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EXTREMUM SEEKING METHOD AND ITS APPLICATIONS IN 
AUTOMOTIVE CONTROL 

SUMMARY 

The mainstream methodology in control applications is to regulate the considered 
system to known set points or reference trajectories. However, in some control 
problems, the relation between the system setpoint and a desired system performance 
is unknown a priori. One situation is that, the reference-to-output map has an 
extremum and the objective is to select the set point to keep the output at that 
extremum value. The uncertainty in the reference-to-output map makes it necessary 
to use an adaptation method to find the set point which maximizes (or minimizes) the 
output. This problem can be solved via the Extremum Seeking Algorithm (ESA). 
The algorithm fits problems that possess completely or partially unknown 
performance functions that may also change in time or that have nonlinear systems 
with structured or unstructured uncertainties and disturbances. 

For example, as needed in an emergency braking case, the maximization of the tire 
force between the tire contact patch and the road in the presence of unknown road 
conditions is a challenging task. The road friction coefficient is mostly unknown a 
priori and it is difficult to estimate it on-line. The ABS control algorithm should find 
the optimal set point of brake hydraulic pressure, which maximizes the wheel 
braking force subject to unknown and possibly changing road conditions. A 
misjudgment about the optimal set point choice may cause lower performance of 
braking via either less friction force generation or via blocking the tire rotation. The 
minimum stopping distance is ensured when the tires operate at the peak point of the 
braking force versus slip characteristic curve subject to unknown road conditions. In 
addition, lateral stability and steerability are also improved as locking of the wheels 
is prevented. 

In this thesis, firstly, an Extremum Seeking Algorithm (ESA) integrated with the 
adaptation of the tire model parameters is proposed for maximizing braking force 
without utilizing optimum slip value information. A quarter car vehicle model is 
considered in this section of the thesis. Most of the commonly used extremum 
seeking algorithms in the literature search for the optimal operating point in order to 
maximize or minimize a given cost function which is measured on a real-time basis. 
The control algorithm introduced in this dissertation removes the on-line cost 
function measurement requirement and instead, an analytic approach with adaptive 
parameter tuning is developed along the ESA. Stability and reaching the global 
maximum operating point of the unknown cost function are proved using Lyapunov 
stability analysis. Simulation study for ABS control under different road pavement 
conditions is presented to illustrate the effectiveness of the proposed approach. 

Secondly, an ABS control algorithm based on ESA is presented for considering 
lateral motion in addition to the longitudinal emergency braking, such as the obstacle 
avoidance maneuvers, also. The optimum slip ratio between the tire contact patch 
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and the road is searched online without having to estimate the road friction 
conditions. This is achieved by adapting the ESA as a self-optimization routine that 
seeks the peak point of the force-slip curve. As a novel addition to the literature, the 
proposed algorithm incorporates driver steering input information into the ABS 
braking procedure to determine the operating region of the tires on the “tire force”-
“slip ratio” characteristic curve. The algorithm operates the tires near the peak point 
of the force-slip curve during straight line braking. When the driver demands lateral 
motion in addition to braking, the operating regions of the tires are modified 
automatically, for improving the lateral stability of the vehicle by increasing the tire 
lateral forces. Simulations with a full vehicle model validated with actual vehicle 
measurements show the effectiveness of the algorithm. 

Thirdly, an energy management strategy for a parallel type hybrid electric vehicle 
(HEV) is proposed. HEVs are developed in the need of more efficient, less polluting 
vehicles. Electric vehicles seem as a promising solution but for now, their short 
driving distance combined with the long recharging period for batteries postpones 
their widespread use to the future. HEVs offer an acceptable, intermediate solution. 
In a hybrid electric vehicle, an electric motor (EM) powered by an electrochemical 
battery is used along with the internal combustion engine (ICE) powered by fossil 
fuel. They appear to be one of the most viable technologies with significant potential 
to reduce fuel consumption and pollutant emissions. The main objective of the HEV 
energy management strategy given in the thesis is maximizing the powertrain 
efficiency and hence improving the fuel consumption while meeting the driver’s 
power demand, sustaining the battery state of charge and considering constraints 
such as engine and electric motor power limits. 

In the proposed energy management strategy, extremum seeking algorithm searches 
constantly optimum torque distribution between the internal combustion engine and 
electric motor for maximizing the powertrain efficiency. The control strategy has two 
levels of operation: the upper and lower levels. The upper level decision making 
controller chooses the vehicle operation mode such as the simultaneous use of the 
internal combustion engine and electric motor, use of only the electric motor, use of 
only the internal combustion engine, or regenerative braking. In the simultaneous use 
of the internal combustion engine and electric motor, the optimum energy 
distribution between these two sources of energy is determined via the extremum 
seeking algorithm that searches for maximum powertrain efficiency. In the literature, 
this is the first time an extremum seeking algorithm is applied to the HEV control 
problem. A dynamic programming (DP) solution is also obtained and used to form a 
benchmark for performance evaluation of the proposed method. DP solution gives 
the minimum obtainable fuel consumption in a considered driving cycle and driving 
conditions. In order to apply DP procedure, the whole driving cycle and driving 
conditions should be known in advance. Since future driving conditions are unknown 
in a real vehicle, DP cannot be utilized in a real time controller. The dynamic 
programming solution is used offline for performance evaluation of the real time 
control algorithm. Detailed simulations with various driving cycles and using a 
realistic vehicle model are presented to illustrate the effectiveness of the 
methodology.  
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EKSTREMUM ARAMA METODU VE OTOMOTİV KONTROLU 
ALANINDA UYGULAMALARI 

ÖZET 

Kontrol uygulamalarındaki ana yöntem, ele alınan bir sistemi belli bir çalışma 
noktasına veya referans yörüngesine oturtmaktır. Fakat bazı kontrol problemlerinde, 
arzu edilen sistem performansı ile o performansı sağlayacak sistem çalışma noktası 
arasındaki ilişki önceden bilinmemektedir. Örneğin sistemin çalışma noktası ile 
çıkışı arasında o şekilde bir ilişki olabilir ki, bu fonksiyonun bir ekstremumu olabilir 
ve amaç, sistem çıkışını bu ekstremum değere getirecek çalışma noktasının aranması 
olabilir. Sistemin çalışma noktası ile çıkışı arasındaki fonksiyonun belirsizliği, çıkışı 
maksimize (veya minimize) edecek çalışma noktasının bulunması için bir uyarlama 
algoritmasının kullanımını gerekli kılmaktadır. Bu problem Ekstremum Arama 
Algoritması (EAA) ile çözülebilmektedir. Bu algoritma, sistemin performans 
fonksiyonunun tamamen veya kısmen bilinmediği, zamanla değişebildiği, sistemin 
eğrisel olduğu, belirsizlik ve bozucular içerdiği durumlar için uygundur. 

Örneğin acil durum frenlemesinde ihtiyaç duyulduğu gibi, bilinmeyen yol 
koşullarında tekerlek ile yol arasındaki teker kuvvetlerinin maksimize edilmesi başa 
çıkılması gereken zor bir iştir. Yol sürtünme katsayısı genellikle önceden 
bilinmemektedir ve anlık olarak kestirimi zordur. ABS kontrol algoritması, 
bilinmeyen yol koşullarında teker frenleme kuvvetini maksimize edecek hidrolik fren 
basıncının optimum çalışma noktasını bulmalıdır. Optimum çalışma noktası 
seçimindeki bir yanlış karar, ya olabilecekten daha az frenleme kuvvetinin 
üretilmesine ya da tekerleklerin kilitlenmesine, böylece aracın kontrol 
edilebilirliğinin ortadan kalkmasına sebep olacaktır. Minimum durma mesafesi ancak 
tekerleklerin, tekerlek kuvveti-tekerlek kayma oranı eğrisinde en tepe noktasında 
çalışmaları durumunda gerçekleşir. Bu durumda tekerleklerin kilitlenmesi 
engellendiği için aracın yanal kararlılığı ve direksiyon ile yönlendirilebilirliği de 
iyileşecektir.  

Tezde önce, optimum tekerlek kayma değeri bilinmeden tekerlek kuvvetinin 
maksimize edilmesi için, tekerlek modeli parametrelerinin uyarlanması yöntemi ile 
entegre edilmiş bir Ekstremum Arama Algoritması (EAA) önerilmiştir. Bunun için 
bir çeyrek araç modeli ele alınmıştır. Literatürdeki çoğu ekstremum arama 
algoritmaları, optimum çalışma noktasını ararken amaç fonksiyonunun gerçek 
zamanlı olarak ölçümüne dayanmaktadır. Bu çalışmada önerilen kontrol algoritması, 
amaç fonksiyonunun anlık ölçümü gereksinimini ortadan kaldırarak onun yerine 
parametre uyarlamalı analitik bir yöntem geliştirmiştir. Kararlılık ve global 
maksimum noktasına yakınsama durumları, Lyapunov kararlılık analizi ile 
gösterilmiştir. Önerilen yaklaşımın etkinliğini göstermek için farklı yol koşullarında 
simulasyon çalışmaları yapılmıştır. 

İkinci olarak, boyuna frenleme yanında engelden kaçınma manevrasında olduğu gibi 
yanal hareketi de gözönüne alan EAA temelli bir ABS kontrol algoritması 
sunulmuştur. Bu algoritmada, yol sürtünme katsayısını kestirmeye gerek kalmadan, 
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tekerlek ve yol arasındaki optimum kayma oranı anlık olarak aranmaktadır. 
Literatüre getirilen bir yenilik olarak, “tekerlek kuvveti”-“kayma oranı” karakteristik 
eğrisi üzerinde tekerleklerin çalışma bölgesini belirlemek için sürücü direksiyon 
girişi ABS frenleme prosedürüne eklenmiştir. Sadece boyuna frenleme durumunda 
algoritma, tekerleklerin çalışma bölgesini, kuvvet-kayma eğrisinin tepe noktası 
yakınında tutmaktadır. Eğer sürücü frenlemeye ek olarak yanal hareket de talep 
ederse, tekerleklerin çalışma bölgesi otomatik olarak değiştirilmekte ve böylece 
yanal tekerlek kuvvetleri arttırılarak aracın yanal kararlılığı iyileştirilmektedir. 
Gerçek bir araçtan alınan ölçümlerle doğrulanmış bir tam araç modeli kullanılarak 
yapılan simülasyonlar algoritmanın etkinliğini göstermektedir. 

Üçüncü olarak, bir paralel tip hibrid elektrikli araç (HEA) için enerji yönetimi 
stratejisi önerilmiştir. HEA’lar, daha verimli, daha az çevreyi kirleten araçlara 
gereksinim sonucunda geliştirilmiştir. Elektrikli araçlar parlak bir çözüm olsa da şu 
andaki kısa menzilleri ve uzun batarya şarj süreleri, yaygın kullanımlarını geleceğe 
ötelemektedir. HEA’lar bu doğrultuda kabul edilebilir bir ara çözüm sunmaktadırlar. 
Hibrid bir elektrikli araçta, elektrokimyasal bir batarya ile güç verilen bir elektrikli 
motor (EM), fosil yakıt tarafından güç verilen içten yanmalı motor (İYM) ile birlikte 
kullanılmaktadır. Bunlar, yakıt tüketimi ve emisyonları azaltmadaki önemli 
potansiyelleri ile günümüzde en uygulanabilir teknoloji olarak görülmektedirler. 
Tezde verilen HEA enerji yönetim stratejisinin ana amacı, toplam verimi maksimize 
ederek yakıt tüketimini iyileştirmek ve bunu yaparken de sürücünün güç isteğini 
karşılamak, batarya şarj durumunu korumak ve İYM, EM güç kısıtları gibi çeşitli 
kısıtları göz önüne almaktır. 

Önerilen enerji yönetimi stratejisinde, ekstremum arama algoritması, toplam verimi 
maksimize edecek şekilde içten yanmalı motor ve elektrik motoru arasında optimum 
tork dağılımını belirlemektedir. Kontrol stratejisi üst seviye ve alt seviye olmak üzere 
iki seviyelidir: Üst seviyedeki karar verme kontrolcüsü aracın hangi modda 
çalışacağını tespit eder. Bu modlar: İçten yanmalı motor ve elektrik motorunun 
eşzamanlı çalışması, yalnızca elektrik motoru, yalnızca içten yanmalı motor, veya 
rejeneratif frenleme modlarıdır. İçten yanmalı motor ve elektrik motorunun 
eşzamanlı çalışması sırasında, bu iki enerji kaynağı arasındaki optimum enerji 
dağılımını ekstremum arama algoritması, toplam verimi maksimize edecek şekilde 
belirlemektedir. Böylece literatürde ilk defa bir ekstremum arama algoritması HEA 
kontrol problemine uyarlanmıştır. Önerilen kontrol algoritmasının performans 
değerlendirmesi için ayrıca bir dinamik programlama (DP) çözümü de elde 
edilmiştir. DP çözümü, ele alınan sürüş çevrimi ve sürüş koşulları için elde 
edilebilecek minimum yakıt tüketimini hesaplamaktadır. DP prosedürünü uygulamak 
için, bütün bir sürüş çevrimi ve sürüş koşulları önceden bilinmelidir. Gerçek bir 
araçta gelecekteki sürüş koşulları bilinmediği için DP gerçek zamanlı bir kontrolcü 
olarak kullanılamaz. Dinamik programlama çözümü gerçek zamanlı kontrol 
algoritmasının performansının değerlendirilmesi için kullanılmaktadır. Tezde 
önerilen kontrol algoritmasının etkinliğini göstermek için gerçekçi bir araç modeli 
kullanılarak çeşitli sürüş çevrimleri ile simülasyonlar yapılmıştır.  

 

 

 

 



1 
 

1.  INTRODUCTION 

1.1 Introduction and Scope of the Dissertation 

Traditional control system design deals with the problem of stabilization of a known 

reference trajectory or set point that are called “tracking” and “regulation” problems. 

However, in some occasions it can be very difficult to find a suitable reference value. 

For example in ABS control problems, the maximization of the tire force between 

the tire contact patch and the road during an emergency braking maneuver in the 

presence of unknown road conditions is a challenging task. The road friction 

coefficient is mostly unknown a priori and it is difficult to estimate it on-line. The 

ABS control algorithm should find the optimal set point of brake hydraulic pressure, 

which maximizes the wheel braking moment subject to unknown and possibly 

changing road conditions. A misjudgment about the optimal set point choice may 

cause lower performance of braking via either less friction force generation or via 

blocking the tire rotation. The minimum stopping distance is ensured when the tires 

operate at the peak point of the braking force versus slip characteristics subject to 

unknown road conditions. In addition, headway stability and steerability are also 

improved as locking of the wheels is prevented.  

Unlike the classical regulative control schemes, extremum seeking covers control 

problems where the reference trajectory or reference set point is not known but is 

searched in real time in order to maximize or minimize a performance function of a 

nonlinear, possibly time varying, uncertain system. In this scheme, the relationship 

between the outputs and the inputs or states of the system does not have to be known 

in advance. Besides, there is no a priori knowledge of the optimum operating point of 

the considered system. It is called as Extremum Seeking Control, Extremum Control, 

Extremal Control or Self-Optimizing Control. In the framework of automotive 

control applications, some application area examples are: ABS/Traction control 

problem where the aim is to maximize the longitudinal tire forces with respect to the 

different road conditions, air/fuel ratio control where the optimal fuel amount is to be 

decided online for a given air flow according to an optimality criterion, optimization 
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of intake, exhaust, and spark timings to improve fuel consumption. In this thesis, 

extremum seeking control is applied to ABS and Hybrid Electric Vehicle Control 

Problems. 

Anti-lock brake systems (ABS) are originally developed to prevent wheels from 

locking up during hard braking. Modern ABS systems not only try to prevent wheels 

from locking but also try to maximize the braking forces generated by the tires by 

preventing the longitudinal slip ratio from exceeding an optimum value. Locking of 

the wheels reduces the braking forces generated by the tires and results in the vehicle 

taking a longer time to come to a stop. Further, locking of the front wheels prevents 

the driver from being able to steer the vehicle while it is coming to a stop. Common 

commercial ABS algorithms use the deceleration threshold based algorithm where 

the wheel deceleration signal is used to predict if the wheel is about to lock. 

Threshold based ABS algorithms are simple and prevent wheel lockup but they may 

not provide full braking potential of the tires. More advanced solutions are studied in 

the literature based on maximization of the tire forces by regulating the current slip 

ratio of the tires to some optimum slip ratio value. 

The concept of Hybrid Electric Vehicle (HEV) originated from the fact that by using 

an extra energy source and properly managing the energy conversions between the 

existing energy source (Internal Combustion Engine - ICE) and the added energy 

source (Battery), more efficient, less polluting and less energy consuming vehicles 

can be developed. In HEV, the propulsion energy is transmitted to the wheels by two 

different energy conversion devices. One is the internal combustion engine (gasoline 

or diesel engine) and the other is the electric motor (EM). The electric motor 

converts the chemical energy from batteries into kinetic energy in the wheels. The 

path of energy flow from the batteries into the wheels is reversible which means that 

while braking, the electric motor operates as a generator and recharges the batteries. 

They appear to be one of the most viable technologies with significant potential to 

reduce fuel consumption and pollutant emissions. 

1.2 Contributions of the Dissertation 

The contributions of this dissertation to the literature are presented in this section 

as given below:  
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• The first contribution is that the extremum seeking algorithm is developed for 

maximizing braking force of a quarter-car vehicle model without having to 

know or utilize optimum slip value information. The novelty is that the search 

algorithm is integrated with the adaptation of the tire model parameters for 

maximizing braking force. Most common extremum seeking algorithms in 

the literature are searching for an optimal operating point in order to 

maximize or minimize a given cost function which is measured on a real-time 

basis. The control algorithm introduced in this dissertation removes the on-

line cost function measurement requirement and instead, an analytic approach 

with adaptive parameter tuning is developed along the extremum seeking 

algorithm. Stability and reaching to the global maximum operating point of 

the unknown cost function are proved on a Lyapunov stability basis. 

Simulation study for ABS control under different road pavement conditions is 

presented to illustrate the effectiveness of the proposed approach. In order to 

show the real-time applicability of the algorithm, simulations are repeated in 

a real time hardware, the dSPACE Microautobox.  

• Extremum seeking based ABS control algorithm is further developed for 

emergency braking cases combined with lateral motion such as those 

necessary in obstacle avoidance maneuvers. The optimum slip ratio between 

the tire contact patch and the road is searched online without having to 

estimate the road friction conditions. As a novel contribution to the existing 

literature, the proposed algorithm incorporates driver steering input into the 

ABS algorithm to determine the operating region of the tires on the “tire 

force”-“slip ratio” characteristic curve. The algorithm operates the tires near 

the peak point of the force-slip curve during straight line braking. When the 

driver demands lateral motion in addition to braking, the operating regions of 

the tires are modified automatically, for improving the lateral stability of the 

vehicle by increasing the tire lateral forces. For the simulations, a 15 degree 

of freedom (6 dof from longitudinal, lateral, vertical, yaw, roll, pitch motions, 

4 dof from suspension units, 4 dof from tire rotations and 1 dof from front 

wheel steering) vehicle model is developed. Measurements from a real 

vehicle are used for validation of the developed vehicle model. Magic 

Formula Tire Model is integrated into the vehicle model for realistic 
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calculation of the forces that occur between the road and the tires. A 

hydraulic brake actuator model is used to generate required brake pressure on 

the wheel cylinders. It is shown that the braking algorithm can be improved 

for better steerability in the presence of driver steering input. 

• An extremum seeking based energy management strategy for a parallel type 

hybrid electric vehicle (HEV) model is proposed as a further contribution to 

the existing literature. An upper level controller chooses vehicle operation 

mode such as regenerative braking, EM only, ICE only, or ICE plus EM-

charge modes. In the ICE plus EM-charge mode, optimum torque distribution 

between the internal combustion engine and the electric motor is determined 

via the extremum seeking algorithm that searches for maximum powertrain 

efficiency. In the literature, this is the first time an extremum seeking 

algorithm is applied to the hybrid electric vehicle control problem.  

• A parallel type hybrid electric vehicle model including internal combustion 

engine (ICE), electric motor (EM), battery model and vehicle dynamics is 

developed for the study. ICE and EM efficiency maps are used to calculate 

powertrain efficiency and fuel consumption values.  

• A dynamic programming (DP) solution is obtained and used to form a 

benchmark for performance evaluation of the proposed method based on 

extremum seeking. DP solution gives the minimum obtainable fuel 

consumption in a considered driving cycle and driving conditions. In order to 

apply DP procedure, the whole driving cycle and driving conditions should 

be known in advance. Since future driving conditions are unknown in a real 

vehicle, DP cannot be utilized in a real time controller. The dynamic 

programming solution is used offline for performance evaluation of the real 

time control algorithm.  

• In order to show the real-time applicability of the algorithm in HEV control 

problem, simulations are repeated with CarMaker software and dSPACE 

DS1005 real time hardware. 
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1.3 Outline of the Dissertation 

In Chapter 2, the literature review for the extremum seeking algorithm (ESA), ABS 

and hybrid electric vehicle (HEV) control problems are given. In Chapter 3, 

extremum seeking algorithm is developed for a quarter car vehicle model ABS 

control problem. Sliding mode based extremum seeking algorithm is combined with 

the adaptation of the tire model parameters. In Chapter 4, ABS control algorithm is 

improved by considering driver steering input. The algorithm operates the tires near 

the peak point of the force-slip curve during straight line braking. When the driver 

demands lateral motion in addition to braking, the operating regions of the tires are 

modified automatically, for improving the lateral stability of the vehicle. A validated 

full vehicle model is presented and used in the simulation study. In Chapter 5, the 

energy management strategy using extremum seeking algorithm is proposed for a 

parallel type hybrid electric vehicle model. Hybrid vehicle model including internal 

combustion engine, electric motor and battery model is developed for the study In 

order to evaluate performance of the proposed algorithm; the DP procedure is applied 

to calculate minimum attainable fuel consumption value. Real-time simulation study 

with CarMaker software and dSPACE DS1005 hardware is given to show the real-

time applicability of the control algorithm. Chapter 6 presents conclusions.  

In Appendix A, derivation of the full vehicle model acceleration vector is presented. 

Appendix B presents formulation of the Magic Formula Tire Model. Matlab M File 

for calculation of the tire forces according to the Magic Formula Tire Model is 

presented in Appendix C. Appendix C introduces also the computer program, which 

calculates minimum attainable fuel consumption of the hybrid electric vehicle via the 

dynamic programming method. 
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2.  LITERATURE REVIEW 

A survey of the related literature on the different methods of achieving extremum 

seeking control and the existing control methods for ABS braking and HEV power 

distribution are presented in this chapter. 

2.1 Extremum Seeking Algorithm 

Extremum Seeking Control is a class of control algorithm that searches maximum (or 

minimum) point of the performance function of a system. The system to be regulated 

may be nonlinear, time varying, possess structured or unstructured uncertainties and 

the performance function of the system is completely or partially unknown. It covers 

control problems where the reference trajectory or reference set point is not known 

but it is searched on-line. In the literature, it is also called Extremum Control, Peak-

Seeking Control or Self-Optimizing Control. Some application areas are 

maximization of braking and traction forces in vehicles [3,5,7,20,32,37], source 

seeking control of autonomous vehicles and mobile robots [24-26], maximum power 

point tracking control of fuel cell power plants [21], matching problem in a charged 

particle accelerator [23], control of electromechanical valve actuator [27], operation 

of air-side economizer [29], internal combustion engine operation [11,30,31], 

optimization of batch systems in industrial chemical processes [44]. 

In the literature, mainly four different types of extremum seeking schemes are 

studied. These are sliding mode based extremum seeking [1-11], perturbation based 

extremum seeking [12-30], numerical optimization based extremum seeking [31-37] 

and gradient based extremum seeking control algorithms [38-43]. 

2.1.1 Sliding mode based extremum-seeking algorithm 

In the sliding mode based extremum-seeking approach, the shape of the performance 

function is considered unknown but its output can be measured. A sliding surface is 

defined where on that surface the performance function is forced to follow an 

increasing (or decreasing) function. Since the shape of the performance function is 
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unknown, this is a control problem with uncertain direction of control vector. Hence, 

the search signal is selected as discontinuous periodic switching. The basic scheme 

of the sliding mode based extremum seeking algorithm is shown in Figure 2.1.  

y=J(x)),( σβ xu =

( )( )γπ /sinsgn sM
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n
ρ

 
Figure 2.1 : Sliding mode based extremum seeking scheme [6]. 

The control objective is considered as the optimization of a closed loop system via 

the adaptation of a scalar control parameter while a preselected stabilizing controller 

is already in the loop. The adopted scheme assumes a regulative controller, which 

produces equilibrium for the closed-loop system, parameterized by a free control 

parameter, and employs a sliding mode optimization method to adapt this parameter 

to increase the performance of the overall system. A nonlinear system of the form 

),( uxfx =&  (2.1) 

is considered. The control objective is determined by a control structure, which 

enables the system to operate robustly at the peak of a performance surface defined 

by 

)(xJy =  (2.2) 

where y is the performance variable. The proposed design has two consecutive 

phases. First, a control law is determined to create a unique equilibrium point as a 

smooth function of a free scalar parameter inserted into the closed loop through the 

control law and in order to stabilize the closed-loop system about this equilibrium 

point. Second, this control parameter is adapted to move the resulting equilibrium to 
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increase the performance of the overall system. As an example, the following scalar 

system is taken into consideration 

u
dt
dx

=  (2.3)

with the performance variable in (2.2). Here x is the state and u is the control. Since 

the relative degree from the control input to the performance variable is one, the 

sliding mode optimization technique could easily be used to determine a 

discontinuous control law to keep x in the vicinity of its optimum value at which the 

performance variable y is maximized without requiring any derivative information on 

y. A two-phase design approach is used. First, a control law which regulates x to a 

given parameter σ  is found and then an optimization logic is employed to adapt this 

parameter σ . Selecting the control input as  

)( σλ −−= xu  (2.4)

where λ is a positive constant. The following dynamics  

)( σλ −−= xx&  (2.5)

is obtained which has the equilibrium point of 

σ=x  (2.6)

Then the problem becomes calculating σ  where (2.2) can be written as 

)(σJy =  (2.7)

and selecting the sliding variable as 

)(tnys −=  (2.8)

where )(tn  is a time increasing function with ρ=n& . Here, ρ is a positive constant. 

Then, the derivative of the sliding variable is  

ρσ
σ
σ

−= &&
d

dJs )(  (2.9)
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Here, the sign of 
σ
σ

d
dJ )(  is unknown, because the shape of the performance function 

is considered to be unknown. Hence, this is a control problem with uncertain 

direction of control vector. A periodic switching function is selected for the time 

derivative of the parameter σ  as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= )sin(sgn

γ
πσ sM&  (2.10) 

where M and γ are positive Then the sliding surface dynamics becomes  

ργπ
σ
σ

−= )/sin(sgn)( sM
d

dJs&  (2.11) 

In this dynamics, as long as the following condition holds 

Md
dJ ρ

σ
σ

>
)(  (2.12) 

the change of s and s&  will be similar as shown in Figure 2.2 and Figure 2.3 where 

the first one is the case for σσ ddJ /)( >0 while the second one is for σσ ddJ /)( <0.  
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Figure 2.2 : Change of s and s&  according to (2.11) when σσ ddJ /)( >0. 
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Figure 2.3 : Change of s and s&  according to (2.11) when σσ ddJ /)( <0. 

The arrows in Figure 2.2 and Figure 2.3 show the direction of the variable s. It is 

realized that s converges to a constant value after a finite time interval (finite time 

due to the discontinuous sign function). Then, by denoting this constant value as w 

ws =  (2.13)

Since the sliding surface is selected as (2.8), then 

wtny += )(  (2.14)

Henceforth, the performance variable y will increase with the slope of ρ converging 

to the maximum operating point as long as the condition (2.12) holds. By choosing ρ 

and M, one defines the location of the operating point. Choosing a bigger value for 

the right hand side of (2.12), the condition holds shorter, i.e. the increment of y lasts 

shorter. In other words, the operating region will be further away from the maximum 

value. On the contrary, choosing a smaller right hand side of (2.12), the condition 

will hold longer, eventually, the operating region will be closer to the maximum 

value.  

In [1], sliding mode approach for the optimization problem without any information 

about the gradient of the performance function is introduced. The discontinuous 

search signal is obtained through a hysteresis loop.  

In [2] the periodic search signal is generated with a more simple approach than in [1] 

using sine and signum functions.  
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In [3] extremum seeking control is applied to the Antilock Braking System Problem. 

The optimal slip value is searched for maximizing the tire braking forces. The 

algorithm does not need any prior information of the optimal slip value with respect 

to the different road conditions. The longitudinal tire force characteristic is shown in 

Figure 2.4.  
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Figure 2.4 : Longitudinal tire force characteristics. 

As it is shown in Figure 2.4, until some value of the tire slip ratio, the longitudinal 

tire force keeps increasing. After some value of the slip ratio value, the tire force 

starts to decrease. The optimum tire slip ratio, where the tire force has its maximum, 

depends on the road conditions. In order to get the maximum tire force during 

emergency braking, the optimum tire slip ratio has to be known a priori. The 

algorithm in [3] is based on the sliding mode self-optimization method using a 

periodic switching function. The methodology is given as follows: The longitudinal 

tire force is written as a function of the slip ratio and time as follows 

),( ixii tFy κ=  (2.15) 

where iκ  and xiF  are tire slip ratio and longitudinal tire force for the i’th tire. 

Taking the derivative of (2.15) one can get 

t
FF

F xi
i

i

xi
xi ∂

∂
+

∂
∂

= κ
κ

&&  (2.16) 
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Here, the sign of the product term for iκ& , which is
i

xiF
κ∂

∂
, is unknown. As it is shown 

in Figure 2.4, if the tire operating region is on the left side of the maximum tire force, 

then the sign is positive. On the contrary, if the tire operating region is on the right 

side of the maximum tire force, then the sign is negative. Since the road condition is 

considered unknown, the current operating region can be either in the left or right 

side of the maximum point. Hence, this is a control problem with uncertain direction 

of control vector. A periodic switching function is selected for the time derivative of 

the slip ratio ( iκ& ). 

( )xii bFtnM +−= )(sinκ&  (2.17)

Here “sin” is the sinusoidal function and  

xii bFtns += )(  (2.18)

is the sliding surface for the i’th tire. )(tn  is simply an increasing function with time 

as 0>n& . M and b are positive constants. Putting (2.17) into (2.16) one can get 

( )
t

F
bytn

F
MF xi

i
i

xi
xi ∂

∂
++

∂
∂

−=
&&

& )(sin
κ

 (2.19)

Time derivative of the sliding surface is 

xii Fbns &&& +=  (2.20)

By putting (2.19) into (2.20)  

( ) ( ) ( )iiii stbBtbAns sin++= &&  (2.21)

where 

( )
i

xi
i

xi
i

FMtB
t

FtA
κ∂

∂
−=

∂
∂

= )(,  (2.22)

If the condition  

ii bAnbB +> &  (2.23)
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holds, then the change of is  and is&  according to (2.21) will be similar as given in 

Figure 2.5. 

 
Figure 2.5 : Change of s  and s&  according to (2.21). 

Starting in a point in s  axis, the value of s  will converge to a some constant value. 

There are multiple stable equilibrium points. In the classical sliding mode theory, the 

aim is to make s =0. Rather than that, here 

πlsi =  (2.24) 

occurs where ( )Rl∈ . Since the sliding surface is  

xii bFtns += )(  (2.25) 

then 

πltnbFxi +−= )(  (2.26) 

is obtained. Since )(tn  is a time increasing function with 0>n& , braking force, 

which is negative, will continue to increase in magnitude and approach its maximum 

point as long as the condition given in (2.23) holds. The condition in (2.23) is 

equivalent to the following condition 

Mb
bAnF i

i

xi +
>

∂
∂ &

κ
 (2.27) 

In (2.27), the left hand side is the slope value in Figure 2.4. As long as the slope 

value is greater than the right hand side, the tire force will continue to increase. After 

some time, since the slope starts to decrease while approaching the maximum point, 

the condition (2.27) does not hold anymore. It means that the tires are forced to 
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operate in an operating region around the extremum point. After the tire forces get 

into the region, they cannot leave the region. By proper selection of the coefficients 

in the right hand side of (2.27), the size of the operating region can be increased or 

decreased. If the size of the operating region is decreased, then the tire will operate 

near its maximum point but in this case, there will be high control activity to keep 

operating the tire in that region. On the contrary, if the size of the operating region is 

increased, then the tire will operate further away from its maximum point but in this 

case there will be less control activity. The optimum size should be selected between 

these criteria.  

In [4], a two-time scale sliding mode optimization method is introduced. The basic 

ingredient of their approach is to introduce a free parameter to the closed loop 

through the control law and to adapt this parameter in a slower time scale to optimize 

the performance of the overall system.  

In [5], a traction control algorithm to prevent wheel spin is given. The sliding mode 

based extremum seeking algorithm calculates spark timing value to adjust the engine 

torque and hence obtain maximum traction force.  

In [6], a rigorous analysis of the sliding mode based extremum seeking scheme is 

introduced. The mechanism of the scheme is discussed in detail and the criteria for 

optimally choosing the control parameters are defined. As a result of the trade-off 

between convergence speed and control accuracy, a sliding mode extremum seeking 

control with variable parameters will be proposed to obtain fast convergence and 

high control accuracy with the consideration of system dynamics. 

In [7], extremum seeking control is developed via sliding mode to apply to systems 

with time delay and to avoid the problem of excessive oscillation. The proposed 

method is applied to a pneumatic Anti-lock brake system (ABS) example to achieve 

better braking performance and to avoid the lock-up phenomenon. 

In [8], extremum-seeking control scheme enforced by a second order sliding mode 

control strategy is proposed. It is characterized by the advantage of “second order” 

sliding mode design with smooth control input and null derivative of sliding 

manifold. 

In [9], the extremum seeking control with sliding mode is extended to solve the Nash 

equilibrium solution for an n-person linear quadratic dynamic game. For each player, 
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a sliding mode extremum seeking controller is designed to let the player's linear 

quadratic performance index track a decreasing signal so that the Nash equilibrium 

point is reached. 

[10] proposes an algorithm to solve the Nash equilibrium solution for an n-person 

noncooperative dynamic game by the extremum seeking with sliding mode. For each 

player, a switching function is defined as the difference between the player’s cost 

function and a reference signal. The extremum seeking controller for each player is 

designed so that the system converges to a sliding boundary layer defined in the 

vicinity of a sliding mode corresponding to the switching function and inside the 

boundary layer, the cost function tracks the reference signal and converges to the 

Nash equilibrium solution. 

[11] proposes a closed loop multivariable Exhaust Gas Recirculation (EGR)/Spark 

Timing management system for maximum dilution control while maintaining a 

desired level of combustion stability. A combustion stability measure derived from 

in-cylinder ionization signals is used as feedback. An extremum seeking algorithm is 

employed to modulate spark timing in a slow-time scale in order to maximize the 

steady-state EGR amount. 

2.1.2 Perturbation based extremum seeking algorithm 

In the perturbation based extremum seeking algorithm, a perturbation is added to the 

search signal. By observing the effect of the perturbation on the performance 

function measurement, it is determined whether to increase or decrease the search 

signal to reach its optimum value and hence maximize (or minimize) the 

performance function. It is assumed that the shape of the performance function is 

unknown and only the value of the function can be measured.  

In [12] and [13] the proof of stability of an extremum seeking feedback scheme by 

employing the tools of averaging and singular perturbation analysis is given. In this 

method, slope information is obtained from a continuous small perturbation signal, 

such as a sinusoidal signal. The general problem is studied where the nonlinearity 

with an extremum is a reference-to-output equilibrium map for a general nonlinear 

(non-affine in control) system, stabilizable around each of these equilibria by a local 

feedback controller. It is shown that solutions of the closed-loop system converge to 

a small neighborhood of the extremum of the equilibrium map. The size of the 
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neighborhood is inversely proportional to the adaptation gain and the amplitude and 

the frequency of a periodic signal used to achieve extremum seeking. In [13], the 

general SISO nonlinear model 

),( uxfx =&  (2.28)

)(xhy =  (2.29)

where x, u and y are the state, input and output of the system, respectively, is 

considered. A smooth control law is taken as 

),( σβ xu =  (2.30)

parameterized by a scalar parameter σ . The closed loop system 

)),(,( σβ xxfx =&  (2.31)

then has an equilibrium point parameterized by σ . It is assumed that there exist a 

smooth function nRRl →:  such that 

0)),(,( == σβ xxfx&  if and only if )(σlx =  (2.32)

and for each R∈σ , the equilibrium )(σlx =  of the system (2.31) is locally 

exponentially stable. Hence it is assumed that the control law (2.30) which is robust 

with respect to its own parameter σ  in the sense that it exponentially stabilizes any 

of the equilibrium that σ  may produce.  

Next it is assumed that the output equilibrium map ))(( σlhy =  has a maximum at 

*σσ = . The objective is to develop a feedback mechanism which maximizes the 

steady state value of y but without requiring the knowledge of either σ * or the 

functions h and l. The perturbation scheme proposed in [13] has the structure shown 

in Figure 2.6. 
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Figure 2.6 : Perturbation based extremum seeking scheme [13]. 

The starting point of the idea is as follows: It is impossible to conclude that a certain 

point is a maximum without visiting the neighborhood on both sides of it. For this 

reason, the slow periodic perturbation ta ωsin  which is added to the signal σ̂ , the 

best estimate of σ *, is used. If the perturbation is slow, the plant can be viewed, as a 

static map ))(( σlhy =  and its dynamics do not interfere with the peak-seeking 

scheme. If σ̂  is on either side of σ *, the perturbation ta ωsin  will create a periodic 

response of y which is either in phase or out of phase with ta ωsin . The high pass 

filter 
hs

s
ω+

 eliminates the DC component of y. Thus, ta ωsin  and y
s

s

hω+
 will be 

(approximately) two sinusoids which are in phase for σ̂ <σ * and out of phase for 

σ̂ >σ *. In either case, the product of the two sinusoids will have a DC component 

which is extracted by the low-pass filter 
l

l

s ω
ω
+

. The DC component ξ  is the update 

law for σ̂  which tunes σ̂  to σ *. The analysis using the method of averaging and 

singular perturbation methods is given in [13], where it is shown that the above 

system given in Figure 2.6 will converge to a neighborhood of the extremum point. 

In [14], the inclusion of a dynamic compensator in the extremum seeking algorithm 

is proposed which improves the stability and performance properties of the method. 

The compensator is added to the integrator used for adaptation to improve the overall 

degree and phase response of the extremum seeking loop.  
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In [15], non-local stability properties of perturbation based extremum seeking 

controllers are proven. This non-local stability result is proved by showing semi-

global practical stability of the closed-loop system with respect to the design 

parameters. It is shown that reducing the size of the parameters typically slows down 

the convergence rate of the extremum seeking controllers and enlarges the domain of 

the attraction. The paper provides guidelines on how to tune the controller 

parameters in order to achieve extremum seeking.  

In [16], modification of a standard extremum seeking controller is introduced. It is 

equipped with an accelerator to the original one aimed at achieving the maximum 

operating point more rapidly. This accelerator is designed by making use of a 

polynomial identification of an uncertain output map, the Butterworth filter to 

smoothen the control, and analog-digital converters.  

[17] presents first extension of the extremum-seeking method to the case in which 

equilibrium operation is impossible (unstable) and the system is always in a limit 

cycle. The objective of the scheme is to reduce the size of the limit cycle to a 

minimum. The algorithm is a slight variation on the standard extremum-seeking 

algorithm with an excitation signal.  

[18] presents an extremum seeking control algorithm for discrete-time systems. By 

using the two-time scale averaging theory, a very mild sufficient condition is derived 

under which the system output exponentially converges to an O(α2) neighborhood of 

the extremum value, where α is the magnitude of the modulation signal.  

[19] provides a multivariable extremum seeking scheme, the first for systems with 

general time-varying parameters. A stability test is derived in a simple SISO format. 

A systematic design algorithm based on standard LTI (Linear Time Invariant) control 

techniques to satisfy the stability test is developed. An analytical quantification of the 

level of design difficulty in terms of the number of parameters and in terms of the 

shape of the unknown equilibrium map is also presented.  

In [20], perturbation based extremum seeking algorithm is applied to the ABS 

control problem. The design objective is to regulate the wheel slip as close as 

possible to the peak of the friction curve under any road condition.  

[21] proposes a maximum power point tracking controller that can keep the fuel cell 

working at maximum power point (MPP) in real time. A two-loop cascade controller 
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with an intermediate converter is designed to operate fuel cell power plants at their 

MPPs. The outer loop uses an adaptive extremum seeking algorithm to estimate the 

real-time MPP, and then gives the estimated value to the inner loop as the set-point, 

at which the inner loop forces the fuel cell to operate.  

In [22] slope seeking is introduced. It involves driving the output of a plant to a value 

corresponding to a commanded slope of its reference-to-output map. The results 

obtained therein constitute a generalization of perturbation-based extremum seeking, 

which seeks a point of zero slope, to the problem of seeking a general slope. To 

achieve this objective, a slope reference input is introduced into a sinusoidal 

perturbation-based extremum seeking scheme.  

In [23], extremum seeking is introduced as an effective optimization technique to 

find an optimal matching solution both on-line (real-time experiment) and off-line 

(simulated environment) for a four-quadrupole or six-quadrupole matching channel. 

By optimal matching solution it is understood a set of lens focusing strengths which 

minimizes a cost function that measures the ‘‘error’’ between the actual beam 

envelope trajectory and the target or desired beam envelope trajectory, i.e., that 

measures the degree of matching.  

In [24] the algorithm is enhanced to be applicable to a plant with moderately unstable 

poles and the autonomous vehicle target-tracking problem is studied.  

[25] considers the problem of seeking the source of a scalar signal using an 

autonomous vehicle modeled as the non-holonomic unicycle and equipped with a 

sensor of that scalar signal but not possessing the capability to sense either the 

position of the source nor its own position. It is assumed that the signal field is the 

strongest at the source and decays away from it. The functional form of the field is 

not available to the vehicle. Extremum seeking is employed to estimate the gradient 

of the field in real time and steer the vehicle towards the point where the gradient is 

zero (the maximum of the field, i.e., the location of the source).  

In [26] the use of extremum seeking is explored for the navigation of vehicles 

operating in three dimensions. It presents the solution to the problem of localization 

and pursuit of signal sources using only local signal measurement and without 

position measurement in three dimensions.  
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In [27], extremum-seeking control is applied in an experimental setup for smooth 

operation of an electromechanical valve actuator. By measuring the sound intensity, 

the impact velocity of the valve is reduced.  

[28] proposes a global extremum seeking scheme which can seek the global optimal 

value in the presence of local extrema. It is shown that the proposed global 

extremum-seeking scheme can converge to an arbitrarily small neighborhood of the 

global extremum starting from an arbitrarily large set of initial conditions if 

sufficient conditions are satisfied.  

In [29], an extremum-seeking control based self-optimizing strategy is proposed to 

minimize the energy consumption of an airside economizer, with the feedback of 

chilled water supply command rather than the temperature and humidity 

measurements. The mechanical cooling load is minimized by seeking the optimal 

outdoor air damper opening in real time. 

In [30], it is demonstrated how extremum seeking can be used for the determination 

of an optimal combustion-timing setpoint on an experimental Homogenous-Charge-

Compression-Ignition (HCCI) engine. 

2.1.3 Numerical optimization based extremum seeking algorithm 

As the third group of algorithms, the numerical optimization based extremum 

seeking scheme uses iterative methods such as line search, steepest descent, trust 

region. Numerical optimization algorithm chooses the next state and a state regulator 

forces the system to follow the new state. A block diagram of numerical 

optimization-based extremum seeking control can be found in Figure 2.7. 

 

Figure 2.7 : Numerical optimization based extremum seeking scheme [35]. 
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Based on the measurements of the state, function values J(x), or gradient )(xJ∇ , the 

extremum seeking loop is expected to regulate the state as guided by the search 

sequence {xk}, and eventually minimizes the performance output. Gradient 

information is required only at step times, not a continuously feedback of the 

gradient measurements. A basic framework for such extremum seeking control is 

given in [35] as follows: 

Step 0 Given t0=0, let x0=x(t0) and k=0. 

Step 1 Use an optimization algorithm to produce xk+1 based on current state xk=x(tk) 

and, the computations of )).((or  ))(( )),(( 2
kkk txJtxJtxJ ∇∇ Denote  

xk+1=OPTIMIZER(x(tk)) 

Step 2 Design a state regulator u that regulates the state x(tk) to xk+1 in a finite time 

δk, let tk+1=tk+ δk. 

Step 3 Set 1+← kk . Go to step 1. 

In [31], the specific problem under consideration is optimization of intake, exhaust, 

and spark timings to improve the brake specific fuel consumption of a dual-

independent variable cam-timing engine. Extremum seeking is explored as a method 

to find the optimal setting of the parameters. During extremum seeking, the engine is 

running at fixed speed and torque in a dynamometer test cell, while an optimization 

algorithm is iteratively adjusting the three parameters. The optimization of intake, 

exhaust, and spark timings is accomplished via an experimental setup to improve the 

brake specific fuel consumption.  

In [32], numerical optimization algorithms are incorporated into the set up of an 

extremum seeking control scheme. The convergence of the proposed extremum 

seeking control scheme is guaranteed if the optimization algorithm is globally 

convergent and with appropriate state regulation. The robustness of line search 

methods and trust region methods, which relax the design requirement for the state 

regulator and provides further flexibility in designing robust extremum seeking 

control scheme, are also analyzed. Furthermore, an application of ABS design via 

extremum seeking control is used to illustrate the feasibility of the proposed scheme.  

[33] and [34] consider the employment of numerical optimization and state 

regulation to solve the extremum seeking control problem, which does not separate 
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the dynamics from the extremum seeking loop. Extremum seeking is realized via a 

state regulator that drives the state traveling along a convergent set point sequence 

generated by a numerical optimization algorithm. 

In [35], a new design of state regulator is proposed via output tracking, which trades 

off finite time state regulation to obtain flexibility in designing a robust asymptotic 

state regulator to deal with input disturbances and unknown plant dynamics. At the 

same time, the robustness of the optimization algorithm guarantees that the 

asymptotic state regulator can be used and the convergence of the numerical 

optimization based extremum-seeking algorithm is still ensured. 

[36] contains an analysis of the dynamics associated with the interconnection of a 

dynamical system with a discrete-time approximate nonlinear programming 

algorithm designed to locate an extremum on the steady-state output map (readout 

map) of the dynamical system 

In [37], the extremum seeking control problem is treated as a real time optimization 

problem with dynamic system constraints. A non-gradient trust region based 

extremum seeking control scheme is proposed firstly for state feedback linearizable 

systems, and then for input-output feedback linearizable systems. Simulation study 

of antilock braking system (ABS) design is addressed to illustrate the feasibility of 

the proposed scheme. 

2.1.4 Gradient-based extremum seeking algorithm 

As the fourth group of algorithms, gradient-based extremum seeking algorithms 

differ from the algorithms discussed above. In the above algorithms, the objective 

function is unknown but measurable. In gradient-based scheme, in contrast to the 

above schemes, an explicit structure of the objective function is required. It assumes 

that the objective function is explicitly known as a convex function of the system 

states and uncertain parameters from the system dynamic equations. Unlike 

conventional extremum seeking schemes, the objective function to be maximized is 

not directly measurable. Parametric uncertainty makes it impossible to construct the 

true cost online, so only an estimated value based on parameter estimates is 

available. The control objective is to simultaneously identify, and regulate the system 

to the operating point of lowest cost, which depends on the uncertain parameters. 
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Considering the maximization of a performance function )(σJy = , if the derivative 

σddJ /  is known, the optimizing law for σ can be chosen as 

0, >= M
d
dJM
σ

σ&  (2.33) 

By letting ∗σ  be an isolated local maximizer of )(σJ , a Lyapunov candidate 

)()( σσ JJV −= ∗  can be chosen, then 

0
2

≤⎟
⎠
⎞

⎜
⎝
⎛−=−=

σ
σ

σ d
dJM

d
dJV &&  (2.34) 

Thus, σ  converges to 0=V&  that is 0/ =σddJ , which occurs at ∗= σσ . Thus the 

optimizing law (2.33) can succesfully maximize )(σJ . It can be changed into a 

minimizing law by changing the sign of M. Optimum point ∗σ  can be also obtained 

by solving the equation 0/ =σddJ  by considering the knowledge of the derrivative 

at hand. When precise gradient information is not at hand then it should be estimated. 

When only the sign of the gradient is known, then one can chose 

0,sgn >⎟
⎠
⎞

⎜
⎝
⎛= M

d
dJM
σ

σ&  (2.35) 

where sgn is the signum function. Then taking the derivative of the same Lyapunov 

function candidate, 

0sgn
2

≤−=⎟
⎠
⎞

⎜
⎝
⎛−=

σσσ d
dJM

d
dJ

d
dJMV&  (2.36) 

σ  converges again to ∗= σσ  where 0/ =σddJ . Considering a general n 

dimensional gradient system 

0  ),( >∇= MxJMx&  (2.37) 

it is known that the maximal points of J are stable equilibria of the gradient system 

(2.37). The trajectory of x will converge asymptotically to the set of stationary points 

of J. If the gradient )(xJ∇  is known, a control law u can be designed to force the 

nonlinear system ),( uxfx =&  with performance function )(xJy =  to behave as the 

gradient system (2.37). Considering a linear time invariant (LTI) system 
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BuAxx +=&  (2.38)

where nx ℜ∈  and ∗x  is a local maximum of the performance function J(x). 

Considering a Lyapunov function candidate )()( xJxJV −= ∗ , then 

)()()( BuAxxJxxJV TT +−∇=−∇= &&  (2.39)

A control law should be designed for 0≤V& . Given the LTI system is square, that is 
nu ℜ∈  and B is nonsingular, then  

0   ),)((1 >−∇= − MAxxJMBu  (2.40)

can be used. Then, 0)( 2 ≤∇−= xJMV&  and it is concluded that the state will 

converge to the stationary points of J.  

In [38], the inverse optimal design technique is used to develop the controller. It is 

assumed that unknown parameters exist in both the plant model and the performance 

function. The proposed adaptive extremum seeking controller is “inverse optimal” in 

the sense that it minimizes a meaningful cost function that incorporates penalty on 

both the performance error and control action.  

In [39], an extremum-seeking control problem is proposed for a class of nonlinear 

systems with unknown dynamical parameters, whose states are subject to convex, 

pointwise inequality constraints. Using a barrier function approach, an adaptive 

method is proposed for generating setpoints online, which converge to the feasible 

minimizer of a convex objective function containing the unknown dynamic 

parameters. A tracking controller regulates system states to the generated setpoint via 

state feedback, while maintaining feasibility of the state constraints.  

In [40] a control algorithm is presented that incorporates real-time optimization and 

receding horizon control technique to solve an output feedback extremum seeking 

control problem for a linear unknown system. The development of the controller 

consists of two steps. First, the optimum setpoint that minimizes a given performance 

function is obtained via an update law and secondly, the control input that drives the 

system to the optimum is computed. State estimation filters and a parameter update 

law are used at each iteration step, to update the unknown states and parameters in 
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the optimization scheme. The resulting controller is able to drive the system states to 

the desired unknown optimum by requiring a Lyapunov restriction and a satisfaction 

of a persistency of excitation condition.  

In [41], a real-time optimizing controller is developed to steer a differentially flat 

nonlinear control system to closed-loop trajectories that optimize a cost functional of 

interest. An interior-point optimization method with penalty function is used to 

formulate a real-time optimization scheme. The problem is posed as a real-time 

optimal trajectory generation problem in which the optimal trajectories are computed 

using an adaptive extremum-seeking approach.  

In [42], an extremum-seeking controller is developed to steer a periodic system to 

orbits that maximize a functional of interest for a class of differentially flat nonlinear 

systems. The problem is posed as a real-time optimal trajectory generation problem 

in which the optimal orbit is computed using an extremum-seeking approach. Using 

the flatness property of the dynamics, the original dynamic optimization problem is 

transformed to a parameterized optimization problem, which can be solved in real-

time to approximate the optimal orbit. The control algorithm provides tracking of the 

optimal orbit.  

[43] addresses the problem of parameter convergence in adaptive extremum-seeking 

control design. An alternate version of the popular persistence of excitation condition 

is proposed for a class of nonlinear systems with parametric uncertainties. The 

condition is translated to an asymptotic sufficient richness condition on the reference 

set-point. Since the desired optimal setpoint is not known a priori in this type of 

problem, the proposed method includes a technique for generating a perturbation 

signal that satisfies this condition in closed-loop.  

In [44], a methodology for designing and implementing a real-time optimizing 

controller for batch processes is proposed. The controller is used to optimize a user-

defined cost function subject to a parameterization of the input trajectories, a nominal 

model of the process and general state and input constraints. An interior point 

method with penalty function is used to incorporate constraints into a modified cost 

functional, and a Lyapunov based extremum seeking approach is used to compute the 

trajectory parameters. 



27 
 

2.2 ABS Control Problem 

Anti-lock brake systems (ABS) are originally developed to prevent wheels from 

locking up during hard braking. Modern ABS systems not only try to prevent wheels 

from locking but also try to maximize the braking forces generated by the tires by 

preventing the longitudinal slip ratio from exceeding an optimum value. Locking of 

the wheels reduces the braking forces generated by the tires and results in the vehicle 

taking a longer time to come to a stop. Further, locking of the front wheels prevents 

the driver from being able to steer the vehicle while it is coming to a stop. 

Most common commercial ABS algorithms are of the deceleration threshold based 

algorithm category. The wheel deceleration signal is used to predict if the wheel is 

about to lock. A common version of the deceleration threshold algorithm is 

summarized in [45] and shown in Figure 2.8, where a1, a2 are wheel deceleration 

threshold values.  

 

Figure 2.8 : Deceleration threshold based ABS algorithm [45]. 

When the driver presses on the brake pedal, if the wheel deceleration is less than al, 

then the driver's braking action is directly passed through to the brakes. When the 

deceleration exceeds al for the first time, the driver's braking action is no longer 

directly passed through to the brakes. Instead, the braking pressure is held constant at 

the pressure value achieved when the deceleration first exceeds al. If the wheel 

deceleration continues to increase further and exceeds the value a2, then the braking 

pressure at the wheel is decreased. This will prevent the wheel from decelerating any 

further and could eventually result in the wheel gaining speed or accelerating. If the 

wheel deceleration reduces to the value a2, then the pressure drop is stopped. If the 
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wheel deceleration drops below the value al, then the driver's braking action is once 

again directly passed through to the brakes. 

Threshold based ABS algorithms are simple and prevent wheel lockup but they may 

not provide full braking potential of the tires. More advanced solutions are studied in 

the literature based on maximization of the tire forces by regulating the current slip 

ratio of the tires to some optimum slip ratio value. Tire slip ratio is defined by 

referring to Figure 2.9 as follows: 

 
Figure 2.9 : Tire model. 

Considering a tire rolling with angular velocity of ω and longitudinal velocity of u, 

then the tire slip ratio κ is defined as 

u
Ru ωκ −

=  (2.41) 

where R is the effective tire radius. When tire longitudinal velocity u is equal to its 

equivalent rotational velocity ωR, then slip ratio is equal to zero, i.e. there is no slip 

between the tire and the road. However, when there is a slip between the tire and 

road then u> ωR or u< ωR, where first case occurs at deceleration and the second 

case at acceleration. When the tires are locked during braking i.e. ω = 0 then κ=1. In 

Figure 2.10, the longitudinal tire force characteristic for braking case is shown for 

different road conditions. As shown in Figure 2.10, until some optimum slip ratio 

value κ, braking force Fx increases with increasing longitudinal slip κ. After the peak 

point is exceeded, Fx decreases and therefore the tire’s braking capability is not fully 

utilized. In order to maximize the longitudinal tire force, the tire’s current slip ratio 

should be regulated to the optimum slip ratio value. As shown in Figure 2.10, 

optimum slip ratio for maximum braking force changes with respect to the road 

conditions. 
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Figure 2.10 : Longitudinal tire force characteristics. 

During emergency braking maneuver, maximization of the tire force between the tire 

patch and the road is a challenging task of autonomous control of the friction brake 

system subject to unknown road conditions. The road friction coefficient is mostly 

unknown a priori and it may be very complicated to estimate it on-line. The control 

algorithm should find the optimal set point of the brake system, which maximizes the 

wheel braking moment input subject to unknown and mostly changing road 

condition. A misjudgment about the optimal set point choice may cause lower 

performance of braking via either less friction force generation or blocking the tire 

rotation and its steer ability. When the tires operate at the peak point of braking force 

versus slip characteristics subject to unknown road condition, the minimum stopping 

distance is ensured while headway stability and steer ability are also guaranteed by 

preventing locking of the wheels. 

In the literature, there are mainly three different approaches for ABS control 

problems. In the first group of algorithms as given in [46-52], a desired slip ratio 

value for maximizing the braking force is considered to be known a priori and the 

control problem is to regulate current slip ratio to this desired slip ratio value.  

In [46], through iterative learning process, the electric motor torque of an electrical 

vehicle or a hybrid electric vehicle is optimized to keep the tire slip ratio 

corresponding to the peak traction coefficient during braking. The algorithm uses 

desired slip ratio value information.  
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In [47], an optimized fuzzy controller is proposed. The objective function is defined 

to maintain the wheel slip to a desired level so that maximum wheel traction force 

and maximum vehicle deceleration are obtained.  

[48] uses desired slip ratio information and regulation problem is solved via sliding 

mode control.  

[49] proposes a sliding mode controller coupled with a gray predictor to track the 

target value of the wheel slip. Target wheel slip is taken to be a velocity-dependent 

variable. As the velocity of the vehicle changes, the optimum value of the wheel slip 

alters.  

In [50], the control law is developed by minimizing the difference between the 

predicted and desired responses of the wheel slip and its integral. A predictive 

approach is applied to design a non-linear model-based controller for the wheel slip. 

The integral feedback technique is also employed to increase the robustness of the 

designed controller.  

[51] uses fuzzy model reference learning control that changes the rule base to 

maintain the desired fixed wheel slip in the presence of disturbances resulting from 

adverse road conditions.  

In [52], a self-learning fuzzy sliding-mode control design method for ABS is 

proposed where the control objective is to find a control law so that the slip can track 

the desired trajectory. The controller has the advantages that it can automatically 

adjust and reduce the fuzzy rules. 

In the second group of control algorithms as given in [53-57], the road friction is 

estimated first, and then the slip ratio is regulated to the slip value, which is 

appropriate for the estimated road condition.  

In [53], a number of the road surface models are stored in the controller’s memory. 

Then, a decision logic component uses the wheel slip and the torque to select the 

road surface that best matches the given wheel slip and torque. Using the selected 

road surface model, the fuzzy-logic controller produces the appropriate brake torque.  

In [54], a sliding mode observer is constructed to estimate tire friction and a sliding 

mode controller calculates required braking moment input utilizing this estimated 

friction information.  
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[55] proposes an ABS controller that employs a non-derivative neural optimizer and 

fuzzy logic control. The role of the non-derivative optimizer is to identify the road 

surface and then search for the optimal wheel slip that corresponds to the maximal 

road adhesion coefficient. The desired braking torque is obtained by using fuzzy 

logic controller that uses the optimal slips from the non-derivative optimizer.  

In [56], Takagi-Sugeno fuzzy identification model of road conditions is introduced to 

detect the current road condition and generate corresponding optimal slip.  

In [57], the use of adaptive anti-lock braking system comprising of a road surface 

identification system and road surface information modules is presented. The 

proposed ABS system is capable of identifying and differentiating different types of 

road surfaces, and applying an amount of brake force appropriate to the road surface 

type being encountered in order to prevent wheel lockup as well as to minimize the 

braking distance. 

In the third group of control algorithms as given in [32,58,59] both the value of the 

desired slip ratio and the road conditions are considered to be unknown. Optimum 

slip ratio for maximum tire force is searched online during braking. 

In [32], numerical optimization and state regulator is combined to form an extremum 

seeking control scheme, where a numerical optimization algorithm provides search 

candidates of the unknown extremum and a state regulator is designed to regulate the 

state to where the search sequence leads. Then, the proposed numerical optimization 

based extremum seeking algorithm is applied to the ABS control problem. 

In [58], sliding mode based extremum seeking algorithm is employed to achieve the 

maximum value of the friction force without a priori knowledge of the optimum slip 

value.  

[59] proposes a nonlinear output feedback control law for active braking control 

systems. The control algorithm allows to detect—without the need of a friction 

estimator—if the closed-loop system is operating in the unstable region of the 

friction curve, thereby allowing to enhance both braking performance and safety. The 

algorithm uses slip set-point values but while operating in this set value, it can also 

detect instability by monitoring the wheel slip value when operating point is located 

in the unstable region of the friction curve.  
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2.3 Hybrid Electric Vehicle Control Problem 

Continuously increasing demands on lower emission levels and better fuel economy 

have led researchers to develop more efficient, less polluting vehicles. Electric 

vehicles seem as a promising solution but for now, their short driving distance 

combined with the long recharging period for batteries postpones their widespread 

use to the future. Hybrid electric vehicles (HEV) offer an acceptable, intermediate 

solution. In a hybrid electric vehicle, an electric motor (EM) powered by an 

electrochemical battery is used along with the internal combustion engine (ICE) 

powered by fossil fuel. They appear to be one of the most viable technologies with 

significant potential to reduce fuel consumption and pollutant emissions.  

HEVs are classified mainly as parallel hybrid, series hybrid and series-parallel hybrid 

as shown in Figure 2.11, Figure 2.12, and Figure 2.13. In series hybrid electric 

vehicles shown in Figure 2.11, only the electric motor drives the wheels while the 

internal combustion engine is used to provide power to the generator to charge the 

battery. Regenerative braking is possible using the traction motor as a generator. In 

parallel hybrid electric vehicles shown in Figure 2.12, both the ICE and electric 

motor deliver power in parallel to drive the wheels. The propulsion power may be 

supplied by the ICE alone, by the electric motor, or by both. The electric motor can 

be used as a generator to charge the battery by regenerative braking or by absorbing 

power from the ICE. Combined hybrid electric vehicle configuration shown in 

Figure 2.13 has the ability to operate as series or as parallel hybrids. A power flow 

from the engine to the planetary gear set always implies a power flow to the 

generator. Consequently, a pure ICE operation is not possible with such a 

configuration but it is always associated with a power flow through the generator and 

the motor. In series hybrid electric vehicle, the thermal path is uncoupled from the 

wheels allowing controlling the internal combustion engine easily in more efficient 

regions. However, the number of energy conversions is more than the parallel hybrid 

electric vehicle, which makes it less efficient at the end. Henceforth, in this thesis, 

parallel type is chosen as the hybrid electric vehicle configuration.  
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Figure 2.11 : Series hybrid electric vehicle configuration [60]. 

 

Figure 2.12 : Parallel hybrid electric vehicle configuration [60]. 

 

Figure 2.13 : Combined hybrid electric vehicle configuration [60]. 

The main objectives of the hybrid electric vehicle energy management strategies are 

minimizing fuel consumption and pollutant emissions while meeting driver’s power 

demand, sustaining the battery state of charge and considering constraints such as 

engine and electric motor power limits.  
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During urban driving, the internal combustion engine operates inefficiently because 

of the idling and frequent stop-and-go operations. In these cases, turning off the 

internal combustion engine and operating the vehicle through the electric motor will 

minimize the fuel consumption. On the contrary, in highway driving, since internal 

combustion engine operates efficiently, it will drive the vehicle and at the same time 

drive the electric motor in the generator mode to charge the batteries if needed. When 

the driver torque demand is beyond the internal combustion engine limits, the electric 

motor may assist the engine to accelerate the vehicle properly. During braking, the 

braking energy may be used through the electric motor to charge the batteries. This is 

called regenerative braking.  

Before using the electric motor, the charge level of the batteries should be taken into 

consideration. The charge level is called SOC (State of Charge). As long as the SOC 

level permits, the electric motor can be used to drive the vehicle or charge the 

batteries as a generator. If the SOC level is too low, the electric motor should not be 

operated to drive the vehicle since it will cause full depletion of the battery. If the 

SOC level is too high, then charging the battery for example through the regenerative 

braking will cause overcharge of the battery. Use of the battery at improper SOC 

level will decrease the battery life. The SOC level should be maintained between 

lower and upper limits for a long life battery operation. 

Various solutions have been proposed in the literature to control a hybrid electric 

vehicle. Since in this thesis the control algorithm is developed for a parallel type 

hybrid electric vehicle model, the literature review here focuses mainly on the 

parallel hybrid electric vehicles. 

In [61,62], the state of the art control strategies for HEVs are classified and 

overviewed. In [63-70], rule based control strategies are developed for hybrid electric 

vehicle energy management problem.  

In [63], the internal combustion engine operation points are forced into the vicinity 

of the best point of efficiency using an efficiency map. The operation strategy is 

explained by examining the efficiency map in Figure 2.14. 
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Figure 2.14 : Generic ICE efficiency map [63]. 

In Figure 2.14, point I is where the engine speed and torque level are too low 

according to the best efficiency point. To remedy this situation, the gear ratio must 

be increased (which means downshifting in a manual transmission), the accelerator 

command must be increased, and to maintain a constant overall power-train power 

output, the electric motor must be operated as a generator. This operation as a 

generator keeps the excess torque that is generated by the internal combustion engine 

from being delivered to the powertrain.  

Supposing that the torque and speed needed to overcome the road load is given by 

operation point II in Figure 2.14. In this case, the engine speed is too low and the 

torque is too high for the best efficiency of the internal combustion engine. To 

remedy this situation, the gear ratio to the engine must be increased (which means 

downshifting in a manual transmission) and the accelerator command must be 

decreased. It becomes immediately apparent that once this control move is exercised 

on the engine, there will not be enough torque to overcome the road load. The 

electric motor must therefore be adjusted to meet the deficit. In order to overcome 

the road load and maintain a constant overall power-train power output, the electric 

motor must be operated as a motor.  

The SOC of the battery pack has to be considered in order to decide whether the 

required torque contribution of the electric motor is possible or not. If the batteries 

are completely charged, the electric motor cannot be allowed to operate as a 

generator. If they are totally discharged, a positive torque contribution will not be 

possible. 
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Since point IV in Figure 2.14 is not very efficient, one would like to shift it as close 

to the peak efficiency point as possible. This will be done by decreasing the engine 

speed (up shifting) and decreasing the accelerator command (which decreases 

torque).  

In [63], a fuzzy logic rule based controller is used with three inputs (γa, TEM,D and 

SOC), two outputs (Δα and TEM), and a total of 847 rules where γa is the accelerator 

command input, TEM, D is the desired electric motor torque, SOC is Battery State of 

Charge, Δα is change in accelerator command to the internal combustion engine, TEM 

is actual electric motor torque.  

The fuzzy controller works by using the values of the three inputs (γ, TEM,D , and 

SOC) and incorporating the expert’s knowledge of the system to calculate the change 

in accelerator command to the internal combustion engine, Δα, and the actual electric 

motor torque, TEM. A subset of typical rules for the fuzzy logic controller is given by 

the following list. 

1) If γa is positive large and TEM, D is positive large and the SOC is positive 
medium large, then Δα is zero and TEM is positive large. 

2) If γa is positive medium and TEM, D is negative low and the SOC is positive 
large, then Δα is zero and TEM is zero. 

3) If γa is positive medium and SOC is positive large and TEM, D is negative low, 
then Δα is zero and TEM is zero. 

4) If γa is negative large and SOC is positive large and TEM, D is negative low, then 
Δα is zero and TEM is zero. 

5) If γa is positive low and SOC is positive medium and TEM, D is positive low, 
then Δα is positive low and TEM is negative low. 

In rule 1, the driver wants full acceleration and there is sufficient SOC in the battery, 

thus the EM will operate as a motor. Δα that is requested is zero. This is because the 

driver is already putting the pedal to the floor in his/her request for full acceleration. 

There is no need to change his/her request. The torque needed from the ICE (TICE) 

may be more or less than what the vehicle needs to overcome the load torque. The 

EM torque TEM compensates the difference between the TLOAD and TICE. Rule 2 is 

explained by the following: If the driver wants moderate acceleration, the desired 

EM torque is slightly negative, and the SOC of the battery pack is at its highest 

allowable, then do not increase the accelerator command and do not apply a negative 

torque with the EM. Rule 3 is explained by the following: If the driver is braking 

heavily and the SOC is below its highest allowable limit, then apply as much 
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negative torque as the EM can supply and do not adjust the accelerator command. 

This is the regenerative braking scenario in which the application of the brake is used 

in charging the batteries. Rule 4 is explained by the following. If the driver is braking 

heavily and the SOC is at its highest allowable limit, then apply no negative torque 

with the EM and do not adjust the accelerator command. This keeps one from 

overcharging the batteries. Rule 5 is explained by the following. If slight acceleration 

is being requested and the desired EM torque is negative and the battery SOC is 

below its maximum limit, then add a positive change to the accelerator and supply 

negative torque with the EM. In this final case, extra torque is added to the ICE and 

that extra torque is used to charge the EM’s batteries. 

In [64-66], fuzzy logic based controllers are developed for the HEV energy 

management problem as given in [63] above.  

In [67] the control strategy is implemented on a proof-of-concept vehicle where the 

algorithm switches between states according to battery charge level and requested 

power values.  

In [68] firstly preliminary rule-based control strategy is introduced. Then a dynamic 

optimization method is applied. The design procedure starts by defining a cost 

function, such as minimizing a combination of fuel consumption and selected 

emission species over a driving cycle. Dynamic programming (DP) is then utilized to 

find the optimal control actions including the gear-shifting sequence and the power 

split between the engine and motor while subject to a battery SOC-sustaining 

constraint. Through analysis of the behavior of DP control actions, rule based control 

is improved. The design process starts by interpreting the driver pedal motion as a 

power request Preq. According to the power request and the vehicle status, the 

operation of the controller is determined by one of the three control modes: Braking 

Control, Power Split Control, and Recharging Control. If Preq is negative, the 

Braking Control is applied to decelerate the vehicle. If Preq is positive, either the 

Power Split or the Recharging Control will be applied, depending on the battery state 

of charge (SOC). A high-level charge-sustaining strategy tries to maintain the battery 

SOC within defined lower and upper bounds. Under normal propulsive driving 

conditions, the Power Split Control determines the power flow in the hybrid 

powertrain. When SOC drops below the lower limit, the controller will switch to the 
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Recharging Control until the SOC reaches the upper limit, and then the Power Split 

Control will take over. The basic logic of each control rule is described below. 

 
Figure 2.15 : Engine efficiency map in [68]. 

Power Split Control: Based on the engine efficiency map shown in Figure 2.15, an 

“engine on” power line Pe_on, and “motor assist” power line Pm_a, are chosen to avoid 

engine operation in inefficient areas. If Preq is less than Pe_on, the electric motor will 

supply the requested power alone. Beyond Pe_on, the engine becomes the sole power 

source. Once Preq exceeds Pm_a, engine power is set at Pm_a and the motor is activated 

to make up the difference (Preq -Pm_a ). 

Recharging Control: In the recharging control mode, the engine needs to provide 

additional power to charge the battery in addition to powering the vehicle. 

Commonly, a preselected recharge power level, Pch, is added to the driver’s power 

request, which becomes the total requested engine power (Pe = Preq + Pch). The 

motor power command becomes negative (Pm = - Pch ) in order to recharge the 

battery. One exception is that when the total requested engine power is less than 

Pe_on, the motor alone will propel the vehicle to prevent the engine from operating in 

the inefficient operation. In addition, when Preq is greater than the maximum engine 

power, the motor power will become positive to assist the engine. 
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Braking Control: A simple regenerative braking strategy is used to capture as much 

regenerative braking energy as possible. If Preq exceeds the regenerative braking 

capacity Pm_min, friction brakes will assist the deceleration (Pb = Preq - Pm_min ).  

After preliminary rule-based control strategy is introduced, dynamic programming 

method is applied to improve rule-based control strategy in [68].  

Dynamic programming (DP) solutions in HEV energy management strategies give 

global optimum values for the considered performance functions but the algorithm 

requires the information of the whole driving cycle (Acceleration, vehicle speed, 

braking information) in advance. Since future driving conditions are unknown, it 

cannot be utilized in a real time controller. Rather than that, DP techniques are used 

for performance evaluation of real time control algorithms or to improve them as 

introduced in [68]. In [68], the objective in DP is minimizing the fuel consumption 

and pollutant emissions. The optimization goal is to find the control input u(k) to 

minimize a cost function, which consists of the weighted sum of fuel consumption 

and emissions for a given driving cycle.  

In [69], a genetic-fuzzy control strategy for parallel HEVs is proposed. The genetic-

fuzzy control strategy is a fuzzy control strategy, which is tuned offline using GA. 

First, a fuzzy logic controller is designed, whose rule base is extracted based on 

expert knowledge. The parameters defining the membership functions are then tuned 

via GA. The main objective is to minimize fuel consumption and emissions. 

In [70], energy optimization control for a parallel hybrid electric system with 

automated mechanical transmission (AMT) is proposed. The optimal torque 

distribution strategy is proposed to minimize the powertrain equivalent specific fuel 

consumption by considering the power conversion efficiency, which distributes the 

vehicle single torque request into separate torque requests for the internal combustion 

engine and the electric motor. The distribution results are expressed in a table format 

and can be found from the simple process of looking up in the table using the vehicle 

torque request, the ICE speed, and the battery state of charge (SOC). The AMT shift 

control is suggested to maximize the powertrain system efficiency and optimizes the 

speed as the basis for the above-mentioned torque distribution, in which the ICE 

efficiency, the EM efficiency, and the battery efficiency are all explicitly taken into 

account. The AMT optimal shift control law and the EM optimal torque are 
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essentially look-up-table-based control according to the ICE power, the EM power, 

the vehicle velocity, and the battery SOC after offline calculations. 

[71] proposes an online power-balancing strategy (PBS) for near-optimal fuel 

efficiency in fully hybridized PHEVs. Its underlying concept is to use the electrical 

system to control the ICE within its peak-efficiency region. Results show that a 

newly proposed parallel hybrid electric vehicle assisted by the integrated starter 

generator (ISG-assisted PHEV) enables the PBS controller to operate the ICE very 

close to the point of the highest efficiency, similar to the function of continuously 

variable drivers. 

[72] introduces a power distribution strategy to minimize the loss in power flow and 

to operate the engine at an efficient point. The strategy employs control maps to 

reduce the calculation load in deriving the most efficient operating point. 

Furthermore, an energy strategy to decide the optimal charging/discharging power of 

a battery is established using the results of the power distribution strategy. 

In [73], the control strategies for the energy management between the two power 

sources are optimized with respect to fuel consumption with a classical dynamic 

programming (DP) method. A method based on the Pontryagin Minimum Principle 

is proposed which furnishes results very close to the DP results for a significantly 

reduced calculation time. These optimization results furnish the optimal control laws 

from which the control laws to be implemented on the vehicle could be derived. 

In [74-78] the methodology, which is called Equivalent Consumption Minimization 

Strategy (ECMS), is developed and studied. The algorithm includes minimizing a 

cost function which is the sum of the real fuel consumption of the internal 

combustion engine and the equivalent fuel consumption of the electric motor as 

shown in (2.42), where ))(( tPemς  is the fuel equivalent of the electric energy and 

icem&  is the fuel consumption. This is a unified representation of both the energy used 

from the battery and fuel consumption. 

))(()(( tPtPmJ emiceice ς+= &  (2.42) 

Equivalent fuel consumption of the electric motor is calculated according to the 

following concept. Considering the situation that at a sample time t, some energy is 

drawn from the battery to provide some motive power for the vehicle. At the same 
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time, the fuel provides the rest of the energy used to propel the vehicle. To ensure 

that the state of charge remains constant, the same amount of energy will have to be 

used for the battery charge in the future. This energy will be provided by the ICE, 

which will imply extra fuel consumption. The equivalent fuel consumption is defined 

as the extra fuel consumption that will be required for the battery charge. This charge 

will be done in the future. Considering another situation, this time the battery is 

recharged at the current sample time. To maintain a constant state of charge, a future 

discharge of the battery is required. This discharge will be done by using the electric 

motor, which will produce some mechanical power used to propel the vehicle. The 

fuel consumption reduction due to the electric motor is the equivalent fuel 

consumption with the negative sign. The equivalent fuel consumption of the electric 

motor cannot be calculated exactly due to unknown efficiencies. To calculate the 

equivalent fuel consumption, mean efficiencies should be used. 

In [79] a new rule-based energy management strategy is introduced, based on the 

combination of Rule-Based and Equivalent Consumption Minimization Strategies 

(RB-ECMS). The RB-ECMS uses only one decision variable and requires no tuning 

of many threshold control values and parameters. [80] considers three different 

energy management approaches which are: a rule-based control, an adaptive 

equivalent fuel consumption minimization strategy (A-ECMS), and H∞ control. 

Results, compared with the optimal solution given by dynamic programming, show 

that the A-ECMS strategy is the best performing strategy. 

[81] implements as a real-time strategy the Equivalent Consumption Minimization 

Strategy. The control law is inferred from Pontryagin's Minimum Principle, where 

the Lagrange multiplier is deduced from optimization results of Dynamic 

Programming on given driving cycles. 

In [82], to accomplish real time energy distribution management system in a plug-in 

hybrid electric vehicle, firstly, a specific model is established which contains most of 

the powertrain properties and partly vehicle dynamics. Secondly, an optimal control 

problem with inequality constraints is analyzed and formulated mathematically. 

Thirdly, the particle swarm optimization (PSO) is applied to search for global near-

optimum at each time interval. However, PSO is time-consuming so it can be used 

only as an off-line controller. To overcome this drawback neural network is designed 
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to get sub-optimal real-time controller by employing the near-optimal results 

obtained from aforementioned PSO. 

In [83] a parallel hybrid electric vehicle (PHEV) configuration consisting of an extra 

one-way clutch and an automatic mechanical transmission (AMT) is taken as the 

study subject. An energy management strategy (EMS) combining a logic threshold 

approach and an instantaneous optimization algorithm is developed for the 

investigated PHEV. The objective of this EMS is to achieve acceptable vehicle 

performance and drivability requirements while simultaneously maximizing engine 

fuel economy and maintaining the battery state of charge (SOC) in its rational 

operation range at all times.  

Rule based solutions as given in [63-70] are simple and easy to implement. However, 

these kind of energy management strategies requires correct tuning of all the 

controller parameters in order to assure the correct behavior of the algorithm. The 

approach is not easily exportable to other vehicle configurations.  

Instantaneous optimization methods based on equivalent consumption minimization 

strategy as given in [74-78] provide a real time near optimal solution. Since the 

electrical energy and the fuel energy are not directly comparable, an equivalence 

factor is needed to calculate equivalent fuel consumption value. The performance of 

the control algorithm depends heavily on the calculation of the equivalence factor. 

An error in calculating the equivalence factor will affect the performance of the 

controller considerably. 

2.4 Chapter Summary 

This chapter presented a review of the literature related to the dissertation. The 

different approaches to extremum seeking control were presented in Section 2.1. The 

automotive applications that were chosen for application of the extremum seeking 

control method in this dissertation were treated in Sections 2.2 and 2.3. The existing 

literature on ABS control was reviewed in Section 2.2. The existing literature on 

hybrid electric vehicle power management control was reviewed in Section 2.3. The 

application of sliding mode based extremum seeking control to ABS braking, ABS 

braking with improved lateral control and HEV power distribution will be presented 

in Chapters 3, 4 and 5, respectively. 
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3.  ABS CONTROL VIA EXTREMUM SEEKING WITH PARAMETER 

TUNING 

3.1 Introduction 

The maximization of the tire force between the tire patch and the road during an 

emergency braking maneuver in the presence of unknown road conditions, as needed 

in an ABS brake system, is a challenging task. The road friction coefficient is mostly 

unknown a priori and it is difficult to estimate it on-line. The ABS brake control 

algorithm should find the optimal set point of brake hydraulic pressure, which 

maximizes the wheel braking moment subject to unknown and possibly changing 

road conditions. A misjudgment about the optimal set point choice may cause lower 

performance of braking via either less friction force generation or via blocking the 

tire rotation and hence the vehicle steer ability. The minimum stopping distance is 

ensured when the tires operate at the peak point of the braking force versus slip 

characteristics subject to unknown road conditions. In addition, headway stability 

and steer ability are also improved as locking of the wheels is prevented. 

Three main approaches exist in the literature for maximization of the tire forces 

during emergency ABS braking. In the first group of algorithms given in [46-52], a 

desired slip ratio is considered to be known a priori and the control problem is to 

regulate the current slip ratio about this desired slip ratio value. In the second group 

of ABS control algorithms given in [53-57], the road friction is first estimated and 

the slip ratio is controlled to the slip value which is appropriate for the estimated road 

condition. In the third group of ABS control algorithms given in [32,58,59], optimum 

slip ratio value for maximum tire forces is searched online during braking. The first 

group of algorithms, where the desired slip ratio is considered to be known, do not 

possess optimality since the optimum slip ratio for maximum braking force is not 

constant and changes with respect to different road conditions. The performance of 

the second group of algorithms depends on the accuracy of the estimation procedure, 

which is difficult in a short period of time such as emergency braking. 
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In this chapter, without knowing optimum value of the slip ratio a priori, and without 

trying to estimate road conditions, optimum slip for maximum tire force is searched 

online. The proposed algorithm belongs to the third group of ABS algorithms as 

given in [32,58,59]. The self-optimization routine seeks the peak point of the force-

slip curve without utilizing optimum slip information. A sliding mode based 

extremum seeking algorithm is combined with the adaptation of the tire model 

parameters. Thus, unlike common extremum seeking algorithms in the literature, 

where on-line measurement of the objective function is a necessity, the control 

design considered here does not require objective function measurements. 

Consequently, the control algorithm accomplishes its task with minimum 

measurement requirements. The chapter is organized as follows. Section 3.2 presents 

the problem description. The control algorithm is introduced in Section 3.3. A 

simulation study is presented in Section 3.4. In order to show real time applicability 

of the considered algorithm, simulations are repeated with a real time hardware, the 

Microautobox general purpose electronic control unit. Real time simulation results 

are shown in Section 3.5. The chapter concludes with conclusions being made in 

Section 3.6. 

3.2 Problem Description 

The quarter car model is taken into consideration where the dynamic equations are 

written as follows 

xFum −=&  (3.1) 

bx TRFI −=ωω &  (3.2) 

Here m (kg) is the mass of the quarter car, u (m/s) is the longitudinal speed, Fx (N) is 

the longitudinal tire force, Iω (kgm2) is the wheel inertia, ω (rad/s) is the wheel 

angular speed, R (m) is the tire effective radius and Tb (Nm) is the braking moment. 

Aerodynamic drag and rolling resistance effects are neglected due to simplicity. The 

calculation of the longitudinal tire force is carried out as 

xzx FF μ=  (3.3) 
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where Fz (N) is the vertical tire force and μx is the longitudinal tire-road friction 

function. Various analytic and empirical tire models have been developed in the 

literature for calculating the tire forces. Some of them are the Magic Formula, 

Dugoff, LuGre, Burckhardt tire models. In this study, the Burckhardt approach is 

considered for controller development. Longitudinal tire-road friction function is 

calculated as given in [84] 

( ) ( ) κκμ κ
31

21, cecc c
x −−= −  (3.4)

where c1, c2, and c3 are the tire model parameters. By choosing different sets of c’s as 

given in Table 3.1 [84], an accurate tire-road friction function may be modeled for 

different road conditions. In (3.4), κ  is the longitudinal tire slip value, which is 

defined for the braking case as 

u
Ru ωκ −

=  (3.5)

It can be seen from (3.5) that by increasing braking action, slip value κ  increases 

from 0 to 1. κ  = 1 denotes that wheels are locked (ω = 0). 

Table 3.1  : Burckhardt tire model parameters for different road conditions [84]. 

 c1 c2 c3 

Asphalt dry 1.2801 23.99 0.52 

Asphalt wet 0.857 33.822 0.347 

Concrete dry 1.1973 25.168 0.5373 

Cobblestones dry 1.3713 6.4565 0.6691 

Cobblestones wet 0.4004 33.7080 0.1204 

Snow 0.1946 94.129 0.0646 

Ice 0.05 306.39 0 

Using the parameter sets given in Table 3.1, the change of the tire-road friction 

function μx with respect to the slip κ  is plotted in Figure 3.1 for different road 

conditions. In Figure 3.1, the common characteristics of the curves are shown: Until 

some optimum slip value, μx increases with respect to increasing κ . After the peak 

point is exceeded, μx is decreasing and therefore the tire’s braking capability is not 

fully utilized. In addition to the degraded braking performance, the lateral force 

generation capability of the tire is also decreased due to excessive braking which 
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results in a loss of the vehicle steer ability. Hence, during emergency braking, 

regulating braking systems operation in the vicinity of the peak point of the μx−κ  

curve is a vital control problem.  
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Figure 3.1 : Change of the friction coefficient μx with respect to  

the tire slip κ  for different road conditions. 

As it is shown in Figure 3.1, the optimum slip value for maximizing the braking 

force depends on the road conditions. In order to find optimum slip value, the road 

condition should be known. However, estimation of the road conditions in a short 

period of time such as during emergency braking is a very difficult and unreliable 

approach. In this chapter, rather than estimation of the road condition, a self-

optimization routine is proposed to seek the optimum slip set point. 

3.3 Control Algorithm 

Taking the time-derivative of (3.5) and by integrating with (3.1), (3.2), (3.3), and 

(3.4), the slip dynamics may be given as 

( ) b
cz T

uI
Rcecc

I
R

mu
F

ω

κ

ω
κκκ +−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−= −

311

2
2

1
&  (3.6) 

To simplify the notation, the following expression is defined 
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κ2
14

cecc −=  (3.7)

Then (3.6) is rewritten as 

( ) b
z T
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ωω
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−= 341

21
&  (3.8)

Let κ̂  be a prediction of the slip denoted by κ  where the slip, κ , and the wheel 

braking moment, Tb are assumed to be measured, 

( ) ( )κκκκκ
ωω
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where K >0 is a constant. Here, 1ĉ , 3ĉ , 4ĉ  are the parameter estimates that are 

changing with time. Note that 1c , 2c , 3c  are the unknown constant tire parameters. 

The prediction error is defined as, 

κκ ˆ−=e  (3.10)

Subtracting (3.9) from (3.8), the error dynamics is written as, 
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 (3.11)

For stability analysis, a Lyapunov function candidate is chosen as 

( ) ( ) ( )244
42

33
32

11
12 ˆ

2
ˆ

2
ˆ

22
1 ccaccaccaeV −+−+−+=  (3.12)

where a1, a3, a4 are positive constants. Taking the time derivative of (3.12) 

( ) ( ) ( ) ( )4444433331111 ˆˆˆˆˆˆ ccacccacccacceeV &&&&&& −−+−−−−=  (3.13)

By taking the time derivative of (3.7) and inserting into (3.13) 

( ) ( ) ( ) ( )42144433331111 ˆˆˆˆˆˆ 2 ceccacccacccacceeV c &&&&&& −−−+−−−−= − κκ  (3.14)

is obtained. From (3.11) and (3.14) 
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The update law for estimation of the parameters is chosen as follows: 
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where c1av and c2av are average values of c1 and c2 in Table 3.1. When (3.16) is 

inserted into (3.15) 

( ) ( )κκ κκ &&& 22
2121444

2 ˆ cc
avav ecceccaccKeV av −− −−+−=  (3.17) 

is obtained. From (3.17) one can write 

2
2121444

22ˆ Keecceccacc
dt
dV cc

avav
av −−−≤ −− κκ κκ &&  (3.18) 

In (3.18), when the following inequality holds  
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one gets 

0<
dt
dV  (3.20) 

Hence, e is uniformly bounded and converges to the vicinity of zero. Reformulating 

(3.11) as 

( ) ( )( ) KecFcF
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It is realized that the convergence of ( ) ( )cFcF xx ,ˆ, κκ →  is assured. Next, the 

extremum seeking algorithm for maximizing the tire braking force is presented. The 

algorithm will not require a priori the optimum value of the slip ratio or the 

information of the road friction coefficient. For the extremum seeking algorithm via 

sliding modes, [4] formulates a sliding surface where the objective function is 

enforced to follow a time increasing function and a discontinuous switching function 

is selected for the optimization parameter. This methodology is adapted here where 

the aim is to maximize ( )cFx ˆ,κ . Since ( ) ( )cFcF xx ,ˆ, κκ →  will be maintained, 

reaching to the peak point of the characteristics ( )cFx ˆ,κ  versus κ  will maximize the 

friction tire force ( )cFx ,κ . The sliding surface is selected as 

( ) tcFs x ρκ −= ˆ,  (3.22)

where ρ is a positive constant and t is the time variable. Selection of ρ will be 

clarified later. Taking the time derivative of s,  

( ) ( ) ρκκ
κ
κ

−
∂

∂
+

∂
∂

= c
c

cFcFs xx &&& ˆ
ˆ

ˆ,ˆ,  (3.23)

The update law for the optimization parameter κ  is chosen as, 
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which is 
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where M and γ are positive constants. Note that when ( ) κκ ∂∂ /ˆ,cFx  = 0, which is the 

peak point of the ( ( )cFx ˆ,κ −κ ) curve, there occurs a singularity in (3.25). This is not 

a concern here since it will be shown that via the selected algorithm; not exactly the 

peak point but a small neighborhood of the peak point will be approached. From the 

analytical expression of the tire force, 

( ) ( ) ( )κκκ κ
3413

ˆ
11 ˆˆˆˆˆˆˆ, 2 cccFceccFcF z

c
zx −−=−−= −  (3.26)

the partial derivatives for (3.25) are arranged as 
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Inserting (3.25) into (3.23) one can get 
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In (3.31) when the condition 

( )
ρ

κ
κ

>
∂

∂ McFx ˆ,
 (3.32) 

holds, the change of s and s&  according to (3.31) will be similar to Figure 3.2. 

s&

ρ
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cFx )ˆ,(
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Figure 3.2 : Phase plane of s and s&  subject to the sliding motion dynamics. 

In Figure 3.2, the arrows show the change of the variable s according to (3.31). As 

long as the condition (3.32) holds, the dynamics of (3.31) provide that the s value 

will increase or decrease and after a finite time interval, s will approach one of the 

constant values wi = γk depending on its initial value s(0) where k is an integer 

number (0,±1,±2, ...). Unlike the classical sliding mode control theory, the sliding 
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surface variable s will not tend to zero but to a constant value wi (i = 1, 2, . . .). In 

Figure 3.2, the distance between the two grids is γ. Choosing a small γ will shorten 

the time interval for s to reach the constant value. From the definition of the sliding 

surface in (3.22), after a finite time interval, when s = wi and s&  = 0, 

( ) tcFws xi ρκ −== ˆ,  (3.33)

( ) ρκ =cFx ˆ,&  (3.34)

Hence, the objective function ( )cFx ˆ,κ  will increase with the slope of ρ. Note that 

this is accomplished when the condition (3.22) is satisfied. Rewriting the condition 

( )
ρ

κ
κ

>
∂

∂ McFx ˆ,
 (3.35)

The condition (3.35) can be interpreted as the gradient value ( ) κκ ∂∂ /ˆ,cFx  being 

larger than a defined constant value ρ/M. As long as the gradient is higher than ρ/M, 

the extremum seeking algorithm will force the objective function to increase. Since 

( ) ( )cFcF xx ,ˆ, κκ →  is assured, Fx(κ , c) approaches a small neighborhood of its peak 

point as is shown in Figure 3.3. Note that by choosing a bigger ρ, the tire force 

increases faster as shown in (3.34). But in that case, the tire operating region will be 

bigger according to condition (3.35), which means that the tire will operate farther 

than the optimum point. The braking moment is written from (3.6), 
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Figure 3.3 : Operating region. 
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Putting (3.25) into (3.36) and replacing c1, c2, c3 with 1ĉ , 2ĉ  3ĉ  one gets the braking 

moment input as 
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Figure 3.4  : The overall controller structure. 

The overall controller structure is shown in Figure 3.4. The control algorithm is 

developed by using the Burckhardt tire model. In the simulations, a more 

complicated and detailed tire model (Magic Formula Tire Model) is used in the 

vehicle model, which is denoted as “Tire Model” in Figure 3.4. 

3.4 Simulation Study 

To be able to analyze precisely the performance of the controller, a hydraulic brake 

actuator model proposed in [3] composed of a master cylinder, pump, reservoir, 

build-dump valve pair and wheel cylinder as illustrated in Figure 3.5, is taken into 

account for the simulation study. To increase brake pressure and consequently brake 

force between the tire patch and the road, the build valve opens and the dump valve 

closes as the brake pad presses on the brake disc. To decrease brake pressure and the 

braking force, the build valve closes and the dump valve opens as the fluid flows 
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from the wheel cylinder to the reservoir. This operation is controlled by two inputs 

and is governed by the following differential equation, 

)(2)(2
21 low

f
ddv

f
p

f
ddv

f PPAcC
V

PPAcC
V

P −−−=
ρ

β

ρ

β

ωω

&  (3.38)

where βf is brake fluid bulk modulus, Vw wheel cylinder volume, Cdv orifice 

discharge coefficient, A orifice area, ρf fluid density, Pp pump pressure, P wheel 

cylinder pressure, Plow reservoir pressure. cd1 and cd2 are valve control inputs, which 

can take the values of 1 or 0 to open or close the valves and they are not allowed to 

be ”1” at the same time, i.e., cd1cd2≠ 1. 

 

Figure 3.5 : Hydraulic brake actuator system. 

For the hydraulic brake actuator, the relationship between the wheel cylinder 

pressure and braking moment is given as follows  

( ) rFcoutb rBAPPT ηω−=  (3.39)

where Pout is push out pressure, Awc wheel cylinder area, η mechanical efficiency, BF 

brake factor, rr effective brake disc radius. The control algorithm calculates the 

necessary braking moment from (3.37) in order to optimize braking action. Using 

(3.39), the desired braking pressure is deduced as 

( ) des
brFcoutdes TrBAPP 1−+= ηω  (3.40)

Dump and build valves in the hydraulic brake system given in Figure 3.5 will be 

opened and closed appropriately to obtain the desired brake pressure in the wheel 
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cylinder using pressure measurement from the pressure sensor. In the simulations, 

the nonlinear Magic Formula (Also known as Pacejka model) has been used as the 

tire model in the vehicle dynamics. The general form of the formulae given in [86] is 

as follows  

( ) ( ){ }[ ] zx FBBEBCD /arctanarctansin κκκκμ −−=  (3.41) 

( ) ( ) zxx FF κμκ =  (3.42) 

where B is the tire stiffness factor, C the shape factor, D the peak value, E the 

curvature factor In this chapter, lateral vehicle dynamics is ignored and hence only 

the longitudinal tire force is calculated. The tire model parameters are taken from 

[86] page 614 where the considered tire is 205/60R15. Simulation study has been 

conducted to show the performance of the proposed control algorithm. The 

parameters for the quarter car model are chosen as m = 200(kg), R = 0.3(m), 

Iω=1(kgm2). In the first simulation, a road where the maximum value of the tire-road 

friction function is μmax = 0.8 is selected. During braking, the change of the tire-road 

friction function approaches 0.8 and this means that the maximum friction potential 

between the tire and the road is utilized. In Figure 3.6, change of the vehicle speed 

versus tire equivalent speed is plotted. The initial vehicle speed is u(0) = 20(m/s). 
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Figure 3.6 : Responses of the vehicle speed u and ωR on the road with μmax = 0.8. 

The tire forces are plotted in Figure 3.7 where it is shown that the tire force, used by 

the control algorithm, is close to the actual tire force. 
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Figure 3.7 : Responses of the braking forces on the road with μmax = 0.8. 

The response of the friction coefficient μx(κ) is plotted in Figure 3.8. It is shown that 

the controller manages to utilize the friction potential of the road such that the 

maximum attainable friction coefficient μmax = 0.8 is obtained. 
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Figure 3.8 : Change of the tire-road friction function on the road with μmax = 0.8. 

From Figure 3.9 it is shown that, slip ratio increases and then oscillates around the 

optimum slip value. The braking moment input calculated from the control algorithm 

is plotted in Figure 3.10. Due to the sign function in (3.37), oscillations do take 

place. The factor of the sign function has the velocity value u. Since the velocity 

decreases during braking, the oscillations decrease with respect to the decreasing 

velocity. 
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Figure 3.9 : Change of the longitudinal tire slip κ on the road with μmax = 0.8. 
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Figure 3.10 : Change of the braking moment input Tb on the road with μmax = 0.8. 
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Figure 3.11 : Change of the tire road friction function on the road with μmax=0.4. 
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To illustrate the robustness of the proposed control algorithm, different road 

conditions are used in simulations. The simulation scenario is conducted for a road 

with friction coefficient value μmax = 0.4. Simulation results are shown in Figure 3.11 

and Figure 3.12. 
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Figure 3.12 : Change of the longitudinal tire slip κ on the road with μmax = 0.4. 

To show that the algorithm can track the maximum tire force value when the road 

condition changes during braking, the simulation is conducted where the road 

friction changes from μmax = 0.6 to μmax = 1.2. From Figure 3.13 and Figure 3.14 it is 

realized that the control algorithm manages to utilize maximum friction potential of 

the road when its condition changes during braking. Braking moment input is shown 

in Figure 3.15. 
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Figure 3.13 : Change of the tire road friction function when the road 

condition changes from μmax =0.6 to μmax = 1.2. 
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Figure 3.14 : Change of the longitudinal tire slip κ when the road 

      condition changes from μmax =0.6 to μmax = 1.2. 
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Figure 3.15 : Change of the braking moment input Tb when the road 

 condition changes from μmax =0.6 to μmax = 1.2. 

3.5 Real Time Simulations 

Real time simulations were conducted to show the real time applicability of the 

proposed control algorithm. For real time simulations, dSPACE-MicroAutoBox is 

used. dSPACE-MicroAutoBox is a platform that can operate independently from a 

computer or user and can perform real time simulations. The setup is shown in 

Figure 3.16 and Figure 3.17. 

The simulation model created with Matlab/Simulink is converted into C code by 

Matlab/Real-Time Workshop and then loaded into MicroAutoBox hardware. Once 

loaded into the platform, a real time application is created which can work 
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independently from a computer or a user. Real time simulation results are shown in 

Figure 3.18 and Figure 3.19. In Figure 3.18, simulation results are shown for braking 

in different road conditions such as μmax =0.4, μmax =0.6, μmax =0.8, and μmax = 1. It is 

shown that maximum friction potential of the road is utilized in different road 

conditions. Figure 3.19 show that the algorithm can track maximum friction potential 

in changing road conditions. The sampling time used in the real time simulations was 

one msec. 

 
Figure 3.16 : Setup for real time simulations. 

 
Figure 3.17 : Power supply and MicroAutoBox. 
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Figure 3.18 : Change of the tire road friction function in various road  
                      conditions with μmax =0.4, μmax =0.6, μmax =0.8, and μmax = 1. 
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Figure 3.19 : Change of the tire road friction function when the road 

 condition changes from μmax =0.8 to μmax = 0.4. 

3.6 Chapter Summary 

In this chapter, a control algorithm for maximizing tire braking force by combining 

sliding mode based extremum seeking algorithm with the adaptation of the tire 

model parameters was introduced. Unlike the common extremum seeking algorithms 

in the literature, where the black box approach is conducted by considering a 

completely unknown objective function, an analytic approach is performed by 

utilizing adaptation of the tire model parameters integrated with the self-optimization 

routine and hence the necessity of the online objective function measurement is 

removed. Simulation studies show that the proposed controller manages to maximize 
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friction potential of the road without estimating the road conditions. The robustness 

of the proposed control algorithm is shown with simulations of different road 

conditions. Real time simulations were conducted with Microautobox hardware to 

show real time applicability of the proposed control algorithm. 
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4.  ABS CONTROL ALGORITHM VIA EXTREMUM SEEKING METHOD 

WITH ENHANCED LATERAL STABILITY 

4.1 Introduction 

An ABS control algorithm based on extremum seeking is presented in this chapter. 

The optimum slip ratio between the tire patch and the road is searched online without 

having to estimate the road friction conditions. This is achieved by adapting the 

extremum seeking algorithm (ESA) as a self-optimization routine that seeks the peak 

point of the force-slip curve. As an additional novelty, the proposed algorithm 

incorporates driver steering input into the optimization procedure to determine the 

operating region of the tires on the “tire force”-“slip ratio” characteristic curve. The 

algorithm operates the tires near the peak point of the force-slip curve during straight 

line braking. When the driver demands lateral motion in addition to braking, the 

operating regions of the tires are modified automatically, for improving the lateral 

stability of the vehicle by increasing the tire lateral forces. A validated full vehicle 

model is presented and used in a simulation study to demonstrate the effectiveness of 

the proposed approach. Simulation results show the benefits of the proposed ABS 

controller. 

When lateral and longitudinal tire forces occur simultaneously, for example during 

steering, achieving the maximum longitudinal tire force will result in unacceptably 

low lateral tire force due to the inherent coupling between tire forces in the 

longitudinal and lateral directions. Low lateral tire forces reduce the handling ability 

of a road vehicle. Therefore, longitudinal tire force should be reduced below its 

maximum possible value during combined braking and steering situations in order to 

keep lateral tire force at acceptable levels. The proposed ESA based ABS control 

algorithm incorporates driver steering input information into the optimization 

procedure to determine the operating region of the tires on the tire force-slip ratio 

characteristics curve. The algorithm operates the tires near the peak point of the 

force-slip curve during straight line braking. When the driver demands lateral motion 

in addition to emergency braking, the operating regions of the tires are modified for 
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improving lateral stability of the vehicle also. It is shown that during cornering, while 

achieving large braking forces, lateral tire forces can be improved considerably. 

Hence, the cornering capability of the vehicle can be enhanced significantly. This is 

the main contribution of this chapter to the existing literature. 

The chapter is organized as follows. In Section 4.2, the sliding mode based 

extremum seeking scheme is adapted for the ABS problem. Section 4.3 shows the 

performance of the algorithm in various road conditions during straight line braking. 

The simulation study is repeated for simultaneous braking and steering. It is shown 

that the braking algorithm can be improved for better steer ability in the presence of 

driver steering input. Section 4.4 presents the modification of the algorithm for 

improving steer ability. Simulations with the modified and unmodified algorithms 

are compared in Section 4.5. The chapter ends with conclusions given in Section 4.6.  

4.2 Algorithm Development 

Most of the available vehicle dynamics control methods assume knowledge of the 

road friction coefficient and ignore the braking problem complexities. Actually, for 

short-term emergency maneuvering tasks, or in the driver assistance proposals, 

braking model, road conditions, tire model and other dynamics such as hydraulics 

need to be taken into account. 
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Figure 4.1 : Change of the longitudinal tire forces on different road conditions. 

In ABS controller design, the aim is to find an optimal slip ratio, which makes 

longitudinal tire forces maximum. But since tire longitudinal forces depend on the 
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tire/road friction coefficient, in order to find an optimum slip ratio, the friction 

coefficient needs to be known a priori. Maximum braking force in the longitudinal 

direction occurs at different slip ratios as given in Figure 4.1. Using the extremum 

seeking algorithm, without a priori knowledge of the friction coefficient, tire forces 

are maximized at the optimum slip ratio operation point and they are maintained at 

these desired operating points by the proper switching of the individual brake 

actuator control inputs.  

For the extremum seeking algorithm via sliding modes, [4] formulates a sliding 

surface where the objective function is forced to follow a time increasing function 

and a discontinuous switching function is selected for the optimization parameter. 

This methodology is adapted here with the aim of maximizing xiF  for i=1,2,3,4 

where i designates the different tires. The sliding surface variable is  for the i’th tire 

is selected as 

tFs iixii ρακ += ),(  (4.1)

where t is the time index, ρ is a constant value, xiF , iκ  and iα  are i’th tire 

longitudinal tire force, longitudinal slip ratio and lateral side slip angle, respectively. 

By selecting the sliding surface as in (4.1), one aims to force xiF  into following the 

time increasing function ρt. Taking the time derivative of is  
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s &&&
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The update law for the slip ratio iκ  is chosen as, 
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⎦
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where M and γ are positive constants. The function sgn is defined as 
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x
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x
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Inserting (4.3) into (4.2) one can get 
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Theorem: In (4.5) when the condition 
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holds, after a finite time interval, si approaches to a constant value w = kγ depending 

on its initial value si(0) where k is an integer number with k = (0,±1,±2, ...). Then 

from (4.1) 

tFws iixii ρακ +== ),(  (4.7) 

wtF iixi +−= ρακ ),(  (4.8) 

ρ−=xiF&  (4.9) 

Hence, braking force ),( iixiF ακ , which is negative, will increase with the slope of ρ, 

i.e. tires’ operating point approaches to the peak point of the force-slip curve, as long 

as the condition (4.6) holds. 

Proof: Assume that at the start of optimization the value of is  in (4.1) is between the 
values of γ and 2γ 

γγ 2)0( << is  (4.10) 

Then, on that interval, the following mathematical expression is true 
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Assuming that the current operating region satisfies 
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By combining (4.5) and (4.11) one gets 
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Defining a variable 1λ  as 

γλ −= is1  (4.14)

is&& =1λ  (4.15)

Then from (4.13)  
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The following inequality can be written using (4.17)  
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Since (4.12) is hypothesized, (4.19) can be expressed that 

γλλλ →→< is ; 0 ; 0 111
&  (4.20)

Hence, after a finite time interval, (Finite time; because of the discontinuous sign 

function) 

γ=is  (4.21)

Contrary to (4.12), if the current operating region satisfies 
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then from (4.5) and (4.11) 
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Defining 2λ  as 

γλ 22 −= is  (4.24) 

is&& =2λ  (4.25) 

From (4.23) 
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Since (4.22) is hypothesized, 

γλλλ 2 ; 0 ; 0 222 →→< is&  (4.30) 

Hence after a finite time interval 

γ2 =is  (4.31) 
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It has been shown that when the value of is  starts between γγ 2)0( << is , then it 

converges to either γ  or γ2  depending on whether (4.12) or (4.22) holds. This 

analysis can be generalized not only for the interval of γγ 2)0( << is  but for any 

starting point )0(is . By combining the conditions (4.12) and (4.22), it is concluded 

that as long as the condition 
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holds is  will converge to one of the following points 

),2,1,0( K±±=
=

k
ksi γ

 (4.33)

After is  converges to γk , equation (4.1) becomes 

tFks iixii ρακγ +== ),(  (4.34)

γρακ ktF iixi +−=),(  (4.35)

ρακ −=),( iixiF&  (4.36)

Hence, braking force ),( iixiF ακ  will increase with the slope of ρ converging to the 

maximum operating point. Choosing a bigger ρ will ensure approaching to the 

optimum point faster. (End of proof) 

When both (4.12) and (4.22) do not hold, increasing of the performance function is 

not guaranteed. By selecting the values of control parameters ρ and M, one defines 

the operating region of the ESA. By decreasing the size of the region where (4.12) 

and (4.22) do not hold, the success of the optimization algorithm is increased. 

Considering the straight line braking case where 0=iα  for i=1, 2, 3, 4, then the 

condition (4.32) turns into 

Md
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κ
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The condition (4.37) can be interpreted as the gradient value iixi ddF κκ /)(  being 

larger than a constant value M/ρ . As long as the gradient is larger than M/ρ , 

extremum seeking algorithm will force the objective function to increase. Finally, 

xiF  will approach to a small neighborhood of its peak point where the gradient is not 

large enough, i.e. the condition (4.37) does not hold anymore. By selecting proper 

values for ρ and M, the size of the operating region can be adjusted. 

When there is a lateral motion, then the condition (4.32) includes an additional term 

of ( ) MF iiiixi //),( ααακ &∂∂  in the right hand side of the inequality. The effect of 

this additional term on the search algorithm is explained in the following. When 

there is a lateral motion, i.e. 0
),(

≠
∂

∂
i

i

iixiF
α

α
ακ

& , then the right hand side of (4.32) 

increases. This results in condition (4.32) holding for a shorter time than the case 

without lateral motion. This is because by approaching to the peak point of the force-

slip curve, the gradient iiixiF κακ ∂∂ /),(  is getting smaller and smaller, and the 

region, where the condition (4.32) does not hold, is approached more quickly. When 

the condition holds shorter, the increment of Fxi lasts shorter. In other words, the tire 

will operate further than its maximum force value. This is advantageous since as far 

as the tires operate further than the maximum point, i.e. when the slip ratio is kept 

small, lateral tire forces will be large, which increases cornering capability of the 

vehicle.  

Braking moment values biT  are calculated as follows. The simplified tire rotational 

equation of motion can be written as 

ω
ω

I
RFT xibi

i
−−

=&  (4.38) 

where the rolling resistance effect is neglected. In (4.38), Iω is the wheel inertia, R is 

the effective tire radius, ωi is the i’th tire angular velocity. Similarly, the simplified 

longitudinal vehicle dynamics is written as 

4321 xxxxxsum FFFFFum +++==&  (4.39) 
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where aerodynamic effects and lateral dynamics are ignored. In (4.39), m is the 

vehicle mass and u is the longitudinal speed. The simplified equation of the wheel 

slip ratio is given as 

u
Ru i

i
ω

κ
−

−=  (4.40)

where it is assumed that the tire velocities on rolling directions are equal to the 

vehicle longitudinal velocity u. Taking the time-derivative of (4.40) and integrating 

with (4.38) and (4.39) the slip dynamics can be written as 
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By inserting for iκ&  its update law, the braking moment for each tire can be computed 

as 
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For calculation of the braking moment from (4.42), one should measure u, ωi, and 

Fxi. It is assumed that u and ωi are measured. The velocity of the car u can be 

measured via the accelerometer and GPS units or by using the tire velocities of the 

idle tires. Tire angular velocity can be measured by using the Hall Effect wheel speed 

sensors in the ABS system. Since tire forces cannot be measured directly, they 

should be estimated. Estimation of the tire longitudinal forces are based on tire 

angular velocity measurements as introduced in [3]. The simplified tire dynamics is 

written as 

xibii RFTI −−=ωω &  (4.43)

Estimation of the tire angular velocity iω̂  is defined as  

( )RWTI ibii ωωω sgnˆ +−=&  (4.44)

where iii ωωω ˆ−=  and W is a positive constant. Subtracting (4.44) from (4.43), one 

can get 
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( ) RFRWI xiii −−= ωωω sgn&  (4.45) 

By choosing W>max|Fxi|, the estimated state iω̂  tracks the real state iω , due to the 

discontinuous feedback in the observer equation. In the sliding mode, the equivalent 

value of ( )iK ωsgn  is equal to the longitudinal tire force, 

( )( )eqixi WF ωsgnˆ −=  (4.46) 

To obtain the equivalent value of ( )iW ωsgn  during sliding mode, a low pass filter is 

used. Using the estimated tire force xiF̂ , the braking moment Tbi is calculated as 
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Note that si is defined previously in (4.1). Since the estimated value of the tire force 

is used, si is calculated from 

tFs xii ρ+= ˆ  (4.48) 

4.3 Simulations 

4.3.1 Simulation model 

A validated nonlinear double track vehicle model is considered in the simulation 

study. The vehicle axis system is shown in Figure 4.2. Here, x is roll axis, y is pitch 

axis and z is yaw axis. 

Φ, p

θ, q

x

y

z

ψ, r

 

Figure 4.2 : Vehicle axis system. 

The vehicle parameter values are given in Table 4.1. Top view of the vehicle model 

is shown in Figure 4.3.  
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Table 4.1 : Vehicle parameter values. 

Parameter Value Parameter Value 
m (kg) 1590 Kf (kg/s2) 30000 
ms (kg) 1410 Kr (kg/s2) 20000 
mu (kg) 180 Cf (kg/s) 2206 
lf  (m) 1.01 Cr (kg/s) 2206 
lr (m) 1.45 Cd  0.4 
Ts (m) 0.8 Af (m2) 1.8 
R (m) 0.3 ρa (kg/m3) 1.2257 
d (m) 0.0045 lω (m) 1.54 
Iω (kgm2) 0.9 Krbf (kgm2/s2) 10000 
e (m) 0.26 Krbr (kgm2/s2) 10000 
IZ (kgm2) 2910 pf (m) 0.277 
IZS (kgm2) 2810 pr (m) 0.286 
IX (kgm2) 700 hf (m) 0.277 
IXS (kgm2) 606 hr (m) 0.286 
IY (kgm2) 2800 kt (kg/s2) 220000 
IYS (kgm2) 2741   

 

Figure 4.3 :Top view of the vehicle. 

axxuuxss FFamam −=+  (4.49)

yyuuyss Famam =+
 (4.50)

The longitudinal and lateral dynamic equations are written as in (4.49) and (4.50) 

where sm , xsa , um , xua , xF , aF , ysa , yua , yF  are sprung mass, sprung mass 
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longitudinal acceleration, unsprung mass, unsprung mass longitudinal acceleration, 

total longitudinal tire forces, aerodynamic drag force, lateral acceleration of the 

sprung mass, lateral acceleration of the unsprung mass and the total lateral tire 

forces, respectively. Unsprung mass and sprung mass longitudinal accelerations are 

given in (4.51) and (4.52). Unsprung mass and sprung mass lateral accelerations are 

given in (4.53) and (4.54). Detailed derivation of these acceleration terms are given 

in Appendix A.  

vruaxu −= &  (4.51) 

sssxs zqrperpzeqzqvrua &&&& 2++−−+−=  (4.52) 

urvayu += &  (4.53) 

sssys zprqerqzepzpurva &&&& 2+−+−++=  (4.54) 

where v, r, q, sz , e, p denote lateral velocity, yaw rate of the vehicle, pitch rate, 

vertical motion of the sprung mass center of gravity (c.g.), distance from the roll 

center to the sprung mass c.g. and the roll rate, respectively. Total longitudinal and 

lateral tire forces are calculated by referring to Figure 4.3 as follows 

432121 sin)(cos)( xxfyyfxxx FFFFFFF +++−+= δδ  (4.55) 

432121 cos)(sin)( yyfyyfxxy FFFFFFF +++++= δδ
 (4.56) 

The aerodynamic drag force aF  is calculated as follows  

2

2
1 uACF afda ρ=  (4.57) 

Here dC , fA , aρ , are the aerodynamic drag coefficient, the vehicle frontal area, the 

air density, respectively.  
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Figure 4.4 : Vehicle suspension model. 

The vehicle suspension model is shown in Figure 4.4. The vertical equation of 

motion of the sprung mass and unsprung mass are written as 

)( 4321 sssszss FFFFam +++−=  (4.58)

0)( =−−+ siiuituiui FSzkzm &&  (4.59)

Here zsa  is the vertical acceleration of the sprung mass. siF  are the suspension 

forces acting on the sprung mass, tk  is the tire stiffness and iS  are the road inputs 

for each tire. The vertical acceleration of the sprung mass is calculated as  

sssuzs zeqzqepzpza &&&& ++−+−= 2222  (4.60)

Detailed derivation of this term is given in Appendix A. Here uz  is the vertical 

motion of the unsprung mass c.g. The suspension forces are given as 
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where fK  and rK  are front and rear suspension spring stiffness, fC  and rC  are 

front and rear suspension damping ratios, uiz  is the unsprung mass vertical motions. 

fl  and rl are distances from the center of gravity to the front and rear axles, θ is the 

pitch angle, Φ is the roll angle, Ts is the distance between the left and right 

suspensions.  

 
Figure 4.5 : Roll motion of the sprung mass. 

In Figure 4.5, roll motion of the sprung mass is shown. The rotational equations of 

motions are written as follows which are known as Euler equations of motion [88] 
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where XSI , YSI , ZSI  , ZI , XI , YI  are sprung mass moment of inertias on the roll 

axis, pitch axis, yaw axis, total moment of inertias on the yaw axis, roll axis and 

pitch axis, respectively. ωl  is the front and rear track widths, g is the acceleration due 

to the gravity, rbfK  and rbrK  are front and rear antiroll bar stiffness’s. 
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Figure 4.6 : Forces and moments acting on the front axle. 

In Figure 4.6, forces and moment acting on the front axle are shown. Vertical forces 

for each tire are calculated as follows 
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where L is the distance between the front and rear axles, fp  and rp  are height of the 

front and rear roll center, fh  and rh  are height of the front and rear unsprung mass 

c.g. 

By referring to Figure 4.3, it is shown that, while the vehicle is turning, a difference 

occurs between the direction of the tire velocity and the direction of the tire itself. 

This angle is called as the tire side slip angle or simply ”the slip angle” denoted as 

iα . Tire slip angles are calculated as follows 
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Figure 4.7 : Forces and moments acting on the wheel. 

In Figure 4.7, forces and moments acting on a single wheel are shown. Rotational 

motion dynamics for each individual tire are given as 

w

zixibidi
i I

dFRFTT −−−
=ω&  (4.76) 

where iω  denotes the i-th tire angular velocity, diT  is the traction moment, biT  is the 

individual wheel braking moment, ziF  is the tire vertical force, ωI  is the wheel 

inertia and d is the pneumatic trail as shown in Figure 4.7. 

When the vehicle accelerates or brakes, a difference between the tire longitudinal 

velocity tiu  and its corresponding rotational velocity Riω  occurs. The tire 

longitudinal slip ratio or simply ”slip ratio” is defined based on this difference and 

calculated as 

ti

iti
i u

Ru ω
κ

−
−=  (4.77) 
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where R is the tire effective radius, tiu  is the velocity on the rolling direction for the 

i’th individual tire. For example in a hard braking situation, if the tires are blocked 

(ωi=0) but the vehicle is still moving (uti ≠ 0), then κi=-1. On the contrary, in 

acceleration from standstill, if the tires start to spin, then κi > 0. In (4.77), tiu  is 

calculated as follows  

( ) ( ) ffft rlvrluu δδω sincos2/1 +++=  (4.78)

( ) ( ) ffft rlvrluu δδω sincos2/2 ++−=  (4.79)

( )2/3 ωrluut −=  (4.80)

( )2/4 ωrluut +=  (4.81)

The longitudinal and lateral tire forces are changing with respect to the magnitudes 

of the tire slip ratio and the tire slip angle. Various analytic and empirical tire models 

have been developed in the literature for simulating tire forces. Some of them are the 

Magic Formula, Dugoff, LuGre, Burckhardt tire models. Here, for calculation of the 

tire forces, the Magic Formula (Also known as the Pacejka model) is used in the 

simulations. The general form of the formula is given as  

( ){ }[ ]BxBxEBxCDy arctanarctansin −−=  (4.82)

where x is the input variable such as the tire slip angle α or the tire slip ratio κ, y is 

the output variable representing the forces between the tire patches and the road in 

the longitudinal and lateral directions such as xF  and yF . B, C, D and E are the tire 

stiffness, shape, peak and curvature factors, respectively. The tire model parameters 

are taken from [86], where the considered tire is 205/60R15. Detailed formulation of 

the tire model is given in Appendix B and the Matlab M-file for calculation of the 

tire forces is given in Appendix C. Figure 4.8, Figure 4.9, Figure 4.10 and Figure 

4.11 show the tire forces calculated by using the Magic Formula Tire Model. For 

different road conditions, the change of the longitudinal tire force with respect to the 

tire longitudinal slip ratio κ is plotted in Figure 4.8. The change of the lateral tire 

force with respect to the tire side slip angle α is plotted in Figure 4.9. Note that the 

tire characteristics plotted in Figure 4.8 and Figure 4.9 are for pure slip cases. 
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Figure 4.8 : Change of the longitudinal tire forces with respect to the  
     tire slip ratio under pure longitudinal slip condition. 
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Figure 4.9 : Change of the lateral tire forces with respect to the tire 
  side slip angle under pure lateral slip condition. 

In other words Figure 4.8 shows the longitudinal tire force characteristics with 

respect to the tire slip ratio where the tire does not have a lateral slip value (α=0). 

Similarly, Figure 4.9 shows lateral tire force characteristics where the tire does not 

have a longitudinal slip value (κ=0). On the contrary, in combined slip cases where 

the tire has both longitudinal and lateral slip ( )0,0 ≠≠ κα , change of the 

longitudinal and lateral tire forces are plotted in Figure 4.10 and Figure 4.11. Figure 

4.10 shows that if there is a lateral slip, the tire can generate less longitudinal tire 
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force than the α=0 case. The longitudinal tire force decreases with the increasing side 

slip angle value as shown in Figure 4.10. Figure 4.11 shows that with the increasing 

longitudinal slip ratio value, the lateral force generation capability of the tire 

decreases. This is the reason that the steer ability of the vehicle decays during 

braking.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

Tire Longitudinal Slip Ratio κ

Lo
ng

itu
di

na
l T

ire
 F

or
ce

 F
 x (N

)

Increasing tire side
slip angle

α=0 rad

α=0.05 rad

α=0.1 rad
α=0.15 rad

α=0.2 rad

 

Figure 4.10  : Change of the longitudinal tire forces in combined slip case. 
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Figure 4.11 : Change of the lateral tire forces in combined slip case. 

To be able to generate braking moments on each wheel, a hydraulic brake actuator 

model is taken into account. The schematic drawing of the hydraulic system is shown 

in Figure 4.12.  
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Figure 4.12 : Hydraulic brake actuator system. 

For each individually actuated brake system, in order to increase the brake pressure 

and consequently the individual brake force between the tire patch and the road, the 

build valve opens and the dump valve closes. Thus, the brake pad presses on the 

brake disc. To decrease the brake pressure and consequently the brake force, the 

build valve closes and the dump valve opens, so that the fluid flows from the 

individual wheel cylinder to the reservoir. This operation is controlled by two inputs 

and the following governing differential equation,  

)(2)(2
21 lowi

f
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f
ip

f
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f
i PPAcC

V
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V
P −−−=

ρ
β

ρ
β

ωω

&  (4.83) 

where fβ , ωV , dvC , A, fρ , pP , iP , lowP  are the brake fluid bulk modulus, wheel 

cylinder volume, orifice discharge coefficient, orifice area, brake fluid density, pump 

pressure, i-th wheel cylinder pressure and the reservoir pressure, respectively. 

idc 1 and idc 2  are the valve control inputs, which can be only 1 for an open valve or 0 

for a closed valve and they are not allowed to be “1” at the same time, i.e., 

121 ≠idid cc , for the individually brake actuated i’th wheel. For each individual 

hydraulic brake actuator, the relationship between the wheel cylinder pressure and 

braking moment is given as follows  

( ) rFcoutibi rBAPPT ηω−=  (4.84) 

where outP , cAω , η , FB  and rr  are push out pressure, wheel cylinder area, 

mechanical efficiency, brake factor and effective brake disc radius, respectively. 
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4.3.2 Validation of the vehicle model with actual vehicle measurements  

Measurements from a real vehicle are used for validation of the developed vehicle 

model. The actual vehicle’s longitudinal, lateral and vertical accelerations, roll rate, 

pitch rate and yaw rates are measured from an inertial measurement unit shown in 

Figure 4.13. The instrumented vehicle is shown in Figure 4.14. The driver’s steering 

input is measured from the steering wheel angle sensor. In order to compare the 

actual vehicle and the mathematical vehicle model, the same driver steering input 

measured from the real vehicle shown in Figure 4.15 is applied to the vehicle model. 

A cruise control unit is added to the vehicle model in order to follow the real 

vehicle’s speed profile. The time responses of the mathematical model and the real 

vehicle sensor outputs are plotted in Figure 4.16, Figure 4.17, and Figure 4.18.  

 
Figure 4.13 : Inertial measurement unit installed in the vehicle. 

 
Figure 4.14 : Instrumented vehicle. 
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Figure 4.15 : Driver steering input. 
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Figure 4.16 : Validation results: Lateral acceleration. 
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Figure 4.17 : Validation results: Roll rate. 
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Figure 4.18 : Validation results: Yaw rate. 

4.3.3 Simulation scenario 1 

In the simulation scenario 1, straight line braking case is studied. The initial vehicle 

speed is 30 m/s. Simulations are conducted on different road conditions to show the 

effectiveness of the control algorithm. First, the road is selected as dry asphalt. 

Simulation results for normalized tire forces Fxi/Fzi are plotted in Figure 4.19.  

0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

Time (s)

F x1
 / 

F z1

0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

F x2
 / 

F z2

Time (s)

0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

Time (s)

F x4
 / 

F z4

0 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0

Time (s)

F x3
 / 

F z3

 
Figure 4.19 : Change of the normalized longitudinal tire forces in dry road. 

Since the maximum braking force that a tire can produce can be calculated from the 

equation: Fxmax = −μmaxFz, where μmax = 1 for the dry asphalt road, it is shown that 

after approximately 0.2 sec., normalized tire forces are equal to Fxi/Fzi = −1, which 
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means that tire forces are maximized. The controller does not use road condition 

information. Change of the slip ratios are plotted in Figure 4.20. Optimum slip ratios 

are found on-line via the search algorithm. Braking moment inputs are plotted in 

Figure 4.21. 
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Figure 4.20 : Change of the tire slip ratios in dry road. 
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Figure 4.21 : Change of the braking moments in dry road. 

Next, simulations are conducted on a μmax = 0.4 road, which simulates a snowy road. 

Results for normalized tire forces are shown in Figure 4.22. Maximum friction 

potential is utilized by the search algorithm because it is shown that normalized 
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longitudinal tire forces are reaching the value of Fxi/Fzi = −0.4. It is noticed that 

whatever the road condition is, the algorithm is robust, i.e. it finds optimum slip 

ratios for maximum braking forces. Change of the slip ratios and braking moment 

inputs are plotted for braking in snowy road in Figure 4.23 and Figure 4.24, 

respectively. 
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Figure 4.22 : Change of the normalized longitudinal tire forces in snowy road. 
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Figure 4.23 : Change of the tire slip ratios in snowy road. 
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Figure 4.24 : Change of the braking moments in snowy road. 

4.3.4 Simulation scenario 2 

In the simulation scenario 2, combined steering and braking is studied. The driver 

steering input given in Figure 4.25 is applied to the vehicle model. In Figure 4.26, 

change of the tire slip ratios are shown. It is noticed that when steering is applied, the 

magnitude of front axle slip ratios start to increase. This phenomenon can be 

explained from Figure 4.10, where longitudinal tire force characteristics for the 

combined slip case are plotted. From Figure 4.10, it is shown that when there is a 

lateral motion in addition to the longitudinal motion, i.e. when tire side slip angles 

are not zero (αi ≠ 0), the location of the optimum slip ratio for maximum longitudinal 

force moves forward. Since the extremum seeking algorithm searches the optimum 

slip ratio, it increases the slip ratio as it is shown in Figure 4.26 to track the peak 

point. Rear axle slip ratios did not increase because during hard braking, the weight 

of the rear axle decreases considerably, resulting in small lateral tire forces. These 

small lateral forces do not have big deforming effect on rear axle longitudinal tire 

forces and hence location of the optimum slip ratios on the rear axle does not change 

considerably. From Figure 4.11 it is seen that when slip ratio increases, the 

magnitude of the lateral tire force Fyi decreases considerably. If extremum-seeking 

controller keeps maximizing the braking forces by increasing the slip ratio, lateral 

tire forces may be insufficient. This may cause the vehicle not to swerve safely from 
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danger. For lateral stability enhancement, extremum seeking algorithm should be 

modified as introduced in the next section. 
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Figure 4.25 : Driver steering input for the simulation scenario 2. 
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Figure 4.26 : Change of the tire slip ratios in simulation scenario 2. 

4.4 Modified ESA with Lateral Force Improvement 

In the previous section, extremum seeking algorithm has been introduced for the 

ABS problem, where the algorithm seeks optimum tire slip ratios for maximum 

braking forces. Via the simulations, it has been shown that the algorithm finds 

optimum slip ratios for maximum tire forces with respect to the different road 

conditions. 
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It has also been shown that when there is a lateral motion, i.e. αi ≠ 0, the algorithm 

increases the value of the slip ratio to track the peak point of the longitudinal tire 

force since optimum slip ratio κ moves forward with the increasing side slip angle α 

as shown in Figure 4.10. 

However, from Figure 4.11 it is shown that when slip ratio κ increases, the lateral tire 

force Fyi decreases dramatically. This is an undesired situation since it is also 

desirable to have large enough lateral tire forces in order to maneuver safely. For 

example, when the driver suddenly confronts an obstacle (for example another car in 

front of his/her path), he/she jeopardizes the control inputs such as applying at the 

same time hard braking and steering. In that case, if the ABS braking controller only 

cares to maximize the braking forces, and does not take into consideration the lateral 

tire forces, then although braking forces may be maximized, lateral tire forces may 

be insufficient. This may cause the vehicle not to swerve safely from danger and a 

collision with the obstacle may occur. Hence, the extremum seeking algorithm 

should be modified to take into account the lateral tire forces also, when the driver 

demands lateral motion from the vehicle. 

In the previous section, it has been shown that, when there is a lateral motion in 

addition to braking, due to the additional contribution of i
i

iixiF
α

α
ακ

&
∂

∂ ),(  in the 

condition (4.32), the increment of Fxi lasts shorter and hence, slip ratio will be 

smaller with resulting larger lateral tire forces. This effect inspires to incorporate 

driver steering input information to the extremum seeking algorithm to define 

operating region of the tires during braking. This modification is based on the 

following idea: By choosing ρ and M in (4.32), one defines the location of the 

operating region. Choosing a bigger value for the right hand side of (4.32), the 

condition holds shorter, i.e. the increment of Fxi lasts shorter. In other words, the tire 

will operate further than its maximum force value. On the contrary, choosing a 

smaller right hand side of (4.32), the condition will hold longer, eventually, the tire 

will operate closer to its maximum value. When steering input is zero, i.e. straight 

line braking, the operating region should be as close as possible to the maximum tire 

force value; hence, the right hand side should be small. On the other hand, if there is 

a steering wheel input, the search algorithm should not keep tracking the varying 

optimum slip ratio value as shown in Figure 4.10, in order to prevent any loss in 
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lateral tire forces. Hence, the operating region should be farther from the extremum 

point, i.e. right hand side of (4.32) should be large. The adaptation law for the slip 

ratio is modified as  
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where δf  is the steering angle, ε is a constant. By combining (4.85) and (4.2), one 

gets 
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As introduced in the analysis in section 2, assuming that at the start of optimization 

the value of is  in (4.86) is between the values of γ and 2γ such as γγ 2)0( << is , 

then, on that interval, the following inequalities can be written from (4.86) 
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where γλ −= is1  and γλ 22 −= is . Then as long as the condition  
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holds, is  converges to either γ  or γ2 . The analysis can be generalized not for only 

the interval of γγ 2)0( << is  but for any starting point of )0(is . Then, as long as 

(4.89) holds, is  will converge to a constant value w=γk depending on its initial value 

si(0) where k is an integer number with k = (0,±1,±2, ...). Then, from (4.1) 

tFws iixii ρακ +== ),(  (4.90)

wtF iixi +−= ρακ ),(  (4.91)
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ρ−=xiF&  (4.92) 

Hence, braking force ),( iixiF ακ , which is negative, will increase in magnitude with 

the slope of ρ, i.e. the tire operating point will approach the peak point of the force-

slip curve as long as condition (4.89) holds. It is noticed that by increasing the 

steering wheel angle, the right hand side of (4.89) increases, meaning that the 

condition (4.89) holds for shorter time, i.e. the increment of Fxi lasts shorter, resulting 

in the tires operating further than their maximum longitudinal force values. This 

approach provides larger lateral forces. 

4.5 Simulations 

4.5.1 Simulations with scenario 2 

In the previous chapter, during the simulations of combined braking and steering 

maneuver, it was shown in Figure 4.26 that the control algorithm increases the slip 

ratio value to track the maximum braking force value. In Figure 4.27, it is shown that 

with the modified algorithm, the increment in slip ratio is prevented where blue 

figures show the results of the modified algorithm and red figures show the results of 

the first version.  
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Figure 4.27 : Change of the slip ratios in simulation scenario 2, dry  
     road. (red: first version, blue: modified version). 
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This color notation will be used in the figures of the remaining of the chapter. Figure 

4.28 shows the improvement in lateral tire forces. Since in the modified algorithm 

tires operate further than their maximum operating region, a decrement is noticed in 

the longitudinal tire forces as shown in Figure 4.29. 
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Figure 4.28 : Change of lateral tire forces in simulation scenario 2, dry road. 
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Figure 4.29 : Change of longitudinal tire forces in simulation scenario 2, dry road. 

However, this decrement results in only a small difference of the stopping time as 

shown in Figure 4.30. It is noticed that the difference on the stopping time is minor 
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but the improvement in lateral tire forces is considerable. The improvement in lateral 

acceleration value of the vehicle is shown in Figure 4.31.  
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Figure 4.30 : Change of longitudinal speed in simulation scenario 2, dry road. 
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Figure 4.31 : Change of lateral accelerations in simulation scenario 2, dry road. 
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Figure 4.32 : Vehicle trajectories in simulation scenario 2, dry road. 
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The increment in lateral acceleration means that the vehicle can maneuver sharply 

than the conventional algorithm. While still getting large braking forces, the lateral 

stability of the vehicle is improved considerably with the proposed algorithm when it 

is observed that the driver demands lateral motion in addition to emergency braking. 

The vehicle trajectories are shown in Figure 4.32 where it is shown that the cornering 

capability of the vehicle is improved considerably. 
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Figure 4.33 : Change of the slip ratios in simulation scenario 2, snowy road. 
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Figure 4.34 : Change of lateral tire forces in simulation scenario 2, snowy road. 
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Next, the responses of the vehicle model are shown for braking and maneuvering on 

a snowy road. In Figure 4.33, it is shown that with the modified algorithm, the 

increment in slip ratio is prevented. 

Figure 4.34 shows the improvement in lateral tire forces. Longitudinal tire forces and 

stopping times are shown in Figure 4.35 and Figure 4.36. Again, it is noticed that the 

difference of the stopping time is minor but improvement in lateral tire forces is 

considerable. The improvement in lateral acceleration value and the vehicle 

trajectories are shown in Figure 4.37, Figure 4.38. 
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Figure 4.35 : Longitudinal tire forces in simulation scenario 2, snowy road.  
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Figure 4.36 : Longitudinal speed in simulation scenario 2, snowy road.  
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Figure 4.37 : Lateral accelerations in simulation scenario 2, snowy road. 
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Figure 4.38 : Vehicle trajectories in simulation scenario 2, snowy road. 

4.5.2 Simulation scenario 3 

In Figure 4.8, longitudinal tire force characteristics are plotted for different road 

conditions. During braking, when the road condition changes suddenly from dry road 

to the snowy road, the tire’s operating point may drop to the right side of the 

maximum force value. When steering is applied in addition to braking, since the 

modified braking algorithm adapts the tire slip ratio update rule, which increases the 

operating region of the search algorithm, this may result in the tires operating further 

than the peak point with an increase in the slip ratio value. This will even worsen the 

lateral tire forces since lateral tire forces degrade with increasing tire slip ratio value 

as shown in Figure 4.11. In order to show whether the controller results in such an 

undesired situation, simulations are performed with changing road conditions. In 

simulation scenario 3, straight line braking starts on a dry road and after 1 s, the road 

condition changes to a snowy road. After 2 s, driver steering input given in Figure 

4.25 is applied on this snowy road. InFigure 4.39, normalized longitudinal tire forces 

are shown. Braking algorithm finds maximum braking force for the dry road. After 1 
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s the road condition changes suddenly to a snowy road. Braking algorithm finds 

again optimum slip ratio of the snowy road for maximum braking force. After 2 s, 

driver steering input is initialized. It is shown that the differences on the longitudinal 

tire forces are small but the improvement in lateral tire forces is considerable with 

the modified algorithm as shown in Figure 4.40.  
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Figure 4.39 : Normalized longitudinal tire forces in simulation scenario 3. 
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Figure 4.40 : Lateral tire forces in simulation scenario 3. 
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Change of the tire slip ratios are plotted in Figure 4.41 where it is shown that 

increase on the slip ratio is prevented. Vehicle speeds are plotted in Figure 4.42 

where it is realized that while improving lateral tire forces considerably with the 

modified algorithm, the loss in longitudinal tire forces are so small that the stopping 

time is almost equal. In Figure 4.43 and Figure 4.44 change of the lateral 

accelerations and vehicle trajectories are plotted respectively. 
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Figure 4.41 : Longitudinal tire slip ratios in simulation scenario 3. 
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Figure 4.42 : Longitudinal speeds in simulation scenario 3. 
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Figure 4.43 : Lateral accelerations in simulation scenario 3.  
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Figure 4.44 : Vehicle trajectories in simulation scenario 3. 

4.5.3 Simulation scenario 4 

In simulation scenario 4, steering is applied at the same time with the change of the 

road condition. After 1 s, the driver steering input given in Figure 4.25 is applied to 

the vehicle and at the same time the road condition changes from dry road to snowy 

road. Change of the tire slip ratios are plotted in Figure 4.45. It is shown that increase 

on the slip ratio is prevented. Improvements in lateral tire forces are shown in Figure 

4.46. In Figure 4.47, changes of the lateral accelerations are plotted. 
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Figure 4.45 : Longitudinal tire slip ratios in simulation scenario 4. 
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Figure 4.46 : Lateral tire forces in simulation scenario 4. 
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Figure 4.47 : Lateral accelerations in simulation scenario 4. 

4.6 Chapter Summary 

In this chapter, the sliding mode based extremum seeking algorithm is adapted as the 

self-optimization routine that seeks the peak point of the force-slip curve without 

needing knowledge of the optimum slip information. The proposed algorithm 

incorporates driver steering input information into the optimization procedure to 

determine the operating region of the tires on the tire force-slip ratio characteristics 

curve. This is a novel approach in ABS control area and constitutes the main 

contribution of the study to the existing literature on ABS control. The algorithm 

operates the tires near the peak point of the force-slip curve during emergency 

straight line braking. When the driver demands lateral motion in addition to 

emergency braking, the operating regions of the tires are modified for improving 

lateral stability of the vehicle also. It is shown using a detailed simulation study with 

a validated vehicle model that, during cornering, while getting large braking forces, 

lateral tire forces can be improved considerably and hence the cornering capability of 

the vehicle can be enhanced significantly. 
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5.  EXTREMUM SEEKING BASED ENERGY MANAGEMENT STRATEGY 

FOR HYBRID ELECTRIC VEHICLES 

5.1 Introduction 

An energy management control strategy for a parallel hybrid electric vehicle based 

on the extremum seeking algorithm (ESA) for splitting torque between the internal 

combustion engine and electric motor is proposed in this chapter. 

Rule based solutions as given in [63-70] are simple and easy to implement. However, 

this kind of energy management strategy requires correct tuning of all the controller 

parameters in order to assure the correct behavior of the algorithm. The approach is 

not easily exportable to other vehicle configurations. Instantaneous optimization 

methods based on equivalent consumption minimization strategy (ECMS) as given in 

[74-78] provide a real time, near optimal solution. Since the electrical energy and the 

fuel energy are not directly comparable, an equivalence factor is needed to calculate 

equivalent fuel consumption value. The performance of the control algorithm 

depends heavily on the calculation of the equivalence factor. An error in calculating 

the equivalence factor will affect the performance of the controller considerably 

In this chapter, an instantaneous optimization procedure based on the extremum 

seeking method is proposed where the algorithm searches optimum torque 

distribution between the available power sources for maximum powertrain 

efficiency. Different than rule based controllers as in [63-70], the algorithm 

possesses optimality criterion as it searches for the maximum powertrain efficiency. 

It is different from the algorithms given in [74-78], since it does not use ECMS there 

is no need to calculate an equivalence factor 

The ESA strategy presented here aims at maximizing overall powertrain efficiency of 

a parallel HEV during various driving cycles. An upper level controller decides first 

the operation mode such as regenerative braking, EM only, ICE only, or ICE plus 

EM-charge modes. In this study, engine downsizing is not considered in the 

modeling of the hybrid powertrain. The selected internal combustion engine is 
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sufficient to drive the vehicle alone in high power demands; hence, the control 

algorithm does not include the EM power assist mode. In the ICE plus EM-charge 

mode, optimum torque distribution between the internal combustion engine and the 

electric motor is determined via the extremum seeking algorithm that searches for 

maximum powertrain efficiency. Various constraints are considered during the 

control process, e.g. in order to prevent full depletion or overcharge of the battery, 

the battery state of charge value (SOC) is limited. In order to evaluate performance of 

the proposed algorithm, its results are compared with the dynamic programming 

(DP) solution, which is used as a benchmark of the minimum attainable fuel 

consumption values. The comparison of the DP results with the proposed algorithm 

shows that the ESA with its two level online control structure with powertrain 

efficiency maximization manages to get substantial fuel consumption improvement. 

The main goal of the ESA algorithm given in this chapter is to maximize powertrain 

efficiency and hence to improve fuel consumption. Emission reduction will be 

studied in a future study and takes place indirectly here. In the EM only mode of 

operation, there are no emissions from the ICE. In the ICE+EM-charge mode, the 

ICE operates at a higher torque level where the emission levels are usually lower. 

The rest of the chapter is organized as follows. In Section 5.2, models of the ICE, 

EM, battery and vehicle dynamics are introduced. In Section 5.3, the upper level 

controller and the extremum seeking algorithm, which is part of the lower level 

controller, are introduced. The dynamic programming solution applied to HEV is 

presented in Section 5.4. The detailed simulation study in Section 5.5 shows the 

effectiveness of the proposed algorithm. The chapter ends with conclusions. 

5.2 Hybrid Electric Vehicle Model 

A parallel HEV model is developed for the study. In Figure 5.1, the schematic 

representation of the powertrain is shown. For calculation of ICE efficiency and fuel 

consumption, the efficiency map shown in Figure 5.2 is used.  
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Figure 5.1 : Parallel hybrid electric vehicle powertrain model. 
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Figure 5.2 : Representative ICE efficiency map. 

The controller demands from the ICE the torque command cmdiceT , . The dynamics of 

the ICE is simply modeled as a first order system between the torque command input 

and the actual ICE torque iceT  given as  

ice

icecmdice
ice

TT
T

τ
−

= ,&  (5.1)

where iceτ  is the time constant of the ICE. For calculation of the fuel consumption, 

fuel power fuelP  is calculated as 
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ice

iceice
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T
P

η
ω

=  (5.2) 

where iceω  is the engine angular speed, ice iceT ω  is the ICE power, and iceη  is the 

engine efficiency calculated from the efficiency map shown in Figure 5.2. The rate of 

the fuel usage fm&  is calculated as given in (5.3). 

u

fuel
f H

P
m =&  (5.3) 

where uH  is the lower heating value for the gasoline. Fuel consumption fm  is 

calculated by integrating fm& . 

T E
M
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m
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Figure 5.3 : Representative EM efficiency map in [85]. 

For calculation of the EM efficiency, the efficiency map shown in Figure 5.3 is used. 

The controller demands from EM cmdemT , , which is the commanded torque value. 

The electric motor dynamics is assumed to be a first order model here. The actual 

EM torque emT  is then calculated from (5.4) where emτ  is the time constant. 

em

emcmdem
em

TT
T

τ
−

= ,&  (5.4) 
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The power value, which is taken from the battery while discharging or placed into 

the battery while charging is calculated as  

emememt TP ηω=  (5.5)

where emω  is the EM angular speed, ememT ω  is the power generated by the EM and 

emη  is the electric motor efficiency calculated from efficiency map shown in Figure 

5.3. In (5.5) electric motor efficiency is multiplied both for discharging and charging 

cases since as shown in Figure 5.3, the efficiency values are less than 1 during the 

charging case. 

Before using the electric motor to drive the vehicle or to charge the batteries in its 

generator mode, the charge level of the batteries called state of charge (SOC) should 

be taken into consideration. The SOC value is recommended to be kept between 

specified upper and lower limits by battery manufacturers. As long as the SOC level 

is inside the recommended permissible range, the electric motor can be used to drive 

the vehicle or to charge the batteries. Use of the battery at an improper SOC level 

outside the recommended permissible range will either decrease the battery life or 

cause permanent damage to the battery. Charge level of the battery SOC is calculated 

as 

0Q
QSOC =  (5.6)

where Q is the electric charge and 0Q  is the constant battery nominal capacity. 

Battery electric charge is the integral of the battery current I  

IQ =&  (5.7)

Basic physical model of the battery can be derived by considering an equivalent 

circuit of the system given in Figure 5.4, where the battery is represented by an ideal 

open-circuit voltage source in series with an internal resistance. In Figure 5.4, ocU , 

iR , and U are the open-circuit voltage, internal resistance, and terminal voltage, 

respectively. 
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Figure 5.4 : Equivalent circuit of the battery [60]. 

Kirchhoff’s voltage law for the equivalent circuit in Figure 5.4 results in 

UIRU ioc =−  (5.8) 

By using I=Idis as the current during discharging and multiplying both side of (5.8) 

with the discharge current Idis, battery terminal power while discharging is calculated 

as 

2
disdisdisoctdis IRIUPUI −==  (5.9) 

where disR  is the internal resistance while discharging, disoc IU  is the battery internal 

power and 2
disdis IR  is the power loss due to the internal resistance. The discharge 

current disI  is calculated by solving the following second order equation 

02 =+− tdisocdisdis PIUIR  (5.10) 

dis

tdisococ
dis R

PRUU
I

2
42 −−

=  (5.11) 

While charging, the battery terminal power is written as 

2
chgchgchgoctchg IRIUPUI +=−=  (5.12) 

where chgR  is the internal resistance while charging and Ichg is the current during 

charging. The negative sign in (5.12) is for making the left hand side of the equation 

positive since the sign of tP  in (5.5) is negative during charging. The charge current 

chgI  is calculated by solving the following second order equation 
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02 =++ tchgocchgchg PIUIR  (5.13)

chg

tchgococ
chg R

PRUU
I

2

42 −+−
=  (5.14)

For calculation of the discharge current disI  from (5.11) or calculation of the charge 

current chgI  from (5.14) one should know the values of ocU , disR , chgR . These are 

calculated as functions of SOC shown in Figure 5.5, Figure 5.6, and Figure 5.7, 

which are plotted for a constant battery temperature of CTbat
o35= for a typical 

battery. 
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Figure 5.5 : Function of open circuit voltage ocU . 
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Figure 5.6 : Function of battery discharge resistance disR . 
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Figure 5.7 : Function of battery charge resistance chgR . 

After calculating the current I from (5.11) or (5.14), battery SOC value can be 

calculated from (5.6) and (5.7). 

Longitudinal vehicle and tire dynamic models are shown in Figure 5.8. The 

longitudinal vehicle dynamics equation is written as  

rω
xfF

fω

dT
bT

xrF
S

 

Figure 5.8 : Longitudinal vehicle and tire dynamic models. 
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2
122 SmgSmgCuACFFum rollafdxrxf −−−+= ρ  

(5.15) 

where m, u, xfF  and xrF  are vehicle mass, longitudinal speed, front and rear tire 

longitudinal forces, respectively. dC , fA , aρ , rollC  and S are the aerodynamic drag 

coefficient, vehicle frontal area, air density, rolling resistance coefficient and road 

slope, respectively. Tire rotational equations of motions are  
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xfbdf RFTTI −−=ωω &  (5.16)

xrr RFI −=ωω &  (5.17)

where ωI , fω , rω , dT , bT , and R are the tire moment of inertia, front tire’s angular 

velocity, rear tire’s angular velocity, traction moment, braking moment, and effective 

tire radius, respectively. The vehicle is assumed to be driving straight, hence no need 

for lateral dynamics and lateral tire forces. It is assumed that traction and braking 

moments (regenerative braking) are applied to the front axle only. 

Longitudinal tire forces xfF  and xrF  are calculated by using the Magic Formula Tire 

Model [86]. This tire model enables realistic simulation of tire forces that occur 

between the tire and the road during driving. Its input is the longitudinal tire slip 

ratio, which is a measure of the difference between the tire rotational velocity and 

translational velocity. When traction or braking moment is applied to the wheels, slip 

occurs between the tires and the road. Tire longitudinal slip ratio is calculated as  

u
uR −

=
ωκ  (5.18)

where ω  is front or rear tire angular velocity. The general form of the tire model is 

( ){ }[ ]κκκ BBEBCDFx arctanarctansin −−=  (5.19)

where B is the tire stiffness factor, C the shape factor, D peak value, E the curvature 

factor. 

5.3 Control Algorithm 

5.3.1 Upper level controller 

During driving, an upper level controller chooses operation mode of the HEV. The 

modes are as follows: Regenerative braking, EM only, ICE only, and ICE+EM in 

battery charge modes. The mode decision is accomplished according to the required 

powertrain power reqP  and battery charge level SOC. The flowchart of the algorithm 

is shown in Figure 5.9. The flowchart is realized via Matlab/Simulink/Stateflow 
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shown in Figure 5.10. Stateflow is a graphical design and development tool for 

simulating complex reactive systems based on finite state machine theory. 

 
Figure 5.9 : Flowchart of the control algorithm. 

 

 
Figure 5.10 : Matlab/Stateflow diagram of the upper level controller. 

The logic of the upper level controller is established as follows: When required 

power is negative, regenerative braking mode will be activated where the EM 



113 
 

produces necessary braking power, which charges the battery. The hydraulic brake 

unit will assist if the torque capacity of the EM is not enough to produce necessary 

braking torque. When the required power is positive and less than 6 kW, the ICE 

should not be operated alone in this low power value since it operates inefficiently. 

EM will provide the required torque alone if there is enough battery charge. If there 

is not enough battery charge, the electric motor is not operated to drive the vehicle 

since it will cause over depletion of the battery. For a long battery lifetime, use of 

battery in improper charge level should be avoided. The EM will be operated in the 

charge mode in this case. This will increase the battery charge and enable ICE to 

operate more efficiently due to the additional load from the EM. The torque 

distribution between ICE and EM-charging will be determined via the Extremum 

Seeking Algorithm (ESA). 

When the power request is above 6 kW and the battery charge is below the nominal 

value, again EM will be operated in the charge mode to increase SOC level and ICE 

efficiency. When SOC is greater than the nominal value, only ICE will provide the 

necessary torque to drive the vehicle. 

In the flowchart given in Figure 5.9, initial value of the Flag variable is Flag=0. The 

role of the Flag variable is as follows: When Low Power Mode is activated and if 

SOC <0.6, then the battery will be charged until the charge level reaches to SOC ≥ 

0.6. After that, electric motor will drive the vehicle only, which will decrease again 

the battery charge level. If charging the battery is initialized as soon as the SOC level 

drops below to 0.6, it will result in the electric motor operating in an oscillating way 

with charging and discharging the battery repeatedly. To prevent this, the Flag 

variable is used which provides that the vehicle will be driven by only EM until the 

battery SOC level drops to 0.5 value. In other words, via the Flag variable, EM 

operates in the charge mode until SOC≥0.6 and in the discharge mode until SOC< 

0.5. 

By referring to Figure 5.10, where the stateflow diagram of the upper level controller 

is shown, it is realized that, once “High Power” or “Low Power” Mode is selected, 

the internal mode decisions (ICE Only, EM only, ICE+EM Charge) are 

accomplished only according to the battery state of charge value (SOC). These 

internal decisions do not depend on driving conditions or vehicle configurations. 

They are done to prevent over depletion or over charging the battery. The main 
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concern here is operating the battery in proper charge level for a long life battery 

operation. As long as the SOC level is within the recommended permissible range, 

the electric motor can be used to drive the vehicle or to charge the batteries. These 

internal decisions are valid for any driving conditions and vehicle configurations. 

The main design problem here is decision between the two main modes (“High 

Power” or “Low Power”). The decision variable is Preq (Driver’s demanded power 

from the powertrain). When 0<Preq<6 kW the Low Power Mode is selected, when 

Preq>=6 kW High Power Mode is selected. This threshold (6 kW here) should be 

determined by considering the chosen vehicle engine in the hybrid powertrain. It 

should be determined such that when in High Power Mode, ICE Only case is 

selected, the ICE should operate efficiently for Pice>6 kW.  

In the upper level controller, the only vehicle dependent decision variable is the 

threshold value of 6 kW. In fact, the proposed logic can be used without making any 

significant modification in other mid size (sedan) hybrid electric vehicle applications 

since this threshold value represents an approximate value separating mid size 

vehicle engines low power and high power operation areas.  

5.3.2 Extremum seeking algorithm 

When ICE+EM-charge mode is activated, the torque distribution between the power 

sources is determined via the Extremum Seeking Algorithm (ESA) for maximizing 

overall powertrain efficiency. ESA is a derivative free search algorithm that finds the 

optimum operating point of the chosen performance function. In the HEV problem 

discussed here, the performance function is chosen as J= Tη , which is the overall 

powertrain efficiency. Optimum operating point is the optimum torque distribution 

between ICE torque and EM-charging load torque. 

batP
emη

iceη

batη

whP

 
Figure 5.11 : Power flow during battery charging. 
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The power flow during ICE+EM-charge mode is shown in Figure 5.11 where whP  

and batP  are power at the wheel level and battery internal power, respectively. 

Powertrain efficiency Tη  is formulated as  

ice

wh

iceembat

bat

whbat
T PP

PP

ηηηη

η
+

+
=  

(5.20)

where batη  is the battery efficiency calculated as  

ioc

ococ
bat IRU

U
UI

IU
+

==η  (5.21)

In (5.20), transmission, coupling and differential efficiencies are neglected due to 

their relatively constant and high values. Hence, it is considered that Tη  depends 

only on ICE and EM operating points. Then, performance function J can be 

formulated as 

( ) ,,, ememiceiceT TTJ ωωη=  (5.22)

Since there is a relation between ICE and EM torques as 

reqemice TTT =+  (5.23)

and considering that emice ωω =  in the parallel HEV powertrain model, (5.22) can be 

written as 

( )ememreqT TTJ ωη ,,=  (5.24)

In the sliding mode based extremum seeking algorithm formulation given in [4] a 

sliding surface is selected, which forces the objective function to follow a time 

increasing function. For the optimization parameter, a discontinuous switching 

function is selected. This methodology is adapted here for the powertrain efficiency 

function maximization. Optimum value of the EM torque emT  in (5.24) is searched 

via ESA. The sliding surface variable s is selected as  
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( ) )(,, toTTs ememreqT −= ωη  (5.25) 

where )(to  is taken as a positive time increasing function. The aim of selecting the 

sliding surface as in (5.25) is to force Tη  to follow the time increasing positive 

function )(to , in the direction of its maximum value. Taking the time derivative of s 

in (5.25), one obtains 

oT
T

T
T

s em
em

T
em

em

T
req

req

T &&&&& −
∂
∂

+
∂
∂

+
∂
∂

= ω
ω
ηηη  (5.26) 

When the convergence rate of the extremum seeking algorithm is much faster than 

the change of the driver torque request, it can be considered that the contribution of 

req
req

T T
T

&
∂
∂η

 in (5.26) is relatively small with respect to the other terms. The 

convergence rate of the extremum seeking is shown in Figure 5.18 where it is shown 

that the algorithm converges in approx. 0.2 sec. Filtering the driver’s sudden torque 

request fluctuations and considering that torque request changes much slower than 

the convergence rate shown in Figure 5.18, (5.26) can be written as 

oT
T

s em
em

T
em

em

T &&&& −
∂
∂

+
∂
∂

= ω
ω
ηη  (5.27) 

Theorem: Assuming that an upper bound can be assigned for the gradient value 

emT ωη ∂∂ /  as follows 

U
em

T <
∂
∂
ω
η  (5.28) 

By selecting o&  as 

0ρω +−= emUo &&  (5.29) 

and the update law for emT  as 
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then it is guaranteed to keep Tη  increase and converge to the maximum efficiency 

value. In (5.29) and (5.30) 0ρ , M and γ are positive constants and the function sgn(x) 

is defined as 

⎪⎩
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)sgn(
x

x
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Proof: By combining (5.26) and (5.30) one gets 

osM
T

s em
em

T

em

T &&& −
∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ω
ω
η

γ
πη

sinsgn  (5.32)

Assuming that at the start of optimization the value of s in (5.25) is between the 

values of γ and 2γ  

γγ 2)0( << s  (5.33)

Then, on that interval, the following mathematical expression is true 

( ) ( )γγ
γ
π 2sgnsgnsinsgn −=−−=⎥
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⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ sss  (5.34)

By combining (5.32) and (5.34) one gets 

( ) osM
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s em
em
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em

T &&& −
∂
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+−
∂
∂

−= ω
ω
η

γ
η sgn  (5.35)

Defining a variable 1λ  as 

γλ −= s1  (5.36)

s&& =1λ  (5.37)

Then from (5.35) 
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Following inequality can be written from (5.39) 
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By using (5.28) it can be written that 

11111 λλωλ
η

λλ oUM
T em

em
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∂
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−≤  (5.41) 

By combining (5.29) and (5.41) 

10111 λρληλλ +
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T&  (5.42) 
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As long as  

MTem

T 0ρη
>

∂
∂

 (5.44) 

is true, from (5.43) it can be written that 

γλλλ →→< s ; 0 ; 0 111
&  (5.45) 

Hence, after a finite time interval γ=s  is obtained. From (5.25) 

( ) γωη += )(,, toTT ememreqT  (5.46) 

( ) 0,, >= oTT ememreqT && ωη  (5.47) 
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Hence, efficiency Tη  will increase with the slope of o& , specified to be positive, 

converging to the maximum value. The condition (5.44) can be interpreted as the 

gradient value being larger than a constant value 0ρ /M. As long as the gradient is 

larger than 0ρ /M, extremum seeking algorithm will force the objective function 

increase. When the condition (5.44) is not true but 

MTem

T 0ρη
−<

∂
∂

 (5.48)

then by combining (5.32) and (5.34)  
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η
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η 2sgn  (5.49)

and continuing the analysis as before, it can be shown that after a finite time interval, 

γ2=s  will be obtained. Then, 

( ) γωη 2)(,, += toTT ememreqT  (5.50)

Again, efficiency Tη  will increase with the slope of o&  converging to the maximum 

value. The analysis can be continued not for only (5.33) but for any initial value of 

s(0). Hence, it is concluded that whether (5.44) or (5.48) holds, Tη  is increased to the 

maximum value with the proposed algorithm. When both (5.44) and (5.48) do not 

hold, the increasing of the performance function is not guaranteed. By selecting the 

values of control parameters 0ρ  and M, one defines the operating region of the ESA. 

By decreasing the size of the region where (5.44) and (5.48) do not hold, the success 

of the optimization algorithm is increased. (End of proof) 

In this manner, extremum seeking algorithm determines electric motor torque value 

emT  by searching for the maximum value of the powertrain efficiency Tη . In (5.29), 

emω&  can be calculated by using differential and transmission ratios and by estimation 

of front tire angular acceleration fω&̂ . In order to estimate fω&̂ , (5.16) can be used. For 

the estimation of the tire force xfF̂ , the tire force observer given in [3] can be used. 

After emT  is calculated by the controller, ICE torque can be calculated from (5.51), 
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since the total powertrain torque should be equal to the desired powertrain torque 

value. The ESA optimization scheme is shown in Figure 5.12. 

emreqice TTT −=  (5.51) 
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Figure 5.12 : The ESA scheme for efficiency maximization. 

5.4 Dynamic Programming 

5.4.1 Introduction 

In order to show the effectiveness of the proposed extremum seeking algorithm given 

in the previous section, its results should be compared with the optimal results. An 

optimal solution calculation is not feasible in a practical implementation as the future 

driver torque request or the future velocity profile needs to be known. This, of 

course, is not possible and an optimal solution cannot be used in practice. That is the 

motivation for and the major advantage of using the proposed extremum seeking 

algorithm as it provides a fast solution that only uses the current information and 

does not require the knowledge of future information. For benchmarking and 

performance evaluation purposes however, an optimal solution based on chosen 

driving cycle inputs can be calculated and used. The optimal and ideal solution that is 

calculated can then be compared with the result of the extremum seeking algorithm 

to see how close the ESA solution is to the ideal, optimal one.  
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One method for calculating the optimal solution might be evaluating all possible 

power distributions at each time instant of the drive cycle starting from the beginning 

to the end. Since a driving cycle lasts hundreds of seconds and at each instant, there 

are many possibilities that need to be calculated, this method is not effective and 

conceivable. A more effective choice would be to use Dynamic Programming (DP), 

which is introduced as follows.  

The principle of optimality is given in [87] page 54 as follows: 

An optimal policy has the property that whatever the initial state and initial decision 

are, the remaining decisions must constitute an optimal policy with regard to the 

state resulting from the first decision. 

The following example illustrates the procedure for making a single optimal decision 

with the aid of the principle of optimality. Considering that the optimum path (e.g. 

lowest cost) is searched for the route from b to f as shown in Figure 5.13. 

 
Figure 5.13 : Paths resulting from all allowable decisions at b [88]. 

It is considered that the costs of the routes c-f, d-f, e-f are known, in other words the 

values of J*
cf , J*

df , J*
ef are at hand. Then, the decision must be made among the 

interval points of c, d, e, when the route starts from b. The optimal trajectory that 

starts at b and ends in f is found by comparing the following costs 
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Optimal path and minimum cost can be calculated as { }**** ,,min befbdfbcfbf CCCJ = , 

which determines the next point after starting from b. Dynamic programming is a 
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computational technique which extends the above decision making concept to 

sequences of decisions which together define an optimal policy and trajectory. In the 

given example above, the costs to the terminal point f from the last stages (c-f, d-f, e-

f) are known, and decision of the route from b to one of the points c, d, e is made. 

The backwards calculation procedure is noticed. This policy is applied for 

calculation of minimum fuel consumption of the hybrid electric vehicle model. DP 

calculates optimum power distributions at each time instant by proceeding 

backwards from the final to the initial stage. It solves one-stage sub problems 

involving the last stage, last two stages, last three stages ... etc., until the whole 

driving cycle is covered. This backward procedure decreases the amount of 

calculations considerably but application of the DP procedure requires that the whole 

driving cycle should be known in advance. 

5.4.2 Application of DP for calculation of minimum fuel consumption 

The procedure starts with creating a state space as shown in Figure 5.14 where the 

states are taken as representing the energy levels stored in the battery. Via the 

simulations with various driving cycles, it is noticed that the proposed controller 

resulted in SOC deviations that stayed between 0.58 and 0.62 (see Figure 5.24 for 

example). The state space is created by uniformly discretizing the battery energy 

level batE  into n number of states between 0.58 capE < batE <0.62 capE  where capE  is 

the total energy capacity of the battery (equivalent to SOC=1 or 100% SOC). The 

initial energy level is selected as 0E =0.6 capE  (equivalent to SOC=0.6). In the 

literature, the final energy level at the end of the drive cycle is selected as constant 

such as endE =0.6 capE , such that the quantity of energy in the rechargeable source 

will be the same before and after the trip. This is called charge-sustaining strategy. 

The proposed controller given in the previous section does not force an end point 

constraint but it keeps SOC level in a permissible range. Henceforth, an end point 

energy level constraint is also not included in DP. If in DP calculations a final battery 

energy level constraint was used, which is equal to the final SOC value of the hybrid 

electric vehicle with the proposed controller, then the fuel consumption results of the 

DP would be closer to the hybrid vehicle results. But here, DP calculations are done 

to get the answer to the following question: “What would be the minimum obtainable 
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fuel consumption, if the battery energy levels remained between 

0.58Ecap<Ebat<0.62Ecap (Equivalent to 0.58<SOC<0.62)”. 

Since states used in DP here are constrained to be between 

0.58 capE < batE <0.62 capE , Eend will be very close to 0.6Ecap here as is desired and it 

can be assumed that the charge-sustaining strategy is automatically fulfilled. An 

additional final constraint is therefore not required. The state space of the DP 

algorithm is shown in Figure 5.14 where endT  is the duration of the driving cycle.  

1−endT endT

capE

capE

capE
)2,1(1

end
end

T
TJ −

)1,1(1
end
end

T
TJ −

 
Figure 5.14 : State space of the DP algorithm. 

The dynamic programming solution procedure starts with the last stage before the 

final point, i.e. 1−= endTt . Fuel consumption values are calculated for state 

transitions between the energy levels of stages from 1−= endTt  into endTt = . The 

state transition function is given as 

ttPtEtE batbatbat Δ)()()1( −=−+  (5.53)

where )(tEbat  and )1( +tEbat  are current and next energy levels, respectively. The 

negative sign is because during charging, the power batP  being applied as a load on 

the ICE is negative in the formulation and hence the battery energy level increases. 

Since time is discretized into one second intervals, i.e. Δt =1 s, battery power is 

calculated from (5.53) as follows 
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( ))()1()( tEtEtP batbatbat −+−=  (5.54) 

EM power emP  can be calculated from (5.54) by considering EM and battery 

efficiencies. Since the requested powertrain power reqP  can be calculated by using 

the speed profile and vehicle dynamic equations, the ICE power is calculated as 

emreqice PPP −=  (5.55) 

By using (5.53), (5.54), (5.55) and ICE efficiency map, the performance function J, 

which is fuel consumption here, for the state transitions between 1−= endTt  and 

endTt =  can be calculated. Among the state transitions between the first state of 

1−= endTt  into other states of endTt = , the transition with minimum performance 

function value ∗
−1endTJ  is given as  
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In (5.56), )2,1(1
end
end

T
TJ −  is the performance function value during the state transition 

from the first state at 1−= endTt  into the second state at endTt =  as shown in Figure 

5.14. 

As shown in Figure 5.14, not all state transitions between t= endT -1 and t= endT  are 

possible due to EM and ICE power limits. Hence, in calculating (5.56), only possible 

state transitions are considered. The calculation is repeated for state transitions from 

the other states of 1−= endTt  into the states of endTt =  as given in (5.57). 
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 (5.57) 

After calculations in (5.57) are completed, the algorithm has determined optimum 

transitions for each state at 1−= endTt  into endTt = . Next, calculations are 

accomplished for the stage of 2−= endTt . Among the state transitions between the 
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first state of 2−= endTt  into other states of 1−= endTt , the transition with minimum 

fuel consumption is calculated as follows 
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Calculation is repeated for the other states of 2−= endTt  as given in (5.59). 
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The procedure is repeated for the last three stages, last four stages… etc. Finally, for 

t=1, the optimum path into t=2 is calculated. When the DP procedure solution is 

completed, optimum paths for each state value are stored in memory. Next, by 

proceeding forward from the start, the optimum path can be followed and the 

optimum solution giving the minimum fuel consumption is determined.  

In Appendix C, Matlab M-file is given for calculation of minimum fuel consumption 

of the HEV model via DP algorithm as introduced above. 

5.5 Simulation Study 

A detailed simulation study is presented in this section to illustrate the strength of the 

proposed extremum seeking algorithm based HEV control strategy. In the 

simulations, a vehicle model with a mass of 1000 kg is chosen. Maximum ICE and 

EM torques are 350 Nm and 210 Nm as shown in Figure 5.2 and Figure 5.3. Battery 

energy capacity is 2.4 kWh. 

5.5.1 Simulation study 1 

The first simulation study will show that extremum seeking algorithm finds 

maximum powertrain efficiency. In this simulation scenario, vehicle speed and 

required torque level Treq is considered as constant. First, powertrain efficiency 

values (ηT) are calculated for different torque distributions between the EM and ICE. 
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Considered torque distribution space for calculation of ηT’s is shown in Figure 5.15 

where ωICE=ωEM≈152 rad/s and Treq=50 Nm.  

Electric Motor map

ωEM (rad/s)
 

Figure 5.15 : Torque distribution area between ICE and EM.  

As shown in Figure 5.15, while EM torque is increased in charging region with 

negative sign, ICE torque is increased equally to provide overall required torque 

level of Treq=50 Nm. Change of the powertrain efficiency on this torque distribution 

space is shown in Figure 5.16 where x axis is the EM torque values. 
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Figure 5.16 : Powertrain efficiency ηT with change of EM torque. 

From Figure 5.16 it is shown that the global maximum value of the powertrain 

efficiency value is ηT=0.3486 which occurs at TEM=-90 Nm.  

Next, the extremum seeking control algorithm is applied to the vehicle model to find 

optimum torque distribution. The torque distribution result of the ESA is shown in 

Figure 5.17. Change of the powertrain efficiency is plotted in Figure 5.18. 

Powertrain efficiency value of ηT=0.348 is found in approx 0.2 s. The control 
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algorithm finds optimum torque distribution fast enough, which shows its real-time 

applicability in a real vehicle. 
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Figure 5.17 : Torque distribution result of the ESA. 
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Figure 5.18 : Powertrain efficiency result of the ESA. 

5.5.2 Simulation study 2 

Simulation results of the hybrid electric vehicle with the proposed control algorithm 

are compared with those of the conventional vehicle and with those of the dynamic 

programming solution using standard driving cycles. For an example driving cycle, 

the New European Driving Cycle (NEDC) speed and gear profiles are shown in 

Figure 5.19 and Figure 5.20, respectively.  
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Figure 5.19 : Speed profile for the NEDC in [85]. 
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Figure 5.20 : Gear profile for the NEDC in [85]. 

When the conventional vehicle is driven with the speed and gear profiles shown in 

Figure 5.19 and Figure 5.20, the ICE operating points are located as shown in Figure 

5.21. Only a small fraction of the torque capacity is used in the conventional vehicle 

and operating points are located in inefficient regions. For the hybrid electric vehicle 

with the proposed extremum seeking algorithm-based controller, operating points of 

the ICE and EM for the NEDC are located as shown in Figure 5.22 and Figure 5.23. 

It is shown that the ICE is operated in points that are more efficient. Change of the 

corresponding battery charge level SOC is shown in Figure 5.24.  
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Figure 5.21 : ICE operating points in the conventional vehicle for NEDC. 
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Figure 5.22 : ICE operating points in HEV for NEDC. 
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Figure 5.23 : EM operating points in HEV for NEDC. 
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Figure 5.24 : Change of SOC for NEDC. 

Dynamic programming results are shown in Figure 5.25, Figure 5.26 and Figure 

5.27, where ICE, EM operating regions and change of the normalized battery energy 

level are shown, respectively. Fuel consumption results of the conventional vehicle, 

hybrid electric vehicle with the proposed controller and dynamic programming 

solution are shown graphically in Figure 5.28 and are tabulated in Table 5.1. These 

results show that the proposed extremum seeking algorithm based controller has 

superior performance in comparison to the conventional vehicle, with a fuel 

consumption performance that is close to the ideal DP solution for the NEDC cycle.  
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Figure 5.25 : DP solution of ICE operating points for NEDC. 
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Figure 5.26 : DP solution of EM operating points for NEDC. 
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Figure 5.27 : DP solution of normalized battery energy level for NEDC. 
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Figure 5.28 : Fuel consumption results for NEDC. 
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Table 5.1 : NEDC fuel consumption results. 

Mode Fuel Consumption (g) Improvement 

Conventional 385.8919  

Hybrid 251.0844 % 34.9 

DP 235.5011 % 38.9 

Similar results are obtained for other common driving cycles used in practice. In 

Figure 5.30, Figure 5.31, Figure 5.32 and Table 5.2, simulation results for the 

ECE_R15 driving cycle shown in Figure 5.29 are given.  
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Figure 5.29 : ECE_R15 speed profile [85]. 
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Figure 5.30 : ECE_R15 fuel consumption results 
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Figure 5.31 : Change of SOC for ECE_R15. 
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Figure 5.32 : DP solution of normalized battery energy level for ECE_R15. 

Table 5.2 : ECE_R15 fuel consumption results. 

Mode Fuel Consumption (g) Improvement 

Conventional 176.3690  

Hybrid 75.7823 % 57 

DP 59.0676 % 66.5 

In Figure 5.34, Figure 5.35, Figure 5.36 and Table 5.3, simulation results for the 

USA CITY_I driving cycle shown in Figure 5.33 are given.  
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Figure 5.33 : USA CITY_I speed profile [85]. 
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Figure 5.34 : USA CITY_I fuel consumption results. 
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Figure 5.35 : Change of SOC for USA CITY_I. 
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Figure 5.36 : DP solution of normalized battery energy level for USA CITY_I. 

Table 5.3 :USA CITY_I fuel consumption results. 

Mode Fuel Consumption (g) Improvement 

Conventional 182.3061  

Hybrid 125.9186 % 30.9 

DP 109.5202 % 39.9 

In all cases, the proposed extremum seeking algorithm based HEV controller 

achieves better fuel economy as compared to the conventional vehicle. USA CITY_I 

is a driving cycle with high speeds. For this driving cycle, fuel consumption 

improvement of the hybrid electric vehicle with the considered control algorithm is 

% 30.9. On the other hand, ECE_R15 cycle characterizes low speed urban driving 

scenario where fuel consumption improvement of the HEV is % 57. The results show 

that in low speed i.e. low power driving situations, the hybrid electric vehicle shows 

better fuel consumption than high speed driving cycles due to the fact that ICE 

operates inefficiently in low power but efficiently in high power demands. NEDC 

driving cycle contains both low speed and high-speed scenarios where fuel 

consumption improvement is % 34.9 which is between the results of low speed and 

high speed driving cycles. The extremum seeking algorithm based HEV controller 

fuel economy results are close to the ideal fuel economy results obtained with the DP 

solution.  

For each driving cycles, the change of the SOC variables of the hybrid electric 

vehicle with the proposed controller and change of the battery energy levels of the 
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DP calculations are shown. If in DP calculations a final battery energy level 

constraint was used, which is equal to the final SOC value of the hybrid electric 

vehicle with the proposed controller, then the fuel consumption result of the DP 

would be closer to the hybrid vehicle results. However, in the paper, a final energy 

level constraint is not used in DP calculations. DP calculations are done to get the 

answer to the question of: “What would be the minimum obtainable fuel 

consumption, if the battery energy levels remained between 0.58Ecap<Ebat<0.62Ecap”. 

5.5.3 Real Time Simulations 

Next, simulations are conducted with CarMaker software and dSPACE DS1005 real 

time hardware. CarMaker is vehicle simulation software with including validated 

vehicle models. Via CarMaker, these vehicle models can be simulated in different 

road and driving conditions. Developed control algorithms can be tested on these 

models. A screen shot of the CarMaker simulation is shown in Figure 5.37.  

 

Figure 5.37 : CarMaker simulation screen shot. 

The interface of the CarMaker is shown in Figure 5.38. One can choose a vehicle 

model from different sets of models. Once the model is selected, one can further 

change parameters of the selected model such as masses, inertias, characteristics of 

suspension, brake, steering, powertrain systems, etc. Different maneuvers and roads 

can be defined with this interface.  
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Figure 5.38 : CarMaker interface. 

One can integrate his/her control algorithm to a CarMaker vehicle model by using 

Matlab/Simulink toolbox. A CarMaker vehicle model is represented in 

Matlab/Simulink environment via S-function blocks as shown in Figure 5.39. 

 

Figure 5.39 : CarMaker model represented as Simulink S-function blocks. 

By integrating the control algorithm to the CarMaker S-function blocks and making 

neccessary connections between blocks, the CarMaker vehicle model can be 

controlled via the developed control algorithm.  

This methodology is applied here by integrating the developed control algorithm 

introduced in this chapter into the CarMaker model. The CarMaker vehicle model is 

hybridized by including electric motor and battery models. In order to conduct real 

time simulations, a real time hardware unit DS1005 by dSPACE is used. The real 
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time simulation setup is shown in Figure 5.40. The control algorithm and CarMaker 

vehicle model is uploaded into the DS1005 to operate the system in real time. Real 

time simulation result of the vehicle speed value compared with the drive cycle speed 

profile for NEDC is shown in Figure 5.41. Change of the fuel consumption results 

for the conventional and hybridized CarMaker models are shown in Figure 5.42. 

Change of the SOC variable is shown in Figure 5.43. In Figure 5.44, Figure 5.45 and 

Figure 5.46, real time simulation results for the USA CITY_I are plotted. 

 

Figure 5.40 : DS1005 hardware and CarMaker screenshot.  
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Figure 5.41 : Real time simulation result of the vehicle speed for NEDC. 
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Figure 5.42 : Real time simulation results of fuel consumptions for NEDC. 
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Figure 5.43 : Real time simulation result of SOC for NEDC. 
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Figure 5.44 : Real time simulation result of the vehicle speed for USA CITY_I. 
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Figure 5.45 : Real time simulation results of fuel consumption for USA CITY_I. 
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Figure 5.46 : Real time simulation result of SOC for USA CITY_I. 

For the USA CITY_I drive cycle, the fuel consumption improvement of the hybrid 

vehicle with respect to the conventional vehicle is % 31 which is equal to the value 

given in Table 5.3. For the NEDC, the fuel consumption improvement of the hybrid 

vehicle with respect to the conventional vehicle is % 38. This improvement is bigger 

than the result shown in Table 5.1, which was % 35. This is because the selected 

CarMaker vehicle model (1300 kg) is bigger than the vehicle model given in Section 

5.2. Hybridized CarMaker model resulted more fuel consumption improvement for 

the characteristics of NEDC. Real time simulations with CarMaker model show that 

the developed HEV energy management strategy results substantial fuel consumption 

improvement.  
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5.6 Chapter Summary 

This chapter has proposed a control algorithm for a parallel hybrid electric vehicle 

model. An upper level controller chooses vehicle operation mode such as 

regenerative braking, EM only, ICE only, or ICE plus EM-charge modes. In the ICE 

plus EM-charge mode, optimum torque distribution between the internal combustion 

engine and the electric motor is determined via the extremum seeking algorithm that 

searches for maximum powertrain efficiency. In the literature, this is the first time an 

extremum seeking algorithm is applied to the hybrid electric vehicle control problem. 

In order to evaluate performance of the proposed algorithm, its results are compared 

with those of the dynamic programming solution, which is used as a benchmark of 

the minimum attainable fuel consumption values. Comparison of the DP results with 

the proposed algorithm shows that the two levels online control structure with 

powertrain efficiency maximization based ESA manages to get substantial fuel 

consumption improvement, comparable to the DP solution. 

In order to show the real-time applicability of the algorithm in HEV control problem, 

simulations are repeated with CarMaker software and dSPACE DS1005 real time 

hardware 

In hybrid electric vehicle applications, a downsized internal combustion engine can 

be used since there is an additional power source, which is the electric motor. When, 

in a specific moment of the drive cycle, the required power is beyond the ICE limits, 

EM may assist to produce the required power. When engine is downsized, it operates 

more efficiently than the bigger engine, since internal combustion engines operate 

efficiently in high loading conditions. In this study, engine downsizing is not 

considered in the modeling of the hybrid powertrain. The ICE is considered same as 

the one used in the conventional vehicle model. Since the selected internal 

combustion engine is sufficient to drive the vehicle alone in high power demands, 

motor assisting mode is not included for keeping the control structure as simple as 

possible. If downsized engine had been used in this study, the fuel consumption 

improvement would have been even better due to the small and hence more efficient 

engine.  

The main goal of the ESA algorithm given in this study is to maximize powertrain 

efficiency and hence to improve fuel consumption. Emission reduction takes place 
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indirectly here. In the EM only mode of operation, there are no emissions from the 

ICE. In the ICE+EM-charge mode, the ICE operates at a higher torque level where 

the emission levels are usually lower. 
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6.  CONCLUSIONS 

Applications of the extremum seeking algorithm into the ABS and hybrid electric 

vehicle control problem were covered in the thesis. The thesis developed novel 

methodologies that are not present in the current literature. In order to show the 

performance of the developed methodologies, a realistic and detailed vehicle model 

was generated.  

The second chapter introduced literature study for the extremum seeking algorithm, 

ABS and hybrid electric vehicle control problems. Literature study for the extremum 

seeking algorithm was divided into four section including sliding mode based, 

perturbation based, numerical optimization based and gradient-based extremum 

seeking algorithms. In the literature study of the ABS and hybrid electric vehicle 

control problems, firstly, theoretical basics were introduced and then the various 

solutions given in the literature were reviewed.  

In the third chapter, a control algorithm was introduced for maximizing braking force 

by combining sliding mode based extremum seeking algorithm with the adaptation of 

the tire model parameters. Unlike the common extremum seeking algorithms 

available in the literature, where the black box approach is conducted by considering 

completely unknown objective function, an analytic approach was performed by 

utilizing adaptation of the tire model parameters integrated with the self-optimization 

routine and hence the necessity of the online objective function measurement was 

removed. Simulation studies showed that the proposed controller managed to 

maximize friction potential of the road without estimating the road conditions. The 

robustness of the proposed control algorithm was illustrated using simulations under 

different road conditions. Real time simulations were conducted with the 

microautobox hardware to show real time applicability of the proposed control 

algorithm. 

In the fourth chapter, sliding mode based extremum seeking algorithm was further 

developed for emergency braking cases including lateral motion such as obstacle 

avoidance maneuvers. The proposed algorithm incorporated driver steering input 
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information into the optimization procedure to determine the operating region of the 

tires on the tire force-slip ratio characteristics curve. This is a novel approach in ABS 

control area and constitutes the main contribution of the study to the existing 

literature. The algorithm operates the tires near the peak point of the force-slip curve 

during emergency straight line braking. When the driver demands lateral motion in 

addition to emergency braking, the operating regions of the tires are modified for 

improving lateral stability of the vehicle also.  

A 15 degree of freedom (6 dof from longitudinal, lateral, vertical, yaw, roll, pitch 

motions, 4 dof from suspension units, 4 dof from tire rotations and 1 dof from front 

wheel steering) vehicle model was developed. Measurements from a real vehicle 

were used for validation of the developed vehicle model. Magic Formula Tire Model 

was integrated into the vehicle model for calculating the forces that occur between 

the road and the tires. A hydraulic brake actuator model was used to generate 

required brake pressure on the wheel cylinders. 

It was shown using a detailed simulation study with the validated full vehicle model 

that, during cornering, while achieving large braking forces, lateral tire forces can be 

improved considerably and hence the cornering capability of the vehicle can be 

enhanced significantly. 

The fifth chapter proposed a control algorithm for a parallel type hybrid electric 

vehicle model. An upper level controller chooses the vehicle operation mode such as 

regenerative braking, EM only, ICE only, or ICE plus EM-charge modes. In the ICE 

plus EM-charge mode, optimum torque distribution between the internal combustion 

engine and the electric motor is determined via the extremum seeking algorithm that 

searches for maximum powertrain efficiency. In the literature this is the first time an 

extremum seeking algorithm is applied to the hybrid electric vehicle control problem.  

A parallel type hybrid electric vehicle model including internal combustion engine 

(ICE), electric motor (EM), battery model and vehicle dynamics was developed for 

the study. ICE and EM efficiency maps were used to calculate powertrain efficiency 

and fuel consumption values. 

A dynamic programming (DP) solution was obtained and used to form a benchmark 

for performance evaluation of the proposed method based on extremum seeking. DP 

solution gives the minimum obtainable fuel consumption in a considered driving 
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cycle and driving conditions. In order to apply DP procedure, the whole driving cycle 

and driving conditions should be known in advance. Since future driving conditions 

are unknown in a real vehicle, DP cannot be utilized in a real time controller. The 

dynamic programming solution was used offline for performance evaluation of the 

real time control algorithm. 

The comparison of the DP results with the proposed algorithm showed that the two 

level online control structure with powertrain efficiency maximization based ESA 

manages to get substantial fuel consumption improvement, the results being 

comparable to the DP solution.  
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APPENDIX A  

 
Figure A.1 : Position vectors of a point P relative to a  

      fixed system and a moving system. 

Referring to Figure A.1 the equations for the absolute velocity and acceleration of a 
particle P that is in motion relative to a moving coordinate system will be obtained. 
The XYZ system is fixed in an inertial frame and the xyz system translates and rotates 
relative to it. In Figure A.1, r is the position vector of P and R is the position vector 
of O', both relative to point O in the fixed XYZ system. Then 

r = R + ρ (A.1)

where ρ is the position vector of P relative to O'. Differentiating with respect to time, 
the absolute velocity is obtained 

ρRrv &&& +==  (A.2)

where both derivatives are calculated from the viewpoint of a fixed observer. It can 
be written that 

( ) ρωρρ r ×+= &&  (A.3)

Here ω is the absolute rotation rate of the xyz system. ( )rρ&  is the velocity of P 
relative to O', as viewed by an observer rotating with the xyz system. Then  

ρωρRv ×++= r)(&&  (A.4)

Next, the absolute acceleration of P will be obtained. Taking the derivatives  

( ) RR &&& =
dt
d  (A.5)
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( )[ ] ( ) ( )rrrdt
d ρωρρ &&&& ×+=  (A.6) 

( ) ρ)(ωω)ρ(ωρωρωρωρω r ××+×+×=×+×=× &&&&
dt
d  (A.7) 

Combining the equations (A.4), (A.5), (A.6), and (A.7) one can get the absolute 
acceleration of P as follows as given in [88] 

rr )ρ(ω)ρ(ρ)(ωωρωRa &&&&&& ×++××+×+= 2  (A.8) 

In the above equation ρω×&  is tangential acceleration, ρ)(ωω ××  is centripetal 
acceleration, r)ρ( && is acceleration of the point P relative to the xyz system, that is, as 
viewed by an observer moving with the xyz system. The last term r)ρ(ω &×2  is the 
Coriolis acceleration.  

 
 

Figure A.2 : Vehicle axis system. 

 
Figure A.3 : Roll motion of the sprung mass. 

Comparing with the vehicle system, O' is the roll center and P is sprung mass c.g. 
(Figure A.3). In (A.8), R&&  is the absolute acceleration of the roll center. The velocity 
vector of the roll center is 
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kjiV urc zvu &++=  (A.9)

Absolute angular velocity of roll center with respect to inertial frame is 

kωrc r=  (A.10)

Absolute acceleration vector of roll center with respect to inertial frame is found by 
using (A.9) and (A.10) as follows 

( )kjikkjiR uzvurzvu &&&&&&& ++×+++= 1  (A.11)

kjiR uzurvvru &&&&&& +++−= )()(  (A.12)

From (A.12), unsprung mass accelerations are defined as 

uzu

yu

xu

za

urva
vrua

&&

&

&

=

+=
−=

 (A.13)

In (A.8), ρ is the position vector of sprung mass c.g. relative to roll center, which is 

kρ )( sze −−=  (A.14)

In (A.8) ( )rρ&  is the velocity of sprung mass c.g. relative to roll center, as viewed by 
an observer rotating with the body fixed axes in the roll center. 

( ) kρ r sz&& =  (A.15)

In (A.8) ω is the absolute rotation rate of the body fixed axis system. To obtain this, 
the rotation matrices will be defined. The rotation of the vehicle sprung mass is given 
with the Euler angles (ψ, θ, -Φ). Here the roll motion is taken as negative. The 
rotation matrices are found as follows 

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0cossin
0sincos

ψψ
ψψ

ψRM  (A.16)

( )
⎥
⎥
⎥
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010
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( )
⎥
⎥
⎥

⎦

⎤
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⎢
⎢

⎣

⎡
−=

φφ
φφφ

cossin0
sincos0
001

RM  (A.18) 

The absolute angular velocity vector of the sprung mass body with respect to inertial 
coordinate system is found as follows. 
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Angular velocity vector is given from (A.21) as follows 

kjiω )sincoscos()sincoscos()sin( φφθφθφθ qrrqrp ++−+−−=  (A.22) 

Angular velocity vector given in (A.22) is simplified as 

kjiω rqp ++−=  (A.23) 

Combining equations (A.8), (A.12), (A.14), (A.15) and (A.23), the absolute 
acceleration vector of the sprung mass is obtained as follows: 

( )
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( )k

j
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sss

sss
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 (A.24) 

From the sprung mass absolute acceleration vector of (A.24), acceleration 
components for the sprung mass are defined as 
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APPENDIX B  

Calculation of the tire forces according to the Magic Formula Tire Model as given in 
[86]. In all of the formulas given below, the coefficients px, qx, rx and sx are non-
dimensional model parameters. 

Longitudinal Force (Pure Longitudinal Slip) 

( )( ){ }[ ] Vxxxxxxxxxxx SBBEBCDF +−−= κκκ arctanarctansin0  (B.1)

Hxx S+=κκ  (B.2)

1Cxx pC =  (B.3)

zxx FD maxμ=  (B.4)

xzDxDxx dfpp μλμ ⋅+= )( 21max  (B.5)

0

0

z

zz
z F

FFdf −
=  (B.6)

))(1)(( 4
2

321 xExzExzExExx signpdfpdfppE κ−+⋅+=  (B.7)

)exp()( 321 zKxzKxKxzx dfpdfppFK ⋅⋅+=κ  (B.8)

)/( xxxxx DCKB εκ +=  (B.9)

)( 21 zHxHxHx dfppS +=  (B.10)

xzVxVxzVx dfppFS μλ′⋅+= )( 21  (B.11)

{ }xxx AA μμμμμ λλλ )1(1(/ −+=′  (B.12)

In the above equations xμλ  is the longitudinal friction coefficient scaling factor. With 
that tool the effect of changing friction coefficient can be quickly investigated 
without having the need to implement a completely new tire data set. SVx and SHx are 
horizontal and vertical shifts with respect to origin. 0zF  is the nominal load. 

Longitudinal Force (Combined Slip) 

0xxx FGF α=  (B.13)
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( )( ){ }[ ] 0/arctanarctancos ααααααα ααα xsxsxxsxxx GBBEBCG −−=  (B.14) 

( )( ){ }[ ]ααααααααα HxxHxxxHxxxx SBSBESBCG arctanarctancos0 −−=  (B.15) 

ααα HxS S+= *  (B.16) 

[ ])arctan(cos 21 κα BxBxx rrB =  (B.17) 

1Cxx rC =α  (B.18) 

zExExx dfrrE 21 +=α  (B.19) 

1HxHx rS =α  (B.20) 

Lateral Force (Pure Side Slip) 

( )( ){ }[ ] Vyyyyyyyyyyy SBBEBCDF +−−= ααα arctanarctansin0  (B.21) 

Hyy S+= *αα  (B.22) 

)tan(* αα =  (B.23) 

1Cyy pC =  (B.24) 

zyy FD maxμ=  (B.25) 

yzDyDyy dfpp μλμ )( 21max +=  (B.26) 

)(1)(( 321 yEyzEyEyy signpdfppE α−+=  (B.27) 

)))/(arctan(2sin( 02010 zKyzzKyy FpFFpK ⋅=α  (B.28) 

0αα yy KK =  (B.29) 
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)/( yyyyy DCKB εα +=  (B.30)

{ } yzVyVyzVy dfppFS μλ′+= 21  (B.31)

)( 21 zHyHyHy dfppS +=  (B.32)

Lateral Force (combined slip) 

κκ Vyyyy SFGF += 0  (B.33)

( )( ){ }[ ] 0/arctanarctancos κκκκκκκ κκκ ysysyysyyy GBBEBCG −−=  (B.34)

( )( ){ }[ ]κκκκκκκκκ HyyHyyyHyyyy SBSBESBCG arctanarctancos0 −−=  (B.35)

κκκ HyS S+=  (B.36)

{ }[ ]3
*

21 (arctancos ByByByy rrrB −= ακ  (B.37)

1Cyy rC =κ  (B.38)

zEyEyy dfrrE 21 +=κ  (B.39)

zHyHyHy dfrrS 21 +=κ  (B.40)

[ ])arctan(sin 65 κκκ VyVyVyVy rrDS =  (B.41)

[ ])arctan(cos)( *
421 αμκ VyzVyVyzyVy rdfrrFD +=  

(B.42)
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