63 research outputs found

    Adaptive optimal slip ratio estimator for effective braking on a non-uniform condition road

    Get PDF
    In this paper, an adaptive algorithm is developed which senses the road condition change and estimates a (time-varying) optimal braking slip ratio. This is conducted by two on-line simultaneously operating tire-road friction-curve slope calculators: one based on the accelerometer output and the other based on the wheel speed. The required vehicle speed is estimated using a robust sliding-mode observer. Enforcement of the online optimal braking reference is left to an adaptive sliding mode controller to cope with the system strong nonlinearity, time dependency and the speed and friction-coefficient estimation errors. The algorithm is applied to a half model car and the braking performance is examined. The results indicate that the proposed algorithm substantially reduces the stopping time and distance. The performance of the algorithm is verified using different vehicle initial speeds and especially non-uniform road condition where 8% improvement versus the nonadaptive optimal slip ratio algorithm is recorded

    Vision-based active safety system for automatic stopping

    Full text link
    ntelligent systems designed to reduce highway fatalities have been widely applied in the automotive sector in the last decade. Of all users of transport systems, pedestrians are the most vulnerable in crashes as they are unprotected. This paper deals with an autonomous intelligent emergency system designed to avoid collisions with pedestrians. The system consists of a fuzzy controller based on the time-to-collision estimate – obtained via a vision-based system – and the wheel-locking probability – obtained via the vehicle’s CAN bus – that generates a safe braking action. The system has been tested in a real car – a convertible Citroën C3 Pluriel – equipped with an automated electro-hydraulic braking system capable of working in parallel with the vehicle’s original braking circuit. The system is used as a last resort in the case that an unexpected pedestrian is in the lane and all the warnings have failed to produce a response from the driver

    Design and simulation of the robust ABS and ESP fuzzy logic controller on the complex braking maneuvers

    Get PDF
    Automotive driving safety systems such as an anti-lock braking system (ABS) and an electronic stability program (ESP) assist drivers in controlling the vehicle to avoid road accidents. In this paper, ABS and the ESP, based on the fuzzy logic theory, are integrated for vehicle stability control in complex braking maneuvers. The proposed control algorithm is implemented for a sport utility vehicle (SUV) and investigated for braking on different surfaces. The results obtained for the vehicle software simulator confirm the robustness of the developed control strategy for a variety of road profiles and surfaces

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller

    Sideslip angle estimator based on ANFIS for vehicle handling and stability

    Get PDF
    Most of the existing ESC (Electronic stability control) systems rely on the measurement of both yaw rate and sideslip angle. However, one of the main issues is that the sideslip angle cannot be measured directly because the sensors are too expensive. For this reason, sideslip angle estimation has been widely discussed in literature. The modeling of sideslip angle is complex due to the non-linear dynamics of the vehicle. This work proposes a new methodology based on ANFIS to estimate the vehicle sideslip angle. The estimator has been validated by comparing the proposed ANFIS prediction model with the values provided by CARSIM model, which is an experimentally validated software. The advantage of this estimation is the modeling of the non-linear dynamics of the vehicle by means of signals which are directly measured from vehicle sensors. The results show the effectiveness of the proposed ANFIS-based sideslip angle estimator.Acknowledge use of the services and facilities of the Research Institute of Vehicle Safety (ISVA) at Carlos III University and the the funds provided by the Regional Government of Madrid through the research project CCG10-UC3M/DPI-4614

    Model-free intelligent Control for anti-lock braking systems on rough terrain

    Get PDF
    Advances made in Advanced Driver Assistance Systems such as Antilock Braking Systems (ABS), have significantly improved the safety of road vehicles. ABS enhances the braking performance and steerability of a vehicle under severe braking conditions. However, ABS performance degrades on rough terrain. This is largely due to noisy measurements, the type of ABS control algorithm used, and the excitation of complex dynamics such as higher order tyre mode shapes that are neglected in the control strategy. This study proposes a model-free intelligent control technique with no modelling constraints that can overcome these un-modelled dynamics and parametric uncertainties. The Double Deep Q-learning Network algorithm with the Temporal Convolutional Network is presented as the intelligent control algorithm. The model is initially trained with a simplified single wheel model. The initial training data is transferred to and then enhanced by using a validated full-vehicle model including a physics-based tyre model, a 3D rough road profile with added stochasticity. The performance of the newly developed ABS controller is compared to a Bosch algorithm tuned for off-road use. Simulation results show a generalizable and robust control algorithm that can prevent wheel lockup over rough terrain without significantly deteriorating the vehicle’s stopping distance on smooth roadsDissertation (MEng (Mechanical Engineering))--University of Pretoria, 2022.Mechanical and Aeronautical EngineeringMEng (Mechanical Engineering)Unrestricte

    MODELING AND SIMULATION OF PM MOTOR TESTING ENVIRONMENT TOWARDS EV APPLICATION CONSIDERING ROAD CONDITIONS

    Get PDF
    The electric vehicle (EV) performance testing is an indispensable aspect of the design study and marketing of electric vehicle. The development of a suitable electric motor testing environment for EVs is very significant. On the one hand, it provides a relatively realistic testing environment for the study of the key technologies of electric vehicles, and it also plays an essential role in finding a reasonable and reliable optimization scheme. On the other hand, it provides a reference to the evaluation criteria for the products on the market. This thesis is based on such requirements to model and simulate the PM motor testing environment towards EV applications considering road conditions. Firstly, the requirements of the electric motor drive as a propulsion system for EV applications are investigated by comparing to that of the traditional engine as a propulsion system. Then, as the studying objective of this work, the mathematical model of PMSM is discussed according to three different coordinate systems, and the control strategy for EV application is developed. In order to test the PM motor in the context of an EV, a specific target vehicle model is needed as the virtual load of the tested motor with the dyno system to emulate the real operating environment of the vehicle. A slippery road is one of the severe driving conditions for EVs and should be considered during the traction motor testing process. Fuzzy logic based wheel slip control is adopted in this thesis to evaluate the PM motor performance under slippery road conditions. Through the proposed testing environment, the PM motor can be tested in virtual vehicle driving conditions, which is significant for improving the PM motor design and control

    Adaptive and Robust Braking-Traction Control Systems

    Get PDF
    The designs of commercial Anti-Lock Braking Systems often rely on assumptions of a torsionally rigid tire-wheel system and heavily rely on hub-mounted wheel speed sensors to manage tire-road slip conditions. However, advancements in high-bandwidth braking systems, in-wheel motors, variations in tire/wheel designs, and loss of inflation pressure, have produced scenarios where the tire\u27s torsional dynamics could be easily excited by the braking system actuator. In these scenarios, the slip conditions for the tire-belt/ring will be dynamically different from what can be inferred from the wheel speed sensors. This dissertation investigates the interaction of tire torsional dynamics with ABS & traction controllers and offers new control designs that incorporate schemes for identifying and accommodating these dynamics. To this end, suitable braking system and tire torsional dynamics simulation models as well as experimental test rigs were developed. It is found that, indeed, rigid-wheel based controllers give degraded performance when coupled with low torsional stiffness tires. A closed-loop observer/nonlinear controller structure is proposed that adapts to unknown tire sidewall and tread parameters during braking events. It also provides estimates of difficult to measure state variables such as belt/ring speed. The controller includes a novel virtual damper emulation that can be used to tune the system response. An adaptive sliding-mode controller is also introduced that combines robust stability characteristics with tire/tread parameter and state estimation. The sliding mode controller is shown to be very effective at tracking its estimated target, at the expense of reducing the tire parameter adaptation performance. Finally, a modular robust state observer is developed that allows for robust estimation of the system states in the presence of uncertainties and external disturbances without the need for sidewall parameter adaptation

    Extremum Seeking Method And Its Applications In Automotive Control

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2011Kontrol uygulamalarındaki ana yöntem, ele alınan bir sistemi belli bir çalışma noktasına veya referans yörüngesine oturtmaktır. Fakat bazı kontrol problemlerinde, arzu edilen sistem performansı ile o performansı sağlayacak sistem çalışma noktası arasındaki ilişki önceden bilinmemektedir. Örneğin sistemin çalışma noktası ile çıkışı arasında o şekilde bir ilişki olabilir ki, bu fonksiyonun bir ekstremumu olabilir ve amaç, sistem çıkışını bu ekstremum değere getirecek çalışma noktasının aranması olabilir. Sistemin çalışma noktası ile çıkışı arasındaki fonksiyonun belirsizliği, çıkışı maksimize (veya minimize) edecek çalışma noktasının bulunması için bir uyarlama algoritmasının kullanımını gerekli kılmaktadır. Bu problem Ekstremum Arama Algoritması (EAA) ile çözülebilmektedir. Bu algoritma, sistemin performans fonksiyonunun tamamen veya kısmen bilinmediği, zamanla değişebildiği, sistemin eğrisel olduğu, belirsizlik ve bozucular içerdiği durumlar için uygundur. Örneğin acil durum frenlemesinde ihtiyaç duyulduğu gibi, bilinmeyen yol koşullarında tekerlek ile yol arasındaki teker kuvvetlerinin maksimize edilmesi başa çıkılması gereken zor bir iştir. Yol sürtünme katsayısı genellikle önceden bilinmemektedir ve anlık olarak kestirimi zordur. ABS kontrol algoritması, bilinmeyen yol koşullarında teker frenleme kuvvetini maksimize edecek hidrolik fren basıncının optimum çalışma noktasını bulmalıdır. Optimum çalışma noktası seçimindeki bir yanlış karar, ya olabilecekten daha az frenleme kuvvetinin üretilmesine ya da tekerleklerin kilitlenmesine, böylece aracın kontrol edilebilirliğinin ortadan kalkmasına sebep olacaktır. Minimum durma mesafesi ancak tekerleklerin, tekerlek kuvveti-tekerlek kayma oranı eğrisinde en tepe noktasında çalışmaları durumunda gerçekleşir. Bu durumda tekerleklerin kilitlenmesi engellendiği için aracın yanal kararlılığı ve direksiyon ile yönlendirilebilirliği de iyileşecektir. Tezde önce, optimum tekerlek kayma değeri bilinmeden tekerlek kuvvetinin maksimize edilmesi için, tekerlek modeli parametrelerinin uyarlanması yöntemi ile entegre edilmiş bir Ekstremum Arama Algoritması (EAA) önerilmiştir. Bunun için bir çeyrek araç modeli ele alınmıştır. Literatürdeki çoğu ekstremum arama algoritmaları, optimum çalışma noktasını ararken amaç fonksiyonunun gerçek zamanlı olarak ölçümüne dayanmaktadır. Bu çalışmada önerilen kontrol algoritması, amaç fonksiyonunun anlık ölçümü gereksinimini ortadan kaldırarak onun yerine parametre uyarlamalı analitik bir yöntem geliştirmiştir. Kararlılık ve global maksimum noktasına yakınsama durumları, Lyapunov kararlılık analizi ile gösterilmiştir. Önerilen yaklaşımın etkinliğini göstermek için farklı yol koşullarında simulasyon çalışmaları yapılmıştır. İkinci olarak, boyuna frenleme yanında engelden kaçınma manevrasında olduğu gibi yanal hareketi de gözönüne alan EAA temelli bir ABS kontrol algoritması sunulmuştur. Bu algoritmada, yol sürtünme katsayısını kestirmeye gerek kalmadan, tekerlek ve yol arasındaki optimum kayma oranı anlık olarak aranmaktadır. Literatüre getirilen bir yenilik olarak, “tekerlek kuvveti”-“kayma oranı” karakteristik eğrisi üzerinde tekerleklerin çalışma bölgesini belirlemek için sürücü direksiyon girişi ABS frenleme prosedürüne eklenmiştir. Sadece boyuna frenleme durumunda algoritma, tekerleklerin çalışma bölgesini, kuvvet-kayma eğrisinin tepe noktası yakınında tutmaktadır. Eğer sürücü frenlemeye ek olarak yanal hareket de talep ederse, tekerleklerin çalışma bölgesi otomatik olarak değiştirilmekte ve böylece yanal tekerlek kuvvetleri arttırılarak aracın yanal kararlılığı iyileştirilmektedir. Gerçek bir araçtan alınan ölçümlerle doğrulanmış bir tam araç modeli kullanılarak yapılan simülasyonlar algoritmanın etkinliğini göstermektedir. Üçüncü olarak, bir paralel tip hibrid elektrikli araç (HEA) için enerji yönetimi stratejisi önerilmiştir. HEA’lar, daha verimli, daha az çevreyi kirleten araçlara gereksinim sonucunda geliştirilmiştir. Elektrikli araçlar parlak bir çözüm olsa da şu andaki kısa menzilleri ve uzun batarya şarj süreleri, yaygın kullanımlarını geleceğe ötelemektedir. HEA’lar bu doğrultuda kabul edilebilir bir ara çözüm sunmaktadırlar. Hibrid bir elektrikli araçta, elektrokimyasal bir batarya ile güç verilen bir elektrikli motor (EM), fosil yakıt tarafından güç verilen içten yanmalı motor (İYM) ile birlikte kullanılmaktadır. Bunlar, yakıt tüketimi ve emisyonları azaltmadaki önemli potansiyelleri ile günümüzde en uygulanabilir teknoloji olarak görülmektedirler. Tezde verilen HEA enerji yönetim stratejisinin ana amacı, toplam verimi maksimize ederek yakıt tüketimini iyileştirmek ve bunu yaparken de sürücünün güç isteğini karşılamak, batarya şarj durumunu korumak ve İYM, EM güç kısıtları gibi çeşitli kısıtları göz önüne almaktır. Önerilen enerji yönetimi stratejisinde, ekstremum arama algoritması, toplam verimi maksimize edecek şekilde içten yanmalı motor ve elektrik motoru arasında optimum tork dağılımını belirlemektedir. Kontrol stratejisi üst seviye ve alt seviye olmak üzere iki seviyelidir: Üst seviyedeki karar verme kontrolcüsü aracın hangi modda çalışacağını tespit eder. Bu modlar: İçten yanmalı motor ve elektrik motorunun eşzamanlı çalışması, yalnızca elektrik motoru, yalnızca içten yanmalı motor, veya rejeneratif frenleme modlarıdır. İçten yanmalı motor ve elektrik motorunun eşzamanlı çalışması sırasında, bu iki enerji kaynağı arasındaki optimum enerji dağılımını ekstremum arama algoritması, toplam verimi maksimize edecek şekilde belirlemektedir. Böylece literatürde ilk defa bir ekstremum arama algoritması HEA kontrol problemine uyarlanmıştır. Önerilen kontrol algoritmasının performans değerlendirmesi için ayrıca bir dinamik programlama (DP) çözümü de elde edilmiştir. DP çözümü, ele alınan sürüş çevrimi ve sürüş koşulları için elde edilebilecek minimum yakıt tüketimini hesaplamaktadır. DP prosedürünü uygulamak için, bütün bir sürüş çevrimi ve sürüş koşulları önceden bilinmelidir. Gerçek bir araçta gelecekteki sürüş koşulları bilinmediği için DP gerçek zamanlı bir kontrolcü olarak kullanılamaz. Dinamik programlama çözümü gerçek zamanlı kontrol algoritmasının performansının değerlendirilmesi için kullanılmaktadır. Tezde önerilen kontrol algoritmasının etkinliğini göstermek için gerçekçi bir araç modeli kullanılarak çeşitli sürüş çevrimleri ile simülasyonlar yapılmıştır.The mainstream methodology in control applications is to regulate the considered system to known set points or reference trajectories. However, in some control problems, the relation between the system setpoint and a desired system performance is unknown a priori. One situation is that, the reference-to-output map has an extremum and the objective is to select the set point to keep the output at that extremum value. The uncertainty in the reference-to-output map makes it necessary to use an adaptation method to find the set point which maximizes (or minimizes) the output. This problem can be solved via the Extremum Seeking Algorithm (ESA). The algorithm fits problems that possess completely or partially unknown performance functions that may also change in time or that have nonlinear systems with structured or unstructured uncertainties and disturbances. For example, as needed in an emergency braking case, the maximization of the tire force between the tire contact patch and the road in the presence of unknown road conditions is a challenging task. The road friction coefficient is mostly unknown a priori and it is difficult to estimate it on-line. The ABS control algorithm should find the optimal set point of brake hydraulic pressure, which maximizes the wheel braking force subject to unknown and possibly changing road conditions. A misjudgment about the optimal set point choice may cause lower performance of braking via either less friction force generation or via blocking the tire rotation. The minimum stopping distance is ensured when the tires operate at the peak point of the braking force versus slip characteristic curve subject to unknown road conditions. In addition, lateral stability and steerability are also improved as locking of the wheels is prevented. In this thesis, firstly, an Extremum Seeking Algorithm (ESA) integrated with the adaptation of the tire model parameters is proposed for maximizing braking force without utilizing optimum slip value information. A quarter car vehicle model is considered in this section of the thesis. Most of the commonly used extremum seeking algorithms in the literature search for the optimal operating point in order to maximize or minimize a given cost function which is measured on a real-time basis. The control algorithm introduced in this dissertation removes the on-line cost function measurement requirement and instead, an analytic approach with adaptive parameter tuning is developed along the ESA. Stability and reaching the global maximum operating point of the unknown cost function are proved using Lyapunov stability analysis. Simulation study for ABS control under different road pavement conditions is presented to illustrate the effectiveness of the proposed approach. Secondly, an ABS control algorithm based on ESA is presented for considering lateral motion in addition to the longitudinal emergency braking, such as the obstacle avoidance maneuvers, also. The optimum slip ratio between the tire contact patch and the road is searched online without having to estimate the road friction conditions. This is achieved by adapting the ESA as a self-optimization routine that seeks the peak point of the force-slip curve. As a novel addition to the literature, the proposed algorithm incorporates driver steering input information into the ABS braking procedure to determine the operating region of the tires on the “tire force”-“slip ratio” characteristic curve. The algorithm operates the tires near the peak point of the force-slip curve during straight line braking. When the driver demands lateral motion in addition to braking, the operating regions of the tires are modified automatically, for improving the lateral stability of the vehicle by increasing the tire lateral forces. Simulations with a full vehicle model validated with actual vehicle measurements show the effectiveness of the algorithm. Thirdly, an energy management strategy for a parallel type hybrid electric vehicle (HEV) is proposed. HEVs are developed in the need of more efficient, less polluting vehicles. Electric vehicles seem as a promising solution but for now, their short driving distance combined with the long recharging period for batteries postpones their widespread use to the future. HEVs offer an acceptable, intermediate solution. In a hybrid electric vehicle, an electric motor (EM) powered by an electrochemical battery is used along with the internal combustion engine (ICE) powered by fossil fuel. They appear to be one of the most viable technologies with significant potential to reduce fuel consumption and pollutant emissions. The main objective of the HEV energy management strategy given in the thesis is maximizing the powertrain efficiency and hence improving the fuel consumption while meeting the driver’s power demand, sustaining the battery state of charge and considering constraints such as engine and electric motor power limits. In the proposed energy management strategy, extremum seeking algorithm searches constantly optimum torque distribution between the internal combustion engine and electric motor for maximizing the powertrain efficiency. The control strategy has two levels of operation: the upper and lower levels. The upper level decision making controller chooses the vehicle operation mode such as the simultaneous use of the internal combustion engine and electric motor, use of only the electric motor, use of only the internal combustion engine, or regenerative braking. In the simultaneous use of the internal combustion engine and electric motor, the optimum energy distribution between these two sources of energy is determined via the extremum seeking algorithm that searches for maximum powertrain efficiency. In the literature, this is the first time an extremum seeking algorithm is applied to the HEV control problem. A dynamic programming (DP) solution is also obtained and used to form a benchmark for performance evaluation of the proposed method. DP solution gives the minimum obtainable fuel consumption in a considered driving cycle and driving conditions. In order to apply DP procedure, the whole driving cycle and driving conditions should be known in advance. Since future driving conditions are unknown in a real vehicle, DP cannot be utilized in a real time controller. The dynamic programming solution is used offline for performance evaluation of the real time control algorithm. Detailed simulations with various driving cycles and using a realistic vehicle model are presented to illustrate the effectiveness of the methodology.DoktoraPh
    corecore