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Abstract—This study investigates the distributed fault-tolerant
consensus issue of multi-agent systems subject to complicated
abrupt and incipient time-varying actuator faults in physical hier-
archy and aperiodic denial-of-service (DoS) attacks in networked
hierarchy. Decentralized estimators are devised to estimate con-
secutive system states and actuator faults. A unified framework
with an absolute local output-based closed-loop estimator in
decentralized fault estimation design and a relative broadcasting
state-based open-loop estimator in distributed event-triggered
fault-tolerant consensus design is developed. Criteria of expo-
nential consensus of the faulty multi-agent systems under DoS
attacks are derived by virtue of average dwelling time and
attack frequency technique. Simulations are outlined to confirm
the efficacy of the proposed distributed fault-tolerant consensus
control algorithm based on an event-triggered mechanism.

Index Terms—Distributed fault-tolerant consensus control,
event-triggered mechanism, multi-agent systems, incipient and
abrupt actuator faults, DoS attacks.

I. INTRODUCTION

D ISTRIBUTED consensus control of networked multi-
agent system (MASs) has witnessed a substantial surge

in interest and made swift progress in the field of civil-military
integration because of its distributed advantages of compre-
hensive cooperation and autonomy. A concise examination of
the coordination and consensus of MASs was outlined in [1].
Recently, there has been a notable curiosity in achieving dis-
tributed consensus for the linear/nonlinear MASs [2], [3] and
homogeneous/heterogeneous MASs [4], [5]. The achievement
of consensus in MASs requires precise and ongoing interaction
among individuals through communication topologies. Any
compromise to this essential information exchange, particu-
larly due to cyber-attacks, can disrupt the consensus achieved
[6]. Thus, the network security management of MASs becomes
highly coveted in light of diverse cyber-attacks, such as false
data-injection attacks [7], [8], deception attacks [9] and DoS
attacks [10], [11]. Different from destroying the integrity of
input and output signal (deception attacks), periodic/aperiodic
DoS attacks [10], [12] and strategic DoS attacks [13] in MASs
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lead to interruption of information transmission between sen-
sor and control channels. However, for directed/undirected
balanced graph or fixed/switching topology [14], the existing
graph theory and switching concept can not directly solve the
consensus control problem affected by intermittent network
interruption of MASs under DoS attacks. Therefore, develop-
ing a novel distributed anti-attack consensus control for MASs
against DoS attacks is necessary but also presents a challenge.

The dynamic evolution of MASs is influenced not only by
adversarial DoS attacks in networked hierarchy but also by
actuator faults at the local agent level in physical hierarchy.
Therefore, it is desirable that MASs operate safely and re-
liably, and fault-tolerant consensus control (FTCC) [15]-[17]
is a powerful method to attain local adaptability and global
coordination expected by MASs with appropriate anti-attack
effectiveness. Aiming at heterogeneous nonlinear MASs, a
robust adaptive FTCC protocol was developed to realize
fault-tolerant consensus by local (adjacent) state information
and compensate for complex uncertainties and unpredictable
actuator faults [18]. The limited output information-based
distributed fault-tolerant tracking scheme was put forward for
uncertain MASs based upon neural network adaptive learning
algorithm [19]. However, most studies focus on abrupt actuator
faults that are constant, time-varying or dead-zone constraints
[18], [20], while ignoring incipient actuator faults in beginning
stage. It is noteworthy that the large-scale collapse of MASs
may be caused by a single agent spreading incipient early
faults to its neighbors through topological networks even under
DoS attacks. It is exceedingly arduous to achieve the desired
consensus of MASs against diverse abrupt and incipient actu-
ator faults through the existing FTCC techniques.

Overall, fault-tolerant consensus issue of MASs under de-
ception attacks [21], [22] or false data injection attacks [23]
has been partially investigated, which is similar to modeling
the loss of data integrity in networked hierarchy as the simple
superposition or deletion of faults in physical hierarchy. How-
ever, due to the difficulty of direct transmission interruption
under DoS attacks, few studies pay attention to an FTCC pro-
tocol, particularly in scenarios involving concurrent abrupt and
incipient faults and DoS attacks. At present, there are limited
literature about FTCC method of synchronously compensating
actuator faults and resisting DoS attacks in MASs, with the
following emphasis. The distributed observer-based tolerant
control was designed for linear MASs with actuator faults
to ensure the exponential stability even under DoS attacks
[24]. For the heterogeneous MASs [25], integral quadratic
constrained nonlinear MASs [26], and switched nonlinear
uncertain MASs [27], Lyapunov stability and average dwelling
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time (ADT) technique were utilized to resist both DoS attacks
and actuator faults via FTCC technique. On the one hand,
most distributed FTCC studies are either based on output-
feedback control [5], [10] or neighborhood state information
[14], [18]. The FTCC schemes without absolute state/output
information under DoS attacks are rarely explored, and a
novel estimator capable of storing successfully transmitted
broadcasting information within DoS attacks sleeping duration
is urgently needed. On the other hand, an in-depth analysis
of event-triggered consensus of MASs subject to DoS attacks
is performed [28], [29], since it can synchronize all individ-
uals effectively, even in cases where message transmission
fails intermittently, by reducing computational resources and
communication load substantially [30]-[32]. The distributed
cooperative event-triggered consensus control schemes were
proposed for MASs when encountering cyclic DoS jamming
attacks [33], aperiodic time-sequence-based DoS attacks [34]
or unpredicted faults [35]. Hence, it is crucial to devise a
local output and broadcasting state estimation-driven FTCC
algorithm coupled with an event-triggered mechanism for
MASs confronting complex time-varying actuator faults to
address the anti-attack resilience problem amidst aperiodic
DoS attacks.

The primary innovations are emphasized as follows. (i)
Compared with the consensus of MASs under independent
attacks [12], [28] or the FTCC strategies compensating tradi-
tional bias faults or loss of effectiveness [25], [26], this study
attempts to effectively implement dual security guarantees in
cyber-physical MASs: fault tolerance and attack resilience. It
is a comprehensive endeavor to address the composite self-
constraints (abrupt and incipient faults) in the physical layer
and the paralyzed connectivities (DoS attacks) in the net-
worked layer through the local/broadcasting estimation-based
distributed event-triggered FTCC mechanism. (ii) Different
from considering periodic energy-limited DoS attacks [12],
[33], the aperiodic DoS attacks with specific attack frequency,
attack duration, and ADT can be effectively defended against.
A novel control structure is developed, combining the benefits
of an absolute local output-based closed-loop estimator (ALO-
CLE) in the decentralized fault estimation (FE) and a relative
broadcasting state-based open-loop estimator (RBS-OLE) in
the distributed event-triggered FTCC. The interrupt state in-
formation of the triggering function in the current DoS attack
interval is replaced by the distributed adjacency broadcasting
information from an open-loop estimator.

The remainder of this study is structured. Problem formu-
lation with MASs description, actuator fault modeling, and
DoS attacks modeling is provided in Section II. ALO-CLE-
based decentralized FE and RBS-OLE-based distributed event-
triggered FTCC designs are proposed to attain the exponential
consensus of MASs in Sections III. The simulation is demon-
strated in Section IV to validate the efficacy of the proposed
FTCC algorithm. Ultimately, the conclusions are summarized
in Section V.

Notations: R,N refer to the sets of real and natural numbers,
respectively. The symbol ⊗ denotes the Kronecker product.
λmax(·), λmin(·) represent the maximum and minimum eigen-
values, and x = col(xi) = [xT1 , · · · , xTN ]T , i = 1, · · · , N .

II. PRELIMINARIES AND PROBLEM FORMULATION

A. MASs with actuator fault modeling

Consider the following dynamics of the ith agent in the
faulty MASs (i = 1, · · · , N),

ẋi (t) = Axi (t) +Bui (t) + Ffi (t) +D1di1 (t)
yi (t) = Cxi (t) +D2di2 (t)

(1)

where xi(t) ∈ Rn, yi(t) ∈ Rp, ui(t) ∈ Rm and fi(t) ∈ Rq are
the system state, output, input and actuator fault, respectively,
di1(t) ∈ Rs1 and di2(t) ∈ Rs2 denote the disturbances in the
input and output channels, A,B,C, F,D1 and D2 are given
system/fault/disturbance matrices, fi(t) = [fTi1, · · · , fTiq ]T de-
notes the complicated abrupt and incipient actuator fault, and
each element fis(t), s = 1, · · · , q can be represented by

fis (t) =
(
1− e−εs(t−Ts)

)
f̄is, t ≥ Ts, s = 1, · · · , q (2)

where Ts denotes the complicated fault occurrence moment,
f̄is denotes the sth constant fault bound, and εs denotes the
unknown decay rate. The actuator fault is classified as an
incipient fault when εinc ≤ εs < ε̄inc (with a slow decay
rate) and an abrupt fault when εs ≥ ε̄inc (with a quick decay
rate), respectively.

Assumption 2.1: The dynamics (A,B) and (A,C) are
controllable and observable, respectively.

Assumption 2.2: (i) The abrupt and incipient fault exhibits
distinguishable characteristics following each fault occurrence
event. (ii) The upper and lower limits of the incipient fault are
manually determined using the given positive constants ε̄inc

and εinc, respectively.
Assumption 2.3: The disturbance di2(t) in the output chan-

nel is constrained within the known and positive upper bound,
i.e., ‖ḋi2(t)‖ ≤ d̄i2, i = 1, · · · , N .

Remark 2.1: (i) Assumption 2.1 provides the controllable
and observable conditions of MASs and guarantees the abrupt
and incipient actuator faults fi(t) to be constrained in a given
tolerance range with the designed control law ui(t). (ii) In par-
ticular for abrupt time-varying actuator faults, when the decay
rate εs is large enough, the mutation is completed at the respec-
tive pulse moment and the abrupt fault is essentially a class of
actuator stuck faults, i.e., fis(t) = (1− e−εs(t−Ts))f̄is ∼= f̄is.
Moreover, the abrupt fault can be equated to a typical partial
loss of effectiveness fis(t) = (1 − e−εs(t−Ts))kif̄is ∼= kif̄is
with the large enough εs. Hence, the abrupt and incipient time-
varying actuator faults can be equated to typical stuck and
partial loss of effectiveness faults, but not to saturation faults,
which is the crucial discrepancy from typical actuator faults.

B. DoS attacks modeling

Generally speaking, malicious attackers with limited re-
sources usually choose to launch intermittent DoS attacks on
the communication network of MASs during the time-varying
activation period of attacks, and at the same time, they will
terminate DoS attacks at intervals and keep sleeping/dormant,
so as to accumulate energy for the next DoS attacks. For given
t ≥ t0 ∈ R, suppose that there exists a r ∈ N, positive spans
∆r and ∆a

r , and signify {tar}r∈N as an aperiodic sampled-
data DoS attack sequence over [t0, t) when the DoS attacker
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Fig. 1. Time intervals of DoS activation, DoS sleeping, event-triggered
activation and event-triggered sleeping.

activates at tar and tar+1 = tar + ∆r with the time-varying
aperiodic sampling interval ∆r. The rth DoS time interval is
denoted as Γar = [tar , t

a
r + ∆a

r) with tar+1 > tar + ∆a
r . Suppose

that there is an infinite sequence of non-overlapping time inter-
vals, uniformly bounded as [tar , t

a
r+∆a

r) and [tar−1+∆a
r−1, t

a
r),

during which the graph remains unchanged in terms of time.
Definition 2.1: Denote Γa(t0, t) = ∪Γar∩[t0, t], r ∈ N as the

total activation duration of DoS attacks over [t0, t), and denote
Γs(t0, t) = [t0, t] \ Γa(t0, t) as the total sleeping duration of
DoS attacks over [t0, t) in which information transmission
is allowed. For Γs(t0, t), assume that there exists a natural
number ki such that {tiki}ki∈N represents an event-triggered
sampled-data control sequence over the interval [t0, t), where
the i-th updated controller activates at time tiki . Furthermore,
denote NΓ(t0, t) = NΓa(t0, t) + NΓs(t0, t),∀t > t0 ≥ 0,
where NΓa(t0, t) and NΓs(t0, t) are the numbers of DoS
activation and sleeping attacks.

Definition 2.2 (DoS attack frequency): denote FΓa(t0, t) =
NΓa (t0,t)
t−t0 as the DoS attack frequency over [t0, t) for all t ≥ t0.
Definition 2.3 (DoS attack duration): for Γa(t0, t) = ∪Γar ∩

[t0, t], r ∈ N, there exists a chattering bound Γ0 ≥ 0 and ADT
τa > 0 such that Γa(t0, t) =

∑
r∈N ∆a

r ≤ Γ0 + t−t0
τa

.
Control objective: The exponential average consensus con-

trol issue of the faulty MASs in (1) is addressed when,
for all t ≥ t0, there exists a positive amplitude µ and a
positive decay rate λ such that ‖xi(t) − 1

N

∑N
i=1 xi(t)‖2 ≤

µe−λ(t−t0)‖xi(t0)− 1
N

∑N
i=1 xi(t0)‖2.

Remark 2.2: The time sequences {tar}r∈N and {taki}ki∈N are
depicted in Fig. 1(a), in which the event-triggered mechanism
holds sleeping during DoS attack activation interval and is
activated in DoS attack sleeping duration. For the case of
Zeno behavior exhibition and exclusion in Fig. 1(b), (c), two
types of Lyapunov functions Vtri and Vtri are selected, and
the specific analysis with each upper bound of interexecution
interval ∆z

r , r ∈ N is discussed in the following section.
Remark 2.3: Communication topologies in MASs may be

frequently subjected to DoS attacks (link-break failures) and
malicious attacker tries to block the agent-to-agent information
transmission, thus leading to connection paralysis and poor
consensus in the coordination process [6]. In the case of DoS
attacks [12], [33], the interaction of control data is suspended
as the control channel is compromised by smart opponents, so
it is necessary to assume that the considered attacks can be
recoverable and to redefine the scheduling of the controller
updating time instants. In contrast to periodic DoS attacks
observed in well-known deterministic attack strategies [34],

the DoS attacks orchestrated by the adversary are simulated
to occur in an aperiodic manner and tend to disrupt the control
channel. However, it is assumed that certain smart devices can
effortlessly identify the uniform bounds of DoS attack duration
and frequency.

III. MAIN RESULTS

This section provides an integrated co-design of FE and
FTCC strategy to deal with MASs against complicated abrupt
and incipient actuator faults under DoS attacks in consensus
control field. By incorporating estimation error, event-triggered
error, and average state consensus error into the carefully
selected Lyapunov function, the challenge of consensus control
is addressed using a distributed event-triggered FTCC scheme
based on RBS-OLE, leveraging local state and fault estima-
tions from ALO-CLE in FE design and neighboring broadcast-
ing information during event-triggered occurrences. The con-
trol structure, which encompasses ALO-CLE-based decentral-
ized FE design and RBS-OLE-based distributed FTCC design,
addresses issues arising from actuator faults and aperiodic DoS
attacks within physical and networked hierarchies, as depicted
in Fig. 2.

Fig. 2. The structure with ALO-CLE-based decentralized FE and RBS-OLE-
based distributed FTCC in physical and networked hierarchies.

A decentralized ALO-CLE-based FE is first proposed for
MASs to receive the estimated state and fault information in a
pure-feedback fashion in the following FTCC design. Define
the augmented state as x̄i(t) = [xTi (t) fTi (t) dTi2(t)]T and the
induced disturbance as d̄i(t) = [dTi1(t) ḟTi (t) ḋTi2(t)]T . The ith
augmented systems are reformulated as

˙̄xi (t) = Āx̄i (t) + B̄ui (t) + D̄d̄i (t) , yi (t) = C̄x̄i(t) (3)

where Ā = [A F 0n×s2 ; 0q×n 0q 0q×s2 ; 0s2×n 0s2×q 0s2 ], B̄ =
[B; 0q×m; 0s2×m], D̄ = [D1 0n×q 0n×s2 ; 0q×s1 Iq 0q×s2 ;
0s2×s1 0s2×q Is2 ], and C̄ = [C 0p×q D2].

Each augmented state x̄i(t) can be estimated by the corre-
sponding decentralized ALO-CLE:{

żi (t) = Lzi (t) +Gui (t) + Jyi (t)
ˆ̄xi (t) = zi (t) +Hyi (t)

(4)

where zi(t) ∈ Rn+q+s2 is the state of ALO-CLE, ˆ̄xi(t) =
[x̂Ti (t) f̂Ti (t) d̂Ti2(t)]T is the augmented state estimation with
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the state estimation x̂i(t) ∈ Rn, the fault estimation f̂i(t) ∈
Rq , and the output disturbance estimation d̂i2(t) ∈ Rs2 , and
L,G, J,H are adequate matrices to be designed.

Denote the estimation error as ēi(t) = x̄i(t) − ˆ̄xi(t) =
[eTxi(t) e

T
fi(t) e

T
di2(t)]T with exi(t) = xi(t) − x̂i(t), efi(t) =

fi(t)− f̂i(t), and edi2(t) = di2(t)− d̂i2(t).
Define M = In+q+s2 − HC̄ and J = J1 + J2, and the

estimation error systems are obtained as

˙̄ei (t) =
(
MĀ− J1C̄

)
ēi (t) + (MB̄ −G)ui(t)

+
(
MĀ− J1C̄ − L

)
zi (t) +MD̄d̄i (t)

+
((
MĀ− J1C̄

)
H − J2

)
yi (t)

(5)

Then, with the equality constraints of matrices L,G, J1, J2

and H as follows,

L = MĀ− J1C̄, J2 = LH,G = MB̄ (6)

where L is Hurwitz, and it hence follows that ˙̄ei(t) = Lēi(t)+
MD̄d̄i(t) with the following global dynamics:

˙̄e (t) = (IN ⊗ L) ē (t) +
(
IN ⊗MD̄

)
d̄ (t) (7)

where ē(t) = col(ēi(t)) and d̄(t) = col(d̄i(t)), i = 1, · · · , N .
To address the issue of wasted or unnecessary utilization of

communication resources, an event-triggered control operation
is employed to update the control signal, utilizing a thresh-
old mechanism linked to adjacency broadcasting information.
Since {ti0, ti1, · · · , tiki , · · ·} is denoted as the event-triggered
control sequence over [t0, t) for Γs(t0, t) when the ith agent
can actively update. For t ∈ [tiki , t

i
ki+1), the fault-tolerant

consensus controller in the distributed manner is devised as

ui (t) = −K1 ˆ̄xi (t) +K2Ξi
(
xbj∈Ni (t)

)
(8)

where K1 = [Kx Kf 0m×s2 ] is the compensation-based es-
timating matrix with the state-estimation matrix Kx ∈ Rm×n
and the fault-estimation matrix Kf ∈ Rm×q , and K2 ∈ Rm×n
is the adjacency information-based broadcasting matrix. The
distributed adjacency broadcasting value Ξi(x

b
j∈Ni(t)) in (8)

is designed as follows:

Ξi
(
xbj∈Ni (t)

)
=
∑
j∈Ni aij

(
xbj (t)− xbi (t)

)
(9)

where aij is the (i, j)th entry of A with graph G, and xbi (t) =
xi(t

i
ki(t)

) is denoted as the latest triggering state of the ith
agent with the subscript ki(t) described as the last successful
triggering time instant as follows:

ki(t) =

{
−1, when Γs(t0, t) = ∅
sup{ki ∈ N | tiki ∈ Γs(t0, t)}, otherwise

(10)

which implies that the distributed adjacency broadcast-
ing information is not required with Ξi(x

b
j∈Ni(t

i
−1)) =

−
∑
j∈Ni aijx

b
i (t

i
−1) when there are no DoS sleeping attacks.

For the neighboring agent, xbj(t) is denoted as the adjacency
broadcasting state of the designed RBS-OLE of the jth agent,
and for t ∈ [tjkj , t

j
kj+1), the adjacency broadcasting state

dynamics of RBS-OLE are formulated as

ẋbj (t) = Axbj (t) , xbj

(
tjkj

)
= xj

(
tjkj

)
(11)

Define the event-triggered error as δi(t) = xbi (t)−xi(t). In
order to specify the event-triggered time sequence {tiki}ki∈N,

the event-triggered mechanism imposes the constraint δi(t),
such that ‖δi(t)‖ ≤ θi‖Ξi(xbj∈Ni(t))‖, where θi > 0 is the
threshold. This ensures that the updated FTCC law ui(t) in
(8) can be triggered successfully during the dormant phase of
DoS attacks only if the event-triggered error δi(t) falls below
the threshold function of the adjacency broadcasting message.

Remark 3.1: The augmented state estimator −K1 ˆ̄xi(t) is
time-triggered and provides valuable data for control in-
puts sustainably. However, the adjacency broadcasting value
K2Ξi(x

b
j∈Ni) among agents is event-triggered, and its loss is

related to both DoS attacks and event-triggered instance. In
the presence of DoS attacks, the adjacency broadcasting value
cannot effectively transmit, and the event-triggered mechanism
fails to operate. In the absence of DoS attacks, the adjacency
data is determined by the event-triggered mechanism. Under
this strategy, event triggers and DoS attacks cannot occur
simultaneously, and there is no need to distinguish whether
packet loss is caused by DoS attackers or event triggers.
Furthermore, to trace the missing data packet, an existing DoS
attack detection mechanism [29] can be utilized.

The ith faulty dynamics in (1) are rewritten as

ẋi (t) = (A−BKx)xi (t) +BK1ēi (t) +D1di1 (t)
+BK2

∑
j∈Ni aij (xj (t)− xi (t))

+BK2

∑
j∈Ni aij (δj (t)− δi (t))

(12)

It then follows that
ẋ(t) = [IN ⊗ (A−BKx)− L⊗BK2]x (t)
+(IN ⊗D1)d1 (t) + (IN ⊗BK1)ē (t)− (L ⊗BK2) δ (t)

(13)
where x(t) = col(xi(t)), d1(t) = col(di1(t)), δ(t) =
col(δi(t)), and L is represented as the Laplacian matrix.

Denote the average state consensus error as ei(t) = xi(t)−
1
N

∑N
i=1 xi(t) and the global vector as e(t) = col(ei(t)), and it

is then obtained as e(t) = (Θ⊗In)x(t) with Θ = IN− 1N1TN
N .

Theorem 3.1: For the undirected and connected graph G,
there exists an orthogonal matrix Ψ = [ 1N√

N
ψ2 ψ3 · · ·ψN ] ∈

RN×N such that ΨΨT = IN and LΘ = ΘL = L, where
ψi ∈ RN , i = 2, · · · , N is an orthogonal eigenvector of Lapla-
cian matrix L corresponding with λi(L), i.e., Lψi = λi(L)ψi.
Furthermore, denote ψ = [ψ2 ψ3 · · ·ψN ] ∈ RN×(N−1), and it
is derived as ψψT = Θ.

Proof: By the definition of the orthogonal matrix Ψ =

[ 1N√
N
ψ2 ψ3 · · ·ψN ], it is easy to obtain that ΨΨT =

1N1TN
N +

ψ2ψ
T
2 + · · ·+ψNψ

T
N = IN . Then, ψψT = IN − 1N1TN

N = Θ is
proved. With the definition of Lψi = λi(L)ψi, it follows that

LΘ = Lψ2ψ
T
2 + · · ·+ LψNψTN

= λ2(L)ψ2ψ
T
2 + · · ·+ λN (L)ψNψ

T
N = L

= ψ2ψ
T
2 L+ · · ·+ ψNψ

T
NL = ΘL

(14)

It thus follows that
ė(t) = [IN ⊗ (A−BKx)− L⊗BK2] e (t)
+(Θ⊗D1)d1 (t) + (Θ⊗BK1)ē (t)− (L ⊗BK2) δ (t)

(15)
The objective of the distributed event-triggered FTCC de-

sign (8), (9) aims at determining H,J1,Kx,Kf and K2 such
that the exponential consensus problem of the MASs (1)
subject to the aperiodic DoS attacks in networked layer and the
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complicated incipient and abrupt actuator faults (2) in physical
layer is effectively solved.

Theorem 3.2: Given positive constants γ1, γ2, εinc, ηΓ and
a positive chattering bound Γ0, the MASs with the dis-
tributed FTCC protocol (8)-(11) under the event-triggered
mechanism ‖δi(t)‖ ≤ θi‖Ξi(xbj∈Ni(t))‖ can obtain the
exponential consensus efficiency, if there exist symmetric
positive-definite matrices P1, P2 ∈ Rn×n, positives matrices
Q1, Q2, Q3 ∈ Rn×n, R ∈ Rm×m, matrices Kx ∈ Rm×n, H ∈
R(n+q+s2)×p, J1 ∈ R(n+q+s2)×p such that

−Q1 − P1BKx −KT
x B

TP1 +Q2 < 0 (16)

L+ LT +MD̄D̄TMT + min{ηα1
, ηα2
}In+q+s2 < 0

(17)
P2A+ATP2 − P2BKx −KT

x B
TP2 +Q3 < 0 (18)

where ηα1 =
γ1k1ω

2
1λ

2
max(Θ)

λmin(Q2) + α1 and ηα2 =
γ1k3ω

2
3λ

2
max(Θ)

λmin(Q3) − α2 with the positive scalars α1 and α2

satisfied with α1 ≤ (k1k2k
′
1−k2k

′
1−k1k

′
1−k1k2)λmin(Q2)

k1k2k′1λmax(P1) −
2k2ω

2
2λ

4
N (L)θ̄2

(1−2θ̄2λ2
N (L))λmin(Q2)λmax(P1)

, α2 ≥ (k3k
′
2−k

′
2−k3)λmin(Q3)

k3k′2λmin(P2)

and min{2εinc − α1, 2εinc + α2} ≥ γ2

γ1
. Furthermore,

the positive scalars k1, k2, k3, k
′
1 and k′2 are constrained

with 1
k2

(1 − 1
k1
− 1

k2
− 1

k′1
) >

2ω2
2λ

4
N (L)θ̄2

(1−2θ̄2λ2
N (L))λ2

min(Q2)
,

k′1 ≤ −
λmin(Q2)

γ1ε21λ
2
max(Θ)

, k′2 ≤ −
λmin(Q3)

γ1ε22λ
2
max(Θ)

, and the event-

triggered threshold is satisfied with θ̄ ∈ (0,
√

1
2λ2
N (L)

).
Matrices P1, R and Q1 are derived from algebraic Riccati
equation (ARE): P1A+ATP1 − P1BR

−1BTP1 +Q1 = 0.
Then, the fault-estimation matrix Kf = (BTB)−1BTF ,

the adjacency information-based broadcasting matrix K2 =
τR−1BTP1 with τ ≥ 1

2λ2(L) , and the positive scalars ω1 =

‖P1BK1‖, ω2 = ‖P1BK2‖, ω3 = ‖P2BK1‖, ε1 = ‖P1D1‖,
and ε2 = ‖P2D1‖.

Thus, for a positive scalar σ∗ ∈ (0, α1), the DoS attack
frequency FΓa(t0, t) and the ADT τa satisfy

FΓa(t0, t) ≤ σ∗

ln(ζφ) , τa >
α1+α2

α1−σ∗ (19)

where φ = max{φ−1

1
φ1, φ

−1

2
φ2} and ζ = N

γ1
d̄2

2 with
φ1 = λmax(P1), φ

1
= λmin(P1), φ2 = λmax(P2), φ

2
=

λmin(P2), d̄2 = max
i=1,···,N

d̄i2, and the consensus control is

exponentially realized with the average state consensus error

‖ei(t)‖2 ≤ µΓe
−σ(t−t0)‖ei(t0)‖2 (20)

where the decay rate σ is given as σ = α1− α1+α2

τa
− σ∗ and

the initial maximum magnitude µΓ is determined by

µΓ = e(α1+α2)Γ0 (max{λmax(P1),λmax(P2)}+ηΓ)
min{λmin(P1),λmin(P2)} (21)

Proof: From Definition 2.1, the total time interval [t0, t]
can be divided into Γs(t0, t) (case 1) and Γa(t0, t) (case
2) in Fig. 1(b) according to whether DoS attacks occur. In
case 1, the event-triggered FTCC mechanism is activated
and the DoS attack is sleeping, that is, each event-triggered
threshold condition ‖δi(t)‖ ≤ θi‖Ξi(xbj∈Ni(t))‖ holds. In case
2, the event-triggered FTCC mechanism is dormant, and the

DoS attack is activated, that is, the event-triggered threshold
condition does not hold.

Case 1: event-triggered FTCC activation and DoS attack
sleeping

Consider the time interval Γs(t0, t) under which the event-
triggered threshold condition ‖δi(t)‖ ≤ θi‖Ξi(xbj∈Ni(t))‖
holds. Firstly, construct a Lyapunov candidate V1(e(t)) =
eT (t)(IN ⊗P1)e(t) with a positive-definite symmetric matrix
P1. On the basis of the solvable ARE P1A + ATP1 −
P1BR

−1BTP1 +Q1 = 0, the linear matrix inequality (LMI)
(16), (17), and K2 = τR−1BTP1 with τ ≥ 1

2λ2(L) , the
differential of V1(e(t)) with respect to time is obtained as

V̇1(e(t))
= eT (t)(IN ⊗ (P1(A−BKx) + (A−BKx)TP1)
−2(L ⊗ P1BK2))e(t) + 2eT (t)(Θ⊗ P1BK1)ē(t)
−2eT (t)(L ⊗ P1BK2)δ(t) + 2eT (t)(Θ⊗ P1D1)d1(t)

≤ −λmin(Q2)
∑N
i=1 ẽ

T
i (t)ẽi(t)

+ω1

∑N
i=1(ρ1λ

2
max(Θ)ẽTi (t)ẽi(t) + ρ−1

1
˜̄e
T
i (t)˜̄ei(t))

+ω2

∑N
i=1(ρ2λ

2
N (L)ẽTi (t)ẽi(t) + ρ−1

2 δ̃Ti (t)δ̃i(t))

+ε1

∑N
i=1(ε̄1λ

2
max(Θ)ẽTi (t)ẽi(t) + ε̄−1

1 d̃Ti1(t)d̃i1(t))
(22)

where ˜̄e(t) = col(˜̄ei(t)) = (ΨT ⊗ In+q+s2)ē(t), δ̃(t) =
col(δ̃i(t)) = (ΨT ⊗ In)δ(t), ẽ(t) = col(ẽi(t)) = (ΨT ⊗
In)e(t), d̃1(t) = col(d̃i1(t)) = (ΨT ⊗ Is1)d1(t), ω1 =
‖P1BK1‖, ω2 = ‖P1BK2‖, ε1 = ‖P1D1‖, ρ1 > 0, ρ2 > 0,
and ε̄1 > 0.

By using the internal positive scalars k1, k2, and k′1, it
follows that

V̇1(e(t)) ≤ −(1− 1
k1
− 1

k2
− 1

k′1
)λmin(Q2)

∑N
i=1 ẽ

T
i (t)ẽi(t)

+
k1ω

2
1λ

2
max(Θ)

λmin(Q2)

∑N
i=1

˜̄e
T
i (t)˜̄ei(t) +

k2ω
2
2λ

2
N (L)

λmin(Q2)

∑N
i=1 δ̃

T
i (t)δ̃i(t)

+
k′1ε

2
1λ

2
max(Θ)

λmin(Q2)

∑N
i=1 d̃

T
i1(t)d̃i1(t)

(23)
Since xb(t) = δ(t) + x(t) with xb(t) = col(xbi (t)), it is

derived that Ξ(xbj∈Ni(t)) = −(L ⊗ In)(δ(t) + x(t)) with
Ξ(xbj∈Ni(t)) = col(Ξi(x

b
j∈Ni(t))). It follows that

‖Ξ(xbj∈Ni(t))‖ ≤ ‖Ξ(xj∈Ni(t))‖+ λN (L)‖δ(t)‖ (24)

where Ξ(xj∈Ni(t)) = col(Ξi(xj∈Ni(t))) with the distributed
adjacency value Ξi(xj∈Ni(t)) =

∑
j∈Ni(xj(t)− xi(t)).

Then, with LΘ = ΘL = L in Theorem 3.1, it follows that

‖Ξ(xj∈Ni(t))‖2
≤ λ2

N (L)xT (t)(Θ2 ⊗ In)x(t) = λ2
N (L)eT (t)e(t)

(25)

Combining (24) and (25) yields to ‖Ξ(xbj∈Ni(t))‖
2 ≤

2λ2
N (L)(‖e(t)‖2 + ‖δ(t)‖2). Both δT (t)δ(t) ≤

θ̄2‖Ξ(xbj∈Ni(t))‖
2 and ‖δ(t)‖2 ≤ 2θ̄2λ2

N (L)

1−2θ̄2λ2
N (L)
‖e(t)‖2 are

derived since ‖δi(t)‖ ≤ θi‖Ξi(xbj∈Ni(t))‖, θ̄ = max
i=1,···,N

θi ∈

(0,
√

1
2λ2
N (L)

).
The first-order time derivative of the complicated actu-

ator faults is calculated as ḟi(t) = [ḟTi1(t), · · · , ḟTiq(t)]T
and the second-order derivative is derived as f̈i(t) =
−diag(ε1, · · · , εq)ḟi(t), where f̈is(t) = −εsḟis(t), s =
1, · · · , q with the fault decay rate εs > 0.
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Secondly, consider a Lyapunov candidate V2(ē(t), ḟ(t)) =
1
γ1

∑N
i=1 ē

T
i (t)ēi(t) + 1

γ2

∑N
i=1 ḟ

T
i (t)ḟi(t), where γ1 and γ2

are preset positive scalars. The differential of V2(ē(t), ḟi(t))
with respect to time is obtained as

V̇2(ē(t), ḟ(t))

≤ 1
γ1

∑N
i=1 ē

T
i (t)(L+ LT +MD̄D̄TMT )ēi(t)

+( 1
γ1
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t)

+ 1
γ1

∑N
i=1(dTi1(t)di1(t) + ḋTi2(t)ḋi2(t))

(26)

where minεs = min
s=1,···,q

εs.

According to the scalar constraints of α1, k1, k2, k
′
1 and

θ̄, it is given by (1 − 1
k1
− 1

k2
− 1

k′1
)λmin(Q2) −

2k2ω
2
2λ

4
N (L)θ̄2

(1−2θ̄2λ2
N (L))λmin(Q2)

≥ α1λmax(P1) with 1
k2
− 1

k1k2
− 1

k2
2
−

1
k′1k2

>
2ω2

2λ
4
N (L)θ̄2

(1−2θ̄2λ2
N (L))λ2

min(Q2)
. Then, k1ω

2
1λ

2
max(Θ)

λmin(Q2) In+q+s2 +
1
γ1

(L + LT + MD̄D̄TMT ) + α1

γ1
In+q+s2 < 0 is obtained

from (17) with L+ LT +MD̄D̄TMT < −ηα1
In+q+s2 .

Ultimately, construct the Lyapunov candidate Vtri(t) =
V1(e(t)) + V2(ē(t), ḟ(t)) in the event-triggered activation pe-
riod as shown in Fig. 1(b), it then follows that

V̇tri(t)

≤ −(1− 1
k1
− 1

k2
− 1

k′1
)λmin(Q2)

∑N
i=1 ẽ

T
i (t)ẽi(t)

+
∑N
i=1

˜̄e
T
i (t)(

k1ω
2
1λ

2
max(Θ)

λmin(Q2) In+q+s2 + 1
γ1

(L+ LT +MD̄

×D̄TMT ))˜̄ei(t) +
2k2ω

2
2λ

4
N (L)θ̄2

(1−2θ̄2λ2
N (L))λmin(Q2)

∑N
i=1 ẽ

T
i (t)ẽi(t)

+( 1
γ1
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t) + 1

γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t)

+( 1
γ1

+
k′1ε

2
1λ

2
max(Θ)

λmin(Q2) )
∑N
i=1 d

T
i1(t)di1(t)

≤ −α1λmax(P1)
∑N
i=1 ẽ

T
i (t)ẽi(t)− α1

γ1

∑N
i=1

˜̄e
T
i (t)˜̄ei(t)

+( 1
γ1
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t) + 1

γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t)

+( 1
γ1

+
k′1ε

2
1λ

2
max(Θ)

λmin(Q2) )
∑N
i=1 d

T
i1(t)di1(t)

≤ −α1Vtri(t) + (α1

γ2
+ 1

γ1
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t)

+ 1
γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t)

(27)
where k′1 ≤ −

λmin(Q2)
γ1ε21λ

2
max(Θ)

is set manually.
According to γ2

γ1
≤ min{2εinc−α1, 2εinc+α2} and minεs ≥

εinc in Assumption 2.1, α1 + γ2

γ1
≤ 2εinc is derived. Then, it

is obtained that α1

γ2
+ 1

γ1
− 2minεs

γ2
≤ 0. Therefore, the proof

of V̇tri(t) ≤ −α1Vtri(t) + 1
γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t) is completed.

Case 2: event-triggered FTCC sleeping and DoS attack
activation

Consider the time interval Γa(t0, t) under which the event-
triggered threshold condition does not necessarily hold. For
the event-triggered FTCC sleeping and DoS attack activation
case, the FTCC design of each agent is modified as ui(t) =
−K1 ˆ̄x1(t) without the adjacency broadcasting information
Ξi(x

b
j∈Ni(t)). Accordingly, the corresponding average state

consensus error systems are modified as ė(t) = (IN ⊗ (A −
BKx))e(t) + (Θ ⊗ BK1)ē(t) + (Θ ⊗ D1)d1(t) without the
event-triggered error.

Firstly, construct a Lyapunov candidate V3(e(t)) =
eT (t)(IN ⊗P2)e(t) with a positive-definite symmetric matrix
P2. On the basis of LMI P2A+ATP2−P2BKx−KT

x B
TP2+

Q3 < 0 in (18), the mathematical representation of the
derivative of V3(e(t)) is given as

V̇3(e(t)) ≤ −(1− 1
k3
− 1

k′2
)λmin(Q3)

∑N
i=1 ẽ

T
i (t)ẽi(t)

+
k3ω

2
3λ

2
max(Θ)

λmin(Q3)
˜̄e
T

(t)˜̄e(t) +
k′2ε

2
2λ

2
max(Θ)

λmin(Q3) d̃T1 (t)d̃1(t)
(28)

where ω3 = ‖P2BK1‖, ε2 = ‖P2D1‖, and k3, k
′
2 are positive

scalars.
Secondly, consider Vtri(t) = V3(e(t)) + V2(ē(t), ḟ(t))

in event-triggered sleeping period in Fig. 1(b). On the
basis of the inequality constraint (17), it is derived
as k3ω

2
3λ

2
max(Θ)

λmin(Q3) In+q+s2 + 1
γ1

(L + LT + MD̄D̄TMT ) −
α2

γ1
In+q+s2 < 0 with L+LT +MD̄D̄TMT < −ηα2In+q+s2 .

Then, with the scalar constraints of α2, k3, and k′2, (1− 1
k3
−

1
k′2

)λmin(Q3) ≥ −α2λmin(P2) is derived. The first-order time
derivative of Vtri(t) is derived as

V̇tri(t)

≤ −(1− 1
k3
− 1

k′2
)λmin(Q3)ẽT (t)ẽ(t) +

k3ω
2
3λ

2
max(Θ)˜̄eT (t)˜̄e(t)
λmin(Q3)

+ 1
γ1

∑N
i=1

˜̄e
T
i (t)(L+ LT +MD̄D̄TMT )˜̄ei(t)

+( 1
γ1
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t) + 1

γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t)

+( 1
γ1

+
k′2ε

2
2λ

2
max(Θ)

λmin(Q3) )
∑N
i=1 d

T
i1(t)di1(t)

≤ α2λmin(P2)
∑N
i=1 ẽ

T
i (t)ẽi(t) + α2

γ1
˜̄e
T

(t)˜̄e(t)

+( 1
γ1
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t) + 1

γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t)

+( 1
γ1

+
k′2ε

2
2λ

2
max(Θ)

λmin(Q3) )
∑N
i=1 d

T
i1(t)di1(t)

≤ α2Vtri(t) + ( 1
γ1
− α2

γ2
− 2minεs

γ2
)
∑N
i=1 ḟ

T
i (t)ḟi(t)

+ 1
γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t)

(29)
where k′2 ≤ −

λmin(Q3)
γ1ε22λ

2
max(Θ)

is set manually.
According to the same condition of γ2

γ1
and minεs ≥ εinc

in Assumption 2.1, it also follows that 1
γ1
− α2

γ2
− 2minεs

γ2
≤ 0.

Thus, V̇tri(t) ≤ α2Vtri(t) + 1
γ1

∑N
i=1 ḋ

T
i2(t)ḋi2(t) is proved.

Integrating both sides of V̇tri(t) ≤ −α1Vtri(t) +
ḋT2 (t)ḋ2(t)

γ1

and V̇tri(t) ≤ α2Vtri(t) +
ḋT2 (t)ḋ2(t)

γ1
over [tk, tk+1) yields to{

Vtri(t) ≤ ζe−α1(t−tk)Vtri(tk) + ζ
α1

Vtri(t) ≤ ζeα2(t−tk)Vtri(tk)− ζ
α2

(30)

where ζ = N
γ1
d̄2

2 with d̄2 = max
i=1,···,N

d̄i2.

Denote the piecewise Lyapunov candidate V (t) = Vtri(t)
and Vtri(t) is activated when t ∈ [tar−1+∆a

r−1, t
a
r), and further

define V (t) = Vtri(t) and Vtri(t) is activated in [tar , t
a
r +∆a

r).
Integrating both sides over t ∈ [tar−1 + ∆a

r−1, t
a
r + ∆a

r),

V (t) ≤
{
ζe−α1(t−tar−1−∆a

r−1)Vtri(t
a
r−1 + ∆a

r−1)
ζeα2(t−tar )Vtri(t

a
r)

(31)

Notable, φ
1
V1(e(t)) ≤

∑N
i=1 e

T
i (t)P1ei(t) ≤ φ1V1(e(t))

and φ
2
V3(e(t)) ≤

∑N
i=1 e

T
i (t)P2ei(t) ≤ φ2V3(e(t)), where

φ1 = λmax(P1), φ
1

= λmin(P1), φ2 = λmax(P2) and φ
2

=

λmin(P2). At each event-triggering instant tiki , it is derived

that Vtri(tiki) ≤
φ1

φ
1

Vtri(t
i−
ki

) and Vtri(t
i
ki

) ≤ φ2

φ
2

Vtri(t
i−
ki

).
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Then, for t ∈ [tar−1 + ∆a
r−1, t

a
r), NΓa(t0, t) = r is derived

and the Lyapunov form Vtri(t) is given as

Vtri(t) ≤ ζ φ1

φ
1

e−α1(t−tar−1−∆a
r−1)Vtri(t

a−
r−1 + ∆a−

r−1)

≤ ζ2φ1

φ
1

e−α1(t−tar−1−∆a
r−1)[eα2(t−tar−2−∆a

r−2)Vtri(t
a
r−2 + ∆a

r−2)]

≤ ζ2φ1φ2

φ
1
φ

2

e−α1(t−tar−1−∆a
r−1)eα2(t−tar−2−∆a

r−2)Vtri(t
a−
r−2 + ∆a−

r−2)

≤ · · · ≤ ζrφre−α1|Γs(t0,t)|eα2|Γa(t0,t)|Vtri(t0)
= eln(ζφ)NΓa (t0,t)e−α1|Γs(t0,t)|+α2|Γa(t0,t)|Vtri(t0)

(32)
where φ = max{φ−1

1
φ1, φ

−1

2
φ2}.

Next, for t ∈ [tar , t
a
r + ∆a

r), NΓa(t0, t) = r + 1 is obtained
and the Lyapunov form is given by

Vtri(t) ≤ ζ
φ2

φ
2

eα2(t−tar )Vtri(t
a−
r )

≤ ζ2φ2

φ
2

eα2(t−tar )[e−α1(t−tar−1−∆a
r−1)Vtri(t

a
r−1 + ∆a

r−1)]

≤ ζ2φ2

φ
2

φ1

φ
1

eα2(t−tar )e−α1(t−tar−1−∆a
r−1)Vtri(t

a−
r−1 + ∆a−

r−1)

≤ · · · ≤ ζr+1φr+1e−α1|Γs(t0,t)|eα2|Γa(t0,t)|Vtri(t0)
= eln(ζφ)NΓa (t0,t)e−α1|Γs(t0,t)|+α2|Γa(t0,t)|Vtri(t0)

(33)
From Definitions 2.1-2.3, |Γs(t0, t)| = t − t0 − |Γa(t0, t)|

and Γa(t0, t) ≤ Γ0 + t−t0
τa

are given by the ADT τa and
chattering bound Γ0. According to the inequality constraints
of DoS attack frequency FΓa(t0, t) = NΓa (t0,t)

t−t0 ≤ σ∗

ln(ζφ) and
ADT τa >

α1+α2

α1−σ∗ in (19), for ∀t ≥ t0, it follows that

V (t)

≤ e(α1+α2)Γ0+ln(ζφ)NΓa (t0,t)+(
α1+α2
τa

−α1)(t−t0)V (t0)

≤ e(α1+α2)Γ0−α1(t−t0)+
α1+α2
τa

(t−t0)+σ∗(t−t0)V (t0)
= e(α1+α2)Γ0e−σ(t−t0)V (t0)

(34)
where σ = α1 − α1+α2

τa
− σ∗ > 0 with σ∗ ∈ (0, α1).

From the definition of Vtri(t) and Vtri(t), it is derived that
V (t) ≥ min{λmin(P1), λmin(P2)}‖ei(t)‖2, and the expres-
sion with t0 is derived as

V (t0) ≤ (max{λmax(P1), λmax(P2)}

+
max

i=1,···,N
( 1
γ1
‖ēi(t0)‖2+ 1

γ2
‖ḟi(t0)‖2)

min
i=1,···,N

‖ei(t0)‖2 )‖ei(t0)‖2 (35)

Denote ΛΓ = max{λmax(P1), λmax(P2)} + ηΓ with the
appropriate positive scalar ηΓ, it is finally given by

‖ei(t)‖2 ≤ V (t)
min{λmin(P1),λmin(P2)}

≤ e(α1+α2)Γ0e−σ(t−t0)

min{λmin(P1),λmin(P2)}V (t0) ≤ µΓe
−σ(t−t0)‖ei(t0)‖2

(36)
where µΓ = e(α1+α2)Γ0ΛΓ

min{λmin(P1),λmin(P2)} .
Therefore, the inequality ‖ei(t)‖2 ≤ µΓe

−σ(t−t0)‖ei(t0)‖2
in (36) implies that ‖ei(t)‖2 → ‖ei(t0)‖2, xi(t) →
x̂i(t), fi(t)→ f̂i(t) and xi(t)→ 1

N

∑N
i=1 xi(t0) as t→ +∞

when the chattering bound Γ0 and ADT τa are satisfied in (19),
i.e., µΓ > 0 and σ > 0. Moreover, exponential achievement
of the average state consensus objective in MASs under both
actuator faults and aperiodic DoS attacks is attained through
the distributed event-triggered FTCC scheme.

Remark 3.2: The calculation of the ALO-CLE-based decen-
tralized FE and RBS-OLE-based distributed event-triggered
FTCC schemes is succinctly outlined in Algorithm 1.

Algorithm 1 Distributed event-triggered FTCC solution.
Input:
• The set of system matrices: {A,B,C, F,D1, D2}.
• The set of graph matrix: {L}.
• The set of preset scalars: {γ1, γ2, εinc, ηΓ}.

Output:
• The set of designed matrices: {L,G, J,H,K1,K2}.

1: Solving an ARE: P1A+ATP1−P1BR
−1BTP1+Q1 = 0

to obtain the positive-definite symmetric matrix P1 and the
positive-definite matrices R and Q1.

2: Solving an LMI: −Q1 − P1BKx −KT
x B

TP1 + Q2 < 0
to get the positive-definite matrix Q2 and matrix Kx.

3: Solving an LMI: P2A+ATP2 − P2BKx −KT
x B

TP2 +
Q3 < 0 to derive the positive-definite symmetric matrix
P2 and the positive-definite matrix Q3.

4: Solving the following LMI:[
min{ηα1

, ηα2
}+ Π + D̄D̄T HC̄D̄
? −Iq

]
< 0 (37)

to obtain the implicit matrices H and J1 in (17) with help
of the inter matrix Π = Ā+ ĀT −HC̄Ā− ĀT C̄THT −
J1C̄ − C̄TJT1 + D̄D̄T C̄THT +HC̄D̄D̄T .

5: return The ALO-CLE matrices L = (In+q+s2 −
HC̄)Ā − J1C̄, G = (In+q+s2 − HC̄)B̄, J = J1 +
((In+q+s2 − HC̄)Ā − J1C̄)H , the fault-estimation ma-
trix Kf = (BTB)−1BTF , and the broadcasting matrix
K2 = τR−1BTP1 with τ ≥ 1

2λ2(L) .

Remark 3.3: On the basis of the hybrid event-triggered con-
trol mechanism [31], Zeno phenomenon does not exhibit with
the determination of the following updated control sequence
at each event-triggered instant {tiki}ki∈N,

tiki+1 =

{
tiki + χi, if ki ∈ {(i, ki) ∈ V × N | tiki ∈ ∪r∈NΓar}
tiki + ∆z

ki
, otherwise

(38)
where the interexecution interval is denoted as ∆z

ki
=

max{inft>tiki
{t−tiki | ‖δi(t)‖ = θi‖Ξi(xbj∈Ni(t))‖}, υi} with

the preset positive scalars χi and υi.
Hence, the event-triggered sleeping interval is denoted as
∪r∈N[tar , t

a
r + ∆a

r + ∆z
r). Zeno behavior exclusion case is

shown in Fig. 1(c) by proving that there are different positive
upper bounds sup(i,ki,r) t

i
ki+1 − tiki ≤ ∆z

r corresponding to
the relative adjacency broadcasting RBS-OLE.

Furthermore, compared with the sampled-data-based event-
triggered [30] and adaptive self-triggered [31], [35] strate-
gies, a basically constant threshold-based static event-triggered
mechanism is used to effectively utilize the distributed ad-
jacency broadcasting value Ξi(x

b
j∈Ni(t)) and the latest trig-

gering state value xbi (t), so as to simply update the event
triggers located in the sleeping intervals of DoS attacks. The
problem of confusing the dynamics of dynamic event-triggered
mechanism with the intermittence of DoS attacks without
effective discrimination is avoided.

Remark 3.4: (i) Compared with the existing adaptive dis-
tributed observers for estimating system matrix and exosys-
tem state [24], fixed-time observers for assessing faults and
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disturbances [17], and link-based estimators for evaluating
inter-agent state [34], an ALO-CLE-based strategy is seldom
considered to construct unmeasurable information of each
local agent from FE system to FTCC system. Scheduling
the updated control sequence {tiki}ki∈N in a novel RBS-
OLE-based FTCC design and information interaction under
DoS attack sequence {tar}r∈N is considered without requiring
any solvable fault parameters or preset fault detection and
diagnosis mechanism [18]. (ii) Unlike state-feedback control
via adaptive mechanism [14], [26], limited output-feedback
strategy [19] or impulsive control [21], [22], the proposed
FTCC protocol, which depends on the offset item −K1 ˆ̄xi(t)
and the adjacency broadcasting item K2Ξi(x

b
j∈Ni(t)) in this

study, can be utilized together with event-triggered strategy
in a distributed manner to eliminate continuous monitoring of
state measurement errors and avoid high-precision measure-
ment equipments. This distributed mode with communication
cost advantage is user-friendly in that there exists a structured
low-complexity solution and streamlined non-nested logicality
of the algorithm implementation.

Remark 3.5: One advantage is that for the special case
of DoS attacks occurring at the triggering time instants,
the distributed FTCC is modified as ui(t) = −K1 ˆ̄xi(t) −
K2

∑
j∈Ni aijx

b
i (t

i
−1). One constraint is the tradeoff between

the average consensus exponential convergence attenuation
rates α1 and α2, the uniform upper bound on the attack
frequency FΓa(t0, t) and the lower bound on the ADT τa of
aperiodic DoS attacks. It is revealed that under sufficient con-
ditions of attack frequency and ADT, the MASs attacked by
DoS attacks achieve consensus exponentially by the proposed
distributed event-triggered FTCC algorithm with anti-attack
performance.

IV. SIMULATION RESULTS

The aim of this section is to demonstrate the effectiveness
of the distributed event-triggered FTCC in countering DoS
attacks and complicated abrupt and incipient faults, through
the use of six single-link manipulators with revolute joints.

The mechanical behavior of the single-link manipulator with
flexible joints actuated by a DC motor is outlined as [30]:

θ̇mi = ωmi
ω̇mi = ks

Jm
(θli − θmi)− llink

Jm
ωmi + kτ

Jm
ui

θ̇li = ωli
ω̇li = −ηksJl (θli − θmi)− ηMgh

Jl
sin (θli)

(39)

where θmi, ωmi, θli and ωli represent the angular rotation of
the motor, the angular velocity of the motor, the angular
position of the link and the angular velocity of the link, respec-
tively. The physical meanings and values of the parameters are
shown in Table I. The corresponding system matrices A and B
are denoted in the following form with the small disturbance
principle sin(θli) ∼= θli,

A =


0 1 0 0

− ks
Jm

− llinkJm
ks
Jm

0

0 0 0 1

−ηksJl 0 ηks
Jl
− ηMgh

Jl
0

 , B =


0
kτ
Jm
0
0


(40)

The total activation duration of DoS attacks is denoted as
t ∈ [0s, 2s] ∪ [4s, 6s] ∪ [29s, 32s] ∪ [49s, 52s] ∪ [58s, 61s] ∪
[75s, 77s] ∪ [81s, 83s] for Case I (short-term DoS interval).
The total activation duration of DoS attacks is denoted as
t ∈ [3s, 6s] ∪ [19s, 22s] ∪ [31s, 37s] ∪ [46s, 48s] ∪ [68s, 73s]
for Case II (long-term DoS interval). The complicated abrupt
and incipient faults fi(t), i = 1, · · · , 6 in control inputs for
Case I and Case II are modeled as:

Case I (short-term DoS interval):

f1(t) = 1− e−0.5(t−80)rad,

f2(t) =

{
0.2(1− e−0.5(t−20))rad, 20s ≤ t ≤ 80s
0.5(1− e−0.05(t−80))rad, t > 80s

f3(t) = 0.5(1− e−0.03t)rad, f4 = f5 = f6 = 0rad

(41)

Case II (long-term DoS interval):

f1(t) =

{
0.5(1− e−0.08(t−30))rad, 30s ≤ t ≤ 60s
1.2(1− e−0.3(t−60))rad, t > 60s

f2(t) =


0.5(1− e−0.05(t−30))rad, 30s ≤ t ≤ 40s
0.3(1− e−0.03(t−40))rad, 40s ≤ t ≤ 60s
1− e−0.6(t−60)rad, t > 60s

f3(t) = 0.2(1− e−0.05t)rad, f4(t) = 0rad,
f5(t) = 0.6(1− e−0.05(t−40))rad, f6(t) = 0rad

(42)

TABLE I
THE PHYSICAL CHARACTERISTICS OF SINGLE-LINK MANIPULATOR [30].

Parameter Physical meaning Value/Unit

Jm inertia of the motor 0.0037kg.m2

Jl inertia of the link 0.0093kg.m2

ks torsional spring constant 0.18Nm/rad
kτ amplifier gain 0.08Nm/V
η transformation coefficient 0.1

llink length of the link 0.31m
h center of gravity height 0.015m
M point mass of the arm 0.139kg

To prove the feasibility of the distributed event-triggered
FTCC algorithm in Theorems 3.2, simulation parameters are
set as γ1 = 10.48, γ2 = 0.02, α1 = 0.0075, α2 = 0.048, k1 =
1.85, k2 = 3.74, k3 = 0.7, ηΓ = 1.25 and τ = 0.72. The max-
imum and minimum boundaries of the incipient actuator fault
in the manipulator are preset as ε̄inc = 0.1 and εinc = 0.005.
The initial angular rotation and angular velocity of the motor,
and the angular position and angular velocity of the link are set
as 0.25rad, 0.5rad.s−1, 0.1rad, and 0.1rad.s−1, respectively.
The event-triggered threshold is constrained within (0, 0.138).
The topology under DoS attacks for short-term DoS interval
in Case I is depicted in Fig. 3, where the first manipulator
encounters an unexpected actuator fault (T1 = 80s), the second
one fails with the complicated incipient and abrupt actuator
fault (T2 = 20s, 80s), and the third one fails with the initially
existing incipient actuator fault. Furthermore, the topology
under DoS attacks for long-term DoS interval in Case II is
shown in Fig. 3, wherein the first and second manipulators
suffer from the complicated incipient and abrupt actuator faults
(T1 = 30s, 60s and T2 = 30s, 40s, 60s), and the third and fifth
manipulators exhibit the incipient actuator faults at each fault
event moment, i.e., T3 = 0s and T5 = 40s.
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Fig. 3. The topologies under DoS attacks (Case I: short-term DoS interval
and Case II: long-term DoS interval).

In the scenario of the aperiodic DoS attacks in networked
hierarchy and complicated abrupt and incipient actuator faults
in physical hierarchy, the results in Figs. 4-7 under short-
term DoS interval (case I) and in Figs. 8-11 under long-
term DoS interval (case II) confirm the effectiveness of
the distributed event-triggered FTCC schemes in Theorems
3.1 and 3.2. Compared with the switching mechanism-based
FTCC technique [15], the average consensus errors of the
angular rotations θmi −

∑6
i=1 θmi and the angular velocities

ωmi −
∑6
i=1 ωmi, i = 1, · · · , 6 of each motor in Case I in

Fig. 4 and Fig. 5, and the average consensus errors of the
angular positions θli −

∑6
i=1 θli and the angular velocities

ωli −
∑6
i=1 ωli, i = 1, · · · , 6 of each link in Case I in Fig.

6 and Fig. 7 show smaller convergence amplitude and faster
convergence speed via the proposed attack frequency and
ADT-based FTCC technique. The abrupt actuator fault of
the first manipulator occurs in 80s and causes the average
consensus errors to jump up and down. The tiny and abrupt
fault of the second manipulator occurs in 20s and leads to
slight varying of consensus errors. In the third manipulator,
the incipient actuator fault exists in the early stage, and the
long-term error change is not obvious. The consensus error
signal of the fifth manipulator also fluctuates slightly for a
long period due to the interconnection with manipulators 1, 2
and 3. Due to the short-term interval of DoS attacks in Case I,
a convergence with slight oscillations of varying amplitudes is
formed, and finally the exponential consensus control objective
is accomplished with the distributed event-triggered FTCC
provided that the DoS attack frequency and ADT always hold.

Comparative results of the average consensus errors of the
angular rotations and angular velocities of each motor in Fig.
8 and Fig. 9 and the angular positions and angular velocities
of each link in Fig. 10 and Fig. 11 under long-term DoS
interval in Case II are depicted. Both the first and second
manipulators have abrupt actuator faults in 60s and produce
large amplitude excitation error signals. The incipient actuator
faults with different amplitudes fail on the second manipulator
in 30s and 40s, the long-standing incipient faults act on the
third manipulator, and the tiny actuator faults occur on the
fifth manipulator in 40s. Compared with the short-term DoS
attacks, because the DoS attack frequency and ADT index does
not always satisfied, the average consensus errors oscillate
violently in the long-term interval of DoS attacks, especially
after the wider widths [31s, 37s] and [68s, 73s]. Furthermore,
the controller response curves under short-term DoS interval
in Case I and long-term DoS interval in Case II are shown in

Fig. 4. Comparative results of average consensus errors of angular rotations
θmi −

∑6
i=1 θmi, i = 1, · · · , 6 of each motor in Case I.

Fig. 5. Comparative results of average consensus errors of angular velocities
ωmi −

∑6
i=1 ωmi, i = 1, · · · , 6 of each motor in Case I.

Fig. 12 and Fig. 13. The triggering instants of the events under
short-term DoS interval in Case I and long-term DoS interval
in Case II are illustrated in Fig. 14 and Fig. 15. Compared with
using resilient observers to estimate actuator faults [24], the
ALO-CLE scheme proposed in the FTCC framework is more
accurate in fault estimation. For short-term DoS interval, there
is no deviation oscillations at the fault occurrence time 80s in
Fig. 16, and for long-term DoS interval, there is no deviation
oscillation at the fault occurrence time 40s and 60s in Fig.
17. These illustrations demonstrate that the errors in angular
velocity and position consensus are capable of asymptotic
convergence in addition to the sharp oscillation imbalance
at some fault occurrence or DoS activation moments via the
distributed event-triggered FTCC algorithm regardless of the
complicated actuator faults in manipulators 1, 2, 3 and 5.
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Fig. 6. Comparative results of average consensus errors of angular positions
θli −

∑6
i=1 θli, i = 1, · · · , 6 of each link in Case I.

Fig. 7. Comparative results of average consensus errors of angular rotations
ωli −

∑6
i=1 ωli, i = 1, · · · , 6 of each link in Case I.

V. CONCLUSION

To ensure exponential consensus of MASs, this study pro-
poses an integrated co-design framework that integrates ALO-
CLE-based decentralized FE and RBS-OLE-based distributed
FTCC, focusing on countering aperiodic DoS attacks in net-
worked hierarchy and complex incipient and abrupt actuator
faults in physical hierarchy. The distributed FTCC law based
upon state and fault estimations from FE protocol and adja-
cency broadcasting information at each past event-triggered
instant is proposed in FTCC activation/DoS attack sleeping
and FTCC sleeping/DoS attack activation cases. The sufficient
criteria of attack frequency and ADT technique is proposed to
achieve the prescribed anti-attack consensus performance and
multistep calculation is illustrated to derive gain parameters in
the distributed event-triggered FTCC solution. Future studies
of more general nonlinear leader-following MASs towards
more effective anti-attack and tolerance capabilities in the face
of sensor faults, DoS attacks, and even deception attacks are

Fig. 8. Comparative results of average consensus errors of angular rotations
θmi −

∑6
i=1 θmi, i = 1, · · · , 6 of each motor in Case II.

Fig. 9. Comparative results of average consensus errors of angular velocities
ωmi −

∑6
i=1 ωmi, i = 1, · · · , 6 of each motor in Case II.

highlighted. More challenges of fault-tolerant tracking issues
with a substantial reduction in computational resources should
be further addressed by the improved integration of coopera-
tive FE and FTCC schemes with event-triggered mechanisms
when message transmission fails intermittently.
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