102 research outputs found

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    Quantified Boolean Formulas: Proof Complexity and Models of Solving

    Get PDF
    Quantified Boolean formulas (QBF), which form the canonical PSPACE-complete decision problem, are a decidable fragment of first-order logic. Any problem that can be solved within a polynomial-size space can be encoded succinctly as a QBF, including many concrete problems in computer science from domains such as verification, synthesis and planning. Automated solvers for QBF are now reaching the point of industrial applicability. In this thesis, we focus on dependency awareness, a dedicated solving paradigm for QBF. We show that dependency schemes can be envisaged in terms of dependency quantified Boolean formulas (DQBF), exposing strong connections between these two previously disparate entities. By introducing new lower-bound techniques for QBF proof systems, we study the relative strengths of models of dependency-aware solving, including the proposal of new, stronger models. Proof Complexity: Using the strategy extraction paradigm, we introduce new lower-bound techniques that apply to resolution-based QBF proof systems. In particular, we use the technique to prove exponential lower bounds for a new family of QBFs called the equality formulas. Our technique also affords considerably simpler, more intuitive proofs of some existing QBF proof-size lower bounds. Models of Solving: We apply our lower bound techniques to show new separations for QBF proof systems parametrised by dependency schemes. We also propose new models of dynamic dependency-aware solving and prove that they are exponentially stronger than the existing static models. Finally, we introduce Merge Resolution, a proof system modelling CDCL-style solving for DQBF, which is the first of its kind

    Shortening QBF Proofs with Dependency Schemes

    Get PDF
    We provide the first proof complexity results for QBF dependency calculi. By showing that the reflexive resolution path dependency scheme admits exponentially shorter Q-resolution proofs on a known family of instances, we answer a question first posed by Slivovsky and Szeider in 2014 [30]. Further, we conceive a method of QBF solving in which dependency recomputation is utilised as a form of inprocessing. Formalising this notion, we introduce a new calculus in which a dependency scheme is applied dynamically. We demonstrate the further potential of this approach beyond that of the existing static system with an exponential separation

    Symbolic reactive synthesis

    Get PDF
    In this thesis, we develop symbolic algorithms for the synthesis of reactive systems. Synthesis, that is the task of deriving correct-by-construction implementations from formal specifications, has the potential to eliminate the need for the manual—and error-prone—programming task. The synthesis problem can be formulated as an infinite two-player game, where the system player has the objective to satisfy the specification against all possible actions of the environment player. The standard synthesis algorithms represent the underlying synthesis game explicitly and, thus, they scale poorly with respect to the size of the specification. We provide an algorithmic framework to solve the synthesis problem symbolically. In contrast to the standard approaches, we use a succinct representation of the synthesis game which leads to improved scalability in terms of the symbolically represented parameters. Our algorithm reduces the synthesis game to the satisfiability problem of quantified Boolean formulas (QBF) and dependency quantified Boolean formulas (DQBF). In the encodings, we use propositional quantification to succinctly represent different parts of the implementation, such as the state space and the transition function. We develop highly optimized satisfiability algorithms for QBF and DQBF. Based on a counterexample-guided abstraction refinement (CEGAR) loop, our algorithms avoid an exponential blow-up by using the structure of the underlying symbolic encodings. Further, we extend the solving algorithms to extract certificates in the form of Boolean functions, from which we construct implementations for the synthesis problem. Our empirical evaluation shows that our symbolic approach significantly outperforms previous explicit synthesis algorithms with respect to scalability and solution quality.In dieser Dissertation werden symbolische Algorithmen für die Synthese von reaktiven Systemen entwickelt. Synthese, d.h. die Aufgabe, aus formalen Spezifikationen korrekte Implementierungen abzuleiten, hat das Potenzial, die manuelle und fehleranfällige Programmierung überflüssig zu machen. Das Syntheseproblem kann als unendliches Zweispielerspiel verstanden werden, bei dem der Systemspieler das Ziel hat, die Spezifikation gegen alle möglichen Handlungen des Umgebungsspielers zu erfüllen. Die Standardsynthesealgorithmen stellen das zugrunde liegende Synthesespiel explizit dar und skalieren daher schlecht in Bezug auf die Größe der Spezifikation. Diese Arbeit präsentiert einen algorithmischen Ansatz, der das Syntheseproblem symbolisch löst. Im Gegensatz zu den Standardansätzen wird eine kompakte Darstellung des Synthesespiels verwendet, die zu einer verbesserten Skalierbarkeit der symbolisch dargestellten Parameter führt. Der Algorithmus reduziert das Synthesespiel auf das Erfüllbarkeitsproblem von quantifizierten booleschen Formeln (QBF) und abhängigkeitsquantifizierten booleschen Formeln (DQBF). In den Kodierungen verwenden wir propositionale Quantifizierung, um verschiedene Teile der Implementierung, wie den Zustandsraum und die Übergangsfunktion, kompakt darzustellen. Wir entwickeln hochoptimierte Erfüllbarkeitsalgorithmen für QBF und DQBF. Basierend auf einer gegenbeispielgeführten Abstraktionsverfeinerungsschleife (CEGAR) vermeiden diese Algorithmen ein exponentielles Blow-up, indem sie die Struktur der zugrunde liegenden symbolischen Kodierungen verwenden. Weiterhin werden die Lösungsalgorithmen um Zertifikate in Form von booleschen Funktionen erweitert, aus denen Implementierungen für das Syntheseproblem abgeleitet werden. Unsere empirische Auswertung zeigt, dass unser symbolischer Ansatz die bisherigen expliziten Synthesealgorithmen in Bezug auf Skalierbarkeit und Lösungsqualität deutlich übertrifft

    Report on BCTCS 2016: The 32nd British Colloquium for Theoretical Computer Science 22–24 March 2016, Queen’s University Belfast

    Get PDF
    Report on BCTCS 2016: The 32nd British Colloquium for Theoretical Computer Science 22–24 March 2016, Queen’s University Belfas

    Temporal Connectivity: Coping with Foreseen and Unforeseen Delays

    Get PDF
    Consider planning a trip in a train network. In contrast to, say, a road network, the edges are temporal, i.e., they are only available at certain times. Another important difficulty is that trains, unfortunately, sometimes get delayed. This is especially bad if it causes one to miss subsequent trains. The best way to prepare against this is to have a connection that is robust to some number of (small) delays. An important factor in determining the robustness of a connection is how far in advance delays are announced. We give polynomial-time algorithms for the two extreme cases: delays known before departure and delays occurring without prior warning (the latter leading to a two-player game scenario). Interestingly, in the latter case, we show that the problem becomes PSPACE-complete if the itinerary is demanded to be a path

    A Logic Programming Approach to Knowledge-State Planning: Semantics and Complexity

    Full text link
    We propose a new declarative planning language, called K, which is based on principles and methods of logic programming. In this language, transitions between states of knowledge can be described, rather than transitions between completely described states of the world, which makes the language well-suited for planning under incomplete knowledge. Furthermore, it enables the use of default principles in the planning process by supporting negation as failure. Nonetheless, K also supports the representation of transitions between states of the world (i.e., states of complete knowledge) as a special case, which shows that the language is very flexible. As we demonstrate on particular examples, the use of knowledge states may allow for a natural and compact problem representation. We then provide a thorough analysis of the computational complexity of K, and consider different planning problems, including standard planning and secure planning (also known as conformant planning) problems. We show that these problems have different complexities under various restrictions, ranging from NP to NEXPTIME in the propositional case. Our results form the theoretical basis for the DLV^K system, which implements the language K on top of the DLV logic programming system.Comment: 48 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    Lower Bounds for QBFs of Bounded Treewidth

    Full text link
    The problem of deciding the validity (QSAT) of quantified Boolean formulas (QBF) is a vivid research area in both theory and practice. In the field of parameterized algorithmics, the well-studied graph measure treewidth turned out to be a successful parameter. A well-known result by Chen in parameterized complexity is that QSAT when parameterized by the treewidth of the primal graph of the input formula together with the quantifier depth of the formula is fixed-parameter tractable. More precisely, the runtime of such an algorithm is polynomial in the formula size and exponential in the treewidth, where the exponential function in the treewidth is a tower, whose height is the quantifier depth. A natural question is whether one can significantly improve these results and decrease the tower while assuming the Exponential Time Hypothesis (ETH). In the last years, there has been a growing interest in the quest of establishing lower bounds under ETH, showing mostly problem-specific lower bounds up to the third level of the polynomial hierarchy. Still, an important question is to settle this as general as possible and to cover the whole polynomial hierarchy. In this work, we show lower bounds based on the ETH for arbitrary QBFs parameterized by treewidth (and quantifier depth). More formally, we establish lower bounds for QSAT and treewidth, namely, that under ETH there cannot be an algorithm that solves QSAT of quantifier depth i in runtime significantly better than i-fold exponential in the treewidth and polynomial in the input size. In doing so, we provide a versatile reduction technique to compress treewidth that encodes the essence of dynamic programming on arbitrary tree decompositions. Further, we describe a general methodology for a more fine-grained analysis of problems parameterized by treewidth that are at higher levels of the polynomial hierarchy

    A Machine Learning Approach for Optimizing Heuristic Decision-making in OWL Reasoners

    Get PDF
    Description Logics (DLs) are formalisms for representing knowledge bases of application domains. TheWeb Ontology Language (OWL) is a syntactic variant of a very expressive description logic. OWL reasoners can infer implied information from OWL ontologies. The performance of OWL reasoners can be severely affected by situations that require decision-making over many alternatives. Such a non-deterministic behavior is often controlled by heuristics that are based on insufficient information. This thesis proposes a novel OWL reasoning approach that applies machine learning (ML) to implement pragmatic and optimal decision-making strategies in such situations. Disjunctions occurring in ontologies are one source of non deterministic actions in reasoners. We propose two ML-based approaches to reduce the non-determinism caused by dealing with disjunctions. The first approach is restricted to propositional description logic while the second one can deal with standard description logic. The first approach builds a logistic regression classifier that chooses a proper branching heuristic for an input ontology. Branching heuristics are first developed to help Propositional Satisfiability (SAT) based solvers with making decisions about which branch to pick in each branching level. The second approach is the developed version of the first approach. An SVM (Support Vector Machine) classier is designed to select an appropriate expansion-ordering heuristic for an input ontology. The built-in heuristics are designed for expansion ordering of satisfiability testing in OWL reasoners. They determine the order for branches in search trees. Both of the above approaches speed up our ML-based reasoner by up to two orders of magnitude in comparison to the non-ML reasoner. Another source of non-deterministic actions is the order in which tableau rules should be applied. On average, our ML-based approach that is an SVM classifier achieves a speedup of two orders of magnitude when compared to the most expensive rule ordering of the non-ML reasoner
    • …
    corecore