10 research outputs found

    Using Elastically Actuated Legged Robots in Rough Terrain: Experiments with DLR Quadruped bert

    Get PDF
    This paper addresses walking and balancing in rough terrain for legged locomotion in planetary exploration as an alternative to the commonly used wheeled locomotion. In contrast to the latter, where active balancing is not necessary, legged locomotion requires constant effort to keep the main body stabilized during motion. While common quadrupedal robots require to carefully plan motions through torque control and force distribution, this paper presents an approach where elastic elements in the drive train function as an intrinsic balancing component that allows to ignore inaccuracies in the locomotion pattern and passively accommodate for terrain unevenness. The approach proposes a static walking gait algorithm, which is formulated for a general quadrupedal robot, and a hardware foot design to support the locomotion pattern. The method is experimentally tested on an elastically actuated quadrupedal robot

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Simulation and Control of Running Models

    Get PDF
    This work focuses on the locomotion of one-legged robots, with focus on approaches that stabilize passive limit cycles. Locomotion based on the socalled passive gaits promises to greatly reduce the actuation effort required for legged robots to move. In this work, the passive gaits of robots of varying complexity are characterized and stabilizing controllers are reviewed from the literature and newly formulated. The robots are modelled as hybrid dynamical systems and numerically simulated, thereby allowing to validate the proposed control strategies. Firstly, the vertical control through energy regulation of a one-dimensional hopper is considered. Secondly, the SLIP model is reviewed and then extended to the “pitchingSLIP”, with the aim of characterizing its passive gaits with somersaults. Two controllers based on energy and angular momentum regulation are then formulated to stabilize passive gaits with somersaults, making the control effort converge to zero. A further extension of the SLIP template, denominated “bodySLIP”, is then used to test the control approach on a more realistic model. The controllers shall be later extended to more complex cases, in which the somersaults are not necessarily present in the passive gaits. Thirdly, the locomotion of a one-legged robot with a body link is studied. Raibert’s control approach based on the foot placement algorithm is reviewed and compared to the non-dissipative touchdown controller of Hyon and Emura. The latter is then extended to be used with continuous torque profiles and to perform velocity tracking. Moreover, damping is added to the joints in order to study its effect on the controller, which was then modified to achieve stable running even in such conditions. The results obtained shall lay the foundations for a later test on hardware on DLR’s quadruped Bert

    Adapting Highly-Dynamic Compliant Movements to Changing Environments: A Benchmark Comparison of Reflex- vs. CPG-Based Control Strategies

    Get PDF
    To control highly-dynamic compliant motions such as running or hopping, vertebrates rely on reflexes and Central Pattern Generators (CPGs) as core strategies. However, decoding how much each strategy contributes to the control and how they are adjusted under different conditions is still a major challenge. To help solve this question, the present paper provides a comprehensive comparison of reflexes, CPGs and a commonly used combination of the two applied to a biomimetic robot. It leverages recent findings indicating that in mammals both control principles act within a low-dimensional control submanifold. This substantially reduces the search space of parameters and enables the quantifiable comparison of the different control strategies. The chosen metrics are motion stability and energy efficiency, both key aspects for the evolution of the central nervous system. We find that neither for stability nor energy efficiency it is favorable to apply the state-of-the-art approach of a continuously feedback-adapted CPG. In both aspects, a pure reflex is more effective, but the pure CPG allows easy signal alteration when needed. Additionally, the hardware experiments clearly show that the shape of a control signal has a strong influence on energy efficiency, while previous research usually only focused on frequency alignment. Both findings suggest that currently used methods to combine the advantages of reflexes and CPGs can be improved. In future research, possible combinations of the control strategies should be reconsidered, specifically including the modulation of the control signal's shape. For this endeavor, the presented setup provides a valuable benchmark framework to enable the quantitative comparison of different bioinspired control principles

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life

    Analysis of Actuator Control Strategies for Excitation of Intrinsic Modes in Compliant Robots with Series Elastic Actuators

    Get PDF
    In biology, body dynamics and elasticity in periodic motions most likely con- tribute to efficiency, i.e., in mammalian locomotion. Likewise, elastic elements can be added to robotic systems in an attempt to mimic this biological concept. Compliant robots are less likely to get damaged after severe impacts and their mechanical energy storage via springs could be exploited for fast and explosive movements. In this thesis, we explore the question whether resonance excitation that solely considers link-side dynamics or also takes into account the motor inertia, can lead to an increase in performance in Series Elastic Actuator (SEA) driven robotic systems. We propose three different control approaches and compare them to compliant state-of-the-art control as baseline evaluation in simulation and hardware experiments. Moreover, we extend the investigation of motor-side-excitation with the aid of methods such as inertia shaping and simulative system variation. Experiment results regarding a pick-and-place task with fixed amplitude reveal that in the investigated test setup, it might not be beneficial to make dedicated use of the motor inertia. Instead, an approach that exclusively excites link-side dynamics appears, for this particular task and setup, to be advantageous. However, generally, also making use of the motor dynamics bears potential for specific investigations as it appears more flexible and the control behavior can be easily adapted. Thus, the presented thesis provides first fundamental insights about novel control strategies and lies the foundation for further systematic research with different actuation types and varying task goals

    Using a Combination of PID Control and Kalman Filter to Design of IoT-based Telepresence Self-balancing Robots during COVID-19 Pandemic

    Get PDF
    COVID-19 is a very dangerous respiratory disease that can spread quickly through the air. Doctors, nurses, and medical personnel need protective clothing and are very careful in treating COVID-19 patients to avoid getting infected with the COVID-19 virus. Hence, a medical telepresence robot, which resembles a humanoid robot, is necessary to treat COVID-19 patients. The proposed self-balancing COVID-19 medical telepresence robot is a medical robot that handles COVID-19 patients, which resembles a stand-alone humanoid soccer robot with two wheels that can maneuver freely in hospital hallways. The proposed robot design has some control problems; it requires steady body positioning and is subjected to disturbance. A control method that functions to find the stability value such that the system response can reach the set-point is required to control the robot's stability and repel disturbances; this is known as disturbance rejection control. This study aimed to control the robot using a combination of Proportional-Integral-Derivative (PID) control and a Kalman filter. Mathematical equations were required to obtain a model of the robot's characteristics. The state-space model was derived from the self-balancing robot's mathematical equation. Since a PID control technique was used to keep the robot balanced, this state-space model was converted into a transfer function model. The second Ziegler-Nichols's rule oscillation method was used to tune the PID parameters. The values of the amplifier constants obtained were Kp=31.002, Ki=5.167, and Kd=125.992128. The robot was designed to be able to maintain its balance for more than one hour by using constant tuning, even when an external disturbance is applied to it. Doi: 10.28991/esj-2021-SP1-016 Full Text: PD

    Mechanism and Behaviour Co-optimisation of High Performance Mobile Robots

    Get PDF
    Mobile robots do not display the level of physical performance one would expect, given the specifications of their hardware. This research is based on the idea that their poor performance is at least partly due to their design, and proposes an optimisation approach for the design of high-performance mobile robots. The aim is to facilitate the design process, and produce versatile and robust robots that can exploit the maximum potential of today's technology. This can be achieved by a systematic optimisation study that is based on careful modelling of the robot's dynamics and its limitations, and takes into consideration the performance requirements that the robot is designed to meet. The approach is divided into two parts: (1) an optimisation framework, and (2) an optimisation methodology. In the framework, designs that can perform a large set of tasks are sought, by simultaneously optimising the design and the behaviours to perform them. The optimisation methodology consists of several stages, where various techniques are used for determining the design's most important parameters, and for maximising the chances of finding the best possible design based on the designer's evaluation criteria. The effectiveness of the optimisation approach is proved via a specific case-study of a high-performance balancing and hopping monopedal robot. The outcome is a robot design and a set of optimal behaviours that can meet several performance requirements of conflicting nature, by pushing the hardware to its limits in a safe way. The findings of this research demonstrate the importance of using realistic models, and taking into consideration the tasks that the robot is meant to perform in the design process

    Dynamic Locomotion Gaits of a Compliantly Actuated Quadruped With SLIP-Like Articulated Legs Embodied in the Mechanical Design

    Get PDF
    The spring loaded inverted pendulum (SLIP) model has been extensively shown to be fundamental for legged locomotion. However, the way this low-order template model dynamics is anchored in high-dimensional articulated multibody systems describing compliantly actuated robots (and animals) is not obvious and has not been shown so far. In this letter, an articulated leg mechanism and a corresponding quadrupedal robot design are introduced, for which the natural oscillation dynamics is structurally equivalent to the SLIP. On the basis of this property, computationally simple and robust control methods are proposed, which implement the gaits of pronking, trotting, and dynamic walking in the real robotic system. Experiments with a compliantly actuated quadruped featuring only low-performance electrical drives validate the effectiveness of the proposed approach

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications
    corecore