24 research outputs found

    Technological methods used in evaluating the balance

    Get PDF
    Balance is evaluated within the concept of coordination and is defi ned as the ability to maintain the body’s center of gravity on the support surface. Technological methods used in the assessment of balance are robotic systems, virtual reality applications, tele-rehabilitation, web-based applications and sensor applications. In this review, we aimed to explain today’s technological assessment methods and their relationship with technological rehabilitation in balance assessment. The technological method to be used in balance assessment suitability of the patient, ease of use, time saving, active participation, depending on the person’s fi nancial situation and the severity of the disease although the advantages vary, It seems that it may differ. More studies are needed for a more objective assessment of balance, designing products and using these technologies in different patient groups.No sponso

    A low-cost and highly integrated sensing insole for plantar pressure measurement

    Get PDF
    Abstract(#br)Plantar pressure measurement plays an important role in monitoring health and sports performance. Here, instead of embedding force sensitive resistors in the insole, we developed a simple and low-cost, highly integrated, textile-only sensing insole for the measurement of plantar pressures. These sensors were composed entirely of fabric, and utilized a capacitive mechanism, with silver cloth as electrodes and cotton cloth as the dielectric element. The similarity of elasticity and flexibility between sensor and insole enabled them to be closely integrated, and avoided negative impact on comfort. Additionally, the silver cloth electrodes contributed good antibacterial properties. The sensors exhibited fast response, negligible hysteresis, high sensitivity (0.947 MPa −1 ), and good stability. Based upon capacitive responses to plantar pressures from the instrumented insole, gait phases (events) in different patterns were detected, giving the potential to monitor the health of the foot

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Customizable Wearable Vibrotactile Display for Gait Biofeedback Research

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Winter 2021Approximately a third of American adults experience balance problems throughout their lifetime which can lead to a fear of falling, activity avoidance, and an increasingly sedentary lifestyle. While gait and balance training regimens are the most common therapeutic solution for adults with increased risk for falling, interventions that involve personalized biofeedback have been successfully shown to improve standing balance in research studies; however, it is still unclear how best to provide meaningful biofeedback during gait-related activities. Current gait correction systems are limited to providing feedback on a single gait parameter which cannot capture the full complexity of gait, and commonly use only one feedback scheme/modality. Additionally, many devices cannot provide the device wearer with immediate feedback. Therefore, there is a need to develop a customizable/reconfigurable wearable device to be used in a research setting, which will explore the effects of vibrotactile feedback on individuals with vestibular disorders. This device must be able to gather information on multiple kinematic parameters related to gait and provide vibrotactile feedback for the device wearer to interpret and correct their balance irregularities within each testing trial. Ultimately, this research platform will inform the development of a clinic-based and home-based biofeedback system.Christopher DiCesare, Safa Jabri, Kathleen Sienko: Sienko Research Labhttp://deepblue.lib.umich.edu/bitstream/2027.42/167651/1/Team_7-Customizable_Wearable_Vibrotactile_Display_for_Gait_Biofeedback_Research.pd

    Sensors for Foam Balance Pad

    Get PDF
    Diplomová práce se zabývá návrhem vlastního senzorického řešení pro detekci pohybů prováděných na pěnové balanční podložce AIREX® Elite. Součástí práce je teoretický popis balančních cvičebních pomůcek a jejich aplikace v oblasti fyzioterapie. Dále je zde uvedena rešerše současných technických řešení pro snímání pohybu na balanční pomůcce. Pro realizaci vlastního řešení byl vybrán princip kapacitního měření vzdálenosti s využitím vodivých textilií pro realizaci senzoru. Další část je věnována návrhu hardwarového řešení, je zde popsán návrh senzorické matice, velikost jednotlivých snímacích prvků a vzdálenost mezi nimi a sběrem dat pomocí mikrokontroléru STM32 a zpracováním těchto dat v prostředí LabVIEW. Součástí vlastní práce je návrh vlastního uživatelského rozhraní k vizualizaci pohybu na pěnové balanční podložce a testování vytvořeného řešení v reálných podmínkách při rehabilitaci v domácím prostředí.The thesis deals with the design of a custom sensor solution for the detection of movements performed on the AIREX® Elite foam balance pad. The thesis includes a theoretical description of balance exercise aids and their application in the field of physiotherapy. Furthermore, a survey of current technical solutions for motion sensing on balance aids is presented. For the implementation of the actual solution, the principle of capacitive distance measurement using conductive textiles was chosen for the sensor implementation. The next section is devoted to the design of the hardware solution, it describes the design of the sensor matrix, the size of the individual sensing elements and the distance between them and the data acquisition using the STM32 microcontroller and the processing of this data in the LabVIEW environment. The actual work includes the design of a custom user interface to visualize the motion on the foam balance pad and testing of the developed solution in real conditions during rehabilitation in a home environment.450 - Katedra kybernetiky a biomedicínského inženýrstvívýborn

    A Review on Accelerometry-Based Gait Analysis and Emerging Clinical Applications

    Get PDF
    Gait analysis continues to be an important technique for many clinical applications to diagnose and monitor certain diseases. Many mental and physical abnormalities cause measurable differences in a person's gait. Gait analysis has applications in sport, computer games, physical rehabilitation, clinical assessment, surveillance, human recognition, modelling, and many other fields. There are established methods using various sensors for gait analysis, of which, accelerometers are one of the most often employed. Accelerometer sensors are generally more user friendly and less invasive. In this paper, we review research regarding accelerometer sensors used for gait analysis with particular focus on clinical applications. We provide a brief introduction to accelerometer theory followed by other popular sensing technologies. The commonly used gait phases and parameters are enumerated. The details of extracting the papers for review are provided. We also review several gait analysis software. Then, we provide an extensive report of accelerometry based gait analysis systems and applications with additional emphasis on trunk accelerometry. We conclude this review with future research directions

    Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice

    Get PDF
    This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation

    Evaluating footwear “in the wild”: Examining wrap and lace trail shoe closures during trail running

    Get PDF
    Trail running participation has grown over the last two decades. As a result, there have been an increasing number of studies examining the sport. Despite these increases, there is a lack of understanding regarding the effects of footwear on trail running biomechanics in ecologically valid conditions. The purpose of our study was to evaluate how a Wrap vs. Lace closure (on the same shoe) impacts running biomechanics on a trail. Thirty subjects ran a trail loop in each shoe while wearing a global positioning system (GPS) watch, heart rate monitor, inertial measurement units (IMUs), and plantar pressure insoles. The Wrap closure reduced peak foot eversion velocity (measured via IMU), which has been associated with fit. The Wrap closure also increased heel contact area, which is also associated with fit. This increase may be associated with the subjective preference for the Wrap. Lastly, runners had a small but significant increase in running speed in the Wrap shoe with no differences in heart rate nor subjective exertion. In total, the Wrap closure fit better than the Lace closure on a variety of terrain. This study demonstrates the feasibility of detecting meaningful biomechanical differences between footwear features in the wild using statistical tools and study design. Evaluating footwear in ecologically valid environments often creates additional variance in the data. This variance should not be treated as noise; instead, it is critical to capture this additional variance and challenges of ecologically valid terrain if we hope to use biomechanics to impact the development of new products

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective
    corecore