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ABSTRACT Most of the existing ESC (Electronic Stability Control) systems rely on the measurement of both yaw 

rate and sideslip angle. However, one of the main issues is that the sideslip angle cannot be measured directly because 

the sensors are too expensive. For this reason, sideslip angle estimation has been widely discussed in literature. The 

modeling of sideslip angle is complex due to the non-linear dynamics of the vehicle. This work proposes a new 

methodology based on ANFIS to estimate the vehicle sideslip angle. The estimator has been validated by comparing 

the proposed ANFIS prediction model with the values provided by CARSIM model, which is an experimentally 

validated software. The advantage of this estimation is the modeling of the non-linear dynamics of the vehicle by 

means of signals which are directly measured from vehicle sensors. The results show the effectiveness of the 

proposed ANFIS-based sideslip angle estimator. 
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1. INTRODUCTION  

With the recent advancements in the vehicles industry, driving safety in passenger vehicles is considered one of the 

key issues in designing any vehicle. According to other studies, Electronic Stability Control (ESC) is considered to 

be the greatest road safety innovation since the seatbelt. Hence, the market demands more research to improve the 

performance of these systems. 

To improve the vehicle handling and stability based on ESC, the yaw rate (the yaw velocity of the chassis) and the 

vehicle sideslip angle (the angle between the directions of the vehicle’s velocity and its chassis) are controlled to 

follow their target values [1,2]. The yaw rate can be directly measured by a yaw rate sensor (gyroscope) [3,4]. In 

addition, the sideslip angle can be directly measured via optical or GPS sensors [5,6,7]. However, the drawbacks of 

measuring the yaw rate and the sideslip angle are accuracy, reliability and cost [8]. Sideslip angle cannot be directly 

measured using standard sensors, therefore, it must be estimated by means of an observer [9,10,11]. For this reason, 

an accurate estimation of the vehicle’s sideslip angle is highly essential for applications in vehicle dynamics and 
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control. 

Sideslip angle estimation has been widely discussed in the literature. The modeling of sideslip angle is complex due 

to the non-linear dynamics of the vehicle. Some authors employ physical models for the estimation of sideslip angle  

[12,13,14,15]. Most mentioned methods are based on the bicycle dynamic model or its variations. These models 

generate noise free sideslip angle estimations, but can be sensitive to changes in the vehicle parameters. Other 

authors use kinematics based-models which consider the motion of a body, which  are not affected by the 

uncertainties [14,16,17]. These methods integrate the derivative of the sideslip angle calculated from sensor signals 

including yaw rate, lateral acceleration and vehicle speed. Satisfactory robustness of tire properties, road friction and 

vehicle parameters, such as vehicle mass and moment of inertia, can be achieved. Finally, other authors use 

combined methods which bring together the advantages of the previous two methods [9,11]. 

Other authors propose methods for designing observers in order to estimate the sideslip angle from variables that 

can be easily measured, such as yaw rate, lateral acceleration and velocity. Different models (such as linear [18] and 

nonlinear [19]), and observers (such as Kalman Filters [10,20], RLS algorithms [21], Luenberger observers [22]) 

have also been considered to estimate the sideslip angle. A common feature of most of these observers for the 

estimation of the sideslip angle is that they heavily rely on an accurate tire model, which may vary during vehicle 

operation. 

Some authors use algorithms based on artificial intelligence to estimate the sideslip angle such as Fuzzy [23] and 

Neural Networks [24] to avoid issues associated with the identification and adaptation of reference model 

parameters. Artificial intelligence has also been used in the field of vehicles obtaining satisfactory results [25,26,27].  

In this work, a method based on Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed in order to estimate 

the vehicle sideslip angle. The ANFIS controller combines the benefits of both Neural Networks and Fuzzy logic. 

The former is adaptive and can learn from generalization and pattern recognition. The latter allows soft and steady 

performance [28]. In [29], an ANFIS algorithm is proposed to estimate the yaw rate, providing good results. 

CarSim results obtained after training show that the ANFIS model learns to estimate the sideslip angle behavior 

properly without difficulty and reliably. 

2. VEHICLE MODEL 

CarSim software has been employed to test the effectiveness of the proposed algorithm [30] and its used has become 

a widespread simulation software in the automotive industry. The software combines traditional and modern multi-

body vehicle dynamics, based on parametric modeling. The software includes three-part graphic database of a full-

vehicle model, direction and speed control and external conditions, such as, road information, drag, etc. 

The estimation algorithm, based on ANFIS, presented in this work has been evaluated using a typical C-class 
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hatchback car, available in the CarSim library, having 205/55 R16 tires (Figure 1). 

Table 1 shows the Hatchback vehicle parameters such as mass, wheel base, tire radius, and moments of inertia.  

3. VEHICLE SIDESLIP ANGLE ESTIMATION 

The sideslip angle of a vehicle (β) is the angle between the orientation of the vehicle and the direction of travel at 

the center of gravity (COG) (see Figure 2). It is defined as:  

y

x

V
V


                                             (1)       

where Vx is the longitudinal velocity and Vy is the lateral velocity of vehicle. 

The measurement of sideslip angle is necessary for many vehicle control systems. Due to a lack of accuracy and 

cost, this parameter cannot be directly measured. 

3.1. Estimator design based on ANFIS 

Since physical-observers are based on a reference vehicle model, it is possible to provide a satisfactory estimation  

when vehicle model parameters are accurately known. 

An alternative to physical models are non-parametric ones, which are able to model an accurate response behavior, 

while providing considerable flexibility and without the need of a physical meaning of its parameters. For this 

reason, an ANFIS-based observer for sideslip angle estimation is proposed. 

 Adaptive Neuro-Fuzzy Inference System (ANFIS) systems are a type of adaptive networks that are functionally 

equivalent to fuzzy inference systems. In other words, it is an advanced artificial intelligence technique that uses 

Neural Networks to construct automatically a Fuzzy Logic Estimator (FLE) for each specific case. Prior to the 

generation of the estimator by the Neural Network, training of the network with data that represents the desired 

performance of the estimator, must be performed. The learning process of the neural network is based on trial and 

error, generating an FLE that mimics the desired performance. 

The advantage of using the ANFIS technique is that it combines the benefits of both Neural Networks and Fuzzy 

logic. The former has the advantage of being adaptive and the ability to learn by generalization and pattern 

recognition. The latter allows a soft and steady performance [28]. 

During the past ten years neural networks (NN) have attracted a great deal of attention in vehicle dynamics and 

control [31, 32]. Neural networks have been effectively applied to model complex systems due to their good 

learning capabilities.  

ANFIS uses a Takagi-Sugeno fuzzy inference method in contrast with the model that uses the Mamdani method. 

Takagi-Sugeno is more compact and computationally more efficient than the Mamdani system. Furthermore, it is 

more flexible, being especially suitable for adaptive modeling techniques. However, the Mamdani system is more 
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intuitive and understandable by the human side [33]. 

Having an FLE at this point has many pros, some of which are: 

1. It provides a smooth estimating performance. 

2. It is able to characterize non-linear behavior. 

3. It can be implemented in real time. 

4. It can easily be integrated. 

3.1.1. Training data 

The selection of training data is a crucial process. These data should contain all of the required representative 

features. In this case, different maneuvers are selected in order to characterize the linear and non-linear vehicle 

behavior [24]. 

A total of 80 experiments were designed and carried out for J-turn maneuvers at different speeds (30 km/h, 65 km/h, 

100 km/h and 130 km/h), steering angles in the clockwise and anti-clockwise direction (45 deg, 75 deg, 100 deg, 

125 deg and 150 deg) and friction coefficient (low and high). Table 2 summarizes the maneuvers considered during 

the training step. 

3.1.2. Input data 

Not only does the training data influences on the obtained ANFIS-based observer. but also on the selection of input 

data. An excessive number of inputs not only impairs the transparency of the underlying model, but also increases 

the computational complexity for building the model. 

The criteria considered to select the inputs for the ANFIS algorithm are: 

• To select the minimum number of inputs. 

• To select signals that can be measured by onboard vehicle sensors. 

 

Considering the previous criteria and signals employed in typical sideslip angle observers [14,15], three groups of 

input data have been selected: 

1. First group: 

 Lateral acceleration. 

 Yaw rate. 

 Steering angle. 

 Longitudinal velocity. 

2. Second group: 

 Lateral acceleration. 
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 Yaw rate. 

 Steering angle. 

 Longitudinal velocity. 

 Yaw rate/Longitudinal velocity. 

3. Third group: 

 Lateral acceleration. 

 Steering angle. 

 Yaw rate/Longitudinal velocity. 

 

3.1.3. Architecture of NN and FLE 

To generate the Fuzzy Logic Estimator (FLE) presented in this work, MATLAB ANFIS toolbox has been used. The 

neural network was generated and trained based on the data specified in the previous section. The network is trained 

and tested in order to prevent the learning algorithm from falling into a global minimum. 

The network has been trained by means of a hybrid learning algorithm presented in [34]. This hybrid algorithm 

performs two phases at each learning stage, the first is a forward path learning technique that uses the least-squares 

learning technique and the second is the back-propagation learning algorithm. 

For each input data, the NN is constructed for the observed sideslip angle. Afterwards, variations of the ANFIS 

toolbox options, such as, the number and type of fuzzy logic membership functions, the number of the ANN 

learning epochs (cycles), the error tolerance, etc., the fuzzy logic system, designed by trial and error,  was chosen as 

the one that yields the least percentage of error. 

Gaussian membership functions (gaussmf) were used to train ANFIS. For the first input group, four Gaussian 

membership functions (gaussmf) were used for each input. The number of generated FLE rules was 256. For the 

second input group, three Gaussian membership functions (gaussmf) were employed for each input. The number of 

generated FLE rules was 243. Finally, for the third input group, six Gaussian membership functions (gaussmf) were 

used for each input. The NN structure is shown in Figure 3. The number of generated FLE rules is 216. All of these 

NN were used to train ANFIS at 5 epochs. 

Figures 5, 6 and 7 show the performance of the new ANFIS-constructed FLE on the training data for the first, 

second and third input group, respectively, where the blue data represents the desired testing data and the red data 

represents the output of the observer system. The average training error for each input group is 0.097 deg, 0.0986 

deg and 0.1 deg, respectively. 

After generating the FLEs, and new sideslip angle observer was tested with the testing data. 
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3.2. Testing data 

Once the FLEs has run through the learning stage, it is necessary to test it on a series of maneuvers to verify the 

performance of the proposed algorithm. In Figure 7, the road test is shown. This test is carried out considering a 

road adhesion coefficient equal to 1 and with a vehicle velocity and steering wheel contour depicted in Figure 8 and 

9, respectively. 

Figures 11, 12 and 13 show the performance of the new ANFIS constructed on the cheking data for the first, second 

and third, respectively, where the blue data represents the desired data that the system should follow and the red data 

the output of the observer system. The average checking errors for each input group are 0.82 deg, 0.67 deg and 

0.148 deg, respectively. ANFIS algorithms for input data 1 and 2 have a good interpolation ability in the range of 

the training data, however, they have a poor extrapolation capability. The ANFIS algorithm for input data 3 has a 

satisfactory interpolation and extrapolation ability. 

4. DISCUSSION 

Although ANFIS algorithm for input 3 has performed better than those for input groups 1 and 2, its reliability has 

been proved by comparison with other sideslip estimators. You et al. [15] indicated that the sideslip angle can be 

computed by the following equation: 
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where Cf and Cr are the cornering stiffness of the front and rear axles; a and b are the distance from the center of 

gravity to the front and rear axles; m is the vehicle mass; Vx is the longitudinal speed; ay is the lateral acceleration; r 

is the yaw rate and δ is the front wheel steering wheel. 

Chung and Yi [14] propose the following sideslip angle observer: 
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        (3) 

In order to demonstrate the improvement provided by the ANFIS observer,  a Kalman Filter observer was used for 

comparison. The optimal estimate of the state X, is given by: 

 eee CXyKBuAXX                                   (4) 

where X and y are the state and output vectors, respectively, A, B and C are the system, input and output matrices 

with constant parameters: 
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Two Kalman Filters have been calculated considering diferent observer vectors: 

 Kalman Filter 1D: 

 measuredry 0  

 Kalman Filter 2D:  

 measuredmeasuredy rVy _  

where Vy_measured is the lateral velocity and rmeasured is the yaw rate obtained from sensors. 

The observer gain matrix, K, is given by: 

1 RPCK T                                                                  (6) 

where P is a symmetric positive definite solution of the algebraic matriz Ricatti equation: 

01   QCPRPCPAAP TT                                   (7) 

Q and R are symmetric and positive defined matrices describing noise intensities.  

Finally, an estimator based on backpropagation NN (Neural Network) was used. The same training data, shown in 

Table 2, as the one employed for the ANFIS estimator, was used. The proposed network has a single hidden layer 

with 10 neurons and one output, which is the side slip angle. All neurons of the network use the hyper tangent 

activation function, since it has a range of (-1,1), which covers possible negative values of lateral acceleration, yaw 

rate, steering angle, longitudinal velocity and sideslip angle. The learning rate was initially set high and as training 

cycles were performed and the network was closer to the final solution, it was lowered. The NN was trained during 

170000 cycles.  

Figure 13 show the comparative results for the different algorithms.  

It is worth highlighting that the performance of the ANFIS-based sideslip angle estimator has also been proved in 

maneouvres with different road conditions, such as, a lane change maneuver of a vehicle travelling at 90 km/h (see 

Figure 14) on a pavement with a friction coefficient of 0.8 and a J turn maneuver of a vehicle travelling at 80 km/h 

on a pavement with a friction coefficient of 0.5 (see Figure 15). Figure 16 shows the instantaneous error for a J turn 

maneuver for a vehicle travelling at 80 km/h on a pavement with a friction coefficient of 0.5. This figure 

demonstrates that the ANFIS algorithm has a good behavior for the transient zone compared to other algorithms. 
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Additional proof of the effectiveness of the proposed model, other than the graphical one, was performed by means 

of a quantitative analysis that takes into consideration the error for the different accomplished excitation conditions. 

The following equation has been used to represent the norm error as a function of time [35]: 


 t

tE 
                                                           (8)                      

where: 
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                  (10)     

                  

where βCarSim represents the measured beta sideslip angle obtained from CarSim, βestimated is the estimated sideslip 

angle and μbeta is the mean value of the sideslip angle obtained from CarSim during the period T. 

The norm and maximum errors are provided in Table 3 and Table 4, respectively. The norm error supplies 

information about the state response and the maximum error about the transient response. It has been proved that the 

proposed ANFIS model provides a satisfactory performance. In addition, it is well suited for different training 

driving conditions and maneuvers and to analyze transient and steady-state response.  

5. CONCLUSION 

In this paper a new sideslip angle estimator is proposed based on ANFIS (Adaptive Neuro-Fuzzy Inference System). 

The advantage of this estimator is the modeling of the non-linear vehicle dynamics, which requires of sensor signals 

directly provided by vehicle sensors. The proposed method has been proved by means of CarSim sotware, which is a 

widespread and validated software employed in the automotive industry. 

From the obtained results, it has been concluded that a suitable selection of the inputs to the ANFIS system is of 

paramount importance in order to accomplish the desired performance. 

The model has been validated by means of a set of maneuvers that represent different driving and testing conditions. 

The model-based observers are suitable to estimate the side slip angle when road conditions correspond to the model 

parameters. This is the particular case in which road testing is performed with a friction coeffient equal to 1. In this 

case, similar errors are obtained for all methods. For the ANFIS-based estimator the obtained error is 0.25 and for 

the Kalman 1D-based estimator it is 0.26. 

However, when the driving conditions do not correspond to the model parameters, then, errors are greater. This 
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corresponds to a case in which a lane change and J-turn maneuvers with friction coefficient of 0.8 and 0.5, 

respectively, is performed. For these maneuvers the error obtained for ANFIS-based estimator is smaller than for the 

parameter model-based estimators, with the exception of  Kalman 2D for the lane change maneuver. Since the 

model-observers are based on a reference vehicle model, they are able to provide a satisfactory estimate only if 

model parameters are accurately known. 

On the other hand, the ANFIS-based estimator provides an error smaller than the NN-based estimator. The ANFIS-

based estimator is adapts better in variable environments and learns by generalization. 

Results have proved that the ANFIS-based estimator successfully estimates the sideslip angle for different driving 

conditions. 
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common sideslip angle estimators 

Figure 14. Comparison results for testing data among the proposed ANFIS-based sideslip angle estimator and 

common sideslip angle estimators for a lane change maneuver  for a vehicle travelling at 90 km/h on a pavement of 

friction coefficient of 0.8 
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Figure 15. Results for a J-turn maneuver for a vehicle travelling at 80 km/h on a pavement of friction coefficient of 

0.5  

Figure 16. Comparison error results for testing data among the proposed ANFIS-based sideslip angle estimator and 

common sideslip angle estimators for a J-turn maneuver for a vehicle travelling at 80 km/h on a pavement of friction 

coefficient of 0.5 

 

Table 1. Vehicle parameters for thr C-Class hatchback car 

Symbol Description Value Unit 
ms Sprung mass 1274 kg 
mu Unsprung mass 142 kg 
Ixx Roll inertia 606.1 kg∙m2 
Iyy Pitch inertia 1523 kg∙m2 
Izz Yaw inertia 1523 kg∙m2 
a Distance from front tire to COG 1016 mm 
b Distance from rear tire to COG 1562 mm 
Rw Effective rolling radius 310 mm 
h Height of COG 540 mm 
T Wheel track 1539 mm 
Ks Steering ratio 17.5:1 - 
Cf Front tire cornering stiffness 125167 N/rad 
Cr Rear tire cornering stiffness 125167 N/rad 
 

Table 2. Selected manouevres for training data 

Manoevres Steer angle (deg) Speed (km/h) Friction coefficient 
J turn ±45 

30, 65, 100, 130 0.3, 1 
J turn ±75 
J turn ±100 
J turn ±125 
J turn ±150 

 
 

Table 3. Error norms for sideslip angle estimators 

 Et 
Road testing Chane Lane J-turn 

You et al. 0.286 1.18 2.18 
Chu and Yi 0.516 1.17 2.03 
Kalman 1D 0.26 1.08 3.85 
Kalman 2D 0.31 0.36 3.11 

NN 0.25 2.32 1.85 
ANFIS 0.25 0.74 0.11 

 

Table 4. Maximum errors for sideslip angle estimators 

 Emax
Chane Lane J-turn 

You et al. 0,32 0,64 
Chu and Yi 0,27 0,62 
Kalman 1D 0,29 1,17 
Kalman 2D 0,10 0,94 

NN 1,12 0,28 
ANFIS 0,22 0,19 
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Figure 1. C-class hatchback car 

 
Figure 2. Vehicle parameters 
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Figure 3. NN structure for the third input group 

 
Figure 4. Training data for the first input group (the blue data represents the checking data and the red data 
represents the ANFIS estimated data) 
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Figure 5. Training data for the second input group (the blue data represents the checking data and the red data 
represents the ANFIS estimated data) 

 
Figure 6. Training data for the third input group (the blue data represents the checking data and the red data 
represents the ANFIS estimated data) 
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Figure 7. Road for testing 

 
Figure 8. Vehicle velocity contour for testing 

 
Figure 9. Steering wheel contour for testing 
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Figure 10. Checking data results for the first input group (the blue data represents the checking data and the red data 
represents the ANFIS estimated data) 

 
Figure 11. Checking data results for the second input group (the blue data represents the checking data and the red 
data represents the ANFIS estimated data) 

 
Figure 12. Checking data results for the third input group (the blue data represents the checking data and the red data 
represents the ANFIS estimated data) 
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Figure 13. Comparison results for testing data among the proposed ANFIS-based sideslip angle estimator and 
common sideslip angle estimators 
 

 
Figure 14. Comparison results for testing data among the proposed ANFIS-based sideslip angle estimator and 
common sideslip angle estimators for a lane change maneuver  for a vehicle travelling at 90 km/h on a pavement of 
friction coefficient of 0.8 

 
Figure 15. Results for a J-turn maneuver for a vehicle travelling at 80 km/h on a pavement of friction coefficient of 
0.5  
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Figure 16. Comparison error results for testing data among the proposed ANFIS-based sideslip angle estimator and 
common sideslip angle estimators for a J-turn maneuver for a vehicle travelling at 80 km/h on a pavement of friction 
coefficient of 0.5 
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