCi, δDi, δFi are perturbations

from their respective nominal values Ci,Di,Fi. The measurement output and the

estimated regulated error are defined as yi = C∗i xi and êi = yi+Fiηi, respectively.

Following the same procedure as presented earlier in this section, it can be shown

that Lemma 3.5.1 still holds in the presence of the measurement and regulated error
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uncertainties. In addition, following the proof of Theorem 3.5.2 it can be shown that

the regulated error signal ei will approach

ei = (
[
δDiK1i δDiK2i

]
Zi+ δFi)w, (3.26)

as time approaches infinity, where Zi is the new solution to (3.23). The residual error

in (3.26) is expected as it represents the difference between the estimated regulated

error êi in the control and its actual value.

3.6 Illustrative Example

To illustrate the design process of our proposed solution we now present a numerical

example in this section. With the same nominal system matrices and exosystem as in

Section 2.6 and the communication digraph between the followers as in Fig. 2.1, we

now introduce the uncertainty to the follower subsystems as follows

δAi =

 0 0

0.1i 0.2i

 , δBi =

 0

0.2i

 , δEi =

 0 0 0 0

0.2i 0 0.2i 0

 , i= 1,2,3,4. (3.27)

The distributed control law yields the form (3.4) with

K1i =
[
−40 −13

]
,K2i =

[
−14 −39 −27 −36

]
, i= 1,2,3,4.

To solve the robust output regulation problem, we define the 1-copy internal model

satisfying (3.7) as

G1 =

 0 I3

−4 Q

 , G2 =

03×1

1

 , Q=
[
0 −5 0

]
. (3.28)
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From (3.8) we verify that the nominal subsystem matrix Anci is Hurwitz. Applying

the control law (3.4), we obtain the simulation result in Figure 3.1, which shows the

regulated output of the follower agents asymptotically converging to zero.
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Figure 3.1: Regulated error output of the overall system under the distributed state
feedback control

Next, we approach the same problem using distributed output feedback control

law (3.19) where Ji =
[
−8 −4

]T
, K1i and K2i are the same as the state feedback

case. It is easy to verify that Assumptions 2.3.1-2.3.5, 3.5.1 hold and thus it is

possible to solve the problem by using distributed output feedback control (3.19)

incorporating an internal model, the values of which are given in (3.28). We verify

that the nominal form of (3.21) is stable, and so there exists an open neighbourhood

W of the origin such that Ac1 is Hurwitz when the uncertainties (3.27) are introduced

into the system. Applying the control law (3.19) we obtain the simulation result in

Fig. 3.2, which presents the regulated output of the follower agents as they converge

to zero asymptotically. Furthermore, we consider the uncertain measurement outputs
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Figure 3.2: Regulated error output of the overall system under the distributed output
feedback control

yi and regulated outputs ei, i= 1,2,3,4 with

δCi =
[
0.1i 0

]
, δDi = 0.1i, δFi =

[
0 0.1i 0 0.1i

]
, i= 1,2,3,4,

which when substituted in (3.26) yield

‖e1‖= 0.789,‖e2‖= 1.4,‖e3‖= 1.913,‖e4‖= 2.367.

3.7 Conclusion

In this chapter, the CORP for uncertain MASs is considered. In particular, we investi-

gate the case where the agents in the system are unable to access their local regulated

error signals as feedback measurements, and all agents receive limited information

about the exosystem states. The proposed solution to the regulation problem is a

distributed control law that incorporates an internal model of the exosystem, and a
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decentralized observation method to collectively estimate the exosystem dynamics.

Compared to previous works in the literature, robust CORP is achieved here under re-

laxed requirement on the feedback error signal needed for control. We also derived the

maximum bounds on the error regulated signal when it was subjected to uncertainty.

An illustrative example was offered to verify the theoretical results developed in

this chapter. Simulation results show that the regulated error outputs of the MAS are

synchronized and converges to zero. It is also seen in the illustrative example that the

decentralized exosystem observer provides accurate estimations of the leader dynamics

to all follower agents in the system.



Chapter 4

Coperative Output Regulation

under Switching Communication

and Detectability Constraints

In this chapter we study the CORP of linear MASs under switching communication

topology and exosystem detectability constraints. As compared to similar works in the

literature, we consider the problem scenario in which none of the agents can estimate

the exosystem states from their individual measurements on any of the switching

configurations of the system. In other words, no agent in the system can solve the

output regulation problem independently. Consensus and output regulation problems

for MASs with time-varying communication topologies are studied for time delayed

systems in [17, 25, 49, 50], and systems without delay in [41, 51]. Synchronization

problems for homogeneous nonlinear agents over switching networks is studied in [52].

However the cooperative control problem with the considered detectability constraint

has not yet been addressed for the switching communication topology in the earlier

works, to the best of authors’ knowledge.

52
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By devising a distributed observer to reconstruct the exosystem states based on

the collective measurements available to the followers over a certain switching time-

intervals, we synthesize a distributed control solution to the output regulation problem.

The rest of the chapter is organized in the following way. System dynamics and

relevant terminologies of information graphs are presented in Section 4.1. In Section

4.2 we formulate our control problem, and provide necessary assumptions. Next, we

derive the main theoretical results of this work, and offer a state feedback distributed

control solution in Section 4.3, and measurement output feedback control solution

in Section 4.4. These results are further validated with the help of an illustrative

example in Section 4.5. Finally some conclusions are reported in Section 4.6.

Notation. We now briefly introduce the most frequently used notations through

the rest of the chapter. The symbol ‖.‖ denotes the Euclidean norm of a vector/matrix

unless otherwise mentioned, and λi(X ) denotes the ith eigenvalue of a matrix X . For

two symmetric matrices A and B, A< (≤)B implies that the matrix A−B is negative

(semi-) definite.

4.1 Preliminaries

4.1.1 System Model

Consider the system group consisting of N linear subsystems in (2.1) and an exosystem

in (2.2) with the measurement signal ymi for the ith subsystem redefined as

ymi = Cwi(σ(t), t)w, ymi ∈ Rpmi , (4.1)

where σ(t) is the switching signal corresponding to the switching communication

topology to be introduced next.
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4.1.2 Information Graph

Given a set of r digraphs Gi = (V ,Ei), i = 1,2,3, · · · , r, which has the same node set

as the digraph G = (V ,E) and E = ∪ri=1Ei, then G = ∪ri=1Gi is said to be the union of

digraphs Gi.

Let us assume an infinite sequence of switching instants {ti : i∈Z+∪{0} and t0 = 0},

which satisfies tk+1− tk ≥ τ ∗ > 0, where τ ∗ is called the dwell time and Z+ is the set of

positive integers. We define σ(t) to denote a piecewise constant switching signal such

that σ(t) ∈ P = {1,2, · · · ,ρ} where ρ ∈ Z+ is a switching index set. Define switching

graph Gσ(t) = (V ,Eσ(t)),Eσ(t) ⊆ (V ×V),V = {0,1,2, · · · ,N}, for the switching signal

σ(t). The neighboring set of node j, Nj,σ(t) ⊆V , is the set of all its parent nodes in the

digraph Gσ(t). The weighted adjacency matrix Aσ(t) = [aij(σ(t), t)] ∈ R(N+1)×(N+1)

of a digraph is a non-negative matrix with aij(σ(t), t) > 0 when there is a directed

edge from j to i, (j, i) ∈ Eσ(t), and aij(σ(t), t) = 0 when (j, i) /∈ Eσ(t). The Laplacian

matrix Lσ(t) = [lij(σ(t), t)] ∈ R(N+1)×(N+1) is a zero row sum matrix with elements

lij(σ(t), t) =−aij(σ(t), t), if j 6= i,

lii(σ(t), t) =
N∑
j=1

aij(σ(t), t), if j = i.

4.2 Problem Formulation

The system composed of (2.1) with redefined measurement signal (4.1) and (2.2) is

viewed as a MAS with the exosystem (2.2) as the leader and all the subsystems in (2.1)

as the followers. Let Gσ(t) = (V ,Eσ(t)),V = {0,1,2, · · · ,N} be the digraph representing

the dynamic interconnections among the subsystems of the MAS composed of (2.1)

and (2.2). Without loss of generality, we let the node 0 be the exosystem. From the

definition of Aσ(t), weights ai0(σ(t), t) > 0 if and only if the ith subsystem has the

exosystem (2.2) in its neighboring set at the instant t with communication graph Gσ(t).
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Moreover Cwi(σ(t), t) = 0 when the ith subsystem is not a child node of the exosystem

in Gσ(t).

Similar to the case for static communication network, we consider the Assumptions

2.3.1-2.3.3, which are required to guarantee the solvability of any traditional CORP.

The solutions to the CORP for time-varying communication topology in [25,

41, 49, 51] either explicitly or implicitly require that at least one of the agents can

independently access the complete state vector of exosystem dynamics from the

measurement signal ymi at some switching instants tj , j ∈Z+∪{0} when Cwi(σ(t), t) 6=

0. In other words, this is equivalent to (S,Cwi(σ(tj), tj)) being detectable for a child

agent i of the exosystem with the communication network topology being represented

by the digraph Gσ(tj).

Building upon the results of [41], here we aim to relax the detectability requirement

on individual agents of the exosystem, and we consider the case where no agent have

access to enough information to independently reconstruct the leader states at any

switching instant. Instead, agents reach a consensus on the exosystem states from

their combined measurement ymi’s over a series of switching instants and the joint

connectivity property among agents. The above discussion is summarized in the next

assumption.

Assumption 4.2.1. There exists a subsequence {ik} of {i : i= 0,1,2, · · ·} with uni-

formly bounded time intervals [tik , tik+1), tik+1− tik < v for some positive v, such that

the following hold.

• All the followers form a strongly connected partition in the “joint communication

network” ∪ik+1−1
j=ik Gσ(tj).

• The pair (S,
∫ tik+1
tik

C̄w(σ(t), t) dt) is detectable where C̄w=col(Cw1 ,Cw2 , · · · ,CwN ).

This condition is referred to as the combined detectability property.
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Remark 4.2.1. The need for Assumption 4.2.1 can be justified as follows. Because

(S,Cwi(σ,tj)) is not required to be detectable at any time instance tj, the solutions

in [41, 49] are not applicable here. A practical alternative solution is to introduce

additional comunication between follower agents to share their view of the exosystem,

and complement the incomplete measurements. These requirements are met with the

connecitivity property and the detectability condition in Assumption 4.2.1. In the case

where there is only one agent connected to the leader during the time interval [tik , tik+1),

Assumption 4.2.1 can be viewed as an equivalent to the connectivity requirement and

individual observability condition in [41, 49].

Finally we define the CORP under switching communication networks as follows.

Definition 4.2.1. CORP - Given the MAS comprising of the agent dynamics (2.1)

with ymi in (4.1), exosystem (2.2), and communication graph Gσ(t), find a distributed

control law ui, i= 1,2, · · · ,N such that:

1. when w= 0, the subsystem (2.1) under the control ui = ui(σ(t), t) is exponentially

stable,

2. for any arbitrary initial conditions xi(0), and w(0), the regulated output satisfies

limt→∞ ei(t) = 0.

In the following sections, we will introduce our control law to achieve the objectives

of the CORP as prescribed in Definition 4.2.1.

4.3 Distributed State Feedback Control

The distributed dynamic compensator for the followers is defined as

η̇i = fi(σ(t), t) +µai0(σ(t), t)GiCwi(σ(t), t)(w−ηi),

fi = Sηi+µ

 ∑
j∈Ni(σ(t),t)

aij(σ(t), t)(ηj−ηi)
 , (4.2)
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where µ > 0 is a scalar gain, Gi is the observer gain, and ηj is the state vector of

the dynamic compensator of the neighboring agent j ∈Ni(σ(t), t) and (j, i) ∈ Eσ(t) ⊆

(V×V). Since ai0(σ(t), t) in (4.2) is a scalar quantity, it can be absorbed into the matrix

Cwi(σ(t), t) without loss of generality, such that Cwi(σ(t), t) = 0 when ai0(σ(t), t) = 0,

and Cwi(σ(t), t) 6= 0 when ai0(σ(t), t) 6= 0. Based on the above compensator equation,

the control law for the follower agent i is given as

ui =K1ixi+K2iηi, i= 1,2, · · · ,N, (4.3)

where xi is the agent state vector, and ηi comes from the dynamic compensator (4.2)

of agent i. Feedback gain matrix K1i ∈ Rmi×ni is chosen such that (Ai+BiK1i) is

Hurwitz from Assumption 2.3.2, and K2i ∈ Rmi×q is obtained from the solution pair

to the regulator equations (2.3),

K2i = Ui−K1iXi. (4.4)

For the digraph Gσ(t) corresponding to the MAS (2.1) with leader (2.2), let Aσ(t) =

[aij(σ(t), t)] be the adjacency matrix and Lσ(t) be the Laplacian matrix

Lσ(t) =

 0 0

∇σ(t)1N Hσ(t)



where ∇ is an N ×N diagonal matrix with the diagonal elements −ai0(σ(t), t). Zero

row sum property of Lσ(t) yields Hσ(t)1N =−∇σ(t)1N .

Let η̃i = ηi−w, and therefore the dynamic compensator in (4.2) yields

˙̃η =
[
ρ(σ(t), t)−µ(Lσ(t)⊗Iq)

]
η̃, (4.5)
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where ρ(σ(t), t) = (IN⊗S)−µGCw(σ(t), t), Lσ(t) is the Laplacian matrix of all the

follower subsystems (2.1), obtained from Lσ(t) by deleting the edges incoming from or

outgoing to the leader. Before we present our main result, we first establish a lemma

on the consensus of the dynamic compensator states ηi, i= 1,2, · · · ,N .

Consider a Lyapunov function for Q> 0,

V1 = η̃TQη̃, (4.6)

where η̃ is a solution of (4.5). To avoid notational complexity, we will use ρσ,t =

ρ(σ(t), t),Cwσ,t = Cw(σ(t), t) in the current discussion. Since the switching signal

σ(t) is piecewise constant, so are ρσ,t and Cwσ,t . Therefore, V1(t) is continuously

differentiable at any time except for the switching instants. Differentiation of V1 at

non-switching instants yields

V̇1 = η̃T
[(
ρσ,t−µLσ(t)⊗Iq

)T
Q+Q

(
ρσ,t−µLσ(t)⊗Iq

)]
η̃.

With the help of a numerical example such as in [53], it can be shown that V1(t)

may not decrease uniformly. Therefore, Barbalat’s Lemma as in [51] may not be

applicable for the stability analysis of (4.5). Instead we use the following stability

theorem from [54].

Lemma 4.3.1. Consider a function V1 :W ×R→ R, with W ⊂ RNq an open neigh-

borhood of 0. Let the following conditions on V1 be satisfied.

• There exist strictly positive numbers λmin and λmax such that

∀η̃ ∈W : λmin‖η̃‖2 ≤ V1(η̃, t)≤ λmax‖η̃‖2 and V1(0, t) = 0,∀t.

• There exists an increasing sequence of time {tik}, with tik →∞ as ik→∞, and

a finite v > 0, v1 > 0 such that ∀ik ∈ Z+, tik+1− tik < v, and ∀η̃(tik) ∈W\{0},
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V1(η̃, t) satisfies

V1(η̃(tik+1), tik+1)−V1(η̃(tik), tik)≤−v1‖η̃(tik)‖2<0,

where η̃(tik+1) is the solution of (4.5) at tik+1 with the initial condition η̃(tik) at

tik .

Then the equilibrium point η̃(t) = 0 of (4.5) is exponentially stable.

Proof. The observer error dynamics in (4.5) can be rewritten in the form as

˙̃η(t) = g(η̃(t), t), (4.7)

with g : W ×R→ RNq, for an open neighborhood of the origin W, and measurable

function g(η̃, t) such that g(0, t) = 0, ∀t ∈ R. Additionally, the function g(η̃(t), t) is

locally Lipschitz on W , which implies that there exists a unique solution to equation

(4.7) for all η̃ ∈W . The proof of this theorem with (4.7) then mirrors the equivalent

results for exponential stability in [54].

From the choice of our Lyapunov function (4.6), it is evident that

V1(0, t) = 0,∀t≥ 0,

λmin(Q)‖η̃‖2 ≤ V1(η̃, t)≤ λmax‖η̃‖2.

Thus V1(η̃, t) satisfies the first condition of Lemma 4.3.1. In the following lemma, we

present conditions to ensure the negative definiteness requirement on the difference

of the Lyapunov function measured over the time sequence {tik}, which in turn will

prove the exponential stability of η̃(t) by Lemma 4.3.1.

Lemma 4.3.2. Consider the dynamic compensator (4.2) with digraph Gσ(t) and time

sequence {tik} satisfying Assumption 4.2.1. Let the scaling factor µ, observer gains Gi
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and a positive definite matrix P such that the matrix P (S−µGi
∫ tik+1
tik

Cwi(σ(t), t) dt)+

(S−µGi
∫ tik+1
tik

Cwi(σ(t), t) dt)TP has non-positive eigenvalues for all follower agents

i and

R=NvS−µG
∫ tik+1

tik

C̄w(σ(t), t) dt (4.8)

is Hurwitz with G = [G′1 G′2 · · · G′l], G′i = ζiGi, where ζi is the ith element of the left

eigenvector ζ =
[
ζ1, ζ2, · · · , ζl

]T
of the matrix

[∫ tik+1
tik

Lσ(t) dt
]

corresponding to the zero

eigenvalue. The compensator states ηi then exponentially approaches the exosystem

states,

lim
t→∞

(ηi(t)−w(t)) = 0, i= 1,2, · · · ,N.

Proof. For a non-switching communication digraph G = Gσ(t), the above lemma results

in Lemma 2 of [2]. For the case of switching communication digraph, the difference

∆V1 = V1(η̃(tik+1), tik+1)−V1(η̃(tik), tik), with V1 being defined in (4.6) reduces to

∆V1 = η̃T(tik+1)Qη̃(tik+1)− η̃T(tik)Qη̃(tik), (4.9)

where η̃(tik+1) = Φ(tik+1 , tik)η̃(tik) and Φ(t, tik) is the state transition matrix of sys-

tem (4.5). Please note that the notations Lσ(t) and Lσ are used interchangeably

throughout the text. Assume that the number of switches occurring within the time

interval [tik , tik+1) is m, and denote the switching time instants as tik +δ1, tik +δ2, tik +

δ3, · · · , tik +δm. By using the properties of state transition matrix Φ(·) of (4.5), η̃(tik+1)

in (4.9) can be expressed by the following product of η̃(tik)

η̃(tik+1) =
m+1∏
j=1

Φ(tik + δj , tik + δj−1)η̃(tik), (4.10)

with δm+1 = tik+1− tik , δ0 = 0. As noted earlier, the error dynamics in (4.5) remains

time-invariant during a non-switching time interval, and thus Φ(·) in (4.10) yields as
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follows

Φ(tik + δj+1, tik + δj) = e
Mσ,tik

+δj (δj+1−δj)
, (4.11)

where Mσ,t = ρσ,t−µLσ⊗ Iq. For small enough µ > 0, the Baker-Campbell-Hausdorff

formula for the product of matrix exponentials in (4.10) gives

V1(η̃(tik+1), tik+1) = η̃T(tik)
[
eMT

QeM
]
η̃(tik), M =

∫ tik+1

tik

Mσ,tik+δj dt. (4.12)

By assumption R is Hurwitz and consequently there exists a unique positive definite

solution P to the inequality

PRT +RP < 0. (4.13)

Furthermore, since P (S−µGi
∫ tik+1
tik

Cwi(σ(t), t) dt)+(S−µGi
∫ tik+1
tik

Cwi(σ(t), t) dt)TP

is assumed to be negative semi-definite, then the stability results of Lemma 2.4.3 yield

that M is Hurwitz and as a result for a positive definite matrix Q

MTQ+QM< 0. (4.14)

Thus, from Theorem A.5 of [55], eMT
QeM < Q, which gives V1(η̃(tik+1), tik+1)−

V1(η̃(tik), tik)< 0. Therefore the second condition of Lemma 4.3.1 is satisfied, i.e., η̃= 0

of (4.5) is exponentially stable. In other words, limt→∞(ηi(t)−w(t)) = 0, i= 1,2, · · · ,N .

This concludes the proof.

Remark 4.3.1. R can be rewritten in the matrix form

R=NvS−µGC∗w, where C∗w =
∫ tik+1

tik

C̄w(σ(τ), τ) dt. (4.15)

By the detectability condition in Assumption 4.2.1, there is always a matrix G and a

positive scalar µ such that R is Hurwitz. In the case when the switching sequence σ(t)
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is periodic, matrix C∗w can be uniquely determined and used in deriving the observer

gains Gi.

Using the notations in (2.6) and (2.7), define the system state and the regulated

output of the overall system be xc = col(x, η̃) and e. The overall closed-loop system

under the control (4.2), (4.3) is represented by the following state equations

ẋc = Acσ(t)xc+Bcw,

e= Ccxc+Dcw,

(4.16)

with the system matrix being

Acσ(t) =

 Ac1 Ac2

0 Mσ,t

 ,

where

Ac1 = A+BK1,Ac2 =BK2,

and A,B,K1 and K2 are defined as in (2.7). The remaining matrices are given by

Bc = col(Ē+BK̄2,0), Cc =
[
C+DK1 DK2

]
, Dc = F̄ +DK̄2.. We now introduce

the following lemma to carry out the stability analysis of (4.16).

Lemma 4.3.3. Consider the closed-loop system (4.16). Under Assumptions 2.3.1,

2.3.2 and 4.2.1, the origin of the unperturbed linear switched system

ẋc = Acσ(t)xc (4.17)

can be made exponentially stable by the selection of K1i if η̃i’s are exponentially stable.

Proof. The block diagonal components of Ac1 can be made Hurwitz by Assumption

2.3.2 and the selection of suitable gain matrix K1i , i= 1,2, · · · ,N . From Lemma 4.3.1,

the exponential stability of η̃(t) implies that there exists strictly positive constants ε1
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and δ1 such that

‖η̃(t)‖ ≤ ε1e
−δ1(t−t0)‖η̃(t0)‖. (4.18)

Since Ac1 and Ac2 are time-invariant, then for any initial states x(t0), η̃(t0) and ∀t0,

the solution x(t) of the linear switched system ẋ(t) = Ac1x(t) +Ac2 η̃(t) satisfies

x(t) = eAc1(t−t0)x(t0) +
∫ t

t0
eAc1(t−τ)Ac2 η̃(τ)dτ. (4.19)

Given Ac1 is Hurwitz, there exists strictly positive constants ε2 and δ2 such that

‖eAc1t‖ ≤ ε2e
−δ2t. (4.20)

By (4.18) and (4.20), the norm bound on equation (4.19) can be rewritten as follows

‖x(t)‖ ≤ ε2e
−δ2(t−t0)‖x(t0)‖+ ε1ε2‖Ac2‖‖η̃(t0)‖ eδ2t0

δ2− δ1

[
e−δ1(t−t0)−e−δ2(t−t0)

]
,

≤ ε2e
−δ2(t−t0)‖x(t0)‖+ε3

[
e−δ1(t−t0)−e−δ2(t−t0)

]
‖η̃(t0)‖,

which gives x(t)→ 0 as t→∞.

Lemma 4.3.2 and 4.3.3 demonstrate that the closed loop system (4.16) can be

made exponentially stable when w = 0. Thus the first condition in Definition 4.2.1 is

satisfied. We consider the following Theorem to approach the second condition in the

definition.

Theorem 4.3.4. Under Assumptions 2.3.1, 2.3.2, 2.3.3, 4.2.1, the CORP is solvable

by the distributed dynamic state feedback control law (4.3), with suitable gains Gi’s as

described in Remarks 4.3.1 and a scaling factor µ > 0, if η̃i is exponentially stable.
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Proof. The linear regulator equation in (2.3) corresponding to the follower agents can

be rewritten as
X(IN ⊗S) = (A+BK1)X+ (Ē+BK̄2),

0 = (C+DK1)X+ (F̄ +DK̄2),
(4.21)

where X follows the notation in (2.7). Let us define a new state variable in the form

x̃i = xi−Xiw,i= 1,2, · · · ,N . Then by (4.21) we get the following state equation for

the follower agents

˙̃x= (A+BK1)x̃+BK2η̃. (4.22)

By combining (4.22), (4.5), the overall state space equation for the follower agents can

be rewritten as ˙̃xc = Acx̃c, where x̃c = col(x̃, η̃). From Lemma 4.3.3, limt→∞ x̃c(t) = 0.

Now, it yields from (4.21), that the regulated outputs for all the follower agents

equal

e= (C+DK1)x̃+DK2η̃. (4.23)

Therefore the regulated output for all the follower agents can be combined as e=Ccx̃c.

Since x̃c exponentially converges to zero, limt→∞ ei(t) = 0 for all agent i. Thus the

CORP is solved.

4.4 Distributed Output Feedback Control

Building upon our results on the state feedback control, we study the CORP by

distributed measurement output feedback control. Let the measured output yi =

yi(σ(t), t) ∈ Rpi from the ith subsystem be defined as

yi = Cxixi, i= 1,2,3, · · · ,N. (4.24)

We consider that the Assumption 2.5.1 holds. Additionally, we note that while

ai0(σ(t), t) 6= 0, the signal ymi from the exosystem is available to agent i through their
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communication to determine their cooperative estimation ηi(t) (4.2) of the leader’s

state w(t) in (2.2). For the MAS satisfying the problem assumptions, we consider the

distributed dynamic output feedback controller as

ui =K1ix̂i+K2iηi, i= 1,2, · · · ,N, (4.25)

where K1i ,K2i are defined as in (4.3) and (4.4), and the estimation x̂i ∈ Rni of the

state vector xi by the ith agent is defined as

˙̂xi = Aix̂i+Biui+Eiηi+Hi(Cxix̂i−yi), (4.26)

where the observer gain matrix Hi ∈Rni×pi is selected such that Ai+HiCxi is Hurwitz.

The error equation corresponding to (4.26) can then be found as

˙̂̃xi = (Ai+HiCxi)˜̂xi+Eiη̃i, (4.27)

where ˜̂xi = x̂i−xi, i = 1,2,3, · · · ,N . Since limt→∞ η̃i(t) = 0 by Lemma 4.3.2, then

from (4.27) limt→∞ ˜̂xi(t) = 0 by virtue of Ai+HiCxi being a Hurwitz matrix.

Under the measurement feedback distributed control (4.25), (4.26), define the

overall closed-loop system state and the regulated output of the overall system as

xc = col(x, ψ̃) and e, where ψ̃ = col(˜̂x, η̃). The dynamics of the overall closed loop
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system then follows the state space equation (4.16) with

Acσ(t) =

 Ac1 Ac2

0 Ac4(σ(t), t)

 , Ac1 = A+BK1,

Ac4(σ,t) =

A+HCx E

0 Mσ,t

 ,Ac2 =B
[
K1 K2

]
,

Bc = col(Ē+BK̄2,0),Cc =
[
Cc1 Cc2

]
,

Cc1 = C+DK1,Cc2 =D
[
K1 K2

]
,Dc = F̄ +DK̄2.

Since η̃i(t) is exponentially stable, then from Lemma 4.3.3 the origin of the switched

system ẋc = Acσ(t)xc can be shown to be exponentially stable by virtue of A+BK1

and A+HCx being Hurwitz matrices for suitable selection of gain matrices K1 and

H.

Remark 4.4.1. It is clear from the proof of Lemma 4.3.3 that, unperturbed (w = 0)

closed loop system (4.16) is exponentially stable, provided η̃i(t) is exponentially stable

and the controller gains K1i ,K2i , i= 1,2, · · · ,N being selected in such a way that the

matrix Ac1 is Hurwitz. Thus the first condition in Definition 4.2.1 is satisfied.

Next, we consider the following Theorem to satisfy the second condition in Defini-

tion 4.2.1.

Theorem 4.4.1. Under Assumptions 2.3.1, 2.3.2, 2.3.3, 4.2.1, 2.5.1, the CORP

is solvable by the distributed dynamic measurement feedback control law (4.25) with

observer gains Hi, controller gains in Remark 4.4.1 and a scaling factor µ > 0, if η̃i is

exponentially stable.

Proof. The proof of this theorem follows directly from the proof of Theorem 1. With

x̃i = xi−Xiw, i= 1,2, · · · ,N , and by virtue of (4.16), (4.21), we obtain limt→∞ x̃= 0
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and consequently limt→∞ e(t) = 0. Therefore the second condition of Definition 4.2.1

is satisfied, and the output regulation problem is solved.

4.5 Illustrative Example

In this section we present a numerical example to illustrate the design process of our

proposed solution. The follower agents are considered to be double integrator systems,

and the exosystem is assumed to be an unforced dual-frequency harmonic oscillator.

The system dynamics as given in (2.1) have the following state space matrices

Ai =

0 1

0 0

 , Bi =

0

1

 , Ci =
[
1 0

]
, Di = 0,

E1 =

0 0 0 0

1 0 0 0

 , E2 =

0 0 0 0

0 0 1 0

 ,
E3 = 02×4, Fi =

[
1 0 1 0

]
, i= 1,2,3.

The leader dynamics is captured in the form (2.2) with S = blk diag(S1,S2), where

S1 =

0 −1

1 0

 , S2 =

0 −2

2 0

 . (4.28)

It is easy to verify that the Assumptions 2.3.1, 2.3.2, 2.3.3 are all satisfied. Next we

introduce the switching signal σ(t) which generates the switching network topology

Gσ(t) as shown in Figure 4.1, where the leader is designated by node 0. The switching

signal is defined as follows

σ(t) = mod6(i−1) + 1, for i−1
6 T ∗ ≤ t < i

6T
∗, (4.29)
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Figure 4.1: Switching network topology Gσ(t) with P = {1,2,3,4,5,6}

where i= 1,2, · · · ,∞. The switching period T ∗ is 1s. The notations written side by

side of the network graph in Figure 4.1 indicates the information exchange during a

non-switching interval. Union of the communication graphs, taken over a switching

period T ∗ is depicted in Figure 4.2, which satisfies the connectivity assumption of

agents.

Figure 4.2: Joint communication network of agents over one switching period
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From the available information, the measurement output matrix of all the agents

are as follows

Cw1(σ(t), t) =



[
I2 02×2

]
if σ(t) = 1

0, otherwise,

Cw2(σ(t), t) =



[
02×2 I2

]
if σ(t) = 2

0, otherwise
,

Cw3(σ(t), t) = 02×4.

(4.30)

It is easy to verify the strongly connected partition of the joint communication network

G1∪G2∪G3∪G4∪G5∪G6. From the above measurement output matrices Cwi and the

exosystem matrix S, we are able to verify the combined detectability condition. The

dynamic state feedback control law yields the form (4.2), (4.3) with

K21 =
[
−8 4 −4 8

]
, K1i =

[
−8 −4

]
,

K22 =
[
−7 4 −5 8

]
, G1 =

[
I2 02×2

]
,

K23 =
[
−7 4 −4 8

]
, G2 =

[
02×2 I2

]
,

G3 = 04×2, µ= 1.5.

(4.31)

The discussion in Section 4.3 on V1(t) not being uniformly decreasing is further

illustrated in Figure 4.3, where the energy function V1(t) satisfies Lemma 4.3.1.

The asymptotic convergence of η̃(t) to 0 results in limt→∞V1(t) = 0. The selection

of Gi as above renders matrix R in (4.8) Hurwitz. Applying the control law (4.3) to

the MAS composed of (2.1) and (2.2), we obtain the simulation result in Figure 4.4,

which shows the regulated output ei of the follower agents in (2.1) asymptotically

converging to zero. Thus the objectives of the CORP are achieved. Next we approach

the same problem using an output feedback distributed control law (4.25) to the

subsystems with the additional measured output matrices in (4.24) and controller
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Figure 4.3: Variation of the energy function V1 = η̃Tη̃ with time

gain matrices as follows

Cxi =

 0 0

0.5 1

 , Hi =

−8 0

0 −4

 , K1i =
[
−8 −4

]
, i= 1,2,3,

µ= 1.5, K21 =
[
−8 4 −4 8

]
, K22 =

[
−7 4 −5 8

]
,

K23 =
[
−7 4 −4 8

]
.

By applying an output feedback distributed control law (4.25) to the subsystems,

we obtain the simulation result of the regulated output ei in Figure 4.5, which shows

that the tracking errors for all the follower agents asymptotically converge to zero

in the presence of dynamic communication protocol as long as the conditions in

Assumption 4.2.1 are satisfied.

To understand the implications of Assumption 4.2.1, we consider a case with

the value of the switching signal σ(t) repeating the sequence {1,2,4,6} uniformly
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Figure 4.4: Tracking error of the three followers in Gσ(t) under the distributed state
feedback control

over the switching period T ∗. With all the other parameters unchanged, the joint

communication network G1∪G2∪G4∪G6 does not satisfy Assumption 4.2.1. If the

control law (4.3) with the controller parameters in (4.31) is applied to (2.1) where

the subsystems are interconnected through the dynamic digraph Gσ(t), we obtain the

simulation result in Figure 4.6. SinceR in (4.8) is not Hurwitz, limt→∞ ηi(t)−w(t) 6= 0

and therefore limt→∞ ei(t) 6= 0, as depicted in Figure 4.6.

4.6 Conclusion

In this chapter we studied the CORP for MASs in a switching network where no

subsystem received enough information to independently reconstruct the exosystem

states. We proposed a distributed control law that achieves the objectives of the

CORP under switching network. We demonstrated that the objectives of the studied
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Figure 4.5: Tracking error of the three followers in Gσ(t) under the distributed output
feedback control

control problem are achieved under relaxed detectability and connectivity assumptions

when compared to previous results in the literature.

An illustrative numerical example was presented to verify the theoretical results

developed in this chapter. The simulation results showed that the regulated outputs

of the subsystems are synchronized, and the regulation error approaches zero. This is

true even when none of the subsystems received sufficient information through their

measurements to estimate the exosystem states during any switching instant.
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Chapter 5

Position Synchronization of

Networked Motors- A Case Study

In this chapter we aim to experimentally validate the theoretical developments of

the previous chapter through a case study. Experimental testing is an important

aspect in the design of any distributed control algorithm. The first and foremost step

towards successful application of the derived control algorithm is to suitably design

the experiment which is regarded as the most accurate and unequivocal standard for

testing the proposed hypothesis.

In particular we apply our derived theoretical results for the CORP to the position

synchronization problem of networked motors under a time-varying communication

network, and with restricted access to the synchronization signal. This scenario is very

common in the applications of product handling machines, textile industries [56,57],

multi-conveyor belt systems and industrial manufacturing systems where the position

of several electrical motors (“slave”) are required to follow the position of the “master”

motor. The objective of the multi-motor synchronization problem is to derive a

distributed control algorithm for each motor to synchronize its shaft angular position

to an external reference trajectory, while also compensating for disturbances that

74
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perturbs the motor tracking performance [58]. In this work we consider the accessibility

of the synchronization signal to the motors is restricted, and communication in the

distributed system is intermittent. Such network conditions have become more common

in manufacturing environments, where equipment with large reflective surfaces adds

significant challenges to wireless communication. Similar limitations to the access

of shared measurement signals are also often encountered in distributed observation

problems.

5.1 Experimental Setup

The experimental setup, as shown in Figure 5.1 consists of servomotors and PC’s

associated to each servomotor for implementation of the control algorithm. The details

on the switching signal σ(t) dictating the communication topology is provided in

Section 5.3. In the framework of cooperative control problem each of these servomotors

can be regarded as follower agents while the leader trajectories are assumed to be

generated by a computer.

The goals of this experiment are stated as follows:

• Set up a communication between the PC’s associated to each servomotor.

• Implement the decentralized control algorithm in the computers to stabilize the

respective servomotor dynamics while synchronizing their positions to the leader

trajectory.

The rest of the chapter is organized in the following manner. In Section 5.2 we

briefly present the linearized servomotor dynamics along with the interaction between

its different components. The implementation of the communication network between

the follower servomotors is provided in Section 5.3. The design of controller and

observer parameters are given in Section 5.4 and the experimental results and a
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Figure 5.1: Experimental setup

qualitative analysis with respect to the existing control methods are given in Section

5.5. Finally some concluding remarks are presented in Section 5.6.

5.2 Servo Motor

The servomotors used in this experiment are Qube-Servo 2 model from Quanser.

A single-ended rotary encoder is used to measure the angular position of the DC

motor. In each revolution the encoder outputs 2048 counts on angular position. A

digital tachometer is also available to read the angular velocity of the motor. The

servomotor also includes a data acquisition device with two 24-bit encoder channels

with quadrature decoding and one PWM analog output channel. The DAQ also

incorporates a 12-bit ADC. A schematic diagram of the Qube Servo 2 model is shown

in Figure 5.2 with the motor parameters being listed in Table 1.

The DC motor shaft is connected to a load hub with inertia Jh. A disk load with

moment of inertia being Jd is mounted on the load hub. The back-emf voltage eb(t),
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Figure 5.2: Interaction between servomotor components

Table 5.1: Model parameters for the experimental servomotor system
Parameter Symbol Unit Value

Terminal resistance Rm Ω 8.4
Torque constant kt N.m/A 0.042

Motor back emf constant km V/rad/s 0.042
Rotor inductance Lm mH 1.16
Load hub mass mh kg 0.0106

Radius of the load hub mass rh m 0.0111
Rotor inertia Jm kg.m2 4.0×10−6

Load hub inertia Jh kg.m2 0.6×10−6

Mass of disk load md kg 0.053
Radius of disk load rd m 0.0248

dependent on the angular velocity ωm of the motor shaft, opposes the current flow

and is given by eb = kmωw, where km denotes the motor back-emf constant. The

identified transfer function indicating the relation from input voltage Vm to output

angular position θi is given as follows

P (s) = θi(s)
Vm(s) = kt

s(sRmJeq +ktkm) = 23
s(0.13s+ 1) ,
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where Jeq = Jm+Jh+ 0.5mdr
2
d. This input-output relation can be further expressed

into the state-space form as follows

Ai =

0 1

0 −7.6932

 , Bi =

 0

176.9231

 ,
Ci =

[
1 0

]
,Di = 0, i= 1,2,3.

(5.1)

5.3 Communication Network

The Qube servomotors are controlled in a decentralized manner by separate Windows

based computers. The real-time digital control is implemented using Simulink and

Quarc, at a sampling rate of 1 KHz. Quarc supports a variety of communication

protocols through the Quanser stream API. We set up communication between the

multiple Qube servomotors through a TCP/IP protocol. The switching communication

network is dictated by the switching signal σ(t) repeating the sequence {1,2,3,4,5}

in Figure 5.3 with switching period T ∗ = 0.005s. The dashed lines in the figure

represent the communication links that are active for a given value of switching signal

σ(t). A leader computer generates the reference trajectory, which are to be tracked

by follower servomotors, and all motors are subjected to external disturbances. In

the output regulation framework as in Figure 5.3, the reference and disturbance

inputs are considered as exogenous signals from an external leader. The dynamics

of the reference signal generator is associated with the vector
[
w1 w2

]T
, while the

disturbance vector is
[
w3 w4

]T
. The union of the repeating sequence of switching

communication digraphs {G1,G2,G3,G4,G5} yields the joint communication network in

Fig. 4.2, where node 0 denotes the leader and the follower nodes are numbered from 1

to 3. Each motor, designated as a follower agent in a MAS, is required to track the

reference signal from the leader while rejecting the disturbance signals. The exosystem
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Figure 5.3: Experimental Setup

is defined as in (2.2) with

S = blk diag(S1,S2), S1 =

0 −1

1 0

 , S2 =

 0 −10

10 0

 .

The signal w1 from the leader is viewed as a reference position of the follower motors

need to track, and w3 represent disturbances such as electrical noise that enters the

agent dynamics through the control input ui for all agent i, thereby resulting in

Ei =Bi

[
0 0 1 0

]
.

The information that the follower motors receive on the leader states is specified

by the matrices Cwi in (4.30). It is to note that agent 1 only receives from the
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leader node the reference signals
[
w1 w2

]T
, while agent 2 can only measure the

disturbance signal
[
w3 w4

]T
as shown in Fig. 5.3. Since the sensed information by

any agent is not enough for reconstructing the entire vector w(t), the distributed

observer in (4.2) is required to propagate the estimation of exosystem signals among

the agents. The objective is to make all the agents track the signal w1(t), i.e.

limt→∞ θi(t)−w1(t) = 0, i= 1,2,3, while keeping all the states of the agents bounded.

The regulated error ei is now defined as the difference of the motor position θi and w1

and therefore Fi in (2.1) becomes Fi =
[
−1 01×3

]
.

5.4 Controller Design

The distributed control for the synchronization problem is designed with the suitable

observer gains and controller gains as noted in Remarks 4.3.1 and 4.4.1. We verify

that Assumptions 2.3.1, 2.3.2, 2.3.3, 4.2.1, and 2.5.1 are satisfied, and thus the control

law (4.25) is found with K1i =
[
−8 −4

]
, K2i =

[
−7.994 4.043 −1 0

]
and Gi’s as

in (4.31).

5.5 Experimental Results

Figure 5.4 shows the regulated error of the motors ei. The servomotors track the

reference trajectory with a 4.7% tracking error, which is primarily caused by the

modeling uncertainty and the time delay in the network communication.

The results in Fig. 5.4 is compared to equivalent results obtained with the dis-

tributed control solutions in [41, 49, 51]. Let σ(t) = {1,2,4} to be the switching

sequence repeating uniformly over every T ∗ interval. The union of the associated

digraphs G1∪G2∪G4, as shown in Figure 5.5, satisfies the uniform connectivity of

leader node 0 to the rest of the nodes in each T ∗ interval, as prescribed for the solutions
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Figure 5.4: Tracking error(%) of the follower servomotors

in [41,49,51]. Under this connectivity requirement, a control solution to the output

regulation problem was offered in [41,49], in which w(t) was required to be completely

detectable from yi for some agent i in the digraph Gσ(t). This is clearly no longer true

from Figure 5.5 and (4.30). When the control algorithm from [41,49] is applied to the

agents in the current problem, the tracking error responses are as shown in Figure 5.6.

This figure shows that agents 1 and 3 can track the reference w1, while the tracking

error for agent 2 is significantly larger. This is because agent 2 is no longer updated on

the reference signal w1. Similar observations can be made for the disturbance signal

w3 in agents 1 and 3. The comparative analysis thus shows the uniqueness of our

control solution which solves the output regulation problem under the detectability

constraint, which is otherwise not possible to be solved by the results in [41,49].
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Figure 5.5: Joint comunication network G1∪G2∪G4 over a switching period T ∗

5.6 Conclusion

The theoretical results developed in former chapters were tested experimentally on the

position synchronization problem of networked motors under considered detectability

constraint and switching communication topology. By applying the proposed control

algorithm, it was observed that the tracking error for the follower servomotors incurs

a small error in comparison to the existing control methods. The experimental test

results also revealed the uniqueness of our proposed control solution by successfully

solving the output regulation problem under the relaxed detectability condition, which

is otherwise not possible to be solved by the existing control techniques in the literature.

As mentioned in the text, the tracking error resulted from the experiment was

caused mainly by the presence of time delay in the communication between servomotors.

To mitigate such effects, in our next chapter we develop a theory for distributed

estimation of exosystem states in the face of measurement and communication delays.
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Chapter 6

Distributed State Estimation by a

Network of Observers under

Communication and Measurement

Delays

In the last decade, the research on distributed sensing and estimation have received

considerable attention due to its wide range of applications in areas that include

electrical power systems [59], energy management [60,61], wide-area monitoring [62],

fault tolerant control [63], sensor networks, health care, military and surveillance

control [64]. To estimate and track the target state evolving from a dynamic process,

distributed Kalman filtering [65–67] and distributed observers [68–70] have been

studied extensively.

The objective of the distributed state estimation for a dynamic plant is to re-

construct the plant state vector by a network of observers using limited local plant

measurements and the communication shared between the observers. In contrast

to the decentralized estimation scheme [29, 30], where at least one observer must

84
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independently estimate the entire plant state vector and the estimation must then

propagated to the remaining observers through a consensus protocol, each observer

in the distributed observation framework receives only a portion of the plant output

measurement needed for the estimation of the system states. The limited plant output

information is not sufficient for independently reconstructing the entire state vector.

Instead, observers disseminate their local information over a communication network,

and collaborate to jointly synthesize an estimation of the plant dynamics. Under

the framework of the distributed observation problem, each observer can be viewed

as a follower agent, and the plant to be observed as the leader agent. The design

of distributed observers can then be regarded as a special case of a leader-follower

consensus problem, where each follower cannot independently reconstruct the leader’s

trajectory [2, 3, 53,71].

The design of distributed discrete LTI observers subject to a scalability constraint

was studied in [68], while [69] investigated the design of continuous LTI distributed

observers with a preassigned observer spectrum. In case of packet dropouts and abrupt

changes of the network topology over time, a hybrid observer comprising of a local

observer and a local parameter estimator was designed in [70].

In this work we study the distributed state estimation problem by a network of

observers under arbitrarily large communication and measurement delays. First, we

consider the case when the communication delay and measurement delay are equal,

and we construct a distributed solution following the low gain approach. Sufficient

conditions for the stability of the observation error dynamics, including an upper

bound for the low gain parameter, are found for arbitrary large delays. Next, we

extend our solution to the general case when the communication and measurement

delays are different, and we derive equivalent conditions for the convergence of the

observation error as in the initial simpler case. Finally, with the solution to the

distributed state estimation problem, we aim to solve a leader-follower synchronization
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problem for the case where leader trajectory cannot be independently estimated by

the followers. A version of the leader-follower synchronization problem with similar

estimation constraints appears in [2, 3, 71]. In contrast to these papers, this work

introduces latency in the measurements from the leader and the communication

between the followers. With the help of an illustrative example and a comparative

analysis, we demonstrate the effectiveness of our derived results.

The remainder of the chapter is organized in the following way. The problem

formulation and algebraic graph theoretic properties are briefly revisited in Section 6.1.

Next we derive the stability condition for the distributed observer dynamics coupled

with communication and measurement delays in Section 6.2. Under the presence of

noisy plant measurements, the distributed state estimation problem for the group of

observers is revisited in Section 6.3. In Section 6.4, we present the leader-follower

synchronization problem as an application to the studied distributed state estimation

problem. An illustrative example to verify the effectiveness of the proposed approach

is presented in Section 6.5. Lastly, conclusions are reported in Section 6.6.

Notations. We now briefly introduce some notations and symbols, which will be

used throughout the chapter. The Kronecker product of matrices is denoted by ⊗. A

vector 1N is a column vector in RN of all ones. Z+ is the set of all positive integers.

Iq and 0q respectively denote the identity matrix and zero matrix of dimension q× q.

Unless mentioned otherwise, for matrices Ai, i= 1,2, · · · ,N , Ā= col(A1,A2, · · · ,AN ) =[
AT

1 AT
2 · · · ,AT

N

]T
and A = blk diag(A1,A2, · · · ,AN ) represents a block diagonal

matrix with the ith block being Ai. For a non-zero vector x, and matrix X, ‖x‖,

and ‖X‖ respectively stand for the L2 norm for vectors and the spectral norm for

matrices. For a square matrix X , λi(X ) denotes the ith eigenvalue, while the minimum,

maximum and sum of eigenvalues are respectively denoted by λmin(X ), λmax(X ) and

Tr(X ). For the positive scalar τ , let C([−τ,0],Rm) denote the Banach space of all
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continuous functions mapping the interval [−τ,0] into Rm endowed with the supremum

norm.

6.1 Problem Formulation

Consider a continuous linear time-invariant plant with dynamics

ẇ = Sw, (6.1)

where w ∈ Rq. The output of the plant denoted by ym = col(ym1 ,ym2 , · · · ,ymN ) is

measured by a group of N distributed autonomous observers with an objective to

provide an asymptotic estimation of the plant state vector w(t). However, each of

these observers receives only a small part of the measurement signal ym(t), namely

ymi(t) ∈ Rpi for the ith observer defined as

ymi(t) = Cwiw(t− τ2), i= 1,2, · · · ,N, (6.2)

where τ2 denotes the measurement delay. These observers are connected with each

other through a communication network to jointly provide an estimation for w(t).

The observers along with the plant model in (6.1) can be viewed as a multi-agent

system with the plant being the leader agent and the observers being the followers.

6.1.1 Problem Statement

Let the connections between the plant (6.1) and the N distributed observers be

described by the graph G = (V ,E), V = {0,1,2, · · · ,N}. Under the multi-agent system

representation, the leader agent (6.1) is the zeroth node of V , while the follower agents

are the remaining N nodes. The dynamics of the distributed observers in the presence
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of communication and measurement delays are given as

η̇i = Sηi+µ
∑
j∈Ni

aije
τ1S(ηj(t− τ1)−ηi(t− τ1))

+µai0e
τ2SGiCwi (w(t−τ2)−ηi(t−τ2)) ,

(6.3)

where ηi is the state estimation by the ith observer, i= 1,2, · · · ,N , τ1 is the inter-agent

communication delay, and Gi and µ are respectively the observer gain and the low-gain

to be designed.

Suppose w(θ) =wθ ∈C([−τ,0],Rq), ηi(θ) = ηiθ ∈C([−τ,0],Rq), τ = max(τ1, τ2), and

denote the estimation error by η̃i = ηi−w, with η̃i(θ) = η̃iθ ∈ C([−τ,0],Rq), θ ∈ [−τ,0].

The estimation error dynamics obtained from (6.1) and (6.3) is given as

˙̃ηi = Sη̃i+µ
∑
j∈Ni

aije
τ1S(η̃j(t− τ1)− η̃i(t− τ1))−µai0eτ2SGiCwi η̃i(t− τ2). (6.4)

We consider that the assumptions 2.3.1, 2.3.4 hold. The condition in 2.3.4 is referred

to as the “combined detectability” property in [2, 3, 53]. An equivalent observability

condition appears in [46, 68–70]. As noted in [46, 68], the “source components” or

equivalently “active agents” in [71] of digraph G are responsible for estimating the

leader dynamics and disseminating that estimation to other passive followers in the

network. Due to this reason, in the current work we only take into account the

active observer agents with the connectivity requirement in Assumption 2.3.5 being

reinstated as follows:

Assumption 6.1.1. All N follower agents form a strongly connected partition of the

digraph G, and for at least one agent i ∈ {1,2, · · · ,N}, Cwi 6= 0.

Remark 6.1.1. The strongly connected partition of G in Assumption 6.1.1 can be

seen as a way for an observer agent i to collect information on modes that may not

be detectable by the pair (S,Cwi). In such case, Assumption 2.3.4 guarantees that
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information on such mode is indeed collected by some observer agents in the system,

and Assumption 6.1.1 provides a path for the information to travel to the i agent.

Now we are ready to define the problem statement as follows.

Definition 6.1.1. Distributed state estimation problem: Design observer gains Gi, i=

1,2, · · · ,N , and feedback gain µ such that the estimation error dynamics (6.4) is

exponentially stable, i.e., for given τ1, τ2 > 0 and η̃iθ ∈ C([−τ,0],Rq), limt→∞ η̃i(t) = 0

for i= 1,2, · · · ,N .

Before we present the main contributions of this work, we first establish the

following results, which will be used in the next section.

Proposition 1. Given the plant dynamics (6.1) with the state matrix S satisfying

Assumption 2.3.1, it holds that

e−S
Tte−St ≥ e−ωγ

∗tIq, (6.5)

for a positive scalar γ∗ = min{γ > 0 : Q = ST +S+γI > 0}, and ω = q−1.

Proof. Select a positive scalar γ∗ such that Q is positive definite. Then by using

Cholesky decomposition Q =WWT we obtain

ST +S−WWT =−γ∗Iq, (6.6)

and thus Lemma 1 of [72] yields that

eS
TteSt ≤ eωγ

∗tIq, ω = q−1. (6.7)

Since eωγ∗tIq− eS
TteSt ≥ 0, then

e−Ste−S
Tt ≥ e−ωγ

∗tIq. (6.8)
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By multiplying the left hand side of (6.8) by eSt and its right hand side by e−St we

obtain (6.5). This concludes the proof.

Lemma 6.1.2. For any positive semi-definite matrix M0 ≥ 0, two scalars γ1 and γ2

with γ2 ≥ γ1, and a vector valued function ω : [γ1,γ2]→ Rn, the inequality

(∫ γ2

γ1
ωT(β) dβ

)
M0

(∫ γ2

γ1
ω(β) dβ

)
≤ (γ2−γ1)

∫ γ2

γ1
ωT(β) M0 ω(β) dβ (6.9)

holds if the integrals are well defined.

Proof. A version of this lemma appears in [72–75], where M0 was considered to be

strictly positive definite. Here we extend the result to semi-definite matrices.

For a real symmetric matrix M0, it can be orthogonally decomposed as M0 =

JDM0J−1 where JT = J−1, and DM0 is a real diagonal matrix with all diagonal

elements being the eigenvalues of M0. Then the integral on the right hand side of

(6.9) yields the following form

(γ2−γ1)
∫ γ2

γ1
ωT(β)M0ω(β)dβ = (γ2−γ1)

∫ γ2

γ1
ωT(β)JDM0J

Tω(β)dβ,

= (γ2−γ1)
∫ γ2

γ1
ωT (β)DM0ω(β)dβ, (6.10)

where ω(β) = JTω(β), DM0 = blk diag(λ1,λ2, · · · ,λn). Suppose M0 has r non-zero

eigenvalues, i.e., with no loss of generality let λi = 0, i = r+ 1, r+ 2, · · · ,n and

ω(β) = col(ω1(β),ω2(β), · · · ,ωn(β)). Then by virtue of the result in [75], the integral

expression in (6.10) reduces to the form

(γ2−γ1)
∫ γ2

γ1
ωT(β)M0ω(β)dβ = (γ2−γ1)

∫ γ2

γ1

r∑
i=1

[
λiω

T
i (β)ωi(β)

]
dβ,

=
r∑
i=1

λi

[
(γ2−γ1)

∫ γ2

γ1
ωT
i (β)ωi(β)dβ

]
≥

r∑
i=1

λi

(∫ γ2

γ1
ωT
i (β)dβ

)(∫ γ2

γ1
ωi(β)dβ

)
,

=
n∑
i=1

λi

(∫ γ2

γ1
ωT
i (β)dβ

)(∫ γ2

γ1
ωi(β)dβ

)
=
[∫ γ2

γ1
ωT(β)dβ

]
DM0

[∫ γ2

γ1
ω(β)dβ

]
,
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=
[∫ γ2

γ1
ωT(β)dβ

]
JDM0J

T
[∫ γ2

γ1
ω(β)dβ

]

=
[∫ γ2

γ1
ωT(β)dβ

]
M0

[∫ γ2

γ1
ω(β)dβ

]
. (6.11)

This concludes the proof for this lemma.

Next, we present the Lyapunov-Krasovskii stability theorem which will be frequently

used in deriving the stability of the estimation error dynamics (6.4).

Theorem 6.1.3. Lyapunov-Krasovskii Stability Theorem [76]: Consider the system

˙̃η = f(t, η̃(t+ θ)), θ ∈ [−τ,0], (6.12)

where f ∈ R×C[−τ,0]→ RNq maps R× (bounded sets in C[−τ,0]) into bounded sets

of RNq. Suppose that u,v,w : R+→R+ are continuous non-decreasing functions, u(s),

and v(s) are positive for s > 0, and u(0) = v(0) = 0. The trivial solution of the system

(6.12) is uniformly stable if there exists a continuous functional V : R×C[−τ,0]→R+,

which is positive-definite, i.e.

u(|η̃(t)|)≤ V(t, η̃(θ))≤ v(‖η̃(θ)‖C), θ ∈ [−τ,0], (6.13)

and such that its derivative along the system trajectory (6.12) is non-positive in the

sense that

V̇(t, η̃(θ))≤−w(|η̃(t)|). (6.14)

If w(s)> 0 for s > 0, then the trivial solution is uniformly asymptotically stable. If in

addition lims→∞u(s) =∞, then it is globally asymptotically stable.
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6.2 Main Result

In this section, we will present the stability results for the estimation error dynamics

in (6.4), which will eventually lead to the design of observer gains Gi and low gain

parameter µ. The current work also provides an upper bound for µ to ensure stability

of the error dynamics.

To demonstrate the convergence of the estimation error dynamics (6.4) with

communication and measurement delays τ1 and τ2, first we evaluate the boundedness

of the response for t≤ τ̄ , before the delayed measurements are available for feedback

correction. After the boundedness of the initial response is established, we then

proceed to evaluate the asymptotic stability of η̃(t), for t ≥ τ̄ . For the first part,

we will check the boundedness of η̃(t), ∀t ∈ [0, τ̄ ], driven by the initial conditions

η̃(θ) for θ ∈ [−τ̄,0]. With no loss of generality, we assume that τ̄ = m
¯
τ+ ∈ where

m ∈ Z+,∈<
¯
τ . In a step-by-step manner we will evaluate the bounds of η̃(t) across

each such sub-intervals.

From (6.4) we obtain

η̃(t)=
(
IN⊗eSt

)
η̃(0)−µ

∫ t

0
IN⊗eS(t−s+τ2)GCwη̃(s−τ2)ds

−µ
∫ t

0
IN⊗eS(t−s+τ1)(L⊗Iq)η̃(s−τ1)ds,∀t <

¯
τ

‖η̃‖≤‖eSt‖‖η̃(0)‖+µ
∫ t

0
‖e(t−s+τ2)S‖√σG‖η̃(s− τ2)‖ds

+µ
∫ t

0
‖e(t−s+τ1)S‖√σL‖η̃(s− τ1)‖ds,

≤ max
θ∈[0,

¯
τ ]

(
‖eSθ‖+µ

¯
τ
(
‖eS(τ2+θ)‖√σG

+‖eS(τ1+θ)‖√σL
))
‖η̃‖C , (6.15)

where ‖η̃‖C = maxθ∈[−τ̄,0] ‖η̃(θ)‖. It follows that η̃(t), ∀t ∈ [0,
¯
τ ] is bounded as η̃ ∈

C([−τ,0],RNq).
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For the subsequent intervals with t >
¯
τ , we obtain from (6.4),

η̃(t) =
(
IN ⊗ eS¯

τ
)
η̃(t−

¯
τ)−µ

∫ t

t−
¯
τ
(π1(s) +π2(s))ds, (6.16)

where π1 = IN⊗eS(t−s+τ2)GCwη̃(s−τ2)ds, π2 = IN⊗eS(t−s+τ1)(L⊗Iq)η̃(s−τ1)ds. Since

η̃(t), t ∈ [0,
¯
τ ] and η̃(θ),∀θ ∈ [−

¯
τ,0] are bounded, it follows from (6.16) that η̃(t), ∀t ∈

[
¯
τ,2

¯
τ ] is bounded.

In a similar manner, we can evaluate ‖η̃(t)‖, ∀t ∈ [j
¯
τ,(j+1)

¯
τ ], j ≥ 2, and by using

the method of induction we can show η̃(t) is bounded for t ∈ [0,m
¯
τ ]. Again for t≥m

¯
τ ,

from (6.4) it yields

η̃(t) =
(
IN ⊗ eSm¯

τ
)
η̃(t−m

¯
τ)−µ

∫ t

t−µ
¯
τ
(π1(s) +π2(s))ds,

which also implies that η̃(t), ∀t ∈ [0, τ̄ ] is bounded as η̃(θ),∀θ ∈ [−τ̄,0] and η̃(t),∀t ∈

[0,m
¯
τ ] are bounded.

Since we obtained that η̃(t) is bounded ∀t∈ [0, τ̄ ], we now need to show the stability

of the error dynamics (6.4) for t≥ τ̄ .

6.2.1 Case 1: τ1 = τ2

First we consider the case when τ1 = τ2 = τ . As η̃(t) is shown to be bounded for

∀t ∈ [0, τ ], in the following discussion we then proceed to show the asymptotic stability

of η̃(t) for t > τ . Let η̃ = col(η̃1, η̃2, · · · , η̃N ) and thus the composite error vector η̃

evolves as follows

˙̃η = (IN ⊗S)η̃−µ
(
eτ(IN⊗S)GCw

)
η̃(t− τ)−µ

(
L⊗ eτS

)
η̃(t− τ), (6.17)

where L ∈ RN×N is the Laplacian matrix corresponding to the strongly connected

partition of the network of N observer agents, G = blk diag(G1,G2, · · · ,GN ), and
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Cw = blk diag(Cw1 ,Cw2 , · · · ,CwN ). From (6.17), we obtain η̃(t) as

η̃(t) = e(IN⊗S)τ η̃(t− τ)−µ(π1(t) +π2(t)), (6.18)

where
π1(t) =

∫ t

t−τ
e(IN⊗S)(t−s)

(
L⊗ eτS

)
η̃(s− τ) ds,

π2(t) =
∫ t

t−τ
e(IN⊗S)(t−s+τ)GCw η̃(s− τ)ds.

(6.19)

The substitution of η̃(t− τ) from (6.18) into (6.17) results in

˙̃η =
(
IN ⊗ eτS

)
M
(
IN ⊗ e−τS

)
η̃−µ2

(
L⊗ eτS + (IN ⊗ eτS)GCw

)
(π∗1 +π∗2), (6.20)

where
M = [(IN⊗S)−µ(L⊗Iq)−µGCw] ,

π∗1(t) =
(
IN ⊗ e−τS

)
π1(t), π∗2(t) =

(
IN ⊗ e−τS

)
π2(t).

Let us now introduce some notations which will be used throughout this section.

Denote C̄w = col(Cw1 ,Cw2 , · · · ,CwN ), σG = ‖GCw‖2, σL = ‖L‖2, G = [G′1 G′2 · · · G′N ],

G′i = ζiGi where ζi is the ith entry of the left eigenvector ζ = [ζ1 ζ2 · · · ζN ]T of L

corresponding to zero eigenvalue. Without loss of generality, let ∑i ζi = 1. Note

that for the Laplacian matrix L of a strongly connected communication network, the

results in [46,77] states that the positive-definite diagonal matrix Σ = diag(ζ) makes

L̂ = ΣL+LTΣ positive semi-definite. Additionally, L̂ has zero row sum and zero

column sum, and thus it can be viewed as the Laplacian matrix of an undirected

communication network.

To analyze the stability of (6.17), we construct a Lyapunov function of the form

V (η̃) = η̃T(t)
(

Σ⊗ e−τST
Pe−τS

)
η̃(t) where P is a positive definite matrix. Since the

matrix
(

Σ⊗e−τST
Pe−τS

)
is symmetric and have all positive eigenvalues, V (η̃) >
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0, ∀η̃ 6= 0. By differentiating V (η̃) along the trajectories of (6.20), we obtain

V̇ (η̃) = η̃T
d

[
MT (Σ⊗P ) + (Σ⊗P )M

]
η̃d

−2µ2
(
π∗

T
1 +π∗

T
2

)(
LT⊗ Iq

)(
Σ⊗Pe−τS

)
η̃

−2µ2
(
π∗

T
1 +π∗

T
2

)
CT
wG

T
(
Σ⊗Pe−τS

)
η̃,

≤ V̇0 + 4µ2V +µ2
2∑
i

π∗
T
i

[
LTΣL⊗P +CT

wG
T (Σ⊗P )GCw

]
π∗i ,

(6.21)

where V0 =
∫ t
0 η̃

T
d (s)

[
MT (Σ⊗P ) + (Σ⊗P )M

]
η̃d(s) ds, η̃d(t) =

(
IN ⊗ e−τS

)
η̃(t). We

consider the following Lemma to evaluate (6.21).

Lemma 6.2.1. Consider the distributed observers (6.17) satisfying Assumptions 2.3.1-

6.1.1, and gains Gi selected such that the matrix R= S−µGC̄w is a Hurwitz matrix

for any µ ∈ (0,1). Let then P ∈ Rq×q > 0 be a solution to the inequality

RTP +PR< 0, (6.22)

such that the matrix P (S−µGiCwi) + (S−µGiCwi)TP has non-positive eigenvalues

for all follower agents i. Then for the identical communication and measurement

delays τ1 = τ2 = τ the observer states ηi(t) converges to w(t) asymptotically, i.e.,

lim
t→∞

(ηi(t)−w(t)) = 0, i= 1,2, · · · ,N,

if the low gain parameter µ satisfies µ < µ̄, where

µ̄=
√√√√ α

λmax(P ) ζmax
(
4εd+ τ2 (σL+σG)2 e2ωγ∗τ

) , (6.23)

with α > 0 such that MT(Σ⊗P ) + (Σ⊗P )M <−αI and εd = ‖e−τS‖2eωγ∗τ .
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Proof. Let G satisfy Assumption 6.1.1 with at least one agent being the child node of

the leader. Now, we evaluate the first term on the right-hand side of the inequality in

(6.21). In this regard, we have

V̇0 = η̃T
d

[
MT (Σ⊗P ) + (Σ⊗P )M

]
η̃d,

= η̃T
d

[
Σ⊗ (STP +PS)−µCT

wG
T(Σ⊗P )−µ(Σ⊗P )GCw−µ(L̂⊗ Iq)

]
η̃d. (6.24)

It is inferred from Assumption 6.1.1 that the matrix (L̂⊗ Iq) is positive semi-definite,

and the lemma assumes that P (S − µGiCwi) + (S − µGiCwi)TP is negative semi-

definite. These assumptions then yield that V̇0 ≤ 0. We will now investigate the

invariant set of η̃d on which V̇0 = 0. Assumption 6.1.1 yields L̂ has zero row sum,

and thus the term −µη̃T
d

(
L̂⊗ Iq

)
η̃d in (6.24) becomes zero non-trivially only when

η̃d = 1N ⊗ η̃f , for any η̃f ∈ Rq. Replacing this η̃d into (6.24) then yields that

V̇0 = η̃f
[
RTP +PR

]
η̃f < 0. (6.25)

Therefore,

V̇0 = η̃T
d

(
MT(Σ⊗P ) + (Σ⊗P )M

)
η̃d < 0,

must be true for any non-zero η̃d, and V̇0 = 0 only when η̃d = 0.

Because η̃T
d

(
MT(Σ⊗P ) + (Σ⊗P )M

)
η̃d is continuous and finite over µ ∈ (0,1),

there must exist a positive scalar α > 0 such that

η̃T
d

(
MT(Σ⊗P ) + (Σ⊗P )M

)
η̃d <−α‖η̃d‖2.

It is then inferred from Proposition 1 that the following holds,

V̇0 <−αe−ωγ
∗τ‖η̃‖2. (6.26)
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Substituting (6.24), (6.26) into (6.21) then yields

V̇ (η̃)≤−αe−ωγ
∗τ‖η̃‖2 + 4µ2V +µ2π∗

T
1
(
LTΣL⊗P

)
π∗1

+µ2π∗
T

2
(
LTΣL⊗P

)
π∗2+µ2π∗

T
1 CT

wG
T (Σ⊗P )GCwπ∗1

+µ2π∗
T

2 CT
wG

T (Σ⊗P )GCwπ∗2. (6.27)

Now each of the terms in (6.27) are evaluated separately as follows. By virtue of

Lemma 6.1.2, π∗T1
(
LTΣL⊗P

)
π∗1 can be rewritten as

π∗
T

1
(
LTΣL⊗P

)
π∗1

=
[∫ t

t−τ
η̃T(s− τ)

(
LT⊗eS

T(t−s)
)
ds

][
LTΣL⊗P

]
[∫ t

t−τ

(
L⊗ eS(t−s)

)
η̃(s− τ)ds

]
,

≤ τ
∫ t

t−τ
η̃T(s− τ)

(
LT⊗ eS

T(t−s)
)(
LTΣL⊗P

)
(
L⊗ eS(t−s)

)
η̃(s− τ)ds,

≤ τζmaxλmax(P )σ2
L

∫ t

t−τ
η̃T(s− τ)[

IN ⊗ eS
T(t−s)eS(t−s)

]
η̃(s− τ) ds. (6.28)

By using the results of Proposition 1 and the inequality in (6.5), Equation (6.28)

reduces to

π∗
T

1
(
LTΣL⊗P

)
π∗1 ≤ τζmaxλmax(P )σ2

L

∫ t

t−τ
eωγ

∗(t−s)η̃T(s− τ)η̃(s− τ)ds,

≤ τζmaxλmax(P )σ2
L e

ωγ∗τ
∫ t−τ

t−2τ
η̃T(s)η̃(s)ds,

= τζmaxλmax(P )σ2
L e

ωγ∗τ
[
τ η̃T(t)η̃− V̇1

]
, (6.29)
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where V1 =
∫ 2τ
τ

∫ t
t−s η̃

T(σ)η̃(σ)dσ ds. Similarly for π∗T2
(
LTΣL⊗P

)
π∗2(t) in (6.27),

we obtain

π∗
T

2
(
LTΣL⊗P

)
π∗2(t)≤ τζmaxλmax(P )σLσG eωγ

∗τ
[
τ‖η̃‖2− V̇1

]
. (6.30)

On the same note, the evaluation of π∗T1 CT
wG

T (Σ⊗P )GCwπ∗1 in (6.27) yields the

same bound as in (6.30). Lastly π∗T2 CT
wG

T (Σ⊗P )GCwπ∗2 is evaluated as follows

π∗
T

2 CT
wG

T (Σ⊗P )GCwπ∗2 ≤ τζmaxλmax(P )σ2
G eωγ

∗τ
[
τ‖η̃‖2− V̇1

]
. (6.31)

Define a new Lyapunov function Vφ as

Vφ = V +µ2τeωγ
∗τζmaxλmax(P )(σL+σG)2V1

for the system (6.17), which is positive definite since V > 0. The substitution of the

results of (6.29)-(6.31) into (6.27) yields

V̇φ ≤−αe−ωγ
∗τ‖η̃‖2 + 4µ2V +µ2τ2eωγ

∗τζmaxλmax(P )(σL+σG)2 ‖η̃‖2, (6.32)

where V ≤ ζmaxλmax(P )‖e−τS‖2‖η̃‖2. As a result, we obtain from (6.32)

V̇φ ≤
(
−αe−ωγ

∗τ + 4λmax(P )µ2ζmax‖e−τS‖2

+λmax(P )µ2τ2ζmaxe
ωγ∗τ (σL+σG)2

)
‖η̃‖2 < 0, (6.33)

for all µ bounded by

µ̄=
√√√√ α

λmax(P ) ζmax
(
4εd+ τ2 (σL+σG)2 e2ωγ∗τ

) .



6.2 Main Result 99

Finally, from Theorem 6.1.3 and Vφ we obtain that (6.4) is stable and limt→∞ η̃(t) = 0.

This concludes the proof.

Remark 6.2.1. Assumption 2.3.4 guarantees the existence of a matrix G so that

R in Lemma 6.2.1 is Hurwitz. While the conditions of Lemma 6.2.1 allows for any

such G that makes R Hurwitz, the selection of the equivalent observer gain in [46] is

limited to the solution of a parametric Riccati equation. Furthermore, any observer

gain G obtained from the solution to the parametric Riccati equation in [46] will result

in a Hurwitz matrix R, but the opposite may not necessarily hold.

Remark 6.2.2. Let us consider the case where the state matrix S in (2.3.1) has all

semi-simple eigenvalues on the imaginary axis. Then S be transformed into a block-

diagonal real Jordan form, with each block having a structure

 0 l

−l 0

 corresponding to

the eigenvalue pair 0± jl. Such S matrix can be found to be a normal matrix and thus

unitarily diagonalizable, i.e., S = UDSU
−1, SH = UDH

S U
−1, where U is a unitary

matrix. This also implies that ST +S = SH +S = U(DS +DH
S )U−1 = 0, and as a

result eS+ST = Iq. Thus, eSTteSt in the computation for (6.27) can be replaced by Iq

instead of the bound in (6.7), and the low gain bound in (6.23) reduces to

µ̄=
√

α

λmax(P ) ζmax(4 + τ2 (σL+σG)2) .

6.2.2 Case 2: τ1 6= τ2

We now consider the case when the measurement delays and inter-agent communication

delays are not the same, i.e., τ1 6= τ2. The composite estimation error dynamics is

then obtained as

˙̃η = (IN ⊗S)η̃−µ
(
e(IN⊗τ2S)GCw

)
η̃(t− τ2)−µ

(
L⊗ eτ1S

)
η̃(t− τ1), t > 0, (6.34)
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with the initial conditions η̃(θ) = η̃(θ), η̃ ∈ C([−τ̄,0],RNq),∀θ ∈ [−τ̄,0]. Since we

obtained that η̃(t) is bounded for t ∈ [0, τ̄ ], we now need to show the stability of the

closed-loop system (6.34) for t≥ τ̄ . In this regard, from (6.34) we evaluate η̃(t− τ1)

and η̃(t− τ2) as

η̃(t− τ1) = e−(IN⊗Sτ1)η̃(t) +µ(π∗1 +π∗2), (6.35)

η̃(t− τ2) = e−(IN⊗Sτ2)η̃(t) +µ(π∗3 +π∗4), (6.36)

where
π∗1 =

∫ t

t−τ1
e(IN⊗S)(t−s)(L⊗ Iq)η̃(s− τ1) ds,

π∗2 =
∫ t

t−τ1
e(IN⊗S)(t−s)

(
IN⊗e(τ2−τ1)S

)
GCwη̃(s−τ2) ds,

π∗3 =
∫ t

t−τ2
e(IN⊗S)(t−s)(L⊗ e(τ1−τ2)S)η̃(s− τ1) ds,

π∗4 =
∫ t

t−τ2
e(IN⊗S)(t−s)GCwη̃(s− τ2) ds.

By substituting (6.35) and (6.36) in (6.34), we obtain

˙̃η =
(
IN ⊗ eτ2S

)
M
(
IN ⊗ e−τ2S

)
η̃(t)−µ2 (π1 +π2 +π3 +π4) , (6.37)

where πi =
(
L⊗ eτ1S

)
π∗i , i= 1,2, πj =

(
IN ⊗ eτ2S

)
GCwπ

∗
j , j = 3,4.

To analyze the stability of (6.37), we consider a Lyapunov function of the form

V(η̃) = η̃T(Σ⊗ e−τ2S
T
Pe−τ2S)η̃,

where P is a positive definite matrix as in Lemma 6.2.1. Denote η̃d = (IN ⊗e−τ2S)η̃(t)

and thus by differentiating V along the trajectory of (6.37) we obtain

V̇(η̃) = η̃T
d
[
MT(Σ⊗P ) + (Σ⊗P )M

]
η̃d−2µ2(πT

1 +πT
2 )(Σ⊗ e−τ2S

T
Pe−τ2S)η̃

−2µ2
(
πT

3 +πT
4
)

(Σ⊗ e−τ2S
T
Pe−τ2S)η̃,
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≤−αe−ωγ
∗τ2‖η̃‖2 + 4µ2V(η̃) +µ2

2∑
i=1
π∗

T
i

(
LTΣL⊗ e(τ1−τ2)ST

Pe(τ1−τ2)S
)
π∗i

+µ2
4∑
i=3
π∗

T
i CT

wG
T (Σ⊗P )GCwπ∗i . (6.38)

In a similar manner to the proof of Lemma 6.2.1, we evaluate each term on the

right-hand side of the inequality (6.38) separately. From the second term in (6.38),

we obtain

µ2π∗
T

1

(
LTΣL⊗ e(τ1−τ2)ST

Pe(τ1−τ2)S
)
π∗1

≤ λmax(P )µ2τ1ζmaxσ
2
Le

ωγ∗(2∗τ1−τ2)
[
τ1‖η̃‖2−V̇1

]
, (6.39)

where V1 =
∫ 2τ1
τ1

∫ t
t−s η̃

T(σ)η̃(σ)dσ ds. Similarly, by evaluating the third term in

(6.38), we obtain

µ2π∗
T

2

(
LTΣL⊗ e(τ1−τ2)ST

Pe(τ1−τ2)S
)
π∗2

≤ λmax(P )µ2τ1ζmaxσLσGe
ωγ∗τ1

[
τ1‖η̃‖2−V̇2

]
, (6.40)

where V2 =
∫ τ1+τ2
τ2

∫ t
t−s η̃

T(σ)η̃(σ)dσ ds. Next from µ2π∗
T

3 CT
wG

T (Σ⊗P )GCwπ∗3 in

(6.38) we obtain,

µ2π∗
T

3 CT
wG

T (Σ⊗P )GCwπ∗3

≤ λmax(P )µ2τ2ζmaxe
ωγ∗τ1σGσL

[
τ2‖η̃‖2− V̇3

]
, (6.41)

where V3 =
∫ τ1+τ2
τ1

∫ t
t−s η̃

T(σ)η̃(σ)dσ ds. Lastly µ2π∗
T

4 CT
wG

T (Σ⊗P )GCwπ∗4 in (6.38)

is evaluated to yield the following upper bound

µ2π∗
T

4 CT
wG

T (Σ⊗P )GCwπ∗4

≤ λmax(P )µ2τ2ζmaxσ
2
Ge

ωγ∗τ2
[
τ2‖η̃‖2− V̇4

]
, (6.42)
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with V4 =
∫ 2τ2
τ2

∫ t
t−s η̃

T(σ)η̃(σ)dσ ds. Now we introduce the following lemma to prove

the asymptotic convergence of η̃(t) in (6.34).

Lemma 6.2.2. Consider the distributed observers (6.34) satisfying Assumptions 2.3.1-

6.1.1, and Gi and P selected from the conditions in Lemma 6.2.1 for any µ ∈ (0,1).

Then for the non-identical communication and measurement delays τ1 6= τ2, the observer

states ηi(t) converges to w(t) asymptotically, i.e.,

lim
t→∞

(ηi(t)−w(t)) = 0, i= 1,2, · · · ,N,

if the low gain parameter µ satisfies µ < µ̄, with

µ̄=
√

α

λmax(P )ζmax(4εd+c1c2) , εd = eωγ
∗τ2‖e−τ2S‖2, (6.43)

where c1 = σGe
ωγ∗τ2 +σLe

ωγ∗τ1, and

c2 = τ2
1σLe

ωγ∗τ1 +τ2
2σGe

ωγ∗τ2.

Proof. We define a new Lyapunov function Vφ as

Vφ = V+λmax(P )µ2ζmax
(
τ1σ

2
Le

ωγ∗(2τ1−τ2)V1

+ σLσGe
ωγ∗τ1(τ1V2 + τ2V3) + τ2σ

2
Ge

ωγ∗τ2V4
)
, (6.44)

where V ≤ λmax(P ) ζmax‖e−τ2S‖2‖η̃‖2. Since V > 0, the Lyapunov function Vφ is

also positive. Then by substituting the results from (6.39), (6.40), (6.41) and (6.42)

into (6.38), we obtain

V̇φ ≤
[
−αe−ωγ

∗τ2 + 4λmax(P )µ2ζmax‖e−τ2S‖2

+λmax(P )µ2ζmax
(
τ2
1σ

2
Le

2ωγ∗(2τ1−τ2) + τ2
2σ

2
Ge

ωγ∗τ2

+(τ2
1 + τ2

2 )σLσGeωγ
∗τ1
)]
‖η̃‖2 < 0, (6.45)
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for µ < µ̄ with µ̄ in (6.43). Therefore, by Theorem 6.1.3 and Vφ, limt→∞ η̃i(t) =

0, i= 1,2, · · · ,N . This concludes the proof.

In case when τ1 = τ2 = τ , then c1 = eωγ
∗τ (σG+σL) and µ̄ reduces to µ̄ in (6.23).

On the other hand, if S has all semi-simple eigenvalues on the imaginary axis, then by

using Remark 6.2.2 and Lemma 6.2.2 we obtain the bound on the low gain parameter

µ as

µ̄=
√√√√ α

λmaxζmax
(
4 + (σL+σG)(τ2

1σL+τ2
2σG)

) . (6.46)

6.3 Distributed State Estimation Problem under

Noisy Plant Measurements

In the previous discussions, we considered the distributed state estimation problem

for an accurately known plant model by a network of observers. However, in reality,

the plant model may incorporate some uncertainties in the dynamics and so is the

information received by the observers. In such cases, the local estimation errors

between adjacent agents may not converge to zero. Based on the vector dissipativity

property of uncertain systems, in [78, 79] authors designed a group of H∞ robust

filters by solving some LMI conditions. For a stochastic uncertain plant model with

the plant measurements by the distributed sensors being subject to bounded external

disturbances, an event-triggered robust distributed state estimators was addressed

in [80]. However, the results in [78–80] do not account for the communication delay in

the network.

In this section, we assume that the plant measurements received by the observers

are subject to bounded external disturbances, and the incoming measurement signal

ymi to each observer agent i ∈ 1,2 · · · ,N in (6.2) is rewritten as

ymi = Cwiw(t− τ2) + ξi(t), (6.47)
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where ξi(t) is any measurable, essentially bounded function over [0,∞). For non-

identical communication and measurement delays, the distributed estimation error

dynamics under the redefined plant measurements (6.47) becomes

˙̃η = (IN ⊗S)η̃−µ
(
IN ⊗ eτ2SGCw

)
η̃(t− τ2)

−µ
(
L⊗ eτ1S

)
η̃(t− τ1) +µ

(
IN ⊗ eτ2S

)
GCwξ, (6.48)

where ξ = col(ξ1, ξ2, · · · , ξN ). By defining M0 = (IN ⊗S),M1 = −µ
(
IN ⊗ eτ2SGCw

)
,

M2 =−µ
(
L⊗ eτ1S

)
η̃(t− τ1) we can rewrite (6.48) in the form as

˙̃η =M0η̃+
2∑
i=1

Miη̃(t− τi)−M1ξ, (6.49)

with initial conditions η̃(θ) = η̃(θ), ∀θ ∈ [−τ̄,0]. Since the unforced estimation error

dynamics (ξ = 0) was shown to be asymptotically stable by a suitable selection of

observer gains Gi and low gain parameter µ following the conditions in Lemma 6.2.2,

Proposition 2.5 from [81] then determines that the error dynamics (6.49) is also input-

to-state stable (ISS). In other words, there exists a KL function β0 and K function β1

such that

‖η̃(t)‖ ≤ β0(‖η̃‖∞, t) +β1(‖ξ‖∞), (6.50)

where ‖ξ‖∞ = supt≥0 ‖ξ(t)‖.

For the input-to-state stable error dynamics and the bound in (6.50), using the

results in [24] yields that

sup
t∈[0,∞)

‖η̃(t)‖ ≤ β1

 sup
t∈[0,∞)

‖ξ(t)‖
 .
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Furthermore, from the results of [24,81], the solution to (6.49) for t > τ̄ can be bounded

as follows

‖η̃(t)‖ ≤ α1e
−σ1(t−τ̄)

√
(1 + τ̄)‖η̃‖∞+

∫ t

τ̄
α1e
−σ1(t−s)‖M1‖‖ξ(s)‖ ds,

≤ α1

∫ t

τ̄
e−σ1(t−s)‖M1‖‖ξ(s)‖ ds, (6.51)

where α1 and σ1 are real positive scalars. The bound in (6.51) represents the β0 and β1

functions introduced in (6.50). Finally, for the special case of a decaying disturbance

limt→∞ ξ(t) = 0, from [24] we find that limt→∞ η̃(t) = 0.

6.4 Application to a Leader-Follower Synchroniza-

tion Problem

In this section, we present a leader-follower synchronization problem under network

latency, and a detectability constraint that none of the followers can independently

reconstruct the leader dynamics from its measurements. Due to the presence of

time delays in the measurement and communication between followers, the results

from [2,3,71] are not applicable. Thus, with the proposed results from the distributed

state estimation problem studied in this work, we proceed to tackle the leader-follower

synchronization problem in face of measurement and network latency.

To study this problem, let us first consider N heterogeneous follower agents with

the dynamics

ẋi = Aixi+Biui, (6.52)

where xi ∈ Rni ,ui ∈ Rmi are respectively the state vector and control input for the

agent i. The distributed control problem then consists for all agents to synchronize
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their states to a leader, given as (6.1), by regulating the error signal ei ∈ Rpi ,

ei = Cixi−Fiw, i= 1,2, · · · ,N. (6.53)

It is assumed that ei is not available as a measurement for control, but follower agents

collect delayed leader measurements ymi ∈ Rpi

ymi = Cwiw(t− τ2). (6.54)

It is also assumed that the follower agents are connected under a communication

network described by the digraph G, and inter-agent communications are subject

to the communication delay τ1. The objective of this synchronization problem is

to design a distributed control law ui(t) such that the regulated error signals ei(t)

asymptotically converge to zero.

As noted in [23, 29, 30], the solvability of the synchronization problem requires

Assumption 2.3.2 and an additional assumption stated as follows.

Assumption 6.4.1. There exists a unique solution pair (Xi,Ui) to the linear regulator

equations, given below.
XiS = AiXi+BiUi,

0 = CiXi−Fi.
(6.55)

Given that the Assumptions 2.3.1-6.4.1 hold, the distributed state feedback control

law ui takes the form [2]

ui =K1ixi+K2iηi, (6.56)

where ηi(t) is the distributed observer state with the dynamics given in (6.3). The

controller gains K1i ,K2i are selected such a way that (Ai+BiK1i) is Hurwitz and

K2i = Ui−K1iXi. Since limt→∞ ηi(t) = w(t) by Lemma 6.2.2, the control solution
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to the aforementioned synchronization problem can be summarized in the following

theorem.

Theorem 6.4.1. Given the leader (6.1), N followers (6.52), and the digraph G, the

distributed control law ui in (6.56) solves the leader-follower synchronization problem

if the sufficient conditions of Lemma 6.2.2 are satisfied.

The proof of Theorem 6.4.1 follows similar procedure as in [2], with the results of

Lemma 6.2.2 to guarantee the stability of the leader state estimation error dynamics.

Under the constraint that (S,Cwi) is not detectable for any i= 1,2, · · · ,N , the control

solution (6.56), based on the proposed observation protocol (6.3) is unique in a sense

that it can solve the output regulation problem for multi-agent system while the

comparable results in [24,25,29,30,49,82] do not, even with the Assumptions 2.3.1,

2.3.2, 6.4.1, 2.3.4, and 6.1.1 being put in place.

6.5 Illustrative Example

In this section we consider an illustrative example to evaluate the effectiveness of our

proposed algorithm. Let the plant (6.1) have state vector w =
[
w1 w2 w3 w4

]T

and state matrix

S=blk diag(S1,S2),S1 =

0 −1

1 0

 ,S2 =

0 −2

2 0

 . (6.57)

The measured output matrices Cwi , i= 1,2,3, are given as follows:

Cw1 =
[
I2 02

]
, Cw2 =

[
02 I2

]
, Cw3 = 02×4,

from which we verify that none of the pairs (S,Cwi), i= 1,2,3, are detectable. Instead,

the combined detectability property in Assumption 2.3.4 is satisfied for the given Cwi .
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Clearly, the follower agent 1 can directly receive the signal
[
w1 w2

]T
from the plant

measurement ym1(t), while agent 2 receives the signal
[
w3 w4

]T
.

Figure 6.1: Communication network G for the observer agents 1,2,3

The communication network between the observers is represented by the digraph

G satisfying Assumption 6.1.1, as illustrated in Figure 6.1, with the Laplacian matrix

L given as follows

L=


1 −1 0

0 1 −1

−1 0 1

 .

The strongly connected partition of G in Figure 6.1 allows the exchange of estimated

states between agents, and complements for the incomplete measurements that each

agent receives from the plant. Even though a single observer cannot independently

reconstruct the exosystem state vector w(t), the strongly connected communication

network between the observer agents enables them to jointly synthesize an estimate of

the plant state.

We first consider the case when measurement delays and inter-agent communication

delays are the same, and let τ = 1.2. Given the Laplacian matrix L, we find ζi = 1/3 =



6.5 Illustrative Example 109

ζmax, i= 1,2,3. Next, we select the observer gains as

G1 =
[
I2 02

]T
,G2 =

[
02 I2

]T
,G3 = 04×2 (6.58)

such that the matrix

R= blk diag


−µ/3 −1

1 −µ/3

 ,
−µ/3 −2

2 −µ/3




in (6.22) is Hurwitz with the eigenvalues located at −µ/3± j,−µ/3± 2j. We note

here that RT +R = −2µ
3 I and RRT =RTR. Next, from the Lyapunov equation

RTP +PR=−µI, we find the solution P as

P =
∫ ∞

0
eR

TseRs ds=
∫ ∞

0
eR

T+Rs ds= 1.5I.

We also verify that the matrices (S−µGiCwi)TP +P (S−µGiCwi), i= 1,2 has eigen-

values at −3,−3,0,0 and (S−µG3Cw3)TP +P (S−µG3Cw3) = 0. Thus P satisfies

the LMI conditions in Lemma 6.2.1. Next, by substituting P in (6.26), we find that

MT(Σ⊗P ) + (Σ⊗P )M < −0.2µ. Then by using (6.33) directly, we find a tighter

bound on µ in comparison to (6.23) as follows

µ̄= 0.2
ζmaxλmax(P )(4 + τ2(σL+σG))2 = 0.1

1+4τ2 = 0.0147.

The simulated response of the distributed observers with µ = 0.014 and Gi as

given in (6.58) are presented in Figure 6.2 through the sum of the observation errors

δi(t) =∑4
q=1 ‖η̃iq(t)‖, where η̃i =

[
η̃i1 η̃i2 η̃i3 η̃i4

]T
and i = 1,2,3. The simulated

response shows that δi(t) and η̃i converges asymptotically to zero, and thus the

objectives of the distributed observation problem are achieved.
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Figure 6.2: Observation error of three observers for the case when τ1 = τ2 = 1.2

Let us now consider a second case, where τ1 = 0.8 and τ2 = 1.2. Since the observer

gains Gi do not account for the delay, we proceed with the same G′is as in (6.58).

Therefore with the same P,α,ζmax,σL,σG as in the previous case, we obtain the upper

bound µ̄ from satisfying the inequality in (6.45) as

µ̄= 0.1
1 + 1.5τ2

1 + τ2
2

= 0.029. (6.59)

We select µ = 0.022 < µ̄. With these designed parameters, the simulation results

are obtained as in Figure 6.3, which shows that δi(t) converges to zero. From the

observation errors in Figs. 6.2 and 6.3, it is evident that the plant states w1 and w2

are accurately estimated by the observer agent 2. Although these plant states are

undetectable from the measurement ym2(t), the strongly connected communication

network and the collaboration between the observer agents enable the follower agent

2 to successfully estimate the plant states.

With the designed observers and scalar feedback gain for the distributed state

estimation problem, let us now apply our results to a leader-follower synchronization
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Figure 6.3: Observation error of three observers for τ1 = 0.8 and τ2 = 1.2

problem under measurement delay τ1 = 0.8 and τ2 = 1.2. The leader system matrix S

is given in (6.57) and the dynamics of the follower agent i are described by a double

integrator as given below

ẋ1i = x2i , ẋ2i = ui, ei = x1i− (w1 +w3). (6.60)

From (6.60), the subsystem matrices are found to be

Ai =

0 1

0 0

 ,Bi =

0

1

 ,Ci = [1 0],Fi = [1 0 1 0].

It is easy to verify that the Assumptions 2.3.1-6.4.1 hold. The controller gains in

(6.56) are obtained as K1i =
[
−8 −4

]
, K2i =

[
7 −4 4 −8

]
while the observer

gains Gi are given in (6.58) and µ= 0.022. By applying the distributed control law

(6.56) to the subsystem dynamics (6.60), we observe in Fig. 6.4 that all the followers

are synchronized with the desired leader trajectory w1 +w3. Thus, the leader-follower

synchronization problem in the presence of measurement and communication delay
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is solved by a dynamic control method that relies on our proposed distributed state

estimation algorithm.
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Figure 6.4: Tracking error of the followers under the distributed dynamic control law
(6.3), (6.56)

To highlight the importance of considering the delay in the synchronization problem,

we now apply the control law ui in (6.56) with the observer dynamics given in [2,3,71]

to the subsystems (6.60). The corresponding simulation results are observed in Fig. 6.5,

from which it is evident that none of the followers are synchronized with the leader by

the resulting control solution.

Next, we consider that the measurements from the plant received by the ith observer

are subject to a time-varying perturbation ξi(t) = 0.3|sin(t)|2, i= 1,2,3 with an L2

norm bound 0.3. Thus from the results in Section 6.3, we can easily verify that the

local estimation error ‖η̃(t)‖ under this perturbation will also remain bounded within

[0,3].
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Figure 6.5: Tracking error of the followers under the distributed control law [2,3]

6.6 Conclusion

In this work we studied the distributed state estimation problem for autonomous

dynamic systems, and under arbitrarily large communication and measurement delays.

The proposed observer framework relies on the strongly connected communication

network between the observer agents and the combined detectability property of

the system, to guarantee that the local state estimation of all agents converges

to the states of the observed plant, including states that may not be detectable

through local measurements. Our current work considered the presence of arbitrarily

large time delays in the communication and measurements of the observer agents,

and a distributed observer framework was developed for the estimation problem.

Sufficient conditions for the stability of the corresponding observation error dynamics

were derived, including an upper bound for the low gain parameter of the observer

equations.

Furthermore, we investigated the distributed state estimation problem with hetero-

geneous time-delays and external disturbances in the measurements. As the nominal
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system was shown to be asymptotically stable, we noted that under bounded external

perturbations, the distributed estimation error dynamics is ISS. Additionally, we

derived a bound on the local estimation errors of the observer agents in terms of the

supremum norm of the disturbance signals.

The results of the distributed state estimation problem was also applied to solve the

leader-follower synchronization problem in the case when the measurements from the

leader and the communication between the followers are subjected to arbitrarily large

time delays. Illustrative simulation examples were offered to verify our mathematical

analysis and the theoretical results in this work. By comparing our results to the

existing approaches, we demonstrated the advantages of our estimation algorithm.



Chapter 7

Distributed State Estimation under

Heterogeneous Time-Varying

Communication Delays

In this chapter we study the distributed leader state estimation problem in leader-

follower multi-agent systems over a deterministic network and under time-varying

communication delays. In this work we propose a distributed estimation technique

that allows the follower agents to collectively reconstruct the leader agent states by

communicating their estimates with neighboring agents. Additionally, we assume that

the communications between the leader and followers are subject to heterogeneous

time-varying delays. By using the low gain methodology, sufficient stability conditions

of the estimation error dynamics in the presence of network latency are derived,

including an upper bound for the delay magnitude. Lastly, the proposed distributed

state estimation method is applied to develop a solution to the leader tracking problem

in leader-follower multi-agent systems. An illustrative example is also presented to

verify the effectiveness of our theoretical results.

115
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Multi-agent consensus problems with time-varying communication delays was

studied by the authors of [83–86]. In [87], the consensus problem was studied for

first order integrator systems with constant communication delays and bounded time-

varying self delays. In [85], authors studied a nonlinear consensus problem for first

order multi-agent systems under fixed and switching communication networks. With

the Lyapunov-Razumikhin stability analysis, local stability results of the consensus

problem was presented in [85]. In [86], a leader-follower consensus problem was studied

for nonlinear agents in an undirected network with identical communication delays.

For high order multi-agent systems, consensus problem with identical agents and large

communication delays was studied in [88].

In this work, we study the distributed leader state estimation problem of a

leader-follower multi-agent system over a deterministic network with non-identical

time-varying communication latencies. Motivated by the results in [89], we offer

a solution to the distributed state estimation problem with a truncated predictor

feedback approach which allows us to design our delay-independent observer gains.

By applying the Lyapunov-Krasovskii stability analysis, sufficient conditions for the

stability of the observation error dynamics, including an upper bound for the delay,

are derived. Next, the states estimation solution is applied to offer a distributed

solution to the leader-follower synchronization control problem, in which we considered

limited observability of the leader states. Finally, with the help of an illustrative

example and a comparative analysis, we demonstrate the uniqueness of our derived

results. Compared to the works in [46,90], where distributed state estimation problem

was studied for heterogeneous time-invariant communication delays, in this paper we

extend our results in [91] to the time-varying counterpart. Differently from the works

of [84–88], our current work presents a solution to the distributed state estimation

problem for higher order heterogeneous multi-agent systems, connected on a directed

communication network, and under time-varying network delays.
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The remainder of the chapter is organized in the following way. The problem

formulation and algebraic graph theoretic properties are briefly revisited in Section

7.1. Next we derive the stability condition for the distributed observer dynamics

coupled with communication in Section 7.2. In Section 7.3, we present the result of the

leader-follower synchronization problem and offer a distributed control solution. An

illustrative example to verify the effectiveness of the proposed approach is presented

in Section 7.4. Lastly, conclusions are reported in Section 7.5.

7.1 Problem Formulation

Consider a system of N heterogeneous agents with the dynamics

ẋi = Aixi+Biui, (7.1a)

yi(t) = Ciw(t− τi0(t)), i= 1,2, · · · ,N, (7.1b)

where xi ∈ Rni ,ui ∈ Rmi ,yi ∈ Rpi , and τi0(t) ≥ 0 are respectively the state, control

input, output vectors and the measurement delay of agent i. The agents are connected

over a deterministic network with latency τi0(t) ∈ [0,D], where D represents the range

of delays. Deterministic networks enable agents to record the time delay introduced

by the communication over the network [92]. The measurement signal yi of agent i

receives a part of the delayed leader state vector w ∈ Rq that evolves as follows

ẇ(t) = Sw(t), (7.2)

In the context of a leader-follower synchronization problem, Eqs. (7.1a) and (7.2)

constitute a multi-agent system of order N + 1 with (7.2) as a leader and N agents in

(7.1a) as followers.
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The objective of the group of N distributed observers is to provide an asymptotic

estimation of the plant state vector w(t). When the pair (S,Ci) is detectable for

some agent i, the distributed estimation problem becomes a well studied decentralized

state observation problem under measurement delay. On the other hand, when the

previous detectability condition is not satisfied, a cooperative effort is required by the

observers over the communication network to jointly provide an estimation for w(t).

The estimation of the states w(t) is more challenging when we include the latency

in the communication between the distributed observers to the formulation of the

cooperative observation problem.

7.1.1 Problem Statement

Let the connections between the leader (7.2) and the N followers be described by the

graph G = (V ,E), V = {0,1,2, · · · ,N}. Under the multi-agent system representation,

the leader agent (7.2) is the zeroth node of V, while the follower agents are the

remaining N nodes. The relative importance of the communication between two nodes

i and j are designated by a weighting factor aij , which is positive if there exists a

directed edge from j to i, and zero otherwise. The in-degree of a node i is defined as

di =∑
j∈Ni aij , where Ni is the neighborhood set of node i.

The distributed observer equation for ith agent in the presence of known inter-agent

communication delays and delayed measurement yi in (7.1b), are given as

η̇i = Sηi+µ
∑
j∈Ni

aij

(
ηj(t− τij(t))−ηi(t− τij(t))

)

+µai0GiCi

(
w(t−τi0(t))−ηi(t−τi0(t))

)
,

(7.3)

where ηi is the state estimation by the ith observer, τij(t) : R+→ R is a continuous

time-varying communication delay with a delay range D such that τij(t) ∈ [0,D], Gi

and µ are respectively the observer gain and the low gain parameter to be determined.
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The “low gain” parameter is commonly found in the Truncated Predictor Feedback

(TPF) control solution, studied by [55].

For the sake of brevity, we will use τij and τi0 in place of τij(t) and τi0(t) throughout

the text. Since τi0 is the delay resulted in the communication between the leader and

agent i, τi0 can also be viewed as a communication delay. Therefore in the rest of

the text both τij and τi0 will be referred to as communication delays unless otherwise

mentioned.

Remark 7.1.1. For convenience with the predictor based approach, in the works

of [72, 73], the time varying delay function was denoted by φ(t) = t− τ(t), with τ(t)

being the time delay. Such formalism also required to use the inverse function of φ,

namely φ−1 for the stability analysis. As shown in Remark 2.1 of [55], the existence of

φ−1 is guaranteed by assuming that φ(t) is continuously differentiable and its derivative

is bounded. In other words, τ̇ was assumed to be bounded. However, in this paper we

will represent the time-varying delay function as it appears in (7.3) without substituting

them by φ(t) and due to this we do not need to explicitly assume the bounds on the

derivative of the delay τ̇ . Consequently, the results presented here will also hold for

discontinuous delays τ(t).

For D = max(τij , τi0), i = 1,2, · · · ,N , and θ ∈ [−D,0], let the initial conditions

w(θ) = w(θ) and ηi(θ) = ηi(θ), where w,ηi ∈ C([−D,0],Rq). Denote the estimation

error η̃i = ηi−w, η̃i(θ) = η̃i(θ) with η̃i ∈ C([−D,0],Rq). The estimation error dynamics

obtained from (7.2) and (7.3) is given as

˙̃ηi = Sη̃i+µ
∑
j∈Ni

aij

(
η̃j(t− τij)− η̃i(t− τij)

)
−µai0GiCiη̃i(t− τi0). (7.4)

To guarantee the solvability of the distributed state estimation problem we con-

sider the Assumptions 2.3.1, 2.3.4 and 6.1.1 with C̄wa in 2.3.4 replaced with C̄ =

col(C1,C2, · · · ,CN ).
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Definition 7.1.1. Distributed state estimation problem: Design observer gains

Gi, i= 1,2, · · · ,N , feedback gain µ such that the estimation error dynamics (7.4) is

exponentially stable, i.e., for a constant delay bound D > 0 and η̃i ∈ C([−D,0],Rq),

limt→∞ η̃i(t) = 0 for i= 1,2, · · · ,N .

7.2 Stability of the Estimation Error Dynamics

In this section, we will present the stability results for the estimated error dynamics

in (7.4), which will eventually lead to the design of observer gains Gi and low gain µ.

The current work also provides an upper bound for D to ensure stability of the error

dynamics.

To demonstrate the convergence of the estimation error dynamics (7.4) with com-

munication delays τij , τi0, ∀i, j = 1,2, · · · ,N , i 6= j, first we evaluate the boundedness

of the response for t≤D, before the delayed measurements are available for feedback

correction. After the boundedness of the initial response is established, we then

proceed to evaluate the exponential stability η̃(t), for t > D. For the first part, we

will check the boundedness of η̃(t), for ∀t ∈ [0,D], driven by the initial conditions η̃(θ)

for θ ∈ [−D,0].

For t= 0, from (7.4) we obtain,

‖ ˙̃ηi(0)‖ ≤ ‖S‖‖η̃i(0)‖+µ
(∑
j∈Ni
‖η̃j(−τij)‖+Ni‖η̃i(−τij)‖+

√
σGi‖η̃i(−τi0)‖

)

≤
(
‖S‖+ 2µNi+µ

√
σGi

)
‖η̃0‖C , (7.5)

where i = 1,2, · · · ,N , σGi = ‖GiCi‖2, and ‖η̃0‖C = max
θ∈[−D,0],i=1,··· ,N

‖η̃i‖. Since ˙̃ηi|t=0

is found to be bounded, we have an arbitrarily small ε > 0 such that for t ∈ [0, ε],

η̃i(t) also remains bounded. By using this result and the boundedness of η̃i(θ), θ ∈

[−D,0], next we verify that ˙̃ηi|t=ε is bounded and so is η̃i(t) for i = 1,2, · · · ,N and
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t ∈ [ε,2ε]. In a similar manner we will find that across each sub-intervals [kε,(k+ 1)ε],

k = 0,1, · · · ,m−1 with m ∈ Z+,mε=D, η̃i(t) is bounded.

As we obtained that η̃i(t) is bounded for t ∈ [0,D], we now need to show the

exponential stability of (7.4) for t >D. To do this, let us first introduce three auxiliary

variables δ̄ij(t), δ̂ij(t), and δ̂i0 as follows

δ̄ij(t) = η̃j(t− τij)− η̃j(t) =−
∫ t

t−τij
˙̃ηj(s) ds, j 6= i

δ̂ij(t) = η̃i(t)− η̃i(t− τij) =
∫ t

t−τij
˙̃ηi(s) ds,

δ̂i0(t) = η̃i(t)− η̃i(t− τi0) =
∫ t

t−τi0
˙̃ηi(s) ds.

(7.6)

By substituting η̃j(t− τij), η̃i(t− τij) and η̃i(t− τi0) in (7.4) with δ̄ij(t), δ̂ij(t), δ̂i0

from (7.6), we obtain

˙̃ηi = Sη̃i+µ
N∑
j=1

aij(η̃j− η̃i)−µai0GiCiη̃i+µ(δ̄i+ δ̂i+ai0GiCiδ̂i0), (7.7)

where δ̄i(t) =∑N
j=1aij δ̄ij(t), δ̂i(t) =∑N

j=1aij δ̂ij(t).

Let δ̄ = col(δ̄1, δ̄2, · · · , δ̄N ), δ̂ = col(δ̂1, δ̂2, · · · , δ̂N ), and δ̂0 = col(δ̂10, δ̂20, · · · , δ̂N0) and

thus the composite error vector η̃ evolves as follows

˙̃η =Mη̃+µ(δ̄+ δ̂+GCδ̂0), (7.8)

where M = [(IN ⊗S)−µ(L⊗ Iq)−µGC], L ∈ RN×N is the Laplacian matrix corre-

sponding to the strongly connected partition of the network of N observer agents,

G= blk diag(G1, · · · ,GN ), and C = blk diag(C1, · · · ,CN ).

We now introduce some additional notations which will be used throughout

the text. Let diout and diin be the out-degree and in-degree of a node i. De-

note dout,max = max
i=1,2,··· ,N

diout, din,max = max
i=1,2,··· ,N

diin, σM = ‖M‖2,σG = ‖GC‖2, C̄ =
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col(C1,C2, · · · ,CN ), G = [G′1 G′2 · · · G′N ], G′i = ζiGi where ζi is the ith entry of the left

eigenvector ζ = [ζ1, ζ2, · · · , ζN ]T of L corresponding to zero eigenvalue. Without loss of

generality, let ∑i ζi = 1. Note that for the Laplacian matrix L of a strongly connected

communication network, the results in [46,77] states that the positive-definite diagonal

matrix Σ = diag(ζ) makes L̂= ΣL+LTΣ positive semi-definite. Additionally, L̂ has

zero row sum and zero column sum, and thus it can be viewed as the Laplacian matrix

of an undirected communication network.

To analyze the stability of (7.8), we construct a Lyapunov function of the form

V (η̃) = η̃T(t)(Σ⊗P ) η̃(t) where P is a positive definite matrix and Σ = diag(ζ) is a diag-

onal matrix with the ith diagonal entry being ζi. Since the matrix (Σ⊗P ) is symmetric

and have all positive eigenvalues, 0≤ ζminλmin(P )‖η̃‖2 ≤ V (η̃)≤ ζmaxλmax(P )‖η̃‖2,

∀η̃ 6= 0, where ζmin = min(ζi), ζmax = max(ζi), i= 1,2, · · · ,N . By differentiating V (t)

along the trajectories of (7.8), we obtain

V̇ (η̃) = η̃T
[
MT (Σ⊗P ) + (Σ⊗P )M

]
η̃+ 2µη̃T(Σ⊗P )(δ̄+ δ̂) + 2µη̃TGC(Σ⊗P )δ̂T

0

≤ V̇0+δ̄T(Σ2⊗P 2)δ̄+ δ̂T(Σ2⊗P 2)δ̂+ δ̂T
0 (Σ2⊗P 2)δ̂0+µ2(2 +σG)‖η̃‖2

≤ V̇0+λ2
max(P )ζ2

max
[
δ̄Tδ̄+ δ̂Tδ̂+ δ̂0δ̂0

]
+µ2(2+σG)‖η̃‖2, (7.9)

where V0 =
∫ t
0 η̃

T(s)
[
MT (Σ⊗P )+(Σ⊗P )M

]
η̃(s) ds. Next, we consider the following

Lemma to evaluate the first term of (7.9).

Theorem 7.2.1. Consider the distributed observers (7.3) satisfying Assumptions 2.3.1,

2.3.4, 6.1.1, and gains Gi selected such that R= S−µGC̄ is a Hurwitz matrix for

any µ ∈ (0,1). Let then P ∈ Rq×q > 0 be a solution to the inequality

RTP +PR< 0, (7.10)
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such that the matrix P (S−µGiCi)+(S−µGiCi)TP has non-positive eigenvalues for all

follower agents i. Then for the time-varying communication delays τij , j = 0,1, · · · ,N ,

i= 1,2, · · · ,N, i 6= j, the observer states ηi(t) converges to w(t) asymptotically, i.e.,

lim
t→∞

(ηi(t)−w(t)) = 0, i= 1,2, · · · ,N,

if the upper bound for the delay D satisfies D < D̄, where

D̄= 1
2

√√√√√√ αµ−µ2(2 +σG)

c0

(
ζ2
maxλ

2
max(P )σM+αµ3−µ4(2+σG)

) , (7.11)

with α > 0 such that MT (Σ⊗P )+(Σ⊗P )M <−αI and c0 = (N−1)d2
out,max +(N−

1)d2
in,max + 1.

Proof. Let G satisfy Assumption 6.1.1 with at least one agent being the child node of

the leader. Now, we evaluate the first term on the right-hand side of the inequality in

(7.9). In this regard, we have

V̇0 = η̃T
[
MT (Σ⊗P ) + (Σ⊗P )M

]
η̃,

= η̃T
[
Σ⊗ (STP +PS)−µCTGT(Σ⊗P )−µ(Σ⊗P )GC−µ(L̂⊗ Iq)

]
η̃. (7.12)

It is inferred from Assumption 6.1.1 that the matrix (L̂⊗ Iq) is positive semi-definite,

and the lemma assumes that P (S−µGiCi)+(S−µGiCi)TP is negative semi-definite.

These assumptions then yield that V̇0 ≤ 0. We will now investigate the invariant set

of η̃ on which V̇0 = 0. Assumption 6.1.1 yields L̂ has zero row sum, and thus the term

−µη̃T
(
L̂⊗ Iq

)
η̃ in (7.12) becomes zero non-trivially only when η̃ = 1N ⊗ η̃f , for any

η̃f ∈ Rq. Replacing this η̃ into (7.12) then yields that

V̇0 = η̃f
[
RTP +PR

]
η̃f < 0. (7.13)
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Therefore,

V̇0 = η̃T
[
MT(Σ⊗P ) + (Σ⊗P )M

]
η̃ < 0,

must be true for any non-zero η̃, and V̇0 = 0 only when η̃ = 0.

Because η̃T
[
MT(Σ⊗P ) + (Σ⊗P ]M

)
η̃ is continuous and finite over µ ∈ (0,1),

there must exist a positive scalar α > 0 such that

η̃T
(
MT(Σ⊗P ) + (Σ⊗P )M

)
η̃ <−αµ‖η̃‖2. (7.14)

Substituting (7.14) into (7.9) we obtain

V̇ (η̃)≤−αµ‖η̃‖2 +µ2(2 +σG)‖η̃‖2 +λ2
max(P )ζ2

max
[
δ̄Tδ̄+ δ̂Tδ̂+ δ̂0δ̂0

]
. (7.15)

Now we evaluate the rest of the terms in (7.15) as follows. Since

δ̄Tδ̄ =
N∑
i=1

δ̄T
i δ̄i ≤ (N −1)

N∑
i=1

N∑
j=1,j 6=i

a2
ij δ̄

T
ij δ̄ij ,

then from (7.6) and Lemma 6.1.2, we obtain

δ̄Tδ̄ ≤ (N −1)Dd2
out,max

∫ t

t−D
˙̃ηT(s) ˙̃η(s) ds. (7.16)

In a similar manner the bounds on the terms δ̂Tδ̂ and δ̂T
0 δ̂0 can be deduced as follows,

δ̂Tδ̂ ≤ (N −1)Dd2
in,max

∫ t

t−D
˙̃ηT(s) ˙̃η(s) ds,

δ̂T
0 δ̂0 ≤D

∫ t

t−D
˙̃ηT(s) ˙̃η(s) ds.

(7.17)

Let us take V1 =
∫D
0
∫ t
t−s ˙̃ηT(s) ˙̃η(s) ds and thus from Eqs. (7.16), (7.17) we obtain

δ̄Tδ̄+ δ̂Tδ̂+ δ̂T
0 δ̂0 ≤ c0D2 ˙̃ηT ˙̃η− c0DV̇1. (7.18)
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Next, by using (7.8), we evaluate ˙̃ηT(t) ˙̃η(t) as follows

˙̃ηT(t) ˙̃η(t)≤ 4σM‖η̃‖2 + 4µ2
(
δ̄Tδ̄+ δ̂Tδ̂+ δ̂T0 δ̂

T
0

)
. (7.19)

Substituting the results of (7.19) in (7.18) yields

δ̄Tδ̄+ δ̂Tδ̂+ δ̂T
0 δ̂0 ≤

c0D

1−4µ2c0D2

[
4DσM‖η̃‖2−V̇1

]
, (7.20)

and therefore from (7.15) we obtain

V̇ ≤ (−αµ+µ2(2 +σG))‖η̃‖2 + c0λ2
max(P )ζ2

max
1−4µ2c0D2

[
4D2σM‖η̃‖2−DV̇1

]
. (7.21)

Let us define Vφ = V +λ2
max(P )ζ2

max
c0D

1−4µ2c0D2V1 which is positive everywhere except

when η̃ = 0 and ˙̃η(t+θ) = 0, θ ∈ [−D,0]. Additionally, from (7.19), (7.20), Vφ can easily

be shown to be bounded between two non-decreasing functions. Then by rearranging

the terms in (7.21) we obtain

V̇φ≤
(
−αµ+µ2(2+σG)+4c0λ2

max(P )ζ2
maxD

2σM
1−4µ2c0D2

)
‖η̃‖2.

As a result, V̇φ < 0 for D < D̄ with

D̄ = 1
2

√√√√√√ αµ−µ2(2 +σG)

c0

(
ζ2
maxλ

2
max(P )σM+µ2(αµ−µ2(2+σG))

) .

Therefore, according to the Lyapunov-Krasovskii stability theorem 6.1.3, the estimation

error dynamics (7.4) is globally asymptotically stable and limt→∞ η̃(t) = 0. This

concludes the proof.
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Remark 7.2.1. R can be rewritten as

R= S−µGC̄. (7.22)

By Assumption 2.3.4, there exists a matrix G so that R in (7.22) is Hurwitz. While

Theorem 7.2.1 allows for any G such that R is Hurwitz, the equivalent observer gain

in [46] is tied to the solution of a parametric Riccati equation. It is also true that any

solution to the parametric Riccati equation in [46] and the corresponding observer gain

G results in R being Hurwitz, but the opposite may not necessarily hold.

Remark 7.2.2. From the delay bound D̄ in (7.11), we observe that the stability of

the estimation error dynamics is independent of the rate of change of delay τ̇ij(t) and

τ̇i0(t). Hence, (7.11) can also be applied to the distributed state estimation problems

with fast time-varying delays, indicating that the proposed estimation algorithm is

robust with respect to the time variation of the delays. Furthermore, from (7.11), we

also obtain the upper bound of the low gain parameter µ ∈ (0,µ∗) as

µ∗ = α

2 +σG
. (7.23)

7.3 Application to a Leader-Follower Synchroniza-

tion Problem

In this section, we present a leader-follower synchronization problem under network

latency, and a detectability constraint that none of the followers can independently

reconstruct the leader dynamics from its measurements. Due to the presence of

time delays in the measurement and communication between followers, the results

from [2,3,71] are not applicable. Thus, with the proposed results from the distributed
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state estimation problem studied in this work, we proceed to tackle the leader-follower

synchronization problem in face of time-varying measurement and network latency.

The distributed control problem then consists for all agents to synchronize their

states to a leader, given as (7.2), by regulating the error signal ei ∈ Rpi ,

ei = Cxixi−Fiw, i= 1,2, · · · ,N. (7.24)

It is assumed that ei is not available as a measurement for control, but follower agents

collect delayed leader measurements yi ∈ Rpi

yi = Ciw(t− τi0). (7.25)

It is also assumed that the follower agents are connected under a communication

network described by the digraph G, and communications between agent i with the

other agents are subject to the communication delay τi(t). The objective of this

synchronization problem is to design a distributed control law ui(t) such that the

regulated error signals ei(t) asymptotically converge to zero.

As noted in [29, 30], the solvability of the synchronization problem requires the

assumptions 2.3.2, and 6.4.1 while the following regulator equation to yield a unique

solution pair (Xi,Ui).
XiS = AiXi+BiUi,

0 = CxiXi−Fi.
(7.26)

Given that the Assumptions 2.3.1, 2.3.2, 6.4.1 hold, the distributed state feedback

control law ui takes the form [2]

ui =K1ixi+K2iηi, (7.27)
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where ηi(t) is the distributed observer state with the dynamics given in (7.3). The

controller gains K1i ,K2i are selected such a way that (Ai+BiK1i) is Hurwitz and

K2i = Ui−K1iXi. Since limt→∞ ηi(t) = w(t) by Theorem 7.2.1, the control solution

to the aforementioned synchronization problem can be summarized in the following

Theorem.

Theorem 7.3.1. Given the leader (7.2), N followers (7.1a), and the digraph G, the

distributed control law ui in (7.27) solves the leader-follower synchronization problem

if Assumptions 2.3.1, 2.3.2, 6.4.1, 2.3.4 and 6.1.1 are satisfied.

The proof of Theorem 7.3.1 follows similar procedure as in [2], with the results of

Theorem 7.2.1 to guarantee the stability of the leader state estimation error dynamics.

7.4 Illustrative Example

In this section we consider an illustrative example to evaluate the effectiveness of our

proposed algorithm. Let the plant (7.2) have state vector w =
[
w1 w2 w3 w4

]T

and state matrix

S=blk diag(S1,S2),S1 =

0 −1

1 0

 ,S2 =

0 −2

2 0

 . (7.28)

The measured output matrices Ci, i= 1,2,3, are given as follows:

C1 =
[
I2 02

]
, C2 =

[
02 I2

]
, C3 = 02×4,

from which we verify that none of the pairs (S,Ci), i= 1,2,3, are detectable. Instead,

the combined detectability property in Assumption 2.3.4 is satisfied for the given Ci.

Clearly, the follower agent 1 can directly receive the signal
[
w1 w2

]T
from the plant

measurement y1(t), while agent 2 receives the signal
[
w3 w4

]T
.
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The communication network between the observers is represented by the digraph

G satisfying Assumption 6.1.1, as illustrated in Figure 6.1, with the Laplacian matrix

L given as follows

L=


1 −1 0

0 1 −1

−1 0 1

 . (7.29)

The strongly connected partition of G in Figure 6.1 allows the exchange of estimated

states between agents, and complements for the incomplete measurements that each

agent receives from the plant. Even though a single observer cannot independently

reconstruct the exosystem state vector w(t), the strongly connected communication

network between the observer agents enables them to jointly synthesize an estimate of

the plant state.

We now introduce the communication delay functions for the example problem as

follows.

τ12(t) = 0.005
(

1 + sin2(1000t)
)

= τ21(t),

τ23(t) = 0.01cos2(500t) = τ32(t),

τ31(t) = 0.01
(

1− sin2(1000t)
)

= τ13(t),

τ10(t) = 0.006cos2(1000t) = τ20(t).

From the given time-varying functions of the communication delays, the delay bound

D for this simulation can be chosen to be D = 0.01.

From the Laplacian matrix L in (7.29), we obtain ζmax = 1/3 and c0 = 5. We

select the design parameters as follows:

G1 =
[
I2 02

]T
,G2 =

[
02 I2

]T
,G3 = 04×2,
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which make the matrix

R= blk diag


−µ/3 −1

1 −µ/3

 ,
−µ/3 −2

2 −µ/3




in (7.22) Hurwitz with the eigenvalues located at −µ/3± j,−µ/3± 2j. We note

here that RT +R = −2µ
3 I and RRT =RTR. Next, from the Lyapunov equation

RTP +PR=−µI, we find the solution P as

P =
∫ ∞

0
eR

TseRs ds=
∫ ∞

0
e(RT+R)s ds= 1.5I.

We also verify that the matrices (S−µGiCwi)TP +P (S−µGiCwi), i= 1,2 has eigen-

values at −3µ,−3µ,0,0 and (S−µG3Cw3)TP +P (S−µG3Cw3) = 0. Thus P satisfies

the LMI conditions in Theorem 7.2.1. Next, by substituting P in (7.14), we find

that MT(Σ⊗P ) + (Σ⊗P )M <−0.2µI. As a result, from (7.11) and Remark 7.2.2

the upper bound of µ is found to be µ∗ = 0.0731. For simulation purpose, we select

µ= 0.06.

With these parameters, we obtain from (7.11) that D̄ = 0.0106 and D < D̄. The

simulated response of the distributed observers are presented in Figure 7.1 through

the sum of the observation errors δi(t) = ‖η̃i(t)‖, where i = 1,2,3. The simulated

response shows that δi(t) or equivalently η̃i converges asymptotically to zero, and thus

the objectives of the distributed observation problem are achieved.

With the designed observers and scalar feedback gain for the distributed state

estimation problem, let us now apply our results to a leader-follower synchronization

problem. The leader system matrix S is given in (7.28) and the dynamics of the

follower agent i are described by a double integrator as given below

ẋ1i = x2i , ẋ2i = ui, ei = x1i− (w1 +w3). (7.30)
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Figure 7.1: Observation error of three observers for the case under time-varying
communication and measurement delay within the delay bound D̄ = 0.0106

From (7.30), the subsystem matrices are found to be

Ai =

0 1

0 0

 ,Bi =

0

1

 ,Cxi = [1 0],Fi = [1 0 1 0].

It is easy to verify that the Assumptions 2.3.1, 2.3.2, 6.4.1 hold. The controller gains

in (7.27) are obtained as K1i =
[
−8 −4

]
, K2i =

[
7 −4 4 −8

]
. By applying the

distributed control law (7.27) to the subsystem dynamics (7.30), we observe in Fig. 7.2

that all the followers are synchronized with the desired leader trajectory w1 +w3.

Thus, the leader-follower synchronization problem in the presence of time-varying

measurement and communication delay is solved by a dynamic control method that

relies on our proposed distributed state estimation algorithm.
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Figure 7.2: Tracking error of the followers under the distributed dynamic control law
(7.3), (7.27)

7.5 Conclusion

In this work we studied the distributed state estimation problem for autonomous

dynamic systems, and under time-varying communication and measurement delays.

The proposed observer framework relies on the strongly connected communication

network between the observer agents and the combined detectability property of the

system, to guarantee that the local state estimation of all agents converges to the

states of the observed plant, including states that may not be detectable through

local measurements. Our current work considered the presence of time delays in the

communication and measurements of the observer agents, and a distributed observer

framework was developed for the considered estimation problem. Sufficient conditions

for the stability of the corresponding observation error dynamics were derived, including

an upper bound for the delay and low gain parameter of the observer equations. It

was also demonstrated that the stability results for the estimation error dynamics is

independent of the variation of the delay and thus the proposed estimation technique

is unperturbed by the fast varying delays.
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Compared with similar results in the literature, the results presented in this work

provided generalization of the sufficient conditions to guarantee the convergence of

the observer estimation errors to zero, only prescribing a Hurwitz condition for the

selection of the observer correction gain. Such general results are obtained without

requiring solutions to extensive matrix inequalities conditions.

The results of the distributed state estimation problem was also applied to solve

the leader-follower synchronization problem in the case when the measurements from

the leader and the communication between the followers are subjected to time delays.

Illustrative simulation examples were offered to verify our mathematical analysis and

the theoretical results in this work.

In this current work we assumed that the communication and measurement delays

were known to the agents. However, there are some practical situations where this

may not be the case. With this as motivation, in our future research we aim to extend

our current work to the case for unknown time delays.



Chapter 8

Synchronization of Distributed

Generators in a Microgrid under

Communication Latency- A Case

Study

Electrical power grids over the last decade have undergone a rapid transformation from

a traditional generation and transmission infrastructure to an automated intelligent

control, sensing and communication network based technology, known as “smart grid”.

One of the basic building blocks of this smart grid technology are microgrids (MG)

which are typically small scale electrical power networks comprised of distributed

energy resources, controllable load and storage units. In normal conditions, MGs

operate synchronously with the main utility grid but they are also able to operate

autonomously when disconnected from the main grid in the event of faults, black outs

and natural disasters [93].

The distributed power generation in microgrids are supported by renewable sources

such as solar PV cells, biomass fuel cells, wind and microturbines [94]. These renewable

134
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energy resources in the MG are connected with the main grid at the point of common

coupling (PCC) through parallelly connected voltage source inverters (VSI) shown in

Figure 8.1.

Figure 8.1: Typical microgrid structure with inverter based generators

The main control objective of distributed generator (DG) units is to synchronize

their terminal voltage and VSI frequency with the reference grid set points. Hierarchical

control [95] is one of the basic control strategies, which consists of primary, secondary

and tertiary control layers. The primary control, also known as droop control [96]

maintains the transient voltage and frequency stability of the MG, and enables balanced

power sharing once it goes to the islanded mode. The current standard is to use

proportional droop controller locally at each inverter, while quadratic voltage droop

controllers can also be found in [97,98].

With the application of the droop control, the frequency and voltage magnitude

of the VSIs deviate from their nominal values, which is restored with another layer

of control called secondary control [96]. The objective of the secondary control is

to generate the voltage and frequency reference signals for the primary controller of

each DG unit. While centralized and decentralized techniques [99] were used in the
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secondary control, these methods suffer from limitations such as dense communication

network, single point of failure, and large transmission power loss. Therefore, a

distributed cooperative control structure in [93, 96, 100, 100, 101] was offered as an

efficient alternative. The final level of control is tertiary control, which is concerned

with global economic dispatch over the network, and depends on current energy

markets and prices. In most cases, this control structure is centralized and occurs

offline.

This work primarily focuses on the secondary control layer which has a consensus

based cooperative control structure. But compared to the works of [96], we consider

that the communication between the agents are now subject to heterogeneous delays. In

microgrid applications where maintaining data integrity is of paramount importance,

authentication of the data prior to propagation into the network is viewed as an

effective control theoretic approach to maintain data integrity and prevent malicious

cyber attacks [102]. The verification of the message being transferred between the DG

units in a deterministic network [103] then introduces bounded communication delays.

For the known time varying communication delays, a distributed cooperative control

solution to the synchronization problem was offered in [104,105].

In [106], the authors studied the stability of an inverter based MG systems under

time invariant input delay caused by the differing bandwidth of internal controllers.

The MG was represented in Lure form and the Lyapunov-Krasovskii stability method

was invoked to investigate the local stability of the MG with delay. The authors

in [104,105] proposed a cooperative control strategy to regulate terminal DG voltages

under time varying delay. In [104], it was assumed that the communication delay

was identical for all networked agents while in [105], the outgoing information from

a particular DG was subject to the same delay regardless of the recipient DG units

it was connected to. Moreover, the communication topology of the DG units was

assumed to be balanced in [105] and strongly connected in [104].
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Motivated by the works of [96, 101] we extend the results in [93] to study the

voltage and frequency synchronization of networked DG units in an islanded MG

under heterogeneous communication time delays. With the use of low-gain feedback,

we offer a delay tolerant robust distributed coordination and control protocol for the

networked DGs. Using the low-gain methodology and Lyapunov-Krasovskii based

large signal stability analysis, we derive the sufficient stability conditions with an

upper bound for the low gain parameter. Lastly we validate our theoretical results

with some simulation examples.

The contribution of this work can be summarized as follows. Here we study

the voltage and frequency synchronization of inverter based autonomous DGs in

an islanded MG under arbitrarily large, yet bounded time varying communication

delays. In contrast with [104,105,107,108] we consider that the communication delays

between the DGs are heterogeneous. By using the low gain techniques we offer a

robust distributed control solution to the problem for both known and unknown

latencies. Next, with the Lyapunov-Krasovskii large signal stability analysis, we derive

delay dependent sufficient stability conditions to ensure the synchronization. Such

delay dependent stability conditions avoid the conservatism associated with the delay

independent results found in [105]. Moreover, to synchronize the terminal voltage and

frequency of DGs while proportionally sharing the active and reactive power among

themselves, the solvability conditions of the problem in [104, 105, 107, 108] require

that the communication topology between the DGs is either balanced or strongly

connected. In contrast, the control solution offered in this work rather prescribes a

more relaxed spanning tree assumption.

The remainder of the chapter can be organized as follows. First we describe the

parallel operation of inverter based DGs in Section 8.1. Then, we formulate our

problem, present necessary assumptions, review some hierarchical control methods

and define our problem objective in Section 8.2. In Section 8.3, we derive our stability
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results for both the known and unknown communication delays. Next, we verify our

theoretical developments of the earlier sections with the help of a numerical example

in Section 8.4. Finally some conclusions of the chapter appear in Section 8.5.

Notation. We now define the following notations which will be used throughout

the chapter. A column vector 1N ∈ RN is a vector in RN with all ones. For scalars

di, i= 1,2, · · · ,N , D= blk diag(d1,d2, · · · ,dN ) represents a block diagonal matrix with

the diagonal elements being di. For two non-negative integers a,b, I[a,b] denotes the

set of all intermediate positive integers in the closed interval [a,b]. For two symmetric

matrices A, B of identical dimensions, let us denote by A<B that the matrix A−B

is negative definite.

8.1 Parallel Operation of Inverter Based Micro-

grids

MG operates in both grid connected and as well as in the islanded mode. In the grid

connected mode, the DG units are controlled to act as a constant power source which

supplies the demanded power by the main grid. This is enabled by the grid-feeding

inverters [109] in the DG unit, which acts as a current source with a high impedance

in parallel to control the power exchange between the main grid and the DG. Since

the DG units now operate in tandem with the main grid, it has identical operating

frequency and terminal voltage as the main grid.

However, when the MG undergoes a planned or unplanned isolation from the main

grid, the DG units of the islanded MG are then required to pick up all the local loads

while synchronizing the terminal voltage and frequency. The grid-forming inverters in

the DG unit play an important role in regulating the voltage and the frequency in an

islanded MG operation. The grid forming inverters in the MG act as a voltage source

with a low impedance in series and set the reference voltage and frequency set points
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for other grid feeding generators in the islanded MG. The parallel operation of these

grid-froming inverters and their control techniques has been reviewed in the works

of [94, 110].

The schematic diagram of two parallel DGs connected to the main grid at a PCC

is shown in Figure 8.2 where Voi is the terminal voltage magnitude of the ith DG,

ZLoad and Zi are respectively the load impedance and transmission line impedance

between the ith DG and PCC. Acccordingly, as stated in [94] the model of an MG can

be divided into three major submodules such as DGs, electrical power network and

loads. A DG model includes a power sharing controller, VSI, output LC filter, and

internal voltage and current controllers. The dynamics of these sub-modules and their

components will be discussed later in greater details.

In case of a medium or low voltage distribution network with a purely inductive

impedance Zi, i.e. Zi = jXi, and small power angle δi, from [110] the injected active

power Pi and reactive power Qi between the DGs and the PCC are obtained as follows.

Pi = VoiV δi
Xi

, Qi = V (Voi−V )
Xi

. (8.1)

It is clear from (8.1) that the active power injected to the main grid by a DG

Figure 8.2: Equivalent schematic diagram of parallel inverter based microgrid
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depends on the power angle or consequently the frequency, while the reactive power

depends on the difference in amplitude between the terminal voltage of the DG and

the grid reference voltage at the PCC. As a result of this, the output power of a

DG can be controlled directly by what is known as frequency and voltage droop

controllers [110,111].

8.2 Problem Formulation

8.2.1 Hierarchical Control of Distributed Generators

Consider a network of VSI operated N DG units with the primary, secondary and

other internal controllers shown in Fig. 8.3. We note here that the nonlinear dynamics

of the DG units are formulated in its own direct-quadrature reference frame d− q of

the inverter, which rotates anticlockwise with an angular frequency ωi. One of the

inverter reference frames is chosen to be a common reference frame and let ωcom be

its frequency of rotation. Then the relative angle of the ith inverter reference frame is

calculated with respect to the common reference frame as follows

δ̇i = ωi−ωcom. (8.2)

The primary controller inside the power controller block in Fig. 8.3 implements

two droop based feedback control laws (8.3) to set the reference terminal voltage V ∗oi
and inverter frequency ωi as follows

ωi = ωni−mPiPi, V
∗
oi = Vni−nQiQi, (8.3)
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where ωni and Vni are respectively the nominal frequency and voltage set points, mPi

and nQi are the droop coefficients selected in such a way that

mPiPmax,i =mPjPmax,j , nQiQmax,i = nQjQmax,j (8.4)

with Pmax,i, Qmax,i being respectively the rated active and reactive power capacities

of ith DG. From the droop characteristics in (8.3), it is clear that an increase in

load demand results in a corresponding decrease in ωi and V ∗oi from their prespecified

nominal values. This droop based control techniques enable a balanced power sharing

among the DGs, yet without requiring any direct communication from one to the

other.

This droop technique emulates the governor characteristics of a synchronous

generator in traditional power systems where an increased load demand is met by

reducing the rotational frequency (speed) of the generator. This droop characteristic

then allows the synchronous generators or the VSIs, running in parallel, to share the

additional load in proportion to their power rating (8.4).

With no loss of generality, let Vni be the nominal set point output voltage along

its own direct axis, then the primary voltage control strategy aligns V ∗oi = Vni−nQiQi

along the direct axis of the inverter reference frame as follows

ωi = ωni−mPiPi,

V ∗odi = V ∗oi = Vni−nQiQi, V
∗
oqi = 0.

(8.5)

As shown in Fig. 8.3, the voltage controller receives this reference voltage set points[
V ∗odi V ∗oqi

]T
from the power controller and generates the reference current set points[

I∗Ldi I∗Lqi

]T
to be tracked by the current controller [94,96,112]. The current controller

receives the unfiltered feedback current signal
[
ILdi ILqi

]T
from the VSI, their
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respective reference set points from the voltage controller as inputs and produces the

reference DC voltage
[
V ∗Idi V ∗Iqi

]T
for the DC to AC converter shown in Figure 8.3.

As noted in [93, 104], the voltage and current controller works much faster as

compared to the power controller and therefore we can neglect the fast dynamics of

the voltage and current controller and rewrite (8.5) as follows

ωi = ωni−mPiPi,

Vodi = Vni−nQiQi, Voqi = 0.
(8.6)

The downside of this droop control is that the voltage Vodi and frequency ωi of the

DG unit deviate from their respective grid reference points Vref and ωref and thus

to restore the MG to the normal operating condition, another layer of control called

secondary control is required [96,101,112]. Secondary control changes the auxillary

input variable ωni and Vni such that ωi and Vodi synchronizes with the respective

reference values ωref and Vref . To avoid the single point of failure associated with the

centralized control structure [113], a distributed cooperative control and coordination

protocol was developed for the secondary control layer in the works of [112] which

allows the DG units to rely only on the local communication from their neighbors as

depicted in Figure 8.3.

Figure 8.3: Block diagram of a DG with VSI and other internal controllers
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8.2.2 Dynamic Model of Inverter Based DGs

In this work we consider the large signal nonlinear dynamical models of the DG,

network and loads unlike [94, 112]. Similar to [96], we assume that the DC voltage

source of the inverter is ideal. Furthermore, for simplicity we also neglect the switching

processes involved with the pulse width modulation (PWM) in an inverter, as the

switching frequency of PWM is much larger (4 kHz-10 kHz) as compared to the other

control processes in the DG.

We also note here that the nonlinear dynamics of the DG units are formulated

in its own (d− q)i reference frame of the inverter, which rotates anticlockwise with

an angular frequency ωi shown in Figure 8.4. One of the inverter reference frames

is chosen to be a common reference frame (D−Q) and let ωcom be its frequency

of rotation. The inputs/outputs to a DG, network and load dynamics expressed in

local (d− q)i coordinates can then be translated to the (D−Q) coordinate by the

transformation

Ti =

cos(δi) −sin(δi)

sin(δi) cos(δi)

 , (8.7)

where δi, as shown in Fig. 8.4 is the shifted angle of the (d− q)i coordinate frame

relative to (D−Q).

Next we will revisit the dynamical models of the various components of the MG

namely DG, networks, loads and their submodules.

8.2.3 Power Controller

Power controller calculates the instantaneous active and reactive power output Pi and

Qi as follows
Ṗi =−ωciPi+ωci [VodiIodi+VoqiIoqi] ,

Q̇i =−ωciQi+ωci [VoqiIodi−VodiIoqi] ,
(8.8)
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Figure 8.4: local (d− q)i to common (D−Q) coordinate frame transformation

where ωci is the cut-off frequency of the low pass filters to remove the high fre-

quency distortion by PWM switching, Vodi,Voqi, Iodi, Ioqi are respectively the direct

and quadrature components of the three phase inverter voltage Voi and current Ioi.

As noted earlier, the primary controller inside the power controller block implements

two droop based feedback control laws (8.3) to set the reference terminal voltage V ∗oi
and inverter frequency ωi.

8.2.4 Voltage and Current Controller

The voltage controller receives the reference voltage set points
[
V ∗odi V ∗oqi

]T
from

the power controller. A traditional output voltage control (Vodi → V ∗odi) as noted

in [94, 96, 112] is achieved with a proportional-integral (PI) control structure and

generates the reference current set points
[
I∗Ldi I∗Lqi

]T
to be tracked by the current

controller.

The current controller on the other hand receives the unfiltered feedback current

signal
[
ILdi ILqi

]T
from the VSI, their respective reference set points noted above from

the voltage controller as inputs and produces the reference DC voltage
[
V ∗Idi V ∗Iqi

]T
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Figure 8.5: Reference terminal voltage V ∗oi aligned on di axis

for the DC to AC converter shown in Figure 8.3. Just like the voltage controller, the

current controller also adopts a PI control structure to achieve the current regulation

(ILi→ I∗Li).

To get a complete dynamical state space model of the voltage and current controllers,

interested readers are referred to [94, 96]. Since we also do not consider the VSI

switching dynamics because of its negligible time constant compared to that of the

internal controllers and output filters, in the dynamics of coupling RLC filers and

output connectors we can safely use VIdi = V ∗Idi and VIqi = V ∗Iqi.

8.2.5 Output Filters and Connectors

Output LC filters and connectors at the DG terminal yield the following differential

equations

İLdi =−Rfi
Lfi

ILdi+ωiILqi+
1
Lfi

(VIdi−Vodi), (8.9)

İLqi =−Rfi
Lfi

ILqi−ωiILdi+
1
Lfi

(VIqi−Voqi), (8.10)
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V̇odi = ωiVoqi+
1
Cfi

(ILdi− Iodi), (8.11)

V̇oqi =−ωiVodi+
1
Cfi

(ILqi− Ioqi), (8.12)

İodi =−Rci
Lci

Iodi+ωiIoqi+
1
Lci

(Vodi−Vbdi), (8.13)

İoqi =−Rci
Lci

Ioqi−ωiIodi+
1
Lci

(Voqi−Vbqi), (8.14)

where Rci,Lci,Vbdi,Vbqi are respectively the coupling resistance, inductance, direct

and quadrature components of the bus voltage. By defining the state vector xi =[
δi Pi Qi ILdi ILqi Vodi Voqi Iodi Ioqi

]T
the Eqs. (8.2), (8.8), (8.6) - (8.14)

can be augmented to obtain the large signal dynamical model of a DG in compact

state space form as follows

ẋi = fi(xi) +giu
dist
i +ki(xi)ui,

yi = hi(xi) +Diui,

(8.15)

where udist
i =

[
ωcom Vbdi Vbqi

]T
, ui and yi are respectively the control input and

output vectors, and the detailed expressions for fi(xi),gi,ki(xi),hi(xi) and Di can be

deduced directly from Eqs. (8.2) - (8.14).

To connect a DG with other neighboring DGs, networks and loads we first need to

transform the inputs and outputs to a DG expressed in local coordinates to that in

the common (D−Q) coordinate by the transformation Ti in (8.7).

8.2.6 Network Model and Loads

The schematic diagram for the network model and loads is shown in Figure 8.6 where

the bus voltages, injected current to the ith PCC, line current between buses i and

j, injected current into load ZLoad,i =RLoad,i+ jωcomLLoad,i are respectively denoted

by Vbi, Ioi, ILine,ij , ILoad,i. The state equations of the line current ILine,ij between the
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buses i and j and the load current ILoad,i expressed on a common reference frame are

given as follows

İLineD,ij = ωcomILineQ,ij+
∆ṼbD,ij
LLine,ij

, (8.16)

İLineQ,ij =−ωcomILineD,ij+
∆ṼbQ,ij
LLine,ij

, (8.17)

İLoadD,i = ωcomILoadQ,i−
RLoad,i
LLoad,i

ILoadD,i+
VbDi
LLoad,i

, (8.18)

İLoadQ,i =−ωcomILoadD,i−
RLoad,i
LLoad,i

ILoadQ,i+
VbQi
LLoad,i

, (8.19)

with ∆VbD,ij = VbDi−VbDj , ∆VbQ,ij = VbQi−VbQj , ∆ṼbD,ij = ∆VbD,ij−RLine,ijILineD,ij

and ∆ṼbQ,ij = ∆VbQ,ij−RLine,ijILineQ,ij .

Figure 8.6: Network representation between two adjoining buses i and j

The objective of this synchronization problem is to design a cooperative secondary

control law ui = Vni (or ωni) in (8.3) such that Vodi→ Vref (or ωi→ ωref). By using

the feedback linearization method in [93] we obtain a desired linear relation between
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V̇odi (or ω̇i) and auxiliary control inputs uV i (or uωi) as follows

V̇odi = uV i, ω̇i = uωi. (8.20)

Once we design the control law uV i (or uωi) to render Vodi→ Vref (or ωi→ ωref), then

from (8.20) we can compute the required form of Vni (or ωni) as

Vni(t) =
∫ t

0
(uV i(s) +nQiQ̇i(s)) ds, (8.21)

ωni(t) =
∫ t

0
(uωi(s) +mPiṖi(s)) ds. (8.22)

A consensus based distributed cooperative control algorithm for constructing

uV i (or uωi) was developed in [93, 96, 112] to achieve a satisfactory synchronization

performance for the delay free communication between the DGs. In this work we

consider that the communication from the DG units is subject to an arbitrary large

heterogeneous time-varying latency unlike [104,105,107].

8.2.7 Latency in Synchronization over a Deterministic Net-

work

Let G be the digraph representing the communication topology of the DGs and τij(t)

be the latency in the communication between DG i and DG j ∈Ni. In the context of

multi-agent cooperative control, N DGs along with the grid set-points can be viewed

as a leader-follower multi-agent system with the reference grid operating point being

the leader signal and N DGs as followers. Let the leader node be designated as zeroth

node and the followers as i = I[1,N ], then the digraph Ḡ = G ∪ (0,{ei0}) represents

the network of N + 1 agents.

Since the local communication between the DG units is now inflicted with some

latencies, our proposed cooperative control structure explicitly accounts for the delay
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in the coordination and control protocol. For a deterministic network where the com-

munication latencies can be precisely recorded, the distributed control law uV i (or uωi)

for N DGs can be designed as follows

uV i = µ
∑
j∈Ni

aij
[
Vodj(t− τij(t))−Vodi(t− τij(t))

]

+µai0 [Vref(t− τi0(t))−Vodi(t− τi0(t))] , (8.23)

uωi = µ
∑
j∈Ni

aij [ωj(t− τij(t))−ωi(t− τij(t))]

+µai0 [ωref(t− τi0(t))−ωi(t− τi0(t))] , (8.24)

where aij > 0 is the weighting factor for the communication link between nodes j

and i, ai0 is the pinning gain of the edge connecting the node i to the reference,

τij(t) : R+→ R, j = I[0,N ] is continuous time varying communication delay with the

delay range τ̄ such that τij(t)∈ [0, τ̄ ] and µ is the low gain parameter to be determined.

The “low gain” parameters are commonly found in the Truncated Predictor Feedback

(TPF) control solution for time delayed systems [72]. For the sake of brevity, we will

use τij , j = 0,1, · · · ,N in place for τij(t) for the rest of the text.

For τ̄ = max(τij), i= I[1,N ], j = I[0,N ] with j 6= i, and θ ∈ [−τ̄,0] let the initial

conditions Vref(θ) = Vref(θ) and Vodi(θ) = Vi(θ), where Vref,Vi ∈ C([−τ̄,0],R). Denote

the disagreement error Ṽi = Vodi−Vref, ω̃i = ωi−ωref with Ṽi(θ) = Ṽi(θ), ω̃i(θ) = ω̃i(θ)

where Ṽi(θ), ω̃i(θ) ∈ C([−τ̄,0],R). By substituting (8.23) (or (8.24)) into (8.20), the

voltage (or frequency) error dynamics can then be obtained as follows

˙̃Vi =µ
N∑
j=1

aij [Ṽj(t−τij)−Ṽi(t−τij)]−µai0Ṽi(t−τi0), (8.25)

˙̃ωi =µ
N∑
j=1

aij [ω̃j(t−τij)−ω̃i(t−τij)]−µai0ω̃i(t−τi0), (8.26)

We need the following assumption to guarantee the solvability of the consensus problem.
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Assumption 8.2.1. The digraph Ḡ contains a spanning tree with the leader node

being the root.

Remark 8.2.1. The Laplacian matrix L̄ of Ḡ can be partitioned as

L̄=

 0 [0]1×N

G1N H

 , (8.27)

where H = L+G with L being the Laplacian matrix corresponding to the digraph

G and G being a diagonal matrix with the diagonal elements ai0, i = I[1,N ]. By

Assumption 8.2.1 and Lemma 2 of [114], L̄ has a simple zero eigenvalue. Furthermore,

by Assumption 8.2.1 and Lemma 1 of [29], the matrix H is nonsingular and has

eigenvalues with positive real parts. Therefore −H is a Hurwitz matrix.

Let us denote Ṽ = col(Ṽ1, Ṽ2, · · · , ṼN ), Ṽ = col(Ṽ1,Ṽ2, · · · ,ṼN ),

ω̃ = col(ω̃1, ω̃2, · · · , ω̃N ), and ω̃ = col(ω̃1, ω̃2, · · · , ω̃N ). Now we are ready to define the

problem statement as follows.

Given a digraph G of N networked agents with linearized dynamics (8.20) and

the auxiliary control uV i (or uωi) in (8.23) (or (8.24)), the objective of the studied

synchronization problem is to design a feedback gain µ such that the error dynamics

(8.25) (or (8.26)) is globally asymptotically stable, i.e., for a constant delay bound

τ̄ > 0 and Ṽ(θ) (or ω̃(θ)) ∈ C([−τ̄,0],RN ), limt→∞ Ṽ (t) = 0 (or limt→∞ ω̃(t) = 0).

8.3 Main Result

In this section, we present the stability results of the synchronization error dynamics

in (8.25) and (8.26), which will eventually lead to the design of our low gain parameter

µ. The current work provides an upper bound of µ to ensure the stability of the error

dynamics. The stability results are also extended to the case where τij and τi0 are not

known in the control.
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To demonstrate the convergence of the error dynamics (8.25) (or (8.26)) with com-

munication delays τij , i= I[1,N ], j = I[0,N ], i 6= j, first we evaluate the boundedness

of the response for t≤ τ̄ before the delayed measurements are available for feedback

correction.

For t= 0+, from (8.25) we obtain

‖ ˙̃Vi‖t=0+ ≤ µ

 N∑
j=1

aij |Ṽj(−τij)‖
+µ|Ni|‖Ṽi(−τij)‖

+µ‖Ṽi(−τi0)‖,

≤ µ
N∑
j=1
‖Ṽj(−τij)‖+µ|Ni|‖Ṽi(−τij)‖+µ‖Ṽi(−τi0)‖,

≤ µ(2|Ni|+ 1)‖Ṽ0‖C (8.28)

where ‖Ṽ0‖C = max
θ∈[−τ̄,0]

‖Ṽ i(θ)‖, i = I[1,N ] and |Ni| is the cardinality of the set Ni.

Since ˙̃Vi is bounded at t= 0+, then for an arbitrarily small positive scalar ε, the error

vector Ṽi also remains bounded in the interval [0, ε]. By using this result and exploiting

the boundedness of Ṽi(θ), θ ∈ [−τ̄,0], from (8.25) we can again find that ‖ ˙̃Vi‖t=ε+

is bounded and so is Ṽi(t) for t ∈ [ε,2ε]. In an inductive manner, we find that Ṽi(t)

is bounded across each subintervals [(k−1)ε,kε], k = I[0,m] with m ∈ Z+, mε= τ̄ .

Following the steps shown above, ω̃i(t) in (8.26) can also be shown to be bounded

within the interval [0, τ̄ ].

Once the boundedness of the initial response is obtained, we then proceed to derive

the asymptotic stability conditions of (8.25) in Section 8.3.1 and (8.26) in Section

8.3.2 for t > τ̄ .
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8.3.1 Stability of the Voltage Synchronization Error Dynam-

ics

Let us define two auxiliary variables δ̄ij(t), j = I[1,N ], and δ̂ij(t), j = I[0,N ], i 6= j as

follows

δ̄ij(t) = Ṽj(t−τij)−Ṽj(t)=−
∫ t

t−τij

˙̃Vj(s) ds, (8.29)

δ̂ij(t) = Ṽi(t)−Ṽi(t−τij) =
∫ t

t−τij

˙̃Vi(s) ds. (8.30)

By substituting Ṽj(t−τij), Ṽi(t−τij), Ṽi(t−τi0) in (8.25) with δ̄ij(t) and δ̂ij(t) defined

above, we can rewrite (8.25) as

˙̃Vi = µ
N∑
j=1
aij(Ṽj−Ṽi)−µai0Ṽi+µ(δ̄i+ δ̂i+ai0δ̂i0), (8.31)

where δ̄i =∑N
j=1aij δ̄ij , δ̂i =∑N

j=1aij δ̂ij . The augmented error dynamics then becomes

˙̃V =−µHṼ +µ(δ̄+ δ̂) +µGδ̂0, (8.32)

with δ̄ = col(δ̄1, δ̄2, · · · , δ̄N ), δ̂ = col(δ̂1, δ̂2, · · · , δ̂N ), and δ̂0 = col( ˆδ10, ˆδ20, · · · , δ̂N0).

To analyze the stability of (8.32), we construct an energy function of the form

V0 = Ṽ TPṼ where P ∈RN×N is a positive definite matrix. Since P is symmetric and

has all positive eigenvalues,

0≤ λmin(P )‖Ṽ ‖2 ≤ V0 ≤ λmax(P )‖Ṽ ‖2, Ṽ 6= 0.

By differentiating V0 along the trajectories of (8.32) we obtain

V̇0 = ˙̃V TPṼ + Ṽ TP ˙̃V =−µṼ T[HTP +PH]Ṽ + 2µ(δ̄TPṼ + δ̂TPṼ + δ̂T
0 GPṼ ),
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≤ µṼ T(HT
1 P +PH1 + 3)Ṽ +µλ2

max(P )(δ̄Tδ̄+ δ̂Tδ̂+ δ̂T
0 G

2δ̂0). (8.33)

The positive definite matrix P in (8.33) is obtained to satisfy the following Lyapunov

equation

HT
1 P +PH1 =−βIN , β > 0. (8.34)

For any β > 0, a corresponding positive definite solution P in (8.34) can always be

found since H1 =−H is a Hurwitz matrix by Remark 8.2.1. Furthermore, the matrix

G2 in (8.33) is a diagonal matrix with elements a2
i0 and therefore λmax(G2) = d2

0,

where d0 = max(a10,a20, · · · ,aN0). By substituting these results into Equation (8.33)

we obtain

V̇0 ≤ µ(−β+3)Ṽ TṼ +µλ2
max(P )(δ̄Tδ̄+ δ̂Tδ̂+d2

0δ̂
T
0 δ̂0). (8.35)

Since δ̄Tδ̄ =∑N
i=1 δ̄

T
i δ̄i with δ̄i defined in (8.31), then by using the Young’s inequality

for products

2δ̄ijaijaikδ̄ik ≤
1
α0
a2
ij‖δ̄ij‖2 +α0a

2
ik‖δ̄ik‖2, α0 > 0 (8.36)

we obtain δ̄Tδ̄ ≤ (N −1)∑N
i=1

∑N
j=1a

2
ij‖δ̄ij‖2. Next, with an extension of the Jensen

inequality presented in Lemma 1 of [115] we obtain

δ̄Tδ̄ ≤ (N −1)τ̄ d2
out

[∫ t

t−τ̄
˙̃V T(s) ˙̃V (s) ds

]
, (8.37)

where dout is the maximum out-degree of nodes in digraph G. In a similar manner

δ̂Tδ̂ and δ̂T
0 δ̂0 in (8.35) yields

δ̂Tδ̂ ≤ (N −1)τ̄ d2
in

[∫ t

t−τ̄
˙̃V T(s) ˙̃V (s)

]
,

δ̂T
0 δ̂0 ≤ τ̄

∫ t

t−τ̄
˙̃V T(s) ˙̃V (s)ds,

(8.38)
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with din be the maximum in-degree of nodes in G. Let us now consider a functional of

the form V1 =
∫ τ̄
0
∫ t
t−s

˙̃V T(σ) ˙̃V (σ) dσ ds. Then from (8.37) and (8.38), we obtain

δ̄Tδ̄+ δ̂Tδ̂+d2
0δ̂

T
0 δ̂0 ≤ c0τ̄2 ˙̃V T ˙̃V − c0τ̄ V̇1, (8.39)

where c0 = (N − 1)d2
out + (N − 1)d2

in + d2
0. By using an inequality similar to (8.36),

from (8.32) we deduce ˙̃V T ˙̃V as follows

˙̃V T ˙̃V ≤ 4µ2
(
Ṽ THTHṼ +

(
δ̄Tδ̄+ δ̂Tδ̂+d2

0δ̂
T
0 δ̂0

))
, (8.40)

which after substitution in (8.39) yields

δ̄Tδ̄+ δ̂Tδ̂+d2
0δ̂

T
0 δ̂0 ≤

−c0τ̄ V̇1 + 4µ2c0τ̄2σH Ṽ
TṼ

1−4µ2c0τ̄2 , (8.41)

with σH = ‖H‖2. From (8.35), we thus obtain

V̇0 ≤ µ(−β+ 3)Ṽ TṼ +µλ2
max(P )

[
−c0τ̄ V̇1 + 4µ2c0τ̄2σH Ṽ

TṼ

1−4µ2c0τ̄2

]
. (8.42)

Next we present the main stability theorem of this work to derive an upper bound

of the low gain parameter µ that in turn ensures the asymptotic convergence of Ṽ (t)

in face of arbitrary time varying communication delays τij within the bound [0, τ̄ ].

Theorem 8.3.1. Consider the linearized subsystem dynamics (8.20) with the control

protocol in (8.23) satisfying Assumption 8.2.1. For a scalar β > 3, let P > 0 be a

solution to (8.34). Then for any arbitrary time-varying latency τij , j = I[0,N ], j 6= i

within the bound [0, τ̄ ], the controlled subsystem state Vodi converges to Vref asymptoti-

cally, i.e., limt→∞(Vodi(t)−Vref) = 0, i= I[1,N ] if the low gain parameter µ satisfies
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µ < µ̄, where

µ̄= 1
2τ̄√c0

√
β−3

σHλ2
max(P ) + (β−3) , β > 3. (8.43)

Proof. Let us consider a Lyapunov-Krasovskii functional of the form

V2 = V0 + µc0λ2
max(P )τ̄

1−4µ2c0τ̄2 V1. (8.44)

Then by differentiation and little rearrangement of terms in (8.42) we obtain

V̇2 ≤ µ
[
−β+ 3 + 4µ2c0τ̄2σHλ

2
max(P )

1−4µ2c0τ̄2

]
‖Ṽ ‖2. (8.45)

Therefore V̇2 < 0 if µ < µ̄ with µ̄ defined in (8.43). Moreover for any β > 3, from

(8.43) we notice that

4c0µ2τ̄2 <
(β−3)

σHλ2
max(P ) + (β−3) < 1

and as a result V2 in (8.44) is always positive except when Ṽ = 0 and ˙̃V (t+ θ) = 0,

θ ∈ [−τ̄,0]. Furthermore, from (8.40) and (8.41), V2 is bounded between two non-

decreasing functions thereby satisfying the first condition of the Lyapunov-krasovskii

stability theorem [115]. Hence the synchronization error dynamics in (8.32) is globally

asymptotically stable, i.e., limt→∞ Ṽ (t) = 0. This concludes the proof.

Remark 8.3.1. From (8.43) we notice that a higher delay bound τ̄ will result in a

corresponding lower gain µ. In other words, for any arbitrarily large τ̄ > 0, there

exists a unique upper bound µ̄ on µ such that for any µ ∈ [0, µ̄) (8.43) is satisfied.

This conclusion is same as that of the low gain based TPF control for time delayed

systems [89].
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8.3.2 Stability of the Frequency Synchronization Error Dy-

namics

Given the linearized subsystem dynamics (8.20) with the cooperative frequency con-

troller (8.26), by virtue of Theorem 8.3.1, the inverter frequency ωi can be shown to

be synchronized with ωref analogously. For the subsequent discussion in the chapter,

we present only the stability results for the voltage synchronization as the analogous

results for the frequency counterpart can be straightforwardly deduced.

8.3.3 Voltage Synchronization of Networked DGs under Un-

known Communication Latency

Although deterministic networks enable nodes to synchronize their clocks and accu-

rately track communication latencies, there are some practical instances where the

communication delay may be unknown. In the following we consider such general case

and demonstrate the effectiveness of a low gain based control to withhold stability

even in the case of unknown time varying latencies. To do this, let us redefine the

control protocol uV i as follows

uV i = µ
N∑
j=1

aij [Vodj(t− τij)−Vodi(t)] +µai0[Vref(t− τi0)−Vodi(t)], (8.46)

and from (8.20) the closed loop dynamics thus becomes

V̇odi = µ
N∑
j=1

aij [Vodj(t− τij)−Vodi(t)] +µai0[Vref(t− τi0)−Vodi(t)],

= µ
N∑
j=1

aij(Vodj−Vodi)+µ
N∑
j=1

aij(Vodj(t− τij)−Vodj)

+µai0(Vref(t− τi0)−Vref)+µai0(Vref−Vodi). (8.47)
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By substituting Ṽi = Vodi−Vref, from (8.47), the synchronization error dynamics

yields the following result,

˙̃Vi = µ
N∑
j=1

aij(Ṽj−Ṽi) +µ
N∑
j=1

aij(Ṽj(t− τij)−Ṽj)

−µai0Ṽi+µ
N∑
j=1

aij(Vref(t− τij)−Vref) +µai0(Vref(t− τi0)−Vref). (8.48)

Similar to the case in Section 8.3.1, first we evaluate the boundedness of Ṽi(t) for

t∈ [0, τ̄ ]. With a little abuse of notation, let ‖Vr̄ef‖C = max
θ∈[−τ̄,0]

‖Vref(θ)‖ and then from

(8.48) we obtain

‖ ˙̃Vi‖t=0 ≤ µ(4Ni+ 1)‖Ṽ0‖C+ 2µ(Ni+ 1)‖Vr̄ef‖C , (8.49)

which shows that ‖ ˙̃Vi‖ is bounded at t= 0, and thus for an arbitrarily small scalar ε > 0,

Ṽi(t) is bounded within the interval [0, ε]. Continuing in same manner as in the previous

case, we inductively evaluate that across each subintervals [(k−1)ε,kε], k = I[0,m],

with mε = τ̄ , Ṽi(t) is bounded. Next we investigate the asymptotic stability of the

error dynamics (8.48) for t > τ̄ .

Since Vref is a constant DC signal for any t > τ̄ , then regardless of the delay

τij , j = I[0,N ], i 6= j, Vref(t− τij) = Vref(t) and consequently from (8.48) we obtain

˙̃Vi = µ
N∑
j=1

aij(Ṽj− Ṽi)−µai0Ṽi+µδ̄i, (8.50)

with δ̄i being defined in (8.31). The composite error dynamics thus becomes

˙̃V = µH1Ṽ +µδ̄, (8.51)

where H1 =−(L+G). To analyze the stability, let us take an energy function of the

form V3 = Ṽ TPṼ with P ∈RN×N > 0 being a positive definite matrix solution to the
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equation

HT
1 P+PH1 =−β0IN ,β0 > 0. (8.52)

Such a solution always exists since H1 is a Hurwitz matrix. By differentiation of V3

along the trajectories of (8.51) we thus obtain

V̇3 =−µβ0Ṽ
TṼ +2µṼ TP δ̄ ≤ µ(−β0+1)Ṽ TṼ +µδ̄TP2δ̄,

≤ µ(−β0+1)Ṽ TṼ +µλ2
max(P)δ̄Tδ̄. (8.53)

With an upperbound of δ̄Tδ̄ in (8.37) and the definition of V1 in (8.39), we can further

evaluate δ̄Tδ̄ in (8.53) as follows

δ̄Tδ̄ ≤ c1τ̄2 ˙̃V T ˙̃V − c1τ̄ V̇1, (8.54)

where c1 = (N −1)d2
out. Similar to (8.40), along the trajectory of (8.51) we compute

˙̃V T ˙̃V ≤ 2µ2(σH Ṽ TṼ + δ̄Tδ̄),

which after substitution in (8.54) yields

δ̄Tδ̄ ≤ 2c1µ2σH τ̄
2

1−2c1µ2τ̄2 Ṽ
TṼ − c1τ̄

1−2c1µ2τ̄2 V̇1. (8.55)

Let us define

V4 = V3 + c1µλ2
max(P)τ̄

1−2c1µ2τ̄2 V1. (8.56)

Then by substituting the results of (8.55) into (8.53) and a little rearrangement of

terms, we obtain

V̇4 ≤ µ
(
−β0 + 1 + 2µ2λ2

max(P)σH τ̄2c1
1−2µ2τ̄2c1

)
‖Ṽ ‖2. (8.57)
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We now present the following stability theorem which prescribes an upper bound for

the low gain parameter µ to ensure the asymptotic convergence of the error state Ṽ

in (8.51).

Theorem 8.3.2. Consider the linearized subsystem dynamics (8.20) with the control

protocol in (8.46) satisfying Assumption 8.2.1. For a scalar β0 > 1, let P > 0 be a

solution to (8.52). Then for any arbitrary unknown time-varying latency τij , j =

I[0,N ], j 6= i within the bound [0, τ̄ ], the controlled subsystem state Vodi in (8.47)

converges to Vref asymptotically, i.e., limt→∞(Vodi(t)−Vref) = 0, i= I[1,N ] if the low

gain parameter µ satisfies µ < µ̄, where

µ̄= 1√
2c1τ̄

√
β0−1

σHλ2
max(P) +β0−1 , β0 > 1. (8.58)

Proof. Given the energy functional V4 in (8.56) with its derivative in (8.57), by

virtue of µ < µ̄ with µ̄ in (8.58) and Lyapunov-Krasovskii stability theorem [115], the

proof of Theorem 8.3.1 can be replicated with a very slight modification to obtain

limt→∞ Ṽ (t) = 0. This concludes the proof.

8.4 Illustrative Example

Consider a network of 4 DGs from [96] with the communication topology and per

phase circuit diagram shown in Figure 8.7 and the DG, networks and load parameters

listed below.

mPi = 9.4×10−5, i= 1,2,mPj = 12.5×10−5,

nQi = 1.3×10−3, i= 1,2,nQj = 1.5×10−3, j = 3,4,

Rci = 0.3,Lci =35.35×10−3,Rfi =0.1,Lfi =2.25×10−3,

Cfi = 50×10−6,RLine,ij = 0.23,LLine,21 = 318×10−6,
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Figure 8.7: Network of 4 DGs with communication links and per phase line impedances

LLine,32 = 1847×10−6,LLine,43 = 318×10−6,

PLoad1 = 12×103,PLoad3 = 15.3×103,

QLoad1 = 12×103,QLoad3 = 7.6×103. (8.59)

As shown in Fig. 8.7, we assume that DG 1 receives the grid reference set points

Table 8.1: Communication delays between the DGs
t τ10(t) τ21(t) = τ32(t) τ43(t)

i≤ t < i+ 0.2T 0.1 0.48 0.3
i+ 0.2T ≤ t < i+ 0.3T 0.1 0.3 0.4
i+ 0.3T ≤ t < i+ 0.4T 0.33 0.3 0.2
i+ 0.4T ≤ t < i+ 0.5T 0.33 0.1 0.2
i+ 0.5T ≤ t < i+ 0.7T 0.48 0.2 0.2
i+ 0.7T ≤ t < i+ 0.9T 0.24 0.2 0.48
i+ 0.9T ≤ t < i+T 0.3 0.4 0.1

Vref = 380 V and ωref = 60 Hz. Now we introduce the communication delays between

the DGs as shown in Table 8.1, where i= 1,2, · · · , and T = 10. From the data in Table

8.1, we find τ̄ = 0.5. Moreover, from the communication topology of the DG units in
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Fig. 8.7 we obtain

H =



1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


(8.60)

and consequently σH = 3.5321, c1 = 3. With β0 = 2, from (8.58) we evaluate µ̄= 0.1164.

For simulation purpose, we select µ= 0.1153 and after applying the control protocol

(8.46) to the linearized subsystems (8.20) with this µ the simulation results are obtained

in Figure 8.8.

0 20 40 60 80 100 120

Time (s)

340

350

360

370

380

390

400

410

Figure 8.8: Filtered DG output voltage regulation

From Fig. 8.8 we observe that the DG output voltage magnitudes Vodi asymp-

totically converge to Vref = 380 in the presence of unknown communication delays

bounded within [0,0.5]. However, for larger delay, a corresponding low gain bound

can always be found from (8.58) to asymptotically stabilize the DG subsystems (8.20).

We note here that the convergence will be slower as the delay goes larger but the

proposed control protocol (8.46) can always guarantee asymptotic stability of (8.20)
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Figure 8.9: DG inverter frequency regulation

even when the delays are large enough. A similar control protocol for frequencies can

achieve frequency synchronization, as observed from Fig. 8.9.

8.5 Conclusion

In this chapter we studied the voltage and frequency synchronization problem of

inverter based islanded DG units under known or unknown arbitrary time varying

communication delays. By linearizing the nonlinear DG dynamics with input output

linearization and then by applying the proposed low gain based cooperative control

protocol on the linearized subsystems we have shown that the DG terminal voltage

and inverter frequencies are synchronized to the grid reference points in the presence

of network latencies. We derived sufficient delay dependent conditions in terms of the

upper bound of the low gain parameter to guarantee the stability of the synchronization.

We also noted that the solution to this synchronization problem does not require
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any restrictive assumptions on the network topology when compared to the previous

results.

With the help of an illustrative example we highlighted the effectiveness of our

theoretical results. We demonstrated that the proposed low gain based control

protocol can always render asymptotic stability to the DG units, although the speed of

convergence is dictated by the delay bounds. The objectives of the DG synchronization

problem are thus achieved with a low gain cooperative controller under arbitrary

heterogeneous time delays and mild communication requirements. In future, we will

explore the critical load restoration problem of islanded microgrids under time delays

and switching network topologies.



Chapter 9

Conclusions and Future Work

In this dissertation we explored the CORP for MASs under the detectability constraint

that none of the follower members were capable of independently estimating the leader

trajectory from their individual measurements. As a result none of the followers could

solve the output regulation problem by itself. In our proposed solution, we devised a

novel distributed estimation algorithm based on the collective measurements by all

the followers. This was achieved by issuing a “combined detectability” condition and a

mild connectivity assumption to ensure the propagation of measurement signals among

followers. With the estimated leader state, a distributed controller was designed for

the followers and shown to solve the ORP under the assumptions and constraints

considered in this thesis.

The motivations and the objectives of the research effort presented in this thesis

were discussed in Chap. 1. Starting with the fundamental cooperative control problems,

the discussion was extended to the traditional CORP. It was also noted that the

objective for any classical cooperative control problem is to synthesize a distributed

control law for the followers using the local information available to them from their

neighbors. The challenges to the ORP under various constraints were described in

164
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greater detail along with the different approaches adopted to solve such problems.

Furthermore, a brief overview of the subsequent chapters was also presented.

In Chapter 2, the CORP for linear MASs was studied under the detectability

constraint discussed above. By proposing a novel estimation technique relying on

the collective measurements of the followers, distributed state feedback and output

feedback control solutions were offered. The design procedure for constructing the

controller and observer gains were also depicted. With the help of a numerical example,

the theoretically derived results were validated. Simulation results showed how the

followers were able to successfully track the leader states, and the regulated output of

the followers converged to zero asymptotically under the proposed control solution.

In Chapter 3, the solution to the CORP for nominal agent dynamics was extended

to the problem when the dynamics of the agents are subject to additive paramateric

uncertainties. It was also assumed that the local regulated error signals were not

available to the followers for control. With the estimated leader states from Chap

2, an estimated regulated error signal was constructed and used as a feedback to

the local control. The proposed distributed control solution incorporated an internal

model of the leader to allow for norm-bounded uncertainties in the agents’ dynamics.

Additionally, a bound to the norm of the error in the regulated output is theoretically

derived as a function of the uncertain parameters. A numerical example was presented,

which showed that all the followers had the regulated outputs converged to zero

asymptotically even in the presence of uncertainties in the dynamics.

In Chapter 4, we studied the CORP of MASs in a switching network, where the

agents group do not have enough information to independently reconstruct the leader

states at any single switching configuration. Extending the results from Chap. 2 to

the case for dynamic network, we offered a novel distributed estimation algorithm

to reconstruct the leader trajectory. Necessary conditions for the stability of the

estimation error dynamics was derived, and the observer design procedure was also
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outlined. Based on the observed states, a distributed control law was constructed

for the MASs with underlying switching communication. An illustrative example

showed that the objectives of the CORP were achieved under given communication

and detectability constraints.

In Chap. 5, the theoretical results developed in the former chapters were tested

experimentally on the position synchronization problem of networked motors under

the considered detectability constraint and switching communication topology. Firstly,

we introduced the experimental setup consisting of a group of servomotors, a leader

computer for generating the reference trajectory to be tracked by the follower motors,

the communication between the networked motors through the TCP/IP protocol, and

the PC’s for implementing the estimation and control algorithms for each motors.

Next, the control law was designed by suitably selecting the controller, observer gains

and a scaling factor. By implementing the proposed control algorithm, it was observed

that the tracking error for the follower servomotors incurs a small tracking error

while other existing techniques were not applicable. Finally some discussions on the

experimental results were presented along with a comparative analysis with respect to

other existing methods in the literature.

In Chapters 6 and 7, we studied the distributed state estimation problem of a

network of observers under heterogeneous time-invariant and time-varying commu-

nication delays. With the use of low-gain methodologies, we offer sufficient stability

conditions of the estimation error dynamics in terms of the upper bound of the delay

magnitude or the low gain parameter. The proposed distributed state estimation

method is applied to then develop a control solution of the leader tracking problem in

a leader-follower multi-agent system. Furthermore, in the presence of communication

delays, we also investigated the distributed state estimation of an autonomous plant

by a multi-observer systems for the case when the plant measurements are inflicted
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with noise. We found that the bounds on the local estimation errors are dictated by

the supremum norm bounds of the disturbance signals.

In Chapter 8, we studied the voltage and frequency synchronization problem of

inverter based islanded distributed generators under known or unknown arbitrary

time-varying communication delays. With a low gain parameter in the consensus based

control protocol, we derived sufficient delay dependent conditions for the stability of

the synchronization.

9.1 Future Research

This dissertation addresses various cooperative control problems namely CORP, dis-

tributed state estimation and synchronization control of multi-agent systems under

detectability constraints, uncertainty in agent dynamics, switching communication

topologies and network latencies. While working on these research areas, we recognized

several potential open problems which we would like to pursue in future research

endeavors.

9.1.1 Task 1

One possible research direction is to study CORP for the case when the plant mea-

surements are only available intermittently. Since the proposed control techniques

rely on the continuous measurements from the exosystem, they do not apply when

the exosystem measurement is only available sporadically. For non-minimum SISO

systems, tracking of intermittent periodic output for a single agent system was studied

by [116]. For intermittent aperiodic measurements, output regulation problem for

nonlinear minimum phase systems was studied by the authors of [117]. However,

to the best of authors’ knowledge, there have been no analogous results available

for the CORP of multi-agent system in case when “informed” agents receive only
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an insufficient measurement from the exosystem aperiodically. Therefore, studying

the CORP with aperiodic exosystem measurements with the considered detectability

constraint is an interesting future research endeavor.

9.1.2 Task 2

The implementation of a control algorithm in practical applications inevitably suffers

from the challenge of actuator saturation. Control input saturation is probably the

most usual nonlinearity encountered in control engineering because of the hardware

constraints of sensors and actuators. If the effects of saturation are ignored in the

design, a controller may “wind up” the actuator, possibly resulting in degraded

performance or even instability. A classical approach to avoiding such undesirable

behaviors is to add an anti-windup compensator to the original controller. Recently,

in [118], a Riccati equation based design approach was adopted to deal with this

problem. For a general linear system with the open-loop poles being located in the

closed left half plane, a low-gain design method [119] relying on a parametric Lyapunov

equation [120] was developed to achieve semi-global stabilization.

While the effects of actuator saturation were considered for the synchronization

problem [121], there have been no analogous results available for the CORP. With

this as motivation, we would like to extend the results for CORP under detectability

constraints to the case when the control input for the follower agents is limited by

actuator saturation.
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