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Abstract 

COVID-19 is a very dangerous respiratory disease that can spread quickly through the air. 

Doctors, nurses, and medical personnel need protective clothing and are very careful in treating 

COVID-19 patients to avoid getting infected with the COVID-19 virus. Hence, a medical 

telepresence robot, which resembles a humanoid robot, is necessary to treat COVID-19 patients. 

The proposed self-balancing COVID-19 medical telepresence robot is a medical robot that handles 

COVID-19 patients, which resembles a stand-alone humanoid soccer robot with two wheels that 

can maneuver freely in hospital hallways. The proposed robot design has some control problems; 

it requires steady body positioning and is subjected to disturbance. A control method that 

functions to find the stability value such that the system response can reach the set-point is 

required to control the robot's stability and repel disturbances; this is known as disturbance 

rejection control. This study aimed to control the robot using a combination of Proportional-

Integral-Derivative (PID) control and a Kalman filter. Mathematical equations were required to 

obtain a model of the robot's characteristics. The state-space model was derived from the self-

balancing robot's mathematical equation. Since a PID control technique was used to keep the robot 

balanced, this state-space model was converted into a transfer function model. The second Ziegler-

Nichols's rule oscillation method was used to tune the PID parameters. The values of the amplifier 

constants obtained were 𝐾𝑝=31.002, 𝐾𝑖=5.167, and 𝐾𝑑=125.992128. The robot was designed to be 

able to maintain its balance for more than one hour by using constant tuning, even when an 

external disturbance is applied to it. 
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1- Introduction 

The transmission route of COVID-19 in humans mainly originates from person-to-person transmission [1, 2]. The 

first human-to-human transmission was known based on a medical case of the first patient in Vietnam and the US [3] 

who was infected while in Wuhan [4, 5] without ever having physical contact with the Seafood Wholesale Market, 

which was the beginning of the spread of the SARS-CoV-2 virus [6]. Since the number of COVID-19 cases emerged 

worldwide [7], the Centers for Disease Control and Prevention (CDC) has developed many health procedures and 
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guidelines for health professionals and the public in general [8]. Doctors, nurses, and medical personnel must wear 

protective clothing while treating patients due to the risk of cross-transmission [9, 10]. Publics need to minimize 

physical touch and direct human contact [11]. This new regulation greatly affects healthcare management systems and 

many other systems in general [12–14]. For example, rehabilitation robots can be used to correct weakened hand 

function [15, 16] so that rehabilitation is no longer entirely dependent on doctors and health workers. However, 

although physical contact still needs to be limited, health professionals still must be 'present' in many cases. Hence, 

telepresence becomes essential to minimize direct contact to reduce the transmission rate of the disease while 

preserving face-to-face, engaging interactions.  

Telepresence robots can empower people to work, play, and learn with others, regardless of geographical distance 

[17]. Telepresence in robotics is a subfield of robotic-assisted routes, where humans act as operators, sending high-

level instructions to the assistive robot while receiving sensory feedback [18]. The sensory feedback can be 

experienced in various ways. For example, Rhee et al. [19] discovered a telecollaboration that involves teleporting 

long-distance collaborators to another real-world environment. Similarly, Sun and Yan [20] proposed a mixed reality-

based teleoperation system. Convenient Virtual Reality (VR) planning optimized human perception for telepresence 

was researched by Becerra et al. [21]. As telepresence continues to develop, researchers also proposed and studied 

many fundamental algorithms and methods to deliver these sensory feedbacks. Deep 3-D segmentation of Point Cloud 

was researched by Zhong et al. [22]. Spatial presence, performance, and behavior between real, distant, and virtual 

immersive environments were studied by Khenak et al. [23]. Meanwhile, Erat et al. [24] proposed real-time view 

planning of unstructured Lumigraph modeling.  

In the meantime, studies and research regarding data communication stability in systems with the Internet of Things 

(IoT) also continued. For example, a study regarding Similarity Meter and Distance Meter for Set Neutrosophic 

Interval with IoT Industry Evaluation was researched by Peng [25]. A more sophisticated, reliant, and robust 

predictive control mechanism also has been developed for a networked teleoperation space robot [26]. The stability of 

data communication with Xbee S2b Zigbee used on an Arduino-based sumo robot was investigated [27]. These 

findings implied that a medical telepresence robot could establish stable and secure real-time data communication 

using one of these technologies so that doctors can engage with patients or monitor patients' health conditions more 

safely. 

Other challenges in designing a medical telepresence robot are related to its mechanical configuration and control 

system. A medical telepresence robot should represent human presence to make engaging interactions possible. Its 

height should be an average height of a human and should be able to maneuver freely and autonomously. Moreover, it 

requires to be battery-operated with less energy consumption so that it can also be used for monitoring patients' 

conditions. 

A self-balancing robot is a two-wheel robot with a working principle similar to an inverted pendulum that balances 

itself vertically on a horizontal surface [27]. An inverted pendulum has a center of gravity above the fulcrum [28]. The 

inverted pendulum's basic concept is to find and stabilize the stick's position above the robot [29]. This robot 

configuration design is similar to human feet. In addition, two-wheeled robots consume less power with stability-

enhancing behavior than four-wheeled robots. Also, they have better maneuverability since using two wheels reduces 

the turn radius to zero. 

Some researchers used the inverted pendulum balancing method for stabilizing other robots. For example, the 

combined sliding mode control method used for swing-up control and stabilization was investigated by Park and Chwa 

[30]. The virtual linear inverted pendulum model for bipedal propulsion planning was investigated by Motoi [31]. An 

efficient 3-D three-legged walker stabilization and directional control based on PDAC was proposed by Aoyama [32]. 

This robot configuration requires a strong and stable control system to keep a balance and maintain its position and 

condition without outside assistance when it becomes subject to disturbance [33]. Meanwhile, several methods have 

been used to maintain the robot's balance. For example, Sliding Mode Control (SMC) has been used as a nonlinear 

controller [34–36]. It can also be combined with a high-level observer for better control performance [37]. A 

synchronized stabilization platform was also proposed to control the inverted pendulum [38]. Another nonlinear 

controller proposed for controlling inverted pendulum was Feedback Linearization [39, 40]. Predictive control 

techniques such as Model Predictive Control (MPC) [41] were also reported. Another filtering method was also used, 

such as Kalman filter [42, 43]. LQR-based controllers were also made [44–48]. Moreover, intelligent control 

techniques were also proposed: Neural Network [49–52], and Fuzzy [53–55].  

However, those aforementioned methods are unsuitable for disturbance rejection control in medical telepresence 

robots since they require complex calculations that consume more power and memory. Another popular controller in 

the control system is the proportional-integral-derived (PID) control [56, 57]. Simplicity, durability, and near-optimal 

performance are the reasons why PID control is so popular in the industry [58]. It is simple, functionally easy to 

understand, and practical [59, 60]. Since it only requires simple calculations, PID will consume less power and 

memory, making it the most suitable controller for medical telepresence robots. 
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PID algorithm requires parameter setting to get performance with minimum error, thus, its tuning process must be 

properly done to achieve the correct parameters [61, 62]. The parameters to be obtained from PID control system are 

𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑  [63, 64]. Most researchers used sophisticated PID tuning methods to set the 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 

configuration values, such as the Fuzzy logic algorithm [65, 66]. Others even combined it with the Kidney-Inspired 

Algorithm [67] and PSO [68], making it more complex. However, the Ziegler-Nichols method is one of the standard 

tuning methods used to set the 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑  configuration values. There are two methods of Ziegler-Nichols's 

tuning, the first method [69] and the second method [70]. Ziegler-Nichols is one of the oldest tuning methods designed 

for PID controllers. Ziegler Nichols tuning method may provide less performance for complex or advanced systems; it 

can be the simplest method yet sufficient to give good system control performances for less complicated systems. 

In disturbance rejection control, measurement noise profoundly affects the control system performance. Noise from 

the sensors makes less accurate system measurements. Bad system measurement can make the controller too 

aggressive or even too tolerant to error, making it unable to correct errors in the system. Then, the Kalman Filter 

algorithm can be used for sensors with highly sensitive response characteristics to changes in reading values of the 

object being measured. The filter can reduce noise in output data readings while enhancing efficiency [71, 72]. 

Disturbance rejection control is highly essential in designing medical telepresence robots since the proposed design 

is two-wheeled, self-balancing mobile robots. The selfie sticks where the mobile phone/tablet will be hung need to be 

balanced by the robot so that it can do its function properly. Many studies have analyzed self-balancing robots in 

detail, but only one approach has been used, and it was not specifically designed for medical telepresence robots. 

Therefore, this study aimed to propose a disturbance rejection control method and implementation, equipped with 

noise filtering by Kalman Filter, which can perform in a robust and stable manner, specifically designed for medical 

telepresence robots. Hopefully, the result of this study can help health professionals to overcome the overwhelming 

COVID-19 pandemic by making them treat patients more safely with low-cost and easy-to-be-designed medical 

telepresence robots. 

The paper will be organized in the following structure. The first section is an introduction to the problem and 

research problem formulation. Next, the design of the self-balancing robot will be explained, and the model of the 

robot will be presented. Then, the conversion of the transfer function model into state-space representation is 

explained in the next section. The fourth section will contain fundamental theories regarding PID control design, while 

the fifth will consist of the Ziegler Nichols tuning rules. The fundamental theory of Kalman Filter will be described in 

the sixth section. Finally, the results and discussion will be presented in the eighth section, and the conclusion will be 

presented in the last section. 

2- Methodology 

The research method is shown in Figure 1. The first is system modeling using the Lagrange equation. The obtained 

model was in state-space representation, but it was then converted to a transfer function to implement the PID. The 

next step is PID controller design and Ziegler Nichols tuning. After that, the Kalman filter was designed. The next is 

simulation and hardware design. Then, examinations were done to get the data research. The result of the examination 

will be analyzed and evaluated. The research is considered finished if the proposed controller can give good results. 

Vice versa, the examination will be repeated if it cannot provide good performance results. 

 

Figure 1. Research Methodology 
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3- Self-Balancing Robot Modeling 

Self-balancing medical telepresence robot modeling was one of the phases in robot design [73, 74]. It was designed 

to understand the characteristics of the robot's dynamic behavior [75–77]. The first step was to determine the 

coordinates, the force, the energy, and the Lagrangian functions of the system, and the next step was to determine the 

motion equation using the Lagrange equation [78–80]. 

The self-balancing device had two degrees of freedom, allowing it to be represented using two general coordinates 

[81]. The coordinates used for the analysis of this robot are the horizontal shift from the robot 𝑝 and the angle shift of 

the inverted pendulum (𝜃). 𝑝 will be positive if the motion is to the right and (𝜃) positive if the movement is 

clockwise, calculated from its reverse position as illustrated in Figure 2 [82]. 

 

Figure 2. Robot physical system 

3-1- Kinetic Energy and Potential Energy 

The kinetic energy on the wheel (ER) is the sum of the wheel rotational kinetic energy and the wheel translation, as 

expressed in Equation 1, 𝑚 is the mass of the wheel, and 𝑝 is the rotational speed of the wheel towards the horizontal: 

𝐸𝑅 = 𝐸𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 (1) 

𝐸𝑅 = 
1

2
𝐼𝜔2 +

1

2
𝑚𝑝2 (2) 

𝐸𝑅 = 
1

2
 (

1

2
 𝑚𝑅2)

𝑝2

𝑅2
+ 

1

2
 𝑚𝑝2 =

3

4
 𝑚𝑝2 (3) 

𝐸𝐵 = 
1

2
𝑀𝑣2 (4) 

𝑝2 = 𝑝 + 𝑙 𝑠𝑖𝑛𝜃  then �̇�2 = �̇� + 𝑙�̇�  cos 𝜃 (5) 

𝑧2 = 𝑙 cos 𝜃  then 𝑧2̇ = − 𝑙�̇� sin 𝜃 (6) 

The translation of Equation 4 yields Equation 7; 

𝐸𝐵 = 
1

2
 𝑀 (�̇�2 + �̇�2)

2 (7) 

𝐸𝐵 = 
1

2
 𝑀 (�̇�2

2 +  2�̇��̇�𝑙 cos 𝜃 +
1

2
 𝑀𝑙2 �̇�2) (8) 

Thus, the total kinetic energy T is expressed in equation 

𝑇 =
3

4
 𝑚�̇�2 + 

1

2
 𝑚�̇�2 + 𝑀𝑙 cos 𝜃  �̇��̇� + 

1

2
  𝑀𝑙𝜃2̇  (9) 

The robot moves along the horizontal axis, and the potential energy 𝑉 of the system was determined entirely by the 

angle of the inverted pendulum written in Equation 10. 𝑔 is the acceleration of the earth's gravity, and 𝑙 is the length of 

the inverted pendulum 

𝑉 = 𝑀𝑔𝑙 cos 𝜃 (10) 
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3-2- Lagrangian 

At this phase, a dynamic system analysis was performed using the Lagrangian method written in Equation 11. 

𝐿 = 𝑇 − 𝑉 (11) 

Substituting Equations 9 and 10 into Equation 11 obtained the Lagrangian Equation 12. 

𝐿 =  (
3

4
 𝑚 + 

1

2
 𝑚) �̇�2 + 𝑀𝑙 𝑐𝑜𝑠 𝜃�̇��̇� +

1

2
𝑀𝑙2𝜃2̇ − 𝑀𝑔𝑙 𝑐𝑜𝑠 𝜃 (12) 

3-3- The Lagrange Equation 

Lagrange analysis on 𝑝 dan 𝜃 was performed after 𝑝 and 𝜃 as the general coordinates had been determined. The 

completion of the Lagrange equation for p was written in Equation 13. 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) − 

𝜕𝐿

𝜕𝑝
= 𝑓 (13) 

Equation 12 was used to calculate the partial derivative expressed in Equation 13, which yielded Equation 14. 

𝑑

𝑑𝑡
{(

3

2
𝑚 + 𝑀) �̇� + 𝑀𝑙�̇� cos 𝜃} − 0 = 𝑓 (14) 

(
3

2
𝑚 + 𝑀) �̈� + 𝑀𝑙�̈� cos 𝜃 − 𝑀𝑙�̇�2 sin 𝜃 = 𝑓 (15) 

The completion of the Lagrange equation for   was written in Equation 16. 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜃
= 0 (16) 

Equation 14 was used to calculate the partial derivative expressed in Equation 16, which yielded Equation 17. 

𝑑

𝑑𝑡
(𝑀𝑙�̇�  cos 𝜃 + 𝑀𝑙2�̇�) − 𝑀𝑔𝑙 sin 𝜃 = 0 (17) 

𝑀𝑙�̈� cos 𝜃 − 𝑚𝑙�̇� sin 𝜃 + 𝑀𝑙2�̈� − 𝑀𝑔𝑙 sin 𝜃 = 0 (18) 

The self-balancing robot's system equation was then formulated as in Equation 19. 

(
3

2
𝑚 +  𝑀) �̈� + 𝑀𝑙�̈� cos 𝜃 − 𝑀𝑙�̇�2 sin 𝜃 = 𝑓 (19) 

𝑀𝑙�̈� cos 𝜃 − 𝑀𝑙�̇�  sin 𝜃 +  𝑀𝑙2�̈� − 𝑀𝑔𝑙 sin 𝜃 = 0  

3-4- Linearization 

Equation 14 is a nonlinear equation. The control system was aimed to keep the inverted pendulum upright. The 

equation was linearized and applicable for sin 0    dan 𝑐𝑜𝑠 1    as formulated in Equation 20. 

(
3

2
 𝑚 + 𝑀) �̈� + 𝑀𝑙�̈� = 𝑓 (20) 

𝑀𝑝 + 𝑀𝑙�̈� − 𝑀𝑔𝜃 = 0 (21) 

By completing Equation 15, �̈� dan �̈� were obtained, as written in Equations 22 and 23. 

�̈� =  
2𝑓

3𝑚
− 

2𝑀𝑔

3𝑚
 𝜃 (22) 

�̈� =  
2𝑓

3𝑚𝑙
+ (

3𝑚 + 2𝑀

3𝑚𝑙
) 𝑔𝜃 (23) 

Equation 23 was expressed in a state-space equation to obtain Equation 24, 𝑢 denoted the force acting on the robot 

self-balancing system 𝑥. 
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�̇� = 𝐴𝑥 + 𝐵𝑢 (24) 

�̇� =  

[
 
 
 
 
 
 
 

0 1 0 0

(
3𝑚 + 2𝑀

3𝑚𝑙
) 𝑔 0 0 0

0 0 0 1

− 
2𝑀

3𝑔
𝑔 0 0 0

]
 
 
 
 
 
 
 

[

𝜃
�̇�
𝑝
�̇�

] +

[
 
 
 
 
 
 
 

0

−
2

3𝑚𝑙

0

2

3𝑚 ]
 
 
 
 
 
 
 

𝑢 (25) 

4- State-Space to Transfer Function  

The self-balancing model's state space was converted to a transfer function model to be controlled by the PID 

control. The following are state-space equations. 

�̇� = 𝐴𝑥 + 𝐵𝑢 (26) 

𝑦 = 𝐶𝑥 + 𝐷𝑢 (27) 

By taking Laplace transformation (with zero value at the initial conditions), the equations turned into: 

𝑠𝑋(𝑠) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠) (28) 

𝑌(𝑠) = 𝐶𝑋(𝑠) + 𝐷𝑈(𝑠) (29) 

Then, Equation 28 can be rewritten as: 

(𝑠𝐼 − 𝐴)𝑋(𝑠) = 𝐵𝑈(𝑠) (30) 

Both sides were then pre-multiplied with (𝑠𝐼 − 𝐴)−1 so that the following equation can be obtained. 

(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵𝑈(𝑠) (31) 

By substituting X (s) in the output equation, Equation 29 can be expressed as: 

𝑌(𝑠) = (𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷)𝑈(𝑠) (32) 

Finally, the transfer function equation can be formulated as: 

𝑌(𝑠)

𝑈(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (33) 

5- PID Control Design  

The PID control characteristics were strongly influenced by combining each control action Proportional 𝐾𝑝 , 

Integral 𝐾𝑖And Derivative (𝐾𝑑 ) [83]. The regulation of the 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑  constant values showed the prominent 

nature of each control action [84]. When one or two of the control actions were more prominently set out, they would 

significantly contribute to the overall system. Control action parameters were not independent, so if one of the values 

was changed, there would be a change in the system response [85]. Figure 3 shows the block diagram for the 

combination of proportional (P), integral (I), and derivative (D) control action. 

 

Figure 3. PID control block diagram 
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The following equations are the mathematical equation for the parallel PID control action: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
 (34) 

with  

𝐾𝑑 = 𝐾𝑝𝑇𝑑  (35) 

𝐾𝑖 = 
𝐾𝑝

𝑇𝑖

 (36) 

6- Ziegler Nichols Tuning Rules  

The Ziegler-Nichols rules related the Plant transient response characteristics to the values of 𝐾𝑝, 𝑇𝑖 , and 𝑇𝑑 [70]. 

The parameter tuning in this research was conducted based on the second method of the Ziegler Nichols rules, in 

which the values 𝑇𝑖 =  ∞ and 𝑇𝑑 = 0 must be set first; the response from the plant can only be seen if the value of  𝐾𝑝 

is set (Figure 4). This method involved giving the value of 𝐾𝑝 ranging from 0 to the critical value 𝐾𝑐𝑟  before the plant 

responds with an oscillating curve. This approach could not be used if the response did not display an oscillating 

curve. 

 

Figure 4. Giving 𝐾𝑝 Value to Plant 

This method was performed by providing 𝐾𝑝 value to the plant periodically from 0 to critical value of 𝐾𝑐𝑟  until the 

plant responds with an oscillating curve. Thus, the critical value of 𝐾𝑐𝑟  and period value of 𝑃𝑐𝑟  were determined using 

the experimental method. Figure 5 illustrates the oscillating response expected from the system. Table 1 presents the 

PID formula using the second method of Ziegler-Nichols rules. P, PI, and PID are three different types of control.  

Table 1. PID formulation based on the second method of Zigler-Nichols 

Control Type 𝑲𝒑 𝑻𝒊 𝑻𝒅 

P 0.5𝐾𝑐𝑟 ∞ 0 

PI 0.45𝐾𝑐𝑟 
1

1.2
𝑃𝑐𝑟 0 

PID 0.6𝐾𝑐𝑟 0.5𝑃𝑐𝑟 0.5𝑃𝑐𝑟 

 

Figure 5. The oscillating response 

7- Kalman Filter  

The noise in a signal containing readings or measurements was reduced or eliminated using the Kalman Filter [86]. 

It estimated the process state in a system, minimizing the mean square error value before, now, or in the future [87, 

88]. The two processes in Kalman Filter were time update and measurement update [89]. Time update was the process 

of predicting future readings, and measurement update was the process of correcting the predicted value. The noise in 

the measurement results was used to calculate time update and measurement update to obtain a more accurate 

estimation value [90]. The two processes in the Kalman filter were the prediction stage and the correction stage [91]. 
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7-1- Prediction Stage (Time Update) 

A prediction stage is a process in which future readings are predicted to obtain state and covariance values ranging 

from 𝑘 − 1 to 𝑘 [92]. Two equations at the Prediction Stage were State Prediction and Error Covariance Prediction 

[93, 94]. 

The state Prediction equation is 

�̂�𝑘
 ̅ = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘 (37) 

where 𝐴 is state transition matrix and 𝐵 is the control matrix. 

The Error Covariance Prediction equation is; 

𝑃𝑘
− =  𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 (38) 

where 𝑃 is the state variance matriks and 𝑄 is the process variance matrix. 

7-2- Correction Stage 

A correction stage is a process of correcting the predicted value [95]. The first step was to calculate the Kalman 

gain 𝐾𝑘 (39). Next, the actual process value 𝑧𝑘, which would be used for post-estimation state calculations (40), was 

determined. Finally, the post-estimation error covariance values (41) were obtained using Kalman Gain equation, 

Estimation, and Covariance Error in the correction stage. 

The Kalman Gain equation is; 

𝐾𝑘 = 𝑃𝑘
 ̅ 𝐻𝑇(𝐻𝑃𝑘

 ̅  𝐻𝑇 + 𝑅)−1 (39) 

where 𝐻 is the measurement matrix and 𝑅 is measurement variance matrix. 

The Estimation equation is; 

�̂�𝑘 = �̂�𝑘
 ̅ + 𝐾𝑘(𝑧𝑘 − 𝐻�̂�𝑘

 ̅ ) (40) 

The covariance error equation is 

𝑃𝑘  =  (𝐼 − 𝐾𝑘𝐻) 𝑃𝑘
− (41) 

The prediction and correction stages were repeated several times, with the post-estimation values used to calculate 

the next new pre-estimation value. 

8- Hardware Design 

8-1- Electrical Design 

Figure 5 shows some of the electronic components used to build the robot. It consisted of Arduino nano 

components, DC motors with encoders, L298N motor drivers, MPU sensors 6050, a 16×2 LCD, and a push-button. 

The components were assembled and simulated to be integrated into a robot-enabled system.  

8-2- Robot mechanical design 

The robot comprises three chassis arranged in three levels, as shown in Figure 6. The top and bottom chassis were 

made of 2 mm black acrylic material. The middle chassis was produced using a PCB and control center consisting of 

an Arduino microcontroller, an L298N driver, and a GY-521 MPU 6050 sensor. The robot chassis included switches, 

push buttons, 16×2 LCD, and the bottom chassis included batteries and two DC encoders. It had two wheels as a 

driving force. The robot's dimensions and weight were 16×16×6 cm and 642 grams, and the wheels' diameter and 

weight were 6.5 cm and 36 grams. 

The robot was designed in a two-wheel configuration to increase its power efficiency, maneuverability, and 

stability-enhancing behavior. It was also battery-operated with a Lithium rechargeable battery. Figure 7 shows the 

mechanical design of the prototype. A height-adjustable selfie sticks with a rounded base made of durable plastic will 

be added to the robot using 3M industrial double-sided tape. Meanwhile, the universal phone/tablet holder on the tip of 

the selfie stick was equipped with a mechanical, adjustable neck-angle gripper. 
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Figure 6. Electrical design 

 

Figure 7. Self-balancing robot prototype design 

8-3- Control System Design 

Figure 8 shows the design of the self-balancing robot control system. The PID control and the Kalman filter were 

two methods to stabilize the robot. The tuning method to find the PID parameter values was the second method of 

Ziegler-Nichols's rules. The Kalman filter was combined with an Inertial Measurement Unit (IMU) sensor to eliminate 

noise. 

 

 Figure 8. Design of the proposed disturbance rejection control 

A system modeling for the self-balancing robot was required to design a PID control system. Table 2 presents a set 

of parameters to determine the transfer function values of the robot mass, wheel mass, robot length, and gravitational 

acceleration values.  

Table 2. Parameters to find transfer function values 

Notation Parameter Value Unit 

𝑀 Robot Mass 0.642 Kg 

𝑚 Wheel Mass 0.036 Kg 

𝑙 Robot Length 0.16 Meter 

𝑔 Gravitation 9.8 m/s2 

Set 

Point 
PID Arduino Motor DC Robot 

Accelerometer 

Gyroscope 

Kalman Filter 

Kalman Filter 

+ 

+ 

+ 

− 
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The parameter values used for state-space modeling were written in Equation 19. The model was then converted 

into a transfer function using Equation 25 to be more easily controlled by the PID. The transfer function equation was 

written in Equation 42. 

𝐺 =  
0.0242 + 0.1572

𝑠4 − 2.776−17𝑠3 − 0.02551𝑠2
 (42) 

After obtaining the transfer function value from the robot system, tuning the PID parameter as the control value of 

the robot was completed. 

8-4- Communication and Connectivity Design 

In order to provide telepresence and automatic function to the robot, the robot will be equipped with a DTMF 

decoder module. DTMF was chosen due to its reasonably small size and dimension (37×25×12 mm, 10g) while 

enabling motor control through Skype/WhatsApp communication. The proposed connectivity design is described 

briefly as follows. A tablet/smartphone with an internet connection is attached to the robot and connected to the 

DTMF module. When the tablet/smartphone receives a video call through Skype/WhatsApp, it will automatically 

answer the call. The caller will type a specific number as code to move the robot to the right/left; the specific number 

will emit a sound with a particular frequency, and DTMF will decode it. Therefore, the robot can be remotely 

controlled based on the specific number that the caller typed. 

8-5- Determining the 𝑲𝒄𝒓 and 𝑷𝒄𝒓 

The 𝐾𝑐𝑟  value of 51.667 generated stronger oscillating and constant graphs. Figure 9 shows the graph response. It 

illustrates how to get the values (𝑥1, 𝑦1) = (29.6,1.985) and (𝑥2, 𝑦2) = (30.46, 1.983). 

The Equation 43 is the value of 𝑃𝑐𝑟  obtained from the graph: 

𝑃𝑐𝑟 = 𝑥2 − 𝑥1 
(43) 

𝑃𝑐𝑟 = 30.46𝑠 − 29.76𝑠 = 0.7 

 

Figure 9. Test Results for 𝑲𝒄𝒓Value 

8-6- Determining 𝑲𝒑, 𝑻𝒊 and 𝑻𝒅 values 

After obtaining the 𝐾𝑐𝑟  and 𝑃𝑐𝑟  values, the second Ziegler-Nichols rules were used to calculate the 𝐾𝑝 , 𝑇𝑖  and 𝑇𝑑 

values and the results were formulated in Equations 39, 40, and 41. 

𝐾𝑝 =  0.6 x 𝐾𝑐𝑟  
(44) 

𝐾𝑝 = 0.6 x 51.667 = 31.002 



Emerging Science Journal | Vol. 4, Special Issue "IoT, IoV, and Blockchain", (2020, 2021) 

Page | 251 

𝑇𝑖 =  0.5 x 𝑃𝑐𝑟  
(45) 

𝑇𝑖 = 0.5 x 0.7 = 0.35 

𝑇𝑑 = 0.125 x 𝑃𝑐𝑟  
(46) 

𝑇𝑑 = 0.125 x 0.7 = 0.0875 

The 𝑇𝑖   and 𝑇𝑑  values were modified with Equations 45 and 46 to adjust the oscillation acceleration and noise 

according to system requirements by computing the values of certain variables as needed. The value of those variables 

was searched experimentally. 

𝑇𝑖𝑀 = 𝑇𝑖  × 𝑇𝑖𝑉 
(47) 

𝑇𝑖𝑀 = 0.35 ×  17 = 5.95 

𝑇𝑑𝑀 = 𝑇𝑑  ×  𝑇𝑑𝑉 
(48) 

𝑇𝑑𝑀 = 0.0875 ×  46.5 = 4.06875 

where 𝑇𝑖𝑚 is 𝑇𝑖  modification, 𝑇𝑑𝑚  is 𝑇𝑑  modification, 𝑇𝑖𝑉 is the variable of 𝑇𝑖 , 𝑇𝑑𝑉 is the variable of 𝑇𝑑. Equations 

49 and 50 formulate the parameter values conversion from 𝑇𝑖𝑀  and 𝑇𝑑𝑀 to 𝐾𝑖 dan 𝐾𝑑. 

𝐾𝑖 =
𝐾𝑝

𝑇𝑖𝑀
 

(49) 

𝐾𝑖 =
31.002

5.95
= 5.2104201 

𝐾𝑑 = 𝐾𝑝 × 𝑇𝑑𝑀 
(50) 

𝐾𝑑 = 31.002 × 4.375 = 126.1393875 

9- Results and Discussion  

Figure 10 displays the three-level self-balancing robots created, controlled by PID control and Kalman filter. The 

robot used two DC motor drives. The first and third level chassis were made of Acrylic, while the second level chassis 

was made of PCB installed with the electrical parts. The PID control used Ziegler Nichols's rules and was tested using 

simulations and an actual robot implementation, whereas the Kalman filter was tested using an actual robot 

implementation. 

 

Figure 10. Self-balancing robot prototype 

9-1- System Simulation  

Simulations on this robot system were performed on the Simulink in Matlab software. It was conducted when the 

transfer function value and the PID tuning value of the system had been obtained using a step test signal. It aimed to 

observe the transient response of the system.  

9-2- System Simulation without PID 

Figure 11 illustrates the system simulation without PID application. The self-balancing robot was modeled using 

the transfer function with a step signal. Figure 12 shows that the system's initial response was stationary while an 

upward movement was shown an infinite period later. It proves that the system without a PID controller is unstable. 
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Figure 11. System simulation without PID 

 

Figure 12. System simulation results in PID 

9-3- System Simulation with PID 

Figure 13 illustrates the block diagram of system simulation with PID. The input was a step function and PID 

control with 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑  of 31.002, 5.2104201, and 126.1393875, respectively. The step response resulted is 

displayed in Figure 13. 

 

Figure 13. Block diagram of the system with PID 

It demonstrates that the PID controller improves the system's reaction (Figure 14). It is proven by the transition 

period as presented in the table. The time sampling in this system testing was 50 seconds with a rise-time value of 

4.448s, pre-shoot 0.625%, overshoot 24.375%, and undershoot 1.696%. 
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Figure 14. System simulation result with PID 

9-4- Testing for Real Robot System without PID 

Figure 15 illustrates the comparison of angle readings of the system with and without PID. Three graph curves 

show the set-point value, roll angle value without Kalman filter, and roll angle value with Kalman filter colored in 

black, blue, and red, respectively. The red-colored gravitational curve shows that the Kalman filter can reduce the 

noise signal from the IMU. The self-balancing robot cannot be stabilized without implementing any controller. 

 

Figure 15. Comparison of angle reading values without PID 

Figure 16 displays the motor speed response without PID. It shows that the movement of the two motors is 

constant, and there is a condition in which the motor moves backward and then quickly moves forward at a relatively 

fast speed. When the graph shows an increasing line, the motor moves forward; while the graph exposes a decreasing 

line, the motor moves backward. At the beginning of the movement, the robot's response was slow, but later it moved 

fast. Based on the motor movement, the robot has no feedback to the motor to be used as a reference to stay balanced. 
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Figure 16. System's motor speed response without PID 

9-5- Testing for Real Robot System Testing with PID 

Figure 17 illustrates the comparison of angle readings of the system PID. Three graph curves are set-point curves, 

roll angle curves without Kalman filter, and roll angle curves with Kalman filters in black, blue, and red lines. The 

figure shows that the self-balancing robot is stable. The disturbances can be eliminated by using the filter. 

 

Figure 17. Comparison of angle reading values with PID 

Figure 18 illustrates the motor speed response system with PID. The movement direction was the same, but the left 

motor was more dominant than the right because they had different responses when carrying loads even though they 

had similar specifications. The graph exposes that the motor movement oscillates due to balancing the position by 

moving forward and backward. The motor movement referred to robot angle changes. When the robot was about to 

fall forward, the motor responded by moving forward or CW with a certain speed to return to a balanced position. 

Conversely, when the robot was about to fall backward, the motor responded by moving backward or CCW. 
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Figure 18. Motor speed response system with PID 

9-6- Testing for Real Robot System for Disturbance 

The test was performed after it was found that a more stable system could be applied to this robot system by using 

PID control. The robot was pushed to observe whether it could maintain its balance or not. Figure 19 reveals the 

system response to disturbance. The response given by the system to the robot appears to be satisfactory. The robot 

was pushed two times. The roll angle reading showed an overshoot, but it was not the noise generated by the sensor 

reading but an external disturbance. The Kalman filter, used as an algorithm to filter the actual angle readings, could 

reduce and even eliminate noise caused by external disturbance for the robot to remain stable to reach or approach the 

set-point. It enabled the robot to return to its balance without falling. 

Figure 20 shows the motor speed response to the disturbance. The robot was firstly stable, then moved backward or 

CCW when pushed. The robot retreat was the response. When the motor remained stable, it indicated that the system 

improved the robot's state and gave feedback to the motor to stabilize so that the robot did not fall. 

 

Figure 19. System response to disturbance 
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Figure 20. Motor speed response to disturbance 

10- Conclusion  

A robust and stable disturbance rejection control was successfully designed specifically for the proposed medical 

telepresence robot. The PID parameters were tuned using the second method of Ziegler Nichols rules, resulting in 

𝐾𝑝 = 31.002, 𝐾𝑖 = 5.167 and 𝐾𝑑 = 125.992128 for a prototype of a self-balancing robot with a size of 16×16×16 

cm. The combination of GY-521 MPU 6050 sensor reading and the Kalman Filter aimed to get an accurate reading 

value. The robot system was tested using simulation and real robots under three different conditions: without a PID 

controller, with a PID controller, and when given a disturbance. The measurement evaluations were performed by 

comparing the Kalman filter with the GY-521 MPU 6050 sensor readings. According to the simulation and real-time 

implementation results, the robot maintained balance for approximately one hour before the system was turned off and 

re-balanced itself when applied with external disturbances. The Kalman filter provides the best for the robot's system 

performance because it can reduce and eliminate noise in the readings when the robot is either stationary or subjected 

to a disturbance. 
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