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Motor disorders are a common and age-related problem in the general community.
Therefore, medical rehabilitation often focuses on reducing the burden of motor disorders.
With an aging society, the burden of motor disorders is expected to grow, while the
healthcare capacity is not expected to match this growth. For this reason, there is an urgent
need to optimize medical rehabilitation of motor disorders both in terms of effectiveness
and efficiency.

The rapid innovations in wearable movement sensors in recent years may provide
an opportunity to translate these innovations into the field of motor rehabilitation. Wear-
able movement sensors can provide objective and precise measurements of the quantity
and quality of physical activities, body postures, and movements in clinical as well as
normal daily life environments, thereby providing clinicians with data that can be used to
guide, personalize, and optimize therapy. Since wearable sensors are portable, inexpensive,
unobtrusive, and also have the ability to provide information that is unique and cannot
be obtained otherwise (e.g., by standardized clinical tests or questionnaires), they have
an enormous potential for the tracking of patient functioning and recovery during motor
rehabilitation. In addition, wearables can play a crucial role in the existing tendency to-
wards at-home monitoring and treatment, and in substituting more complex measurement
devices, such as camera systems.

Despite their potential to optimize motor rehabilitation, wearable movement sensors
are relatively scarcely applied in rehabilitation of motor disorders. Important challenges
remain, such as the development of reliable and valid wearable movement sensors in
clinical populations and free-living environments, barriers in the deployment of wearable
movement sensors in clinical care, development and optimization of innovative sensor
configurations and data analysis techniques (such as machine learning-based algorithms
that enable detection of specific activities and movements in free-living conditions), and
the development of disease-specific sensor-based outcome measures that are relevant and
interpretable by patients and clinicians.

This Special Issue, entitled “Wearable Movement Sensors for Rehabilitation: From
Technology to Clinical Practice”, aims to facilitate the application of wearable movement
sensors in clinical practice. It intends to explore the opportunities for the application of
wearable movement sensors in motor rehabilitation.

A total of 17 papers are published in this Special Issue. These papers mainly focus
on the following topics: algorithm development, technical validation, clinical validation,
monitoring of physical behavior in daily life conditions, and implementation in motor
rehabilitation. Hereafter, we provide a brief overview of each paper.

Yang et al. (2020) [1] developed an online gait-planning algorithm based on sensing
signals to enable balance control during exo-skeleton assisted walking with crutches in
spinal cord patients. Results from this pilot study in healthy adults indicate that the

Sensors 2021, 21, 4744. https://doi.org/10.3390/s21144744 https://www.mdpi.com/journal/sensors
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developed online gait-planning algorithm can plan the landing point of the swing leg
to improve balance control during exo-skeleton assisted walking. The algorithm may be
useful to improve balance control during exoskeleton assisted walking in spinal cord injury
patients and reduce the need of using crutches.

Sy et al. (2020) [2] present a novel Lie group constrained extended Kalman filter to
estimate lower limb kinematics with a minimal sensing solution during different physical
activities (e.g., walking). Healthy adults performed an activity protocol with three inertial
measurement unit (IMU) sensors, placed on the pelvis and on both ankles. Results showed
relatively small errors for the knee and hip joint angles compared to an optimal motion
capture system, indicating the validity of the algorithm. This paper contributes to the
development of a sensor-based method that enables comfortable and long-term monitoring
of lower limb kinematics in rehabilitation patient populations.

Fadel et al. (2020) [3] propose a new algorithm that quantifies the characteristics of
walking based on a hip-worn accelerometer in a more detailed manner than activity counts.
The algorithm uses the fast Fourier Transform to obtain periodic characteristics of walking,
and it reduces the dimensionality of the raw sensor data into a form that retains details
of the original signal while enabling existing statistical methods for analyses. The paper
serves as a proof of concept for how researchers can extract the walking characteristics
from sensor data and investigate the association with relevant health-related outcomes
in rehabilitation. An example is provided of a study that investigates the associations of
walking spectra obtained from the fast-paced 400 m walk with age and BMI in older adults.

Roossien et al. (2021) [4] developed a sensor-based method for the measurement of
lumbar load. The method consists of six IMU sensors on the upper and lower arms, sternum,
and pelvis. Lumbar load is quantified as the net moment around the L5/S1 intervertebral
body, estimated using a method that is based on artificial neural networks. The validity
of the sensor-based method was supported in healthy adults since the differences in the
estimated lumbar load were consistent with the perceived intensity levels and the character
of the work tasks. The method may be used to monitor lumbar load in people with
musculoskeletal disorders such as lower back pain, to assess muscular overload during
rehabilitation, and to help clinicians to tailor treatments.

Bravi et al. (2021) [5] investigated the validity of a sensor-based system for shoulder
range of motion assessment in cervical spinal cord injury patients. The sensor-system
consists of two IMU sensors placed on the wrist and upper arm. Patients and healthy
controls performed four shoulder movements. Every movement was evaluated with a
goniometer and with the IMU system at the same time. The validity of IMU system was
partially confirmed, since relative agreement between the IMU system and goniometer
was high but absolute agreement was relatively low. The proposed IMU system may be
a potential tool for monitoring shoulder range of motion in patients with cervical spinal
cord injury.

Tak et al. (2020) [6] presented a new sensor-based method for the measurement of
knee, hip and spine joint angles during the single leg squat. The sensor system consists
of four IMU sensors placed on the trunk, pelvis, upper leg, and lower leg. In this study,
healthy adults performed single leg squats. Results showed high correlations between the
joint angles measured with the sensor system and an optical reference system, indicating
the validity of the sensor system. The sensor method is potentially relevant for monitoring
and optimizing lower extremity kinematics during rehabilitation interventions.

Ahmadi et al. (2020) [7] investigated the accuracy of group, group-personalized, and
fully-personalized machine learning physical activity classification models in children
with cerebral palsy. Models were trained and tested using accelerometer data from the
hip, wrist, and ankle. To assess the validity, the classification accuracy was evaluated
and compared in a laboratory trial and a simulated free-living trial with 38 children
while wearing a wrist-worn accelerometer. Results showed that group-personalized and
fully-personalized Random Forest activity classification models provide a more accurate
recognition of physical activity in children with CP than “one-size-fits-all” group models.
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Labarierre et al. (2020) [8] performed a systematic review to identify and summarize
studies in which motion sensors and machine learning algorithms have been used to
adapt the behavior of orthotic/prosthetic devices to user locomotion mode (e.g., stair
ascent/descent, walking on flat floor). Results showed that classification accuracies were, in
general, very high in healthy people and people with unilateral transtibial and transfemoral
amputation. These findings support the validity of sensor methods and machine learning
algorithms to recognize locomotion mode.

Yang et al. (2020) [9] developed a sensor-based method to estimate relative 3D orien-
tations between finger tips and the dorsal side of the hand with inertial motion sensors
but without magnetometers to avoid magnetic disturbance. The method consists of one
sensor on the dorsal side of the hand, and one on the most distal finger segment. Results in
three healthy adults show that errors in relative orientation between fingers and hand are
relatively small during hand movements and during a functional water-drinking task. The
sensor method is potentially useful for clinical assessments during stroke rehabilitation.

Prasanth et al. (2021) [10] performed a systematic review of sensor-based methods ap-
plied for real-time gait analysis. Inertial measurement units on the shank and foot are most
often used for gait analysis in combination with threshold or peak identification methods
for gait detection. Less than one third of the sensor-based methods for gait analysis were
validated on pathological gait data. For clinical gait assessments, a combination of inertial
measurement units and rule-based methods are recommended as an optimal solution.

Regterschot et al. (2021) [11] investigated to what extent arm use measurements with
wrist-worn accelerometers in stroke patients are affected by whole-body movements, such
as walking. Wrist-worn accelerometers are often applied to measure arm use after stroke.
They measure arm use by recording all arm movements, including non-functional arm
movements due to whole-body movements. Results of the study show that whole-body
movements substantially increase cross-sectional arm use outcomes when not correcting
arm use data for whole-body movements, thereby threatening the validity of arm use
outcomes and measured arm use changes.

Zhou et al. (2020) [12] evaluated a sensor-based method to classify fallers from non-
fallers based on spatial-temporal gait characteristics. Wearable sensors were placed on both
ankles and the lower back. A partial least square discriminant analysis was used to classify
fallers and non-fallers based on gait features derived from the sensor data. Results showed
that fallers differed from non-fallers in gait patterns. The presented sensor-based method
may be useful in rehabilitation to identify persons with a high fall risk and to monitor the
effects of interventions on fall risk.

Mazzarella et al. (2020) [13] investigated in this pilot study whether a 3D motion
capture system can detect changes over time in pre-reaching and reaching behaviors in
infants with perinatal stroke and cerebral palsy. Results showed that spatiotemporal
characteristics of upper extremity movements measured with a 3D motion capture system
change over time in infants with typical development, cerebral palsy and perinatal stroke,
with potential differences between infants with typical development and cerebral palsy.
This study shows the potential of wearable sensors for measuring characteristics of upper
extremity movements in infants with perinatal stroke and cerebral palsy.

Fleiner et al. (2021) [14] investigated the association between physical behavior and
subjectively-rated circadian chronotypes in older adults. Physical activity was measured
in 81 older adults during one week with a motion sensor on the lower back and the wrist.
Results showed that the timing of mobility-related activity is associated with subjectively-
rated chronotypes in older adults. The presented sensor-based method may provide a
useful approach for early detecting and tailoring the treatment of circadian disruptions in
rehabilitation populations.

Hofstad et al. (2020) [15] measured the number of consecutive steps and walking bouts
in persons with a lower limb amputation using three accelerometers: one in each trouser
pocket and one on the sternum. Measurements were performed for two consecutive days
in 20 persons with a lower limb amputation and 10 age-matched controls. Results showed
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that objectively measured mobility was highly affected in persons with an amputation and
that self-reported mobility did not match with the objective sensor-based measurements.
This study recommends the use of accelerometers to measure mobility in persons with a
lower limb amputation.

Lang et al. (2020) [16] discussed the major barriers for the application of wearable
movement sensors in motor rehabilitation and proposed benchmarks for the implementa-
tion of sensors in clinical practice. Barriers in the clinic are the busy clinical environment
and the lack of realization of the value of the information that can be obtained with sensors.
Technology-related barriers include: (1) sensor systems that are inaccurate for many patient
populations; (2) sensor systems that are not user-friendly for clinicians and/or patients; (3)
the lack of published data regarding reliability and clinical validity of sensor systems.

Braakhuis et al. (2021) [17] explored the use, perspectives, and barriers to wearable
activity monitoring in day-to-day stroke care routines amongst physical therapists. Results
of the online survey showed that 27% of the respondents were using activity monitoring,
and the concept of remote activity monitoring was perceived as useful. The identified
barriers to clinical implementation were lack of skills and knowledge of patients, financial
constraints, and not knowing what type of monitor to apply.

This Special Issue shows a range of potential opportunities for the application of wear-
able movement sensors in motor rehabilitation. However, the papers surely do not cover
the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this
Special Issue focused on the technical validation of wearable sensors and the development
of algorithms. Clinical validation studies, studies applying wearable sensors for the moni-
toring of physical behavior in daily life conditions, and papers about the implementation
of wearable sensors in motor rehabilitation are under-represented in this Special Issue.
Studies investigating the usability and feasibility of wearable movement sensors in clinical
populations were lacking. We encourage researchers to investigate the usability, acceptance,
feasibility, reliability, and clinical validity of wearable sensors in clinical populations to
facilitate the application of wearable movement sensors in motor rehabilitation.
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Abstract: With the help of wearable robotics, the lower limb exoskeleton becomes a promising
solution for spinal cord injury (SCI) patients to recover lower body locomotion ability. However,
fewer exoskeleton gait planning methods can meet the needs of patient in real time, e.g., stride length
or step width, etc., which may lead to human-machine incoordination, limit comfort, and increase the
risk of falling. This work presents a human-exoskeleton-crutch system with the center of pressure
(CoP)-based gait planning method to enable the balance control during the exoskeleton-assisted
walking with crutches. The CoP generated by crutches and human-machine feet makes it possible to
obtain the overall stability conditions of the system in the process of exoskeleton-assisted quasi-static
walking, and therefore, to determine the next stride length and ensure the balance of the next step.
Thus, the exoskeleton gait is planned with the guidance of stride length. It is worth emphasizing
that the nominal reference gait is adopted as a reference to ensure that the trajectory of the swing
ankle mimics the reference one well. This gait planning method enables the patient to adaptively
interact with the exoskeleton gait. The online gait planning walking tests with five healthy volunteers
proved the method’s feasibility. Experimental results indicate that the algorithm can deal with the
sensed signals and plan the landing point of the swing leg to ensure balanced and smooth walking.
The results suggest that the method is an effective means to improve human–machine interaction.
Additionally, it is meaningful for the further training of independent walking stability control in
exoskeletons for SCI patients with less assistance of crutches.

Keywords: gait planning; stride length; center of pressure; human–machine interaction

1. Introduction

More than 250,000 individuals annually sustain spinal cord injuries worldwide, mainly due to
traffic accidents and fall from heights [1]. Spinal cord injury (SCI) patients can become paraplegic
due to lesion characteristics. Moreover, long-term sitting and lying may cause poor health conditions
and complications, e.g., muscular atrophy, pressure sores, constipation, and osteoporosis. Therefore,
helping SCI patients to stand, walk, and engage in self-care may mitigate a crucial social problem.

With the development of wearable robotics and sensors, increased attention has been paid to
the research of the lower-limb exoskeleton for the locomotion impaired, such as SCI and stroke
patients. Zhang et al., Kawamoto et al., and Nilsson et al. developed exoskeleton systems for stroke
rehabilitation through referencing normal walking gait guidance or reference gait-based impedance
control [2–4]. Husain et al., Fineberg et al., and Jung et al. are more concerned about various functions
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of the exoskeleton to help SCI patients walk independently [5–7]. The former series focused on topics,
such as patient walking intention recognition and joint torque control, and the latter on issues, such as
human-machine dynamic balance control, walking mode switch for various terrains, and gait trajectory
planning. Still, a significant amount of research and development is required to assist SCI patients
to walk naturally and in balance, especially regarding exoskeleton gait planning. Besides efficacy,
lack of community involvement, etc., the performance of self-controlled walking balance inhibits the
wide application of commercial medical lower-limb exoskeletons on the market, such as Rewalk [8],
HAL [9], and Ekso [10].

The simplest method to perform a “standard” gait is to predefine the normal gait trajectory.
The desired joint trajectory is either recorded from several healthy volunteers or extracted from a gait
analysis database. To improve the adaptation to various subject heights, the predefined gait trajectory
is usually parameterized by lower limb sizes. Suzuki et al. prerecorded hip and knee joint angles
from a healthy subject and divided a gait cycle into stance and swing phases, which are triggered
by plantar reaction forces and torso tilt angles [11]. Similarly, Mina is controlled by a predefined
gait trajectory [12], and gait-related parameters, including single- or continuous-step mode selection,
walking speed, and step transition duration, can be tuned. Wang et al. proposed the MINDWALKER
exoskeleton for gait assistance in the coronal and sagittal planes [13]. The gait is prerecorded by a
healthy subject walking in MINDWALKER in zero-assistance mode. The predefined standard gait
in the sagittal plane guarantees a natural walking posture, and step width control realized by online
adjustment of exoskeleton hip abduction/adduction joints in the coronal plane ensures walking stability.
Therefore, gait planning online or offline with additional measured information has been studied in
recent years. Jeon et al. presented a fast wearable sensor-based gait phase classification method with
the help of a convolutional neural network, which represents human-machine walking intention and is
useful for exoskeleton motion control [14]. The polymer optical fiber sensors reported by Leal-Junior
et al. show promising application scenarios for soft and wearable gait measurement for exoskeleton
online gait planning [15].

Jung et al. presented the online computation of centroidal momentum (CM) [16], i.e., linear and
angular momenta at the center of mass (CoM), in the exoskeleton-supported walking, which is regarded
as a stability index to estimate the actual state of balance. Preliminary trials confirmed the assumption,
and further research is in the progress of using CM to trigger a controller of the exoskeleton to maintain
or recover the balance. Aphiratsakun et al. proposed a leg exoskeleton balancing control using a
zero-moment point (ZMP) and a fuzzy logic controller [17]. The ground contact points on each foot
were measured by a load cell and compared with the target ZMP, and input the differences into the
controller, which generates the compensating angles of the left and right (L/R) ankle joints to position
ZMP in the convex hull of the support area. Similarly, the center of pressure (CoP) of a human-machine
system was investigated by Kim et al. for walking balance validation [18]. With measurements of
both human gravity and exoskeleton support force, the CoP is calculated, and the stability condition
is judged. Chen et al. calculated the CoP of a human-machine-crutch system and controlled an
exoskeleton with an offline designed gait [19]. During walking, the gait is modified online if the
calculated CoP exceeds a predefined stable area. Deng et al. used the capture point theory for biped
robot balance control to guide the target landing point of a human and exoskeleton swing foot [20].
The instantaneous capture point is obtained by modeling the human-machine system, and the gait
trajectory is corrected to solve the instability problem caused by random forward/backward leaning of
the subject’s upper body. Most of the above work is focused on human-machine dynamic stability
during walking with the help of gait planning. Although CoP, ZMP, CoM, etc. are key facts to guide
gait planning, the influence of crutches is not always considered. The subject’s strength on crutches
somehow determines the human-machine walking balance state. We focus on the support distribution
of crutches and exoskeleton soles, to guide gait planning. This paper designs a gait planning algorithm,
aiming to improve human-machine coordination and gradually improve a subject’s active stability
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control during walking. The gait planning uses CoP calculation based on crutch reaction force and
human-machine plantar force, and stride length mapping determined by the calculated combined CoP.

The remainder of this paper is organized as follows. Section 2 introduces the exoskeleton prototype,
mathematical method, and related simulation. Section 3 presents the experimental design for gait
planning algorithm validation. Results are analyzed and the effects of the algorithm are discussed in
Section 4. Section 5 relates our conclusions, along with future research directions.

2. Materials and Methods

In this work, a commercial lower-limb exoskeleton (UGO, RoboCT, Inc., Hangzhou, China)
is adopted as a testbed for gait planning algorithm validation. Besides, customized crutches and
exoskeleton soles are designed as the accessory equipment for the crutch endpoint pressure and
human-machine foot pressure measurement, respectively. Thus, the combined CoP can be calculated
based on the pressure of the crutch endpoint and human-machine foot. By establishing the relationship
between stride length and combined CoP, the stride length can be obtained. Finally, due to the
determination of the stride length, the target gait will be planned by forward and inverse kinematic
models. For the forward and inverse kinematics models’ validation, the gait planning algorithm is
simulated by MATLAB (Mathworks). The balance control of the human-machine system in the sagittal
plane is the primary concern, since the hip and knee flexion/extension (f/e) joints with the developed
lower-limb exoskeleton are motor driven. The human-exoskeleton-crutch system in the sagittal plane
is shown in Figure 1a. The local coordinate system is established, in which X- and Y-axes indicate
the vertical and horizontal moving directions, respectively. The origin of the local coordinate system
is located at the ankle joint of the exoskeleton support leg. Figure 1b shows the four-DoF kinematic
model of the lower-limb exoskeleton. Since the torso motion does not affect forward/inverse kinematic
modeling for gait planning, the torso is simplified as one rigid body.

Figure 1. Human-exoskeleton-crutch system in the sagittal plane. (a) The local coordinate system
is located at the rotation center of support of the leg ankle joint. The L/R crutch coordinate is
located at the endpoint of the crutch. (b) Four-DoF kinematic model of the lower-limb exoskeleton.
Denavit-Hartenberg parameters are tagged, including axes on joints and rotation angles of adjacent links.
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2.1. Exoskeleton

The powered lower-limb exoskeleton system UGO (Figure 2) is developed to assist the balanced
walk of patients with SCI or stroke. It is designed for subjects with heights between 1.5 and 1.9 m,
and weigh below 100 kg. The hip and knee f/e joints are driven by servo motors and harmonic reducers
coupled with a maximum rated torque of 100 Nm, while the ankle dorsi-flexion/ plantar-flexion
joint is fully passive. All joints in the sagittal plane are limited to a certain range of motion, i.e.,
hip flexion (+110◦) and extension (−40◦), knee flexion (+95◦) and extension (0◦), ankle dorsi-flexion
(+20◦), and plantar-flexion (−30◦). It should be emphasized that the passive ankle joint will not affect
the gait planning since we focus on the ankle joint coordinates during forwarding/inversing kinematics
instead of the footplate coordinate. Each exoskeleton motor-driven joint is equipped with a magnetic
rotary encoder (AS5048A, AMS, Inc., Graz, Austria) with 14-bit resolution, and a torque sensor for
joint angle and torque measurement, respectively. The torque sensor is customized with a range of
150 Nm, resolution of 0.05 Nm, and an accuracy of 0.3% FS. Both angle and torque signals are recorded
with a sampling rate of 100 Hz.

Figure 2. Lower limb exoskeleton system UGO developed by RoboCT, Inc.

2.2. Foot and Crutch Ground Reaction Force (GRF) Measurements

2.2.1. Foot GRF Measurement

Force-sensing resistor (FSR) sensors mounted on exoskeleton soles and crutches determine the
GRFs and the CoP of the human-exoskeleton-crutch system. Figure 3a shows a human-machine GRF
measurement sole, including seven FSR sensors, a rubber baseboard, and a processing circuit. FSR
sensors were calibrated first with a designed force loading test bench, as shown in Figure 3b. All results
are fitted by fifth-order polynomials. The calibration results are shown in Figure 3c. The maximum
RMS error of all calibration results is 3.601 N.
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Figure 3. Calibration of accessory equipment. (a) Seven force-sensing resistor (FSR) sensors were
mounted at the bottom of the exoskeleton sole to measure human-machine coupled ground reaction
force (GRF). (b) Each FSR sensor was calibrated with a loading test bench by a force sensor (M4325K,
Sun Rise Instrument, Inc., Nanning, China) with a range of 400 N and an accuracy of 0.5% FS. (c) Fitted
results of calibration. Maximum RMS error of all calibration results was 3.601 N.

2.2.2. Crutch GRF Measurement

Chen et al. considered the influence of a crutch on human-machine balance control and designed
crutches with FSR sensors at the bottom [19]. On the one hand, these sensors are helpful to measure
GRF directly and conveniently. On the other hand, the interference caused by the change of the
pitch angle of the crutch is an uncertain point in the application of GRF. To solve this problem,
an indirect measurement of GRF for the crutch is proposed in this work. Since only the palm and
forearm contact the crutch, FSR sensors are mounted on both contact areas, as shown in Figure 4a.
One inertial measurement unit (IMU, JY901, Wit-Motion, Inc., Shenzhen, China) is mounted on the
crutch to measure the crutch roll/pitch/yaw angles. With the above sensors, GRF on the crutch can
be calculated by simple force analysis, as shown in Figure 4b. Compared to the direct measurement
method in [19], this indirect measurement method is: (i) Easily acquires the contacting force data of
the palm and forearm, and (ii) has the ability to remove the disturbance of the crutch pitch angle.
The disadvantage is that some yaw, pitch, roll angle errors, palm, and forearm contacting force errors
may lead to large vertical GRF errors. Therefore, calibration was performed in the following part.
For this model, we assume the crutch endpoint is almost landed in the sagittal plane when the crutch
yaw angle is within a range of −10~15 degree. Here, −10 degree denotes the inner side yaw angle
boundary and 15 degree is the outside yaw angle boundary. FN and Ff are the normal and tangential
components, respectively, of GRF; θc and θa are the crutch pitch angle and intrinsic geometry angle,
respectively; and Th, Ta are the palm and forearm pressure loaded on the crutch when the subject uses
it for balance control: {

FN = Ta cos(θc − θa) + Th sinθc

Ff = −Ta sin(θc − θa) + Th cosθc
. (1)

By using Equation (1), the normal component of GRF was calculated for each crutch, since both the
palm and forearm pressures were measured as well as the pitch angles of crutches. To ensure accurate
GRF measurement, further calibration was done with the commercial load cell. The real vertical
component of GRF loaded by the crutch, denoted as FZ, was measured by a load cell. The subject
was asked to use the crutches to maintain balance while the upper body was leaning slightly forward.
After data recording, the subject was asked to adjust his posture slightly and stand still to record data
again. Figure 5a shows the calibration results of L/R crutches. Since the subject was accustomed to
holding the crutches in a certain posture for balance control, most normal components of GRF were
less than 100 N. Figure 5b is the calibration results of L/R soles. RMS errors of L/R soles are 10.36 and
14.89 N, respectively.
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Figure 4. Customized crutch for GRF measurement. (a) Locations of palm and forearm FSR sensors,
as well as the mounting position of inertia measurement unit (IMU) for crutch pitch angle measurement.
(b) With force analysis, the crutch, normal and tangential components of GRF are obtained.

Figure 5. Calibration results of L/R crutches and L/R soles. (a) Calibration results of L/R crutches.
FZL and FZR denote vertical components of L/R crutch endpoint GRF, respectively, and FN is the
calculated vertical components of GRF based on measured palm and forearm pressure. (b) Calibration
results of L/R soles. FLS and FRS are L/R gravities loaded on the soles, respectively. FSUML and FSUMR

are the sum of gravities measured by 7 FSR sensors on L/R soles, respectively.

2.3. Combined CoP and Stride Length Calculation

The main idea of gait planning comes from the combined CoP based on the crutch GRF and
human-machine GRF, which differs from the conventional CoP that is acquired from human plantar
force interacting with the exoskeleton soleplate. We are concerned not only with subject gravity but
with the GRF from the crutch, as well as that caused by the exoskeleton’s own gravity. With the force
analysis shown in Figure 1, this combined CoP in the sagittal plane can be determined as:

CoPy =

4∑
i=1

(yi·Fi)

4∑
i=1

Fi

, (2)

where CoPy is the y-coordinate of the combined CoP in the local coordinate system. yi(i = 1, 2, 3, 4) are
the y-coordinates in the support ankle frame, i.e., X0-Y0 coordinate, as shown in Figure 1b, which denote
the L/R crutch and L/R foot, respectively. Fi(i = 1, 2, 3, 4, which denote FLS, FRS, Fc_NL, Fc_NR) are the
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corresponding GRFs. With this in mind, the combined CoP can be obtained online as long as the crutch
and foot coordinates and GRFs are determined.

Figure 6 shows the algorithm for gait planning based on combined CoP, which is obtained from the
measured and calculated results: L/R crutch coordinates, L/R crutch GRF, L/R foot coordinates, and L/R
foot GRFs. The L/R foot coordinates can be acquired directly by the four-DoF forward kinematics in
support ankle coordinate (see Figure 1b), while the L/R crutch coordinates are calculated based on
the forward kinematics of the support shank, thigh, torso, and upper limb-crutch serial-links model.
The torso angle in the sagittal plane is measure by IMU placed on the torso. The upper limb-crutch
coupled link pitch angle is measured by IMU mounted on the crutch. The stride length is determined
by the combined CoP through a mapping function. The reference stride length is acquired from
forward kinematics based on the reference gait. With the stride length and reference stride length,
the target ankle joint coordinate can be calculated, and is converted into the joint space by inverse
kinematics. After joint space gait sequence interpolation, the target gait trajectory is determined for the
current gait semi-cycle. After gait planning before each swing, the human exoskeleton system swing
step is triggered by button 2 and the planned semi-cycle gait will be performed during the swing phase.
That is to say, Figure 6 denotes the procedure of each single swing step.

 

o 
o 
o 
o 

Figure 6. Algorithm for gait planning based on combined CoP. Once combined CoP is calculated,
the stride length is obtained with a predefined mapping function. Compared with the reference stride
length, the target gait trajectory is determined by converting the inverse kinematics. Lconst is a constant
stride length. When the combined CoP locates within a stable region (between L/R legs), the next stride
length is determined to be Lconst.

To establish a mapping relationship between the combined CoP and stride length, the subject’s
walking behavior with the exoskeleton was studied. Based on walking tests with nominal reference
gait (Kirtley, 2013) on healthy subjects and SCI patients with a height from 1.5 to 1.9 m, the stride
length is mostly between 600 and 1200 mm, which coincides well with experimental data from
Mendoza et al. [21]. Since a further relationship between the combined CoP and stride length is still
unclear and may depend on human behavioral analysis, we simplified it to a linear mapping:

Lstride =

{
a·CoPy + b − 500 ≤ CoPy ≤ 0
Lconst else

, (3)
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where Lstride is the stride length, denoting the Y-axis length of the swing ankle joint from the beginning
of swing to the termination of swing during one step, a and b are linear mapping function coefficients,
and Lconst is constant. With the condition that:

(1) The stride length of a subject walking in an exoskeleton is mostly between 600 to 1200 mm based
on trials with nominal reference gait [22];

(2) The relationship between the combined CoP and the desired stride length is linear;
(3) CoPy is bounded within [−500, 0] mm when it is located in the negative Y-axis. We did a pre-test

for a total of 100 steps on 5 healthy subjects, and the CoPy was always within [−500, 200] mm.

Thus, a = −1.2, b = 600. The constant Lconst = 600 reflects that the stride length, when a subject
walks in a stable region, is 600 mm.

2.4. Forward and Inverse Kinematic Modeling

Consider a simplified lower limb exoskeleton with four DoF, as shown in Figure 1b. Only pitch
angles in the sagittal plane are of concern. Hip L/R f/e joints are considered to coincide in the sagittal
plane. The ankle joint of the support leg is set as the origin of frame 0. The coordinate of the swing
ankle joint in frame 4 is 4P. With a forward kinematic model, we obtain its coordinate in the local
coordinate system (frame 0). The Denavit–Hartenberg (DH) table of the Craig version [23] is shown in
Table 1.

Table 1. Denavit-Hartenberg (DH) parameters of the lower-limb exoskeleton.

i αi-1 ai-1 di θi

1 0 0 0 θ1
2 0 L1 0 θ2
3 0 L2 0 θ3
4 0 L2 0 θ4

With the DH parameters from Table 1, the transformation matrix from the i-1th to ith coordinate
can be obtained as:

i−1
i T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (4)

Thus, the transformation matrix from the fourth frame to the base frame can be represented as:

0
4T = 0

1T·12T·23T·34T. (5)

The swing ankle joint coordinate is then calculated as:

0P = 0
4T·4P. (6)

With the forward kinematic model, the swing ankle joint coordinate is obtained when the gait
trajectory is known. We adopt the gait trajectory from Kirtley (2013) as the reference gait. Hence,
the reference swing ankle joint coordinate in Cartesian space can be calculated, which is denoted as
(ya_r, xa_r). Similarly, the reference hip joint coordinate in Cartesian space (yh_r, xh_r) is calculated.
Since the target gait planning is a scaling operation based on the reference gait (the reference ankle joint
and hip joint coordinates) in Cartesian space, the target swing ankle joint and hip joint coordinates are
calculated by:

ka =
Lstride(k) + Lstride(k− 1)

2Lstride_r
(7)
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{
ya_t = ka·ya_r

xa_t = λa·ka·xa_r
(8)

{
yh_t = ka·yh_r

xh_t = λh·ka·xh_r
, (9)

where ka, λa, and λh are the stride length scale, ankle, and hip optimization factors, respectively.
The scale factor ka is determined by the target and reference stride lengths. The larger the target stride
length is, the larger the scale factor ka will be, leading to magnified hip and ankle joint coordinates in
Cartesian space compared to reference ones. Both λa and λh are within [0.9, 1.1] to prevent singular
solutions. Lstride and Lstride_r are the target and reference stride lengths, respectively. k denotes the
kth semi-cycle of walking. (ya_t, xa_t) and (yh_t, xh_t) are the planned swing ankle joint and hip joint
coordinates, respectively.

Once the target swing ankle joint and hip joint coordinates are obtained, gait planning becomes
an inverse kinematic calculation. The geometric solution of the inverse kinematic of the above 4-DoF
kinematic model is: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ4 = a cos
L2

HA_SW−L2
1−L2

2
2L1L2

θ2 = a cos
L2

HA_ST−L2
1−L2

2
2L1L2

− 180
L2

HA_SW = (ya_t − yh_t)
2 + (xa_t − xh_t)

2

L2
HA_SW = y2

h_t + x2
h_t

(10)

⎧⎪⎪⎨⎪⎪⎩ θ31 = 90 + θ2−atan2(xh_t +
√

L2
HA_ST − k2

2, k2 + yh_t)

k2 = L1 + L2 cosθ2
. (11)

⎧⎪⎪⎨⎪⎪⎩ θ32 = γ4−atan2(ya_t − yh_t, xa_t − xh_t)

γ4 = a sin( L1 sinθ4
LHA_SW

)
. (12)

θ1 = −θ2 − θ31, (13)

where LHA_SW and LHA_ST are the respective distances from the hip joint to the swing and support
ankle joints. Both k2 and γ4 are intermediate variables. θ31 and θ32 are hip joint angles for the support
and swing leg, respectively. For exoskeleton hip and knee f/e joint control, the target gait is defined by:

θ = [θ2,θ31,θ32,θ4]. (14)

2.5. Gait Planning Algorithm Simulation

The reference Cartesian position coordinates of hip, knee, and ankle joints can be obtained through
forward kinematics. Figure 7 shows the resultant reference trajectories in Cartesian space. An example
of the target ankle joint trajectory is plotted for comparison. Having assumed Lstride(k) and Lstride(k− 1),
ka is obtained through Equation (6). Thus, the target ankle and hip joint trajectories are planned.

Since the lower limb exoskeleton is powered by motor-driven joints, including the hip and knee
f/e, the planned Cartesian position coordinates of the ankle and hip joints should be converted to
the joint space through inverse kinematics as shown in Equations (10)–(14). Consecutive steps of
walking are simulated with a sequence of stride lengths, Lstride = [1245, 1150, 1050, 950, 850, 750, 650].
Figure 8 shows the planned left ankle joint and hip joint trajectories derived from the planned gait.
Simulated stride lengths are obtained by subtracting the first and last Y-coordinate of ankle joint
trajectories during each step. Compared to the input stride lengths, the RMS error of seven left leg
steps is 2.315 mm.
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Figure 7. Resultant reference trajectories in Cartesian space and an example of a target ankle joint
trajectory. Lower limb sizes are L1 = 490 mm, L2 = 430 mm, and Lstride_r = 1290.52 mm is the resultant
stride length with the reference gait.

 
Figure 8. Left ankle joint and hip joint trajectories derived from planned gait with forward kinematics.
Stride length can be obtained with simulation results, and the RMS error of seven left leg steps is
2.315 mm.

2.6. Online Gait Planning Walking

The procedures of exoskeleton-assisted walking are shown in Figure 9. For the first step, the gait
was predefined to transfer from the standing posture to the double support phase with the left leg in
front. At this moment, the subject would adjust L/R crutches to a certain posture to assure stability.
Button 2 was pressed once the subject felt stable, and the corresponding signals were sampled to
calculate the combined CoP and stride length, followed by gait planning in the micro-computing engine
within several milliseconds. When the subject heard buzz 2, indicating the completion of the next step
in gait planning, the subject would walk one step with an exoskeleton-assisted gait once button 1 was
pressed. Buzz 1 reminded the subject when the current step was completed. The procedure continued
until the end of the cyclic step. The walking test was ended when the last step was transferred from
the double support phase to the standing posture.
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Figure 9. Exoskeleton-assisted walking test procedure. The subject was told to press buttons 1 and
2 before walking and signal sampling, respectively. The subject was reminded with buzz 1 that the
current gait was finished, and with buzz 2 that signal sampling was completed. The gaits of the first
and last steps were predefined and independent of CoP.

3. Experiment

Three experiments were conducted to respectively verify (1) the advantage of selected linear
mapping, (2) feasibility of the gait planning algorithm, and (3) how balanced walking is ensured.
One healthy subject (male, 28 years of age, 70 kg, 1.76 m) volunteered for the second experiment,
and 5 healthy volunteers (5 males, with 29.20 ± 3.90 (SD) year of age, 74.4 ± 4.39 (SD) kg,
1.74 ± 2.95 (SD) m) were recruited for the first and third experiments. Informed consent was obtained
from the volunteers.

3.1. Stride Length Mapping Function Verification Test

The comparison tests were designed to prove the suitability of linear mapping for the subject to
learn how to control the crutch landing point. Another two quadratic mapping functions (denoted
as Quad1 and Quad2) were selected for comparison. Lstride and CoPy of both quadratic functions
were bounded with [600, 1200] and [−500, 200], respectively, which is the same as the linear function.
Five volunteers were recruited and each one repeated 3 sets of walking trials with 27 steps, respectively.
For the first set, a linear mapping function (denoted as Line1) was applied to determine stride length
while for the other two sets, Quad1 and Quad2 were applied, respectively. The subjects were asked
to control their weight distribution between the legs and crutches to realize the target stride length.
For the first 9 steps, the target stride length was 650 mm. For the next 9 steps, the target stride length
was 800 mm, and for the last 9 steps, the target stride length was 1000 mm. After each step, the realized
stride length and deviation from the target one were told to the subject as feedback for adjustment of
the next step. Deviations of the last 6 steps among every 9 steps were recorded.
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3.2. Online Gait Planning Algorithm-Based Walking Test

The exoskeleton-assisted walking test was motion captured by an OptiTrack motion capture system
(Natural Point, Inc., Corvallis, OR, USA) as shown in Figure 10. Four trackable points (each trackable
combines three markers) were built for motion tracking of the right crutch endpoint, exoskeleton right
ankle joint, hip joint, and trunk. With the first trackable, the landing coordinate and the pitch angle
of the right crutch endpoint were recorded. With the other three trackable points, the right hip
and knee f/e angles and trunk tilt angles were recorded. The right ankle joint coordinate was also
recorded by trackable 2. The exoskeleton system stored the sampling signals and the calculation results,
including L/R hip and knee angles, torques, GRFs from L/R human-machine soles, crutches, palm and
forearm pressures loaded on L/R crutches, calculated CoP, and planned gait of each step. Six trials
were conducted on one volunteer, and seven steps were performed for each trial because of the limited
range of the motion capture system.

 
Figure 10. Exoskeleton-assisted walking test. Six cameras were grouped for motion capture of four
trackable points. The exoskeleton was programmed to perform seven steps, including the first and last
predefined transfer steps. The gaits of the other five steps were planned online based on CoP results.

3.3. Balanced Walking Verification Test

The comparison tests were designed for the verification of balance control that was realized
by online gait planning. The same 5 volunteers were recruited for exoskeleton-assisted walking
tests. Each one was asked to finish 10 steps of walking for 2 trials: one trial was conducted with
the aforementioned online gait planning algorithm while the other was conducted with the fixed
reference gait. Torques of both hip and knee f/e joints were recorded during the whole walking tests.
The combined CoP was calculated and recorded before each swing phase.

4. Results and Discussion

The results of the first experiment are shown in Figure 11. In addition, two quadratic mapping
functions were built for comparison, which are shown in Figure 11a. For each test, the mapping
function determined the relationship between the combined CoP and stride length. The location of the
resultant stride lengths in Figure 11a indicates that the linear mapping function helps the subject adjust
to the target stride length easier. Figure 11b shows the stride length error of each test. For all three

18



Sensors 2020, 20, 7216

target stride length trials, errors with the linear function were smaller, which means that, with linear
characteristics, the subjects could adjust their weight distribution easier to map the target stride length.
Therefore, the linear mapping function was selected at this stage since it built a more transparent
relationship between the combined CoP and stride length.

Figure 11. Stride length mapping function verification tests. (A) Walking test results with target stride
lengths. “Linear” denotes the linear mapping function as shown in Equation (2), “Quad1” and “Quad2”
are two quadratic functions for comparison. “LR”, “Q1R”, and “Q2R” are test results (the combined
CoP and stride length) with the Linear, Quad1, and Quad2 mapping functions, respectively. “LT”,
“Q1T”, and “Q2T” are the target stride lengths for the test with the Linear, Quad1, and Quad2 mapping
functions, respectively. (B) Errors toward the target stride length of each test. For each mapping
function of each target stride length, all 5 volunteers’ results were concerned.

Figure 12 shows resultant GRFs, the combined CoP locations, and trajectories of ankle position
in the sagittal plane. Since the stride length is determined by the mapping function, Equation (2),
at the end of the swing phase, the combined CoP (coordinate on Y-axis) is always located between
L/R legs. The results in Figure 12c confirm this conclusion. Therefore, a balanced walking state is
ensured at this stage and less strength is applied to the crutches at the moment. For the analysis of
the online gait planning algorithm, intermediate variables sampled and processed before each step
are shown in Figure 12a. FL Crutch and FR Crutch are the respective normal components of the L/R
crutch GRFs. FL Foot and FR Foot are the respective exoskeletons L/R sole GRFs. During step 2, the L/R
crutches-related components for CoP were lower because of a smaller forward-leaning range of the
subject’s upper body, i.e., the subject was less dependent on the support of the crutches, leading to a
positive CoP (see Figure 12b). According to the local coordinate system shown in Figure 1, this positive
value represented that the combined CoP was between the L/R legs (blue hollow circle on the right
side in Figure 12c). Thus, the corresponding stride length was set to a minimum value of 600 mm for
smooth walking. According to steps 3 and 4, as shown in Figure 12a, the L/R crutch GRFs dominated,
leading to negative values of CoP (see Figure 12b). Consequently, the combined CoPs were located
ahead of the L/R legs (the black hollow circle near −1000 and the blue hollow circle near −1500 in
Figure 12c).
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Figure 12. Intermediate variables and L/R ankle joint trajectories. (A) Sampled and preprocessed
L/R crutches and exoskeleton sole GRFs before the swing phase, representing contributions for
human-machine support. GRFs during the other phases were set to 0 here for clarity. (B) Calculation
results of L/R crutch endpoint coordinates (y_cL and y_cR), step length, combined CoP coordinates, and
right crutch endpoint coordinate from the motion capture system (y_cR_Cap), representing bases of the
bgait planning algorithm. (C) L/R ankle joint Cartesian position coordinates and corresponding
combined CoP (hollow circle) and support ankle joint (solid circle). The arrows indicate the
corresponding relationship between CoP and ankle joint Cartesian position. Except for step 2,
each CoP was outside L/R legs before the swing, and finally located within L/R legs after the swing as
shown here.

With the third experiment, the driven torques of the hip and knee f/e joints, as well as L/R crutch
GRFs, were measured and compared between test set 1 (walking trials with online gait planning based
on the combined CoP) and test set 2 (walking trials with fixed reference gait). Figure 13a shows the
driven torques of 4 joints during 10 steps walking trial. The grey area selected parts to denote joint
torques of the double support phase, and the remaining parts denote the joint torques of the swing
phase. During the swing phase, the subject’s lower limbs are dragged or pulled to walk by exoskeleton
joint torques, while during the double support phase, the subject’s lower limbs are maintained as a
changeless posture with the help of exoskeleton joint torques. Thus, joint torques are generated within
both phases for motion control. Figure 13b is a box plot of the normalized sum of four joint torques
during the swing phase based on the five volunteers’ trials. The normalized torque is acquired with:

Γk= (
10∑

i=1

4∑
j=1

τki j)/(10mk), (15)

where Γk denotes the normalized torque of the kth volunteer, k = 1, 2, . . . 5, τki j is the jth joint torque of
the ith step for the kth volunteer, j = 1, 2, . . . 4, and i = 1, 2, . . . 10, mk is the weight of the kth volunteer.
Normalized torques of S1 and S2 are closed, which indicates that the summed driven torques of four
joints during the swing phase are almost the same between the walking test with the online gait
planning algorithm and the walking test with the fixed reference gait. However, compared to the
walking test with the fixed reference gait, the driven torques of four joints were reduced during the
double support phase with the online gait planning algorithm (Figure 13c). The average reduction of
joint torques for 5 volunteers is 18.5%. This reduction, on the one hand, may indicate that when the
stride length is determined based on the combined CoP (to ensure that it is located between L/R legs),
fewer torques are needed to maintain a double support posture. While, on the other hand, it may result
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from that the subjects using their own body forces and moments to maintain balance since the subjects
were able-bodied volunteers. Furthermore, L/R crutches GRFs were measured after each swing phase.
The average values of the two aforementioned test sets are shown in Figure 13d. There is an average
reduction of 32.4% of crutch GRF when the online gait planning algorithm was applied. This mainly
results from a better balance state of the human-machine system during the double support phase.

F1

Figure 13. Experimental results of 2 walking test sets. (A) Driven torques of 4 joints during one 10-step
walking trial. τLH, τLK, τRH, and τRK are the torques of the left hip, left knee, right hip, and right knee,
respectively. (B) Box plot of the normalized sum of 4 joint torques during the swing phase based on
5 volunteers’ trials. S1 and S2 denote test set 1 (walking trials with online gait planning based on the
combined CoP) and test set 2 (walking trials with fixed reference gait), respectively. (C) Comparison of
joint torques during the double support phase. τLH_S, τLK_S, τRH_S, and τRK_S are torques of the left
hip, left knee, right hip, and right knee during the double support phase, respectively. (D) Average L/R
crutches GRFs measured after each swing phase. For each test set, L/R crutches GRFs of each step were
measured and averaged based on 5 volunteers’ walking tests.

The present work mainly focuses on the validation and verification of an online gait planning
algorithm based on the combined CoP of human-machine and crutch GRFs. The target of gait planning
in this research is to gradually reduce the subject’s dependence on crutches for stability control.
However, the relationship between the combined CoP and stride length has not been studied in detail.
Our plans for future work will focus on behavior analysis of the SCI patient when walking with
crutches, and further investigate the relationship between the combined CoP and stride length.

5. Conclusions

In this work, an online gait planning algorithm was presented, which is adaptive to combined CoP
based on both human-machine and crutch GRFs. The mapping relationship between the combined CoP
and stride length was preliminarily constructed with a linear function and validated by a comparison
experiment. According to the experimental results, the algorithm can process the sensing signals and
plan the landing point of the swing leg to ensure balance and stable walking. The performance of
the gait planning algorithm was validated by the data analysis of the results, i.e., an 18.5% reduction
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of joint torques and a 32.4% reduction of crutch GRF during the double support phase compared to
the fixed reference gait. This is of great significance for the further training of independent walking
stability control in exoskeletons for SCI patients with less assistance of crutches. With this algorithm,
the SCI patients can try to adjust their posture with a self-determined range by adjusting the weight
distribution between the exoskeleton soles and crutches, because the corresponding gait with walking
stability is planned accordingly. Thus, the SCI patient can be guided gradually by a physical therapist
based on professional experience, or automatically by the exoskeleton system. The work in this paper
forms the basis of a new solution for exoskeleton-assisted walking stability control with less help of
crutches, i.e., gradually training the patient to be compatible with the exoskeleton for balanced walking.
In the future work, the crutch model should be improved to consider it in the X-Y-Z coordinate,
with which the real vertical component of GRF could be obtained instead of performing calibration.
Meanwhile, paraplegic patients need to be tested to further verify the improvement of walking balance.
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Abstract: Tracking the kinematics of human movement usually requires the use of equipment that
constrains the user within a room (e.g., optical motion capture systems), or requires the use of a
conspicuous body-worn measurement system (e.g., inertial measurement units (IMUs) attached to
each body segment). This paper presents a novel Lie group constrained extended Kalman filter
to estimate lower limb kinematics using IMU and inter-IMU distance measurements in a reduced
sensor count configuration. The algorithm iterates through the prediction (kinematic equations),
measurement (pelvis height assumption/inter-IMU distance measurements, zero velocity update
for feet/ankles, flat-floor assumption for feet/ankles, and covariance limiter), and constraint
update (formulation of hinged knee joints and ball-and-socket hip joints). The knee and hip
joint angle root-mean-square errors in the sagittal plane for straight walking were 7.6 ± 2.6◦ and
6.6 ± 2.7◦, respectively, while the correlation coefficients were 0.95 ± 0.03 and 0.87 ± 0.16, respectively.
Furthermore, experiments using simulated inter-IMU distance measurements show that performance
improved substantially for dynamic movements, even at large noise levels (σ = 0.2 m). However,
further validation is recommended with actual distance measurement sensors, such as ultra-wideband
ranging sensors.

Keywords: Lie group; constrained extended Kalman filter; gait analysis; motion capture;
pose estimation; wearable devices; IMU; distance measurement

1. Introduction

Human pose estimation is the tracking of position and orientation (i.e., pose) of body segments.
Joint angles can then be calculated from the relative pose of linked body segments. Applications exist
in robotics, virtual reality, animation, and healthcare (e.g., gait analysis). Traditionally, human pose is
captured within a laboratory setting using optical motion capture (OMC) systems with up to millimeter
level position accuracy [1] when properly configured and calibrated. However, the setup for OMC
systems is time consuming and inconvenient (e.g., multiple markers are taped to the body) and requires
considerable expertise. Recent miniaturization of inertial measurements units (IMUs) has paved the
path toward inertial motion capture (IMC) systems suitable for prolonged use outside of the laboratory.
Some examples of clinical applications in the current literature include determining level of spinal
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damage [2] and Parkinson’s disease diagnosis [3]. Furthermore, developing a comfortable IMC for
routine daily use may facilitate interactive rehabilitation [4,5], and allow the study of movement
disorder progression to enable predictive diagnostics.

Commercial IMCs attach one sensor per body segment (OSPS) [6], which may be considered too
cumbersome and expensive for routine daily use by a consumer due to the number of IMUs required.
Similar works also exist in the literature using quaternions [7], Kalman filters (KF) [8], and particle
filters [9]. Each IMU typically tracks the orientation of the attached body segment using an orientation
estimation algorithm (e.g., [10,11]), which is then connected via linked kinematic chain, usually rooted
at the pelvis. A reduced-sensor-count (RSC) configuration, where IMUs are placed on a subset of
body segments, can improve user comfort, reduce setup time and system cost. However, using fewer
wearable sensor units necessarily reduces the kinematic information available, which must otherwise
be inferred from (i) our knowledge of human movement (e.g., enforcing mechanical joint constraints
or making dynamic balance assumptions), or (ii) by using additional sensing modalities within each
wearable sensor unit. Each approach will be described in the next subsections.

1.1. Existing Algorithms for Human Motion Tracking Using Fewer IMUs

The performance of algorithms with RSC configuration depends (i) on how the kinematic
information of uninstrumented body segments is inferred and (ii) on how body pose is represented.

The kinematic information of body segments which do not have sensors attached to them may
be inferred by the algorithm, either through data obtained in the past (i.e., observed correlations
between co-movement of different body segments or data-driven approaches) or by using a simplified
kinematic model of the human body (i.e., model-based approaches). Data-driven approaches
(e.g., nearest-neighbor search [12] and bi-directional recurrent neural network [13]) are able to recreate
realistic motion suitable for animation-related applications. However, these approaches are normally
biased toward motions already contained in the database, which may limit their use in monitoring
pathological gait. Model-based approaches reconstruct human movement using kinematic and
biomechanical models (e.g., linear regression [14], constrained KF [15], extended KF (EKF) [16],
particle filter [9], and window-based optimization [17]). The use of optimization-based estimators is
sometimes favoured due to its relative ease to setup and ease of understanding. However, the algorithm
can be very inefficient when tracking a larger number of dimensions (e.g., when tracking body pose
over a long duration). To significantly increase the efficiency of the algorithm when estimating body
pose across time, a recursive estimator can take advantage of the state substructure and reduce the
state dimension being tracked [18].

Body poses are usually represented using Euler angles or quaternions [9,16]. However,
recent work on pose estimation has shown that using a Lie group to represent the states of recursive
estimator is a promising approach. Such algorithms typically represent the body pose as a chain of
linked segments using matrix Lie groups to represent the orientation or pose of each body segment;
specifically the special orthogonal group, SO(n), and special Euclidean group, SE(n), where n = 2, 3,
are the spatial dimensions for humam body kinematics problems. The early works of Wang et al. [19]
and Barfoot et al. [20] investigated representations and propagation of pose uncertainty, the former in
the context of manipulator kinematics and the latter focused on SE(3), followed by the formulation
of recursive estimators using Lie group representation (e.g., EKF [21] and unscented KF (UKF) [22]).
Recent literature has reported the use of Lie group based recursive estimators to estimate human
movement. Cesic et al. estimated the full body pose from OMC marker measurements and achieved
significant improvements compared to an Euler angle representation [23]; and even supplemented the
approach with an observability analysis [24]. Joukov et al. represented the human body using SO(n),
tracking the pose using measurements from IMUs under an OSPS configuration [25]. Joukov et al.’s
algorithm was tested using an arm tracking experiment, where the results improved especially
during arm poses that cause a singularity when using an Euler angle representation (i.e., Lie group
representation is singularity free).
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1.2. Improving Human Pose Estimation Using Additional Sensor Measurements

Another approach is to supplement kinematic information from the IMU with another kind of
sensor, which inherently increases cost and reduces battery life. Note that we will focus on systems that
supplement pose estimation, not on the global position estimation of the subject (e.g., [26]). For example,
IMCs can be supplemented with standard video cameras (e.g., fused using an optimization-based
algorithm [27], and deep neural networks [28]) or depth cameras [29] at fixed locations in the capture
environment, external to the subject. The combination of IMCs and portable cameras solves a weakness
of OMCs (i.e., marker or body segment occlusion) and a weakness of IMCs (i.e., global position drift).
However, the system still requires an external sensor that is carried by another person or requires some
quick setup. IMCs can also be supplemented by distance measurements (using ultrasonic devices and
KF in OSPS configuration [30], using constrained KF in RSC configuration [31]), removing dependence
on any external non-body-worn sensor.

1.3. Novelty

This paper describes a novel human pose estimator that represents the state using Lie groups with
the state propagated iteratively using a constrained EKF (CEKF) to estimate lower body kinematics
for an RSC configuration of IMUs and inter-IMU distance measurements; the Lie group framework
and inclusion of inter-IMU distance measurements, along with the exploration of its effect on pose
estimation accuracy, are the major advancements made in this paper. It extends the work of [32] and
builds on prior work of [15,31], but instead represents the state variables as elements of Lie groups,
specifically SE(3), to track both position and orientation (whereas [15] only tracks position and assumes
orientation measurements are noise-free). Furthermore, this paper presents in detail a novel Lie group
formulation for assumptions typically used in human pose estimation (e.g., zero velocity update,
constant body segment lengths, and a hinged knee joint). While not our focus here, our algorithm,
with its SE(3) representation, is able to track the global position of body segments, taking into account
IMU measurements during the prediction step, and a simpler implementation of certain measurement
assumptions (e.g., zero velocity update), though at the expense of having an additional constraint
step to ensure satisfaction of biomechanical constraints. The algorithm design was motivated by
the need for a body pose representation that more closely models the human biomechanical system
(without a dramatic increase in the dimensions of the tracked state) from which the missing kinematic
information of uninstrumented body segments are inferred. The contributions of this paper advance
the development of gait assessment tools for comfortable and long-term monitoring of lower body
movement.

2. Mathematical Background: Lie Group and Lie Algebra

The matrix Lie group G is a group of n × n matrices (e.g., SE(3)). Mathematically speaking, it is
also a smooth manifold with smooth group composition and inversion (i.e., matrix multiplication and
inversion). The Lie algebra g can be represented in the vector space and is closely related to Lie group
G. It represents a tangent space of a group at the identity element [33]. The elegance of Lie theory
lies in its ability to represent pose using a vector space (e.g., Lie group G is represented by g) without
additional constraints (e.g., without requiring RTR = I which is using a rotation matrix representation
of orientation, or || q|| = 1 which is using a quaternion representation of orientation) [34].

The matrix exponential exp G : g→G (Equation (1)) and matrix logarithm log G : G→g relates
(i.e., local diffeomorphism) the Lie group G and its Lie algebra g. The Lie algebra g is a n× n matrix that
can be represented compactly in an n-dimensional vector space. A linear isomorphism (i.e., one-to-one
mapping) between g and Rn is given by operators [ ]∨G : g→Rn and [ ]∧G : Rn→g, which map between
the compact and matrix representation of the Lie algebra g. Figure 1 shows an illustration of the
said mappings.
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Lie group G Lie algebra g

Rn

log G

exp G

[ ]∨G

[ ]∧G

(a) Mapping between Lie group G, Lie algebra
g, and a n-dimensional vector space.

[v]∧G ∈ g

ad (v)

X ∈ G

Ad (X)

exp

exp

ad Ad

Lie Algebra Lie Group

(b) Mapping with adjoint
space

Figure 1. Overview of Lie group theory mappings. When G = SE(3), Lie group X = T is a 4 × 4
transformation matrix representing pose (i.e., 3D rotation and translation). Similarly, v = ξ where Lie
algebra [ξ]∧SE(3) ∈ se(3) and the vector ξ ∈ Rn with n = 6.

Furthermore, the adjoint operator of a Lie group, AdG (X), the adjoint operator of a Lie
algebra, adG (v), and the right jacobian, ΦG (v) (Equation (2)), where X ∈ G and [v]∧G ∈ g will
be used in later sections. Multiplying an n-dimensional vector representation of a Lie algebra with
AdG(X) ∈ Rn×n (i.e., the product AdG(X)v) transforms the vector from one coordinate frame to
another, similar to how rotation matrices transform points from one frame to another. adG(v) is the Lie
algebra of AdG(X).A summary of the operators for Lie groups SO(3), SE(3), and Rn will be explained
in the next subsections. They will serve as building blocks to implement the algorithm being described
by this paper. For a more detailed introduction to Lie groups refer to [18,34,35].

exp([v]∧G) = ∑∞
n=0

1
n! ([v]

∧
G)

n (1)

ΦG(v) = ∑∞
i=0

(−1)i

(i+1)! adG(v)i , v ∈ Rn (2)

2.1. Special Orthogonal Group SO(3)

The special orthogonal group, SO(3) :=
{

R ∈ R3×3|RRT = 1, det R = 1
}

, represents orientation,
where R is the typical 3× 3 rotation matrix whose column vectors represent the x, y, and z basis vectors.
The operations for SO(3) are listed below, and will serve as building blocks for SE(3), which will be
described in the next subsection. Note that [a]∧SO(3)b is equivalent to the cross product of a and b.
See Chapter 7 of [18] for details.

[φ]∧SO(3) =

⎡⎢⎣φ1

φ2

φ3

⎤⎥⎦
∧

SO(3)

=

⎡⎢⎣ 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⎤⎥⎦ ,

⎡⎢⎣ 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⎤⎥⎦
∨

SO(3)

=

⎡⎢⎣φ1

φ2

φ3

⎤⎥⎦ = φ (3)

If φ/|φ| represents a unit vector axis we wish to rotate around, and |φ| is the angle by which
we wish to rotate, then the rotation matrix, R, which will implement this rotation is given by
Equation (4), which is also known as the Rodrigues’ axis-angle rotation formula. When φ is very
small, R ≈ I3×3 + [φ]∧SO(3).

R = exp
(
[φ]∧SO(3)

)
= cos (|φ|) I3×3 + (1 − cos (|φ|))φφT

|φ|2 + sin (|φ|)
[

φ
|φ|
]∧

SO(3)
(4)

Furthermore, the Lie algebra adjoint, Lie group adjoint, and inverse operators are listed in
Equation (5).

adSO(3) (φ) = [φ]∧SO(3) , AdSO(3) (R) = R, R−1 = RT (5)
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Lastly, to approximate the compound rotations, R1R2, in the Lie algebra space where
R1 = exp([φ1]

∧
SO(3)) and R2 = exp([φ2]

∧
SO(3)), we can use Equation (6). The right Jacobian,

ΦSO(3)(φ) ∈ R3×3, is obtained using Equation (7).

[log(R1R2)]
∨
SO(3) ≈ φ1 + ΦSO(3)(φ1)

−1φ2 ∈ so(3) (6)

ΦSO(3)(φ) = sin(|φ|)
|φ| I3×3 +

(
1− sin(|φ|)

|φ|
)

φφT

|φ|2 − 1−cos(|φ|)
|φ|

[
φ
|φ|
]∧

SO(3)
∈ R

3×3 (7)

2.2. Special Euclidean Group, SE(3)

The special Euclidean group, SE(3) :=
{

T =
[

R t
0T 1

]
∈ R4×4| {R, t} ∈ SO(3)×R3

}
,

represents orientation and translation, where T is the typical 4 × 4 transformation matrix,
R is the rotation matrix, and t represents a coordinate point in Euclidean space. The operations for
SE(3) are listed below. Ii×i and 0i×j denote i × i identity and i × j zero matrices. See Chapter 7 of [18]
for details.

[ξ]∧SE(3) =

[
ρ

φ

]∧
SE(3)

=

[
[φ]∧SO(3) ρ

01×3 0

]
,

[
[φ]∧SO(3) ρ

01×3 0

]∨
SE(3)

=

[
ρ

φ

]
(8)

T = exp([ξ]∧SE(3)) =

[
exp([φ]∧SO(3)) ΦSO(3)(−φ)ρ

01×3 1

]
=

[
R t

01×3 1

]
(9)

adSE(3) (ξ) =

[
[φ]∧SO(3) [ρ]∧SO(3)

03×3 [φ]∧SO(3)

]
, AdSE(3) (T) =

[
R [ρ]∧SO(3)R

03×3 R

]
, T−1 =

[
RT −RTρ

01×3 1

]
(10)

Lastly, we note the useful identity defined in Equation (11) where [a]∧SE(3), [b]
∧
SE(3) ∈ se(3) which

is the Lie algebra of the Lie Group SE(3) ([18], Equation (72)), which will be used to compute the
Jacobians of our model later.

[a]∧SE(3) b = [b]�SE(3) a, where b =

[
ε

η

]
, [b]� =

[
ηI3×3 − [ε]∧SO(3)
01×3 01×3

]
, ε ∈ R

3, η ∈ R (11)

2.3. Real Numbers Rn

In order to represent vector state variables (e.g., translation, velocity, and acceleration) and be
consistent with how we used SE(3) to represent pose, we represented the real numbers s ∈ Rn as
SE(n) poses with position and no rotation. The operations for Rn are listed below.

[s]∧
Rn =

[
0n×n s
01×n 0

]
,

[
0n×n s
01×n 0

]∨
Rn

= s (12)

S = exp([s]∧
Rn) =

[
In×n s
01×n 1

]
,

[
log

([
In×n s
01×n 1

])]∨
Rn

= s, exp([s]∧
Rn)−1 =

[
In×n −s
01×n 1

]
(13)

adRn (s) = 0n×n, AdRn (S) = In×n, ΦRn(s) = 0n×n (14)

Note that the multiplication of two elements of the Lie group (i.e., the exponential of s1 and s2) is
equivalent to the vector addition of two elements of the Lie algebra (i.e., s1 + s2).[

log
(
exp([s1]

∧
Rn) exp([s2]

∧
Rn)
)]∨

Rn = s1 + s2 (15)
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3. Algorithm Description

The proposed algorithm, L5S-3IMU, uses a similar model and assumptions to our prior works
in [15,31], denoted as CKF-3IMU and CKF-3IMU+D, albeit expressed in Lie group representation.
The algorithm uses measurements from three IMUs attached at the pelvis (sacrum) and shanks (slightly
above the ankles), and the inter-IMU distance measurements to estimate the orientation of five body
segments (i.e., pelvis, thighs, and shanks) with respect the world frame, W (Figure 2). The Lie
group representation enables the tracking of both position and orientation (note that CKF-3IMU
only tracked position and assumed orientation measurements were noise-free). Figure 3 shows an
overview of the proposed algorithm. L5S-3IMU predicts the ankle and pelvis positions through double
integration of their linear 3D acceleration, and predicts the shank and pelvis orientation through
integration of their linear 3D angular velocity. The orientation estimates are further updated using
a third-party orientation estimation algorithm. Drift in the position estimates due to sensor noise,
which accumulates quadratically in the double integration of acceleration, was mitigated through the
following assumptions: (1) the pelvis position is approximated as the height of the pelvis when the
leg(s) are unbent, or as informed by inter-IMU distance measurements, when available; and (2) the
ankle velocity and height above the floor are zeroed whenever a footstep is detected. Furthermore,
a pseudo-measurement equal to the current global position estimate of the pelvis and ankles is made
with a fixed covariance to contain the ever-growing error covariance of the said states. Lastly, constant
body segment lengths and hinged knee joints (one degree of freedom (DOF)) with limited range
of motion (ROM) were enforced as biomechanical constraints. The pre- and post-processing parts
remain exactly the same as the CKF-3IMU algorithm (e.g., acceleration due to body movement was
calculated by expressing the acceleration of the instrumented body segment in the world frame using
the orientation estimate and then subtracting acceleration due to gravity (i.e., g = [0 0 9.81]T) [6]).

ine Symbol Description
ine

Po
in

ts
/J

oi
nt

s

mp mid-pelvis
lh left hip
rh right hip
lk left knee
rk right knee
la left ankle
ra right ankle

ine

Se
gm

en
ts

p pelvis
lt left thigh
rt right thigh
ls left shank
rs right shank

ine

D
is

t. pla pelvis to left ankle
pra pelvis to right ankle
lra left to right ankle

ine

Figure 2. Model of the lower body used by LGKF-3IMU. The circles denote joint positions, the solid
lines denote instrumented body segments, whilst the dashed lines denote segments without IMUs
attached (i.e., thighs). Dotted lines denote inter-IMU measurements.
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Figure 3. Algorithm overview which consists of pre-processing, CEKF, and post-processing.
Pre-processing calculates the body segment orientation, inertial body acceleration (calculated by
expressing IMU acceleration with respect world frame using its current orientation estimate then
subtracting gravity), and step detection from raw acceleration, ăk, angular velocity, ω̆k, and magnetic
north heading, η̆k, measured by the IMU. The CEKF-based state estimation consists of a prediction
(kinematic equation), measurement (orientation, pelvis height/inter-IMU distance measurement,
covariance limiter, intermittent zero-velocity update, and flat-floor assumption), and constraint update
(thigh length, hinge knee joint, and knee range of motion). Post-processing calculates the left and right
thigh orientations, RRRlt

k and RRRrt
k .

3.1. System, Measurement, and Constraint Models

The system, measurement, and constraint models are presented below

Xk = f (Xk−1, uk, nk) = Xk−1 exp([Ω(Xk−1, uk)+nk]
∧
G) (16)

Zk = h(Xk) exp([mk]
∧
G), Dk = c(Xk) (17)

where k is the time step. Xk ∈ G is the system state, an element of state Lie group G. Ω
(
Xk−1, uk

)
:

G→Rp is a non-linear function which describes how the model acts on the state and input, uk−1,
where p is the number of dimensions of the compact vector representation for Lie algebra g. nk is
a zero-mean process noise vector with covariance matrix Q (i.e., nk ∼ NRp(0p×1,Q)). Zk ∈ Gm

is the system measurement, an element of the measurement Lie group Gm. h (Xk) : G→Gm is the
measurement function. mk is a zero-mean measurement noise vector with covariance matrix Rk
(i.e., mk ∼ NRq(0q×1,Rk) where q is the number of dimensions of available measurements). Dk ∈ Gc

is the constraint state, an element of constraint Lie group Gc. c (Xk) : G→Gc is the equality constraint
function the state Xk must satisfy (i.e., c (Xk) = Dk). Similar to [23,36], the state distribution of Xk is
assumed to be a concentrated Gaussian distribution on Lie groups (i.e., Xk = μk expG [ε]∧G, where μk is
the mean of Xk and Lie algebra error ε ∼ NRp(0p×1, P)) [19].

The Lie group state variables Xk model the position, orientation,
and velocity of the three instrumented body segments (i.e., pelvis and shanks) as
Xk = diag(T p, T ls, Trs, exp([[(vp)T (vls)T (vrs)T ]T ]∧

R9)) ∈ G = SE(3)3 ×R9 where Tb ∈ SE(3)
represents the pose (i.e., orientation and position) of body segment b relative to world frame W, and Avb

is the velocity of body segment b relative to frame A. If frame A is not specified, assume reference to the
world frame, W. The Lie algebra error is denoted as ε = [(ε

p
T)

T (εls
T )

T (εrs
T )

T (ε
mp
v )T (εla

v )
T (εra

v )T ]T

where the first three variables correspond to the Lie group in SE(3) while the latter three are for
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R9. [ ]∨G, exp([ ]∧G), [log( )]∨G, AdG(Xk), and ΦG( ) are constructed similarly as Xk(e.g., AdG(Xk) =

diag(AdSE(3)(T p), AdSE(3)(T ls), AdSE(3)(Trs), AdR9(exp([[(vp)T (vls)T (vrs)T ]T ]∧
R9))). Refer to

Sections 2.2 and 2.3 for definition of SE(3) and Rn operators.

3.2. Lie Group Constrained EKF (LG-CEKF)

The a priori, a posteriori, and constrained state estimate (i.e., estimated mean of Xk) for time
step k are denoted by μ̂−

k , μ̂+
k , and μ̃+

k , respectively. Note that the true state Xk can be expressed as
μk exp([ε]∧G) where μk is one of the state means just mentioned with error, [ε]∧G. The a priori and a
posteriori error covariance matrices are denoted as P−

k and P+
k , respectively. Note the error covariance

is not updated at the constrain update step. The KF is based on the Lie group EKF, as defined in [36],
where the state means (μ̂−

k , μ̂+
k , and μ̃+

k ) and state error covariance matrices (P−
k and P+

k ) are propagated
by the KF at each time step.

3.2.1. Prediction Step

Prediction step estimates the a priori state μ̂−
k at the next time step. The mean propagation of the

three instrumented body segments is governed by Equation (18) where Ω(μ̃+
k−1, uk) (Equation (19))

is the motion model for the three instrumented body segments. Note that the state propagation may
not necessarily respect the biomechanical constraints, so joints may become dislocated after this step.
The input uk is defined in Equation (20), where the orientation and acceleration as obtained by the
IMU attached to segment b with respect world frame W are denoted as R̆b

k and ăb
k for b ∈ {p, ls, rs},

while the angular velocity as obtained by the IMU attached to segment b expressed in frame b is
denoted as bω̆k.

μ̂−
k = μ̃+

k−1 exp([Ω(μ̃+
k−1, uk)]

∧
G) (18)

Ω(μ̃+
k−1, uk) =

[︸ ︷︷ ︸
1 × 3

(Δt ṽmp+
k−1 + Δt2

2 ăp
k )

T R̆p
k ︸ ︷︷ ︸

1 × 3

Δt pω̆T
k ︸ ︷︷ ︸

1 × 3

(Δt ṽla+
k−1 +

Δt2

2 ăls
k )

T R̆ls
k ︸ ︷︷ ︸

1 × 3

Δt lsω̆T
k

︸ ︷︷ ︸
1 × 3

(Δt ṽra+
k−1 +

Δt2

2 ărs
k )

T R̆rs
k ︸ ︷︷ ︸

1 × 3

Δt rsω̆T
k ︸ ︷︷ ︸

1 × 9

Δt( ămp
k )T Δt( ăla

k )
T Δt( ăra

k )T]T
(19)

uk =
[

R̆p
k R̆ls

k R̆rs
k ăp

k ăls
k ărs

k
pω̆k

lsω̆k
rsω̆k

]
(20)

The state error covariance matrix propagation is governed by Equation (21), where Fk represents
the matrix Lie group equivalent to the Jacobian of f (Xk−1, nk−1), Q is the covariance matrix of the
process noise, and Ck =

∂
∂ε Ω(μ̃+

k−1 exp([ε]∧G), uk)|ε=0 represents the linearization of the motion model
with an infinitesimal perturbation ε. The process noise covariance matrix, Q, is calculated from the
input-to-state matrix G and the noise variances of the measured acceleration and angular velocity,
σ2

a and σ2
ω, respectively.

P−
k = FkP+

k−1FT
k + ΦG(Ω(μ̃+

k−1, uk))QΦG(Ω(μ̃+
k−1, uk))

T (21)

Fk = AdG(expG(−[Ω(μ̃+
k−1, uk)]

∧
G)) + ΦG(Ω(μ̃+

k−1, uk))Ck (22)

Q = G diag(σ2
a, σ2

ω) GT (23)
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Ck =
∂

∂ε Ω(μ̃+
k−1 exp([ε]∧G), uk)|ε=0

= ∂
∂ε

[
(Δt(ṽmp+

k−1 + ε
mp
v ) + Δt2

2 ăp
k )

T R̆p
k Δt pω̆T

k (Δt(ṽla+
k−1 + εla

v ) +
Δt2

2 ăls
k )

T R̆ls
k Δt lsω̆T

k

(Δt(ṽra+
k−1 + εra

v ) + Δt2

2 ărs
k )

T R̆rs
k Δt rsω̆T

k Δt( ămp
k )T Δt( ăla

k )
T Δt( ăra

k )T
]T |ε=0

Ck =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
018×18

Δt(R̆p
k )

T 03×3 03×3

03×3 03×3 03×3

03×3 Δt(R̆ls
k )

T 03×3

03×3 03×3 03×3

03×3 03×3 Δt(R̆rs
k )

T

03×3 03×3 03×3

09×27

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δt2/2 I3×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 ΔtI3×3 03×3 03×3

03×3 Δt2/2 I3×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 ΔtI3×3 03×3

03×3 03×3 Δt2/2 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 ΔtI3×3

ΔtI9×9 09×9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)

3.2.2. Measurement Update

Measurement update estimates the state at the next time step by: (i) updating the orientation
state using new orientation measurements of body segments from IMUs; by (ii) encouraging pelvis
position to be above the feet, as informed by either some pseudo-measurement or inter-IMU distance
measurements; and by (iii) enforcing ankle velocity to reach zero, and the ankle z position to
be near the floor level, z f when step is detected. When only IMU measurements are available,
(iia) pelvis z position is encouraged to be close to initial standing height, zp. When inter-IMU distance
measurements are available, (iia) is not used. Instead, (iib) ankle distance is directly incorporated
while pelvis position is inferred from inter-IMU distance measurements assuming hinged knee joints
and constant body segment lengths. The a posteriori state mean μ̂+

k is calculated following the Lie EKF
equations below. Note that [log(h(μ̂−

k )
−1Zk)]

∨
Gm

in Equation (27) is akin to the KF innovation/residual,
where h(μ̂−

k )
−1Zk (derived from Equation (17) assuming mk = 0 and Xk = μ̂−

k , i.e., Zk = h(μ̂−
k )) is the

innovation/residual in Lie group Gm brought to the vector representation of the Lie algebra space
using the inverse exponential (i.e., logarithm) mapping.

μ̂+
k = μ̂−

k expG([νk]
∧
G) (26)

νk = Kk([log(h(μ̂−
k )

−1Zk)]
∨
Gm

) (27)

Kk = P−
k HT

k (HkP−
k HT

k +Rk)
−1 (28)

Hk can be seen as the matrix Lie group equivalent to the Jacobian of h(Xk), and is defined as
the concatenation of Hori and Hmp,k when inter-IMU distance measurement is not available. When
inter-IMU distance measurement is available, Hmp,k is replaced by Hdist,k = [HT

pla,k HT
pra,k HT

lra,k]
T .

Hls,k and/or Hrs,k are also concatenated to Hk when the left and/or right foot contact (FC) is detected
(See Equation (9) of [15]). Each component matrix will be described later. The measurement matrix
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Zk ∈ Gm, measurement function h(Xk) ∈ Gm, and measurement covariance noise Rk are constructed
similarly to Hk, but combined using diag instead of concatenation (e.g., Rk = diag(σ2

ori, σ2
mp)).

Hk =
∂

∂ε

[
log

(
h(μ̂−

k )
−1h(μ̂−

k exp([ε]∧G))
)]∨

Gm
|ε=0

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[HT
ori HT

mp/dist]
T no FC

[HT
ori HT

mp/dist HT
ls,k]

T left FC

[HT
ori HT

mp/dist HT
rs,k]

T right FC

[HT
ori HT

mp/dist HT
ls,k HT

rs,k]
T both FC

(29)

Orientation Update

The orientation update utilizes the orientation measurement to update the state estimate as
defined by Equation (30), with measurement noise variance σ2

ori (9 × 1 vector).

hori(Xk) = diag(Rp
k , Rls

k , Rrs
k ) ∈ SO(3)3, Zori = diag(R̆p

k , R̆ls
k , R̆rs

k ) (30)

Hori along with other components of Hk are calculated by applying Equation (29) to their
corresponding measurement functions, followed by tedious algebraic manipulation and first order
linearization (i.e., exp([ε]∧) ≈ I + [ε]∧). The derivation for Hori (Equation (31)) can be solved trivially
as [log(hori(μ̂

−
k )

−1hori(μ̂
−
k exp([ε]∧G)))]

∨ = [(ε
p
φ)

T (εls
φ)

T (εrs
φ )

T ]T , where εb
T = [(εb

ρ)
T (εb

φ)
T ]T for

body segment b ∈ {p, ls, rs}.

Hori =

⎡⎢⎣ 03×3 I3×3

03×3 I3×3 09×9

03×3 I3×3

⎤⎥⎦ (31)

Pelvis Height Assumption

The pelvis height assumption softly constrains the pelvis z position to be close to initial standing
height zp as defined by Equation (32) (represented in vector space of its Lie algebra) and Equation (33),
with measurement noise variance σ2

mp (1 × 1 vector). This assumption is used only when inter-IMU
distance measurement is not available. ix, iy, iz, and i0 denote 4 × 1 vectors whose 1st to 4th rows,
respectively, are 1, while the rest are 0; they are used below to select rows, columns, or elements
from matrices.

[log(hmp(Xk))]
∨ = iT

z T p
k i0 =

[
0 0 1 0

] [ Rp
k pp

k
01×3 1

] ⎡⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎦ =
[
0 0 1 0

] [pp
k

1

]
= pp

z,k ∈ R (32)

[log(Zmp)]
∨ = zp ∈ R (33)

The derivation of Hmp,k = ∂
∂ε [log(hmp(μ̂

−
k )

−1hmp(μ̂
−
k exp([ε]∧G)))]

∨|ε=0 is shown in
Equations (34)–(36). Taking best estimate Xk = μ̂−

k gives us Equation (34).

[log(hmp(μ̂
−
k ))]

∨ = iT
z T̂ p–

k i0 (34)

[log(hmp(μ̂
−
k exp([ε]∧G)))]

∨ = iT
z T̂ p–

k exp([εp
T]

∧)i0

≈ iT
z T̂ p–

k i0 + iT
z T̂ p–

k [ε
p
T]

∧i0, 1st order linearization

Use Equation (11), [a]∧ b = [b]� a, to bring ε
p
T to right of i0

= [log(hmp(μ̂
−
k ))]

∨ + iT
z T̂ p–

k [i0]
� ε

p
T

(35)
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Remember ε
p
T is a subvector of ε as defined in Section 3.1 and is the Lie algebra error of the

state in its compact vector representation. Note that if measurement function ha(Xk) ∈ Lie group
Rb, then [log(ha(μ̂

−
k )

−1ha(Xk))]
∨ = [log(ha(Xk))]

∨ − [log(ha(μ̂
−
k ))]

∨ = [log(ha(μ̂
−
k exp([ε]∧G)))]

∨ −
[log(ha(μ̂

−
k ))]

∨ by applying Equations (15) and (13) (inverse of Lie group Rn). Finally, Hmp,k is
calculated as shown in Equation (36).

Hmp,k =
∂

∂ε [log(hmp(μ̂
−
k )

−1hmp(μ̂
−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hmp(μ̂

−
k exp([ε]∧G)))]

∨ − [log(hmp(μ̂
−
k ))]

∨
)
|ε=0

=
[
︸ ︷︷ ︸

1 × 6

iT
z T̂ p–

k [i0]
� 01×6 01×6 01×9

] (36)

Zero Velocity Update and Flat Floor Assumption

When step is detected, the ankle velocity is enforced to be zero and the ankle z position is brought
to near the floor level, z f (i.e., flat floor assumptions). The corresponding measurement function is
defined by Equation (37), with measurement noise variance σ2

ls (4 × 1 vector).

[log(hls(Xk))]
∨ =

[
vls

iT
z T ls

k i0

]
=

[
vls

pls
z,k

]
∈ R

4, [log(Zls)]
∨ =

[
03×1

z f

]
(37)

The zero velocity part of Hls,k (Equation (38)) and Hrs,k can also be calculated trivially, while the
flat floor assumption can be calculated similarly as Hmp,k but the z position set to floor height, z f ,
instead of the pelvis standing height, zp.

Hls,k =
∂

∂ε [log(hls(μ̂
−
k )

−1hls(μ̂
−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hls(μ̂

−
k exp([ε]∧G)))]

∨ − [log(hls(μ̂
−
k ))]

∨) |ε=0

=

[
03×6 03×6 03×6 03×3 I3×3 03×3

︸ ︷︷ ︸
pose states in SE(3)

01×6 iT
z T̂ ls–

k [i0]
� 01×6 ︸ ︷︷ ︸

velocity states

01×3 01×3 01×3

] (38)

Left and Right Ankle Distance Measurement

When the inter-IMU distance between the ankles, d̆lra
k , is available, ankle distance measurement

is incorporated as a soft distance constraint. The measurement function is defined by Equation (40),
with measurement noise variance σ2

lra (1 × 1 vector). τlra(Xk) (Equation (39)) is the vector that points
from the right ankle to the left ankle, where ls pla is the position of the left ankle expressed in left shank
frame, and rs pra is the position of the right ankle expressed in right shank frame. We have chosen that
the ankles are at the origin of their respective shank frames. Note that matrix E converts homogeneous
4 × 1 coordinates to standard 3 × 1 coordinates (i.e., drops the 1 from the end of the 4 × 1 vector).

τlra(Xk) =

E︷ ︸︸ ︷[
I3×3 03×1

]
(

left ankle in W︷ ︸︸ ︷
T ls

k
ls pla −

right ankle in W︷ ︸︸ ︷
Trs

k
rs pra ), ls pla = rs pra =

origin of frame︷ ︸︸ ︷[
0 0 0 1

]T
(39)

By taking the squared Euclidean distance of τlra(Xk) (i.e., || τlra(Xk)||2), we can get the ankle
distance measurement model.

[log(hlra(Xk))]
∨ = (τlra(Xk))

T τlra(Xk) ∈ R, [log(Zlra)]
∨ = (d̆lra

k )2 (40)

To solve for Hlra,k (Equation (44)), we first solved for [log(hlra(Xk))]
∨ at Xk = μ̂−

k (Equation (41)).

τlra(μ̂
−
k ) = E(T̂ ls–

k
ls pla − T̂rs–

k
rs pra), [log(hlra(μ̂

−
k ))]

∨ = (τlra(μ̂
−
k ))

T τlra(μ̂
−
k ) (41)
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Then solve for τlra(μ̂
−
k exp([ε]∧G)) and [log(hlra(μ̂

−
k exp([ε]∧G)))]

∨ as shown in Equations (42)
and (43).

τlra(μ̂
−
k exp([ε]∧G)) = E(T̂ ls–

k exp([εls
T ]

∧) ls pla − T̂rs–
k exp([εrs

T ]
∧) rs pra)

Take the 1st order approximation

≈ E(T̂ ls–
k

ls pla − T̂rs–
k

rs pra + T̂ ls–
k [εls

T ]
∧ ls pla − T̂rs–

k [εrs
T ]

∧ rs pra)

= τlra(μ̂
−
k ) +

Γlra︷ ︸︸ ︷
E
(

T̂ ls–
k [ls pla]� εls

T − T̂rs–
k [rs pra]� εrs

T

)
, Using Equation (11)

(42)

[log(hlra(μ̂
−
k exp([ε]∧G)))]

∨ =
(

τlra(μ̂
−
k ) + Γlra

)T (
τlra(μ̂

−
k ) + Γlra

)
Assume 2nd order error ≈ 0
= τlra(μ̂

−
k )

T τlra(μ̂
−
k ) + 2 τlra(μ̂

−
k )

TΓlra +�����≈ 0
ΓT

lraΓlra

= [log(hlra(μ̂
−
k ))]

∨

+ 2 τlra(μ̂
−
k )

TE
(

T̂ ls–
k [ls pla]� εls

T − T̂rs–
k [rs pra]� εrs

T

)
(43)

Hlra,k =
∂

∂ε [log(hlra(μ̂
−
k )

−1hlra(μ̂
−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hlra(μ̂

−
k exp([ε]∧G)))]

∨ − [log(hlra(μ̂
−
k ))]

∨) |ε=0

= ∂
∂ε

(
2 τlra(μ̂−

k )
TE
(

T̂ ls–
k [ls pla]� εls

T − T̂rs–
k [rs prs

0 ]
� εrs

T

)) |ε=0

=
[

01×6 ︸ ︷︷ ︸
1 × 6

2 τlra(μ̂
−
k )

TE T̂ ls–
k [ls pla]� ︸ ︷︷ ︸

1 × 6

−2 τlra(μ̂
−
k )

TE T̂rs–
k [rs pra]� 01×9

] (44)

Pelvis-to-Ankle Distance Measurement

In addition to the soft ankle distance constraint, the ankle to pelvis vector is inferred from the
ankle to pelvis distance measurements while assuming hinged knee joints and constant body segment
lengths. The measurement function is defined by Equation (45), with measurement noise variance σ2

pla

(3 × 1 vector), where p pmp is the position of the mid-pelvis expressed in pelvis frame, and ls pla is the
position of the left ankle expressed in left shank frame. We have chosen that the mid-pelvis and ankle
are at the origin of their corresponding reference frames.

[log(hpla(Xk))]
∨ = E(

mid-pelvis in W︷ ︸︸ ︷
T p

k
p pmp −

left ankle in W︷ ︸︸ ︷
T ls

k
ls pla ) ∈ R

3, p pmp = ls pla =
[
0 0 0 1

]T
(45)

The measurement pelvis to left ankle vector can be calculated from the measured pelvis to
left ankle distance, d̆pla

k as shown in Equation (46) which is the Lie Group reformulation of [31]
(Equation (4)). In essence, Equation (47) calculates the most probably knee angle assuming hinged
knee joint and constant body segment lengths, then Equation (46) adds the thigh (expressed in shank
coordinate system with knee angle θ̂lk

k ) and shank long axis to the hips to obtain the pelvis-to-ankle
vector. See Appendix A for derivation. There are two solutions for θ̂lk

k due to the inverse cosine
in Equation (47). We chose the θ̂lk

k value as that closer to the current left knee angle estimate from
the prediction step. Note that this measurement function could also be formulated as a linearized
Euclidean distance between the pelvis and ankle (i.e., similar to Equation (44)); however, a preliminary
exploration of this approach showed poorer performance.

[log(Zpla,k)]
∨ =

ψpla=half pelvis y-axis + shank z-axis︷ ︸︸ ︷
dp

2 T̂ p–
k iy − dls T̂ ls–

k iz +dlt T̂ ls–
k

thigh z-axis in shank frame︷ ︸︸ ︷
(ix sin ( θ̂lk

k )− iz cos ( θ̂lk
k )) ∈ R

3 (46)

θ̂lk
k = cos−1

(
αγ±β

√
α2+β2−γ2

α2+β2

)
where

α = −2dltψT
pla T̂ ls–

k iz, β = 2dltψT
pla T̂ ls–

k ix,

γ = (d̆pla
k )2 − ψT

plaψpla − (dlt)2
(47)
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To calculate for Hpla,k, we first solved for [log(hpla(Xk))]
∨ at Xk = μ̂−

k similar to Equation (41).

[log(hpla(μ̂
−
k ))]

∨ = τpla(μ̂
−
k ) = E(T̂ p–

k
p pmp − T̂ ls–

k
ls pla) (48)

Then solve for [log(hpla(μ̂
−
k exp([ε]∧G)))]

∨ similar to Equation (42) (i.e., distance between
mid-pelvis and left ankle) giving us [log(hpla(μ̂

−
k exp([ε]∧G)))]

∨ = τpla(μ̂
−
k ) + Γpla. Hpla,k is then

calculated as shown in Equation (49). The right side of the pelvis-to-ankle distance measurement
(i.e., hpra(μ̂

−
k ), Zpra, Hpra,k) can be solved similarly to the left side.

Hpla,k =
∂

∂ε [log(hpla(μ̂
−
k )

−1hpla(μ̂
−
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(hpla(μ̂

−
k exp([ε]∧G)))]

∨ − [log(hpla(μ̂
−
k ))]

∨
)
|ε=0

= ∂
∂ε

(
τpla(μ̂

−
k ) + Γpla − τpla(μ̂

−
k )
)
|ε=0

= ∂
∂ε

(
Γpla

)
|ε=0 = ∂

∂ε

(
E
(

T̂ p–
k [p pmp]� ε

p
T − T̂ ls–

k [ls pla]� εls
T

)) |ε=0

=
[
︸ ︷︷ ︸

1 × 6

E T̂ p–
k [p pmp]� ︸ ︷︷ ︸

1 × 6

−E T̂ ls–
k [ls pla]� 01×6 01×9

]
(49)

Covariance Limiter

Lastly, the error covariance of the position estimates of the three instrumented body segments
must be prevented from growing unbounded and/or becoming badly conditioned, as will occur
naturally when tracking global position of objects without any global position reference. At this step,
a pseudo-measurement equal to the current state μ̂+

k is used (implemented by Equation (50)) with
some measurement noise of variance σlim (9 × 1 vector). The covariance P+

k is then calculated through
Equations (51)–(53).

Hlim =

⎡⎢⎣
mp pos.︷︸︸︷
I3×3 03×3

la pos.︷︸︸︷ ra pos.︷︸︸︷
I3×3 03×3 09×9

I3×3 03×3

⎤⎥⎦ (50)

H′
k = [HT

k HT
lim]

T , R′
k = diag(σ2

k , σ2
lim) (51)

K′
k = P−

k H′T
k (H′

kP−
k H′T

k +R′)−1 (52)

P+
k = ΦG (νk) (I − K′

kH′
k)P

−
k ΦG (νk)

T (53)

3.2.3. Satisfying Biomechanical Constraints

After the preceding updates, the joint positions or angles may be beyond their allowed range
(i.e., knee hyperflexion). The constraint update corrects the kinematic state estimates to satisfy the
biomechanical constraints of the human body by projecting the current a posteriori state estimate
μ̂+

k onto the constraint surface, guided by our uncertainty in each state variable, which is encoded
by P+

k . The following biomechanical constraint equations are enforced: (i) estimated thigh long
axis vector lengths equal the thigh lengths; (ii) both knees act as hinge joints (formulation similar to
Section 2.3, Equation (4) of [9]); and (iii) the knee joint angle is within realistic range. The constraint
functions are similar to Section II-E.3 of [15] but expressed under SE(3) state variables. The constrained
state μ̃+

k can be calculated using the equations below, similar to the measurement update of [36] with
zero noise, where Ck = [CT

L,k CT
R,k]

T . CL,k is the concatenation of Cltl,k, Clkh,k, and Clkr,k; the last matrix
is not concatenated when the knee angle, αlk, is within its allowed range (i.e., αlk,min ≤ αlk ≤ αlk,max).
Cltl,k, Clkh,k, and Clkr,k corresponds to the biomechanical constraint for the left thigh length (ltl), left knee
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hinged joint (lkh), and left knee angle ROM (lkr), respectively, which will be described more later.
CR,k can be derived similarly, while Dk and c(μ̂+

k )) are constructed similarly to Zk.

μ̃+
k = μ̂+

k exp([νk]
∧
G) (54)

νk = Kk([log(c(μ̂+
k )

−1Dk)]
∨
Gc

(55)

Kk = P+
k CT

k (CkP+
k CT

k )
−1) (56)

Ck =
∂

∂ε [log(c(μ̂+
k )

−1c(μ̂+
k exp([ε]∧G)))]

∨
Gc
|ε=0 (57)

Thigh Length Constraint

Firstly, the thigh length constraint is shown in Equation (59), where τlt
z (Xk) (Equation (58)) denotes

the thigh long axis vector and dlt denotes the measured thigh length during calibration. p plh is the
position of the left hip expressed in pelvis frame, and ls plk is the position of the left knee expressed in
left shank frame. We have chosen that the left hip to be dp

2 to the left of the mid-pelvis origin, and the
left knee to be dls from the left shank origin (i.e., from the left ankle).

τlt
z (Xk) = E

( hip jt. pos. in W︷ ︸︸ ︷
T p p plh −

knee jt. pos. in W︷ ︸︸ ︷
T ls ls plk )

, p plh =
[
0 dp

2 0 1
]T

, ls plk =
[
0 0 dls 1

]T
(58)

[log(cltl(Xk))]
∨ = (τlt

z (Xk))
T τlt

z (Xk) ∈ R, [log(Dltl)]
∨ = (dlt)2 (59)

Cltl,k is calculated using Equation (60).

Cltl,k =
∂

∂ε [log(cltl(μ̂
+
k )

−1cltl(μ̂
+
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(cltl(μ̂

+
k exp([ε]∧G)))]

∨ − [log(cltl(μ̂
+
k ))]

∨) |ε=0
(60)

Following similar procedure to Hlra,k, we obtain τlt
z (μ̂

+
k exp([ε]∧G)) = τlt

z (μ̂
+
k ) + Γltz (similar

to Equation (42)), and [log(cltl(μ̂
+
k exp([ε]∧G)))]

∨ = [log(cltl(μ̂
+
k ))]

∨ + 2(τlt
z (μ̂

+
k ))

TE
(

T̂ p+
k [p plh]� ε

p
T −

T̂ ls+
k [ls plk]� εls

T

)
(similar to Equation (43)), which if we substitute in Equation (60) gives us Equation (61)

Cltl,k =
∂

∂ε

(
2 τlt

z (μ̂
+
k )

TE(T̂ p+
k [p plh]� ε

p
T − T̂ ls+

k [ls plk]� εls
T )
)
|ε=0

=
[
︸ ︷︷ ︸

1 × 6

2(τlt
z (μ̂

+
k ))

TE T̂ p+
k [p plh]� ︸ ︷︷ ︸

1 × 6

−2(τlt
z (μ̂

+
k ))

TE T̂ ls+
k [ls plk]� 01×6 01×9

] (61)

Hinge Knee Joint Constraint

Secondly, the hinge knee joint constraint as defined by Equation (62) is enforced by having the
long (z) axis of the thigh to be perpendicular to the mediolateral axis (y) of the shank. For example,
on the left leg, we would want rls

y be perpendicular to the thigh long axis vector τlt
z (μ̂

+
k ) (i.e., the dot

product of rls
y and τlt

z (μ̂
+
k ) should be 0). Refer to Figure 2 for visualization. This formulation is similar

to Section 2.3, Equation (4) of [9].

[log(clkh(Xk))]
∨ = (E T lsiy)

T τlt
z (Xk) = (rls

y )
T τlt

z (Xk) ∈ R, [log(Dlkh)]
∨ = 0 (62)

Following similar procedure to Cltl,k and taking Xk = μ̂+
k , [log(clkh(μ̂

+
k ))]

∨ and
[log(clkh(μ̂

+
k exp([ε]∧G)))]

∨ can be calculated as shown in Equations (63) and (64), respectively.

[log(clkh(μ̂
+
k ))]∨ = (E T̂ ls+iy)

T τlt
z (μ̂

+
k ) (63)
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[log(clkh(μ̂
+
k exp([ε]∧G)))]

∨ = (E T̂ ls+ exp([εls
T ]

∧)iy)
T(τlt

z (μ̂
+
k ) + Γltz)

Taking 1st order approximation of exp

≈ (E( T̂ ls+ + T̂ ls+[εls
T ]

∧)iy)
T(τlt

z (μ̂
+
k ) + Γltz)

Assume 2nd order error ≈ 0

= (E T̂ ls+iy)
T τlt

z (μ̂
+
k ) + (E T̂ ls+ iy)

TΓltz

+ (τlt
z (μ̂

+
k ))TE T̂ ls+[εls

T ]
∧iy +

����������≈ 0
(E T̂ ls+[εls

T ]
∧iy)

TΓltz

= [log(clkh(μ̂
+
k ))]∨ + (E T̂ ls+ iy)

TE
(

T̂ p+
k [p plh]� ε

p
T− T̂ ls+

k [ls plk]� εls
T

)
+ (τlt

z (μ̂
+
k ))TE T̂ ls+[iy]

� εls
T , by expanding Γltz and using Equation (11)

(64)

Clkh,k can be calculated using Equation (65).

Clkh,k =
∂

∂ε [log(clkh(μ̂
+
k )

−1clkh(μ̂
+
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(clkh(μ̂

+
k exp([ε]∧G)))]

∨ − [log(clkh(μ̂
+
k ))]

∨) |ε=0
(65)

Substituting Equations (63) and (64) into Equation (65) gives us Equation (66).

Clkh,k =
[
︸ ︷︷ ︸

1 × 6

(E T̂ ls+iy)TE T̂ p+[p plh]� ︸ ︷︷ ︸
1 × 6

−(E T̂ ls+iy)TE T̂ ls+[ls plk]� + (τlt
z (μ̂

+
k ))

TE T̂ ls+[iy]� 01×15

]
(66)

Knee Range of Motion Constraint

Thirdly, the knee ROM constraint is defined by Equation (69) and is only enforced if the knee
angle, αlk, is outside the allowed ROM. The bounded knee angle, α′lk, is calculated by Equation (67).
Equation (69) is obtained by expanding Equation (67) to Equation (68) which when rearranged gives us
[log(clkr(Xk))]

∨ (i.e., Lie group representation of Equation (26) in [15]). Note that lsrlt
z is the normalized

thigh long axis expressed in the left shank frame.

αlk = tan−1
(−(rls

z )
T rlt

z
−(rls

x )T rlt
z

)
+ π

2 , α′lk = min(αlk,max, max(αlk,min, αlk)) (67)

− rlt
z ·rls

z
− rlt

z ·rls
x
=

sin(α′lk−π
2 )

cos(α′lk−
π
2 )

(68)

[log(clkr(Xk))]
∨ = (E T ls

lsrlt
z =long axis of left thigh in shank frame︷ ︸︸ ︷(

iz cos(α′lk − π
2 )− ix sin(α′lk − π

2 )
)
)T τlt

z (Xk) ∈ R, [log(Dlkr)]
∨ = 0 (69)

Following a similar procedure to Clkh,k (i.e., replace iy in Equation (64) with lsrlt
z ) and taking

Xk = μ̂+
k , Clkr,k can be calculated from clkr(μ̂

+
k exp([ε]∧G)) = [log(clkr(μ̂

+
k ))]

∨ +

(E T̂ ls+ lsrlt
z )

TE
(

T̂ p+
k [p plh]� ε

p
T− T̂ ls+

k [ls plk]� εls
T

)
+ (τlt

z (μ̂
+
k ))

TE T̂ ls+[lsrlt
z ]

� εls
T , as shown in Equation (70).

Clkr,k = ∂
∂ε [log(clkr(μ̂

+
k )−1clkr(μ̂

+
k exp([ε]∧G)))]

∨|ε=0

= ∂
∂ε

(
[log(clkr(μ̂

+
k exp([ε]∧G)))]

∨ − [log(clkr(μ̂
+
k ))]∨

) |ε=0

=
[
︸ ︷︷ ︸

1 × 6

(E T̂ ls+ lsrlt
z )

TE T̂ p+[p plh]� ︸ ︷︷ ︸
1 × 6

−(E T̂ ls+ lsrlt
z )

TE T̂ ls+[ls plk]� + (τlt
z (μ̂

+
k ))TE T̂ ls+[lsrlt

z ]
� 01×15

] (70)

3.3. Post-Processing

The orientation of the pelvis and shanks are obtained from the state μ̃+
k . The orientation

of the left thigh, R̃lt+, can be calculated using R̃lt+ = [ r̃ls+
y × r̃lt+

z r̃ls+
y r̃lt+

z ] =

[ [E T̃ ls+
k iy]

∧
SO(3) r̃lt+

z (E T̃ ls+
k iy) r̃lt+

z ], where r̃lt+
z = τlt

z (μ̃
+
k )/|| τlt

z (μ̃
+
k )||. The orientation of the right thigh,

R̃rt+, is calculated similarly.
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4. Experiment

An extension of the dataset from [15] was used to evaluate our L5S based algorithms.
The movements involved are listed in Table 1 (note the addition of dynamic movements),
and were collected from from nine healthy subjects (7 men and 2 women, weight 63.0 ± 6.8 kg,
height 1.70 ± 0.06 m, age 24.6 ± 3.9 years old), with no known gait abnormalities. Raw data were
captured using a commercial IMC (i.e., Xsens Awinda) at 100 Hz sampling rate with IMUs attached to
the pelvis and ankles, compared against a benchmark OMC (i.e., the setup followed Vicon Plug-in
Gait protocol in a ∼4 × 4 m2 capture area). The experiment was approved by the Human Research
Ethics Board of the University of New South Wales (UNSW) with approval number HC180413.

Table 1. Types of movements done in the validation experiment.

Movement Description Duration Group

Walk Walk straight and return ∼30 s F
Figure-of-eight Walk along figure-of-eight path ∼60 s F
Zig-zag Walk along zig-zag path ∼60 s F
5-minute walk Unscripted walk and stand ∼300 s F
Speedskater Speedskater on the spot ∼30 s D
TUG Timed up-and-go test ∼30 s D
Jog Jog straight and return ∼30 s D
Jumping jacks Jumping jacks on the spot ∼30 s D
High-knee jog High-knee jog on the spot ∼30 s D

F denotes free walk, D denotes dynamic movements.

Frame alignment and yaw offset calibrations are similar to Section III-B of [15]. The experiments
and algorithm were implemented using Matlab 2020a, with initial state μ̃+

0 (i.e., position, orientation,
and velocity) obtained from the OMC system (i.e., Vicon) and initial error covariance P+

0 set to 0.5I27×27.
The variance parameters for the process and measurement error covariance matrix Q and R are shown
in Table 2.

Table 2. Parameters for error covariance matrices, Q and R.

Q Parameters R Parameters

σ2
a σ2

ω σ2
ori σ2

mp σ2
ls and σ2

rs σ2
dl and σ2

dr σ2
da σ2

lim
(m2·s−4) (rad2·s−2) (rad2) (m2) (m2·s−2 and m2) (m2) (m2) (m2)

10219 10319 119 0.1 [0.0113 10−4] 10 1 10118

where 1n is an 1 × n row vector with all elements equal to 1.

The inter-IMU distance measurements, d̆pla, d̆pra, and d̆lra, were simulated by calculating the
distance from the mid-pelvis to the left and right ankles and adding normally distributed positional
noise with different standard deviations (i.e., σdist ∈ {0, 0.01, . . . , 0.1, 0.15, 0.2} m). Each trial was
simulated five times.

Lastly, the evaluation was done using the following metrics: (1) Mean position and orientation
root-mean-square error (RMSE) (e.g., similar to [15,17] as shown in Equations (71) and (72)), where pb

k
and Rb

k are obtained from the benchmark OMC system, p̃b+
k and R̃b+

k are obtained from the algorithm.
Note that as the global position of the estimate is still prone to drift due to the absence of an external
global position reference, the root position of our system was set equal to that of the benchmark system
(i.e., the mid-pelvis is placed at the origin in the world frame for all RMSE calculations). (2) Joint
angles RMSE with bias removed (i.e., the mean difference between the angles over each entire trial
was subtracted) and correlation coefficient (CC) of the hip in the sagittal (Y), frontal (X), and transverse
(Z) planes and of the knee in the sagittal (Y) plane. Note that these joint angles are commonly used

40



Sensors 2020, 20, 6829

parameters in gait analysis. (3) Spatiotemporal gait parameters (e.g., total travelled distance (TTD)
deviation, average stride length, and gait speed of the foot). Refer to Section III of [15] for more details.

epos,k =
1

Npos
∑b∈DP || pb

k − p̃b+
k ||, Npos = 6, DP = {lh, rh, lk, rk, la, ra} (71)

eori,k =
1

Nori
∑b∈DO ||[log(Rb

k(R̃b+
k )T)]∨||, Nori = 2, DO = {lt, rt} (72)

5. Results

5.1. Mean Position and Orientation RMSE, Joint Angle RMSE and CC

In this experiment, multiple variations of the algorithm were tested as shown in Table 3.
Firstly, L5S-3IMU is the algorithm described in this paper (Section 3) with parameters listed in
Table 2. The parameter for L5S-3IMU were selected by taking the best joint CC (i.e., mean of
free walk and dynamic movements) from a grid search of parameters σ2

ω = {1, 10, 102, 103}
rad2/s2 and σ2

ori = {10−2, 10−1, 1, 10} rad2. Secondly, CKF-3IMU and CKF-3IMU+D were the
algorithms described in [15,31], respectively. Thirdly, CKF-3I-KB is a modified CKF-3IMU using
similar parameters, measurement, and constraint functions as L5S-3IMU. The key difference between
CKF-3IMU and CKF-3I-KB is that CKF-3I-KB allows knee bending, denoted by the suffix KB, during
the constraint update. Fourthly, L5S-3I-NO is a variation of L5S-3IMU with σ2

ω = 107 rad2/s2,
σ2

ori = 10−1 rad2, and bω̆k = 0 rad. The parameters were chosen to have high uncertainty on the
tracked orientation (i.e., effectively not using the orientation measurements at all), leading to a variation
of L5S-3IMU that is similar to our prior work CKF-3IMU which assumed orientation measurements
were noise-free. Lastly, the black box output (i.e., pelvis, thigh, and shank orientations) from the MVN
Studio software (denoted as OSPS), which illustrates the performance of a widely-accepted commercial
wearable IMC system with an OSPS configuration. For the first to fourth variations, the +D suffix
means simulated inter-IMU distance measurements (σdist = 0.1 m) was used instead of the pelvis
height assumption.

Table 3. The experiment was tested on the following algorithm variations.

Algorithm
Inter-IMU
Distance

Summary Description

L5S-3IMU N Tracks position and orientation as described in Section 3 with
parameters listed in Table 2.L5S-3IMU+D Y

CKF-3IMU [15] N
Only tracks position using a constrained KF.CKF-3IMU+D [31] Y

CKF-3I-KB N Modified CKF-3IMU using similar parameters as L5S-3IMU (Table 2).
This also allows knee bending during the constraint update.CKF-3I-KB+D Y

L5S-3I-NO N L5S-3IMU with parameters that assume noise-free orientation (NO)
measurements like CKF-3IMU.L5S-3I-NO+D Y

OSPS N Output from a commercial OSPS wearable IMC system.

Figure 4 shows the mean position and orientation RMSE, mean knee Y and hip joint angle RMSE
(bias removed) and CC of different variations of CKF-3IMU and L5S-3IMU for both free walking and
dynamic motions. Y, X, and Z refers to the sagittal, frontal, and transverse planes, respectively.
CKF-3IMU performed well with free walking (epos = 4.27 cm, eori = 15.85◦, CC = 0.66) [15].
However, a more extensive evaluation showed that it performed poorly for certain dynamic movements
(e.g., high-knee jog with epos = 18.15 cm, eori = 24.87◦, CC = 0.02). Removing the no-knee-bending
assumption during the constraint update fixed this issue, as shown by the performance of CKF-3I-KB
(e.g., high-knee jog improved by ∼9 cm epos, ∼9◦ eori, ∼0.4 CC). L5S-3I-NO which is the L5S version
of CKF-3IMU expectedly have similar performance with CKF-3I-KB (i.e., Δepos < 0.5 cm, Δeori < 1◦,
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and ΔCC 0.02 differences). L5S-3IMU, which tracked both position and orientation while assuming
there is noise in the orientation measurements, had a slightly better performance (e.g., improved
jumping jacks and high-knee jog by ∼0.1 CC, <0.03 CC difference with other movement types). The use
of simulated distance measurement with σdist = 0.1 m on CKF-3I-KB, L5S-3I-NO, and L5S-3IMU had
slight effects for free walking, and a significant improvement for dynamic movements. For free
walking, joint angle RMSE and CC of L5S-3IMU+D compared to L5S-3IMU improved by ∼1◦ and
<0.01 CC, while epos and eori slightly disimproved (<0.5 cm and <1 ◦). The similar results suggest that
inferring pelvis position from simulated distance measurement (σdist = 0.1 m) is comparable to our
pelvis height assumption at least for free walking. For dynamic movements, the epos, eori, joint angle
RMSE, and CC of L5S-3IMU+D improved by 2–16 cm, 0–40 ◦, 1–9 ◦, and <0.42, respectively—more
significantly for movements TUG and high-knee jog.

(a) Mean position and orientation RMSE (b) Joint angle RMSE and CC

Figure 4. The performance of CKF, L5S, and OSPS with and without using inter-IMU distance
measurements at each motion type.

To give insight on how the accuracy of the simulated inter-IMU distance measurements affect
pose estimation performance, Figure 5 shows the mean of knee Y and hip joint angle RMSE and
CC at different σdist values. At σdist = 0.1 m, the simulation showed comparable performance
between L5S-3IMU, which implements pelvis height assumption, and L5S-3IMU+D, which implements
inter-IMU distance measurement to supplement the pelvis position estimate, for free walking.
Significant improvement for dynamic movements can be seen even for σdist = 0.2 m. These results
suggest that the actual distance measurement sensor must have noise standard deviation σdist ≤ 0.1 m
to improve pose estimate performance. Note that the +D variation in Figure 4 and in the experiments
that follow were evaluated at σdist = 0.1 m.

Figure 5. Joint angle RMSE (top) and CC (bottom) of free walk and dynamic movements at different
noise level σdist. The broken lines represent L5S-3IMU results (denoted as nD) where inter-IMU distance
measurements were not used. The solid lines represent L5S-3IMU+D results (denoted as +D) where we
can observe slight and great improvements for free walk and dynamic movements, respectively.
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5.2. Hip and Knee Joint Angle RMSE and CC

Figure 6 shows the knee and hip joint angle RMSE (bias removed) and CC of L5S-3IMU
and L5S-3IMU+D compared against the OMC output. Y, X, and Z refers to the sagittal, frontal,
and transverse planes, respectively. Turning movements and half steps were manually removed from
the per-step result of Walk movement and was denoted as Straight Walk. Note that sensor-to-body
calibration was only done at the beginning of trial, not for each step. Between L5S-3IMU and
L5S-3IMU+D, there was minimal hip and knee joint angle RMSE and CC improvement for free
walking (∼1◦ RMSE and ∼0.03 CC difference). However, there was significant improvement for most
dynamic movements, specifically, speed-skater, jog, high-knee jog, and TUG (e.g., 4◦–17◦ knee Y and
hip Y joint angle RMSE improvements). Furthermore, the CC for dynamic movements started to reach
similar performance with the free walk movement, indicating that inter-IMU distance measurements
have indeed made the pose estimator capable of tracking more ADLs and not just walking.

Figure 6. The CC of knee (Y) and hip (Y, X, Z) joint angles for L5S-3IMU (denoted as nD) and
L5S-3IMU+D (denoted as +D) at each motion type.

Figure 7 shows a sample walk trial. At the peaks of knee Y angle, the distance between the pelvis
and ankle positions of L5S-3IMU+D were a few cm shorter (i.e., pelvis position was lower than actual
while ankle position was higher) than the actual distance resulting in higher knee Y angle peaks.
Violations of our biomechanical constraints are also apparent at t = 4 to 5.5 s, where the subject makes
a 180◦ turn. After the turn, L5S-3IMU and L5S-3IMU+D were able to recover during the straight
walking (t = 5.5 to 9.74 s of Figure 7). Notice that the bias between OSPS and OMC can be observed at
t = 0 of the hip Y joint angle.
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Figure 7. Knee (Y) and hip (Y, X, Z) joint angle output of L5S-3IMU in comparison with the benchmark
system (Vicon) for a Walk trial. The subject walked straight from t = 0 to 3 s, turned 180◦ around from
t = 3 to 5.5 s, and walked straight to the original starting point from 5.5 s until the end.

5.3. Spatiotemporal Gait Parameters

Table 4 shows the TTD, stride length, and gait speed accuracy computed from the global ankle
position estimate of L5S-3IMU, L5S-3IMU+D, and the OMC system for free walk, jogging, and TUG.
The use of inter-IMU distance measurements (σdist = 0.1 m) helped improve the TTD, stride length,
and gait speed accuracy of free walk and TUG (e.g., TTD improved from ∼9% to ∼5%). Refer to the
code repository for links to videos of sample trials.

Table 4. Total travelled distance (TTD) deviation from optical motion capture (OMC) system at the ankles.

Algo. S
id

e TTD Stride Length (cm) Gait Speed (cm.s −1)

Error Actual Error Actual Error

% dev μ med μ ± σ RMS μ med μ ± σ RMS

Freewalk L 8.97% 91 99 −8.1 ± 6 9.9 70 74 −6.0 ± 5 7.7
L5S-3IMU R 9.00% 93 99 −8.3 ± 6 10.3 71 75 −6.2 ± 5 8.2

Freewalk L 5.23% 91 99 −4.7 ± 7 8.3 70 74 −3.6 ± 6 6.6
L5S-3IMU+D R 5.85% 93 99 −5.4 ± 8 9.4 71 75 −4.1 ± 6 7.4

Jog L 21.35% 81 86 −17.4 ± 23 28.5 107 118 −19.2 ± 33 38.0
L5S-3IMU R 26.79% 85 97 −22.9 ± 25 33.8 111 124 −26.4 ± 34 43.1

Jog L 22.40% 81 86 −18.2 ± 22 28.4 107 118 −21.6 ± 30 37.0
L5S-3IMU+D R 26.70% 85 97 −22.8 ± 24 32.8 111 124 −27.5 ± 31 41.4

TUG L 18.20% 74 76 −13.5 ± 18 22.1 58 60 −10.0 ± 15 18.0
L5S-3IMU R 20.98% 79 90 −16.6 ± 15 22.5 63 67 −13.1 ± 13 18.4
ine TUG L 3.80% 74 76 −2.8 ± 6 6.7 58 60 −2.3 ± 5 5.9

L5S-3IMU+D R 4.22% 79 90 −3.3 ± 6 6.8 63 67 −2.7 ± 5 5.6

where μ and σ denote mean and standard deviation. Error denotes estimate minus actual value, while TTD %
dev denotes abs(error)/actual TTD.

44



Sensors 2020, 20, 6829

6. Discussion

In this paper, a Lie group EKF algorithm for lower body pose estimation using only three IMUs,
ergonomically placed on the ankles and sacrum to facilitate continuous recording outside the laboratory,
was described and evaluated. The algorithm utilizes fewer sensors than other approaches reported in
the literature, at the cost of reduced accuracy.

6.1. Mean Position and Orientation RMSE

The mean position and orientation RMSE of L5S-3IMU, L5S-3IMU+D, and related literature
(sparse orientation poser (SOP) and sparse inertial poser (SIP) [17]) are listed in Table 5. SOP used
orientation measured by IMUs and biomechanical constraints, while SIP used similar information
but with the addition of acceleration. Both SOP and SIP were benchmarked against an OSPS system
tracking the full body while our algorithm was benchmarked against an OMC system tracking only
the lower body. The epos and eori (no bias) performance of L5S-3IMU and compared to SOP for free
walking and jogging were comparable (Δepos 0.1–0.5 cm and Δeori 2.5◦–3◦ differences). The epos and eori
(no bias) of SIP was better than L5S-3IMU and L5S-3IMU+D for free walking (∼2.1–2.5 cm and 6.5◦–7◦

difference). Although this improvement was expected, as SIP optimizes the pose over multiple frames
whereas our algorithm, like CKF-3IMU, optimizes the pose for each individual frame. For jumping
jacks, the eori of L5S-3IMU and L5S-3IMU+D was significantly (∼4◦–8◦) better than SOP’s and SIP’s.
However, this difference is probably because both SOP and SIP were evaluated on the full body
(our algorithm was only evaluated on the lower body) and errors in arm pose estimation may have
increased eori for the SOP and SIP algorithms.

Table 5. Mean position and orientation RMSE of L5S-3IMU, L5S-3IMU+D, OSPS, sparse orientation
power (SOP) and sparse inertial poser (SIP) [17].

epos (cm) eori, No Bias (cm)

Free Walk Jog Jumping Jacks Free Walk Jog Jumping Jacks

L5S-3I 5.1 ± 1.2 7.3 ± 1.4 8.7 ± 1.6 17.5 ± 2.7◦ 20.2 ± 3.8◦ 12.8 ± 4.0◦
L5S-3I+D 5.5 ± 1.0 6.2 ± 1.1 4.9 ± 0.9 18.0 ± 2.5◦ 17.4 ± 3.2◦ 12.6 ± 3.2◦

OSPS 5.4 ± 1.5 5.6 ± 1.2 5.5 ± 1.6 12.9 ± 4.0◦ 10.3 ± 1.8◦ 7.6 ± 3.3◦
SOP [17] ∼5.0 ∼8.0 ∼8.0 ∼15.0◦ ∼22.0◦ ∼20.0◦
SIP [17] ∼3.0 ∼5.0 ∼4.0 ∼11.0◦ ∼16.0◦ ∼16.0◦

Comparing processing times, L5S-3IMU and L5S-3IMU+D were slower than CKF-3IMU, but can
still be used in real-time; specifically, CKF-3IMU, L5S-3IMU, and L5S-3IMU+D processed a 1000-frame
sequence (i.e., 10 s long) in ∼0.7, ∼2, ∼3.5 s, respectively, on an Intel Core i5-6500 3.2 GHz CPU [15],
while SIP [17] took 7.5 min on a quad-core Intel Core i7 3.5 GHz CPU. All set-ups used single-core
non-optimized Matlab code. Albeit slower than CKF-3IMU, L5S-3IMU and L5S-3IMU+D could also be
used to provide real-time gait parameter measurement to inform actuation of assistive or rehabilitation
robotic devices.

6.2. Hip and Knee Joint Angle RMSE and CC

The knee and hip joint angle RMSEs (no bias) and CCs of L5S-3IMU, L5S-3IMU+D, OSPS and
related literature for straight walking (i.e., per step evaluation) are shown in Table 6 [7,15,37,38].
Similar to IMC based systems, L5S-3IMU and L5S-3IMU+D also follows the trend of having sagittal
(Y axis) joint angles similar to that captured by OMC systems (0.95 knee Y and >0.83 hip Y CCs),
but with significant difference in frontal and transverse (X and Z axis) joint angles [15,37]. CKF-3IMU
performed slightly better (e.g., 0.03 knee Y, 0.09 hip Y CC), which is expected as the biomechanical
constraint (i.e., no-knee-bending) assumption of CKF-3IMU was designed specifically for walking,
at the cost of being less accurate for other dynamic movements. Both L5S-3IMU and L5S-3IMU+D were
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comparable, and at times even better (within 2.5◦ RMSE, 0.1 CC difference) than the results of Hu et al.
and Tadano et al., indicating excellent per-step reconstruction in the sagittal plane [7,38]. Hu et al. used
4 IMUs (two at the pelvis and one on each foot) and Tadano et al. used an OSPS configuration. Both
systems can only estimate the pose in the sagittal plane.

Despite the promising performance when using inter-IMU distance measurements,
further validation with actual hardware implementation is needed, as the sensor noise in the real
world may not necessarily follow a normal distribution and may be non-stationary.

Table 6. Knee and hip angle RMSE no bias (top) and CC (bottom) of CKF-3IMU, OSPS, and related
literature for free walk.

Joint Angle RMSE (◦) Knee Sagittal Hip Sagittal Hip Frontal Hip Transverse

L5S-3IMU 7.6 ± 2.6 6.6 ± 2.7 5.0 ± 2.6 8.6 ± 3.6
L5S-3IMU+D 7.1 ± 2.1 7.5 ± 2.1 5.1 ± 2.3 8.9 ± 3.7
OSPS 5.0 ± 1.8 3.6 ± 1.7 4.1 ± 2.2 11.9 ± 4.3
CKF-3IMU [15] 5.7 ± 2.2 4.4 ± 1.9 5.5 ± 2.6 9.0 ± 3.8
Cloete et al. [37] 8.5 ± 5.0 5.8 ± 3.8 7.3 ± 5.2 7.9 ± 4.9
Hu et al. [38] 4.9 ± 3.5 6.8 ± 3.0 - -
Tadano et al. [7] 10.1 ± 1.0 7.9 ± 1.0 - -

Joint Angle CC Knee Sagittal Hip Sagittal Hip Frontal Hip Transverse

L5S-3IMU 0.95 ± 0.03 0.87 ± 0.16 0.76 ± 0.18 0.36 ± 0.36
L5S-3IMU+D 0.95 ± 0.03 0.83 ± 0.14 0.72 ± 0.19 0.29 ± 0.37
OSPS 0.97 ± 0.04 0.95 ± 0.06 0.72 ± 0.19 0.26 ± 0.20
CKF-3IMU [15] 0.98 ± 0.03 0.96 ± 0.08 0.73 ± 0.17 0.26 ± 0.39
Cloete et al. [37] 0.89 ± 0.15 0.94 ± 0.08 0.55 ± 0.40 0.54 ± 0.20
Hu et al. [38] 0.95 ± 0.04 0.97 ± 0.04 - -
Tadano et al. [7] 0.97 ± 0.02 0.98 ± 0.01 - -

For reference, portable ultrasound-based distance measurement can achieve millimetre accuracy
with a sampling rate of 125 Hz [30], while a commercial UWB-based distance measurement devices
can achieve ∼10 cm accuracy with a sampling rate of 200 Hz [39,40].

Lastly, despite L5S-3IMU and L5S-3IMU+D achieving 0.95 joint angle CCs in the sagittal
plane, the unbiased joint angle RMSE (>5◦) makes its utility in clinical applications uncertain [41].
Although the algorithm is expected to work on pathological gait where our biomechanical assumptions
are satisfied, overall performance still needs more improvement. To achieve clinical utility, one may
either use more accurate sensors or average out cycle-to-cycle variation in estimation errors over
many gait cycles; for example, use a more accurate distance measurement sensor (σdist < 0.1 m).
Furthermore, the accuracy must also be validated on a larger and more diverse cohort to quantify its
ultimate clinical utility. The evaluation of how these solutions can bridge the gap to clinical application
for the proposed system will be part of future work.

6.3. Spatiotemporal Gait Parameters

The focus of the proposed algorithms, L5S-3IMU and L5S-3IMU+D, are to estimate joint
kinematics. However, as L5S-3IMU and L5S-3IMU+D both track the global position of the ankles,
it is also capable of calculating spatiotemporal gait parameters (performance listed in Table 4).
The TTD deviation of our algorithms compared against the gold standard OMC were not as good as
CKF-3IMU [15] (3.6–3.81% TTD deviation) or other state-of-the-art dead reckoning algorithms [42,43]
(0.2–1.5% TTD deviation). Two possible sources of inaccuracy lies (1) in the dead reckoning
approximation done in the prediction step, and (2) in the assumption that the velocity of the shank
IMU is zero when the associated foot touches the floor, but of course this IMU continues to move with
some small velocity on the lower shank during the stance phase. To illustrate the dead reckoning
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approximation, let us look at the predicted pelvis pose in Equation (73). In our algorithm, we assumed
ψp ≈ I3×3 (note that Φ(−Δt pω̆k) ≈ I3×3 and R̃p+

k−1(R̆p
k )

T ≈ I3×3 since Δt pω̆k is small) which did
not significantly affect the joint kinematic estimate, but slightly affected the global position estimate.
Nevertheless, body drift has been reduced substantially compared to Marcard et al.’s SIP [17].

T̂ p–
k = T̃ p+

k−1 exp([

[
(R̆p

k )
T(Δt ṽmp+

k−1 + Δt2

2 ăp
k )

Δt pω̆k

]
]∧)

=

[
R̃p+

k−1 exp([Δt pω̆k]
∧) p̃mp+

k−1 +

ψp ≈ I3×3︷ ︸︸ ︷
R̃p+

k−1Φ(−Δt pω̆k)(R̆p
k )

T(Δt ṽmp+
k−1 + Δt2

2 ăp
k )

01×3 1

] (73)

6.4. Limitations and Future Work

L5S has similar pelvis drift, covariance matrix numerical issue, and flat floor limitation as
CKF-3IMU, which is expected as L5S implements the same measurement and constraint update
as CKF-3IMU, albeit formulated using Lie group representation instead of vectors and quaternions [15].
The pelvis height and flat floor assumption helps prevent the pelvis and the ankles from drifting
towards each other (i.e., pelvis drift downward while ankles drift upward). However, it will also
prevent accurate pose estimation of motions such as sitting, lying down, or standing on one leg, where
the pose is maintained for a duration much longer than that of a typical gait cycle. The covariance
limiter (Section 3.2.2) helps prevent the covariance becoming badly conditioned (i.e., singular),
especially for longer duration trials (e.g., 5-minute walk) where the position uncertainty grows at a
faster rate for the pelvis position than the ankle position. As can be observed from Figure 6, substituting
the pelvis height assumption with inter-IMU distance measurements can increase the algorithm’s
accuracy especially for tracking dynamic movements. If the distance measurement is accurate enough
(i.e., smaller σ2

dist), the inter-IMU distance measurement update may be enough to limit the growth of
pelvis position uncertainly and possibly making the covariance limiter not needed.

Figure 6 shows that the optimized performance of L5S-3IMU, even if it allows the tracked
orientation to be corrected by inter-IMU distance measurements and the tracked position estimate,
was only slightly better than CKF-3IMU/L5S-3I-NO, which effectively assumed the measurement
input from the orientation estimation algorithm to be perfect (i.e., trusted the tracked orientation less).
As L5S-3IMU requires more computing resources, such result suggests that CKF-3IMU may be more
suitable to use when computing power is limited. To fully leverage the advantages brought by the
Lie group representation, additional sensor measurements that can help correct tracked orientation
will be needed (e.g., estimating angle of arrival between two sensors [44] or using fish eye cameras to
improve pose estimate [45]).

Additional sensor measurements provide new opportunities for automatic calibration even under
RSC configuration. IMC systems typically need anthropometric measurements (i.e., measurement of
body segments such as dls) beforehand. By taking the initial distance measurement at some
predetermined posture, anthropometric measurements can be automatically inferred. The formulation
for a hinge joint with two IMUs on both sides has been leveraged to enable automatic sensor-to-segment
calibration (i.e., align sensor frame to body frame) and even a completely magnetometer free orientation
estimation [46,47]. Magnetometer free orientation estimation rids us of the yaw offset issue from an
inhomogeneous magnetic field in indoor environments, typically with stronger disturbances closer
to the floor [48]. An approach using a hinge joint with two IMUs may not be applicable to RSC
configurations (e.g., our algorithm only has one IMU on one side of the hinge joint). However,
distance measurements may be use to compensate for the missing IMU information from the
uninstrumented segment, and a modified version may be developed for a RSC configuration.

Enabling longer-term tracking of ADL in the subject’s natural environment may lead to
novel investigations of movement disorder progression and the identification of early intervention
opportunities. This work is just one of the early steps towards seamless remote gait monitoring.
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Developing solutions to further increase accuracy, increase the number of body segments tracked
(e.g., track full body under RSC [17]), or use even fewer IMUs (tracking lower body using two
IMUs [49]) will be investigated in the future.

7. Conclusions

This paper presented a Lie group CEKF-based algorithm (L5S-3IMU) to estimate lower limb
kinematics using a RSC configuration of IMUs, supplemented by inter-IMU distance measurements in
one implementation. The knee and hip joint angle RMSEs in the sagittal plane for straight walking were
7.6◦ ± 2.6◦ and 6.6◦ ± 2.7◦, respectively, while the CCs were 0.95 ± 0.03 and 0.87 ± 0.16, respectively.
We also showed that inter-IMU distance measurement is a promising new source of information to
improve the pose estimation of IMC under a RSC configuration. Simulations show that performance
improved dramatically for dynamic movements even at higher noise levels (e.g., σdist = 0.2 m), and that
similar performance to L5S-3IMU was achieved at σdist = 0.1 m for free walk movements. However,
further validation is recommended with actual distance measurement from real sensors. The source
code for the L5S algorithm, and links to sample videos will be made available at https://git.io/JTRQ3.
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Abbreviations

The following abbreviations are used in this manuscript:

OMC Optical Motion Capture
IMC Inertial Motion Capture
IMU Inertial Measurement Unit
OSPS One Sensor per Body Segment
RSC Reduced-Sensor-Count
KF Kalman Filter
EKF Extended Kalman Filter
CEKF Constrained Extended Kalman Filter
ADL Activities of Daily Living
TTD Total Travelled Distance
SOP Sparse Orientation Poser
SIP Sparse Inertial Poser

Appendix A. Derivation of Pelvis-to-Ankle Distance Measurement

This section explains the derivation of the measurement pelvis-to-ankle vector (Equation (46))
as obtained from pelvis-to-ankle distance measurements, d̆pla

k and d̆pra
k , while assuming hinged knee

joints and constant body segment lengths. For the sake of brevity, only the left side formulation is
shown. The right side (i.e., pelvis to right ankle vector) can be calculated similarly.
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First, we solve for an estimated left knee angle, θ̂lk
k (Equation (47)), from the measured pelvis to

left ankle distance, d̆pla
k . The pelvis to left ankle vector, τ

pla
m (μ̂−

k , θlk
k ) (Equation (A6)), can be defined as

the sum of the mid-pelvis to hip, thigh long axis, and shank long axis vectors.

τpla(μ̂
−
k , θlk

k ) =

ψpla=half pelvis y-axis + shank z-axis︷ ︸︸ ︷
dp

2 T̂ p–
k iy − dls T̂ ls–

k iz +dlt T̂ ls–
k

thigh z-axis in shank frame︷ ︸︸ ︷
(ix sin (θlk

k )− iz cos (θlk
k )) (A1)

By definition of (d̆pla
k )2 and expanding τ

pla
m (μ̂−

k , θlk
k ) with Equation (A1), we obtain

(d̆pla
k )2 = (τpla(μ̂

−
k , θlk

k ))
T τpla(μ̂

−
k , θlk

k )

= ψT
plaψpla − 2dltψT

pla T̂ ls– iz cos (θlk
k ) + 2dltψT

pla T̂ ls– ix sin (θlk
k ) + (dlt)2

(A2)

Equation (A2) can be rearranged in the form of Equation (A3) with α, β, γ as shown in Equation (A4).

α cos (θlk
k ) + β sin (θlk

k ) = γ (A3)

α = −2dltψT
pla T̂ ls–

k iz, β = 2dltψT
pla T̂ ls–

k ix, γ = (d̆pla
k )2 − ψT

plaψpla − (dlt)2 (A4)

Solving for θ̂lk
k from Equation (A3) gives us a quadratic equation with two solutions as shown in

Equations (A5) and (47). Between the two solutions, θ̂lk
k is set as the θ̂lk

k whose value is closer to the
current left knee angle estimate from the prediction step. This solution serves as a pseudomeasurement
of the knee angle.

θ̂lk
k = cos−1

(
αγ±β

√
α2+β2−γ2

α2+β2

)
(A5)

Finally, Zpla,k, the KF measurement shown in Eqs. (A6) and (46), is the inter-IMU vector between
the pelvis and left ankle, calculated using Equation (A1) with input θ̂lk

k .

Zpla,k = τ
pla
m (μ̂−

k , θ̂lk
k ) (A6)
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capture in everyday surroundings. ACM Trans. Graph. (TOG) 2007, 26, 35. [CrossRef]

50



Sensors 2020, 20, 6829

31. Sy, L.; Lovell, N.H.; Redmond, S.J. Estimating lower limb kinematics using distance measurements with a
reduced wearable inertial sensor count. In Proceedings of the 2020 42nd Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020.

32. Sy, L.; Lovell, N.H.; Redmond, S.J. Estimating lower limb kinematics using a Lie group constrained EKF and
a reduced wearable IMU count. In Proceedings of the 2020 8th IEEE International Conference on Biomedical
Robotics and Biomechatronics (Biorob), New York, NY, USA, 29 November–1 December 2020.

33. Selig, J.M. Lie groups and Lie algebras in robotics. In Computational Noncommutative Algebra and Applications;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 101–125.

34. Stillwell, J. Naive Lie Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008.
35. Chirikjian, G. Stochastic Models, Information Theory, and Lie Groups. II: Analytic Methods and Modern Applications;

Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
36. Bourmaud, G.; Megret, R.; Giremus, A.; Berthoumieu, Y. Discrete extended Kalman filter on Lie groups.

In Proceedings of the European Signal Processing Conference, Marrakech, Morocco, 9–13 September 2013;
pp. 1–5.

37. Cloete, T.; Scheffer, C. Benchmarking of a full-body inertial motion capture system for clinical gait analysis.
In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 4579–4582.

38. Hu, X.; Yao, C.; Soh, G.S. Performance evaluation of lower limb ambulatory measurement using reduced
inertial measurement units and 3R gait model. In Proceedings of the IEEE International Conference on
Rehabilitation Robotics, Singapore, 11–14 August 2015; pp. 549–554.

39. Malajner, M.; Planinsic, P.; Gleich, D. UWB ranging accuracy. In Proceedings of the 2015 22nd International
Conference on Systems, Signals and Image Processing, London, UK, 10–12 September 2015; pp. 61–64.

40. Ledergerber, A.; D’Andrea, R. Ultra-wideband range measurement model with Gaussian processes. In Proceedings
of the 1st Annual IEEE Conference on Control Technology and Applications, Hawaii, HI, USA, 27–30 August 2017;
pp. 1929–1934.

41. McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait
measurements: A systematic review. Gait Posture 2009, 29, 360–369. [CrossRef] [PubMed]

42. Jimenez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor Pedestrian navigation using an INS/EKF framework
for yaw drift reduction and a foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning,
Navigation and Communication, Dresden, Germany, 11–12 March 2010; pp. 135–143.

43. Zhang, W.; Li, X.; Wei, D.; Ji, X.; Yuan, H. A foot-mounted PDR System Based on IMU/EKF+HMM+
ZUPT+ZARU+HDR+compass algorithm. In Proceedings of the 2017 International Conference on Indoor
Positioning and Indoor Navigation, Sapporo, Japan, 18–21 September 2017; pp. 1–5.

44. Dotlic, I.; Connell, A.; Ma, H.; Clancy, J.; McLaughlin, M. Angle of arrival estimation using decawave
DW1000 integrated circuits. In Proceedings of the 2017 14th Workshop on Positioning, Navigation and
Communications, Bremen, Germany, 25–26 October 2017; pp. 1–6.

45. Xu, W.; Chatterjee, A.; Zollh, M.; Rhodin, H.; Fua, P.; Seidel, H.p.; Theobalt, C. Mo2Cap2: Real-time mobile
3D motion capture with a cap-mounted fisheye camera. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2093–2101.
[CrossRef] [PubMed]

46. Laidig, D.; Schauer, T.; Seel, T. Exploiting kinematic constraints to compensate magnetic disturbances when
calculating joint angles of approximate hinge joints from orientation estimates of inertial sensors. In Proceedings
of the IEEE International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 971–976.

47. Eckhoff, K.; Kok, M.; Lucia, S.; Seel, T. Sparse magnetometer-free inertial motion tracking—A condition for
observability in double hinge joint systems. arXiv 2020, arXiv:2002.00902.

48. de Vries, W.H.; Veeger, H.E.; Baten, C.T.; van der Helm, F.C. Magnetic distortion in motion labs, implications
for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. [CrossRef] [PubMed]

51



Sensors 2020, 20, 6829

49. Li, T.; Wang, L.; Li, Q.; Liu, T. Lower-body walking motion estimation using only two shank-mounted inertial
measurement units (IMUs). In Proceedings of the IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, Boston, MA, USA, 6–9 July 2020; pp. 1143–1148.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

52



sensors

Letter

Use of Functional Linear Models to Detect
Associations between Characteristics of Walking and
Continuous Responses Using Accelerometry Data

William F. Fadel 1,*, Jacek K. Urbanek 2, Nancy W. Glynn 3 and Jaroslaw Harezlak 4,*

1 Department of Biostatistics, Fairbanks School of Public Health, Indiana University, Indianapolis,
IN 46202, USA

2 Division of Geriatric Medicine and Gerontology, Department of Medicine, School of Medicine,
Johns Hopkins University, Baltimore, MD 21205, USA; jurbane2@jhu.edu

3 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh,
Pittsburgh, PA 15261, USA; epidnwg@pitt.edu

4 Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN 47405, USA
* Correspondence: wffadel@iu.edu (W.F.F.); harezlak@iu.edu (J.H.)

Received: 1 October 2020; Accepted: 6 November 2020; Published: 9 November 2020

Abstract: Various methods exist to measure physical activity. Subjective methods, such as diaries and
surveys, are relatively inexpensive ways of measuring one’s physical activity; however, they are prone
to measurement error and bias due to self-reporting. Wearable accelerometers offer a non-invasive
and objective measure of one’s physical activity and are now widely used in observational studies.
Accelerometers record high frequency data and each produce an unlabeled time series at the
sub-second level. An important activity to identify from the data collected is walking, since it
is often the only form of activity for certain populations. Currently, most methods use an activity
summary which ignores the nuances of walking data. We propose methodology to model specific
continuous responses with a functional linear model utilizing spectra obtained from the local fast
Fourier transform (FFT) of walking as a predictor. Utilizing prior knowledge of the mechanics of
walking, we incorporate this as additional information for the structure of our transformed walking
spectra. The methods were applied to the in-the-laboratory data obtained from the Developmental
Epidemiologic Cohort Study (DECOS).

Keywords: accelerometry; physical activity; Fourier transform; functional linear model

1. Introduction

Use of wearable accelerometers has become increasingly common in studies of physical activity,
aging, and obesity [1–8]. Self-reported measures, such as questionnaires, have been widely used to
assess physical activity (PA) previously [6,9]. One reason why we care about using accelerometry over
self-reporting is because there are some populations whose self-reported measures can be inaccurate
[10]. One such population is older adults. Questionnaires require individuals to recall their daily
activities, which can be extremely difficult, particularly for older individuals [11]. Schrack et al. [12]
showed there are changes in the daily patterns and amount of PA as people age. Accelerometry is also
an important tool that can be applied to the general population, because walking is the most popular
form of aerobic physical activity [13].

Accelerometers offer a non-invasive and objective alternative to self-reporting methods.
Advancements in data processing allow for the analysis of specific gait characteristics, such as cadence and
asymmetry [14]. Likewise, advancements in statistical methodology for analysis of high dimensional data
have opened up new paths for analyzing more complex and potentially more informative summaries of
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accelerometry data. Accelerometers are electro-mechanical devices that measure acceleration along
three orthogonal axes. They are often worn on a person’s waist or wrist, and they provide high frequency,
high-throughput data represented by three time series of acceleration measurements [15,16]. The data
are typically collected at the sub-second level (usually between 10 to 100 observations per second);
however, most studies aggregate the data over one minute epochs, or windows, and often, using a
user specified threshold, the data are characterized into activity counts per minute. While thresholding
methods are useful in describing the timing and duration for certain levels of PA, many nuances of
the data are lost. For example, it is not possible to evaluate how a person is walking from activity
count summaries. Especially in certain populations, such as older or obese populations, this raises the
question as to whether a more detailed quantification of the walking signal can provide additional
information. For example, if an older person’s legs are bothering them, we may detect signs of limping
that could help explain the low levels of PA. Our strategy is to extract detailed information from the raw
accelerometry signal during periods of walking. We transform this information into useful quantities,
and then we build regression models to associate characteristics of walking with continuous responses.

To illustrate the complex nature of the data collected, Figure 1 shows the raw data collected from
a triaxial accelerometer (Actigraph GT3X+) for a single individual during an in-laboratory 400 m walk.
The top left panel of Figure 1 presents the entire 400 m walk, where each axis is shown in a different
color. With just over 5 min worth of data, the characteristics of the signal are nearly impossible to
visualize. The top right panel of Figure 1 shows a 10 s window of the same data. At this scale, we can
discern a fairly periodic signal. In the bottom row of Figure 1, we present the vector magnitude of
the same data presented in the top row. We can see that the periodic nature of the data are preserved
while information about the three dimensional direction is lost. However, in free-living data collection,
it is difficult to control the orientation of the device when participants are able to remove the device.
For this reason, the magnitude of the signal is sufficient and relatively stable to capture the gait
characteristics described in this manuscript. The periodic characteristics of walking naturally lend
themselves to a frequency analysis approach for quantifying the features of walking. By utilizing the
methods described in Urbanek et al. [15], we can extract estimates of cadence (steps per second) and
average magnitude from windows of raw data. In addition to these more common features, we also
utilize the spectra obtained from the local fast Fourier Transform (FFT) as a functional predictor for
modeling the association of walking with continuous responses such as age and body mass index
(BMI). By incorporating the walking spectra as a predictor, we gain additional information about the
characteristics of a person’s gait which may be associated with the response of interest. For example,
an individual with a very smooth walking stride would result in most of the energy from walking
concentrated around the frequencies near the cadence. However, an individual with an interrupted
stride (e.g., a limp) would result in energy being more dispersed through higher frequencies.

Several methods exist for fitting a scalar-on-regression function, such as y =
∫
I W(s)β(s)ds + ε,

where W(·) is a functional predictor and y is a scalar response variable. Several methods for estimating
β(·) are based on the eigenfunctions associated with some covariance operator defined by the
predictors [17]. Due to the periodic nature of walking, we have strong reason to believe the vast
majority of information contained in the walking spectra will be located around the harmonics centered
at multiples of the dominant frequency. The PEER method developed by Randolph et al. [17] allows
for the incorporation of presumed structure directly into the estimation process and is preferable to a
purely empirical estimator. This particular method has been widely used in other areas of research,
for example, in heritability and evolution studies [18,19] and in microbiome analysis [20]. However,
to the best of our knowledge, this is a novel use of the PEER method in the analysis of the raw
accelerometry data.

In this manuscript, we propose a novel application of recently developed statistical methods
for the analysis of accelerometry data by associating continuous responses, such as age and BMI,
with the Fourier spectrum of walking. The purpose of this manuscript is to serve as a proof of
concept for researchers seeking to utilize more information from the accelerometry data in modeling
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associations between characteristics of walking and health related outcomes. We show how this
additional information can be combined with scalar predictors in a linear regression model framework.
The remainder of this manuscript is structured as follows. In Section 2, we describe the data collection
and pre-processing procedures. In Section 3, we describe the functional linear model used to fit the data
and how the estimation is performed. In Section 4, we apply the proposed model to data collected in
the laboratory from a study of an aging adult population. In Section 5, we conclude with a discussion.

Figure 1. Triaxial accelerometer data from the 400 m walk for a single individual (top left) and a zoomed
10 s window (top right). Vector magnitude from the 400 m walk for same individual (bottom left) and
zoomed 10 s window (bottom right).

2. Data Collection and Pre-Processing

Eighty-nine community-dwelling older adults were recruited from the Pittsburgh, Pennsylvania area
for the National Institute on Aging, Aging Research Evaluating Accelerometry (AREA) project,
part of the Developmental Epidemiologic Cohort Study (DECOS) [3]. AREA was a cross-sectional
methodological initiative designed to examine the impact of accelerometry wear location on assessment
of physical activity and sedentary behavior among 89 older adults enrolled between March and May
of 2010 [21]. The report included data from 51 healthy participants (25 men and 26 women) who had
complete the “in-the-lab” (N = 46) or “in-the-wild” (N = 48) accelerometry data. Individuals were
excluded from the DECOS study for the following reasons: hip fracture, stroke in the past 12 months,
cerebral hemorrhage in the past 6 months, heart attack, angioplasty, heart surgery in the past 3 months,
chest pain during walking the past 30 days, current treatment for shortness of breath or a lung
condition, usual aching, stiffness, or pain in their lower limbs and joints, and bilateral difficulty in
bending or straightening the knees fully [22]. This paper focuses on the N = 46 participants that
completed the “in-the-lab” fast-paced 400 m walk. Data were collected with an Actigraph GT3X+
worn at the right hip. The devices collected raw accelerometry data along three orthogonal axes at
a sampling frequency of 80 Hz. A summary of the demographic data for all N = 46 participants is
provided in Table 1.

The first step in pre-processing the data is to split the observed triaxial signal from the 400 m
walk into 10 s non-overlapping windows. For each window, we transform the raw triaxial signal
into vector magnitude (VM), where VM is defined as the root sum of squares of the three axes, i.e.,
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vm(t) =
√

x1(t)2 + x2(t)2 + x3(t)2. The vector magnitude count (VMC) is then calculated as the mean
absolute deviation of the VM:

vτ(t) =
1
τ

t+τ/2

∑
u=t−τ/2

|vm(u)− vm|, (1)

where τ is the window size expressed as number of sampling points [15]. We then transform the VM
from the time domain into the frequency domain using the local FFT, or short time Fourier transform
(STFT). Similarly to Urbanek et al. [15], we define the STFT at time t of the vm(t) as

X(t, f ; τ) =
[t+τ/2]

∑
u=[t−τ/2]

vm(u)h(u)e−i2π f u/τ , (2)

where f is the frequency index and τ is a tuning parameter specifying the number of observations
in the interval centered at t. The Hanning weights, defined as, h(u; τ) = 0.5[1 − cos{2πu/(τ − 1)}]
are used to avoid a blurring of the obtained spectra which can happen as a result of the windowing
process. The spectrum is then defined as the absolute value of the STFT, |X(t, f ; τ)|.

Table 1. DECOS participant characteristics (N = 46).

Characteristic Summary Statistics

Male (n (%)) 22 (47.8%)
Age (Mean (SD)) 78.24 (5.74)
BMI (Mean (SD)) 26.73 (3.94)
Cadence (Mean (SD)) 2.06 (0.17)
VMC (Mean (SD)) 0.25 (0.09)

For each spectrum obtained, we then identify the fundamental frequency (cadence) as the location of
the largest peak in the spectrum. Since the reported frequency of walking is between 1.4 and 2.5 Hz [23],
which corresponds to 1.4 to 2.5 steps per second, we look for the cadence in a conservative range of
1.2–4.0 Hz to be consistent with Urbanek et al. [15]. The frequency axis used is from 0 to 39.9 Hz
sampled every 0.1 Hz which ensures every individual’s spectra will contain at least 10 multiples of
their dominant frequency, or cadence. In the top left panel of Figure 2, we display all spectra for a
single participant. Although these spectra appear similar, it is evident that there is variability between
spectra obtained in different windows. Therefore, once the spectra are all obtained, and we have
identified their fundamental frequencies, it is imperative that we align each spectrum for aggregation.

In order to align all spectra at their fundamental frequency, we further transform each spectrum
from the frequency domain into the order domain by scaling the frequency axis by the fundamental
frequency for each spectrum. Linear interpolation is then used to place each spectrum back on the
same sampling grid. This ensures that all spectra are aligned and sampled at equally spaced points.
The top right panel of Figure 2 illustrates how the realigned spectra for a single participant. As can be
seen, all spectra are perfectly aligned at the dominant frequency.

However, each spectrum is sampled discretely, therefore, further harmonics may be slightly
misaligned in the order domain. To compensate, we average the spectra across all windows for each
participant in order to obtain a global estimate of walking features for each individual. Each spectrum
is restricted to 546 points between 0.3 and 5.75 in the order domain to avoid modeling signal noise at
the beginning and end of the spectra. The bottom left panel of Figure 2 shows the averaged spectra for
all N = 46 participants. The peaks of the average spectra for each individual are now nearly perfectly
aligned in the order domain at multiples of the fundamental frequency.

Finally, we scale each individual’s average spectrum by the magnitude of the spectrum at the
cadence. By scaling the spectra in this way, the magnitude at each harmonic can be interpreted as a
ratio to the magnitude at the cadence. This process is illustrated in bottom right panel of Figure 2,
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and this entire process is fully detailed in Algorithm 1 . These steps for pre-processing the raw
accelerometry data are essential in order to properly fit the statistical model described in Section 3.

Algorithm 1: Steps for pre-processing the raw accelerometry data.
Input : x(t)—accelerometry signal, fs—sampling frequency, smin = 1.2 Hz, smax = 4.0 Hz
Output : FFT—scaled average FFT spectrum, VMC—average VMC, Cadence—average

cadence
1 Divide accelerometry signal into 10 s non-overlapping windows.
2 Transform accelerometry signal into vector magnitude vm(t).
3 Compute vector magnitude count, v10(t), for each window.
4 Compute Fourier spectrum for each window.
5 Estimate cadence as frequency centered under the largest peak in spectrum.
6 Transform spectra from frequency domain to order domain by scaling frequency axis by the

frequency of the cadence.
7 Average vector magnitude count, cadence, and order domain spectra across all windows.
8 Restrict spectra to points between 0.3 and 5.75 multiples of the cadence frequency.
9 Scale spectra by magnitude of the average spectra at the cadence.

Figure 2. Pre-processing data. Observed FFT spectra for one participant as described in step 4 of
Algorithm 1 (top left). Observed spectra realigned into order domain for the same participant as
described in step 6 of Algorithm 1 (top right). Average realigned spectra for all participants as
described in step 7 of Algorithm 1 (bottom left). Scaled average spectra for all participants as described
in step 9 of Algorithm 1 (bottom right).
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3. Statistical Methods

Frequently, the methods applied to analyze the data arising from the raw accelerometry signal rely
on the discrete features extracted from such data, leading to possible loss of information. In contrast,
we take the full time series signal into account and work with its continuous properties, namely, the
spectrum obtained from the walking portion of the accelerometry signal. We summarize the approach
taken below.

Let Wi(·) denote a functional predictor (e.g., a scaled average FFT spectrum) from the ith study
participant where (i = 1, . . . , N). We will assume that each observed predictor is obtained as a
discretized version of an idealized function at p equally-spaced points, s1, . . . , sp, as can be seen in the
walking spectra in Figure 2. We let wi := [wi(s1), . . . , wi(sp)]T be the p × 1 vector of values sampled
from Wi(·). Then our observed data take the form {yi; xi; wi} where yi is a scalar response, xi is a
K × 1 vector of measurements from K scalar predictors (e.g., sex or average cadence), and wi is the
functional predictor from the ith participant. We denote the true coefficient function by β(·), and then,
the functional regression model of interest is given by

yi = xT
i γ +

∫
I

Wi(s)β(s)ds + εi (3)

where εi ∼ N(0, σ2
ε ). Here xT

i γ is the linear effect from K scalar predictors and
∫
I Wi(s)β(s)ds is the

functional effect.

3.1. Estimation of Parameters

Several approaches can be used to estimate the association between the scalar xi and functional wi(·)
predictors with the outcome yi. In our work, we utilize the approach proposed in Randolph et al. [17],
which incorporates functional structure into the estimation of β(·). Specifically, the properties of
the estimated spectra, i.e., their continuity, smoothness, and common behavior, are taken into the
estimation procedure explicitly. To represent our model in a compact form, we combine the data from
all N participants and express Equation (3) as

y = Xγ + Wβ + ε (4)

where y = [y1, . . . , yN ]
T is an N × 1 vector of responses; X = [xT

1 , . . . , xT
N ]

T is an N × K design matrix
corresponding to the scalar predictors with coefficient vector γ; W = [wT

1 , . . . , wT
N ]

T is an N × p design
matrix corresponding to the functional predictors with functional coefficient vector β.

Given the periodic nature of the walking behavior, if the walking spectral properties are associated
with the outcomes, the relevant information contained in the walking spectra is localized around the
harmonics at multiples of the dominant frequency. We thus want to estimate β while imposing this
prior information on its functional structure. We achieve this by using the penalty operator, L [17],
which is created from the basis functions in the right panel of Figure 3. The penalized estimates of γ

and β are obtained as the solution to the following criterion

[γ̃, β̃λ,L]
T = arg min

γ,β
{||y − Xγ − Wβ||2 + λ||Lβ||2L2}, (5)

where we only penalize the functional coefficient vector β.
Given some prior knowledge about the structure of our functional predictor, the penalty is

defined utilizing a subspace containing this information [17]. We define this informative space, Q,
to be a span of basis functions (right panel of Figure 3) emphasizing the relevant features of β(·) and
consider the orthogonal projection PQ = QQ+. As described in Randolph et al. [17], we define the
decomposition-based penalty as

L ≡ LQ = a(I − PQ) + PQ (6)
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for some a > 0. When a > 1 the estimate is penalized more in the non-informative space orthogonal to
Q. When a = 1, the estimate is simply an ordinary ridge regression estimate. Therefore, a generalized
ridge estimate of γ and β can be obtained as

[γ̃, β̃]T = (XT
o Xo + λLT

o Lo)
−1XT

o y, (7)

where Xo = [X W] and Lo = blockdiag{0, LT
QLQ}. The tuning parameter, λ, is estimated in a

principled way via a linear mixed model equivalence, as described in Ruppert et al. [24]. Specifically,
the optimization criterion (5) is written in an equivalent linear mixed model form with the coefficients
γ being fixed and the coefficients β being random with a distribution β ∼ N(0, σ2

β). The estimate of

the tuning parameter, λ, is then simply the ratio of the variances σ2
ε and σ2

β.

Figure 3. Pre-processed walking spectra (top) and basis functions used for modeling (bottom). The
x-axis represents multiples of the frequency of the cadence.
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4. DECOS Example

We applied the methods discussed in Section 3 to the data described in Section 2 to study the
associations of walking spectra obtained from the fast-paced 400 m walk with age and BMI [3].
The fast-paced 400 m walk is often used in epidemiological studies of older adults to assess aerobic
fitness [25]. The most common protocol implemented for the fast-paced 400 m walk is the long distance
corridor walk (LDCW) [26]. The pre-processed walking spectra described in Section 2 were each sampled
at k = 546 distinct sampling points within 0.3 and 5.75 of the order domain. This range was chosen because
there is little energy contained in the spectra beyond 13.5 Hz. Assuming an average cadence of 2.0 Hz,
this range sufficiently covers the relevant features of walking. There were N = 46 participants that
completed the LDCW. In addition to each participant’s scaled average walking spectra, an estimate of
their average cadence was used as a predictor in the proposed models to control for participant-specific
walking speeds. In addition, VMC was used to control for the energy magnitude each participant
produced. For example, an individual with a very controlled and smooth walking style would have
shown lower magnitude than an individual with a heavy stomp in their walk. We also adjusted each
model for gender differences.

In order to use our prior knowledge about the structure of the walking spectra, we define a penalty
LQ as given in Equation (6) (with a = 2). We define our basis functions as normal density functions
centered at multiples of the cadence from 0.5 × cadence to 5.5 × cadence using steps of 0.5 × cadence.
We chose a standard deviation such that the distributions were nearly orthogonal. Scaled average
walking spectra and basis functions are displayed in Figure 3.

Following the general formulation of the functional regression model (3), we fit the following
model to these data:

yi = γ0 + Malei ∗ γ1 + Cadencei ∗ γ2 + VMCi ∗ γ3 +
∫
I

Spectrumi(s)β(s)ds + εi (8)

where yi is either age or BMI, Malei is a binary variable, and Cadencei and VMCi are the cadence and
vector magnitude count for participant i, respectively. Spectrumi(·) is the scaled average walking
spectrum for participant i as described in Section 2. We assume that εi ∼ N(0, σ2

ε ). Regression
coefficients γ and the regression function β(s) are estimated via the procedure described in Section 3.1
using the peer() function from the refund package in R [27,28]. Thus, the scalar outcome yi is predicted
via a weighted sum of the products of the collected data (indicator variable of male sex, cadence, VMC,
and a spectrum) and their respective estimated regression coefficients γ̃’s and β̃(·).

Figure 4 displays the estimates of β(·) along with the pointwise 95% confidence bands for the
two models described in Equation (8). These figures show that the estimated regression function
is different from zero at different multiples of the cadence. The regression function for age (top)
shows that the coefficient function, β̃, is negative at the multiples 1.5 and 3.5 and positive at the
multiples 4, 4.5, and 5, whereas for the other multiples the estimated coefficients are not significantly
different from zero. These results indicate that younger individuals have larger magnitude in the lower
harmonics relative to the magnitude at their cadence which indicates a heavier stomp component
and controlled walking motion. Older individuals have larger magnitudes in the higher harmonics
relative to the magnitudes of their cadence, which indicates a less controlled compensatory walking
motion (e.g., a limp). These results seem to be consistent with findings of prior research [29–35].
However additional research is needed to validate our conclusions.
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Figure 4. Estimates of the coefficient function, β̃, (with 95% point-wise confidence band) for the
association of walking with age and BMI, as described in Section 4. The x-axis represents multiples of
the frequency of the cadence.

The regression results for BMI (bottom) show that the coefficient function, β̃, is positive at the
multiple 2.5 and negative at the multiples 4 and 5, whereas for the other multiples the estimated
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coefficients are not significantly different from zero. These results could indicate that overweight
or obese individuals tend to walk with a heavier stomp component, resulting in higher magnitudes
of the lower harmonics than the normal weight individuals. Leaner individuals walk with a lighter
stomp component, resulting in walking characteristics with lower magnitudes in the lower harmonics
and higher magnitudes in the higher harmonics. Further discussion and possible limitations of this
interpretation are provided in Section 5.

Both results described above show that the information provided by the penalty reduces the
number of spurious findings and at the same time emphasizes the signal content of the scaled
Fourier spectra.

5. Discussion

In this paper we proposed a novel application of existing functional linear model methods
to the study of physical activity data collected by accelerometers. We proposed an algorithm for
pre-processing the raw data collected from accelerometers to quantify the characteristics of walking in
a more detailed manner than is typically used with activity count summaries. By utilizing the periodic
characteristics of walking, we were able to reduce the dimensionality of the raw data into a form that
retained some details of the original signal while allowing us to use existing statistical methods for
analyses. We applied these methods to the in-the-laboratory data collected from a study of an older
adult population.

While FFT has been widely used for pre-processing accelerometry data, the features extracted
from such methods have been applied to the problem of classification of activity types as opposed to
associating characteristics of walking to continuous response variables [15,36–38]. To our knowledge,
this is the first proposed application of functional linear regression techniques to model the association
of walking spectra with continuous responses. Due to the periodic characteristics of walking,
the proposed method naturally lends itself to this application, wherein we can inform the penalty
operator of where the relevant information is contained in the spectra. This method is not limited
to the cross-sectional setting, as demonstrated in this paper, and it is easily extended to responses
collected longitudinally [39]. In addition to walking speed, this more detailed quantification of walking
may provide additional information as to how certain degenerative diseases (e.g., Parkinson’s disease
and multiple sclerosis) affect a person’s ability to walk over the progression of disease. Reuter et al.
[40] showed that certain walking programs can actually improve gait characteristics of individuals
with Parkinson’s disease over the course of a 6-month study. Gait characteristics were measured on
a specialized treadmill outfitted with specialized sensors to accurately measure foot-ground contact.
The application of these proposed methods could alleviate any financial restrictions of such studies to
allow for much larger randomized prospective studies to determine whether these exercise therapies
actually slow down the progression of such diseases. Utility of these methods can only be assessed
with the inclusion of accelerometers in such studies, and they are being increasingly used.

We acknowledge that there are limitations in our analyses. For example, we did not collect
data from the 3D motion capture or ground force reaction (GFR) measurements to validate the
findings of our analyses. This manuscript is meant to demonstrate how researchers can utilize existing
statistical methodology to analyze finer features of the raw accelerometry data retaining additional
information about characteristics and changes in gait that are usually lost due to over-aggregation of
the raw data collected. It was beyond the scope of this study to obtain information from specialized
laboratory equipment, but we do feel that further research is warranted to validate our findings
and draw associations between the additional characteristics of gait observed in our analyses with
gait measurements obtained in a laboratory. Ko et al. [33] found that older adults with obesity
modify their gait patterns compared to normal weight counterparts while walking at normal and fast
speeds. For example, they found that obese participants had lower mechanical work expenditure
(MWE) in the ankle and significantly higher MWE in the knee and hip compared to normal weight
participants. Paired with the raw accelerometry data, these findings could identify the specific
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mechanisms validating the additional associations we found in our analyses. Menz et al. [31] observed
that older participants exhibited a more conservative gait pattern characterized by reduced velocity,
shorter step length, and increased step timing variability which could be contributing to the portion of
the signals observed at the higher frequencies of the walking spectra in our study.

In conclusion, we acknowledge that age and BMI are easy to measure, but the strength of this study
is that it serves as a proof of concept for how researchers can utilize the extracted walking characteristics
in the presence of more relevant health related outcomes, e.g., fatigability or neurocognitive function.
In addition, we studied only relatively healthy elderly individuals. Thus, generalizability of the
findings to either healthy younger individuals or unhealthy older individuals needs to be studied.
Given the small sample size of our study and utilization of the data from the laboratory experiment
only, additional research is needed to establish similar associations between the health outcomes and
the free-living walking data characteristics.
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Abstract: A sensor-based system using inertial magnetic measurement units and surface electromyo-
graphy is suitable for objectively and automatically monitoring the lumbar load during physically
demanding work. The validity and usability of this system in the uncontrolled real-life working
environment of physically active workers are still unknown. The objective of this study was to test
the discriminant validity of an artificial neural network-based method for load assessment during
actual work. Nine physically active workers performed work-related tasks while wearing the sensor
system. The main measure representing lumbar load was the net moment around the L5/S1 inter-
vertebral body, estimated using a method that was based on artificial neural network and perceived
workload. The mean differences (MDs) were tested using a paired t-test. During heavy tasks, the
net moment (MD = 64.3 ± 13.5%, p = 0.028) and the perceived workload (MD = 5.1 ± 2.1, p < 0.001)
observed were significantly higher than during the light tasks. The lumbar load had significantly
higher variances during the dynamic tasks (MD = 33.5 ± 36.8%, p = 0.026) and the perceived work-
load was significantly higher (MD = 2.2 ± 1.5, p = 0.002) than during static tasks. It was concluded
that the validity of this sensor-based system was supported because the differences in the lumbar
load were consistent with the perceived intensity levels and character of the work tasks.

Keywords: physically active workers; low back pain; inertial motion units

1. Introduction

Physically active workers sometimes can experience muscle and spinal overload while
performing their physically demanding jobs [1]. Such an overload is hypothesized to be
due to a misbalance between the physical workload and the individual capacity of each
worker [2]. This misbalance may cause health problems among these workers, such as
musculoskeletal disorders like lower back pain [3–7]. These problems usually result in
the loss of productivity [8–10], loss of quality and safety [1,11], and absenteeism [1,12].
Hence, to help prevent these health problems, to improve rehabilitation, and promote
return to work and sustainable employability, it is important to investigate and optimize
the musculoskeletal load while performing physically demanding jobs [13–15].

There is a need for a device that can measure the individual work-related lumbar
load exposure objectively while performing a physically demanding job [16,17]. Typically,
this lumbar load is represented by the net moment around the center of the intervertebral
body at the spinal level L5/S1. Various methods have been developed to estimate the net
moment in the lower back under known load-handling conditions [18–22]. All of these
methods use 3D body segment kinematics data acquired using a marker-based motion
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analysis system, and load conditions were “known” through the direct measurement
of the reaction forces exerted to the feet or hands or from detailed information on the
loads handled.

Inertial motion capture systems seem useful for assessing work-related back load
exposure in workers in industrial environments through monitoring the working postures
of individuals and through driving biomechanical-linked segment models to estimate
3D net moments and forces in the lower spine [18,19,23–30]. Using inertial magnetic
measurement units (IMMUs) allows for more freedom in 3D kinematics assessments in
comparison to marker-based motion analysis systems [31]. However, the need to measure
all the forces exerted on the human’s body, e.g., by force plates embedded in the lab floor,
severely limits their practical applications. A more mobile alternative is to use instrumented
shoes that measure ground reaction forces while walking around [19,20,32,33]. This system
provides more freedom of movement but requires that no other external forces be exerted
to the lower body (e.g., by leaning against a table or supporting the load being handled).
Additionally, the relatively large weight of these shoes and their current design make
them less usable in practice. Therefore, alternative methods for estimating lumbar load
assessment were developed, that do not require force assessment. In this study, an artificial
neural network (ANN)-based method was applied to estimate 3D net moments (L5/S1)
which was driven by electromyographic (EMG) and trunk kinematics data. It was trained
in supervised mode during the initial part of each session with a limited set of calibration
trials [18,19,21,31]. Target net moments for training were generated by direct estimation
using a linked segment model (LSM-based method [24,29]) scaled by the height and weight
of the subject. The LSM-based method was just driven by the kinematics data from IMMUs
on the trunk and arms. The weight and inertial properties of the load handled during the
calibration trials have to be known and their kinematics are derived from hand kinematics.
In the actual trials, a trained ANN-based method was used to estimate the net moments
from the EMG magnitude data and the IMMU kinematics data and of a subject during
actual work. This ANN-based method has been developed over several iterations from 1993
until the current date and has been evaluated in several studies, e.g., in direct comparison
against a state-of-the-art laboratory-based method driven by marker-based kinematics
and force plates, the results of which were found to be promising [24]. The same group
also successfully applied and validated the same approach for estimating shoulder joint
load exposure estimation, confirming feasibility [34]. This ANN-based method, driven by
trunk muscles EMG amplitude and IMMU kinematics, is therefore considered potentially
useful for monitoring mechanical workload in the context of the worker’s postures and
movements, while performing physically demanding jobs [19,21,22]. Ultimately, this may
represent a tool that provides workers and ergonomists with instant feedback, which may
contribute to preventing excess load exposure for a worker without back complaints.
It might also be used for workers returning to work after an injury, and/or as part of
their rehabilitation. However, the validity and usability of this system in the uncontrolled
real-life working environment of physically active workers are still unknown.

The objective of this study was to test the discriminant validity of an ANN-based
method for load assessment during actual work. The research questions were: (1) What is
the base quality of this ANN-based method in estimating lumbar load when applied to the
trial data of this study with known load handling? (2) Can this ANN-based method detect
differences in load intensity and perceived workload during light and heavy tasks? (3) Can
the system detect differences in load-variability during the static and dynamics tasks?
(4) Can the system detect (a) symmetrical lumbar load difference around the anterior–
posterior, mediolateral and longitudinal axes?

2. Materials and Methods

2.1. Subjects

A total of 23 subjects participated in this study, all of whom were physically active
workers recruited through flyers distributed within selected companies. These selected
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companies were active in medical disinfection care, industrial chemical cleaning, and tech-
nical services. All subjects were informed about the study through an information letter
and received a verbal explanation before the start of the study. The inclusion criterion was
being a physically active worker aged between 18 and 67. The exclusion criteria were
having any cardiovascular diseases; using pacemakers or other vital electronic devices;
having high levels of pain or injuries in the back, shoulders, or upper extremities; or being
at an advanced stage (around 20 weeks) of pregnancy. The Medical Ethics Committee of
the University Medical Center Groningen, the Netherlands, issued a waiver for this study,
stating that it did not involve medical research according to the Dutch law (M17.208063),
and all subjects signed an informed consent form.

2.2. Study Design and Procedures

Each session with every subject comprised three phases: (1) trials for upper body
segment calibration; (2) trials with known loads for supervised training and training quality
validation; and (3) trials illustrating performance during a set of work-related tasks.

In phase 1, the subjects were asked to perform a set of movements to calibrate the
orientation of the IMMUs relative to the body segments, while wearing the complete
sensor set-up with IMMUs (and bipolar surface electromyography (sEMG) electrodes).
The resulting segment calibration parameters were used to translate all sensor casing
kinematics within a session to body segment and joint kinematics. The set contained 90◦
trunk bending, 45◦ trunk lateroflexion, 45◦ trunk rotation, 45◦ shoulder flexion, and 90◦
shoulder abduction. This was repeated five times and followed by three seconds of standing
in a neutral anatomic position with the arms hanging next to the body with thumbs pointing
forward.

In phase 2, the ANN-based method performance was tested against the LSM-based
method by comparing the estimated moments by both methods in bending, flexion, and ro-
tation movements while hand holding a 6 kg load (question 1). For this, the ANN was first
trained with net moments directly estimated with the LSM-based method from similar
tasks handling no load (“0 kg task”) and holding a load of a 10 kg trunk. Based on previous
experience (unpublished sensitivity study) a simple feed-forward ANN was used with 1
hidden layer of 31 elements and sigmoid transfer functions with a fixed training criterium:
“sum of RMSE Mx, RMSE My and RMSE Mz < 10 Nm”. This required about 10 s of com-
puter time on a regular desktop PC for a typical input vector with about 6000 elements.
The ANN was driven by EMG amplitudes from all 4 locations plus 3D kinematics only
from the 2 IMMU sensors positioned on the sternum and sacrum: per segment, the 3D
angular velocity and 3D linear acceleration signals were used. The rationale for not us-
ing the available 3D orientation data was that: (1) information of inclination is already
present in the 3D accelerometer signal; and (2) in an industrial environment, a substantial
risk exists of having large errors in IMMU orientation estimates by the disturbance of
the natural earth magnetic field or permanent magnetization of the magnetometer in the
IMMUs [35]. In preparation for phase 3, the ANN-based estimator was trained for each
subject separately using all their respective bending, flexion and rotation tasks for all three
weights (0, 6 and 10 kg).

In phase 3, questions 2, 3, and 4 about the discriminant validity of the ANN-based
method were explored. The subjects performed job-specific work-related tasks for 5–10 min
of different load intensity and variability. For all these tasks, net moment curves were
estimated using the ANN-based network trained at the end of phase 2. Additionally,
these tasks were ranked according to the checklist of physical workload [36]. Before the
start of the measurements, the subjects received a questionnaire to identify the daily tasks
and the frequency, duration and perceived the workload per task. This physical workload
questionnaire of Peereboom and Lange [36] contained the following questions: What are
tasks you perform on a daily basis at work? How often are these tasks performed on an
average day? How heavy do you find these tasks? All subjects ranked tasks according to
the load, starting with the heaviest task [36]. From the list of work-related tasks, four tasks
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were chosen, which may vary from one individual to another, which represented: (1) a light
task with a low workload on the lower spine; (2) a heavy task with a high workload on the
lower spine; (3) a static task (working with the lumbar region in the same posture); and (4)
a dynamic (lifting) task in different (spinal) working postures [37,38]. To explore questions
2 and 4, the task with the highest workload was selected as a heavy task, and the task with
the lowest workload was selected as a light task. Net moment data curve appearances
were discussed with respect to the trial perceived workload. To explore questions 3 and 4,
the criterion for the static task was that the lumbar region was held in the same posture or
joint position for at least 4 s throughout the task with low variances in the lumbar posture
when changing the posture (ISO standard 11226:2000) [37]. The criteria for the dynamic
task were as follows: the task must be a lifting one and the lumbar spine should vary
in posture. After every task, the subjects were asked to rate the perceived workload of
the three tasks using Borg CR-10 rating scale, ranging from 0 to 10 (0 = not burdensome;
10 = extremely heavy) [39].

2.3. Materials
2.3.1. Surface Electromyography Acquisition

All sEMG recordings were performed using a wearable sEMG instrument (Polybench
Dipha; Inbiolab, Roden, the Netherlands). Bipolar electrodes (Covidien Kendall™ H124SG
Ag/AgCl electrodes; Medtronic, Minneapolis, MN, USA) with an interelectrode distance
of 2 cm (heart to heart) were placed bilaterally on the longissimus thoracis muscles at
L1 (±3 cm horizontal from L1) and the iliocostalis lumborum muscles at L2–L3 (±6.5 cm
horizontal from L2–L3), along with a reference electrode placed at the processus spinosus
of C7 (Roy et al., 1995) (see Figure 1).

Figure 1. The positioning of the sEMG electrodes and IMMUs on the body. The surface electromyog-
raphy (sEMG electrodes, blue circles) positioned on the longissimus thoracis muscles at L1 and the
iliocostalis lumborum muscles at L2–L3 with a reference electrode placed at the processus spinosus
of C7. The inertial magnetic measuring units (IMMUs, orange blocks) positioned on the sternum,
upper, and lower (left and right) arms, and pelvis (sacrum) with a front (left), side (middle), and back
view (right).

2.3.2. Kinematics Acquisition and Net Moment Estimation

Six wired IMMUs (MVN Awinda; Xsens, Enschede, the Netherlands) were used to
record 3D body segment kinematics. The IMMUs were placed on the sternum, upper and
lower arms, and pelvis (sacrum) [19,22,40], as shown in Figure 1. The sample rate was
50 Hz. All IMMU data-acquisition procedures, as well as the translation of IMMU cas-
ing kinematics data to body segment and joint kinematics data, were performed with
the FusionTools/XCM software suite (Roessingh Research and Development, Enschede,
the Netherlands) [19,23] using the Xsens application programming interface (API 4.7). Us-
ing the same software suite, EMG data preparation (amplitude estimation by smoothed
rectification, intrapolated resampling to 50 Hz) and synchronization with IMMU data
were performed. The IMMU and sEMG data were synchronized by tapping on two sEMG
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electrodes and one IMMU electrode before the start of the measurement. This created a
marker (peak) in the data which was used to synchronize both systems in a semi-automated
procedure indicating both markers, manually using a cursor. Estimated synchronization
errors < 0.05 s.

The LSM was driven by kinematics derived from all 6 IMMUs: 3D orientation (rep-
resented by quaternions); 3D angular velocity; and 3D linear acceleration (only used in
controlled environment). The ANN was driven by EMG amplitudes plus 3D kinematics
from only the 2 IMMU sensors positioned on sternum and sacrum: per segment the 3D
angular velocity and 3D linear acceleration were signals used. All load exposure estima-
tions were also performed using this software suite, with both LSM-based and ANN-based
methods, as well as the calculation of all the descriptive statistics of the net moment curves
and root-mean-square error (RMSE) values and correlation coefficients, comparing the
target and estimated net moments.

2.4. Data Analysis

To test the correlation between the ANN-based method and the LSM-based method
(question 1) in phase 2, the main evaluation comprised a comparison of ANN-based
estimated and target net moment trajectories in 3D. The primary outcomes were the 3D
curves of the estimated and target moment, as well as of the moment norm, and their
RMSE curves of the moment magnitude (||M||, calculated through the net moment vector
norm). The evaluation was performed for every rotation axis separately and for the net
moment magnitude by means of the visual inspection of data plots and also by evaluating
RMSE values between the estimated and target moments and the Pearson’s correlation
coefficient (r with 0.1 < r < 0.5 indicating a weak correlation, 0.5 < r < 0.7 indicating a
moderate correlation, 0.7 < r < 0.9 indicating a good correlation and > 0.9 indicating a
very good correlation [41]) and its squared value (r2) representing the amount of explained
variance in estimation. Movement in the mediolateral transverse (y) axis was named “trunk
bending”, and movement in the anterior–posterior (x) axis was named “trunk lateroflexion”
and the combined trunk twisting movement mainly in the longitudinal (z) axis was named
“trunk rotation”. If a strong correlation was found between the ANN-based method and
the LSM-based method, the ANN-based method was judged to be of an acceptable level.

In phase 3, the results of the questionnaire were categorized on the basis of the
perceived workload, with 1 meaning a light task and 5 meaning a very heavy task [36]. Ac-
cording to these scores, the tasks for test questions 2, 3 and 4 were selected. To test whether
this sensor system could distinguish differences between the intensity and variability of
the estimated lumbar load, a discriminant validity analysis was performed. The primary
parameters that we compared were the mean, peak (max) and variance (standard deviation
within a subject) of the net moment in the lumbar region and results. They were also
discussed in relation to the perceived workload (Borg CR-10) [39].

To explore if this ANN-based method can distinguish the estimated lumbar load
differences in intensity levels (question 2), differences between the light and heavy tasks
were analyzed. The hypothesis was that during heavy tasks, the mean net moments in
the lumbar region would be significantly higher. Additionally, the hypothesis that the
perceived workload (Borg CR-10 score) of the heavy tasks was significantly higher than the
light tasks was tested. The hypothesis of question 3 (variability level) was that the variance
in the net moments in the lumbar region was higher during dynamic tasks than during the
static tasks.

To explore the (a) symmetrical character of working postures, the movement direction
of the moment around the anterior–posterior, mediolateral and longitudinal axes (question
4) was assessed. The net moment data were divided into two segments based on the
direction of movement (positive or negative movement direction); anterior–posterior with
lateroflexion to the left (positive) and right (negative), mediolateral with flexion (positive)
and extension (negative), longitudinal with rotation to the left (positive) and right (negative)
axes. This was done based on the hypothesis that the tasks had an asymmetrical character.
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These positive and negative moment segments were tested separately with the same
hypothesis described for questions 2 and 3.

Questions 2, 3 and 4 were tested by firstly exploring the distribution of the data
using a Shapiro–Wilk test of normality and was considered to be normally distributed if
p ≤ 0.05. Normally distributed data between the tasks were assessed using a paired t-test
and non-normally distributed data were also tested using the Wilcoxon signed-rank test.
A difference of the net moment was significant when p ≤ 0.05. The results are presented as
the absolute and relative mean or mean difference (MD) ± the standard deviation (SDD).
All statistical analyses were performed using IBM SPSS Statistics (version 25; IBM Corp.,
Armonk, NY, USA). In Table 1 can be found a framework to describe per research question
the activities.

Table 1. Framework study design. A framework to describe per research question the activities in terms of inertial magnetic
measurement units (IMMUs) and surface electromyography sensors (sEMG)), discriminant validity and related criteria
with artificial neural network (ANN) and linked segment model (LSM).

Step Research Question Activity Discriminant Validity Criteria

1 1 Calibration measurement
with IMMUs and sEMG ANN vs. LSM method Mean r2 of subject ≥ 0.5

2 2, 4 Physical workload checklist Light vs. heavy task
Light: lowest workload per job

Heavy: highest workload
per job

3, 4 Static vs. dynamic task
Static: same posture at least 4 s

Dynamic: different
working postures

3 2, 3, 4
Performing work-related
tasks with IMMUs and

sEMG
Test research questions r ≥ 0.5

p ≤ 0.005

4 2, 3, 4 Perceived workload
questionnaire Test research questions p ≤ 0.005

5 1, 2, 3, 4 Calibration measurement
with IMMUs and sEMG

Check measurement
quality N/A

3. Results

Out of the 23 workers who participated in this study, the data of 12 subjects were
not useable because of data-acquisition errors in either the IMMUs or sEMG hardware
during essential trials for ANN training. In addition, the data of another two subjects
performing dynamic and/or heavy tasks contained data-acquisition errors. Therefore,
these 14 subjects were excluded from the analysis, leaving a set of data of nine subjects
(eight males, one female): four medical disinfectant care workers, three maintenance
engineers, and two industrial chemical cleaners. Their mean age was 33.7 ± 10.3 years,
height 185 ± 9 cm, and weight 93 ± 12 kg. Eight subjects were right-handed, and one
subject was left-handed.

3.1. Question 1: Base Quality of ANN-Based Method

The base quality was studied by examining the correlation between the correspond-
ing moment curves from the ANN-based method and the LSM-based method. Table 2
(and Appendix A.1) shows the correlations. For one subject (subject 6), the data of the
calibration movement with 6 kg were not usable and the correlation with the LSM-based
model could not be calculated. Therefore, the results of subject 6 were not included in the
mean results in Table 2. Hence, this subject was included in the study. The trained ANN
method estimation base quality differs from one subject to another.
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Table 2. ANN-based method performance in handling known loads. Shown are the correlations between the net moment at
L5/S1 estimated with the ANN-based method and with the LSM-based method. Correlation is represented by the Pearson
correlation coefficient (r) and determination coefficient (r2) are shown only for the axis of movement in each task (i.e.,
in the mediolateral axis (y) for the trunk bending tasks, in the anterior–posterior axis (x) for the lateroflexion tasks, and
the longitudinal axis (z) for the rotation tasks, respectively. Shown are individual values for each subject plus the mean
and standard deviation (SDD) over all subjects. No valid data were obtained for subject number 6 for reasons of partially
missing data in the 6 kg trial.

Subject

Movement Axis 1 2 3 4 5 6 7 8 9 Mean SDD

Bending y r 0.97 0.98 0.96 0.97 0.98 - 0.96 0.35 0.98 0.89 0.22
r2 0.94 0.95 0.93 0.93 0.96 - 0.92 0.12 0.96 0.84 0.29

Latero-
flexion

x r 0.94 0.93 0.95 0.95 0.94 - 0.85 0.32 0.92 0.85 0.22
r2 0.89 0.87 0.91 0.90 0.88 - 0.72 0.10 0.84 0.76 0.27

Rotation z r 0.63 0.23 0.84 0.84 0.81 - 0.76 0.38 0.92 0.68 0.24
r2 0.40 0.06 0.70 0.70 0.65 - 0.58 0.15 0.84 0.51 0.28

Good correlations were observed in the trunk bending (mean r = 0.89 ± 0.22) and lat-
eroflexion (mean r = 0.85 ± 0.22). All subjects but one (subject 8) showed good correlations
(r ≥ 0.85). Subject 8 showed a weak correlation (r ≤ 0.38) for both movements. A moderate
correlation was observed during the trunk rotation in the longitudinal axis (r = 0.68 ± 0.24)
and the anterior–posterior axis (r = 0.65 ± 0.24). However, subject 2 showed a weak
correlation (r = 0.23). Overall, the results were within the acceptable range (r > 0.5).

Table 3 compares the RMSE values between the ANN-based method and the LSM-
based method. These results indicate a mean estimation error of 9.25 ± 6.01 Nm, relative to
the typical peak net moment range from 150 to 220 Nm (see Table 4).

Table 3. RMSE between the ANN-based method and the biomechanical model. The root means square error (RMSE)
between the net moment curves at L5/S1 was estimated by the ANN-based method and the LSM-based method. Values are
shown for the three movements trunk bending, lateroflexion and rotation with the anterior–posterior axis (x), mediolateral
axis (y) and longitudinal axis (z). Shown are individual values for each subject plus the mean and standard deviation (SDD)
over all subjects. No valid data were obtained for subject number 6 for reasons of partially missing data in the 6 kg trial.

Subject

Movement Axis 1 2 3 4 5 6 7 8 9 Mean SDD

Bending x 12.5 5.00 10.7 4.49 7.09 - 5.24 17.2 4.84 8.38 4.63
y 8.95 8.65 9.85 8.56 10.4 - 21.1 9.31 6.17 10.4 4.51
z 6.49 3.91 5.66 3.15 5.87 - 6.70 9.64 2.61 5.50 2.27

Lateroflexion x 17.2 10.9 12.5 7.12 13.4 - 19.5 31.3 11.9 15.5 7.44
y 23.7 11.2 11.7 6.83 16.6 - 13.2 19.5 11.7 14.3 5.37
z 11.3 8.88 10.4 3.48 9.83 - 8.73 24.0 6.92 10.4 5.98

Rotation x 2.98 2.55 3.27 3.89 6.07 - 5.15 18.9 2.73 5.68 5.47
y 4.28 4.10 3.73 4.06 6.26 - 6.05 21.5 4.33 6.79 6.02
z 5.01 5.73 4.41 4.12 6.32 - 6.90 12.8 4.87 6.27 2.80
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Table 4. Tasks per job type. Based on the results of the checklist for the physical workload.

Task Perception
Medical Disinfect Care

Worker
Maintenance Engineer Industrial Chemical Cleaner

Light
Changing personal protective

working clothing before or after
working in contaminated space

Administration of technical
maintenance service

Disassemble parts of a gas mask
as preparation for cleaning

Static Assembly or lamination of
surgical instruments

Tinkering under a machine to
fix or loosen components

Cleaning chemical hazard suit
in sink

Heavy and dynamic Carrying bins of 3 up to 10 kg
over a distance of about 1 m

Moving (pushing and/or
pulling) bin with wastewater of
1000 kg or carrying a toolbox of
35 kg over a distance of about

50 m

Carrying bins of 5–10 kg over a
distance of 50 m

3.2. Question 2: Capability to Distinguish Task Intensity

Table 4 shows the tasks per job according to the results of the checklist of physical
workload. All subjects, except for one industrial chemical cleaner, perceived the dynamic
task as the heaviest task of their job. Small differences in the checklist for physical workload
scores were observed, which were related to the diversity in the individual job description.

Table 5 presents the estimated net moments per task together with the experienced
workload of the tasks according to the subjects. During all the tasks, the mean net lumbar
moment was 25.2 ± 16.8 Nm, the mean peak moment was 179.5 ± 152.9 Nm, and the mean
variance was 15.5 ± 11.5 Nm.

Table 5. Net moments, load ranking, and perceived workload for each task. The questionnaire
workload factor with 1 = light work and 5 = very heavy task. The experienced workload (Borg CR-10)
according to the subjects with 0 = not burdensome and 10 = extremely heavy.

Net Moment (Nm) Questionnaire
Load Factor

(1–5)

Perceived
Workload
(Borg 0–10)

Task
Perception

Mean Peak Variance

Light task 18.7 ± 8.1 166.4 ± 195.5 13.0 ± 10.6 1.0 ± 0.0 0.9 ± 0.8
Static task 26.3 ± 19.2 153.5 ± 106.1 13.7 ± 9.9 3.6 ± 1.3 3.8 ± 1.6
Heavy and

dynamic task 30.7 ± 20.0 218.5 ± 154.4 19.8 ± 13.8 4.8 ± 0.4 6.0 ± 2.0

Table 6 summarizes the differences between the light and heavy tasks presented for
all subjects, with a typical example in Figure 2. The graphs of all subjects can be found
in Appendix A.2. It can be seen that the net moments estimated using the ANN-based
method exhibit overall higher moments during heavy tasks with more variances than
during light tasks. The differences in the mean net moment between light and heavy
tasks were significant (MD = 64.3 ± 72.1%, p = 0.028), whereas other differences were not.
The perceived workload was significantly higher during the heavy tasks than during light
tasks (MD = 5.1 ± 2.1, p < 0.001).
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Table 6. Light vs. heavy tasks. Shown are the absolute (Nm) and relative (%) differences between
the light tasks and the heavy tasks through mean difference (MD: heavy–light task) and its standard
deviation (SDD) plus 95% confidence interval (CI) of these differences for the moment magnitude
(||M||) with p-value of paired t-test.

Absolute (Nm) Relative (%)

Parameter MD ± SDD (95% CI) MD ± SDD (95% CI) p

Mean 12.0 ± 13.5 [1.7;22.4] 64.3 ± 13.5 [8.9;119.8] 0.028
Peak 52.1 ± 256.9 [−145.4;249.6] 23.9 ± 117.6 [−66.5;114.2] 0.560

Variance 6.8 ± 9.4 [−0.4;14.0] 52.1 ± 71.8 [−3.1;107.3] 0.061

Figure 2. Typical example of net moment curves during light (green) and heavy (red) tasks (Subject 1).

3.3. Question 3: Capability to Distinguish Static/Dynamic Task Variance

Table 7 summarizes the differences between the static and dynamic tasks presented
for all subjects, with a typical example in Figure 3. The graphs of all subjects can be found
in Appendix A.3. It can be seen that the mean net moments of the magnitude estimated
using the ANN-based method exhibit overall higher values during dynamic tasks with
more variances than during static tasks. The difference in the variance between static and
dynamic tasks was significant (MD = 44.8 ± 48.9%, p = 0.025). The perceived workload
was significantly higher during the dynamic tasks than during static tasks (MD = 2.2 ± 1.5,
p = 0.002).

Table 7. Static vs. dynamic tasks. Shown are the absolute (Nm) and relative (%) differences between
the static tasks and the dynamic tasks through mean difference (MD: dynamic-static task) and its
standard deviation (SDD) plus 95% confidence interval (CI) of these differences for the moment
magnitude (||M||) with p-value of paired t-test.

Absolute (Nm) Relative (%)

Parameter MD ± SDD (95% CI) MD ± SDD (95% CI) p

Mean 4.42 ± 8.03 [−1.8;10.6] 16.8 ± 30.6 [−6.7;40.4] 0.137
Peak 65.0 ± 138.6 [−41.5;171.5] 42.3 ± 90.3 [−27.0;111.7] 0.197

Variance 6.13 ± 6.69 [1.0;11.3] 44.8 ± 48.9 [7.2;82.4] 0.025
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Figure 3. Typical example of net moment curves during static (blue) and dynamic (orange) tasks
(Subject 6).

3.4. Question 4: (a) Symmetrical Lumbar Load

Table 8 summarizes the differences between light and heavy tasks presented while
taking into account the direction of the movement around the axis (e.g., flexion vs. ex-
tension). Similar results of the intensity levels were observed as shown in Table 6. It was
observed that the mean net moment of the magnitude was significantly higher during
heavy tasks than during light tasks (MD ≥ 92.3 ± 105.4%, p ≤ 0.030) as well as in the
singular anterior–posterior axis (MD ≥ 56.8 ± 44.9%, p ≤ 0.016). All the other differences
were not significant.

Table 8. Direction of the net moment of the magnitude and around the axis of the light vs. heavy tasks. Shown are the
absolute (Nm) and relative (%) differences between the light tasks and the heavy tasks through mean (MD: heavy–light
task), standard deviation (SDD), and 95% confidence interval (CI) of these differences for the anterior–posterior (Mx) with
lateroflexion to the left (positive) and right (negative), mediolateral (My) with flexion (positive) and extension (negative),
longitudinal (Mz) with rotation to the left (positive) and right (negative) axes separately and for the moment magnitude
(||M||) with a p-value of paired t-test.

Absolute (Nm) Relative (%)

Parameter Direction Axis MD ± SDD (95% CI) MD ± SDD (95% CI) p

Mean

Positive

||M|| 152.0 ± 92.8 [80.6;223.4] 1324.0
±808.6 [702.4;1945.5] 0.001

Mx 5.6 ± 4.4 [2.2;8.9] 56.8 ± 44.9 [22.3;91.3] 0.005
My −0.6 ± 8.6 [−7.2;6.0] −2.5 ± 33.6 [−28.4;23.3] 0.828
Mz 1.3 ± 3.6 [−1.5;4.1] 15.6 ± 43.7 [−18.0;49.1] 0.317

Negative
||M|| 9.5 ± 10.9 [1.8;17.9] 92.3 ± 105.4 [11.3;173.3] 0.030

Mx 8.4 ± 8.3 [2.1;14.8] 95.0 ± 93.6 [23.1;166.91] 0.016
My 3.4 ± 13.5 [−5.7;12.5] 24.4 ± 97.2 [−41.0;90.4] 0.424
Mz 4.8 ± 7.2 [−0.7;10.3] 53.5 ± 79.7 [−7.8;114.8] 0.079

Variance

Positive

||M|| 6.6 ± 13.5 [−2.5;15.7] 37.3 ± 76.8 [−14.2;88.9] 0.138
Mx 1.3 ± 7.5 [−3.8;6.4] 11.9 ± 68.0 [−33.8;57.5] 0.575
My 1.1 ± 11.2 [−6.5;8.6] 6.8 ± 72.4 [−41.8;55.5] 0.762
Mz −1.1 ± 6.7 [−5.6;3.5] −12.2 ± 76.7 [−63.7;39.3] 0.610

Negative
||M|| 2.2 ± 9.5 [−4.2;8.6] 17.3 ± 73.7 [−32.2;66.8] 0.453

Mx 5.3 ± 9.6 [−1.2;11.8] 38.1 ± 69.4 [−8.6;84.7] 0.099
My 1.1 ± 8.6 [−4.7;6.8] 9.9 ± 79.0 [−43.1;63.0] 0.686
Mz 2.3 ± 8.4 [−3.3;8.0] 24.3 ± 88.4 [−35.0;83.7] 0.382
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Table 9 summarizes the differences between the static and dynamic tasks while tak-
ing into account the direction of the movement around the axis. When the direction of
the moment around the separated axis was considered, significantly less variance was
observed during rotation to the left around the longitudinal axis during dynamic tasks
(MD = −90.8 ± 10.5%, p = 0.031). In addition, significant differences in the mean moment
(||M||, My, and Mz) were observed in the positive direction (−47.1% ≤ MD ≤ 302.7%,
p ≤ 0.042), but were not significant in the negative direction (−54.0% ≤ MD ≤ −276.5%,
p ≥ 0.326).

Table 9. Direction of the net moment of magnitude and around the axis of the static vs. dynamic tasks. Shown are the
absolute (Nm) and relative (%) differences between the static tasks and the dynamic tasks through mean difference (MD:
static–dynamic) and its standard deviation (SDD) plus 95% confidence interval (CI). These are shown for the net moments
around each of the three axes separately (in the right-handed axes frame): for the moments around the anterior–posterior
axis (Mx), with the net moment positive for direction of rotation to the left; for the moments around the mediolateral axis
(My), with the net moment positive in the forward flexion direction; for the moments around the longitudinal axis (Mz),
with the net moment positive in the direction of rotation to the left and for the moment magnitude (||M||) with a p-value
of paired t-test.

Absolute (Nm) Relative (%)

Parameter Direction Axis MD ± SDD (95% CI) MD ± SDD (95% CI) p

Mean

Positive

||M|| 100.5 ± 132.8 [11.3;189.7] 302.7 ± 399.7 [34.1;571.2] 0.031
Mx −6.6 ± 14.8 [−16.6;3.3] −34.5 ± 76.9 [−86.1;17.1] 0.168
My −18.1 ± 25.7 [−35.4;−0.8] −47.1 ± 66.9 [−92.0;−2.1] 0.042
Mz −6.5 ± 8.6 [−12.3;−0.7] −45.2 ± 60.2 [−85.7;−4.8] 0.032

Negative
||M|| −44.9 ± 156.2 [−149.9;60.0] −276.5 ± 960.7 [−921.9;368.9] 0.362

Mx −7.7 ± 38.6 [−33.6;18.3] −54.0 ± 272.6 [−237.1;129.1] 0.526
My −22.4 ± 78.0 [−74.8;30.0] −161.7 ± 561.8 [−539.1;215.7] 0.362
Mz −6.7 ± 21.4 [−21.0;7.7] −59.0 ± 189.5 [−186.3;68.3] 0.326

Variance

Positive

||M|| −6.9 ± 44.9 [−37.1;23.2] −39.4 ± 254.7 [−210.5;131.7] 0.619
Mx –5.1 ± 12.5 [−13.6;3.3] −46.2 ± 112.8 [−122.0;29.6] 0.204
My −4.8 ± 13.1 [−13.6;3.9] −31.2 ± 84.3 [−87.8;25.4] 0.248
Mz −8.0 ± 10.5 [12.1;0.9] −90.8 ± 10.5 [−171.2;10.4] 0.031

Negative
||M|| –27.2 ± 97.5 [−92.7;38.3] −210.5 ± 755.0 [−717.7;296.8] 0.377

Mx −1.5 ± 25.3 [−18.5;15.5] −10.7 ± 182.2 [−133.1;111.7] 0.849
My −6.4 ± 26.1 [−23.9;11.1] −59.0 ± 240.5 [−220.6;102.5] 0.434
Mz −3.3 ± 17.6 [−15.1;8.5] −34.4 ± 183.7 [−157.8;89.1] 0.549

4. Discussion

The results showed that the ANN-based method can estimate the net moments of the
6 kg test trials with an accuracy of about 9 Nm in comparison with the LSM-based method
after being trained with 0 and 10 kg test trials. These results are in line with the research of
Baten et al. [19,22], Dolan [25] and Kingma et al. [24] and support the notion that the ANN-
based method can be used for evaluating lumbar load exposure patterns and exposure
levels in real-life work settings. The feasibility of this approach is also supported by the
results of others [42,43], who also used an ANN to predict static postures and net moments
driven by static posture data (3D Euler angles) and EMG data and by the results of applying
the same method to predict shoulder joint load exposure [34]. The results of the base quality
differ per subject due to the individual character of the results. The calibration differs from
one subject to another, which can be due to differences between the three calibration sets
with three different weights or due to an unidentified event. This resulted in nonperfect
calibration for subject 8, with an overall medium to small correlations. This ANN-based
method seemed to be capable of distinguishing differences in the intensity level between
light and heavy tasks which are in line with the perceived workload. Additionally, it can
distinguish the differences in variance level between static and dynamic tasks. When the
direction of the moment around the (anterior–posterior, lateroflexion or longitudinal) axis
was considered, similar results were observed between light and heavy tasks. However,
between static and dynamic tasks, the variance differences of the net moment were not
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observed. This is because of the differences due to the direction of the moment around the
axis. This indicates that it is important to analyze and interpret net moments with different
signs separately and thereby acknowledge the (a) symmetrical character of the net moment
exertion when analyzing the lumbar load. This study showed that this system can measure
the lumbar load in 3D, separately for the direction of the net moment in uncontrolled
real-life working conditions.

In studies under more controlled conditions (Kingma et al., 2001, Baten, 2000), a more
consistent high estimation accuracy was found, which suggests higher generalizability
than the data in this study. The fact that accuracy is less consistent in this study is probably
caused by the less controlled experimental conditions and environment, resulting in a
lower quality and consistency in the signals recorded and driving the ANN. This is already
signaled by the large loss of data due to the technical failures during acquisition. Still,
in the end, this study reports the accuracy achieved in spite of the technically challenged
acquisition conditions during the actual working conditions at actual work sites.

Like in other (state-of-the-art) research, this study provides insights into the usability
and validity of this ANN-based method. This method only requires EMG and IMMU data
for monitoring the lumbar load of physically active workers, without requiring any a priori
knowledge regarding the load. Tasks were selected on the basis of actual working activities
performed in the natural environments of physically demanding jobs. This study also
explored the effect of the direction of the moment around the axis with which asymmetrical
working routines can be investigated. For example, these could be the case of a paver who
uses only one hand to lift tiles or fabric workers who mainly rotate in one direction or
axis. Insight into these movements and moments can provide useful information that can
help to effectively prevent musculoskeletal complaints. It should also be mentioned that
the diversity in the jobs, related workloads, and selected tasks was a challenging aspect,
for example, in selecting uniform tasks for the workers because of the differences in their
working activities. Real-life tasks are not merely light, heavy, static, or dynamic; rather, a
static or dynamic task may also be light or heavy, which results in an overlap between tasks.

The main weakness of this study was the lack of a reference method during actual
work. Currently, the mechanical workload of the physically active workers was assessed
by observations (video), questionnaires, performance tests, or combinations of motion
trackers and force sensors [4,20,44]. Both observations and questionnaires were indirect
methods and do not provide information about the working posture or related lumbar load.
Reference systems, such as Vicon motion-capture cameras, are not practical or allowed in
the real-life working environment [4,27,40,41]. The closest option for a reference method is
the method that uses IMMUs and ground reaction forces assessed using an instrumented
shoe [20,32,40]. This method, however, has two major drawbacks. The first drawback is
that it yields erroneous results every time an external force other than the ground reaction
force is exerted on the lower body (e.g., external forces resulting from supporting loads
handled with any part of the lower body, or from leaning against a table or workbench, etc.).
Another drawback is that it requires wearing heavy and somewhat bulky instrumented
shoes, which constitute potential hazards and noncompliance with shoe and work safety
functionality and regulations.

The current physical setup is not usable in real-life physically demanding jobs. Gath-
ering data during actual work seemed to be technically challenging and resulted in the
data of 14 out of the 23 subjects not being used in the study analysis. According to a
power analysis based on the lab study, at least six subjects must be included to validate
this model. The remaining nine subjects were sufficient for a first validation in real-life
working conditions. However, this large number of dropouts and data processing issues
must be prevented. To improve the usability an improved data-acquisition, (hardware)
setup is required for future studies and applications. Additionally, further validation in
follow-up research with more subjects and in more real-life working situations would
increase insight into the quality of the assessment and may help develop insights into how
to further improve this method. Preferably, this should be done in selected work situations
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in which the instrumented shoe method can serve as a reference and/or situations in which
all external forces are known in some way. The environment’s influence on the system
(e.g., disturbance in the observability of the Earth’s magnetic field) also needs to be further
explored [35] and dealt with. Moreover, the design (mechanical) of the system needs to
be improved (e.g., by integrating the sensors in the clothes). In addition, the monitored
working posture and lumbar load exposure should be linked to ergonomic guidelines to
obtain feedback regarding exceeding acceptable loading levels or loading patterns in a
way like already pioneered by Baten et al. (e.g., [31,45]). As suggested in these papers,
this information can be provided to the user (e.g., using a traffic light model based on EU
or NIOSH ergonomic norms, to indicate areas of overload risk). Preferably, the estimating
software should do this as fully automated with instant feedback to the user. Such a system
would provide workers with feedback regarding their working behaviors and/or work
task design and/or working conditions and/or workplace design, which can help improve
workers’ behavior, but also work task, organization and conditions and decrease their
complaints. Both work postures and their net moments as well as the link to ergonomic
guidelines need to, and can, be further explored in follow-up research with the ambulatory
methods and tools studied in this paper. Estimated net moment data seem to be very
suitable for exposure variance analysis. Adding load exposure pattern analysis to the
current analysis of only the amount of load exposure [46] can be useful by means of gener-
ating a 2D graph of the joint distribution of intensity of the net moment data dynamically.
This exposure variance analysis can be used to link the results to ergonomic guidelines and
provide the user with feedback.

The results of this study suggest that not only can the ANN-based method be used in
monitoring lumbar back load exposure in physically demanding jobs, but also that it may
have the potential to be used in other occupational rehabilitation applications, such as office
workers. For office workers, the lumbar load during sedentary behavior could be monitored
and investigated, aiming to prevent health problems and physical discomfort related to
static working postures. Additionally, this method has the potential to be extended and
made usable for full body monitoring or specific areas. Other clinical applications are
in the fields of rehabilitation medicine and sports. It may be used individually to assess
muscular overload causing or contributing to an (individual) problem and help patients
and clinicians to tailor treatments. The ANN-based method could be used in back pain
rehabilitation, rehabilitation involving improvement of knee loading behavior, e.g., anterior
cruciate ligament (ACL) surgery recovery. Additionally, with this method, injuries could
be predicted or prevented in rehabilitation and sports applications and the performance
could be improved.

5. Conclusions

Lumbar loads could be distinguished with the ANN-based method in terms of inten-
sity and variance levels. The moments in the lumbar region are significantly higher during
heavy tasks than during light tasks and the amount of variance is significantly higher
during dynamic tasks than during static tasks. The estimated net moments were consistent
with the perceived intensity levels and character of the work task in physically demanding
occupations. It was concluded that the validity of this sensor-based system was supported,
because the differences in the lumbar load were consistent with the perceived intensity
levels and character of the work tasks.
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Appendix A

Appendix A.1. Question 1: Base Quality of ANN-Based Method

Table A1. ANN-based method performance in handling known loads. Shown are the correlations between the net moment
at L5/S1 estimated with the ANN-based method and with the LSM-based method. Correlations are represented by the
Pearson correlation coefficient (r) and the determination coefficient (r2) and are shown by the axes anterior–posterior (x),
mediolateral axis (y) and the longitudinal axis (z). Shown are individual values for each subject plus the mean and standard
deviation (SDD) over all subjects. No valid data were obtained for subject number 6 for reasons of partially missing data in
the 6 kg trial.

Subject

Movement Axis 1 2 3 4 5 6 7 8 9 Mean SD

Flexion

x r 0.08 0.86 −0.17 0.25 0.41 - 0.25 0.37 0.52 0.32 0.30
r2 0.01 0.75 0.03 0.06 0.17 - 0.06 0.13 0.27 0.18 0.24

y r 0.97 0.98 0.96 0.97 0.98 - 0.96 0.35 0.98 0.89 0.22
r2 0.94 0.95 0.93 0.93 0.96 - 0.92 0.12 0.96 0.84 0.29

z r −0.20 0.83 −0.13 0.13 0.03 - 0.42 0.46 0.48 0.25 0.35
r2 0.04 0.69 0.02 0.02 0.00 - 0.18 0.21 0.23 0.17 0.23

Abduction

x r 0.94 0.93 0.95 0.95 0.94 - 0.85 0.32 0.92 0.85 0.22
r2 0.89 0.87 0.91 0.90 0.88 - 0.72 0.10 0.84 0.76 0.27

y r 0.43 0.59 0.22 −0.25 −0.22 - −0.16 0.42 0.36 0.17 0.33
r2 0.19 0.35 0.05 0.06 0.05 - 0.03 0.18 0.13 0.13 0.11

z r 0.44 0.05 0.02 0.39 −0.02 - 0.13 −0.33 0.17 0.11 0.24
r2 0.20 0.00 0.00 0.15 0.00 - 0.02 0.11 0.03 0.06 0.08

Rotation

x r 0.74 0.69 0.86 0.52 0.86 - 0.40 0.89 0.23 0.65 0.24
r2 0.54 0.48 0.73 0.27 0.73 - 0.16 0.80 0.05 0.47 0.28

y r 0.00 0.44 0.09 0.56 0.01 - 0.43 −0.06 0.24 0.21 0.24
r2 0.00 0.19 0.01 0.31 0.00 - 0.19 0.00 0.06 0.10 0.12

z r 0.63 0.23 0.84 0.84 0.81 - 0.76 0.38 0.92 0.68 0.24
r2 0.40 0.06 0.70 0.70 0.65 - 0.58 0.15 0.84 0.51 0.28
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Appendix A.2. Question 2: Capability to Distinguish Task Intensity

Figure A1. Net moment curves during light (green) and heavy (red) tasks.
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Appendix A.3. Question 3: Capability to Distinguish Static/Dynamic Task Variance

Figure A2. Net moment curves during static (blue) and dynamic (orange) tasks.
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Abstract: Residual motion of upper limbs in individuals who experienced cervical spinal cord injury
(CSCI) is vital to achieve functional independence. Several interventions were developed to restore
shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical
practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements
are operator-dependent and require significant time and effort. Therefore, innovative technology for
supporting medical personnel in objectively and reliably measuring the efficacy of treatments for
shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of
a customized wireless wearable sensors (Inertial Measurement Units—IMUs) system for shoulder
ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls
performed four shoulder movements (forward flexion, abduction, and internal and external rotation)
with dominant arm. Every movement was evaluated with a goniometer by different testers and
with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer
measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-
tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results
provide essential information on the accuracy of the proposed wireless wearable sensors system in
acquiring objective measurements of the shoulder movements in CSCI patients.

Keywords: inertial measurement unit; wireless sensors network; motion tracking; kinematics; range
of motion; shoulder; goniometer; spinal cord injury; tetraplegia; clinical setting

1. Introduction

Spinal cord injury (SCI) is a debilitating neurological condition which can result in
a total or partial motor and sensory function impairment below the site of the injury,
associated with a various degree of bladder, bowel and sexual dysfunctions [1]. The
sensory and/or motor impairment is caused by the loss of communication between the
brain areas devoted to motor/sensory processing and the axons of neural cells controlled
by spinal cord levels below the injury site and innervating the body surface. The site and
completeness of the injury largely determine the clinical outcomes of SCI [2]. Lesions at
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lower spinal segments (i.e., sacral, lumbar, or thoracic) cause the loss of motor and/or
sensory function in lower limbs and trunk (paraplegia) while more rostral lesions (i.e.,
cervical) involve lower limbs, trunk, and upper limbs (tetraplegia).

Regarding severity, spinal cord injury can be graded on the basis of motor and sensory
dysfunction as follows: no motor or sensory function is preserved; sensory function pre-
served but not motor function; both motor and sensory functions are—partially—preserved
below the neurological level [3].

For CSCI individuals the residual motion of upper limbs is a key-element to perform
activities of daily living and participate in community [4–6].

Shoulder range of motion (ROM) is involved in basic self-management skills (e.g.,
bathing, feeding or dressing), independent transferring skills (e.g., getting in/out of bed or
moving to/from wheelchair) as well as sport and leisure activities participation [7].

In an attempt to increase functional independence of CSCI individuals, different
surgical interventions and rehabilitation programs have been developed to restore deficits
in motor control provoked by spinal cord injuries [8]. Therefore, tools to objectively and
reliably measure the efficacy of a treatment process would be extremely desirable.

At the present moment, in clinical settings the assessment of the shoulder function
in patients with cervical spinal cord injury (CSCI) is commonly limited to simple clinical
observations by the examiner or based on rating scales, which are not only inefficient for
detecting small differences but also inclined to produce subjective errors [9,10].

Alongside the observational examination, goniometer is a portable, inexpensive and
handy tool traditionally used in clinical settings to assist doctors for the evaluation of
shoulder movements [11]. However, conventional goniometric measurements can vary
among testers [12,13] and require substantial time and effort in clinics.

In addition, clinical assessments using simple tools such as goniometer allow us to
measure only the ROM and are not sufficient when attempting to assess complex patterns
of upper limb movement in persons with CSCI. Thus, dynamic kinematic tests have been
developed to integrate ROM evaluation while providing a more complete monitoring of
upper limb functional movements [14,15].

Several movement analysis devices are available to assist objective and accurate kine-
matic measurements varying from simple video cameras to complex optical motion capture
systems (e.g., [16–19]). Such evaluation systems generally demand highly expensive equip-
ment, well-skilled personnel for operational procedure, as well as dedicated spaces, which
is not realistically suitable for clinical settings in hospital or space-limited environments.
This paved the way for the introduction of wearable, low-cost and user-friendly devices
that can provide objective information of movement characteristics, with the possibility of
monitoring these parameters in daily life, in accordance to future healthcare system [20,21].

In the last few years, a new generation of inertial measurement units (IMUs) has emerged,
significantly impacting on motion tracking research due to their ease of use, relative low cost,
and portability [22–24]. This technology, taking advantage of recent progress in miniature
inertial sensors, consists of lightweight, non-invasive, wearable, wireless sensing units, which
open a new opportunity to capture human motion in different settings [13,25].

An IMU device estimates orientation of human body segments based on data com-
bined from multiple electromechanical sensors as accelerometers, tri-axial gyroscopes,
and magnetometers through the use of sensor fusion algorithms such as a Kalman filter or
complementary weighting algorithm [26–28].

The combination of information from different inertial sensor units is considered an
advance in minimizing measurement errors of one component-based orientation (e.g.,
linear acceleration interference and inertial sensor drift), thus guaranteeing a more ac-
curate and reliable estimation of motion [26,29–31]. Therefore, IMU systems have been
increasingly adopted to efficiently measure joint ROM of several body parts such as lower
limbs [32], trunk [33], as well as arm/shoulder [34–36].

In spite of the increasing application of IMU systems in shoulder joint measurements,
only a few studies tested the validity of IMU in comparison with goniometer [13,37]. In [37]
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IMU and goniometer were compared by passively positioning the shoulder at specific
angles and good concurrent validity of IMU was found, though they showed relatively
low agreement at elevated shoulder positions. Also, in [13] an excellent agreement was
exhibited between goniometer- and IMU-based measurements and the two methods were
shown to be interchangeable for measuring active shoulder ROM. Overall, these investi-
gations provided preliminary evidence of the reliability of IMUs in accurately measuring
shoulder ROM by comparing it with a goniometer tool. Nonetheless, the tested populations
in these studies consisted of healthy participants as the most of studies evaluating IMUs
systems [38] and, as suggested by Rigoni et al. [13], their results might not be replicable in
pathological individuals. It should be considered that the monitoring of active shoulder
ROM in patients with CSCI can occur in a very different context if compared to healthy
subjects. The introduction of a wheelchair in the setup is necessary when testing CSCI
patients. However, this assistive device can interfere with the arm motion to be performed.
Deviations from single plane of unrestricted movements were shown in a previous study
to potentially influence the accuracy of technology used to measure shoulder ROM [39].
As such the wheelchair, along with deficits in motor control of upper limbs in this special
population [40], could be a source of measurement error for IMU sensors when testing
active shoulder movements. Moreover, electronic controls of motorized wheelchairs can
reduce the accuracy of some components of IMU sensors (e.g., magnetometer). All these
context-related factors could limit the generalization of the results reported by Rigoni
to a specific population as the patients with CSCI while active shoulder movements are
performed. Since IMU devices should ultimately support clinicians and patients suffer-
ing from pathological motor diseases, additional research is needed to understand the
reliability of IMU systems on these special populations.

The objective of this pilot study was to investigate the validity of a customized, wire-
less wearable IMU-based sensors system in evaluating active shoulder movements in CSCI
patients, while seated in a wheelchair, in a clinical setting. To achieve this, we compared
the accuracy of the IMU system to goniometer method in measuring shoulder ROM during
the performance of flexion, abduction, and extra- and intra-rotation movements of the
upper limb. The IMU sensors used for this study were composed of an accelerometer and
a tri-axial gyroscope without the implementation of the magnetometer, so as to reduce
possible interference due to electronic controls in motorized wheelchairs. Also, according
to previous studies investigating concurrent validity of IMU devices in monitoring ROM
on pathological populations [39,41], our experimental design included an additional group
of healthy subjects. In order to obtain uniform measurements between the different popula-
tions, even the healthy subjects performed the active shoulder movements while seated in
a wheelchair. Finally, as it is important to know to what extent the measurement made by
an instrument is dependent on the person (i.e., operator) who carries it out, in this study it
was also investigated the levels of consistency between repeated goniometer measurements
and repeated IMU measurements taken by different operators during the same movement.

2. Materials and Method

2.1. Shoulder Movements to Evaluate Range of Motion

This section describes the movements to evaluate shoulder ROM in individuals with
spinal cord injury and healthy subjects. The tested movements and measurement pro-
cedures to evaluate shoulder ROM have been identified in forward flexion, abduction,
external and internal rotation at 90° abduction (See Figure 1), following the study of
Frye et al. [42].

For shoulder forward flexion, subject was asked to raise the arm straight up in front of
him/her with the forearm in neutral position, i.e., the palm of the hand toward the mid-line
(See Figure 1A). For shoulder abduction, the starting hand position was the same of flexion
maneuver and the subject was required to raise the arm at the side (See Figure 1B).
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Figure 1. The four recorded active shoulder maneuvers: forward flexion (A), abduction (B), external rotation (C) and
internal rotation (D).

For external and internal rotation at the 90° shoulder abduction, the shoulder and
elbow were positioned in approximately 90° of abduction and flexion, respectively, with the
forearm parallel to the floor.

For external rotation, subject was asked to rotate the forearm upwards, whereas in the
internal rotation subject was required to rotate the forearm downwards (See Figure 1C,D).
Scapular rotation was allowed during shoulder forward flexion and abduction. In addition,
subjects were assisted by a clinician to keep the shoulder and the elbow at the initial
position during external and internal rotation at the 90° shoulder abduction.

2.2. Goniometer Measurement Method

To measure the ROM for forward flexion, abduction, external and internal rotation at
90° of shoulder abduction (see Figure 1), a standard plastic goniometer (Gima Co., Gessate,
Italy), characterized by two arms that align with the angle of the joint, was used to provide
the degree of movement in that joint. The active movements of shoulder were calculated
by identified landmarks (see Table 1). The methods used to measure ROM for each tested
shoulder maneuver [39,43–46] are described below.

The flexion angle was calculated by lateral aspect of the glenohumeral joint and
aligning its stationary arm parallel to the midline of the trunk and its moving arm with the
lateral epicondyle of the humerus.

The abduction angle was calculated by placing the center fulcrum of goniometer on
posterior aspect of the glenohumeral joint and aligning its stationary arm along the trunk
(parallel to the spine) and its moving arm with the lateral epicondyle of the humerus.

The external and internal rotation angles at 90° of shoulder abduction were calculated
by placing the center fulcrum of goniometer on olecranon process ulna, and aligning
stationary arm parallel to the floor and its moving arm with the ulna styloid process.
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Table 1. Movement and Goniometer Landmarks.

Shoulder Movement
Goniometer Landmarks

Center Fulcrum Stationary Arm Moving Arm

Flexion
Lateral aspect of the
glenohumeral joint Parallel to the midline of the trunk Lateral epicondyle of the humerus

Abduction
Posterior aspect of the
glenohumeral joint

Laterally along the trunk, parallel to
the spine. Lateral epicondyle of the humerus

External Rotation at 90° abduction Olecranon process ulna Parallel to the floor Ulna styloid process
Internal Rotation at 90° abduction Olecranon process ulna Parallel to the floor Ulna styloid process

2.3. Wearable Sensors System for Motion Assessment

A wearable sensors system was developed for motion assessment during the experi-
mental tests. The system aims to create an innovative protocol for patient monitoring to be
used both in hospital ward and/or in patient’s house. The system is composed of 3 main
modules, as shown in Figure 2:

• Hardware module is the part of the system (for complete details see Appendix A.1)
composed of IMU sensors and a gateway (Raspberry Pi);

• Software module is the part of the system (for complete details see Appendix A.3)
composed of software components, which run on the gateway and provide the follow-
ing functionalities: IMU sensors synchronization, data collection, and data processing
to obtain the kinematics parameters used for medical evaluation of the movement (for
complete details see Appendix A.2);

• Data Visualization module is the display part, showing data in real time to clinicians.
Since this part is not necessary for the experimental campaign, it will be deployed as
future development.

Figure 2. General scheme of the system consisting of 3 main modules (represented with different colors). The round element
corresponds to an end user (human), while hexagonal elements (both hardware and software) corresponds to the system.
In purple, the components of system hardware module; in green, the components of system software module and in orange,
the components of data aggregation/visualization module.

In Figure 2, the gateway symbol appears twice, in the hardware part and in the software
part. In the hardware part it includes a communication protocol to synchronize the connection
with the IMU sensors and collect the data. In the software part it includes a software program
to process the data and store them into a cloud database for offline analysis.

Two sensors were used to measure shoulder ROM. The sensor on the arm was used to
measure the angle during the flexion and abduction movements (Figure 1A,B), while the
sensor on the wrist was used during the rotation movement at the 90° shoulder abduction
(Figure 1C,D).
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2.4. Experimental Campaign: Setup and Protocols

Experimental data were gathered in a room of the Careggi Hospital Spinal Unit,
Florence. The four recorded active shoulder maneuvers (Figure 1) during the session
consisted of: forward flexion, abduction, external and internal rotation at 90° of shoulder
abduction [42]. The shoulder maneuvers were assessed on each participant’s dominant
shoulder [47].

Each movement was performed by CSCI subjects sitting in their own wheelchair,
as well as healthy controls who were provided with a wheelchair by the hospital [48]. This
avoided possible differences in range of motion between the two groups due to potential
interference with the wheelchair [48,49]. The wheelchair wheels were blocked during the
tests execution [50].

At the beginning of the session, all participants were informed about the aim of the
study and that they would perform 4 different active shoulder movements. After having
signed the informed consent to participate in the experiment (See Section 2.4.2), they were
fitted with the IMU-based system on the dominant arm.

Two IMU sensors were attached to subject’s arm using velcro straps. One of them
was placed on the posterior surface of wrist while the other one was located on the arm,
approximately at 10 cm distance to the lateral epicondyle (Figure 3). Each IMU sensor was
securely attached to the participant’s body with a self-adhering strap.

Figure 3. Wearable sensors system for motion assessment installation procedure: MetaMotionR (MMR) sensors boards (A)
were put inside the cases (A→B); the cases were put in the velcro bands (B→C); the bands were placed as shown in (D);
than the software on the Raspberry Gateway was run to collect data from sensors (E).

The procedure of application of the IMU-based system on the subject was performed
by the same operator for all participants to the study. Then, subjects were prepared to
execute the measurements of forward flexion, abduction, external and internal rotation at
90° of shoulder abduction. For each motion direction, participants were instructed to move
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the arm as far as they comfortably could, maintaining unchanged the initial arm position
for the entire arc of movement. In addition, participants were required to perform shoulder
movements at their self-selected speed [51,52]. Prior to measurements the correct execution
of each maneuver was verbally explained and demonstrated by one of the investigators
(I.N.). The subject was given some time to familiarize with the movement [53] until the
researcher judged it to be correct.

Subsequently, the calibration procedure of the IMU-based system for a specific ma-
neuver (e.g., forward flexion) was performed and data were gathered. Active shoulder
movements were randomized across participants. Every participant was required to per-
form three repetitions of each maneuver. During each repetition two consecutive pairs of
goniometer and IMU-based measurements were collected one after the other. For each
pair of measurements, goniometer- and IMU-based assessments were performed simul-
taneously. In total, 6 goniometer and 6 IMU measurements were taken for each shoulder
maneuver. Goniometer measurements were acquired by two raters (Medical Doctors).
During each repetition one rater (E.J.C., RATER 1) made the first goniometer measurement
and the second one (G.L., RATER 2), who was blind to the first measurement, repeated the
same procedure.

IMU recordings were performed by two researchers (S.C. and L.B., IMU 1 and IMU
2, respectively) who were blind to goniometer measurements. Data were transmitted
wirelessly to the gateway and subsequently processed by a specific software to calculate
ROM. The RATER 1 and IMU 1 measurements, and similarly the RATER 2 and IMU 2
measurements, were acquired simultaneously. An operator (I.N.) assisted the subject to
maintain the position of his/her arm to allow for consistency of measurements as well as
effort relief for participant.

A rest interval was also given to participants between shoulder maneuvers to avoid
fatigue effects [50,54,55]. The order of raters and researchers in collecting data was ran-
domized among shoulder maneuvers and subjects.

2.4.1. Participant Recruitment

Eight healthy control (mean age 44 ± 18 years, 1 female) and 8 CSCI patients (mean age
50 ± 12 years, 1 female) who had suffered traumatic spinal cord injuries were recruited in
the study. Patients with CSCI were enrolled from the Spinal Unit of the Florence University
Hospital between July and October 2020. The following inclusion criteria were adopted to
select the sample:

• subjects over 18 years of age;
• C4–C7 cervical lesion level;
• at least one month post-injury;
• subjects with intact cognitive abilities;
• no joint contracture or severe spasticity in the affected upper limb (modified Ashworth

scale greater than 3);
• sufficient Italian language skills.

The exclusion criteria were neuropsychiatric comorbidities and orthopedic impair-
ments/or symptoms such as pain when moving their arm. The healthy controls were
hospital staff or students from the University of Florence. Healthy individuals were all
volunteers and they did not experience any type of shoulder disease. The demographics
and clinical features of CSCI and healthy control groups are reported in Table 2.

91



Sensors 2021, 21, 1057

Table 2. Characteristics of the participants to the experimental tests. Abbreviations used: P stands for patient; HC stands for
healthy control; R stands for Right; L stands for Left; AIS stands for American Spinal Injury Association Impairment Scale; T
stands for traumatic; SURG stands for Surgery Intervention; BTOX stands for Botulin Toxin Intervention.

Patients Sex
Age

(Years)
Dominant

Arm
Lesion
Level

AIS
Grade

Etiology
Severity of

Lesion
Time since

Injury (Years)
Shoulder

Intervention

P1 Male 56 R C4 D T Incomplete 1 /
P2 Male 63 R C6–C7 C T Incomplete 2 /
P3 Male 63 R C5–C6 B T Incomplete 5 SURG
P4 Male 32 R C4 D T Incomplete 1 BTOX
P5 Male 52 L C6 D T Incomplete 2 /
P6 Male 43 R C6–C7 A T Complete 21 BTOX
P7 Male 59 R C4 D T Incomplete 5 SURG
P8 Female 34 R C4–C5 D T Incomplete 3 /

HC1 Male 65 R
HC2 Female 27 R
HC3 Male 27 R
HC4 Male 34 L
HC5 Male 49 R
HC6 Male 36 R
HC7 Male 37 R
HC8 Male 76 R

2.4.2. Ethical Consideration

All procedures were conducted according to the Declaration of Helsinki [56] and were
approved by the Institutional Ethics Committee (Area Vasta Centro AOU Careggi, Florence,
Italy—ref:17768_oss) following streamlined approval process for low-risk observational
studies [57]. All Participants provided informed written consent (see the template in
Supplementary Materials).

The wireless sensors (IMU) system does not need a direct interaction with the patient.
The small size of the sensor and the stretch band where it is housed make it easily wearable
and not bulky. These sensors are not equipped with additional actuators, such as buzzers,
so they do not disturb the patient during the movement. Battery can last for more than two
working days before a re-charge. The wireless connection assures that cables do not obstruct
the patient and the doctor. Due to the restrictions imposed by Covid-19, the entire software
development phase, including the first tests, was done entirely remotely. With regard to
the experimental tests carried out at the Spinal Unit of Careggi Hospital in Florence, all
protocols and provisions for the safety of patients and medical and university staff have
been followed. It is important to stress that the experimental tests were performed with a
smaller number of subjects than planned due to the anti-Covid protocol. Only 8 patients
and 8 healthy individuals have participated to the experimental tests.

2.5. Metrics for Statistical Analysis

Concurrent validation of IMU-based sensor system for measuring the ROM active
shoulder movements in CSCI patients and matched healthy control was tested by compar-
ing the IMU system to the goniometer method. To test for concurrent validity, we evaluated
the agreement between IMU-based ROM measurements and goniometer-based ROM
measurements using Intraclass Correlation Coefficient (ICC) and Bland-Altman analysis,
two methods that provide a measure of relative and absolute reliability of an instrument,
respectively [58]. In addition, the degree of agreement between the measurements (Rater
1 versus Rater 2 and IMU 1 versus IMU 2 measurements, respectively) was assessed for
every tested movement using ICC and Bland–Altman analysis.

A two-way random effect model, absolute agreement, multiple measurements ICCs
(model 2, m) was used to test the inter-instrument and inter-tester reliability [59]. The guidelines
for interpretation of ICC inter-rater agreement measurement proposed by Cicchetti [60] are
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exclusive for individual ICC, i.e., in this case ICC(2, 1). The Spearman-Brown formula [61,62]
permits to evaluate the m-average ICC thresholds based on the individual ICC:

ICC(2, m) =
m · ICC(2, 1)

1 + (m − 1) · ICC(2, 1)
(1)

In this work, ICC(2, 2) and ICC(2, 4) has been used. The thresholds calculated by
Equation (1) are shown in Table 3 for equal to 1, 2 and 4.

Table 3. Thresholds for interpretation of Intraclass Correlation Coefficient (ICC) between measurements.

Reliability ICC(2, 1)
ICC(2, m)

m = 2 m = 4

Poor <0.4 <0.57 <0.73
Fair 0.4–0.6 0.57–0.75 0.73–0.86

Good 0.6–0.75 0.75–0.85 0.86–0.92
Excellent >0.75 >0.85 >0.92

Bland-Altman analysis quantifies the amount of agreement between two methods of
measurement by constructing 95% limits of agreement (LOA), which provides an estimate
of the interval where 95% of the differences between both methods fall [63,64] The 95%
LOA is computed by using the mean difference (δ0) and the standard deviation (σ) of the
differences between two measurements methods, and is defined by Carmona-Perez et al.
in [41] as:

LOA = δ0 ± 1.96 · σ (2)

The LOA in (2) defines two values: upper bound (UB) and low bound (LB). Criteria
are required to assume acceptable agreement of two instruments [65]. As suggested by
literature, acceptable agreement between measurements requires LOA to be within 10° of
no difference between measurements [13]. However, as suggested in Mullaney’s study [66],
when shoulder ROM measurements are taken by different raters using goniometer, LOA
can be expected to be within 15° to consider acceptable agreement between raters. The
sample size required to test the concurrent validity between IMU and goniometer methods
was based on ICC.

Statistical analysis was performed in MATLAB© and IBM SPSS Statistics software
package (version 26).

3. Results

3.1. Accuracy of the IMU-Based System: Laboratory Tests

The evaluation of the accuracy of the proposed IMU-based system has been carried
out by testing it in our research laboratory. Static test was performed by mounting the
IMU sensor on the arm of a goniometer. The accuracy test was executed by measuring the
angle provided by the IMU sensor compared to the reference angle set with the goniometer.
In particular, the goniometer moving arm was set and kept at a specific reference angle and
data from IMU sensor was recorded for 3 min (see Figure 4). Ten different reference angles
were tested, ranging from 0° to 180°. The reference angles and the IMU measurements are
shown in Table 4, together with the average error. The mean difference of the IMU system
and goniometer measurements was consistently below 3°, which indicated a quite good
accuracy of the system in measuring the angle.

Both ICC and Bland-Altman analysis for the static test were performed and results are
shown in Table 4. ICC mean value indicated an excellent agreement between IMU system
and goniometer measurements. The electronic noise of IMU sensor can be evaluated in
Table 4, where LOA between −3° and 5° indicates the noise influence in IMU measurements
with the 95% of confidence interval.
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Figure 4. Results of experimental measurement campaign in laboratory.

Table 4. Main statistical results of the laboratory measurement campaign.

Goniometer IMUs Average (σ) Difference ICC (95% CI) LOA

0° 1.45° (0.77°) 1.45°

0.9996
(0.9994; 0.9997) −3.19°; 4.92°

15° 15.19° (0.96°) 0.19°
30° 30.90° (0.94°) 0.90°
45° 45.23° (1.19°) 0.23°
60° 61.51° (1.64°) 1.51°
75° 76.11° (0.82°) 1.11°
90° 92.06° (1.16°) 2.06°

120° 122.74° (1.42°) 2.74°
150° 151.40° (2.56°) 1.40°
180° 177.02° (2.00°) 2.98°

Abbreviations: σ stands for standard deviation; ICC stands for Intraclass Correlation Coefficient; CI stands for
Confidence Interval (95% for this work); LOA stands for Limits of Agreement.

3.2. Accuracy of IMU-Based and Goniometer Systems: Clinical Tests

Overall, ICCs for whole group of persons ranged from 0.94 to 0.97, indicating an
excellent inter-rater reliability between the two raters and the two IMU measurements,
as defined in Section 2.5. These four measurements were considered as four different proofs,
for each of the arm movements (Table 5). When the groups were evaluated separately
results showed different levels of reliability. In the CSCI group, an excellent agreement
(ICCs ranging from 0.94 to 0.97) was confirmed for all tested movements. In healthy
group, the agreement for flexion movement results fair (ICC of 0.84), whereas for the others
movements the ICCs ranging from 0.94 to 0.97 was confirmed.
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Table 5. Inter-rater reliability indicators for two raters and two inertial measurement units (IMUs) measurements as four
different judges, it calculated as ICC(2, m) with m = 4 and the confidence interval is 95%.

Whole Group n = 48 CSCI Group n = 24 Healthy Group n = 24

ICC(2, m) LB UB ICC(2, m) LB UB ICC(2, m) LB UB

Flexion 0.94 0.86 0.97 0.94 0.82 0.98 0.84 0.65 0.93
Abduction 0.97 0.96 0.98 0.97 0.95 0.99 0.94 0.88 0.97

External Rotation 0.97 0.95 0.98 0.95 0.91 0.98 0.97 0.94 0.98
Internal Rotation 0.95 0.91 0.97 0.96 0.90 0.98 0.94 0.86 0.97

Abbreviations: LB: Lower Bound, UB: Upper Bound; n, measurements per method.

It is required to separate the measurements in different cluster to deeply investigate
the reason of these assessment agreements identified by the analysis of the data in Table 5.
The measurements have been divided in following clusters:

• Inter-instrument reliability and accuracy (See Section 3.2.1)

– The two raters and the two IMUs measurements are considered as two different
judges (Table 6),

– RATER 1 and IMU 1 measurements are considered as two different judges
(Table 7),

– RATER 2 and IMU 2 measurements are considered as two different judges
(Table 8).

• Inter-tester reliability and accuracy (See Section 3.2.2)

– The two raters’ measurements are considered as two different judges (Table 9),
– The two IMUs measurements are considered as two different judges (Table 10).

3.2.1. IMU versus Goniometric Measurements

Table 6 displays the inter-instrument reliability through ICCs, mean differences and
LOAs considering the two raters and the two IMUs measurements as two different judges.
IMU-system and goniometer showed excellent agreement (ICCs ranging from 0.86 to 0.97,
higher than threshold 0.85) for all tested movements in both groups with exception for
flexion movements in healthy group, where the agreements between the two methods were
fair (ICCs of 0.61).

In CSCI group mean differences between goniometer and IMU system were small for
abduction and external rotation (bias of −1° and 1°, respectively), whereas larger values
were observed for flexion and internal rotation (bias of 7° and −7°, respectively). In healthy
group large mean differences were evidenced for flexion and abduction (bias of 4° and −6°,
respectively). Lastly, LOAs were wide for both groups, consistently greater than 10° of the
mean difference, indicating a non-homogeneus behaviour between goniometer and IMU
method in measuring shoulder ROM for all tested movements, as explained in Section 2.5.

Additionally, in Tables 7 and 8 is shown the inter-instrument reliability through ICCs,
mean differences and LOAs when comparing each rater’s performance to the respective
IMU measurement. Agreement between Rater 1 and IMU 1 measurements (Table 7),
as Rater 2 and IMU 2 measurements (Table 8), were good to excellent for almost all
movements in both groups (ICCs ranging from 0.77 to 0.98). Also, in healthy group a
fair agreement was shown between Rater 1 and IMU 1 and Rater 2 and IMU 2 for flexion
movement (ICC of 0.62), confirming the results shown in Table 6.

However, mean differences between Rater 2 and IMU 2 measurements were larger
than those between Rater 1 and IMU 1 measurements in most of tested movements
(Tables 7 and 8). This trend was specifically evidenced for flexion and internal rotation in
CSCI group and for flexion in healthy group. For flexion movement in CSCI group the
mean difference between Rater 1 and IMU 1 measurements was found to be 1°, whereas
the mean difference between the Rater 2 and IMU 2 measurements was 14°; this was
also observed for internal rotation in which mean differences between rater 1 and IMU
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1 measurements and rater 2 and IMU 2 measurements were −5° and −9°, respectively.
Similarly, in healthy group for flexion movement rater 1 and IMU 1 measurements showed
a mean difference of −2° and rater 2 and IMU 2 measurements showed a mean difference
of 9°.

Table 6. Inter-instrument reliability indicators for goniometer and IMU measurements in the whole
group, cervical spinal cord injury (CSCI) patients and healthy group.

Goniometer
Average (σ)

IMUs
Average (σ)

Difference
(σ)

ICC
(95% CI)

LOA

Whole group (n = 96)

Flexion 140° (18°) 134° (20°) 6° (12°) 0.86
(0.75; 0.92)

−19°; 30°

Abduction 146° (20°) 149° (21°) −3° (8°) 0.95
(0.91; 0.97)

−19°; 13°

External Rotation 79° (16°) 78° (18°) 1° (8°) 0.94
(0.91; 0.96)

−15°; 16°

Internal Rotation 53° (14°) 56° (13°) −3° (8°) 0.90
(0.81; 0.94)

−19°; 12°

CSCI group (n = 48)

Flexion 131° (20°) 124° (20°) 7° (13°) 0.86
(0.65; 0.93)

−17°; 32°

Abduction 135° (20°) 136° (19°) −1° (9°) 0.95
(0.91; 0.97)

−18°; 15°

External Rotation 71° (13°) 70° (18°) 1° (10°) 0.88
(0.78; 0.93)

−19°; 20°

Internal Rotation 51° (16°) 58° (16°) −7° (8°) 0.90
(0.55; 0.96)

−22°; 8°

Healthy group (n = 48)

Flexion 149° (9°) 145° (14°) 4° (12°) 0.61
(0.31; 0.78)

−20°; 28°

Abduction 156° (13°) 162° (13°) −6° (7°) 0.87
(0.53; 0.95)

−20°; 9°

External Rotation 87° (14°) 86° (14°) 1° (5°) 0.97
(0.94; 0.98)

−9°; 11°

Internal Rotation 55° (12°) 55° (10°) 0° (7°) 0.89
(0.81; 0.94)

−14°; 13°

Abbreviations: IMU, Inertial Measurement Unit; ICC, Intraclass Correlation Coefficient; CI, confidence interval;
LOA, Limit of Agreement; n, measurements per method; σ, Standard deviation.

Table 7. Inter-instrument reliability indicators for goniometer and IMU measurements in CSCI
patients and healthy group for RATER 1 and IMU 1.

Goniometer
Average (σ)

RATER 1

IMUs
Average (σ)

IMU 1

Difference
(σ)

ICC
(95% CI)

LOA

Whole group (n = 48)

Flexion 134° (16°) 135° (21°) 0° (11°) 0.90
(0.83; 0.95)

−22°; 21°

Abduction 144° (18°) 148° (21°) −5° (8°) 0.94
(0.86; 0.97)

−20°; 12°

External Rotation 77° (13°) 78° (17°) −2° (10°) 0.89
(0.80; 0.94)

−21°; 17°

Internal Rotation 56° (13°) 57° (13°) −1° (9°) 0.89
(0.80; 0.94)

−18°; 15°
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Table 7. Cont.

Goniometer
Average (σ)

RATER 1

IMUs
Average (σ)

IMU 1

Difference
(σ)

ICC
(95% CI)

LOA

CSCI group (n = 24)

Flexion 124° (18°) 124° (20°) 1° (11°) 0.92
(0.81; 0.96)

−20°; 22°

Abduction 133° (17°) 136° (19°) −3° (8°) 0.94
(0.85; 0.97)

−20°; 14°

External Rotation 68° (11°) 71° (18°) −2° (13°) 0.77
(0.49; 0.90)

−27°; 22°

Internal Rotation 53° (15°) 58° (16°) −5° (8°) 0.91
(0.72; 0.96)

−21°; 11°

Healthy group (n = 24)

Flexion 144° (7°) 146° (14°) −2° (12°) 0.62
(0.10; 0.83)

−24°; 21°

Abduction 156° (11°) 161° (13°) −6° (8°) 0.81
(0.33; 0.93)

3°; 22°

External Rotation 85° (9°) 86° (13°) −1° (5°) 0.94
(0.86; 0.97)

−12°; 9°

Internal Rotation 58° (11°) 56° (10°) 2° (7°) 0.85
(0.66; 0.94)

−12°; 17°

Abbreviations: IMU, Inertial Measurement Unit; ICC, Intraclass Correlation Coefficient; CI, confidence interval;
LOA, Limit of Agreement; n, measurements per method; σ, Standard deviation.

Table 8. Inter-instrument reliability indicators for goniometer and IMU measurements in CSCI patients
and healthy group for RATER 2 and IMU 2.

Goniometer
Average (σ)

RATER 2

IMUs
Average (σ)

IMU 2

Difference
(σ)

ICC
(95% CI)

LOA

Whole group (n = 48)

Flexion 146° (18°) 134° (20°) 12° (11°) 0.83
(0.09; 0.94)

−10°; 33°

Abduction 147° (21°) 149° (21°) −2° (8°) 0.96
(0.93; 0.98)

−17°; 14°

External Rotation 81° (18°) 78° (19°) 3° (5°) 0.97
(0.92; 0.99)

−6°; 13°

Internal Rotation 50° (15°) 56° (14°) −6° (6°) 0.91
(0.56; 0.97)

−18°; 7°

CSCI group (n = 24)

Flexion 137° (21°) 123° (20°) 14° (11°) 0.82
(−0.15; 0.95)

−7°; 35°

Abduction 137° (22°) 136° (20°) 1° (8°) 0.96
(0.91; 0.98)

−15°; 17°

External Rotation 73° (14°) 69° (18°) 4° (6°) 0.96
(0.85; 0.98)

−8°; 15°

Internal Rotation 49° (18°) 58° (16°) −9° (6°) 0.91
(0.08; 0.98)

−21°; 4°

Healthy group (n = 24)

Flexion 154° (8°) 145° (14°) 9° (11°) 0.62
(−0.12; 0.85)

−12°; 30°

Abduction 157° (15°) 162° (13°) −5° (7°) 0.91
(0.64; 0.97)

−18°; 8°

External Rotation 89° (17°) 87° (15°) 3° (4°) 0.98
(0.92; 0.99)

−5°; 10°

Internal Rotation 51° (11°) 54° (10°) −3° (5°) 0.93
(0.79; 0.97)

−13°; 7°

Abbreviations: IMU, Inertial Measurement Unit; ICC, Intraclass Correlation Coefficient; CI, confidence interval;
LOA, Limit of Agreement; n, measurements per method; σ, Standard deviation.
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3.2.2. Goniometer vs. Goniometer and IMU vs. IMU Measurements

Focusing on the raters measurements, ICCs for whole group ranged from 0.85 to 0.93,
showing good to excellent inter-tester reliability between Rater 1 and Rater 2 measurements
for all movements, as shown in Table 9. A differentiated analysis for each group indicated
in CSCI group excellent agreement between raters for abduction and internal rotation (ICCs
of 0.90 and 0.91, respectively) and good agreement for flexion and external rotation (ICCs of
0.85 and 0.83, respectively). In healthy group, excellent to good agreement was displayed
for abduction, external and internal rotation (ICCs of 0.90, 0.84, and 0.84, respectively). A
poor reliability (ICC of 0.47) was observed for the flexion movement, as depicted in Table 9.

Table 9. Inter-tester/rater reliability indicators for goniometer measurements in CSCI patients and
healthy group for RATER 1 and RATER 2.

Goniometer
Average (σ)

RATER 1

Goniometer
Average (σ)

RATER 2

Difference
(σ)

ICC
(95% CI)

LOA

Whole group (n = 48)

Flexion 134° (16°) 146° (18°) −12° (8°) 0.85
(−0.15; 0.96)

−26°; 3°

Abduction 144° (18°) 147° (21°) −3° (10°) 0.93
(0.88; 0.96)

−22°; 16°

External Rotation 77° (13°) 81° (18°) −5° (9°) 0.89
(0.75; 0.94)

−23°; 13°

Internal Rotation 56° (13°) 50° (15°) 5° (8°) 0.89
(0.62; 0.95)

−9°; 20°

CSCI group (n = 24)

Flexion 124° (18°) 137° (21°) −13° (8°) 0.85
(−0.16; 0.96)

−29°; 3°

Abduction 133° (17°) 137° (22°) −4° (11°) 0.90
(0.77; 0.96)

−27°; 18°

External Rotation 68° (11°) 73° (14°) −5° (9°) 0.83
(0.55; 0.93)

−22°; 12°

Internal Rotation 53° (15°) 49° (18°) 4° (9°) 0.91
(0.78; 0.97)

−13°; 21°

Healthy group (n = 24)

Flexion 144° (7°) 154° (8°) −10° (6°) 0.47
(−0.30; 0.81)

−23°; 2°

Abduction 156° (11°) 157° (15°) −1° (8°) 0.90
(0.77; 0.96)

−16°; 14°

External Rotation 85° (9°) 89° (17°) −4° (10°) 0.84
(0.61; 0.93)

−24°; 15°

Internal Rotation 58° (11°) 51° (11°) 7° (6°) 0.84
(0.04; 0.95)

−5°; 19°

Abbreviations: ICC, Intraclass Correlation Coefficient; CI, confidence interval; LOA, Limit of Agreement; n,
measurements per method; σ, Standard deviation.

However, mean differences between each raters’ measurements were quite large for
almost all movements in both groups, with the highest value shown in CSCI group for the
flexion movement (bias of −13°). In the healthy group the largest mean differences was
shown for flexion and internal rotation (bias of −10° and 7°, respectively). Lastly, LOAs
were wide for both groups, consistently greater than 15° of the mean difference, indicating
a non-homogeneus behaviour between Rater 1 and Rater 2 in measuring shoulder ROM
for all tested movements.

Focusing on the IMUs measurements, ICCs for whole group ranged from 0.988 to 0.999,
showing very excellent inter-tester reliability between IMU 1 and IMU 2 measurements for
all movements, as depicted in Table 10. Very excellent inter-tester reliability were confirmed
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also when CSCI and healthy groups were separately analyzed (ICCs ranging from 0.979
to 0.998).

Table 10. Inter-tester/rater reliability indicators for IMU measurements in CSCI patients and healthy
group for IMU 1 and IMU 2.

IMUs
Average (σ)

IMU 1

IMUs
Average (σ)

IMU 2

Difference
(σ)

ICC
(95% CI)

LOA

Whole group (n = 48)

Flexion 135° (21°) 134° (20°) 0° (2°) 0.997
(0.995; 0.998)

−4°; 5°

Abduction 149° (21°) 149° (21°) 0° (2°) 0.999
(0.998; 0.999)

−3°; 3°

External Rotation 78° (17°) 78° (19°) 0° (4°) 0.988
(0.978; 0.993)

−7°; 8°

Internal Rotation 57° (13°) 56° (14°) 1° (2°) 0.993
(0.983; 0.996)

−3°; 5°

CSCI group (n = 24)

Flexion 124° (20°) 123° (20°) 1° (2°) 0.997
(0.993; 0.999)

−4°; 5°

Abduction 136° (19°) 136° (19°) −1° (2°) 0.998
(0.994; 0.999)

−4°; 3°

External Rotation 71° (18°) 69° (18°) 1° (4°) 0.988
(0.972; 0.995)

−6°; 9°

Internal Rotation 58° (16°) 58° (16°) 0° (2°) 0.996
(0.990; 0.998)

−4°; 5°

Healthy group (n = 24)

Flexion 146° (14°) 145° (14°) 0° (2°) 0.995
(0.988; 0.998)

−4°; 5°

Abduction 162° (13°) 162° (13°) 0° (1°) 0.998
(0.995; 0.999)

−2°; 2°

External Rotation 86° (13°) 87° (15°) −1° (4°) 0.979
(0.952; 0.991)

−8°; 7°

Internal Rotation 56° (10°) 54° (10°) 2° (2°) 0.985
(0.852; 0.996)

−2°; 5°

Abbreviations: IMU, Inertial Measurement Unit; ICC, Intraclass Correlation Coefficient; CI, confidence interval;
LOA, Limit of Agreement; n, measurements per method; σ, Standard deviation.

In addition, mean differences were found very small for all tested movements in
CSCI group, ranging from −1° to 1°, as well as in healthy group, ranging from −1° to 2°.
Lastly, LOAs were narrow, very similar to those found in the preliminary laboratory tests,
and consistently showed that the difference in IMU 1 and IMU 2 measurements was within
10° of the mean difference for approximately 95% of participants in both group.

4. Discussion

This is the first study to evaluate the validity of wireless wearable IMU-based sensors
system for the assessment of shoulder ROM in patients with CSCI in clinical environment.
A custom IMU-based system was developed and compared to the method used currently
in clinic, i.e., a sanitary operator measuring the ROM with a goniometer. The good accuracy
of the IMU-based system was proven in laboratory tests with absolute error consistently
below 3° and 95% LOA within 10°. Together with the accuracy of the proposed system, we
aimed to provide a measure of the accordance between the two measuring methods: the
IMU-based and the rater-based method. According to the results, the concurrent validity of
IMU system was partially confirmed. ICCs values were found to be very high for all tested
shoulder maneuvers except for flexion in healthy group, showing an excellent relative
validity of the IMU system. However, given that the mean differences between IMU and
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goniometer measures were shown to be relatively high for the majority of movements
alongside a high distance between LOAs, the absolute validity of the IMU system is not
strongly supported. The two methods might not seem interchangeable. In addition, while
two raters’ measurements showed a considerably low inter-rater reliability, IMU system
was proven to have excellent agreement when compared one measurement to the other.

Within limited literature regarding the concurrent validation of IMU sensors against
goniometer in assessing shoulder ROM, we found little similarities with other stud-
ies though the differences in research methodology may interfere with comparisons.
Yoon et al. [37] assessed the validity of IMU sensors in evaluating upper extremity move-
ments while passively positioning subjects’ shoulder at specific angles using a goniometer
(shoulder flexion 0°–170°, abduction 0°–170°, external rotation 0°–90°, and internal rotation
0°–60° angles). The authors showed large mean bias and a high distance between LOA
for most of shoulder position except for flexion (0–135°), abduction (0°), external (0°) and
internal rotation (0°–45°), though the relative reliability between goniometer and IMU by
means of ICC analysis was not evaluated. In a more recent study, Rigoni and cowork-
ers [13] validated the IMU system by testing active shoulder ROM on healthy subjects and,
similar to our study, showed high ICC values for all tested movements (flexion, abduction,
external and internal rotation at 90 shoulder abduction). However, they showed absolutely
reliability of IMU system through very small mean bias (approximately 0°) and narrow
LOA (−4.5° to 3.2°).

Our study showed excellent relative reliability of IMU system in comparison with
goniometer method in most movements performed by CSCI and healthy groups. However,
some high ICC values in our results should be considered with caution as it is known that
the ICC values are influenced by the range of measured values (sample heterogeneity) [66].
Higher ranges (greater heterogeneity) are associated with higher ICCs, independent of
actual measurement error [57,58]. In fact, in some movements where we obtained very
high ICC values, there was also found a high variability of the data. For instance, in CSCI
group for internal rotation the standard deviation was about 30% of the mean value of
ROM. This can mask poor trial-to-trial consistency and not accurately represent the high
agreement of measurements between the two methods. These interpretations of ICCs are
in conformity with previous studies using IMU sensors to evaluate motion in disease of
motor control [41,67].

On the contrary, our study revealed the existence of measurement differences between
IMU system and goniometer in CSCI patients with 95% LOA for the two instruments
ranged from −22° to 32°, showing a certain change in measuring between goniometer and
IMU for all tested movements. These wider LOA were confirmed also for control group of
healthy subjects (LOA ranged from −20° to 28°).

Several factors regarding the setup in our study might have influenced the results by
IMU system measurements. The exclusion of magnetometer usage in our IMU sensors
could be the first possible reason. This choice allowed to avoid local magnetic distur-
bances which could affect IMUs accuracy due to magnetometers sensitivity to the magnetic
fields [68–71]. In our clinical tests the hospital environment and electronic controls of
motorized wheelchair could influence the efficiency of magnetometer. The downside of
this decision, on the other hand, is that an IMU system without a magnetometer could
have provided lower accuracy in orientation estimation, specifically while testing a mo-
bile joint like shoulder with several degrees of freedom due to bony constraint scarcity
and soft tissue function [72]. Another possible source of measurement error for our IMU
system could be the presence of wheelchair in the setup used to test CSCI patients, which
seems to interfere in performing motion in one single plane specifically for flexion and
abduction movements. Indeed, a previous study by Lee and colleagues [39], in which the
validity of Kinetec against goniometer was tested in measuring active and passive shoulder
ROM movements, showed that the deviation from planes of unrestricted motion was an
important source in increasing 95% limit of agreement between two measurement methods.
Moreover, for maneuvers like external and internal rotation with forearm abduction at 90°
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an additional potential cause for discrepancies of measurements between goniometer and
IMU system includes differences in starting positions of the forearm among trials. In fact,
even with the assistance of an operator, holding a perfect position of forearm parallel to
the floor by the subject was not completely guaranteed and it could provoke differences
in measurement starting point between IMU system and raters who were instructed to
maintain the stationary arm of goniometer fixed consistently parallel to the floor (see
Table 1 for goniometer landmarks).

Additionally, when a deeper analysis comparing each rater’s performance to the
respective IMU measurement was executed, larger differences of measurements (mean
bias) were found between Rater 2 and IMU 2 than between Rater 1 and IMU 1, especially
for flexion and internal rotation movements (see Tables 7 and 8). Moreover, inter-tester
reliability for IMU measurements showed perfect accordance between IMU 1 and IMU 2
(ICCs from 0.979 to 0.998; mean bias from −1° to 2°; and LOA within 10°) for both groups
(see Table 10), whereas inter-tester reliability for goniometer measurements evidenced
larger differences (mean bias from −13° to 7°; LOA wider than 15°) between Rater 1 and
Rater 2, even though ICC values appeared to be good to excellent except for flexion in
healthy group (see Table 9). Thus, it is possible to assume that inconsistency between raters
partially contributes to the differences observed in measuring shoulder ROM between IMU
and goniometer. This also confirmed similar findings from previous literature which evalu-
ated inter-rater reliability of goniometer measurements for shoulder ROM and showed that
reliability of goniometer is lower when measurements are taken by different raters [43].

Furthermore, concerning the inter-tester reliability between two IMU measurements,
Rigoni and coworkers [13] found low agreement between measurements when one go-
niometer and one IMU measurement were taken by each assessor for each movement. They
suggested that IMU measurements recorded by one assessor could not be exchanged for
another one’s measurements. Differently, as we conducted three repetition for each tested
movement and recorded pairs of two goniometer- and two IMU-based measurements
simultaneously during every repetition, a very high inter-tester reliability between two
IMU measurements was found. This implicates that differences of IMU measurements
between assessors found in Rigoni’s study might be ascribed to the inconsistency of move-
ments performed over time rather than the assessor’s performance. This could suggest
that, despite its level of accuracy, our IMU system is a stable and operator-independent
method to measure shoulder ROM in patients with CSCI.

Altogether, our custom IMU-based system was shown to be a promising tool to assess
shoulder ROM in CSCI patients according to several benefits. First, IMU could be intro-
duced in clinical setting as a stable tool which is independent from assessor’s availability
and manual skills. Second, the simplicity of setup could allow the easy self-applying
procedure of IMU system and increase the variety of body contexts in which it is possible to
collect measurements. Third, IMU-based system could allow clinicians to remotely monitor
patients’ movements while these latter staying out of routine clinical system (e.g., house),
and thus make the caring more convenient and economical in such patients with motor
difficulties by easy accessibility [73–75]. Finally, IMU system could also provide patients
with feedback on their performance and progress during rehabilitation [13].

Despite the promising findings, the current study showed some limitations, which
could suggest future research. The setup of IMU system without magnetometer might have
affected the accuracy in measuring active unrestricted movements of shoulder. The mag-
netometer integration on IMU system could be introduced in future studies due to the
fact that it is essential to evaluate the possible implementation of IMU system for distant
monitoring of patients. In addition, the number of participants was relatively small which
did not allow us to detect statistically significant differences between CSCI and healthy
groups in each shoulder ROM via IMU system. Furthermore, the current study focused
only on the evaluation of ROM of simple movements, which limits the applicability of
the results to more complex and functional tasks which are more identical to daily-life
activities (e.g., reach-to-grasp upper limb movements) [40]. Finally, our study did not
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analyze dynamic movement characteristics of upper limbs, including angular velocity and
acceleration, that could provide a more comprehensive clinical assessment of patients [40].
All these factors should be considered in future studies on assessing the validity of IMU
system [64].

5. Conclusions

This work aimed to provide a methodological study on the validity of a customized
wireless wearable IMU-based sensors system to measure the shoulder ROM in patients
with cervical spinal cord injury. Laboratory and clinical trials have been performed to
evaluate the accuracy of the IMU-based system, and to compare it to the goniometer-
based measurements taken by sanitary operators. The results showed an excellent relative
reliability between the IMU-based system and goniometer-operator method, even though
the two methods might not seem interchangeable. Nonetheless, unlike the goniometer
method, the accuracy of IMU system is not influenced by the operator who carries on the
measurement. Therefore, the proposed system can be a potential tool to be integrated in
clinical settings for monitoring shoulder ROM in patients with cervical spinal cord injury.

It is worth mentioning that, in addition to static angles, the IMU sensors also capture
dynamic kinematic parameters (e.g., angular velocity and acceleration) that could be used
with these patients to quantify muscle stress and effort during movements by estimating
fatigue-related tremor. Real-time measurements from the sensors could be further used to
provide feedback to the patient during the execution of motions in physical therapy.

Furthermore, our validation work poses the base for a possible use of the IMU system
for a remote monitoring of patients at home, and this feature could be crucial, in particular
during emergency situations such as COVID-19 pandemic. In fact, a wireless wearable
IMU system automatically could collect data on the movements of patient’s arms and allow
us to create a database with all the performance.

Possible future developments of the proposed system span from the inclusion of the
magnetometer measure to improve the accuracy, to the fusion of the kinematics data to
provide a deeper interpretation in quantifying motion recovery status of patient during the
rehabilitation process, and, finally, to the use of artificial intelligence (AI) to automatically
manage the everyday activities of the patient.
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Appendix A. Technical Information about Wearable Sensors System for

Motion Assessment

Appendix A.1. System Hardware Architecture

The Hardware system is composed of commercial IMU sensors, which are connected
to a gateway (Raspberry Pi). The two sensors are positioned one on the arm and one on the
wrist of the individual (Figure A1). The Bluetooth Low Energy (BLE) is the communication
protocol used to transmit data from sensor to the gateway, in compliance with standard
IEEE 802.15.6, typically used in Wireless Body Area Networks (WBANs). Once data are
received by the gateway, they are processed by a custom application and stored on a
cloud database.

Figure A1. Scheme of the Hardware Module of the system. In purple, the components of system hardware module; in green,
the components of system software module and in orange, the components of data aggregation/visualization module.

Among the many IMU sensors on the market, the MbientLab MetaMotion R [76]
was selected, since it shows sufficient accuracy for this application (from datasheet [76],
the accuracy is less than 1 degree RMS), and it is characterized by small dimensions and
low cost, compared to other similar sensors. The accuracy of IMU-based system has been
verified in Section 3.1.

The manufacturer provides a mobile application, which does not include synchro-
nization functionality between multiple sensors, thus we had to implement a customized
gateway for the synchronization of sensors, the collection and the analysis of the data.

Appendix A.2. Data Processing and ROM Calculation with IMU-Based System

Notation: Scalar variables are displayed in sans serif, lowercase letters; their realiza-
tions in serif, italic fonts, x. Vectors and matrices are denoted by bold lowercase and
uppercase letters, respectively, e.g., x indicates a vector and X indicates a matrix. Quater-
nions are denoted by bold lowercase letters with tilde sign as a hat x̃. Coordinate frame
are displayed in sans serif, italic fonts, uppercase letters X. A pre-subscript denotes the
source coordinate frame and a pre-superscript denotes the destination coordinate frame, B

Ax̃

denoted a quaternion from coordinate frame A to B. In the case that only a pre-superscript
is present in the quaternion, it means that the quaternion is measured and represented in
the same coordinate frame Bx̃.

The range of motion (ROM) can be calculated by using accelerometer or gyroscope
measurements, both present in the IMU sensors. A fusion of those data can enhance the
accuracy of the ROM calculation. This fusion is provided by the Madgwick filtering [77].
In this study, the monitoring of the arm movement has been done in the vertical plane.
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For this reason, the fusion of the data coming from the accelerometer and the gyroscope by
using the Madgwick filter algorithm [77] is assumed to be enough for ROM assessment.

Typically, to represent orientations and rotations of generic object in three dimensions,
two different mathematical notations are used: Euler angles or quaternions. Usually, data
fusion filter algorithms use quaternions due to lower computational cost than Euler angles.
A quaternion is a mathematical iper-complex entity (q̃ ∈ C4), composed of a scalar part
and a vector part. A quaternion is generally represented as

q̃ = a + bi + cj + dk (A1)

where a, b, c and d are real numbers and i, j, k are orthogonal versors.
Denoting with u and α the rotation axis and angle, respectively, Equation (A1) can be

rewritten as
q̃ = cos

α

2
+ u sin

α

2
(A2)

where u is described by the versors i, j, k.
The Madgwick filter algorithm is deployed in the Raspberry Pi module to reduce the

centrifugal acceleration component and to reduce the drift error due to the angular velocity
(gyroscope) integration. The Madgwick filtering is based on the estimated quaternion
I
Wq̃est,t+1 from fixed global coordinate (W) to inertial coordinate (I), given the accelerometer
measure, the gyroscope measure and the estimated quaternion I

Wq̃est,t at previous step
time t

I
Wq̃est,t+1 =

∫ t+1

t

(
1
2

I
Wq̃est,t ⊗ [0, Iωt+1]︸ ︷︷ ︸
Gyroscope component

−β
∇ f (I

Wq̃est,t, Wg̃, Iãt+1)

‖ ∇ f (I
Wq̃est,t, Wg̃, Iãt+1) ‖︸ ︷︷ ︸

Accelerometer component

)
· dt (A3)

where

• β is a parameter which weights the accelerometer contribution on the quaternion
estimate;

• ⊗ indicates quaternions product;
• ∇ f (·) indicates an error direction on the solution surface defined by the objective

function, f (I
Wq̃est,t, Wg̃, Iãt+1) (function defined as in (A4)) and its Jacobian;

• ‖ ∇ f (·) ‖ indicates a norm of function ∇ f (I
Wq̃est,t, Wg̃, Iãt+1);

• ω is conversion from gyroscope 3D measurements into a quaternion;
• g̃ is conversion from gravity 3D vector into a quaternion;
• ã is conversion from accelerometer 3D measurements into a quaternion;

The gyroscope component in Equation (A3) represents the quaternion that describes
the rate of change of the earth frame (inertial frame of reference with the gravity vec-
tor as the vertical) relative to sensor frame based on gyroscope measurements, Iωt+1.
The acceleration component in Equation (A3) represents the error correction function
based on orientation increment given by the accelerometer measurements, Iãt+1 = [0, at+1],
compared to gravity component, Wg̃ = [0, 0, 0, 1]. In fact, the term f (I

Wq̃est,t, Wg̃, Iãt+1) is
defined as

f (I
Wq̃est,t, Wg̃, Iãt+1) =

I
Wq̃∗

est,t ⊗ Wg̃ ⊗ I
Wq̃est,t − Iãt+1 (A4)

where I
Wq̃∗

est,t indicates a conjugate quaternion of I
Wq̃est,t

For further details about these formulas, their full proofs and explanations, see [77].
The procedure to evaluate the angle of motion with the IMU-based system begins

with a calibration procedure, in which the sensor has been positioned with its y-axis along
the arm, i.e., the y-axis in sensor coordinate frame corresponds to one principal axis of
inertia in arm coordinate frame. The initial position of the arm defines a versor (v0), which
has been saved before the begin of every movements.

In the initial position, the arm has been positioning in vertical position to reduce the
influence of gyroscope drift. During the test at every display refresh time (50 frames per
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seconds, so 0.02 s), the arm position defines a versor (v) and the developed gateway shows
in a monitor the angle (θ) between v0 and v, calculated by:

θ = arccos(〈v, v0〉) (A5)

where 〈v, v0〉 indicates scalar product between versors v and v0.

Appendix A.3. System Software Architecture

A custom Python software was deployed to connect multiple sensors simultaneously,
to synchronize the sensor readings, and to send data to the gateway for storing and pro-
cessing. The general scheme of the software is represented by using the Unified Modeling
Language (UML) in Figure A2 and it is composed of:

• MadgwickFilter represents the mathematical tool to update quaternion value from
accelerometer and gyroscope measurements. It has two main attributes:

– madgwickQuaternion is an instance of the Quaternion class. It is modified every
times is called the function update using Equation (A4) to evaluate the angle
measured by each sensor.

– beta is the editable parameter to change the accelerometer contribution weight,
as shown in Equation (A3).

• Quaternion is the implemented mathematical library to help with operations with
quaternions, e.g., product between quaternions, conjugate, apply rotation to vector, etc.
This mathematical library is been used by MadgwickFilter class to update its quaternion.

• MetaMotion is the main class of the schema in Figure A2, it represents an abstraction
of the sensors used for this work. As these devices use the Bluetooth protocol to
communicate, they are uniquely identified by their MAC address. The sensor unit has
different sensors, in particular accelerometer and gyroscope, used for this work [76].

• SmartGateway (Raspberry) is the back end unit of data (post) processing. This com-
ponent is in charge of synchronizing the connection with the various devices, which
may be of different types. It has to connect with these devices, configure them by
setting the date rate parameters, and allow us to broadcast the data stream.
The angle of the arm movement has been calculated every display refresh, because the
data acquisition rate of these devices is not time-constant. When the movement is
finished, this unit has to collect and store all data into his internal storage: this oper-
ation has been implemented to analyze and compare data of past movements with
the actual.

In Figure A2 both the data visualization part (the orange module of Figure 2) and
the cloud database part (the green hexagonal icon with the cloud symbol inside, both in
Figures 2 and A1) are missing: these two parts are currently under development. The prior-
ity has been given to the implementation of the sensor synchronization and data processing
part of the system, due to only these parts are necessary for this work.
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Figure A2. UML Class Diagram of the back-end software module of IMU sensors network system used in this work. The
writing (1...*) stands for “from 1 to infinity”.
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Abstract: Aim: Study concurrent validity of a new sensor-based 3D motion capture (MoCap) tool to
register knee, hip and spine joint angles during the single leg squat. Design: Cross-sectional. Setting:
University laboratory. Participants: Forty-four physically active (Tegner ≥ 5) subjects (age 22.8 (±3.3))
Main outcome measures: Sagittal and frontal plane trunk, hip and knee angles at peak knee flexion.
The sensor-based system consisted of 4 active (triaxial accelerometric, gyroscopic and geomagnetic)
sensors wirelessly connected with an iPad. A conventional passive tracking 3D MoCap (OptiTrack)
system served as gold standard. Results: All sagittal plane measurement correlations observed were
very strong for the knee and hip (r = 0.929–0.988, p < 0.001). For sagittal plane spine assessment,
the correlations were moderate (r = 0.708–0.728, p < 0.001). Frontal plane measurement correlations
were moderate in size for the hip (ρ = 0.646–0.818, p < 0.001) and spine (ρ = 0.613–0.827, p < 0.001).
Conclusions: The 3-D MoCap tool has good to excellent criterion validity for sagittal and frontal
plane angles occurring in the knee, hip and spine during the single leg squat. This allows bringing
this type of easily accessible MoCap technology outside laboratory settings.

Keywords: validity; 3-D motion analysis; single leg squat; motion capture; clinical

1. Introduction

The evaluation of athletes’ kinematics in functional, sports-specific situations continues to
receive increasing attention [1,2]. Kinematic parameters like the range of motion (ROM), velocity and
acceleration are used to quantify so-called quality of movement [1]. Quality of movement is associated
with injury risk in athletes, and is evaluated in clinical practice to determine exercise progression and
assist in return to play decision making after injury [1,3,4]. In sports involving running, cutting and
jumping, decreased spine, hip and knee flexion have been linked to the development of patellofemoral
pain and increased strain of the anterior cruciate ligament (ACL) [5–7].

Three-dimensional (3D) motion capture (MoCap) systems using reflective markers are considered
the gold standard in measuring kinematics during functional performance tests [8,9]. However,
feasibility and financial considerations have forced clinicians to adopt two-dimensional (2D) rather
than 3D analysis for commonly used functional performance tests, such as the single leg squat [10].
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Even though it is considered a useful screening tool [9,11–14], most kinematic 2D analyses of the single
leg squat still require the use of multiple markers and devices like cameras and computers and its
use is still time consuming [3,9,14]. Like the single leg squat, most performance tests are executed in
a fixed position like single leg stance, and are thus easily reproducible. Movement quality is then
often judged visually, thereby lacking quantitative data. A huge step forward in movement quality
assessment would then be to track 3D movement outside the laboratory and in clinical settings with
easy-to-use, low cost and time efficient systems [4]. Obtaining larger data sets is then made possible by
the multi-site use of this technology [2].

Registration of 3D kinematics allows for a more comprehensive assessment of compensatory
movement patterns, incorporating all anatomical planes, thus resulting in a smaller loss of relevant
data [1,8,9,12,13,15]. Smart devices (tablets and phones) are now commonly equipped with cameras,
Bluetooth connectivity and data processing capacity. Wearable active sensors can communicate with
these devices, making 3D MoCap easily accessible for clinicians. A previous review on the reliability
of motion capture systems reported the highest reliability for hip and knee sagittal and frontal plane
measurements while it is lowest for the transverse plane measurements [16]. Reliability of wearable
active sensor systems is moderate to excellent when compared to optical tracking systems with sagittal
and frontal hip and knee measurement error between sagittal 8◦ and 1◦ [4,17,18]. Active sensors recently
proved to be useful and reliable in the assessment of squatting, jumping and walking in patients after
ACL reconstruction [19]. Currently, active sensor monitoring of movement is the subject of many
studies in the field of orthopedic and neurologic rehabilitation and sports injury populations [17,20–22].

This new field of rapidly emerging technologic possibilities however needs further evaluation
before it can be applied in the field by researchers and clinicians [23]. The aim of this study was to
determine the concurrent validity of a new 3D MoCap tool for sagittal and frontal plane angles of the
knee, hip and spine during a single leg squat.

2. Materials and Methods

A cross-sectional study design was used. The single leg squat task was analysed using both
conventional 3D motion analysis and a newly developed 3D MoCap tool. At the time of this study
this product was not yet available on the market. All procedures were carried out at the same time of
the day.

2.1. Subjects

Subjects were recruited from the local student population at the campus of De Haagse Hogeschool
(The Hague, The Netherlands). Subjects were included if they were aged between 18 and 45 years
and were physically active (activity level ≥5/10 on the Tegner activity scale [24] for at least of 60 min
per week).

Exclusion criteria were: (1) a history of knee surgery; (2) knee injuries or back, hip, knee or
ankle joint pain within 3 months prior to this study; (3) lower extremity symptoms at rest or
during sports participation; and (4) any neurological disorders that could affect gait. This study was
conducted according the Helsinki declaration of ethical principles for medical research involving human
subjects [25]. The Dutch Central Committee on Research Involving Human Subjects (CCMO) [26]
confirmed exemption from ethical approval as stated in the Dutch Medical Research Involving Human
Subjects Act [27]. All subjects signed informed consent before participating in this study.

2.2. Motion Capture

The primary outcome measures of this study were derived from conventional 3D motion analysis
and from a new 3D MoCap tool during a repeated single leg squat test.

An inert 3D motion analysis system consisting of 12 infrared cameras (OptiTrack Flex 13,
NaturalPoint Inc., Corvallis, OR, USA) was used as a reference tool. The positions of reflective
markers in 3D space (x, y and z axes), were recorded by the infrared cameras at a frequency of 120 Hz.
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Although radiostereometric analysis (RSA) is considered the gold standard in motion analysis, a major
disadvantage is its invasive character. RSA has highest accuracy, yet comparison with optical tracking
systems shows clinical acceptable validity and reliability [28,29]. Systems like Vicon (Vicon, Oxford,
UK) and OptiTrack are therefore commonly used in motion analysis [3,8,9]. OptiTrack systems were
found to be accurate when compared to Vicon in gait assessment with the deviations reported being
up to 2.2% maximum [30,31]. Hip and knee ROM data in the sagittal and frontal plane were reported
to differ 1◦ maximum [30].

The new 3D MoCap tool (SportsLapp, Factic BV, Enschede, The Netherlands [32]) used 4 active
(triaxial accelerometric, gyroscopic and geomagnetic) sensors (Hocoma AG, Volketswil, Switzerland),
attached with elastic therapeutic tape (Pinotape Pro Sport, Pino Pharmaceutical Products GmbH,
Hamburg, Germany). The sensors connected wirelessly by Bluetooth, to an iPad Air 2 (Apple Inc.,
Cupertino, CA, USA) with the SportsLapp software running on the iOS (Apple Inc., Cupertino, CA,
USA) platform. Joint angles were registered using the sensors (recording at 50 Hz) and video (recording
at 120 Hz). The lower sensor data capturing frequency was graphically aligned in the movement
curves with the video recording frequency by spherical linear interpolation. Data collected during
one single set of 3 trials was used for analyses. This protocol is similar to other protocols reported in
literature [13,15,33,34].

2.3. Testing Protocol

For the conventional motion analysis and the 3D MoCap tool, cluster markers and active sensors
respectively, were placed on the following anatomical landmarks: the sternal manubrium, the sacrum,
halfway on the lateral aspect of the thigh and halfway, anteromedial on the shank (bony aspect of the
tibia), see Figure 1.

Figure 1. (A): The ventral view (left) and dorsal view (right) show the cluster marker and sensor
positions on the sternal manubrium, the sacrum, halfway on the iliotibial tract and halfway on the tibia.
(B): The single leg testing position with markers and sensors attached.

Prior to testing, subjects performed a standardised warming up consisting of 8 bipedal squats and
3 single leg squats on each leg. Then both systems were calibrated with the subjects standing in the
upright anatomical position, while all joint angle values on both systems were set to be zero.

For the single leg squat test, the protocol as described by Dingenen et al. [3] was used. Subjects
had to stand on their dominant leg (defined as the preferred leg to kick a ball) and fold their arms
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in front of their chest. They then squatted down in 2 s and returned to the upright position in 2 s,
while maintaining balance. This low movement speed was selected to minimize the chance for trajectory
gaps [31]. The non-supporting knee had to be kept parallel to the supporting knee, without touching
it. During the test, squat depth was not controlled, as this better reflects a clinical setting. It was
reported previously that subjects are able to produce consistent sagittal plane range of motion without
monitoring [35,36]. In order to reduce the effect of movement velocity on joint angles and lower limb
kinematics, a metronome was used to provide an audio cue for speed of movement [3,13,34].

2.4. Data Processing

All data from the conventional 3D motion analysis system were imported into MatLab R2015b
(The MathWorks Inc., Natick, MA, USA), and marker trajectories were filtered using a 4th order
low-pass Butterworth filter at 3 Hz, eliminating all signal noise with a frequency higher than 3 Hz.
A custom MatLab program—including a Euler rotation sequence resolving the sagittal, the frontal
and the transverse plane motion respectively—was used to calculate angles of the spine, hip and
knee. Euler angles of rotation describe complex 3D kinematics of a rigid body (i.e., a limb segment) by
decomposing movements into rotations about the 3 axes (x, y and z) of a fixed coordinate system that
serves as a reference [37]. Spine flexion and homolateral spine lateral flexion, and hip and knee flexion,
adduction and internal rotation were considered positive values.

For the new 3D MoCap tool, custom-made software (SportsLapp, Factic BV, Enschede,
The Netherlands) was used, analysing the collected kinematic data and converting it into real-time
joint angle curves. Both the curves and the video footage are available simultaneously in the app
(see Figure 2).

 

Figure 2. Screenshot of the SportsLapp app, with on-screen representation of video and kinematic data.
Here left hip and knee data are visible.

Each of the sensors was assigned to a specific limb segment. As a joint consists of 2 segments, joint
angles were defined as the angular difference between 2 segments. From each sensor, a quaternion was
derived, expressing the orientation and rotation of its specific segment in the local coordinate frame of a
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primary segment (generally the proximal adjacent segment). Quaternions are a way of mathematically
encoding the 3D orientation of a limb segment using 4 scalar numbers; 3 representing vectors on the
axes of rotation, and 1 providing the angle of rotation [38]. In this way, they are a means of overcoming
gimbal lock—a singular joint position in which 2 of the 3 axes of rotation align, and thus joint angles
and kinematics cannot be described accurately [39]. The additional dimension in a quaternion provides
more information on the orientation of a segment so that gimbal lock can be avoided.

For the new 3D MoCap tool, active sensors register joint angles. There is no calibration against fixed
x, y, and z-axes in 3D space. Thus all joint positions are based on data obtained from 2 adjacent segments,
relatively positioned against one another. To describe these 3D joint angles and movements, the 3D
MoCap tool employs a new kinematic system (3D Angles, Factic BV, Enschede, The Netherlands) [40]
consisting of 4 units of measurement: tilt, swing, sway and twist presented in the SportsLapp software.
The amount of tilt effectively quantifies the amount of movement of a (secondary) segment with respect
to its primary segment. Thus when performed in the sagittal plane, tilt describes flexion and extension
of the spine, hip and knee. By analogy, sway shows movement in lateral and in medial direction.
So when performed in the frontal plane, sway describes spine lateral flexion and hip abduction and
adduction. Twist quantifies rotation along the longitudinal axis of the segment (transversal plane).
For this study we applied sagittal plane (tilt) and frontal plane (sway) analyses (see Figure 3).

Figure 3. A graphical representation of sagittal and frontal plane movement of the SportsLapp app.

2.5. Outcome Measures

The kinematic variables collected were: knee flexion (tilt), hip flexion (tilt) and abduction/adduction
(sway), spine forward flexion (tilt) and lateral flexion angles (sway). These were all presented in
degrees, rounded off to 1 decimal. Both 3D motion analysis systems registered the entire movement
trajectory during the single leg squat performed. In order to reduce eventual effects of velocity on joint
angles registered, kinematic data at the time point of peak knee flexion were collected for analysis
by the following procedure: The SportsLapp software creates a graphical curve of the joint angles.
Moreover, the software allows selecting a certain part of the curve (depicting the moment where

115



Sensors 2020, 20, 4539

peak knee flexion position occurred) and then provides the start time and end time of the interval.
By searching the raw IMU data corresponding to this interval, the magnitude of peak knee flexion and
the time point at which this occurred was determined.

2.6. Statistical Analysis

In order to determine characteristics of our sample, mean, standard deviation and range were
calculated for the subjects’ age, height, weight, hours of sport participation per week and activity level.
To investigate the concurrent validity of the new MoCap tool, correlations between outcomes on both
3D motion analysis systems were calculated. To test for normality of data distribution, Shapiro-Wilk
tests were conducted. In case of normally distributed data, Pearson’s r was calculated—in case of
non-normally distributed data, Spearman’s Rho (ρ) was used. Strength of correlations were expresses
as perfect (r or ρ = −1 or 1), very strong (0.8 ≤ r to ρ < 1), moderate (0.6 ≤ r to ρ < 0.8), fair (0.3 ≤ r to
ρ < 0.6) and poor (0 < r to ρ < 0.3) or inversely the negative values in case of negative correlations [41].
The alfa level for statistical significance was set at p < 0.05 for all analyses. Statistical analyses were
performed using IBM SPSS Statistics (v. 23.0, IBM Corp., Armonk, NY, USA).

3. Results

3.1. Subjects

Forty-four subjects (24 males and 20 females) took part in the experiment. Subject characteristics
are presented in Table 1.

Table 1. Subject Characteristics.

Total Group
(n = 44)

Female
(n = 20)

Male
(n = 24)

Age (yrs) 22.8 (3.3)
(18–30)

22.9 (3.6)
(18–30)

22.7 (3.2)
(18–30)

Height (cm) 175.3 (10.1)
(155.0–197.0)

167 (5.7)
(155–177)

182 (7.4)
(170–197)

Weight (kg) 72.1 (11.6)
(53.6–103.2)

64.1 (7.1)
(53.6–82.2)

78.9 (10.6)
(64.1–103.2)

Sport participation (hrs/wk) 5.4 (4.5)
(1–25)

6.9 (5.2)
(1–25)

3.1 (2.4)
(1–8)

Activity level (Tegner score) 6.5 (1.3)
(5–10)

5.8 (1.1)
(3–7)

7.0 (1.2)
(5–10)

Data are presented as mean (standard deviation) (range). Abbreviations: M = male; F = female; yrs = years;
cm = centimetre; kg = kilogram; hrs = hours; wk =week.

3.2. Concurrent Validity

All single leg squats were performed 3 times resulting in a total of 132 trials being available
for analyses. The data recorded per trial for both systems is presented in Table 2 as mean, standard
deviation (SD) and 95% confidence interval (CI). Pearson’s R (normally distributed data) or Spearman’s
Rho (non-normally distributed data) was calculated between data obtained with both systems including
the mean differences with accompanying 95% CI.

All sagittal plane measurement correlations observed were very strong for the knee and hip
(r = 0.929–0.988, p < 0.001). For sagittal plane spine assessment, the correlations were moderate
(r = 0.708–0.728, p < 0.001). Frontal plane measurement correlations were moderate in size for the hip
(ρ = 0.646–0.818, p < 0.001) and spine (ρ = 0.613–0.827, p < 0.001). Correlation plots of all measurement
data combined (3 single leg squat trials) are presented in Figure 4.
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Table 2. Correlations between measures with OptiTrack and SportsLapp motion capture systems for
sagittal and frontal plane angles of knee, hip and spine.

Trial 1
Knee

Flexion/Tilt *
Hip

Flexion/Tilt *
Hip Ab-

Adduction/Sway
Spine

Flexion/Tilt *
Spine Lateral
Flexion/Sway

OptiTrack (◦) 73.8 (9.1)
(71.1–76.6)

60.8 (14.7)
(56.3–65.3)

−8.1 (17.1)
(−13.3–−2.9)

13.8 (10.9)
(10.5–17.1)

3.8 (5.7)
(2.1–5.6)

SportsLapp (◦) 73.3 (9.1)
(70.6–76.1)

62.9 (13.4)
(58.9–67.1)

−8.5 (18.3)
(−13.9–−3.0)

18.1 (11.4)
(14.6–21.6)

4.6 (10.2)
(1.5–7.8)

Mean diff (◦)
(95%CI)

−0.5
(−1.5–0.5)

2.1
(1.3–2.9)

−0.4 (8.2)
(–2.5–0.3)

−4.3
(−6.8–−1.17)

0.8 (8.1)
(0.4–3.2)

Correlation r = 0.936 r = 0.985 ρ = 0.818 r = 0.713 ρ = 0.827

Trial 2
Knee

Flexion/Tilt *
Hip

Flexion/Tilt *
Hip Ab-

Adduction/Sway
Spine

Flexion/Tilt *
Spine Lateral
Flexion/Sway

OptiTrack (◦) 75.0 (8.6)
(72.4–77.6)

63.7 (14.7)
(59.2–58.2)

−13.2 (14.1)
(17.5–−8.9)

16.3 (12.1)
(12.6–20.0)

6.3 (5.0)
(4.7–7.8)

SportsLapp (◦) 73.8 (8.6)
(71.2–76.4)

64.9 (14.1)
(60.6–69.2)

−14.5 (14.0)
(−18.8–−10.3)

20.7 (11.9)
(17.1–24.4)

7.4 (11.0)
(4.0–10.7)

Mean diff (◦)
(95%CI)

−1.2
(−2.2–0.3)

1.2
(0.5–1.9)

−1.3
(−3.6–1.0)

−4.4
(−7.2–−1.6)

1.1
(−1.6–3.8)

Correlation r = 0.929 r = 0.988 ρ = 0.704 r = 0.708 ρ = 0.641

Trial 3
Knee

Flexion/Tilt *
Hip

Flexion/Tilt *
Hip Ab-

Adduction/Sway
Spine

Flexion/Tilt *
Spine Lateral
Flexion/Sway

OptiTrack (◦) 76.0 (9.2)
(73.1–78.8)

64.7 (13.6)
(60.6–68.9)

−14.9 (13.1)
(−18.9–−11.0)

14.7 (11.8)
(11.1–18.3)

5.5 (5.3)
(3.9–7.1)

SportsLapp (◦) 74.6 (8.8)
(71.9–77.3)

66.4 (13.0)
(62.4–70.3)

−16.4 (12.5)
(−20.2–−12.6)

19.8 (12.1)
(16.1–23.4)

9.1 (9.4)
(6.3–12.0)

Mean diff (◦)
(95%CI)

−1.4
(−2.3–−0.4)

1.7
(0.9–2.5)

−1.5
(−3.8–0.74)

−5.1
(−7.8–−2.4)

3.6
(1.3–5.9)

Correlation r = 0.944 r = 0.982 ρ = 0.646 r = 0.728 ρ = 0.613
Data are presented in degrees as mean (standard deviation) and (95% confidence interval). Abbreviations:
diff = difference; r = Pearson’s R correlation; ρ = Spearman’s Rho correlation. * = Normally distributed data.

 
(A): Knee flexion and knee tilt. 

Figure 4. Cont.
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(B): Hip flexion and hip tilt. 

 
(C): Spine flexion and spine tilt. 

 
(D): Hip ab-adduction and hip sway. 

Figure 4. Cont.
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(E): Spine lateral flexion and spine sway. 

Figure 4. Correlation plots of movement directions tested. (Please note all decimals presented to be
read as “.” instead of “,”).

4. Discussion

4.1. Main Findings

We studied the concurrent validity of a new 3D MoCap tool during a single leg squat task
performed in a standing position. This validity was found to be good to excellent for all joint angles
registered in the sagittal and frontal plane during three single leg squat trials. The highest correlations
between systems were observed in the sagittal plane and were found to be most consistent. Hip and
knee measurements performed best with the lowest difference between both systems.

4.2. Practical Relevance

The ability of the new MoCap tool to objectively measure sagittal and frontal plane joint angles is
practically relevant: decreased spine, hip and knee flexion in single leg weight bearing and landing
activities have been associated with an increased risk for the development of patellofemoral pain
and anterior cruciate ligament knee (re)injury [5,7]. The new 3D MoCap tool can thus be applied in
injury prevention screening and in progress evaluation after exercise interventions, aimed to optimize
lower extremity kinematics. Parameters obtained are likely relevant to improve clinical outcomes.
An important advantage of this new tool is that it can be applied on the pitch (on field) and in rehab
and sports centre settings [19]. The kinematic data are then directly available in contrast with the more
time consuming conventional motion capture systems [3,9,14].

Speed to be elicited in specific actions is one of the major goals in most type of sports. The capability
of motion capture is unique in quantifying magnitude, timing and symmetry of segmental velocity.
This may help physicians and physiotherapists to screen for deficits in any of those parameters and
subsequently identify potential risk factors for future injury [42–44].

This study shows that easily accessible technology is likely to enter the market for a broad audience
of professionals from different fields. The recent research interest from orthopedic and neurologic
rehabilitation specialists in this type of technology shows that there is a loud call for quantification of
many parameters in their specific patient populations [2,4,9,17,19–21,31,34,45]. Every movement related
health problem would thus likely have its own clinical relevant movement parameters. Future studies
will show what these parameters will be. Affordable new 3D MoCap systems will accelerate the pace of
these developments. Larger datasets obtained at clinics as well as the pitch side are needed to further
develop new knowledge.
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4.3. Validity of Motion Capture Systems

Reliability of optimal tracking systems for gait analysis has been performed previously [16].
Optimal tracking systems show high reliability for pelvis, hip and knee ROM in the sagittal and frontal
plane with mean precision errors less than 6◦. Errors of 2◦ are considered acceptable, 2–5◦ reasonable
and over 5◦ misleading. Markers attached to the skin move with respect to the underlying joints they
intend to measure. This error is called soft tissue artefact (STA) and therefore invasive methods using
radiostereometry are considered the gold standard in investigating joint motion because of its high
accuracy [29]. A systematic review compared invasive methods against optimal tracking systems and
found STA arising from tissue deformation, individual physical characteristics, marker location, type of
segment and the nature of the performed tasks. The magnitude of STA measured was up to 40 mm at
the thigh [46]. Also MoCap systems can be expected to be subject to STA, still any comparison with
invasive methods seems to be lacking.

4.4. Other Studies

Recent studies investigating systems using inertial measurement units have found that these can
distinguish between abnormal and sufficient performance on lower limb exercises with moderate to
excellent accuracy. However, these studies assess movement patterns rather than specific joint angles,
and use visual observation as reference standard rather than conventional 3D motion analysis [47,48].
Similar to this study, other markerless 3D MoCap tools such as the Kinect V2, have demonstrated
stronger validity for sagittal plane kinematics than for the frontal plane during the single leg squat [45,49].
The difference in accuracy of sagittal plane versus frontal and transverse plane measurements can be
explained from a biomechanical point of view. As sagittal plane movements are the largest in terms
of ROM, a difference of some degrees between both methods will affect the distribution of outcomes
relatively less than in frontal and transverse plane movements, which display a smaller ROM.

Additionally, differences between both MoCap tools were expected beforehand, because of the
different manner in which joint angles are obtained. The conventional gold standard utilizes reflective
markers, while the new tool employs active sensors. To calculate osteokinematic joint angles from the
marker trajectories in 3D space, the conventional tool uses traditional Euler rotation sequences [37].
This method, however, suffers from gimbal lock and equations may be numerically unstable [38].
To express the orientation of a segment with respect to its primary segment (i.e., the joint angle) the new
3D MoCap tool uses quaternions that are derived directly from the sensors. This method overcomes
the problem of gimbal lock, and extracting angles and axes of rotation is simpler and requires less
computational steps [38].

In a comparable study, Zügner et al. found a measurement error of 2.8◦ for hip flexion/extension
with a moderate correlation (ICC 0.75) which was for knee flexion/extension an error of 0.2◦ with
a good correlation (ICC 0.83). Although these findings for the knee are comparable to our study,
differences in hip findings could be due to the different sensor positions and performance tasks [17].
Another study compared IMU with OptiTrack measuring knee motion during a dynamic task as in
our study [4]. They showed an error of measurement of 8◦ for flexion/extension (0.5◦ in our study)
and poor correlation (Pearson’s R = 0.58 against our Pearson’s R = 0.94). This being lower may be the
result of the dynamic jump task that influenced angle readings by eccentric gyroscopic fluctuations.
Leardini et al. found small differences between an IMU and Vicon measures reporting a 5.0◦ error for
knee flexion during a squat performance task which was between 0.5–1.5◦ in our study [18]. IMU and
optical tracking systems both suffer from STA, yet most studies showed accepted measurement errors
below the 5◦ bound. In our study, all hip and knee motion errors were lower than 2◦ and lower than 5◦
for spine measurements with good to excellent correlation.
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4.5. Strengths and Limitations

To better reflect a clinical setting, squat depth was not controlled for in the testing protocol. It was
previously reported that subjects are able to produce consistent sagittal plane range of motion without
monitoring [35,36]. Our findings are in line with those as indeed we found consistent peak hip and
knee flexion angles during the three trials of single leg squat. Spine flexion and lateral flexion however
were less stable on repeated single leg squatting. This is acknowledged in the clinic where aberrant
spine movements distract attention of the clinician. Although these spine positional changes are
present hip and knee angles remained consistent.

The application studied shows adequate validity for MoCap in a clinical and on-site test
setting. This type of assessment with easily accessible and low coast technology will likely offer new
opportunities for clinicians as well as researchers to capture data that where prohibited for scientists in
high laboratory setting.

The frequency of 50 Hz of the SportsLapp application is lower than the OptiTrack MoCap system.
The validity data obtained can thus not be generalized to higher speed movements. The velocity
threshold for adequate MoCap with this new system during higher speed movements should be
subject of future study.

Questions can be raised regarding the placement of markers and sensors. Units placed on muscular
areas, such as the lateral thigh, may have been subject to more artefacts due to muscle contraction and
skin displacement than others, which were placed on bony landmarks. Marker placement on less or
non-muscular areas like the lateral femoral condyle for the upper leg marker, may be considered to
further refine the current protocol. A previous study comparing inertial sensors with an optoelectronic
system reported lower errors on movement tracking when assessing a prosthesis when compared to a
healthy human leg [50]. On top of this, artefacts may have occurred as a result of the inertial sensors
were fixated with elastic tape over the cluster markers, prohibiting a rigid connection between the two.

5. Conclusions

This study shows that a new 3D MoCap tool utilizing active sensors has good to excellent
concurrent validity for sagittal and frontal plane knee, hip and spine angle measurements assessed
during a single leg squat task. Future studies are needed to investigate other variables like through
range movement angles and velocity parameters.
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Abstract: Pattern recognition methodologies, such as those utilizing machine learning (ML)
approaches, have the potential to improve the accuracy and versatility of accelerometer-based
assessments of physical activity (PA). Children with cerebral palsy (CP) exhibit significant
heterogeneity in relation to impairment and activity limitations; however, studies conducted to date
have implemented “one-size fits all” group (G) models. Group-personalized (GP) models specific to
the Gross Motor Function Classification (GMFCS) level and fully-personalized (FP) models trained on
individual data may provide more accurate assessments of PA; however, these approaches have not
been investigated in children with CP. In this study, 38 children classified at GMFCS I to III completed
laboratory trials and a simulated free-living protocol while wearing an ActiGraph GT3X+ on the wrist,
hip, and ankle. Activities were classified as sedentary, standing utilitarian movements, or walking.
In the cross-validation, FP random forest classifiers (99.0–99.3%) exhibited a significantly higher
accuracy than G (80.9–94.7%) and GP classifiers (78.7–94.1%), with the largest differential observed
in children at GMFCS III. When evaluated under free-living conditions, all model types exhibited
significant declines in accuracy, with FP models outperforming G and GP models in GMFCS levels I
and II, but not III. Future studies should evaluate the comparative accuracy of personalized models
trained on free-living accelerometer data.

Keywords: accelerometers; wearable sensors; exercise; measurement; GMFCS level
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1. Introduction

Cerebral palsy (CP) is the most common physical disability in childhood, with a prevalence
of 2.1 cases per 1000 live births [1,2]. Specifically, among children with CP, physical activity levels
decrease by 34% to 47% as children progress from early childhood through adolescence and such
children accumulate less physical activity than their typically developing peers [3–5]. Low physical
activity levels, in addition to associated neuromotor and functional limitations, impact the long-term
health and well-being of children with CP [6–8]. In light of this evidence, researchers and clinicians
have focused on delivering interventions to increase habitual physical activity and decrease sedentary
behavior [9–11]. Historically, the effectiveness of these interventions has been evaluated using
self-reports of physical activity. Although self-reports are low-cost and easy for participants to
complete, they are subject to considerable social desirability and recall bias, and therefore may not be
sufficiently valid or reliable for an assessment of clinically important changes in physical activity [12].
As a result, an increasing number of studies involving children with CP are employing device-based
measures of physical activity and sedentary behavior [13,14].

Accelerometer-based motion sensors have become the method of choice for assessing physical
activity in children [15,16]. However, the atypical gait patterns and lower mechanical efficiency of
children with CP mandate the development of bespoke algorithms for reducing the accelerometer
output for physical activity metrics [12]. A number of studies have derived intensity cut-points to
categorize accelerometer data as sedentary (SED), light (LPA), or moderate-to-vigorous physical activity
(MVPA) among children with CP [12,17–20]. This research has enabled researchers and clinicians
to quantify the physical activity levels of children with CP and examine compliance with physical
activity recommendations. However, validation studies involving independent samples of children
with CP have demonstrated that cut-point approaches misclassify MVPA as LPA or SED activity
30% of the time and dramatically underestimate the physical activity levels of children with more
severe motor impairments [21]. As such, there is a critical need to investigate new accelerometer
data processing methods that potentially provide more accurate assessments of physical activity
and sedentary behavior in children with CP.

Pattern recognition methodologies, such as those utilizing machine learning approaches,
have the potential to significantly improve the accuracy of accelerometer-based assessments of
physical activity among children with CP. In a previous study [22], we developed machine learning
activity classification models for ambulatory children with CP for accelerometers worn on the wrist, hip,
and a combination of the wrist and hip [22]. The resultant Random Forest and Support Vector Machine
physical activity classification models classified sedentary activities with 96% to 98% accuracy, standing
utilitarian movements (e.g., folding laundry) with 83% to 97% accuracy, and walking with 90% to 97%
accuracy. However, the study sample was relatively small and predominantly comprised of children
functioning at Gross Motor Function Classification System (GMFCS) levels I and II. Consequently,
the study could not examine the classification accuracy in children with more severe movement
impairments who ambulate with the assistance of crutches and walkers. Furthermore, prior work in
typically developing children has demonstrated that other accelerometer placements, such as the ankle
or a combination of the ankle and wrist, provide a higher classification accuracy [23,24]. However,
the utility of activity classification models trained on accelerometer data from the ankle has not been
examined in children with CP.

Typically, machine learning classification models are trained using accelerometer data from
groups of participants and applied to new samples assuming that the new participants have the same
movement patterns as those in the training sample. This presupposition may not be valid in the CP
population, given the significant heterogeneity in relation to movement impairment and functional
capacity. An alternative approach, which has not been investigated in children with CP, is to train
and deploy group-personalized models based on the GMFCS level. In this approach, classification
models are trained on accelerometer data from a specific GMFCS group and applied to children of
the same GMFCS classification. It has previously been demonstrated that GMFCS-specific decision tree
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models for classifying the physical activity intensity in children with CP outperform “one-size-fits-all”
models by accounting for differences in the energy cost of locomotion [21].

Although group-personalized models may account for broadly defined differences in functional
ability, fully-personalized or individually-calibrated models may provide even more accurate physical
activity predictions by accounting for finer grained differences in functional ability related to the child’s
age, height, motor distribution, and movement disorder. In a study of healthy adults, personalized
activity classification models, trained on less than five minutes of accelerometer data, exhibited a
significantly greater classification accuracy than group models [25]. On average, the overall classification
accuracy increased by 26 percentage points from 71% to 97%, while walking recognition improved
from 65% to 99%. More recently, Carcreff et al. [26] reported significantly improved walking bout
detection and walking speed estimation in children with CP after applying personalized thresholds
for the left and right mid-swing shank angular velocity. To the best of our knowledge, the relative
accuracy and utility of fully-personalized machine learning activity classification models have not
been examined in children with CP.

To date, most activity classification algorithms have been developed using data collected in
controlled laboratory environments, which may not be generalizable to free-living settings [27–29].
Developing and validating classification models in the laboratory may be unrealistic because only a
limited number of activities are included and fixed-duration activity trials without natural transitions
between activities fail to replicate the episodic nature of movement behaviors displayed in true
free-living environments [28]. If accelerometer-based physical activity classification models for
children with CP are to be used in field-based studies, it is important to evaluate their accuracy under
scenarios that replicate free-living environments.

To address these gaps in the research literature, the purpose of the current study was to evaluate
and compare the accuracy of group, group-personalized, and fully-personalized machine learning
physical activity classification models in children with CP. To examine the effects of accelerometer
placement, models were trained and tested using accelerometer data from the hip, wrist, and ankle,
and all two- and three-placement combinations. To assess the validity under conditions that more
closely replicated intervention studies conducted in real-world settings, the classification accuracy was
evaluated and compared in a simulated free-living trial.

2. Materials and Methods

2.1. Participants

A total of 38 ambulatory youth with CP participated in the study. Participants were recruited
from two sites—St Christopher’s Hospital for Children, Philadelphia, USA and the Queensland Centre
for Children’s Health Research, Brisbane, Australia. The inclusion criteria were as follows: Diagnosis
of CP at Gross Motor Function Classification System (GMFCS) level I, II, or III; between the ages of 6
and 18 years; and able to follow verbal instructions. Parents and/or health care providers (doctors
or therapists) verified that participants were able to complete the study protocols. Participants were
excluded from the study if they had undergone orthopedic surgery within the last 6 months, received
lower extremity Botulinum toxin A injections within the last 3 months, or experienced a recent
musculoskeletal injury or had a medical condition limiting their ability to complete the physical
activity protocol. The descriptive characteristics are displayed in Table 1. The study was approved by
each university’s Institutional Review Board. Prior to participation, parents provided written consent
and children written assent.

2.2. Individual Activity Trials

Participants were randomized to complete one of two activity protocols. The protocol was
completed in a single two-hour session and consisted of five activity trials. Briefly, the activity trials
included in protocol one were as follows: (1) Supine rest (lying down and resting, but not sleeping);
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(2) sitting while continuously writing or coloring in a picture; (3) active video game (playing an
interactive video game designed specifically for children with CP); (4) comfortable-paced walk in a
25 m course (walking at a pace with the instructions “walk like when you are at the mall or walking
in your neighborhood or at school, but you are not in a hurry.”); and (5) brisk-paced walk in a 25 m
course (walking at a pace with the instructions “walk at a fast pace like when you are hurrying to
get to class after the bell has rung or you are hurrying to cross the street”). In protocol two, sitting
while continuously writing or coloring in a picture was replaced with wiping down a table (standing
at a waist-height counter and spraying the counter with water and then wiping the water off). All
of the activity trials were 6 min in duration. Activity trials were categorized as one of three activity
classes: Sedentary (SED = supine rest and sitting); standing utilitarian movements (SUM =wiping a
table and active video game); and walking (WALK = comfortable-paced walk and brisk-paced walk).

Table 1. Participant characteristics.

GMFCS I (N = 10) GMFCS II (N = 20) GMFCS III (N = 8)

Sex
Male N (%) 4 (40%) 7 (35%) 2 (25%)

Female N (%) 6 (60%) 13 (65%) 6 (75%)
Motor Distribution
Hemiplegia N (%) 8 (80%) 13 (65%) 0 (0%)

Diplegia N (%) 2 (20%) 7 (35%) 5 (62.5%)
Quadriplegia N (%) 0 (0%) 0 (0%) 3 (37.5%)

Age (y) 10.8 ± 1.8 12.0 ± 3.1 11.8 ± 4.5
Height (cm) 145.1 ± 9.9 147.2 ± 16.7 129.7 ± 19.2
Weight (kg) 40.8 ± 12.6 42.3 ± 15.6 34.9 ± 17.8

GMFCS = Gross Motor Function Classification System.

2.3. Instrumentation

Participants wore an ActiGraph GT3X+ tri-axial accelerometer (ActiGraph Corporation, Pensacola,
FL, USA) on the least impaired wrist, hip, and ankle, with the Y-axis pointing vertically. The ActiGraph
GT3X+ is a small (4.6 cm × 3.3 cm × 1.5 cm) and lightweight (19 g) monitor that measures acceleration
along three orthogonal axes and the sampling frequency for the current study was set to 30 Hz.

2.4. Machine Learning Activity Classification Models

Random Forest (RF) classifiers were trained to categorize activities as one of three activity classes
using accelerometer data collected at each single placement (wrist, hip, and ankle), and a combination
of two placements (wrist and hip =W +H; wrist and ankle =W + A; hip and ankle =H + A) and three
placements (wrist and hip and ankle = W + H + A). RF is an ensemble of decision tree models.
Each tree is developed based on a bootstrap sample of training data and each node in the tree is split
using the best value among a randomly selected sample of features. The decisions from each tree are
aggregated and a final model prediction is based on a majority vote [30].

2.4.1. Data Pre-Processing and Feature Extraction

Tri-axial accelerometer data corresponding to the start and end of each activity trial were
parsed and annotated with the corresponding activity class label. Features were extracted from
10 s non-overlapping windows. In total, 15 features were extracted from each axis and included
the minimum, maximum, mean, variance, standard deviation, skewness, kurtosis, percentiles (25th,
50th, and 75th), zero-crossings, energy, dominant frequency, dominant magnitude, and entropy.
Cross-axis correlations and the mean vector magnitude were also extracted. The extracted features
have previously been shown to be informative for activity classification in children with CP and typically
developing children [22,31].
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2.4.2. Model Training and Cross-Validation

Models were trained and cross-validated using the “randomForest” and “caret” packages within R
(Version 3.5.3). Prior to model training, minimum Redundancy Maximum Relevance (mRMR) feature
selection was used to identify features with a high discriminative ability [32]. Minimum redundancy
favors features that have a low dependency on other features, without considering how important
they are to the outcome variable, whereas maximum relevance selects features that are the most
predictive of the outcome variable. The mRMR selection process is based on a balance between these
two algorithms, selecting features that derive a high relevance and low redundancy. Feature selection
was constrained to the 10, 15, and 20 best features. The number of trees for each model was kept
constant at 500 and the number of features sampled at each tree node in the forest ranged from 3 to
11 features. Group models were trained on data from all 38 participants, while the group-personalized
models based on the GMFCS level were only trained on data from participants at the same GMFCS
level and fully-personalized models were trained on data from each individual.

For the group and group-personalized models, the out-of-sample classification accuracy was
evaluated using leave-one-subject-out cross-validation (LOSO-CV). In LOSO-CV, the model is trained
on data from all of the participants except one, which is “held out” and used as the test data set.
The process is repeated until all participants have served as the test data, and the performance metrics
are aggregated. For the fully-personalized models, the classification accuracy was evaluated using
10-fold cross-validation. With 10-fold cross-validation, the participant’s data are randomly partitioned
into 10 subsets and the model is trained on all subsets except one, which is used as the test data set.
The process is repeated until all subsets have served as the test data, and the performance metrics
are aggregated. The cross-validation classification accuracy was evaluated by computing the overall
and class-level accuracy for each GMFCS level.

2.5. Simulated Free-Living Evaluation

To evaluate the classification accuracy under conditions that more closely reflected a free-living
environment, participants completed a simulated free-living trial in which they performed the following
sequence of activities: (1) Sitting on a bench; (2) walking 10 m whilst weaving around cones to a
table; (3) standing at the table and completing a puzzle and/or playing with a toy; and (4) walking
around the table and back to the bench and sitting. The entire sequence was repeated for 6 min.
To obtain ground truth activity class labels, all trials were video recorded with a Go-Pro camera
(GoPro, Inc., San Mateo, CA, USA). These video files were subsequently imported into the Noldus
Observer XT software (Noldus Information Technology, Wageningen, The Netherlands) for coding of
the participant’s activity type as either “SED”, “SUM”, or “WALK”. The Observer software generated
a vector of date-time stamps corresponding to the start and finish of each activity, which were used to
label the corresponding time segment of the accelerometer data. For each accelerometer placement
and model type, the overall and class-level accuracy was calculated for each GMFCS level.

2.6. Statistical Evaluation

A 3 × 3 × 7 repeated measures ANOVA was used to examine the effects of the model type, GMFCS
level, and placement on the overall accuracy. Significant main effects and interactions were evaluated
using tests of simple effects and pre-planned contrasts. Significance was set at an alpha level of 0.05.

3. Results

For the group wrist, hip, and ankle classification models, respectively, 15, 15, and 10 features were
selected. For the multiple placement W + H, W + A, H + A, and W + H + A classification models,
respectively, 15, 10, 10, and 20 features were selected. A complete list of the selected features for each
model are reported in Supplemental Document 1.
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3.1. Leave-One-Subject-Out Cross-Validation

There was a significant main effect for placement on the accuracy (F6,210 = 11.26, p < 0.01),
with the wrist and hip exhibiting a significantly lower overall accuracy than all other placements
(see Figure 1). Compared to models trained on ankle accelerometer data, there were no significant
improvements in the overall accuracy for the two-placement and three-placement models.

Figure 1. Overall accuracy obtained by placement for leave-one-subject-out cross-validation (LOSO-CV).
* Significantly different from ankle and multi-placement models at p < 0.05.

Figure 2 displays the overall accuracy for group, group-personalized and fully-personalized
models by GMFCS level, averaged over all placements. There was a significant model type by GMFCS
level interaction (F4,70 = 33.38, p < 0.01), indicating that differences in the classification accuracy varied
by GMFCS level. Averaged over all placements, fully-personalized models exhibited a significantly
higher accuracy than group and group-personalized models, with the largest differential observed in
children at GMFCS III.

Table 2 reports activity class recognition for the group, group-personalized, and fully-personalized
models for each accelerometer placement combination by GMFCS level. For all placements and GMFCS
levels, the fully-personalized models exhibited > 96.0% recognition accuracy for SED, SUM, and WALK.
For the group and group-personalized models, the class level recognition accuracy varied by GMFCS
level. Among children at GMFCS I and II, the group and group-personalized models demonstrated
excellent classification accuracy for SED (89.1–98.4%) and WALK (88.3–99.6%), and good to excellent
classification accuracy for SUM (76.8–93.8%). Among children at GMFCS III, the classification accuracy
for the group and group-personalized models for SED (57.7–99.6%), SUM (68.6–92.1%), and WALK
(53.5–96.3%) was inconsistent and ranged from poor to excellent, depending on the accelerometer
placement configuration. Detailed confusion matrices for each placement, model type, and GMFCS
level can be found in Supplemental Document 2.
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Figure 2. Overall accuracy for model type by GMFCS level for LOSO-CV. * Significantly different from
group and group-personalized models; + significantly different from the group-personalized model.

Table 2. LOSO-CV overall and activity class accuracy for group, GMFCS-specific, and personalized
classification models.

GMFCS I GMFCS II GMFCS III
G GP FP G GP FP G GP FP

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Wrist
SED 92.7 (13.5) 94.1 (15.0) 99.3 (0.4) 94.7 (9.5) 93.2 (12.2) 99.0 (0.3) 85.0 (27.6) 57.7 (38.4) 99.1 (1.2)
SUM 89.3 (10.0) 87.0 (9.5) 97.0 (2.3) 82.6 (14.6) 79.6 (20.1) 96.2 (1.2) 76.7 (15.0) 71.4 (25.5) 96.3 (1.1)

WALK 96.2 (6.6) 91.9 (12.4) 98.4 (0.9) 90.4 (16.4) 92.6 (13.7) 97.2 (0.6) 84.2 (14.1) 75.5 (32.4) 96.2 (1.2)

Hip
SED 94.4 (12.5) 89.1 (16.0) 100.0 (0.1) 92.1 (13.2) 94.4 (10.2) 100.0 (0.3) 89.3 (22.7) 76.9 (34.2) 100.0 (0.4)
SUM 83.8 (22.2) 76.8 (28.7) 98.5 (0.8) 87.6 (18.6) 85.3 (21.8) 98.4 (0.4) 75.1 (21.3) 73.3 (17.6) 98.2 (0.2)

WALK 99.6 (1.1) 88.3 (11.2) 99.2 (0.3) 97.3 (3.9) 94.4 (10.1) 98.8 (0.9) 53.5 (34.7) 65.5 (38.5) 98.9 (0.2)

Ankle
SED 95.8 (5.3) 97.6 (2.9) 100.0 (0.1) 94.7 (12.9) 96.6 (11.6) 100.0 (0.3) 89.8 (26.9) 78.5 (37.8) 100.0 (0.1)
SUM 91.9 (16.2) 91.1 (10.0) 98.8 (1.3) 90.4 (15.3) 93.2 (7.9) 99.2 (0.6) 71.6 (23.1) 74.5 (23.6) 99.1 (0.8)

WALK 99.6 (1.1) 99.0 (2.3) 98.7 (1.5) 98.0 (2.4) 96.8 (5.5) 99.4 (0.5) 84.0 (16.8) 96.3 (4.4) 99.0 (1.1)

W + H
SED 89.2 (22.6) 94.0 (14.0) 100.0 (0.2) 94.4 (11.9) 94.9 (11.2) 100.0 (0.2) 99.6 (1.1) 75.0 (30.2) 100.0 (0.4)
SUM 90.8 (16.9) 87.0 (25.4) 99.1 (1.3) 85.2 (17.6) 88.1 (20.2) 99.3 (1.2) 92.1 (10.4) 80.4 (15.2) 99.8 (0.7)

WALK 90.9 (14.9) 98.3 (2.5) 99.3 (1.1) 94.9 (11.9) 96.2 (5.3) 99.1 (1.3) 95.8 (4.4) 94.1 (8.1) 99.7 (0.4)

W + A
SED 94.2 (12.2) 98.4 (3.2) 100.0 (0.2) 93.9 (12.1) 97.3 (10.0) 100.0 (0.1) 92.0 (18.6) 80.1 (33.4) 100.0 (0.2)
SUM 91.6 (11.4) 91.9 (12.3) 98.1 (2.3) 93.8 (10.4) 93.7 (6.5) 99.2 (1.7) 68.6 (23.2) 81.1 (14.9) 99.5 (1.0)

WALK 99.6 (1.1) 99.0 (2.3) 98.4 (1.4) 97.6 (3.7) 97.9 (2.8) 99.4 (1.9) 90.5 (9.9) 96.8 (3.7) 98.2 (1.7)

H + A
SED 94.6 (10.5) 96.9 (7.0) 100.0 (0.1) 96.3 (7.9) 96.5 (11.7) 100.0 (0.2) 86.9 (27.1) 76.3 (35.2) 100.0 (0.2)
SUM 87.3 (21.7) 89.4 (14.1) 98.6 (1.6) 93.8 (12.9) 92.1 (11.1) 98.2 (1.3) 70.5 (20.6) 73.6 (24.1) 99.4 (0.7)

WALK 99.6 (1.1) 98.6 (3.3) 99.3 (0.8) 98.3 (2.3) 97.4 (2.4) 98.9 (1.4) 87.8 (13.6) 96.3 (4.5) 99.2 (0.4)

W + H
+ A

SED 95.3 (10.4) 96.4 (7.9) 100.0 (0.2) 96.2 (9.6) 97.0 (7.2) 100.0 (0.2) 87.5 (27.6) 81.3 (32.7) 100.0 (0.2)
SUM 91.9 (12.9) 91.0 (12.4) 99.3 (1.2) 93.8 (8.5) 91.4 (10.7) 99.1 (0.7) 77.2 (19.8) 82.1 (14.7) 98.8 (1.4)

WALK 99.6 (1.1) 98.8 (2.8) 99.5 (0.4) 98.1 (2.8) 98.2 (2.6) 99.2 (0.9) 89.4 (11.1) 96.8 (3.7) 99.0 (1.1)

G = group; GP = group-personalized; GF = fully-personalized; W +H =wrist and hip; W + A =wrist and ankle;
H + A = hip and ankle; W +H + A =wrist, hip, and ankle; SED = sedentary; SUM = standing utilitarian movement;
WALK =walking.
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3.2. Simulated Free-Living Trial

The overall classification accuracy for the different accelerometer placement configurations under
simulated free-living conditions, averaged over all model types and GMFCS levels, is displayed in
Figure 3. The ANOVA results indicated a significant main effect for placement (F6,210 = 8.90, p < 0.01).
Tests of simple effects revealed that models trained on accelerometer data from the ankle, hip, or hip
and ankle combined had a significantly higher accuracy than all other placement combinations. For all
accelerometer placements, however, the overall accuracy statistics during the simulated free-living
evaluation were substantially lower compared to the LOSO-CV evaluation and ranged from 50.9% for
the H +W + A model to 61.5% for the ankle model.

Figure 3. Overall accuracy statistics by accelerometer placement when evaluated under simulated
free-living conditions. * Significantly different from all models at p < 0.05; + significantly different from
all models except H+A; � significantly different from all models except hip.

The simulated free-living accuracy results for the group, group-personalized and fully-personalized
models by GMFCS level are displayed in Figure 4. There was a significant model type by GMFCS
level interaction (F4,70 = 17.94, p < 0.01). Among children at GMFCS I and II, fully-personalized
models exhibited a significantly higher overall accuracy than the group and group-personalized models.
Among children at GMFCS III, however, group-personalized models exhibited a significantly greater
overall accuracy than the group and fully-personalized models.

Heat map confusion matrices by model type and GMFCS level are reported in Figures 5–7.
To reduce the complexity, only the results for the three best performing accelerometer placement
configurations are reported—hip, ankle, and the hip and ankle combined. Detailed confusion matrices
for all seven placements by GMFCS level are reported in Supplemental Document 3.

For the hip placement, the recognition of SED was poor to modest for group models (56–60%) at
each GMFCS level, modest for group-personalized models (60–65%), and poor for the fully-personalized
models (31–49%). For each model type, between 31% to 58% of all SED instances were misclassified
as SUM. The recognition of SUM was poor for group models (29–55%) at each GMFCS level,
with misclassification frequently occurring as SED (43–69%). Group-personalized models displayed
very good recognition of SUM (83.2%) among children at GMFCS III; however, among children
classified at GMFCS I and II, recognition was poor (33–40%) and frequently misclassified as SED
(59–66%). Fully-personalized models had good to very good recognition (76–84%) and recognition
increased as GMFCS function decreased from level I to II. Walking recognition for the group model
ranged from modest to good for children at GMFCS levels I and II (65–77%); however, among GMFCS III
children, walking recognition was very poor (28%), with 72% of walking instances being misclassified
as SUM. Among children at GMFCS II and III, walking recognition for the group-personalized
and fully-personalized models ranged from good to excellent (79–97%), with the accuracy increasing
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as GMFCS function declined from level II to III. Among children at GMFCS I, walking recognition
ranged from poor to modest (57–65%) for group-personalized and fully-personalized models.

Figure 4. Overall accuracy for group, group-personalized, and fully-personalized Random Forest (RF)
classifiers, by GMFCS level, during the simulated free-living evaluation. * Significantly different from
other models within GMFCS level at p < 0.05.

Figure 5. Hip placement activity class recognition for group, group-personalized, and fully-personalized
classification models during the simulated free-living trial. Columns represent observed (%);
rows represent predictions (%); values on the diagonal represent correct predictions (%).
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Figure 6. Ankle placement activity class recognition for group, group-personalized, and fully-personalized
classification models during the simulated free-living trial. Columns represent observed (%); rows
represent predictions (%); values on the diagonal represent correct predictions (%).

For the ankle placement, the recognition of SED for the group models was poor among
children at GMFCS levels I and II (40–50%), and modest among children at GMFCS III (65%).
For group-personalized models recognition was modest among children at GMFCS I and II (62%),
but poor among children at GMFCS III (17%). For the fully-personalized models, recognition of
SED was poor among all GMFCS levels (21–34%), with just under two-thirds of SED instances being
misclassified as SUM. The recognition of SUM was good for group models among children at GMFCS
I (73%), but generally poor among children at GMFCS levels II and III (55–61%), with the majority
being misclassified as SED (31–38%). Group-personalized models exhibited a good recognition of SUM
among children at GMFCS III (74%) and modest recognition among GMFCS I children (67%), but poor
recognition among children at GMFCS II (44%). At GMFCS levels I and II, the misclassification of
SUM as WALK occurred at rates of less than 2%, but at GMFCS III, this misclassification was 18%.
Fully-personalized models exhibited good to very good recognition of SUM among children at GMFCS
I and II (76–80%), but poor recognition among children at GMFCS III (51%), with misclassification
occurring as either SED (22%) or WALK (28%). For all model types, the recognition of WALK was very
good among children at GMFCS II (82–87%) and excellent among children at GMFCS III (97–100%).
Among children at GMFCS I, the recognition of WALK was modest (59–67%), with 33–39% of WALK
instances being misclassified as SUM.
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Figure 7. Combined hip and ankle placement activity class recognition for group, group-personalized,
and fully-personalized classification models during the simulated free-living trial. Columns represent
observed (%); rows represent predictions (%); values on the diagonal represent correct predictions (%).

For the combined hip and ankle (H + A) placement, the recognition of SED by group models
was modest (61–62%) at all GMFCS levels. For group-personalized models, the recognition of SED
was modest among children at GMFCS I and II (62–66%), but poor among children at GMFCS III
(44%). At all GMFCS levels, the recognition of SED for the fully-personalized models was poor
(27–38%). For each model type, between 27% and 59% of SED instances were misclassified as SUM.
At all GMFCS levels, group models displayed poor recognition of SUM (36–47%), with the majority
of misclassifications occurring as SED (42–62%). Group-personalized models exhibited modest
recognition of SUM among children at GMFCS levels I and II (61–64%), but poor recognition among
children at GMFCS III (39%). At GMFCS levels I and II, the majority of misclassification occurred
as SED (38–60%), whilst for children at GMFCS III, misclassification occurred as both SED (20%)
and WALK (16%). The recognition of SUM for fully-personalized models was good among GMFCS I
children (76%), modest among GMFCS II children (67%), and poor among GMFCS III children (52%),
with the majority being misclassified as WALK (48%). For group models, the recognition of WALK was
very good among both children at GMFCS II and III (81–84%), but modest among children at GMFCS I
(63%). For the group-personalized and fully-personalized models, the recognition of WALK was very
good among children at GMFCS II (79–82%) and excellent among children at GMFCS III (94–97%), but
poor among children at GMFCS I (52–59%).
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4. Discussion

To the best of our knowledge, this is the first study to compare group, group-personalized,
and fully-personalized activity classification models for children with CP. During cross-validation
evaluation, fully-personalized RF activity classification models were more accurate than group
and group-personalized models. Fully-personalized models were most accurate among children at
GMFCS III, for whom the overall accuracy exceeded 95%, compared to group and group-personalized
models, for which the overall accuracy was below 83%. Models trained on ankle data and all two-
and three-placement combinations provided a greater overall accuracy greater than those trained on
data from the hip or wrist. Irrespective of the model type or placement configuration, however, none of
the models performed well when tested under conditions that replicated how activities are performed
under real-world conditions.

When evaluated under laboratory conditions, fully-personalized classifiers exhibited a greater
accuracy than group and group-personalized classifiers, with the largest performance differential
being observed in children at GMFCS III. Furthermore, when children completed activities under
simulated free-living conditions, the group-personalized and/or fully-personalized classifiers exhibited
a greater accuracy than conventional group classifiers; although, none of the models generalized
well and attained a high level of accuracy. These findings are consistent with the notion that the use
of personalized classifiers to measure physical activity type and intensity may be advantageous
among children with more severe motor impairments, where there is substantial heterogeneity in
functional capacity. Notably, more than 90% of children classified at GMFCS III have bilateral CP with
spastic, dyskinetic, ataxic, or hypotonic motor impairments and require assistive mobility devices for
ambulation [33]. Conversely, most children classified at GMFCS I and II have unilateral CP, with only
spastic motor impairment and can ambulate independently. Hence, the common practice of training
one-size-fits-all group-based classifiers may not be useful in children with CP.

The fully-personalized, group-personalized, and group RF classifiers trained on laboratory-based
activity trials displayed excellent recognition accuracy when cross-validated under laboratory
conditions. However, when tested under conditions that replicated real-world conditions, overall
accuracy decreased from 89–94% to 5–62%. The substantial decrease in accuracy when tested under
simulated free-living conditions is indicative that the cross-validation performance under laboratory
conditions is not reflective of a model’s generalizability in real-world scenarios, particularly if the model
is trained on data from choreographed activity trials. This supports the findings of prior studies
conducted in typically developing children and healthy adults that reported substantial decreases
in accuracy when classifiers trained on laboratory-based activity trials were implemented under
real-world conditions [27–29]. Furthermore, prior studies have demonstrated that when classifiers are
trained with free-living data, they have a much better generalizability to real-world conditions [34,35].
Future studies developing machine learning classification models for children with CP should therefore
train models using accelerometer data collected under true free-living conditions, where children are
allowed to naturally engage in physical activities that are representative of daily activity behaviors.
Such studies should have sufficient participants from each GMFCS level to determine if models
perform well in children with more severe impairments. Furthermore, to obtain ground-truth activities,
video-based direct observation techniques that have been successfully implemented in both the current
study and in free-living studies with children should be used to ensure the reliability and precision of
activity type labeling [28].

When evaluated under simulated free-living conditions, group-personalized classifiers exhibited
greater overall accuracy than the group or fully-personalized classifiers among children at
GMFCS III. In contrast, fully-personalized classifiers exhibited greater accuracy than the group
and group-personalized models among children at GMFCS levels I and II. The relatively poor
performance of the fully-personalized models among children with more severe impairments under
simulated free-living conditions was surprising and difficult to explain. When completing the structured
activity trials in the laboratory, children functioning at GMFCS III performed sedentary and SUM
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activities with minimal movement and, subsequently, when the fully-personalized classifier was trained
using data from a single individual, there may have been insufficient diversity in the accelerometer
data to differentiate these two activity classes. Conversely, group-personalized classifiers trained on
data from all GMFCS III participants displayed more diversity in the training data and therefore a
greater discriminative ability, which was reflected in the better performance demonstrated during
the simulated free-living evaluation. This finding, in combination with the poor generalizability of
laboratory-trained classifiers, suggests that fully-personalized classifiers need to be trained on large
quantities of accelerometer data collected from an individual completing a wide range of activities
under free-living conditions. This, however, significantly increases the research burden placed on both
researchers and participants. Alternatively, group-personalized classifiers trained for specific GMFCS
classifications can be implemented as an off-the-shelf model; however, such models appear to be less
accurate among children with less severe activity limitations.

Random Forest classifiers trained on ankle accelerometer data provided the best overall accuracy
during the leave-one-subject-out cross-validation and simulated free-living activity trial. This finding is
consistent with prior studies conducted in typically developing children and healthy adults [24,36–38].
The distinct rhythmic pattern of walking is easily captured by features from an ankle-worn accelerometer.
Consequently, models trained on ankle data had the highest recognition of walking and it was the only
placement to able achieve ≥ 95% walking recognition among children at GMFCS III under simulated
free-living conditions. Additionally, classification models trained on ankle data provided better
recognition of standing utilitarian movements, such as wiping down a counter or playing active video
games. For researchers and clinicians interested in monitoring time spent walking, the ankle may be
an ideal wear location. An accelerometer can be readily attached to the ankle-foot orthoses commonly
worn by this patient group to assist in mobility [39,40]. Prior studies have established that children
with CP have a high compliance with wearing ankle-mounted accelerometers, such as the StepWatch,
as they do not cause undue irritation or discomfort [41–43].

Although the classifiers achieved a high degree of recognition accuracy in the laboratory-based
evaluation, SED was frequently misclassified as SUM and vice versa during the simulated free-living
trial. During the laboratory-based activity trials, sedentary activities consisted of lying down
and quietly sitting and required little movement, while SUM activities such as wiping down a
table and playing an active videogame required the children to be standing, while moving side to
side or forward and backwards. In contrast, during the simulated free-living trial, children rarely sat
quietly during sedentary activities and performed SUM activities with little or no lateral movement.
The misclassification of sedentary and SUM during the simulated free-living trial may therefore be
attributable, at least in part, to differences in the way that activities were performed in the structured
laboratory trials and the simulated free-living evaluation. Regardless of how the activities are
performed, a principle difference between the two activity classes is posture. When an accelerometer is
placed on a body location that moves into a fixed anatomical plane in different postures, the changes
in accelerometer orientation from tilt angle can be used to detect the posture with a high accuracy.
Skotte et al. [44] and Edwardson et al. [45] have previously demonstrated that thigh-worn classifiers can
differentiate sitting and standing, whereas Gjoreski et al. [46], Tang et al. [47], and Narayanan et al. [48]
have shown that a two-placement combination of the thigh and hip/back results in an excellent
recognition of lying, sitting, and standing. Prior studies have also demonstrated that thigh-worn
monitors, such as activPAL and Uptimer, provide acceptable estimates of sitting and standing among
children with CP who have mild motor impairments [49,50]. Although there may be optimal wear
locations for a model to recognize certain activities [23], a consideration of the trade-off between activity
recognition and wear compliance by children will dictate the optimal wear location for investigators.

The current study had several strengths. To the best of our knowledge, this is the first study to
develop and test personalized classifiers in ambulant children with CP that account for significant
heterogeneity in relation to movement impairment and functional capacity. Second, the study had
sufficient numbers of children classified at GMFCS levels I, II, and III to evaluate classifier performance
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across the full spectrum of ambulatory ability. Third, classification models were tested under simulated
free-living conditions. This allowed for an examination of the models’ performance when activities
were completed in sequence, rather than separate activity trials. Opposing these strengths were several
limitations. First, although the classifiers were evaluated under simulated free-living conditions that
were intended to replicate a real-world scenario, the tasks performed and brief duration did not fully
replicate the activity performances of children with CP in true free-living contexts. Consequently, future
studies should evaluate the performance of group and personalized classifiers under true free-living
conditions. Second, the study did not include a thigh placement. The propensity for classifiers trained
on hip and wrist accelerometer data to misclassify sitting and standing is well-documented [51–53]
and the inclusion of posture-related features from a thigh-mounted accelerometer may have improved
the recognition of SED and SUM in the simulated free-living evaluation trial. Third, the current
study only trained RF classifiers and did not benchmark the performance with other supervised or
unsupervised learning algorithms. RF classifiers were chosen in the current study because they are
ensemble learning models which have been shown to provide accurate activity recognition in children
with CP [22,54], as well as those with typical development [55,56]. As the aim of the current study was to
evaluate the influence of personalization on the classification accuracy, it was important that models were
trained using the same supervised learning algorithm. Future studies could examine the performance
of other machine learning algorithms and benchmark the performance to the results observed in
this study. The final group and group-personalized models with the annotated dataset and code for
implementation are available at https://github.com/QUTcparg/Sensors_CP_PersonalisedModels.

5. Conclusions

In summary, when evaluated under laboratory conditions, group-personalized and fully-personalized
RF activity classification models provide a more accurate recognition of physical activity in children with
CP than “one-size-fits-all” group models. Personalized models yielded the greatest improvement in
accuracy among children with the more severe motor impairments. When evaluated under simulated
free-living conditions, personalized models exhibited a higher classification accuracy than conventional
group models; however, the performance for all models declined substantially. Accordingly, future studies
should evaluate the feasibility and comparative accuracy of group-personalized and fully-personalized
activity classification models trained on accelerometer data collected under true free-living conditions.
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Abstract: Locomotion assistive devices equipped with a microprocessor can potentially automatically
adapt their behavior when the user is transitioning from one locomotion mode to another.
Many developments in the field have come from machine learning driven controllers on locomotion
assistive devices that recognize/predict the current locomotion mode or the upcoming one. This review
synthesizes the machine learning algorithms designed to recognize or to predict a locomotion mode
in order to automatically adapt the behavior of a locomotion assistive device. A systematic review
was conducted on the Web of Science and MEDLINE databases (as well as in the retrieved papers)
to identify articles published between 1 January 2000 to 31 July 2020. This systematic review is
reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines and is registered on Prospero (CRD42020149352). Study characteristics, sensors
and algorithms used, accuracy and robustness were also summarized. In total, 1343 records were
identified and 58 studies were included in this review. The experimental condition which was most
often investigated was level ground walking along with stair and ramp ascent/descent activities.
The machine learning algorithms implemented in the included studies reached global mean accuracies
of around 90%. However, the robustness of those algorithms seems to be more broadly evaluated,
notably, in everyday life. We also propose some guidelines for homogenizing future reports.

Keywords: machine learning; locomotion; assistive devices; embedded sensors

1. Introduction

Healthy humans are easily able to adjust locomotor pattern to deal with multiple environments
encountered in daily living situations such as stair ascent/descent, slope ascent/descent, obstacle
clearance, walking on uneven floors, cross-slopes or different surfaces. Hence, with lower limb
impairments such as unilateral lower limb amputation, it becomes challenging to deal with most of
these environmental changes [1].

To handle this issue, intelligent devices such as the C-leg TM (OTTOBOCK, Berlin, Germany) or
the Rheo knee (ÖSSUR, Reykjavík, Iceland) have been developed. These variable-damping prostheses,
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compared to mechanically passive prostheses, improved the smoothness of gait, and decreased hip
work during level-ground walking [2]. Additional improvement was provided by a powered prosthesis
which was reported to decrease the metabolic cost of transport when compared to a conventional
passive prosthesis in similar conditions [3]. Prosthetic devices which passively or actively mimicked
human actions were found to be of help. One historic example of such innovation was the energy
return foot that reproduced foot behavior and improved the gait of patients with amputation. Other
innovations in the attempt to create intelligent devices can be seen with some microprocessor-controlled
prostheses with the ability to recognize the terrain being traversed (e.g., Genium OTTOBOCK, Berlin,
Germany, Linx BLATCHFORD, Basingstoke, UK). It only stands to reason that the next step in this
progression would be the development of devices with the ability to make predictions for automatic
gait adjustments across multiple terrains.

Developments in these efforts have come in the form of intelligent controllers on locomotion
assistive devices. In such devices, gait is regulated by a hierarchical three-level controller [4].
The highest-level controller is responsible for detecting the user-intent. The mid-level controller
automatically switches the control law (e.g., the powered active transfemoral prosthesis developed
by Vanderbilt University [5]) of the device in accordance with the high-level controller output.
The low-level controller compares the desired state of the device to the sensed state and corrects it when
needed. The detection of user-intent is done either by the user directly communicating his intentions to
the device using a controller, or by automatic interpretation by an algorithm. Examples of the first are
the control buttons found in the ReWalk TM exoskeleton (ARGO MEDICAL TECHNOLOGIES Ltd.,
Yokneam, Israel) or predefined body movements which allow the wearer of the Power KneeTM (ÖSSUR,
Reykjavík, Iceland) to switch between locomotion modes. In this device, switching between locomotion
modes requires the user to stop or to perform certain unnatural body movements. As opposed to
these explicit methods, algorithm-based implicit methods interpret user intent. Such algorithm-based
techniques allow smoother transitions by automatically switching between the control laws of the device.
A more promising approach might be one based on machine learning algorithms. Such algorithms
automatically detect user-intent by mapping sensor data to an associated locomotion task.

There are numerous studies in which machine learning has been used to adapt the behavior of
orthotic/prosthetic devices to user locomotion mode. We performed a systematic review that identifies
and summarizes such studies. Under the scope of this review, reports were selected if (1) body-worn
sensors or sensors embedded in the devices were used (2) machine learning classifiers were able to
identify the investigated locomotion modes of human volunteers. It covers essential technical details
such as the pre-processing methods which were used, the specific Machine Learning algorithms which
were employed, and the corresponding accuracies obtained. By the end of this review we aim to
propose recommendations for future studies and some suggestions concerning the uniformization of
the terms used to report results in the field.

2. Material and Methods

This systematic review, registered on PROSPERO (CRD42020149352), is reported in accordance
with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines [6].

2.1. Eligibility Criteria

This systematic review included peer-reviewed articles and patents focusing on the Machine
Learning (ML) approach for classifying locomotion modes in volunteers wearing assistive devices
(see below for definition of the included devices). For this purpose:

• The algorithms must be based on locomotion data collected from embedded sensors in the
device or from body-worn sensors. Studies evaluating a previously developed ML-based pattern
recognition algorithms were also included. We focused on Machine Learning methods that carried
out classification for recognizing locomotion modes. Studies using a Machine Learning regression
approach were excluded.

144



Sensors 2020, 20, 6345

• The articles must be related to locomotion in various environments, e.g., level ground walking, stair
ascent/descent, ramp ascent/descent, obstacle clearance, walking on a cross-slope, turning, walking
on different surfaces, ... Studies were included if at least two locomotion modes were investigated.

• Only lower limb assistive devices such as exoskeletons, prostheses (for below or above knee
amputation) or orthoses were considered.

• Studies were excluded if they met at least one of the following exclusion criteria: (1) non-human
(robots or animals), (2) volunteers who are minors (under 18 years old), (3) studies focusing on
volunteers equipped with an upper-limb device.

2.2. Information Sources

The PubMed and Web of Knowledge (including Web of Science core collection, Derwent Innovation
Index, Russian Citation index, SciELO Citation Index) databases were searched on 31 July 2020. The two
search strings used are given in the Supplementary Material. Published articles in English between
1 January 2000 and 31 July 2020 were included. Systematic reviews and meta-analyses were excluded.
Conference papers were excluded if a corresponding published peer-reviewed article by the same
authors had been included. Additional articles were included by further searching the references
within the papers which were first identified by the search strategy described above.

2.3. Study Selection

The search strings were defined and validated by all authors. One person (FL) performed the
initial search and removed the duplicates. Two main readers (DL, FL) independently screened the
titles and the abstracts of all articles identified during the initial search. In case of disagreement, a third
reader (LC) decided to include/exclude the article. Afterwards, the two readers (DL, FL) read the full
text of the articles which had been picked from the previous step and checked them for eligibility
using the criteria of our Modified QualSyst Tool which can be found in the Supplementary Material of
this article. The process used to create the Modified QualSyst Tool can be found in the Section 2.4.1.
Any disagreements on the eligibility of an article were resolved by the third person (LC).

2.4. Quality Assessment in Included Articles

The quality of the included articles was assessed with a dedicated QualSyst Tool [7] modified for
the purposes of studying Machine Learning algorithms implemented on locomotion assistive devices.
In the sections below, we provide further explanations of the score assignment for each article using
this tool.

2.4.1. Creating the Modified QualSyst Tool

Our first step was to remove irrelevant items from the QualSyst Tool [7] (Criteria 3 and 5 to
12, e.g., blinding of investigators, of subjects, etc.). Next, we added items which are relevant to
the implementation of Machine Learning algorithms such as analysis windows, selected features,
evaluation method of the algorithm, etc. All items were validated by all the authors and the quality
of included articles was assessed by the main readers (FL, DL). The final version of this Modified
QualSyst Tool can be found in the Supplementary Material of this article.

2.4.2. Rating Articles Using the Modified QualSyst Tool

Twelve items were used for rating the articles. For each item, the article was rated with a score
between 0 and 2 (with 2 indicating full supply of information, 1 a partial supply and 0 no information
provided). Guidelines to allow consistent ratings across the included papers were created. These
guidelines are provided in the Supplementary Material. The description of the twelve items were
as follows:
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• The first two items evaluated if the hypotheses and objectives of the study were sufficiently
described and if the study design was appropriate.

• Item 3 evaluated if the volunteer characteristics were sufficiently described.
• Items 4 to 10 evaluated if the Machine Learning approach was sufficiently described to

allow repeatability.
• Items 11 and 12 evaluated if the results were reported with enough details and if the conclusions

were in accordance with them.

The score of each article was computed as the average of the 12 rated items. The maximum
score possible for an article was 2. The score from 0–2 was transformed to a scale of 0–100%
for ease of comprehension (0 indicating no information provided at all and 100 with maximum
lucidity). More details on this scoring procedure and the guidelines used can be found in the
Supplementary Material.

2.5. Synthesis of the Results

The following elements were extracted and grouped from the included studies:

• Investigated population (pathology and number of volunteers) and type of assistive device
(above-knee prosthesis or below-knee prosthesis or orthosis or exoskeleton).

• The main elements of the experimental protocol are reported.

� The studied locomotor activities along with the walking speed of the volunteers are given.
� The ‘Critical Timing’ is reported. It is the latest moment when the behavior of the locomotion

assistive device can be adapted to the new locomotion mode without disturbing the user.
� The type of sensors used in each study along with the total number of measurement axes

per sensor are reported.
� Details on the machine learning algorithm implementation are also reported (online and/or

offline implementation; forward prediction and/or backward recognition [8]).

• The signal processing techniques and Machine Learning algorithms used are reported as well:

� This includes the type and length of the analysis windows.
� The extracted features used for the analyses. If several configurations were tested, only the

optimal configuration is given.
� The machine learning algorithms are provided. Overall results of the machine learning

algorithms are reported in terms of accuracy (A). So, if studies indicated the error rates
(E), the corresponding mean overall accuracy was computed (A = 100—E in percent).
For studies recruiting both healthy volunteers and patients, the reported accuracy of the
machine learning algorithms corresponded to the patients (accuracy).

3. Results

3.1. Study Selection

The literature search produced 288 articles on PubMed and 1078 articles on Web of Science.
Additionally, four studies were manually identified from references in the articles and added to the
review. After removing the duplicates, there remained 1343 articles for screening. On the basis of titles
and abstracts screening, 1267 articles were excluded from the review. Two authors independently read
the full texts of the remaining 76 articles and checked them for eligibility. Finally, 58 articles were
considered eligible to be included in this review. The PRISMA Flow Chart [6] is provided (Figure 1).
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Records identified through databases searching
PubMed (N = 288), Web of Science (N = 1078)

Total (N = 1366 articles)

Records after duplicates removed
(N = 1343 articles)

Records screened
(N = 1343 articles)

Full text records assessed for eligibility
(N = 76 articles)

Studies included in the systematic review
(N = 58 articles)

Additional records identified through
other sources
(N = 4 articles)

Records excluded
(N = 1267 articles)

Full text articles excluded (N = 18)
Heathy individuals not wearing
any device (N = 7)
No Machine Learning (N = 6)
Conference paper related to a
previously included study (N = 3)
Not enough locomotion activities
(N = 2)

Figure 1. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) flow chart of
the systematic review.

3.2. Quality of the Included Studies

The mean quality score of each study using the items of the Modified QualSyst Tool is provided in
Table 1 and the detailed quality scores are presented in the Supplementary Material. The mean quality
score was 68.4% +/− 13.4 for the articles.

Table 1. Quality assessment and recruited volunteers in the included studies.

Article Quality Score Groups (N) Locomotion Assistive Device

Ai et al. 2017 [9] 70.8% TT (4)/Healthy (1) Ankle Prosthesis
Beil et al. 2018 [10] 90.9% Healthy (10) Exoskeleton
Chen et al. 2013 [11] 72.7% TT (5)/Healthy (8) Ankle Prosthesis
Chen et al. 2014 [12] 79.2% TT (1)/Healthy (7) Ankle Prosthesis
Chen et al. 2015 [13] 77.3% TT (1)/Healthy (5) Ankle Prosthesis
Du et al. 2012 [14] 75.0% TF (9) Ankle Knee Prosthesis
Du et al. 2013 [15] 45.8% TF (4) Ankle Knee Prosthesis
Feng et al. 2019 [16] 77.3% TT (3) Ankle Prosthesis
Godiyal et al. 2018 [17] 86.4% TF (2)/Healthy (8) Ankle Knee Prosthesis
Gong et al. 2018 [18] 86.4% Healthy (1) Orthosis
Gong et al. 2020 [19] 86.4% Healthy (3) Orthosis
Hernandez et al. 2012 [20] 37.5% TF (1) Ankle Knee Prosthesis
Hernandez et al. 2013 [21] 54.2% Healthy (1) Ankle Knee Prosthesis
Huang et al. 2009 [22] 81.8% TF (2)/Healthy (8) Ankle Knee Prosthesis
Huang et al. 2010 [23] 79.2% TF (1)/Healthy (5) Ankle Knee Prosthesis
Huang et al. 2011 [24] 83.3% TF (5) Ankle Knee Prosthesis
Kim et al. 2017 [25] 63.6% Healthy (8) Exoskeleton
Liu et al. 2016 [26] 70.8% TF (1)/Healthy (6) Ankle Knee Prosthesis
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Table 1. Cont.

Article Quality Score Groups (N) Locomotion Assistive Device

Liu et al. 2017 [27] 66.7% TF (2)/Healthy (2) Ankle Knee Prosthesis
Liu et al. 2017 [28] 63.6% TF (2)/Healthy (3) Ankle Knee Prosthesis
Long et al. 2016 [29] 83.3% Healthy (3) Exoskeleton
Mai et al. 2011 [30] 50.0% TT (1) Ankle Prosthesis
Mai et al. 2018a [31] 45.8% TT (1) Ankle Prosthesis
Mai et al. 2018b [32] 54.2% TT (1) Ankle Prosthesis
Miller et al. 2013 [33] 90.9% TT (5)/Healthy (5) Ankle Prosthesis
Moon et al. 2019 [34] 33.3% Healthy (1) Exoskeleton
Pew et al. 2017 [35] 66.7% TT (5) Ankle Prosthesis
Shell et al. 2018 [36] 70.8% TT (3) Ankle Prosthesis
Simon et al. 2017 [37] 66.7% TF (6) Ankle Knee Prosthesis
Spanias et al. 2014 [38] 54.2% TF (4) Ankle Knee Prosthesis
Spanias et al. 2015 [39] 54.2% TF (6) Ankle Knee Prosthesis
Spanias et al. 2016a [40] 62.5% TF (8) Ankle Knee Prosthesis
Spanias et al. 2016b [8] 58.3% Healthy (2) Ankle Knee Prosthesis
Spanias et al. 2017 [41] 58.3% TF (3) Ankle Knee Prosthesis
Spanias et al. 2018 [42] 62.5% TF (8) Ankle Knee Prosthesis
Stolyarov et al. 2017 [43] 79.2% TF (6) Ankle Knee Prosthesis
Su et al. 2019 [44] 77.3% TF (1)/Healthy (10) Ankle Knee Prosthesis
Tkach et al. 2013 [45] 62.5% TT (5) Ankle Prosthesis
Wang et al. 2013 [46] 66.7% TT (1) Ankle Prosthesis
Wang et al. 2018 [47] 79.2% Healthy (22) Exoskeleton
Woodward et al. 2016 [48] 91.7% TF (6) Ankle Knee Prosthesis
Xu et al. 2018 [49] 75.0% TT (3) Ankle Prosthesis
Young et al. 2013a [50] 66.7% TF (4) Ankle Knee Prosthesis
Young et al. 2013b [51] 79.2% TF (6) Ankle Knee Prosthesis
Young et al. 2013c [52] 62.5% TF (4) Ankle Knee Prosthesis
Young et al. 2014a [53] 66.7% TF (6) Ankle Knee Prosthesis
Young et al. 2014b [54] 75.0% TF (8) Ankle Knee Prosthesis
Young et al. 2016 [55] 75.0% TF (8) Ankle Knee Prosthesis
Zhang et al. 2011 [56] 70.8% TF (1)/Healthy (1) Ankle Knee Prosthesis
Zhang et al. 2013 [57] 66.7% TF (4) Ankle Knee Prosthesis
Zhang et al. 2019 [58] 63.6% TF (3)/Healthy (6) Ankle Knee Prosthesis
Zhang et al. 2019 [59] 59.1% TF (3)/Healthy (6) Ankle Knee Prosthesis
Zhang et al. 2012 [60] 62.5% Healthy (1) Ankle Knee Prosthesis
Zheng et al. 2013 [61] 86.4% TT (1) Ankle Prosthesis
Zheng et al. 2014 [62] 86.4% TT (6) Ankle Prosthesis
Zheng et al. 2016 [63] 75.0% TT (6) Ankle Prosthesis
Zheng et al. 2019 [64] 54.2% TT (6) Ankle Prosthesis
Zhou et al. 2019 [65] 54.2% Healthy (3) Exoskeleton

TT = Volunteer with a unilateral transtibial amputation, TF = Volunteer with a unilateral transfemoral amputation,
N = Number of recruited volunteers.

3.3. Extracted Elements of the Included Studies

In this section, we summarize some of the key aspects of the extracted elements of the
included studies.

3.3.1. Type of Assistive Device and Related Population

The type of assistive device used in each study and the related population are detailed in Table 1.
Four types of devices were used in the included studies: prostheses for transfemoral amputation

(i.e., above-knee prostheses), prostheses for transtibial amputation (i.e., below-knee prostheses),
exoskeletons and orthoses.

• Above-knee prostheses. This was the largest group among the published studies (N = 32).
Among these thirty-two studies, the recruited population were either patients with unilateral
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transfemoral amputation or knee disarticulation (N = 19). There were healthy volunteers and
patients with transfemoral amputation or knee disarticulation (N = 10). Finally, there were healthy
volunteers wearing an above-knee prosthesis with an L-shape adaptor (N = 3).

• Below-knee prosthesis. This was the second largest group in this review (N = 18). Among
those eighteen studies, the recruited population were either patients with unilateral transtibial
amputation (N = 13) or healthy volunteers or patients with unilateral transtibial amputation
(N = 5).

• Exoskeletons and orthoses. This constituted the smallest group in this review (N = 6 and N = 2
respectively). Among those eight studies, the recruited population was always healthy volunteers
wearing the assistive device.

3.3.2. Locomotion Activities and Walking Speed

The locomotion activities and walking speed investigated in each study are reported in Table 2.
The most representative experimental protocol investigated level ground walking along with stair

and ramp ascent/descent activities (N = 43). Secondly, in some studies, level ground walking was
investigated only with stair ascent and/or descent activities (N = 13). Among those fifty-six (43 + 13)
studies, additional activities were also considered such as obstacle clearance (N = 6), turning (N = 2) or
squatting (N = 1/58) for ‘dynamic’ activities and standing (N = 23/58) or sitting (N = 6/58) for static
activities. The remaining two papers investigated level ground walking with cross slope walking
(N = 1) and level ground walking with turning (N = 1).

In most studies, the walking speed was not provided (N = 33). One can assume that the volunteers
walked at a self-selected speed in these thirty-three studies. Next, the volunteers were asked to walk at
a self-selected speed in seventeen studies (N = 17). Finally, a small number of studies investigated
different walking speeds: volunteers were asked to walk either at self-selected speed or at a slower
or faster pace for different locomotion activities (N = 6). In the two remaining studies, recruited
volunteers were asked to walk at a predefined speed of 0.7 m/s (N = 2).
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3.3.3. Identifying the Critical Timing

The Critical Timings used in each study are provided in Table 2.
Among the studies focusing on ankle-knee or ankle-foot prostheses (N = 50), most investigated

the transitions between locomotion modes (N = 39). Several definitions of critical timing were used.
We describe these definitions below:

Firstly, a study (N = 1) conducted by Huang et al. [23] in 2010 defined the critical timing as 200 ms
before the prosthesis foot off of the ground for all transitions. Figure 2 illustrates the critical timing
used in Huang et al. [23] for both level ground walking to stair ascent and stair descent to level ground
walking transitions.

Secondly, some studies (N = 15) (in Huang et al. 2011 [24] for example) chose the critical timings
at well-defined gait events (e.g., Foot-Off and Foot Contact): for transitions from level ground walking
to any other locomotion mode, the critical timing was defined at the prosthesis foot off of the ground
and for transitions from any locomotion mode to level ground walking, the critical timing was defined
at prosthesis foot contact on level ground.

Thirdly, some studies (N = 5) (in Spanias et al. [42] for example) attempted to delay the critical
timing in order to improve the locomotion mode prediction. Here, for transitions from level ground
walking to any other locomotion mode, the critical timing was defined 90 ms after a gait event, such as
the prosthesis foot off, mid-swing, prosthesis foot contact or mid-stance.

Finally, in a recent study (N = 1) conducted by Xu et al. [49] in 2018 defined the definitions of
critical timings were altered based on the transition type and on the transitioning leg. As a result, the
critical timing was delayed when the amputated leg was the leading leg for the transition. For level
ground walking to stair ascent or stairs descent transitions, the critical timing was defined either at
the last prosthesis foot off of the ground or at the first prosthesis foot contact on the stairs. For any
other transitions, the critical timing was defined either at the first prosthesis foot contact on the new
locomotion mode or at the first prosthesis foot off of the new locomotion mode.

The other studies did not investigate the transitions (N = 11) or did not report the critical timings
used in the study (N = 17).

Among the studies focusing on orthoses or exoskeletons (N = 8), only three studies investigated
the transitions between locomotion modes. In Long et al. [29], the critical timing occurred at foot
contact of the contralateral leg of the exoskeleton. In Wang et al. [47], the critical timing occurred at
foot contact of the ipsilateral leg in the new locomotion mode. Finally, in Zhou et al. [65], the critical
timing occurred at mid-swing when the leg wearing the exoskeleton led the transition. It occurred at
the last foot off of the ground for transitions from level ground to any other locomotion mode and
finally for transitions from any locomotion mode to level ground walking it was at the first foot off of
the ground. The remaining studies either did not investigate the transitions (N = 4) or did not report
the critical timings used in the study (N = 1).
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A—Level walking to stair ascent

B—Stair descent to level walking

Figure 2. Example of the critical timings used in Huang et al. [23].

Panel A represents a patient with amputation in his transition from level walking to stair ascent.
The superior part of this panel is a spatial representation of the patient motion. The line below is the
temporal representation of the foot contact events. A dashed line maps the spatial representation to
the temporal representation. For the spatial representation, the points refer to the spatial coordinates
where the foot will hit/leave the ground. The temporal axis details the Foot Contact (FC) and Foot
Off (FO) gait events for both sides. Critical timing is defined 200 ms prior to the prosthesis Foot Off
event according to the Huang et al. Study [23]. The blue points are associated with the sound leg
(Index S) and the red points are associated with the prosthesis side (index P). The panel B uses the
same representation for patient from level walking to stair descent.
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3.3.4. Online/Offline Implementation of Machine Learning Algorithm for Prediction of the Upcoming
Locomotion Mode or Recognition of the Current Locomotion Mode

Information regarding the type of implementation of the Machine Learning algorithms is provided
in Table 2: recognition and/or prediction algorithm and online and/or offline implementation.

The Machine Learning algorithms developed in the studies included in this systematic review
were designed either to predict the upcoming locomotion mode (N = 30) or to recognize the current
locomotion mode (N = 24). Some studies developed a Locomotion Mode Recognition system with
adaptive strategies (N = 4). A forward predictor identified the upcoming locomotion mode while a
backward estimator recognized the current locomotion mode. The backward estimator was used to
label new data and the forward predictor could be updated with these newly labeled data.

Most of algorithms were trained and evaluated offline (N = 40) with a few which were trained
offline and evaluated online (N = 18).

3.3.5. Data Type and Sensors Used

The details concerning the sensors used in the studies are provided in Table 2.
Sensors used in the included studies were of four types:

• Kinematic data were measured with sensors such as Inertial Motion Units (IMUs) (N = 36),
or angle encoders (N = 21).

• Kinetic data such as interaction force between the device and the user were measured with load
cell (N = 31). Ground reaction force was measured with foot insoles (N = 17) and torque at the
joint was measured with motor current sensors (N = 14) or by measuring the length of a spring
(N = 1).

• Physiological data were measured with sensors such as Electromyographs (EMG) (N = 21),
Capacitive Sensing Systems (CSS) (N = 4) or Forcemyographs (FMG) (N = 1).

• Extrinsic data such as the distance between the user and an upcoming obstacle were measured
with laser distance meters (N = 2) or with depth cameras (N = 2).

3.3.6. Analysis Windows

The details concerning the analysis windows used in each study are provided in Table 3.
Three types of analysis windows can be distinguished: sliding (N = 30), unique (N = 7) or multiple

(N = 19) windows. The first method consisted of using a sliding analysis window by defining a
window length and a window increment. The windows can therefore overlap. For the unique and
multiple methods, the analysis window(s) was (were) defined either by a starting or ending point
and a fixed window length (N = 21) or by both end points with a variable window length (N = 5).
The remaining studies (N = 2) did not provide any information concerning analysis windows.
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Table 3. Preprocessing techniques, Machine Learning algorithms and reported accuracies of the
included studies. The details of the preprocessing techniques (windows and features) and the machine
learning algorithms used in each study are reported along with the corresponding accuracy. If several
configurations were tested, only the optimal configuration is reported.

Article
Analysis Windows

Sensors Features Algorithm Accuracy
Type Number Length

Ai et al. 2017 [9] Sliding NA 250 EMG
Mech

WT
DTW SVM 97.9

Beil et al. 2018 [10] Sliding NA 300 Mech Raw data HMM 92.8

Chen et al. 2013 [11] Sliding NA 150 Capacitive Mean, Max,
Min, RMS LDA 94.54

Chen et al. 2014 [12] Sliding NA 160 Pressure
Mech

Mean, Max,
Min, SD, RMS,

WL, CORR
Mean, Max,

Min, SD, RMS,
WL, ZC,
CORR

LR 98.2

Chen et al. 2015 [13] Multiple 4 200 Pressure SD, AR LDA 98.4

Du et al. 2012 [14] Sliding NA 150 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

LDA 98

Du et al. 2013 [15] Sliding NA 160 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

EBA 92.5

Feng et al. 2019 [16] Unique 1 Gait
Cycle Mech Raw Data CNN 92.1

Godiyal et al. 2018 [17] Unique 1 Stance FMG

Mean, Max,
Min, SD, RMS,

WL, SSC,
MAD

LDA 96.1

Gong et al. 2018 [18] Sliding NA 250 Mech Mean, Max,
Min, SD, MAD ANN 97.8

Gong et al. 2020 [19] Sliding NA 250 Mech Mean, Max,
Min, SD, MAD ANN 98.4

Hernandez et al. 2012 [20] Sliding NA 150 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

SVM NP

Hernandez et al. 2013 [21] Sliding NA 160 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

SVM 99.9

Huang et al. 2009 [22] Sliding NA 140 EMG MAV, SSC,
WL, ZC LDA 95.5

Huang et al. 2010 [23] Multiple 3 100 EMG MAV, SSC,
WL, ZC LDA NR

Huang et al. 2011 [24] Sliding NA 150 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

SVM 100

Kim et al. 2017 [25] Unique 1
FC

contro to
FC ipsi

Mech Custom
values DT 99.1

Liu et al. 2016 [26] Sliding NA 50 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min, SD

LDA ~98
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Table 3. Cont.

Article
Analysis Windows

Sensors Features Algorithm Accuracy
Type Number Length

Liu et al. 2017 [27] Sliding NA 160 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min, SD

EBA/LIFT 94.3

Liu et al. 2017 [28] Unique 1 800 Mech ICC HMM 95.8

Long et al. 2016 [29] NP NP NP Mech WT SVM 98.4

Mai et al. 2011 [30] Unique 1 Stance Mech

Mean, Force
Changing

Rate, Force
Ratio

ANN 98.5

Mai et al. 2018a [31] Sliding NA 100 Mech Mean, Max,
Min, SD, Diff SVM NP

Mai et al. 2018b [32] Sliding NA 100 pts Mech Mean, Max,
Min, SD, Diff SVM 99.4

Miller et al. 2013 [33] Multiple 3 200/300/100 EMG MAV, SSC,
WL, ZC, SD SVM 98.5

Moon et al. 2019 [34] Sliding NA NP Mech Raw data ANN NP

Pew et al. 2017 [35] NP NP NP Mech NP KNN 93.8

Shell et al. 2018 [36] Sliding NA 150 Mech Mean, SD,
Max, Min LDA 78

Simon et al. 2017 [37] Multiple 2 300 Mech WT DBN 99.6

Spanias et al. 2014 [38] Multiple 2 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,
Min, SD, IV,

FV

LDA ~ 96

Spanias et al. 2015 [39] Multiple 8 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,
Min, SD, IV,

FV

DBN ~ 99

Spanias et al. 2016a [40] Multiple 2 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,

Min, SD

DBN NR

Spanias et al. 2016b [8] Multiple 8 300 Mech
Mean, Max,
Min, SD, IV,

FV
DBN 96.7

Spanias et al. 2017 [41] Multiple 8 300 Mech
Mean, Max,
Min, SD, IV,

FV
DBN 98.8

Spanias et al. 2018 [42] Multiple 4 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,
Min, SD, IV,

FV

DBN 95.97

Stolyarov et al. 2017 [43] Unique 1 FF to FO Mech Mean, Max,
Min, SD LDA 94.1

Su et al. 2019 [44] Unique 1 490 Mech Raw Data CNN 89.2

Tkach et al. 2013 [45] Multiple 3 250 EMG
Mech

MAV, SSC,
WL, ZC

Mean, SD
LDA 96

Wang et al. 2013 [46] Multiple 4 200 Mech Range, AR,
CORR LDA 99.01

Wang et al. 2018 [47] Sliding NA 50 pts Mech Raw Data LSTM 95
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Table 3. Cont.

Article
Analysis Windows

Sensors Features Algorithm Accuracy
Type Number Length

Woodward et al. 2016 [48] Multiple 2 300 Mech
Mean, Max,
Min, SD, IV,

FV
ANN 98.9

Xu et al. 2018 [49] Sliding NA 250 Mech Mean, Max,
Min, SD, Diff QDA 93.2

Young et al. 2013a [50] Multiple 8 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,

Min, SD

DBN ~ 98.2

Young et al. 2013b [51] Multiple 8 300 Mech Mean, Max,
Min, SD DBN ~ 98

Young et al. 2013c [52] Multiple 2 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,

Min, SD

LDA 86.4

Young et al. 2014a [53] Multiple 2 250 Mech Mean, Max,
Min, SD LDA ~ 99

Young et al. 2014b [54] Multiple 8 300 EMG
Mech

MAV, SSC,
WL, ZC, AR
Mean, Max,

Min, SD

DBN ~ 99

Young et al. 2016 [55] Multiple 8 300 Mech
Mean, Max,
Min, SD, IV,

FV
DBN ~ 99

Zhang et al. 2011 [56] Sliding NA 150 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

LDA > 97

Zhang et al. 2013 [57] Sliding NA 150 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

SVM 95

Zhang et al. 2019 [58] Sliding NA 600 Depth
Camera Raw data CNN +

HMM 96.4

Zhang et al. 2019 [59] Sliding NA 733 Depth
Camera Raw data CNN 94.9

Zhang et al. 2012 [60] Sliding NA 160 EMG
Mech

MAV, SSC,
WL, ZC

Mean, Max,
Min

LDA 97.6

Zheng et al. 2013 [61] Sliding NA 250 Capacitive

Mean, Max,
Min, SD,

sum(abs(diff(X))),
mean(diff(X)),
sum(abs(X)),

Std(abs(diff(X))),
CORR

QDA 95

Zheng et al. 2014 [62] Sliding NA 250 Capacitive

Mean, Max,
Min, SD,

sum(abs(diff(X))),
mean(diff(X)),
sum(abs(X)),

Std(abs(diff(X))),
CORR

QDA 95.1
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Table 3. Cont.

Article
Analysis Windows

Sensors Features Algorithm Accuracy
Type Number Length

Zheng et al. 2016 [63] Sliding NA 250 Capacitive
Mech

Mean, Max,
Min, SD,

sum(abs(diff(X))),
sum(abs(X))
Mean, Max,

Min, SD

SVM 95.8

Zheng et al. 2019 [64] Sliding NA 250 Mech Mean, Max,
SD SVM 92.7

Zhou et al. 2019 [65] Sliding NA 150 Mech Mean, Max,
Min, SD, RMS SVM >90

Analysis Windows: Type: Three types of analysis windows are used: sliding windows, multiple windows,
unique window. Number: When using multiple windows, the number of windows is reported. NA = Not
Applicable (for unique and sliding windows). NP = Not Provided. Length: The window length is reported in
ms. When the window length is variable, both the beginning and the end of the window(s) are reported: Gait
Cycle = the data of the complete gait cycle are extracted, Stance = The data of the stance phase of the tested
side are extracted, FF to FO = the data from Foot Flat to Foot Off (of the tested side) are extracted, FC contro
to FC ipsi = the data from the Foot Contact of the contralateral side to the Foot Contact of the ipsilateral side
are extracted. If the acquisition frequency was not reported, the window length is reported in terms of point
numbers. NP = Not Provided. Sensors: EMG = ElectroMyoGraphs, FMG = ForceMyoGraph, Mech =Mechanical
sensors (e.g., IMU, joint angle, joint rotational speed, data from load cell, etc.), for more details refer to Table 3.
Features: NP = Not Provided, WT =Wavelet Transform, DTW = Dynamic Time Wrapping, Max = Maximum
value, Min = Minimum Value, IV = Initial Value, FV = Final Value, RMS = Root Mean Square, SD = Standard
Deviation, WL =Waveform Length, ZC = Zero Crossings, SSC = Slope Sign Change, MAD = Mean Absolute
Deviation, Diff = Differential Values, AR = autocorrelation coefficients of an autoregressive model (the number of
coefficients and the order of the model are not reported), CORR = Correlation between signals, ICC = Intraclass
Correlation Coefficients. Algorithm: (by order of appearance) SVM = Support Vector Machine, HMM =Hidden
Markov Model, LDA = Linear Discriminant Analysis, LR = Logistic Regression, EBA = Entropy Based Algorithm,
CNN = Convolutional Neural Network, ANN = Artificial Neural Network, DT = Decision Tree, LIFT = Learning
From Testing Data, KNN = K-Nearest Neighbor, DBN = Dynamic Bayesian Network, LSTM = Long-Short Term
Memory network, QDA = Quadratic Discriminant Analysis. Accuracy: NP =Not Provided, NR =Not Reported (in
Huang et al. [23] and in Spanias et al. [40], the influence of simulated noise on the EMG was tested, the reported
accuracies were lower and were not comparable to other studies), A ‘~’ sign means that results were obtained from
reading graphs un the paper.

3.3.7. Features

The detailed features and domains used in each study can be found in Table 3.
Two main domains of features have been investigated in the included studies: time-domain

(e.g., mean, minimum, maximum, standard deviation, etc.) (N = 48) and time-frequential domain
features (e.g., coefficients of the wavelet transform) (N = 1). One study compared the performances of
machine learning algorithm using either time-domain features or time-frequency domain features [9].

The remaining studies did not provide any information concerning the features used (N = 1) or
used the temporal data measured by the sensors and did not extract any features (N = 7).

3.3.8. Machine Learning Algorithms and Their Accuracies

Details on the machine learning algorithms used in studies and their reported accuracies are
presented in Table 3.

Most of the studies used the classical pattern recognition algorithms (Bishop 2006 [66]) which
are available. Three algorithms were implemented more often than others: Linear Discriminant
Analysis (LDA) (N = 29), Support Vector Machines (SVM) (N = 17) and Dynamic Bayesian Network
(DBN) (N = 10). Other algorithms were investigated a few times. Quadratic Discriminant Analysis
(QDA) (N = 8) was used either with data from Capacitive Sensing Systems (N = 4) or from Inertial
Motion Units (N = 4). Small Artificial Neural Networks (ANN) with 1 or 2 hidden layers were used to
recognize the current locomotion mode (N = 6) or to predict the upcoming locomotion mode (N = 1).
Convolutional Neural Networks (CNN) (N = 4) have started to be applied more recently for locomotion
mode classification (since 2019). CNNs were essentially used to avoid feature selection: all studies
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using CNNs did not extract any feature and instead fed raw sensor data into the algorithm. Other
algorithms were used only once (K-Nearest Neighbors—KNN and Long Short-Term Memory neural
networks - LSTM) or twice (Decision Tree—DT and Hidden Markov Model—HMM).

Some less typical adaptive algorithms were also sometimes used. Learning From Testing data
(LIFT) and Entropy Based Algorithm (EBA) were each used twice and Transductive SVM was used
once [15,27].

4. Discussion

This systematic review included 58 articles implementing Machine Learning classifiers designed to
identify the locomotion mode of assistive device user. Such algorithms were generally implemented as
high-level controllers able to automatically adapt the behavior of lower limb prostheses, exoskeletons,
or orthoses. We used the PubMed and Web of Science core collection databases for finding our
references. This was done because most medical related literature (including biomedical engineering)
can be found in these two databases. In addition, we performed an extensive search through the
references of the papers from the aforementioned databases. As we were focusing on medical literature,
we did not include Scopus as one of the databases for this review. This may have led to a very small
number of papers that have not been included in this review.

Accuracy and the robustness (e.g., stable performance in the face of long-term use) of the algorithm
were the variables most often used to report the results from studies investigating locomotion on
different terrains. The influence of (1) sensors, (2) analysis windows and features, (3) machine learning
algorithms on the accuracy and on the robustness of the locomotion mode classifiers are discussed
below. It should be noted that the accuracies reported in this review are those which were supplied in
each paper. Since each study was conducted with different circumstances such as number of subjects
and conditions tested, accuracies can be compared within each study but cannot be compared between
studies with precision.

4.1. Influence of Sensor Choice

Several sensors have been used to build locomotion mode classifiers. The choices of these sensors
may influence the accuracy and the robustness of the classifiers. More details are provided in the
sections below.

4.1.1. Algorithm Accuracy

Among the included studies the three most used sensors were Inertial Motion Units (IMU) (N = 36,
see Table 2), load cells (N = 31, Table 2) and electromyographs (EMG) (N = 21, Table 2).

Firstly, IMUs measure the acceleration and the rotational speed along three orthogonal axes.
For example, Stolyarov et al. [43] classified level-ground walking (LW), stair ascent (SA), stair descent
(SD), ramp ascent (RA) and ramp descent (RD) with LDA. They showed that including trajectory
information of the prosthesis increased the averaged accuracy compared to using only the accelerations
and rotational speeds (from 80.9% to 94.1%). They suggested using filtering techniques to reduce
drift (e.g., Kalman filters, particle filters, etc.). These researchers also brought up the point that the
performance of the classification algorithms might be reduced when applied to gait at slow walking
speed. Other researchers demonstrating the capacity of IMUs for the detection of locomotion mode
were Zhou et al. [65]. They were able with the SVM to classify three locomotion modes (LW, SA, SD)
with the exclusive use of IMU data. They achieved above 90% accuracy using orientation information.
The signals combining acceleration, rotational speed and orientation were directly extracted from the
IMUs (MPU 9250, Ivensense®—the filter technique was not reported in the data sheet of the sensor).

However, these studies suggested that the algorithm performances could increase when fusing
IMUs signals with other sensors signals. Thus, in most studies using IMUs, information from this
sensor was fused with measurements from other sensors (see below).
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Secondly, load cells measured the interaction force between the device and the user. For example,
Huang et al. [24] classified five locomotion modes (LW, SA, SD, RA, RD) with LDA and SVM by
using only a 6 degrees of freedom (DOF) load cell mounted on the prosthetic pylon of an above-knee
prosthesis. The phase-dependent strategy achieved 85 to 95% accuracy during stance phase (Initial
Double Limb Stance (DS1), Single Limb Stance (SS) and Terminal Double Limb Stance (DS2)) but the
accuracies dropped to 50–60% during swing (SW) phase for both LDA and SVM classifiers. Similar
drops in accuracy were reported when using only plantar pressure measurements [13,46]. According
to the authors [24], the low classification accuracies in the swing phase were almost certainly due to
low forces/moments generated during swing phase.

Thirdly, EMG signals measured from the residual limb were reported to contain useful information
for locomotion mode predictions in early studies. Indeed, for example, Huang et al. [24] and Miller
et al. [33] achieved classification of five locomotion modes (LW, SA, SD, RA, RD) using EMG signals
measured in the residual limb of patients with transfemoral and transtibial unilateral amputation
respectively. LDA and SVM classifiers were used in both studies. For volunteers with transfemoral
amputation [24], the SVM achieved an accuracy of above 90% for all phases. The LDA algorithm
achieved similar accuracies in the stance phase but a slightly lower accuracy of 85% in the swing phase.
For volunteers with transtibial amputation [33], both LDA and SVM algorithms achieved around
98% accuracy. Many researchers have pointed out that the EMG signals suffer from disturbances
especially because of shifts in electrode position when donning and doffing a prosthesis for example.
Miller et al. [33] reported a mean loss in accuracy of 15.8% and 23.1% for LDA and SVM classifiers
when the medial gastrocnemius electrode was shifted. Both studies concluded that EMG signals
could be helpful for classifying locomotion modes as long as the signals are not disturbed. Several
studies have provided suggestions for reducing these problems. They are discussed in the ‘Algorithm
robustness’ Section 4.1.2 below.

Finally, sensor fusion has been proven to significantly increase accuracies of locomotion mode
classifiers [24,54]. For example, Huang et al. [24] observed an increase in accuracy by combining EMG
and load cell data instead of using either only EMG data or only load cell data (accuracy increase of up
to 5.9% for an SVM classifier). Since then, data from different sensors have been fused together to reach
higher accuracies. In another example, Young et al. [54] used 13 mechanical sensors (IMU, load cell,
position, velocity and torque at knee and ankle joints) and recorded EMG signals from 9 muscles of the
residual limb of volunteers with a transfemoral amputation. A DBN algorithm predicting upcoming
locomotion modes reached 99% accuracy for steady-state steps and 88% accuracy for transitional steps.

4.1.2. Algorithm Robustness

Sensors measurement noise over time can affect the performances of locomotion mode classifiers.
To achieve reliable behavior of locomotion assistive device for long-term use, the influence of such noise
should be considered. Techniques implemented to take into account sensors noise are discussed here.

EMG signals were mostly reported to be disturbed by environmental noise, electrode conductivity
changes, shifts in electrode position or even loss of electrode contact [67,68]. Three techniques have
been used to cope with such disturbances. The first one aims at training ML algorithm with several
electrode displacement configurations [33]. The second one consists of building a sensor fault detection
system so that disturbed EMG channel are removed if detected as noisy [23,40]. The third one uses
an adaptive framework so that ML algorithm can be updated when EMG signals are disturbed [42].
The latter adaptive algorithm also included a sensor fault detection system. Alternatively, according to
some researchers [62,63], capacitive sensing systems, measuring the gap change between the residual
limb and the prosthetic socket [63], could eventually replace EMG signals since such sensors appear to
be robust to donning and doffing an ankle-knee prosthesis and to load bearing changes [62].
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4.2. Influence of Analysis Windows

In this section, we will discuss the influence of the analysis window configuration on the accuracy
of locomotion mode prediction.

Among the included studies, sliding (N = 30, Table 3) and multiple (N = 19, Table 3) analysis
windows were the preferred configurations. While the implementation of sliding windows requires
the building of one classifier per gait phase, the implementation of multiple windows is performed
by building one classifier per analysis window [50–55]. The number of classifiers depends on the
number of gait phases for sliding windows and depends on the number of windows for multiple
windows. In the case of sliding windows, Chen et al. [12] observed that the number of phases for
phase-dependent classification significantly influences algorithm accuracy. As a result, using four gait
phases (DS1, SS, DS2, SW) increased the accuracy of both LDA and QDA compared to when using
only two phases (Stance, Swing). As the sliding window method generally involves a longer portion
of the gait phase in question, the data to be classified are generally more variable.

Several studies reported that the length of analysis windows had a significant impact on algorithm
performances for multiple window [53,54] and sliding window [22] configurations. Young et al. [53,54],
using multiple windows, showed that there was an optimal window length (between 200 and 300 ms)
for classification accuracies using mechanical and EMG data for both steady state and transitional data.
The same was found in a study using sliding windows, where the length of the window but not its
increments were found to affect algorithm performances [22]. For online implementation however
smaller window increment ensures a faster response time since locomotion mode classification is
performed more often.

More recently, some researchers did not use analysis windows which ended at classic gait events
like foot contact but instead allowed for a delay in the termination of the analysis window. For example,
Simon et al. [37,69] had an analysis window which ended 90ms after foot contact or foot off. This delay
increased the accuracy of a DBN algorithm and did not affect the stability of the users of a powered
above-knee prosthesis.

4.3. Influence of Features

The features set used in each study was highly dependent on the sensors used.
For EMG signals, two types of features were tested: (1) time-domain features and (2) time-frequential

domain features. The most commonly used time-domain features were mean absolute value, waveform
length, number of zero crossings, number of slope sign changes (N = 21) and the coefficients of
autoregressive models (N = 8). For time-frequential domain features, the coefficients of the wavelet
transform of EMG signals were used once [9]. Ai et al. [9] compared LDA and SVM performances
when using time-domain features or time-frequency domain features. Both algorithms reached higher
accuracies with time domain features for one volunteer with below-knee amputation, e.g., in the case
of the SVM 91.9% with time-domain features vs. 82.3% with time-frequency features. Additionally,
time-domain features were easier and faster to compute [9].

A large number of studies (N = 48, Table 3) used mechanical sensors (IMU, load cells, encoders,
pressure insoles, etc.). The most representative feature (N = 34, Table 3) set was a combination of the
following time-domain features: mean, maximum, minimum and standard deviation. Initial and final
values were also sometimes added to the feature set (N = 8, Table 3).

Finally, several feature reduction techniques were sometimes used to find the minimal feature
set necessary for successful classification and to avoid overfitting (N = 14): Wrapper techniques such
as Sequential Forward Selection (SFS) and Selection Backward Selection (SBS) were used to pick the
features having the highest impact on the classification accuracy [39] (N = 8). Such methods are time
consuming [18]. Zhang et al. [57] compared the processing time taken by two wrapper methods and a
filter method. The filter method was found to be faster compared to wrapper methods (84 s for the
filter method vs. 1978 s for SBS).
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4.4. Influence of Machine Learning Algorithm

4.4.1. On Accuracy

A variety of ML algorithms were used in the included studies. The most frequently used algorithms
were LDA (N = 29, Table 3), SVM (N = 19, Table 3) and DBN (N = 10, Table 3). Also, CNNs were used
to avoid features selection (N = 4, Table 3).

LDA is easy to implement since no hyperparameters need to be tuned [48,70]. This algorithm
is fast (1.29 ms [48], 0.078 ms with parallelization [32]) and not prone to overfitting [9]. For these
reasons, this algorithm is often used as a baseline for performance comparisons between several
algorithms [32,42]. More importantly, in some studies, LDA obtained accuracies similar to neural
networks [48] and to SVM [33].

Even though, hyperparameters such as kernel parameter and the penalty factor need to be tuned
for SVM [16], optimization techniques (e.g., grid search [9], particle swarm optimization [29]) have
been found in some studies to reach slightly better performances than LDA [9,24] or QDA [62].

One of the first researchers to use DBNs were Young et al. in 2013 [50,51]. By adding past
information to those of the current state, the DBN was able to obtain higher classification accuracies
than LDA [54] (88% vs. 85% for transitional accuracies for DBN and LDA respectively). The DBN,
unlike LDA with uniform priors, take transitional probabilities into account (e.g., in stair ascent mode,
the next mode is more likely to be stair ascent or level ground walking).

Finally, CNNs were recently used in a few studies [16,44,58,59]. For example, Zhang et al. [58,59]
used depth-images with a depth-camera coupled with an IMU mounted on the prosthetic pylon of an
above-knee prosthesis. CNNs, known to perform well when handling image datasets are often used to
avoid manual feature selection. CNNs were also used in the case of non-image data, e.g., IMU data [44]
or load cell data [16]. All four studies using CNNs reported an accuracy above 89% but none of those
studies implemented the designed CNN online.

The most common mistake was misclassification between ramp ascent and level ground walking
modes [50]. Grouping ramp ascent and level walking classes were reported to improve the performances
of locomotion mode classifiers [50]. Such a technique is relevant when the control laws (impedance
in [43,50]) are similar for both modes. Zhang et al. [59] evaluated the influence of such errors
(misclassifications between level walking and incline walking) on the stability of the user of an
above-knee prosthesis using angular momentum and a subjective questionnaire. It was observed that
the effect of the errors depends on the type of error, the error duration, and the gait phase where the
error occurred. Errors were considered critical if the stability of prosthesis users was disturbed. This
appears to be a good criterion for evaluating the importance of errors when designing a locomotion
mode classifier.

4.4.2. On Robustness

Very few studies have evaluated the performances of locomotion mode classifiers for long term
use. Adaptive frameworks have been proposed to deal with EMG disturbances [42] or to achieve
stable performances for long term use [27]. For example, Spanias et al. [42], designed a forward
predictor and a backward estimator. The forward predictor is an ML algorithm designed to predict
the upcoming locomotion mode of an assistive device user. The backward estimator is an ML
algorithm designed to recognize the current locomotion mode. The latter algorithm was used to label
new data. Then, the newly labelled data were incorporated into the training set and then used to
update the forward predictor parameters. Spanias et al. [42] used this framework to deal with EMG
disturbances. The adaptive algorithm learned to reincorporate disturbed EMG channels over time.
The adaptive algorithm was reported to perform significantly better than a non-adaptive algorithm.
In another example, Liu et al. [27] evaluated the performance of adaptive algorithms compared to a
non-adaptive algorithm across multiple session within a single experimental day. After donning and
doffing the prosthesis, the adaptive algorithms were reported to update classifiers boundaries and to
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recover initial accuracy whereas the performances of the non-adaptive algorithms gradually decreased.
To sum up, adaptive frameworks seem to be a promising solution to achieve long-term locomotion
mode classification.

4.5. Propositions for Future Work

This systematic review included 58 articles published between 1 January 2000 and 31 July 2020.
All 58 articles implemented ML-based locomotion mode classifiers designed for users of lower limb
assistive devices. As can be seen from Table 3, classification accuracies under the tested conditions
were almost always very high, hence indicating good progress in the attempts to construct more
intelligent prosthetic devices. Nevertheless, there is always room for improvement. We try here to
propose some recommendations concerning the research reports in the field as well as suggestions for
moving forward with the implementation of these devices in the daily lives of the patients.

4.5.1. Homogenization of Reports

We will start first with the question of terms that are used in the field. This is not a trivial matter
as the homogenization of terms would increase the understanding between researchers and hence
speed up progress. There is much confusion around the use of terms recognition and prediction.
The two terms are used in an interchangeable manner across studies but do not refer to the same goal.
We propose that classifying the locomotion mode before the critical timing can be considered as a
prediction task while a classification made after the critical timing can be considered as a recognition
task. For recall, the critical timing is the latest moment when the behavior of the locomotion assistive
device can be adapted to the new locomotion mode without disturbing the user. A more discriminating
use of the two terms, recognition and prediction, would ease the comprehension of the studies.

The report of accuracies also suffers from a similar lack of precision. While many reports have
distinguished between accuracies during steady state and the transitional step, several have not.
Adding together the success obtained in steady state with that which is obtained in transitional steps is
misleading, as the errors made in the latter tend to be higher. We therefore propose that there should
be a systematic distinction of accuracies for these two modes.

4.5.2. Recommendations for Generalization to Daily Life Conditions

The review shows that significant progress has been made in the efforts to ease the use of prosthetic
devices across multiple terrains. Nevertheless, some obvious steps are necessary to move ahead with
ensuring the comfortable use of these devices in the daily lives of the patients.

An obvious thing to add on the list would be the inclusion of more daily life conditions for testing
the devices. Examples of these would be different angles of approaches towards stairs or slope [9,28],
different staircases [18] or load bearing changes [51]. A good extension for many of the studies included
in this review would be a test of the algorithms outside the laboratory. Only a very small number of
studies managed to take this step. For example, the work of Zhang et al. [58,59] evaluated a CNN
classifier with data acquired both indoors and outdoors. Such studies are to be encouraged.

Another important condition to be included, to make the prosthetic devices more usable in daily
life, would be the integration of multiple speeds in the study. Once again, very few researchers have
investigated this condition. One researcher who has taken a step in this direction is Liu et al., 2017 [28].

A third variation which is not often taken into consideration is the transitioning leg which is used
when entering a new terrain. While subjects tend to use one leg more than the other when crossing
into new conditions, the side used is not always identical and subjects can change the transitioning leg.
A handful of studies such as one by Zhou et al. [65] have taken this into account. They reported better
accuracies when the locomotion mode classifier was trained with data from both transitioning legs.
This may be a simple condition to include in more of the future studies in the field.

We turn here, from a discussion of conditions to be tested, to comments on how to decrease the
burden of developing an algorithm which is tuned to each patient. The process of gathering data
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for the purpose of training the ML algorithm for each patient can be long and burdensome. A few
researchers have provided recommendations on how to reduce the difficulty of this step. For example,
Zhang et al. [60] proposed an automatic training method through environmental sensing. A radar
distance meter coupled with an IMU helped to sense the environment and to automatically label
the acquired data. Automatic labelling could also be achieved with depth cameras [58,59]. Another
step in this direction has been the use of subject independent models which could potentially reduce
the amount of training data needed. Efforts of this type have been made by Young et al. [52] and
Spanias [8]. It seems that the addition of this step to future investigations of predictive or recognition
algorithms would provide the additional bonus of reduced training time for the patient.
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Abstract: Relative orientation estimation between the hand and its fingers is important in many
applications, such as virtual reality (VR), augmented reality (AR) and rehabilitation. It is still quite a
big challenge to do the estimation by only exploiting inertial measurement units (IMUs) because of
the integration drift that occurs in most approaches. When the hand is functionally used, there are
many instances in which hand and finger tips move together, experiencing almost the same angular
velocities, and in some of these cases, almost the same accelerations are measured in different 3D
coordinate systems. Therefore, we hypothesize that relative orientations between the hand and
the finger tips can be adequately estimated using 3D IMUs during such designated events (DEs)
and in between these events. We fused this extra information from the DEs and IMU data with an
extended Kalman filter (EKF). Our results show that errors in relative orientation can be smaller
than five degrees if DEs are constantly present and the linear and angular movements of the whole
hand are adequately rich. When the DEs are partially available in a functional water-drinking task,
the orientation error is smaller than 10 degrees.

Keywords: relative orientation estimation; IMU; magnetometer-free

1. Introduction

Hand-finger movement tracing is useful in many areas, such as virtual reality (VR), augmented
reality (AR), ergonomic assessment and especially medical applications [1–5]. People who suffered
from stroke or injury of the spinal cord need an effective rehabilitation therapy for recovery of body
functions, including hand function. In a hospital, therapists evaluate the hand function through
some traditional assessments such as the Fugl–Meyer or Jebsen–Taylor hand function assessment [6,7].
Currently, the results may be subjective and dependent on the therapist. Therefore, it is essential
to provide a quantitative and understandable measurement to make the therapist’s diagnosis more
objective. Several sensory systems can be used to trace hand motion, which can be categorized as
camera-based, glove-based, magnetic actuator-based and inertial measurement unit (IMU)-based.
Camera-based systems can be divided into two different types. One uses high-speed cameras to
trace markers attached to body segments, which is quite accurate and often used as the reference [8].
However, occlusion problems will influence its accuracy and the distance between cameras and hands
needs to be below a few meters in order to accurately measure hand and finger orientations. Because of
these problems, you need many cameras (6 to 12). The other camera-based system traces objects,
including their orientations, by exploiting depth maps to reconstruct the object [9,10]. Its advantage is
that no finger or hand attachments are needed, making it friendly to users. However, this system also
suffers from the occlusion problem and only allows hand movements to be evaluated if they occur
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in the vicinity of the cameras [11,12]. Besides, it requires a powerful processor to process the images.
Glove-based sensor systems exploit varying sensors, such as resistive-bend sensors and optical-fiber
sensors on the glove, transducing finger movement into corresponding signals to estimate relative
orientations between hand and finger segments [13,14]. It has the benefit of a low price. However,
the glove needs to be well attached for the measurement and requires thorough calibration before
utilization. The magnetic actuator-based system also has two types, active actuation and passive
actuation. The first one deploys active magnetic actuators on the finger tip and receivers on the dorsal
side of the hand [15]. It has high accuracy and no occlusion issue. However, it requires different
frequencies for each degree of freedom (DoF) of the actuator, which often needs equipment such as
multiple power signal sources and a high-speed processor. This affects the complexity of the system
and its physical dimensions. The second one uses magnets as passive sources, magnets are placed
on the finger tips while magnetic sensors are worn on the wrist [16]. It has the benefit of having a
simple structure and a low cost. However, it is difficult to distinguish the fields of different magnets,
since only the sum of the fields are measured, especially when the magnets get close. The IMU-based
system utilizes inertial sensors to trace the hand [17–19]. Compared with previous methods, it can
provide raw data including angular velocity and acceleration. Orientation can be estimated by fusing
the raw data. This operation suffers from drift, since it involves integration operations. However,
this drift can be compensated using magnetometer data, which is easily accessible since it is often
embedded in IMU systems. However, magnetometers are used in this solution and are therefore
vulnerable to external magnetic disturbances, such as indoor iron surroundings [20,21]. Thomas and
Wolfgang et al. proposed magnetometer-free methods for the joint angle estimation [22–25]. However,
such methods assume the rotation is restricted to two DoFs because of the anatomy constraint [23].
Thus, they cannot be applied to flexible joints, such as the metacarpophalangeal joint (MCP) of the
thumb. Relative orientations between the hand and its fingers are important for the reconstruction of
hand-finger movement, which is essential information for AR, VR and rehabilitation.

Our goal is to estimate relative 3D orientations between finger tips and the dorsal side of the hand
with only IMUs, essentially getting rid of magnetic disturbance by not using magnetometers. In order
to reduce the integration drift, we exploit information during the daily life rather than using the
biomechanical constraint. The information is based on the assumption that there are many instances
in which hand and finger tips move together, experiencing almost the same angular velocities and
accelerations represented in different 3D coordinate systems. The method was verified with a small
sensor configuration: one sensor on the dorsal side of hand, and one on the most distal finger segment
of interest.

2. Methods

In order to estimate the relative orientation, the information from the gyroscope and accelerometer
and extra information during DEs need to be combined in an optimal way. Therefore, an extended
Kalman filter (EKF) was introduced to estimate 3D relative orientations between the dorsal side of the
hand and finger tips, assuming angular velocities and accelerations are the same, but just represented
in a different coordinate system. The process model is based on integrating relative angular velocity,
the measurement model is mainly based on the information during the DE. The quality of the DE
is considered in the measurement variance. When the DE is available with small variance, we trust
the measurement model more; otherwise, we trust the process model more. Thus, the information
from process and measurement models is optimally fused to estimate relative 3D orientations during
functional hand and finger movements.
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2.1. Sensor Model

The gain error and non-orthogonality error are assumed to be time-invariant and can be obtained
through sensor calibration; thus, the outputs of calibrated gyroscope can be expressed as{

yh
gyr,h = ωh

h + bh + ζh

y f
gyr, f = ω

f
f + b f + ζ f

(1)

where yh
gyr,h and y f

gyr, f are gyroscope outputs on the hand and finger tip in their own frames.
bx(x = h, f ) is the slowly varying offset. ζx(x = h, f ) is Gaussian noise.

For the calibrated accelerometer, the outputs on the hand and finger tips are{
yh

acc,h = ah
h + gh + ηh

h

y f
acc, f = a f

f + g f + η
f
f

(2)

where g is the gravity, and ηh
h and η

f
f are Gaussian noise.

2.2. Process Model

The process model is based on integrating the relative angular velocity between the hand and its

fingers in its own frame. We choose the quaternion qh f =
[

q0 q1 q2 q3

]T
that expresses relative

orientation from a finger tip to the dorsal side of the hand as the state vector x = qh f . The relative
orientation xk is updated as

xk = xk−1 ⊗
[

1 1
2 ωkdt

]
+ m (3)

where m is the process error. ωk is the relative angular velocity between the hand and fingers; ⊗
represents the multiplication operator between two quaternions.

ωk = (ωh
h)k − xk−1 ⊗ (ω

f
f )k ⊗ x∗k−1 (4)

where ωh
h and ω

f
f are hand and finger angular velocities.

2.3. Measurement Model

The measurement update of EKF is based on the DE. During the DE, the hand and fingers share
the same angular velocity in different coordinate frames

ωh
h=qh f ⊗ ω

f
f ⊗ q∗

h f (5)

where ω
y
x(x = h, f , y = h, f ) is the angular velocity of an object in frame x expressed in the coordinate

frame of object y. h represents the hand and f represents the finger tip. Combining Equations (1) and
(5), we find:

yh
gyr,h=qh f ⊗ y f

gyr, f ⊗ q∗
h f + bh − qh f ⊗ b f ⊗ q∗

h f +

ζh − qh f ⊗ ζ f ⊗ q∗
h f

=qh f ⊗ y f
gyr, f ⊗ q∗

h f + dgyr

(6)

where the combined error of gyroscope dgyr is

dgyr=(bh − qh f ⊗ d f ⊗ q∗
h f ) + (ζh − qh f ⊗ ζ f ⊗ q∗

h f ) (7)
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Unlike the angular velocity, accelerations at different positions are different, which can be expressed as

ah
h = qh f ⊗ a f

f ⊗ q∗
h f + ωh

h × (ωh
h × rh

f h) + ω̇h
h × rh

f h

=qh f ⊗ a f
f ⊗ q∗

h f + (
⌊

ωh
h

⌋
×

⌊
ωh

h

⌋
×
+
⌊

ω̇h
h

⌋
×
)rh

f h
(8)

where ay
x(x = h, f , y = h, f ) is the acceleration of object in frame x relative to frame y. ω̇h

h is the hand
angular acceleration in its own frame. rh

f h is the position vector between hand and fingers in the hand
frame. ��× denotes a skew-symmetric matrix.

�a�× =

⎡⎢⎣ 0 −az ay

az 0 −ax

−ay ax 0

⎤⎥⎦ (9)

If the second term (
⌊

ωh
h

⌋
×

⌊
ωh

h

⌋
×
+
⌊

ω̇h
h

⌋
×
)rh

f h is relatively small compared with the first term qh f ⊗
a f

f ⊗ q∗
h f , then Equation (8) can be approximated as the following equation:

ah
h ≈ qh f ⊗ a f

f ⊗ q∗
h f (10)

Combining Equations (2) and (8), we find:

yh
acc,h=qh f ⊗ y f

acc, f ⊗ q∗
h f + (

⌊
ωh

h

⌋
×

⌊
ωh

h

⌋
×
+
⌊

ω̇h
h

⌋
×
)rh

f h + ηc (11)

where the combined error ηc can be expressed as

ηc=ηh
h − qh f ⊗ η

f
f ⊗ q∗

h f (12)

Finally, an overall relation between hand and fingers based on Equations (6) and (11) is⎧⎨⎩ yh
gyr,h=qh f ⊗ y f

gyr, f ⊗ q∗
h f + dgyr

yh
acc,h=qh f ⊗ y f

acc, f ⊗ q∗
h f + (

⌊
ωh

h

⌋
×

⌊
ωh

h

⌋
×
+
⌊

ω̇h
h

⌋
×
)rh

f h + ηc
(13)

Subsequently, we can get the measurement model based on the sensor model and quaternion constraint

yk = f (xk) + v (14)

where y and f can be expressed as

yk =
[
(yh

acc,h)
T

(yh
gyr,h)

T
0
]T

(15)

f (x) =

⎡⎢⎢⎣
xk ⊗ y f

acc, f ⊗ x∗k
xk ⊗ y f

gyr, f ⊗ x∗k
q2

0 + q2
1 + q2

2 + q2
3 − 1

⎤⎥⎥⎦ (16)

As shown in Equations (3) and (16), the process and measurement model are both nonlinear with
respect to xk. In order to update the covariance matrix for xk, linearization is performed and the
Jacobian matrix F and H for process and measurement model are calculated; the details can be found
in the Appendix A.
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2.4. Uncertainty Error Variance

In order to assess the relative confidence in the measurement model (based on our DE
assumptions) and the process model, the measurement variance is determined. According to the
assumption that a hand and finger share approximately the same angular velocity and acceleration
based on Equation (13), the differences in angular velocity and acceleration between the hand and
fingers measured by the IMU determine the measurement variance. From Equation (7), the error is
related to the offset error, the white noise and relative orientation. dgyr can be expressed with following
equation from Equation (6).

dgyr = yh
gyr,h − qh f ⊗ y f

gyr, f ⊗ q∗
h f (17)

We approximate the distribution of dgyr as Gaussian distribution with zero mean and standard

deviation σg

[
1 1 1

]
(rad/s)

σg =
∥∥∥yh

gyr,h − qh f ⊗ y f
gyr, f ⊗ q∗

h f

∥∥∥
2

(18)

For Equation (13), the error dacc can be expressed with the following equation:

dacc = (
⌊

ωh
h

⌋
×

⌊
ωh

h

⌋
×
+
⌊

ω̇h
h

⌋
×
)rh

f h + η (19)

We can express the error in another format from Equation (11).

dacc = yh
acc,h − qh f ⊗ y f

acc, f ⊗ q∗
h f (20)

Similarly to the gyroscope, we assume the error dacc has an approximate Gaussian distribution with
zero mean while its standard deviation σa

[
1 1 1

]
is

σa =
∥∥∥yh

acc,h − qh f ⊗ y f
acc, f ⊗ q∗

h f

∥∥∥
2

(21)

Based on the Gaussian approximation, as described in Equations (17) and (20), it is essential to
know the rotation quaternion qh f before we get the variance. However, qh f is the variable we try to
estimate which is also unknown. As we assume there is no or a slow orientation change between
the hand and finger tips, the estimated relative orientation at time k − 1 is used as the true relative
orientation at time k.

qh f ,k = q̂h f ,k−1 (22)

where qh f ,k is the "true" rotation quaternion we use to estimate the variance at time k. q̂h f ,k−1 is the
estimated rotation quaternion at time k − 1. The measurement covariance is determined as

Rm =

⎡⎢⎣σg I3×3 0 0

0 σa I3×3 0

0 0 0

⎤⎥⎦ (23)

The initial value for the state vector of relative orientations xk was set as
[
1 0 0 0

]T
.

3. Experiments

3.1. Experiment Setup

The sensor system includes three IMUs fixed on the most distal segments of the thumb and index
finger and the dorsal side of the hand, as shown in Figure 1. MPU9250 (InvenSense) was chosen
for the IMU, which contains a tri-axis accelerometer and tri-axis gyroscope (it also contains a tri-axis
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magnetometer, which was not used in the current study). All IMUs were sampled synchronously;
the sample frequencies of gyroscope and accelerometer were 200 Hz and 100 Hz respectively. All the
data were collected by a master micro-controller (Atmel XMEGA) and then transmitted to the PC via
a USB connection. Prior to the experiment, the accelerometer was calibrated based on local gravity;
the gyroscope was calibrated based on the calibrated accelerometer [26]. An optical Vicon system
with eight cameras was used to perform 3D orientation reference measurements. For this purpose,
three optical markers were attached to each IMU. The sampling frequency of Vicon was 100 Hz.

IMU

Ref marker

Figure 1. IMUs on the dorsal side of the hand and fingertips. The inset shows the cluster of optical
markers used on top of each IMU for reference measurement of segment orientations using the optical
VICON system. Every cluster contains three markers, which determine a 3D coordinate frame.

3.2. Alignment of the IMU and Reference Marker Frame for the Validation Experiment

For evaluation of the IMU-based 3D relative orientation estimation using the optical system,
it is essential to calibrate the relative orientation between the sensor and marker-based reference
frame. Here, we used the accelerometer for this marker system’s IMU calibration. Holding the
system static, we obtained the gravity in the IMU frame from the accelerometer readings. Meanwhile,
we obtained the orientation from the global Vicon frame to marker frame qmg. Gravity in marker frame
is qmg ⊗ g ⊗ q∗

mg, where g is gravity in global Vicon frame (z-axis of global Vicon system was vertical

upward; gravity in this frame was g =
[

0 0 −g
]
; g is the local gravity value). When we have

at least two poses, we obtain more than two vectors expressed in the marker frame and IMU frame
respectively, which is enough to determine the relative orientation between the IMU and marker frame.

3.3. Sensor to Segment Calibration

Before the experiment, IMU errors were calibrated according to D Tedaldi et al.’s and WT
Fong et al.’s research [26,27], including sensitivity error, offset error, non-orthogonal error and
misalignment between the accelerometer and gyroscope. After the IMU was fixed on the hand
and fingers, the relative orientations between IMU sensors and body segments were calibrated.
An accelerometer was used to achieve the alignment by exploiting static accelerometer measures of
gravity. When we held our hand sequentially horizontally and vertically, we obtained the 3D relative
orientation between two frames. More details can be found in Kortier et al.’s research [28].

3.4. Synchronization of Vicon and IMU System

In this experiment, the two measurement systems were synchronized by recording the sensed
responses of an induced impact at the start and end of each experiment. At the start and end of every
experiment, we hit the IMU on a desk, resulting in an acceleration peak measured by the IMU system
and a minimum vertical position of the Vicon markers simultaneously, which was used to synchronize
the two systems.
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3.5. Protocols for the Experiment

In order to demonstrate the feasibility of our approach, an experimental part was designed to
estimate the accuracy of the algorithm compared with the optical system. Our feasibility experiment
involved three participants. The protocol was reviewed, approved and conducted under the auspices
of the Ethics Committee EEMCS, Univerisity of Twente. The following tasks were performed:

Task1: Movements and rotations of the hand, while not varying relative orientations between hand and
fingers: IMUs were fixed on fingers and the dorsal side of the hand. Then, the participant did the
pronation and supination movements with the arm while the axis of pronation and supination was
continuously changing. The orientation was changed over approximately 160◦ around the rotation axis;
see Figure 2. Furthermore, we varied the angular velocity by performing these cyclical movements
with varying repetition rate of pronation and supination (60, 120, 240 cycles/min), with the help of a
metronome. This was done in order to test the performance of the algorithm under different conditions.
During the process, the subject was asked to close the hand and not change the relative orientations
between the hand and fingers, while displacing or rotating the hand.

Task2: Simple functional task. The subject was asked to place the hand on the desk; then rise the
hand and grasp a cup; subsequently drink some water and place the cup back; and finally place the
hand on the original position. The illustration of the movement can be seen in Figure 3.

(a) (b) (c) (d)

Figure 2. Movement for task 1: rotations of the hand, while not varying relative orientations between
the hand and fingers. Subfigure (a,b) are a set of pronation and supination movements. Subfigure (c,d)
are another set of pronation and supination but with a different rotation axis. During this task, we did
the pronation and supination movements with different rotation axes.

(a) (b) (c) (d) (e) (f)

Figure 3. Movement for task 2: Simple functional task. The task can be divided into several phases.
(a) Put the hand static on the desk; (b) raise the hand; (c) grasp the cup; (d) drink the water; (e) release
the hand; (f) withdraw the hand.

For task 1, the orientation reference was directly derived from the IMUs, because the relative
orientation was imposed by the hand, and therefore, known and not varying. For task 2, the reference
measurement was performed using the optical VICON system (software version 2.8.2).
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4. Results

4.1. Movements and Rotations of the Hand, While Not Varying Relative Orientations between the Hand and
Finger (Task 1)

The error angle used was the arccos of the first component of quaternion error qerr [29]:

qerr = q−1
est ⊗ qre f =

[
1 1

2 θerr

]
(24)

where qest was the estimated relative orientation and qre f was the orientation reference. We obtained
more than two independent vectors from the gyroscope, accelerometer or both from 3D movements.
The error angle estimated when DE is available is shown in Figure 4. The orientation error is
smallest with the gyroscope and accelerometer, while the orientation error is largest with accelerometer
data only.

Figure 4. Estimated orientation error |θerr| with gyroscope and accelerometer (values under 99.3 percent
coverage are shown in the boxplot figures). “G”, “A” and “G+A” represent estimated results based on
gyroscope, accelerometer and gyroscope plus accelerometer respectively.

Influence of Repetition Rate of Movement

The estimation may be influenced by the repetition rate of movements. Figures 5 and 6 show the
relation between the norm of gyroscope or accelerometer on thte hand and finger for several repetition
rates. Ideally, the gyroscope output norms ‖ygyr,h‖, ‖ygyr, f ‖ should be equal for the measurement
update and for the accelerometer. The differential output norms cause estimation errors, as shown in
Equation (13). For the accelerometer, the different output norms |‖yacc,h‖ − ‖yacc, f ‖| were 29.3 m/s2,
66.4 m/s2 and 370.2 m/s2 under the repetition rates 60, 120 and 240 beats/min respectively. Meanwhile,
the correspondingly differential output norms of gyroscope were 2.2 rad/s, 2.7 rad/s and 4.4 rad/s.
As shown in Figure 7b,c, the estimated orientation error based on the accelerometer became larger
when the repetition rate increased, while orientation error based on gyroscope changed little when
the repetition rate increased. As shown in Figure 7a, the estimated result based on the gyroscope and
accelerometer trusted the gyroscope more than the accelerometer because it contained less error; thus,
it was also insensitive to repetition rate.
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Figure 5. Relation of output norms between gyroscopes on the dorsal side of the hand and finger tip
with different repetition rates.
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Figure 6. Relation of output norms between accelerometers on the dorsal side of the hand and finger
tip with different repetition rates.
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Figure 7. Estimation error |θerr| with different repetition rates (values under 99.3 percent coverage are
shown in the boxplot figures). Subfigures (a–c) are estimations with gyroscope plus accelerometer,
and gyroscope and accelerometer individually.
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4.2. Simple Functional Task (Task 2)

According to Figure 3, the whole process was divided into several phases; the estimated
orientation errors based on the optical system in different phases are shown in Figure 8.
The quaternion-based orientation estimated by IMU system and optical can be seen in Figure A3 in the
Appendix B. The error during the drinking part was relatively low because the cub imposed a constant
relative orientation on the hand and fingers and the whole hand moved with varying position and
orientation, as shown in Figure 8. Since the angular velocity and acceleration norms were close to each
other, the standard deviations of measurement noise σa and σg were small, as shown in subfigure (b);
the measurement model was trusted relatively more relative to the process model under said condition.
For the other phases of this functional task, there were bigger differences between gyroscope and
accelerometer norms on the hand and fingers; thus σa and σg were bigger; the trust in the process
model was relatively high. A good estimation of relative orientation was achieved by choosing a
suitable standard deviation for the process error (see Figure 8c). The results of other two participants
can be seen in Figures A1 and A2 in the Appendix B.
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Figure 8. Relative orientation between hand and thumb during the water-drinking process. Subfigure
(a) shows the output norms of the two gyroscopes (on the hand and finger tip respectively). Subfigure
(b) shows the normalized SDs σa and σg from Equations (18) and (21). Larger σa and σg mean larger
measurement error. The EKF trusts the process model more and the measurement model less when σa

and σg are larger. Subfigure (c) shows the estimated results with different SDs of the process model.
The variance of process error Q was determined as σp I4.

5. Discussion

We proposed and evaluated an IMU-based setup for estimating 3D relative orientation
between hand and finger tips. Compared with the IMU-based data glove system described by
Salchov-Homer et al. [19] and Kortier et al. [28], we reduced the number of IMUs as much as possible
and avoided magnetic disturbance, but still obtained comparable precision of estimated orientation.
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In reference [19], the orientation error magnitude is approximately five to ten degrees. In our research,
the orientation error is related to the movement quality. When the hand and fingers move together,
the median orientation error can be smaller than five degrees. For the water-drinking experiment,
the estimated error is less than ten degrees when hand and fingers approximately move together, but
around ten degrees during the rest periods. In our view, this is a promising method for the hand
finger orientation estimation with a small IMU configuration which can be used if rich whole-hand
movements occur and the change of relative orientations between hand and finger tips is regular and
relatively small. Standard deviations σg and σa can be used to assess whether such DEs regularly apply
during a specify movement.

Most previous IMU-based systems [17,28] for finger orientation estimation usually require a
magnetometer to reduce the drift caused by the gyroscope, which will suffer from the magnetic
disturbance problem in indoor environments. To our knowledge, in order to remove magnetic
disturbance but still suppress the drift, a biomechanical model is additionally used in methods
described in the literature (e.g., [17,28]). We have not applied additional information from a
bioimechanical model in our current study, although this additional information could be applied.
However, it should be noted that finger movements are usually assumed to be restricted to two
DoFs while using biomechanical constraints. In construct, our method can be implemented without
biomechanical constraints and can be applied to estimating three-DoF-relative orientation during 3D
hand movements without such biomechanical assumptions.

For the result in task 1, the relative orientation estimation is less sensitive to an increase of
repetition rate of the same movement when using gyroscopes or gyroscopes plus an accelerometer
than the accelerometer only. That is because as the difference among the accelerometer signals from
the hand and finger becomes larger, the non-gravitational acceleration caused by increasing angular
velocity or angular acceleration becomes relatively more important compared to the gravity component.

Position estimation only based on inertial sensors is quite challenging and limited by integration
drift. Our further research will concentrate on relative position estimation based on IMUs combined
with sensing the magnetic field of a magnetic source. For this to be feasible, an adequate estimate
of relative orientation is required, so the 3D magnetic field measurement can be expressed in the
coordinate system of the magnetic source. This is an essential first step in estimating relative positions.
In this research, only one healthy participant was involved since we are mainly concentrating on
verifying the performance of the algorithm. Subsequently, the proposed relative orientation and
position estimation methods for the hand and finger using a small sensing configuration need to be
evaluated in healthy subjects and patients during more complex daily tasks, in order to assess the
applicability in clinical and daily-life settings. To make the system more friendly to users, the system
could be wireless in the future.

6. Conclusions

In conclusion, IMUs can be used to estimate the relative orientation between the hand and fingers
without using magnetometers. Compared with previous systems, we only exploit IMUs on finger
tips and the dorsal side of the hand rather than having IMUs on every segment. The performance
is dependent on how well the hand and fingers move together, which influences the accuracy of the
estimate. The median value of estimation error can be smaller than five degrees when IMUs are on
our hand and fingers if their relative orientation is not variant over time, while the object or hand is
moving. During the water-drinking task, the estimation error can be smaller than 10 degrees during
periods when the hand and fingers approximately move together, which may be adequately accurate
to provide useful information to clinicians when judging.
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Appendix A

By linearizing the nonlinear function of the process model and measurement model, we obtained
the Jacobian matrixes F and H respectively, which were used in EKF for the covariance update. Based
on Equation (3):

F =
∂xk

∂xk−1
=

1
2

⎡⎢⎢⎢⎣
a11ω2 a12ω2 a13ω2 a14ω2

a21ω2 a22ω2 a23ω2 a24ω2

a31ω2 a32ω2 a33ω2 a34ω2

a41ω2 a42ω2 a43ω2 a44ω2

⎤⎥⎥⎥⎦ dt

+
1
2

⎡⎢⎢⎢⎣
0 −ω1x −ω1y −ω1z

ω1x 0 ω1z −ω1y
ω1y −ω1z 0 ω1x
ω1z ω1y −ω1x 0

⎤⎥⎥⎥⎦ dt + I4×4

(A1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = 2
[
q0q1 q0q2 q0q3

]
a12 =

[
1 + 2q2

1 2q1q2 2q1q3

]
a13 =

[
2q1q2 1 + 2q2

2 2q2q3

]
a14 =

[
2q1q3 2q2q3 1 + 2q2

3

]
a21 = −

[
1 + 2q2

0 2q0q3 −2q0q2

]
a22 = −2

[
q0q1 q1q3 −q1q2

]
a23 =

[
−2q0q2 −2q2q3 1 + 2q2

2

]
a24 = −

[
2q0q3 1 + 2q2

3 −2q2q3

]
a31 = −

[
−2q0q3 1 + 2q2

0 2q0q1

]
a32 = −

[
−2q1q3 2q0q1 1 + 2q2

1

]
a33 = −2

[
−q2q3 q0q2 q1q2

]
a34 =

[
1 + 2q2

3 −2q0q3 −2q1q3

]
a41 = −

[
2q0q2 −2q0q1 1 + 2q2

0

]
a42 =

[
−2q1q2 1 + 2q2

1 −2q0q1

]
a43 = −

[
1 + 2q2

2 −2q1q2 q0q2

]
a44 = −2

[
q2q3 −q1q3 q0q3

]

(A2)

Based on Equation (16):

H =
∂ f
∂xk

=

⎡⎢⎢⎢⎢⎣
∂(xk⊗y f

acc, f ⊗x∗k )
∂xk

∂(xk⊗y f
gyr, f ⊗x∗k )

∂xk
∂(q2

0+q2
1+q2

2+q2
3)

∂xk

⎤⎥⎥⎥⎥⎦

= 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11y f
acc, f b12y f

acc, f b13y f
acc, f b14y f

acc, f

b21y f
acc, f b22y f

acc, f b23y f
acc, f b24y f

acc, f

b31y f
acc, f b32y f

acc, f b33y f
acc, f b34y f
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b11 =
[
q0 q3 −q2

]
b12 =

[
q1 q2 q3

]
b13 =

[
−q2 q1 −q0

]
b14 =

[
−q3 q0 q1

]
b21 =

[
−q3 q0 q1

]
b22 =

[
q2 −q1 q0

]
b23 =

[
q1 q2 q3

]
b24 =

[
−q0 −q3 q2

]
b31 =

[
q2 −q1 q0

]
b32 =

[
q3 −q0 −q1

]
b33 =

[
q0 q3 −q2

]
b34 =

[
q1 q2 q3

]
(A4)

Appendix B

In this section, three figures are shown. Figures A1 and A2 are the results of task 2 from other two
participants. Compared with the first participant, the drinking phase (see subfigure (d) of Figure 3) is
replaced as displacing, which means, we did not put the cup to the mouth but to another position on
the desk. Figure A3 is the estimation of relative orientation between the hand and fingers based on the
IMU and optical system; based on this, we obtained the orientation error in subfigure (c) in Figure 8.
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Figure A1. Relative orientation between the hand and thumb during the water-drinking process.
Subfigure (a) shows the output norms of the two gyroscopes (on the hand and finger tip respectively).
Subfigure (b) shows the normalized SDs σa and σg from Equations (18) and (21). Larger σa and σg mean
larger measurement error. The EKF trusts the process model more and the measurement model less
when σa and σg are larger. Subfigure (c) shows the estimated results with different SDs of the process
model. The variance of process error Q was determined as σp I4.
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Figure A2. Relative orientation between the hand and thumb during the water-drinking process.
Subfigure (a) shows the output norms of the two gyroscopes (on the hand and finger tip respectively).
Subfigure (b) shows the normalized SDs σa and σg from Equation (18) and (21). Larger σa and σg mean
larger measurement error. The EKF trusts the process model more and the measurement model less
when σa and σg are larger. Subfigure (c) shows the estimated results with different SDs of the process
model. The variance of process error Q was determined as σp I4.
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Figure A3. Estimation based on relative orientation between the hand and thumb based on IMU
system and optical system. Orientations are expressed based on quaternion; based on these results,
we obtained the orientation error in subfigure (c) of Figure 8. σp has the same meaning as in Figure 8.
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Abstract: Gait analysis has traditionally been carried out in a laboratory environment using expensive
equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into
clinical applications as well as use during activities of daily living. Real-time gait analysis is key to
the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This
article presents a systematic review of wearable sensors and techniques used in real-time gait analysis,
and their application to pathological gait. From four major scientific databases, we identified 1262
articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most
sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors
and the shank and foot are the preferred placements. Insole pressure sensors are the most common
sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on
threshold or peak detection are the most widely used gait detection method. The heterogeneity of
evaluation criteria prevented quantitative performance comparison of all methods. Although most
studies predicted that the proposed methods would work on pathological gait, less than one third
were validated on such data. Clinical applications of gait detection algorithms were considered, and
we recommend a combination of IMU and rule-based methods as an optimal solution.

Keywords: wearable sensor; real-time gait detection; gait analysis; insole pressure sensors; inertial
measurement unit; pathological gait; gait rehabilitation; assistive device

1. Introduction

1.1. Motivation

Traditionally, performing gait analysis required a dedicated laboratory and expensive
equipment, which has limited its scope of applications. Recent advancements in technol-
ogy have led to reliable, affordable, and wearable sensors for gait analysis that enable
its use outside of a laboratory environment and during activities of daily living. One of

Sensors 2021, 21, 2727. https://doi.org/10.3390/s21082727 https://www.mdpi.com/journal/sensors
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its primary uses has been in diagnosing walking impairment in people with gait disabili-
ties [1–4] and inspires control mechanisms of exoskeletons [5,6] and prostheses [7], among
other applications [8–12]. More specifically, real-time gait analysis has proven essential in
applications necessitating real-time control such as exoskeletons and prostheses, as well
as gait rehabilitation involving Functional Electrical Stimulation (FES) [13,14] or Epidural
Electrical Stimulation (EES) [15].

Physiological human gait is a quasi-periodic, synergistic process involving the timely
actuation of several lower-limb muscles, well-coordinated by neurons in the brain and the
spinal cord [5]. Gait disorders and disabilities can arise due to various reasons including
amputation of lower limbs, neurological diseases such as Parkinson’s, cerebral palsy and
Huntington’s, as well as through stroke or paralysis following an injury to the brain or the
spinal cord. This review is particularly motivated by the use of real-time gait analysis in an
on-going clinical study (STIMO, ClinicalTrials.gov, NCT02936453): a First-in-Man study to
confirm the safety and feasibility of a closed-loop EES in combination with overground
robot assisted rehabilitation training for patients with chronic incomplete spinal cord injury
(SCI) [16].

We first carried out a systematic review and meta analysis across four major scientific
databases (Scopus, Web of Science, Cochrane and PubMed) to identify the current state
of the art in wearable sensor-based real-time gait analysis. We then extracted studies that
focused on pathological gait and analyzed the most common sensors and techniques used
in clinical applications.

1.2. Previous Reviews

Before moving into the details of our study, we will briefly discuss our analysis of
existing review articles from literature, the results of which are summarized in Table 1. It can
be noted from the table that reviews done so far are either specific to a particular category
of gait detection method, are not systematic, lack coverage across major citation databases
or focus only on wearable sensing. Furthermore, throughout the literature, we noticed the
synonymous usage of the terminologies gait detection, gait event detection, and gait phase
detection. Although we appreciate the specific difference in terminologies, for the sake of
brevity, we will use gait detection to imply gait event and/or gait phase detection.

Among the 11 review studies analyzed, only four of them were systematic reviews.
Taborri et al. [17] performed a systematic review on wearable and non-wearable sensors
used in gait detection. The study identified various wearable sensors such as inertial
measurement units (IMU), insole pressure sensors (IPS), electromyography (EMG) and
electroneurogram (ENG), and non-wearable sensors such as opto-electronic systems, force
plates, and ultrasonic sensors. The study, however, was limited to sensors and did not
provide any review of gait detection methods. Panebianco et al. [18] performed a systematic
review covering PubMed, Scopus, and Web of Science. Although the search keywords were
not restrictive to rule-based methods, all 17 of the studies involved were limited to rule-
based methods. Caldasa et al. [19] performed a systematic review across major databases
such as Web of Science, ScienceDirect, IEEE, PubMed/MEDLINE, SCOPUS, CINAHL, and
Cochrane, thereby ensuring an exhaustive coverage. However, the review was limited
to only artificial intelligence-based gait detection methods using inertial measurements,
resulting in only 22 studies that met the acceptance criteria. Chen et al. [20] performed
a systematic review focusing particularly on quantifiable gait measures and tangible
evaluation techniques that are based on wearable sensors, particularly inertial measurement
units (IMU). The study also includes a review of nonlinear analysis techniques such as
phase portrait, Poincaré map, Lyapunov exponent (for gait stability assessment), and
elliptical Fourier analysis (for gait complexity assessment). The study, however, did not
report any real-time gait analysis methods. It can be noticed from these systematic reviews
that they are either limited to review of sensors or to a specific category of gait detection
method or did not consider real-time gait detection methods. Finally, none of these studies
presented information about pathological aspects of wearable sensor-based gait detection.
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To the best of the authors’ knowledge, there does not exist a systematic literature
review that identifies various wearable sensing options, real-time gait analysis methods,
and presents pathological aspects of wearable sensor-based gait detection. We therefore
performed a systematic review and meta-analysis across the four major scientific databases
mentioned earlier, following the PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) standard [21], covering 1262 articles, as will be discussed in the
next sections.

Table 1. Previous reviews: gaps identified from existing review articles from literature, covering wearable sensor-based
gait detection.

References Focus of Review Database Covered Gaps Identified in Existing Reviews
Number of Articles

Included

Song et al. [8]
Health sensing techniques with a
particular focus on smartphone

sensing
Not specified Not a systematic review, no review of

gait detection methods -

Shull et al. [22] Clinical impact of wearable
sensing

MEDLINE, Science Citation
Index Expanded, CINAHL,

Cochrane

Not a systematic review, no review of
gait detection methods 76

López-Nava and
Muñoz-Meléndez [23]

Review on inertial sensors and
sensor fusion methods for human

motion analysis,

ACM Digital Library, IEEE
Xplore, PubMed,

ScienceDirect, Scopus, Taylor
Francis Online, Web of

Science, Wiley Online Library

Not a systematic review, no review of
gait detection methods, review limited

to inertial sensors
37

Novak and Riener [24] Sensor fusion methods in
wearable robotics Not specified Not a systematic review, no review of

gait detection methods -

Vu et al. [25]
Gait event detection methods

applicable specifically for
prosthetic devices

Scopus, ScienceDirect, Google
Scholar

Not a systematic review, review
restricted to one category of

rehabilitation devices
87

Rueterbories et al. [26]
Review of sensor configurations

and placements, and a brief
review of gait detection methods

Not specified Not a systematic review, gait detection
methods were reviewed very briefly -

Perez-Ibarra et al. [27]

Brief review comparing gait event
detection methods, sensors used,
placement of sensors and subjects

involved

Not specified Brief review, as a subset of the article 18

Taborri et al. [17] Wearable and non-wearable
sensors used in gait detection

Scopus, Google Scholar,
PubMed No review of gait detection methods 72

Caldasa et al. [19]
Artificial intelligence-based gait
event detection methods using

inertial measurements

Web of Science, ScienceDirect,
IEEE, PubMed/MEDLINE,

Scopus, CINAHL, Cochrane

Review was limited to only one type of
sensor and one type of gait detection

algorithm
22

Panebianco et al. [18] Rule-based methods PubMed, Scopus and Web of
Science

Review was limited to only one
category of gait detection algorithm 17

Chen et al. [20]
Quantifiable gait measures and
tangible evaluation techniques

that are based on wearable sensors

PubMed, IEEE Xplore, ACM
Digital Library, EBSCO and

Cochrane Library

No review of real-time gait analysis
methods 35

1.3. Structure of the Report

The remainder of the article is organized into three sections. In Section 2, we describe
the methods followed in setting up the systematic review. In Section 3, we present and
discuss the results regarding: the search results in general in Section 3.1, gait events and
gait phases in Section 3.2, wearable sensors in Section 3.3, algorithms used for wearable
sensor-based real-time gait analysis in Section 3.4, and interpretations towards clinical
applications in Section 3.5. Finally, in Section 4, we present the conclusions.

2. Method: Setting up the Review

2.1. Choice of Databases

Haddaway et al. [28] classified scientific literature databases into two categories:
Academic Citation Database (ACDB) and Academic Citation Search Engine (ACSE). ACDBs
include the traditional Boolean string-based search engines such as Scopus, Web of Science
and PubMed, while ACSEs include Google scholar and semantic/natural language-based
search engines such as Microsoft Academic Search and Semantic Scholar. We first explored
both categories before making a choice.
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We considered nine of the most popular ACDBs in our selection process: CINAHL,
EBSCO, ACM digital library, IEEE Xplore, Science Direct, Scopus, Web of Science, Cochrane,
and PubMed. CINAHL, EBSCO, and ACM digital libraries were not included in the study
because of a lack of access to them. We could not include IEEE Xplore since it limits the
number of search terms to 15, which is noticeably lower than the number of keywords
used in this study (see Table 2). However, this should not impact the comprehensiveness
of our study, since IEEE articles are already indexed in Scopus and Web of Science. Science
Direct was not included, as a recent update in their search keyword input framework
limited us from inputting all our keywords, thereby making it unsuitable for our systematic
review. However, this should not impact the comprehensiveness of our study since Science
Direct and Scopus share the same database [29] and come from the same parent company
(Elsevier). Finally, we decided not to include ACSEs in the review primarily because of
deficient repeatability and reproducibility of search results, among other factors [28,30–32].
The remaining databases were thus Scopus, Web of Science, Cochrane and PubMed. ACDBs
such as Scopus and Web of Science use a selective procedure to safeguard against low-
quality or low-impact material being indexed [33], while Cochrane and PubMed are
expected to add more clinically relevant studies.

2.2. Choice of Keywords for Search

To establish an appropriate search phrase, a pre-search was carried out first, collecting
a list of keywords used by gait analysis researchers. In an attempt to find an optimum
keyword-combination from the list, we analyzed these keyword-combinations by taking the
conducted search results (from Scopus) to VOS-viewer [34], a metadata analysis software.
VOS-viewer performs clustering of search results based on title, abstract and keywords
of corresponding articles and illustrates the results graphically as shown in Figure 1.
This gives us a bigger picture of the nature of articles returned by the search engine for the
corresponding choice of keywords. The size of each node indicates the relative relevance
(based on the frequency of occurrence of keywords) of that topic among the list of articles
returned by the search query. This procedure was iterated and refined several times before
arriving at the final search phrase listed in Table 2. We believe that it made the decision-
making less subjective and biased. Although this study is not limited to any particular
wearable sensor, we included the keywords ‘IMU’ and ‘insole’ (see Table 2) explicitly so as
not to miss out articles related to these two types of sensors, while also retaining the word
‘sensor’ in the search phrase to make it inclusive for every other type of wearable sensors.

Table 2. Keyword combination used for search in Scopus database which resulted in 697 articles
(see Figure 2). The same keyword combination was used in the other databases as well, except
adapting syntax to individual search engines.

realtime OR “real time” OR online
AND

gait OR walking OR locomotion OR “lower limb” OR “lower body” OR
leg OR “lower extremity”

AND

analysis OR detection OR evaluation OR assessment OR estimation OR
reconstruction OR tracking

AND

wearable OR portable OR mobile
AND

sensor OR “inertial measurement unit” OR accelerometer OR IMU OR gyroscope OR
insole OR in-sole
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Figure 1. Word cloud showing most frequently occurring keywords present in search results for a search query in Scopus
(for instance, see Table 2), visualized by the software VOS-Viewer [35]. The size of each node indicates the relative relevance
(based on the frequency of occurrence of keywords) of that topic among the list of articles returned by the search query.
Connections between nodes were not used in refining the search terms.

2.3. Carrying Out the Review in a Systematic Manner

In this study, we followed the PRISMA standard for systematic review. A total
of 1262 articles were part of the review, including 1221 articles retrieved from the four
databases (see Figure 2) and an additional 41 articles added later from bibliographies of
the former. Figure 3 shows the PRISMA flow diagram illustrating the screening procedure
followed. The screening procedure was performed independently by the two lead authors
of our study. Studies for which the authors had difference of opinion on their exclusion
(such as studies that were at the border line of the exclusion criteria) were mutually
discussed and decided upon. Although assessment of paper quality is not mandated
by the PRISMA standard, the authors’ choice of databases ensured that low-quality and
low-impact material was not considered.

We classify the most commonly used gait features into intra-stride (within stride) and
inter-stride (between strides) features, and into temporal and spatial features. Intra-stride
features are of higher granularity, looking at the gait in more detail, while inter-stride
features are of lower granularity. The choice of each depends on the application. Examples
of each category are listed in Table 3.
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In this review, we focus on intra-stride temporal gait features (ISTGFs), the rationale
being that inter-stride features can be obtained from related intra-stride features (e.g., stride
duration and cadence can be obtained from temporal information of consecutive heel
strikes). We therefore believe that detecting sufficient ISTGFs is sufficient for insightful gait
analysis in practice. In addition, ISTGFs are necessary for real-time control applications
such as in the clinical study [16] that has served as a particular motivation for this review.
Hence, studies not estimating the ISTGFs (such as indoor localization algorithms, gait
reconstruction methods and activity classification methods) were excluded from this review.

Figure 2. Collecting unique articles from the databases was carried out sequentially, starting with Scopus where 697 articles
were extracted and of which 695 unique records were identified. Out of the 335 unique records identified from Web of
Science, 290 articles already appeared in the results from Scopus and hence the remaining 45 unique records were added.
Similarly, 34 from Cochrane and 17 from PubMed were added to the list of unique records.

Table 3. Classification of the most commonly used gait features into intra-stride and inter-stride as
well as into temporal, spatial, and spatio-temporal features. The scope of this review is primarily
limited to the intra-stride temporal gait features (ISTGFs) highlighted in blue.

Features Intra-Stride Features Inter-Stride Features

Temporal

Gait events
Gait phases

Step duration Stride duration
Swing/stance duration Cadence

Spatial Step length Stride length

Spatio-temporal

Joint angles
Segment angles, segment positions

Joint torques
Ground reaction force

Centre of pressure
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Figure 3. PRISMA flow diagram illustrating the screening procedure. Reasons for exclusion and the number of articles retrieved
at each stage are indicated in red. In addition, 832 articles were left after removing duplicates. Out of those, 679 articles were
eliminated through title-abstract screening, based on a set of exclusion criteria as listed in the PRISMA flow diagram. The
remaining 153 articles qualified for full-text screening, of which 40 were excluded and the remaining 113 qualified for full-text
review. Out of these, 99 articles were also used for quantitative analysis. ISTGF—intra-stride temporal gait feature.

Other major reasons for exclusion are listed in the PRISMA flow diagram (see Figure 3).
Studies not involving bipedal systems, studies not involving wearable systems, and studies
devoted purely to (wearable) sensor development are directly excluded. When both a
conference version of an article and its extended journal version appeared in our search
results, the conference version was excluded. In a rare observation, we noted two sets of
nearly duplicate conference publications from the same set of authors [7,36–38]. In this case,
only the latest ones were considered for further review. Finally, if an article was found to
compare, list, or review multiple gait event detection methods introduced in other studies,
the original studies were included in the review rather than the former.

3. Results and Discussion

3.1. Search Results

The systematic review resulted in the identification of 1262 studies, as indicated in
Figure 3. After removal of duplicates, we were left with 832 unique studies. Out of these,
113 and 99 qualified for qualitative and quantitative analysis respectively. Studies that
underwent qualitative analysis influenced our discussions while quantitative analysis
resulted in the extraction of metadata that was presented throughout the paper. The
14 studies not included in the quantitative analysis did not contain all the necessary
metadata and therefore did not contribute directly to the metrics presented.

Review studies cited in Section 1.2 have an average of 30 full-text articles per review,
with a maximum of 76 by Shull et al. [22]. The present work is thus one of the most
comprehensive reviews on the subject.
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3.2. Gait Events and Gait Phases

Irrespective of the type of wearable sensors used and the type of real-time gait analysis
methods followed, here we will briefly discuss the two major ISTGFs from literature: gait
events and gait phases.

Researchers followed different terminologies for various gait events. Some authors
prefer to use initial contact (IC) (or sometimes touch down) instead of being more specific
as to whether the contact is with heel strike (HS) or with toe strike (TS). Although HS is
most often the obvious initial contact in unimpaired gait, it is not necessarily the case with
impaired gait. For instance, initial contact in the case of toe walking could be TS instead
of HS. Similarly, some authors prefer end contact or foot off instead of using the more
explicit terminologies: toe off (TO) or heel off (HO). On the other hand, for gait phases,
researchers tend to use consistent terminology to decompose stance and swing: loading
response, mid-stance, terminal stance, pre-swing, initial swing, mid-swing, and terminal
swing [6,39–42].

A detailed count of gait events and gait phases used in the resulting studies is shown in
Figure 4a,b respectively. TO and HS are the most widely identified gait events irrespective
of the type of sensor used. A total of 42 studies detected TO while 45 detected HS,
suggesting the high relevance and ease with which these events can be identified from gait
signals. Among the gait phases, swing (22 studies) was the most widely identified gait
phase followed by mid-stance (17 studies).

3.3. Sensors

In order to have an overview of relevant wearable sensors available on the market,
a survey of off-the-shelf devices was conducted. Wearable sensors identified include pri-
marily IMUs, insole pressure sensors (IPS), electromyography (EMG) sensors, goniometers,
inclinometers, electromagnetic trackers, and stretch sensors. However, only three main
types of wearable sensors could be identified among the 99 studies that featured in the
quantitative analysis of our review: IMU, IPS, and a combination of the two. The dis-
tribution of sensors used is shown in Figure 5a and discussed in the following sections.
A check was performed on the Scopus database to ensure that our explicit addition of
search terms regarding IMU and IPS were not heavily biasing the results. In fact, only 98
additional studies were found compared to the 725 identified without the search terms, and
we therefore conclude that their explicit addition was not responsible for the dominance of
these sensor types.

(a) (b)
Figure 4. (a) Distribution of studies based on the detected gait events; (b) distribution of studies based on the gait phases
identified. Gait events/phases reported with greater (temporal) specificity are shown in magenta while gait events/phases
reported with less specificity are shown in blue. For instance, initial contact (IC, blue) is not specific as to whether the contact
is with the heel or toe while heel strike (HS, magenta) and toe strike (TS, magenta). TO—toe off, HO—heel off, FO—foot off,
HS—heel strike, TS—toe strike, IC—initial contact, FF—foot flat, LR—loading response, MSt—mid-stance, TSt—terminal
stance, St—stance, PSw—pre-swing, ISw—initial swing, MSw—mid-swing, TSw—terminal swing and Sw—swing.
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3.3.1. Inertial Measurement Units

Inertial measurement units (IMUs) are sensors combining accelerometers and gy-
roscopes to measure linear acceleration and angular velocity of the body to which it is
attached. Optionally, it also comes with a magnetometer that can estimate the magnetic
north based on the earth’s magnetic field and is sometimes called an inertial-magnetic
measurement unit. As shown in Figure 5a, we notice that IMUs are the most widely used
sensors with 77% of studies using it either alone (67%), or in combination with IPSs (10%).

(a) (b)
Figure 5. (a) Distribution of studies based on the type of wearable sensors used; (b) distribution of studies based on the
type of sensors used for ground-truth validation of IMU-based gait analysis. Absolute number of studies in each category is
listed within parentheses. IMU—inertial measurement unit, IPS—insole pressure sensor, EMG—electromyography sensor.

Appropriate sensor placement often simplifies or even eliminates any calibration re-
quired for gait detection algorithms. Gyroscopes are invariant to translation in position [39]
since the angular velocity of a rigid body is the same at any point along the body (assuming
the orientation of the sensor remains the same with respect to the body segment). They
are also unaffected by gravity and are less prone to noise. Accelerometers, on the other
hand, are reported to be more noisy, subject to the influence of gravity and sensitive to
both position and orientation. The sensitivity to sensor orientation is typically avoided by
considering the norm of acceleration instead of acceleration along individual axes. The
influence of gravity is often used to estimate the orientation of the sensor with respect to
the earth frame of reference (in combination with additional constraints such as the Earth’s
magnetic field).

With IMUs, various possibilities for sensor placement exist and researchers have tried
a number of approaches for gait-related studies, placing IMUs on different body segments
or combinations thereof. The approaches are quantified in Figure 6. Among the studies
which used IMUs, the shank was the most widely preferred lower-body segment for gait
analysis (with 39 studies) closely followed by the foot (with 38 studies).

Although these numbers give us a better understanding of the preference followed
in literature, they alone do not necessarily tell us whether these segments are the ones
that provide the richest information of gait or if preferring these segments over others
makes it easy to identify ISTGFs from gait data. Some researchers attempted to give a
clearer answer to these questions. Li et al. [43] compares IMU signals from the thigh, the
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shank and the foot based on what they call, the “energy of acceleration,” which is the norm
of raw acceleration minus gravity. They argue that the “energy of acceleration” (when
inspected graphically) appears to be relatively more “stable” (i.e., constant) in the foot
compared to the other two body segments and hence recommend IMU placement at the
foot. Mazilu et al. [12], in the context of freezing of gait, reports 98% or more detection
performance for all three body segments, suggesting that the question of optimal sensor
placement is irrelevant in the context of freezing of gait. Jasiewicz et al. [44] report that,
upon comparison of three rule-based gait event detection methods, the method based on
foot angular velocity and linear acceleration was significantly more accurate than that of the
method based on the shank for spinal cord injured (SCI) subjects. Taborri et al. [45] made
a similar observation for a hidden Markov model (HMM)-based classifier. They report
that the accuracy of a HMM-based classifier for gait event detection was better when the
angular velocity of the foot was used rather than of the thigh or the shank. The relatively
high preference for the foot could also be justified by the results from neuro-behavioral
experiments suggesting that limb endpoints are the primary variables used to coordinate
locomotion in animals and humans [15]. Bejarano et al. [46] analyzed four signals—linear
acceleration in forward and vertical direction, angular velocity, and segment angle normal
to the sagittal plane—for the thigh, the shank, and the foot. Acceleration components were
discarded (after a preliminary investigation) due to noise and vibrations while the root
mean square error between each cycle (as well as the average) was computed for the other
two signals. For both angular velocity as well as segment angle, sensors placed on the
shank were identified with noticeably low root mean square error and hence the authors
recommended using the shank as the preferred location for IMU placement.

Number of Studies
Total Single Placement Placement Combinations

Head 2 2
Trunk 10 3
Upper Limb 2 1
Thigh 20 5
Knee 2 1
Shank 39 23
Foot 38 25

1 1 5 4 4 2 1 1

Figure 6. Number of studies using inertial measurement units (IMUs) that placed the sensor(s) on specific anatomical locations. Single
placement contains studies where sensor(s) were placed only in one anatomical location. Placement combinations’ columns indicate
studies where sensor(s) were placed in more than one location. Each relevant location is marked by a shaded cell and the number of
studies using this combination is indicated at the bottom of the column. The total indicates the sum of studies where the sensor(s) were
placed on that given anatomical location.

Much like the inter-segment IMU placement problem just discussed, a user could
also place the IMU at a different position and orientation within a given body segment,
each time it is attached to the body. Such intra-segment differences may result in unde-
sirable variations across data sets and across subjects. This is typically avoided by using
a mount/socket so that the sensor falls into the same location every time it is inserted.
Anwary et al. [47] suggests that the optimal location for IMU placement on the foot is the
medial arch followed by the Achilles tendon.

Raw signals from IMUs are noisy, particularly the accelerometer signals, and thus
filters are widely used. Meta-analysis on preprocessing filters used in the case of IMUs
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revealed that 39 out of 69 studies used at least one preprocessing filter, 31 of which
used a low-pass filter among which 15 used the Butterworth low-pass filter. Note that
preprocessing filters add to the latency in data processing, which is undesirable in a
real-time system.

The orientation measured by an IMU is often useful in gait analysis. One way to
estimate the orientation is by integrating the angular velocity from the gyroscope. However,
due to gyroscopic bias, such an approach is prone to drift from numerical integration.
Under static conditions, accelerometers can be used to estimate the inclination with respect
to the gravity vector, while magnetometers can be used to estimate orientation with respect
to the Earth’s magnetic field (magnetic North). Since acceleration measurements from
accelerometers are prone to noise, estimating the orientation outside of static conditions
is not accurate from instantaneous sensor data. Magnetometers, on the other hand, are
sensitive to external magnetic fields. Sensor fusion methods combine the information
from accelerometers, gyroscopes, and magnetometers (or a subset of these) to provide a
better estimate of the orientation of the sensor. Kalman filter-based and complementary
filter-based methods are the two most popular sensor fusion methods used for estimating
orientation from IMUs. Casamassima et al. [48] compared these two methods based
on accuracy, computational cost, and energy efficiency and concluded that the Kalman
filter-based method was their preferred choice. Two of the most popular methods using
the complementary filter are proposed by Mahony et al. [49] and Madgwick et al. [50].
Cirillo et al. [51] observed that a version of the extended Kalman filter-based method
that offers similar performance to the two took approximately one order of magnitude
more time to process a sample in the MATLAB/Simulink environment and two orders
of magnitude more time in an embedded system environment. Overall, Kalman filter-
based methods are known to be more accurate but computationally demanding, while
complementary filter-based methods are known to be computationally light and fairly
accurate [52].

Within the context of walking, accuracy of orientation (and position) estimation using
IMUs can be enhanced using additional constraints from the foot–ground interaction.
The zero velocity update (ZUPT) algorithm or one of its variants are typically used to
compensate drift. The algorithm exploits the fact that, during a part of the stance phase,
the stance foot is quasi-static. During this moment, the linear and angular velocity of the
foot is assumed to be zero and the drift errors due to integration are reset. Yang et al. [53]
estimated the stance duration from thresholds set on both angular velocity and acceleration,
which helped in correctly applying the ZUPT. Skog et al. [54] compared four different
detectors to identify the zero velocity interval—”acceleration moving variance detector, the
acceleration magnitude detector, the angular rate energy (ARE) detector, and a generalized
likelihood ratio test detector, referred to as the SHOE”—and concluded that both ARE and
SHOE performed with very high accuracy. Inspired by this, Refs. [48,55] used a threshold
on the ARE to estimate the ZUPT interval by hypothesizing that the IMU is stationary when
ARE is below the threshold. Other variants of ZUPT are also attempted [56,57]. In [57],
the foot inclination angle, obtained by integrating the gyroscope signal, was reset to zero
during the stance phase based on input from an IPS.

Often, sensors regarded as the gold standard, providing ground-truth information,
are used to validate results obtained from IMU-based gait analysis. Figure 5b illustrates
the distribution of those sensors used in validating IMU-based gait analysis. Among the
studies which used IMU-based gait analysis, it can be observed that IPSs are the most
widely used sensors for validating the results with 31 studies compared to 27 studies
using motion capture/video. In addition, they are the only wearable sensor to be used
for validation.

3.3.2. Insole Pressure Sensors

An insole pressure sensor (IPS) measures the pressure distribution at the foot, which
is widely used to estimate the COP along with other gait parameters such as step count,
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duration of the gait cycle, swing duration, stance duration [58], and foot–ground interaction
events (such as HS or TO). IPSs are available in different variants based on optoelectronic
sensors, force-sensing resistors (FSRs), capacitive sensors, and piezoelectric sensors, which
are based on polyvinylidene difluoride (PVDF) films [59]. PVDF films lack durability,
although they are reliable and inexpensive. FSRs, on the other hand, are highly durable,
flexible, and inexpensive. The reliability of FSRs is low when estimating the magnitude of
force in real-time, but FSRs perform well in detecting the temporal information such as
the instant of application of force, as shown by [59], and hence are good candidates for
real-time gait event detection. Delgado-Gonzalo et al. [60] report that IPSs have a short
lifespan, although the claim is not adequately validated. We noticed in our review that 38
out of 59 studies are from 2014 or later, possibly suggesting that IPSs have become more
reliable over the years.

IPSs are the second most widely used wearable sensor with 57% of the studies using
it either for sensing (28 studies, see Figure 5a) or validation (31 studies, see Figure 5b). It is
the only wearable sensor to be used in validation studies, which arguably makes it the
gold standard in wearable sensing [61]. IPSs are often considered as an alternative to force
plates in validation studies due to several advantages including cost factor, wearability, and
unconstrained movement that allows natural gait in both indoor and outdoor environments.
Despite these advantages, there are some constraints to consider. IPSs are typically placed
inside the shoe and are thus subject to pressure between it and the foot, which can lead to
non-zero pressure readings even when the foot is in swing phase [42,59]. Although IPSs
are comparable to force plates when it comes to estimation of temporal features, using
them for real-time ground reaction force estimation is not recommended since it takes a
considerably longer time to reach the set value compared to a force plate [59].

Unlike IMUs, sensor placement is not a challenging problem for IPS. While the user
could place the IMU anywhere within the body segment of interest, IPSs are almost always
placed in the subject’s shoe, making them fall into the same position with respect to the foot.
The traditional approach to place FSRs within an IPS has been to place them at specific
hotspots such as the heel, toe, first, and fifth metatarsals. Such IPSs require the correct foot
size of the subject so that FSRs are aligned with the correct hotspots. Senanayake et al. [42]
reported errors in measurement owing to subjects involving varying foot sizes (6–11) while
the IPS was at a fixed size (eight). Lin et al. [62] reported robustness against this offset,
caused by the size mismatch of the IPS with the foot, by using the derivative of pressure
signals. The authors used an array of 48 pressure sensors, giving a better resolution than the
conventional approaches, which place a few FSRs at carefully chosen hotspots. The authors
of [63,64] followed a similar approach using a pressure signal from the IPS and its first
derivative while using an IPS with 64 optoelectronic sensors. With IPSs getting better in
resolution, the approach is shifting towards packing as many sensors within the insole
as possible so as to collect data throughout the feet and identify the hotspots not at the
hardware end, but later at the software end during signal processing. When used in
real-time, this demands more bandwidth for communication and computational power to
process the additional information.

In contrast to IMUs where 39 out of 69 studies at least used a preprocessing filter, only
six out of 28 studies related to IPS used any sort of preprocessing/filtering. Instead, these
studies relied directly on the raw signal from the IPS, likely contributing to shorter latency,
an advantage when it comes to real-time systems.

3.3.3. Combination of IPS and IMU

A new kind of product that is emerging in the wearable sensor market is an IPS
combined with an IMU, such as Moticon Science from Moticon GmbH, Munich, Ger-
many, Stridalyzer from Retisense, Bangalore, India and Arion Wearable from ATO-GEAR,
Eindhoven, The Netherlands. Such a set up allows combining the advantages of both
types of sensors. Ten out of 52 studies used a combination of IPS and IMU (in addition
to the studies that used IPS separately for validating IMU-based gait detection results).
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Depending on the product, it is possible that the position of the IMU is fixed relative to the
IPS, thereby minimizing the errors caused by differences in IMU placements between and
within segments as well as across data sets and subjects.

3.3.4. Other Wearable Sensors

Other wearable sensors used for gait detection include Electromyography (EMG)
sensors, rotary encoders, laser range finders, flex sensors, and capacitive shank orthosis.
Other than EMG sensors, all the other sensors measure kinematics. EMG sensors, on
the other hand, measure electrical activity in muscles, which gives them an inherent
advantage that signals appear earlier than the corresponding movement from muscle
activation [5]. Fleischer et al. [65] reports that EMG signals appear 20–80 ms before the
resulting contraction begins. This should contribute to early sensing and hence decrease
latency in control. Farmer et al. [66] presented an auto-correlation model that takes EMG
signals as input to predict the ankle angle, which is claimed to predict around 100 ms in
advance. Despite this advantage, which is particularly important in real-time gait detection,
it is interesting to note that only one out of the 99 studies used EMG sensors. This could
partly be because of usability constraints: the skin is typically prepared by shaving body
hairs and applying abrasive gel to increase signal-to-noise ratio, and the sensor is taped to
the skin in order to keep the contact constant and reduce motion artifacts. It could also be
owed to the fact that EMG signals require more preprocessing/filtering and EMG signals
of persons with certain impairments (primarily neurological deficits) can be weak and hard
to interpret. Furthermore, EMG-related parameters are subject-dependent and can change
regularly due to varying conditions of the skin and body state, such as sweat. Correct
sensor placement is also non-trivial and requires some training because the sensor should
be placed as close as possible to the belly of the appropriate muscle. This approach may be
less appropriate for lay users thus limiting its application. Evaluation of EMG patterns are
mostly done using classification algorithms and less often using physiological models [65].

3.4. Real-Time Gait Analysis

We classify various gait analysis methods identified from literature into three main
categories: time domain-based, frequency domain-based, and time-frequency domain-
based. Table 4 shows various real-time gait analysis methods used by researchers based on
this classification, some of which are discussed in greater detail in the subsequent sections.

In summary, we observe that the rule-based methods are the most popular, with a
majority of the studies using it, likely due to their simplicity and intuitiveness compared to
other computationally expensive solutions. Phase portraits and adaptive oscillators are
among the limited number of methods noted for continuous gait phase estimation. Wavelet
transforms are seen as more suitable for fast motion transitions, and the method may serve
as a better candidate in gait phase estimation than adaptive oscillators.

Performance of the different methods is not compared quantitatively since evalu-
ation criteria varied from one study to another, which makes an objective comparison
difficult. For instance, a study that was intended for impaired gait but was tested only with
unimpaired subject can present better results that need not translate to impaired subjects.

3.4.1. Rule-Based Methods

Rule-based methods are the most widely used gait detection technique, employed
by 63 out of the 99 studies. The wider adoption of the method could be attributed to
their simplicity, intuitiveness, and less computational complexity involved (and hence less
latency in the real-time processing).
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Table 4. Classification of studies based on the type of gait analysis methods used; the number of
studies which followed a type of method is listed in the table. Note that a few studies were counted
in more than one category when those studies involved more than one method.

Domain Algorithm Number of Studies

Time domain

Rule-based methods 63

92

Fuzzy inference system (FIS) 4

Machine learning (ML) 19

Phase portrait (PP) 1

Other 5

Frequency domain
Adaptive oscillator (AO) 4

5
Spectral analysis 1

Time-frequency domain
Wavelet transform (WT) 3

4
Empirical mode decomposition 1

One way of implementing a rule-based method is by setting a threshold on the raw
or processed signal from the IMU (for instance, on the acceleration, angular velocity,
segment orientation angle, or joint angle). Rule-based methods often employ multiple rules
built on conditional statements (typically, if-else logic) that are connected using inequality
constraints or logical AND/OR operators.

Sometimes, threshold-based techniques are replaced with peak detection techniques.
One disadvantage of peak detection is that the presence of a peak can be confirmed only
after both the rising edge and the falling edge appear. This may introduce a delay in gait
event/phase detection depending on which part of the peak the event/phase temporally
overlaps with. Maqbool et al. [7] followed such an approach wherein the shank angular
velocity in the sagittal plane is used with a window of 80 ms before confirming the peak,
while Ref. [37] additionally used accelerometer signals.

Instead of using predetermined thresholds, Ref. [58] proposed an adaptive threshold-
based method which automatically computes and updates the threshold in real-time. This
is done through what is called the “dynamics of sensor data”, defined as a function of
linear acceleration and angular rate, averaged over the last five data samples. The adaptive
threshold is used to distinguish between swing and stance phase.

Rule-based approaches are also popular in the case of IPSs , with several studies using
threshold or peak detection based approaches on IPSs, either to distinguish between stance
phase and swing phase or between multiple gait phases [57,67–70]. Lin et al. [62] set a
threshold on the first derivative of the pressure sensor data in identifying HS and TO and
reports that it makes the detection robust against spurious signals, offset variation between
IPSs and between-subject variations. Hanlon et al. [71] used a similar approach of setting a
threshold on the derivative of the pressure sensor while additionally using a threshold on
the accelerometer data along with its first and second derivative.

Rule-based methods are often implemented as finite-state machines (FSM). Pap-
pas et al. [57] reported an FSM that considers four states: swing phase, stance phase,
HS, and TO. Seven transitions were defined between these four states based on input from
the IPS and the foot pitch angle. The IPS used three FSRs, one each on the heel, and first
and fourth metatarsals. The FSRs were used as foot switches to identify if and when weight
was applied at these hotspots. It was the only study that considered both stroke and spinal
cord injured subjects. The latter were able to walk short distances with or without crutches,
but no ASIA impairment scale (AIS) score was mentioned. The study reported above 99%
detection reliability for both unimpaired and pathological gait, with detection delay always
less than 90 ms. The method is often considered as a benchmark in literature for gait event
detection.

Lambrecht et al. [72] used the same to benchmark the performance of three versions of
peak detection-based FSM implemented by them. The three methods differed in their input
signals, which were chosen from: shank angular velocity, shank segment angle, ankle joint
angle, heel linear velocity, toe linear velocity, shank position, foot angular velocity, and foot
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angle. The methods were otherwise identical in that the state transitions were defined from
TO to mid-swing to IC to foot-flat to HO and back to TO. Although the study reported
better performance, it is to be noted that the data were extracted using motion capture
and is therefore hard to replicate using a wearable sensor (such as linear velocity and
position). Hence, the corresponding FSMs may not be easily transferable to a system based
on wearable sensing. Furthermore, a direct quantitative comparison between [57] and [72]
would be questionable since the data-set used by the former involved both unimpaired and
impaired gait while the one used by the latter only involved unimpaired subjects walking
on treadmill.

3.4.2. Fuzzy Inference System

An advanced version of the rule-based technique is the fuzzy inference system (FIS).
Instead of using thresholds to specify binary states (true or false scenarios) to decide state
membership, an FIS fuzzifies the input variable and provides a continuous map between
input and output variables based on a systematically designed rule base. González et al. [73]
fuzzified the input from pressure sensors placed at the heel, the hallux, and the first and
fifth metatarsals into fuzzy variables and defined a rule base whose outputs are gait phases.
Senanayake et al. [42] followed a similar approach of fuzzifying four FSR variables while
also using the knee angle, obtained from IMUs at the thigh and the shank, as the fifth fuzzy
variable. However, the use of additional sensors appears to be counterproductive since
a quick comparison of the latencies reported by both approaches reveals that the former
(latency less than 77 ms) performed better than the latter (latency less than 300 ms).

One disadvantage of FIS is that it requires the state membership functions to be set by
the user [74] and then be adapted each time to a new subject or data set for optimal perfor-
mance, similarly to what is done with thresholds as discussed in Section 3.4.1. The adaptive
neuro-fuzzy inference system (ANFIS) provides a workaround which combines the benefits
of artificial neural networks (ANN) and FIS by letting the nonlinear membership functions
be learned through the neural network, provided that sufficient training data sets are avail-
able. Lauer et al. [74] combined ANFIS with a subtractive clustering method to identify
state membership functions followed by a supervisory control system (if-then rules) to
prevent gait events from being identified in the reverse order. The subtractive clustering
algorithm provided a quick method of estimating the minimal number of clusters required,
and these clusters formed the initial shape of the state membership functions. A similar
two-level approach using FIS with a supervisory function was also implemented by [13].

3.4.3. Machine Learning

Machine learning (ML) methods are the second most widely used gait analysis tech-
nique, with 19 out of 99 studies using them. ML approaches have been gaining popularity
in recent years as 18 out of 19 studies are from 2012 or later. The Hidden Markov model
(HMM) is the most favored with nine out of 19 studies using this approach. Abaid et al. [3]
used angular velocity of the foot in the sagittal plane as input to the HMM, while Ref. [45]
used angular velocity of the thigh, the shank and the foot in the sagittal plane. In both
cases, FSR based IPSs were used for creating a labelled data set, which is necessary for
training the model. Chen et al. [75] used inputs from both IPSs and accelerometers and
used a third order fast Fourier transform followed by a principal component analysis for
feature generation which was then fed to a support vector machine classifier to identify
the gait phases. The study considered five ISTGFs and reported a 97.26% success rate for
initial contact. Overall, machine learning techniques reported noticeably high accuracy
with 10 out of the 15 studies (which reported at least some quantitative metrics) reporting
above 91% accuracy. It is also interesting to note that 11 out of 19 studies detected at least
four ISTGFs, which is much higher compared to most of the rule-based methods discussed
in Section 3.4.1.
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3.4.4. Phase Portrait

Among all the algorithms that were listed in Table 4, only a few studies used contin-
uous gait phase estimation methods. The idea of continuous gait phase estimation is to
have a variable keeping track of the progress of gait, continuously and bounded within the
gait cycle. Quintero et al. [76] estimated continuous gait phase in real-time from the phase
portrait of the hip angle and its derivative. Here, the phase portrait angle of the hip is
considered as the continuous gait phase variable—placing the hip angle on the horizontal
axis and its derivative on the vertical axis, a phase portrait angle is the angle subtended
on the horizontal axis by the line joining the origin to a point on the phase portrait. The
hip was chosen based on a more extensive study (although offline) carried out by [77],
which reports that the phase angle obtained from the phase portrait of the hip is linearly
and monotonically increasing, and bounded, even under perturbations. The phase portrait
was scaled by a factor estimated by the ratio of difference in maximum phase angle and
minimum phase angle to the difference in the first derivative of the same, so as to improve
the monotonicity and linearity. These properties were further improved by filtering, at the
expense of some delay. Although the method performed well in unimpaired subjects [76]
and the offline analysis reported robustness to perturbations [77], it remains to be seen how
the method would work with pathological gait in real-time.

3.4.5. Adaptive Oscillators

An adaptive oscillator (AO) is a frequency domain method that can synchronize to any
periodic or pseudo-periodic input signal without any preprocessing [78]. Yan et al. [79] used
peak detection to identify a gait event, based on the occurrence of a desired bio-mechanical
event (e.g., max hip flexion angle, heel strike). This is used to mark the initialization of a
new gait cycle, following which continuous phase estimation of the current gait cycle is
carried out using adaptive oscillators. Chen et al. [6] developed a robust adaptive oscillator-
based gait phase estimation which is reported to be working robustly even for abnormal
gait. HMM was used for gait event detection which in turn was fed to AOs, instead of
feeding the entire gait signal continuously. The robustness, according to the authors, is due
to the fact that gait events were the only information needed to achieve synchronization
which minimized the influence of gait abnormality on the algorithm.

3.4.6. Wavelet Transform

Wavelet transform (WT) is a time-frequency domain method that uses basis functions
localized in both the time and frequency domain, through so-called wavelets analogous
to sinusoids in a Fourier transform (see Figures A1 and A2 in Appendix A for a detailed
description of WT). Features that are identifiable in the frequency domain can therefore be
localized in the time domain, for example characteristic high-frequency content during heel
strike. Aminian et al. [80] reported that TO and HS events consist of combined features that
can be well resolved in the time-frequency domain. They identified distinctive features in
the shank angular velocity involving some medium- and high-frequency content with sharp
characteristic peaks. A discrete wavelet transform (DWT) with fifth-order Coiflet wavelets
was used to enhance gait events in the signal, thereby enabling easier identification of
global maxima corresponding to the gait events. This identification was followed by
customized rules that found specific peaks in the time domain to confirm TO and HS.
Coiflet wavelets were chosen because they resemble characteristic peaks observed in the
angular velocity signal. Although the study reported accurate temporal estimation of TO
and HS, it should be noted that it was only tested on unimpaired subjects and implemented
for offline analysis.

3.5. Towards Clinical Applications
3.5.1. Sensor and Algorithm Choice

The motivation of most studies to develop real-time gait analysis techniques was
to apply them in gait rehabilitation. Although many of the studies anticipated their
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proposed methods to work on pathological gait, less than one-third of studies included
impaired/pathological gait for validation (31 studies out of 99). When considering clinical
applications, the algorithm performance is only one of equally important requirements.
The approach must also use sensors that are durable, easy to manipulate, and require a
relatively low setup time—in other words, the approach should be simple and user-friendly.
Finally, the algorithm must be validated on a sufficient sample of the target population
in order to to take into account the unique characteristics of the target impairment and to
account for the higher inter-subject variability present in impaired gait.

In Sections 3.3 and 3.4, we concluded that IMUs are the most common sensor and that
rule-based methods are the most common algorithm type, when considered individually.
Machine learning approaches are the next most common, under which we combine the
hidden Markov model, support vector machine, and Bayesian approaches amongst others.
In Table 5, we consider studies that were validated at least on unimpaired subjects (84 out
of 99), since we deem these more relevant when it comes to applications, compared to
studies that were not validated on subjects at all. The studies are listed according to the
method used. We then quantify the number of studies using IMUs for each algorithm
type and notice that IMUs remain dominant for both rule-based and machine learning
approaches with 75% and 87%, respectively. This does not come as a surprise as they are
good candidates for clinical applications: they can easily be placed/removed on/from
the relevant body segment and avoid mechanical stress relatively well during typical use.
IPSs, the second most popular sensors, are more cumbersome as they must be placed in
the shoe and taken out for recharging. For persons with impaired hand-function, this is a
point that cannot be neglected. For certain gait impairments where orthopaedic insoles
are prescribed, the additional sensorized insole may cause discomfort or provide skewed
signals. Lastly, they are subject to repeated mechanical stress, making them considerably
less durable.

Improved usability and versatility can be observed with rule-based approaches com-
pared to machine learning. In fact, only 11% of studies using a rule-based method required
the placement of more than one IMU per leg, in contrast to 53% of machine learning
approaches. This means applications using the rule-based methods typically require a less
complex sensor setup, which would be preferable to the end-user. Furthermore, in 84% of
studies using rule-based methods, the approach could be used independently for one leg
or the other, compared to 47% for machine learning. This means that rule-based methods
can be more easily tailored to specific use-cases, such as providing unilateral assistance.

Validation of rule-based and machine learning methods was done on 485 and 138
unimpaired subjects, respectively, which is an average of roughly nine subjects per study
for both categories. Impaired and unimpaired gait, however, can vary significantly and
thus these numbers speak little towards clinical applications. As stated previously, less
than one third of studies were found to validate on impaired subjects, which mirrors
findings by Perez et al. [27] that not many real-time gait detection algorithms are validated
on populations with gait impairments. Despite this fact, literature and our previous
observations are pointing towards IMUs and rule-based methods as primary candidates
for clinical applications.

3.5.2. Impaired Gait Considerations

IMUs and rule-based algorithms are the preferred option amongst the studies that
validated on impaired subjects. These studies are listed exhaustively in Table 6 and the
combination amounts to 67%. We categorized the target impairments into two classes
based on how they were presented in the respective studies—first, generally diminished
ambulatory function, where gait is impaired due to general degeneration of the locomotor
system, such as with Parkinson’s disease, osteoarthritis, Huntington’s disease, diplegic
cerebral palsy (CP), ageing, or spinal cord injury (SCI). Second, unilateral loss of ambulatory
function, where gait is impaired on one side of the body, such as amputation, stroke, and
hemiplegic CP.
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Table 5. Distribution of gait detection techniques for studies that validated on unimpaired subjects. Details on the usage of
inertial measurement units (IMU) are presented together with the total number of unimpaired subjects the algorithms types
were validated on. ML—Machine learning.

Algorithm

Total
Num-
ber of

Studies

Number of
Studies that
Used IMU

Number of
Studies That
Used More

than One IMU
per Leg

Number of Studies
Where the Proposed
Method Can Work
Independently on

Either One of the Legs

Total
Number of

Unim-
paired

Subjects

References

Rule-based method 51 38 4 32 485
[7,14,27,37,39,44,46,55,
57,59,60,62,68,69,71,72,
79,81–111]

Fuzzy inference system 3 0 0 0 14 [42,73,112]

Hidden Markov model 8 7 3 2 70 [3,6,40,45,64,113,114]

Support vector machine 2 1 1 0 30 [75,115]

Bayesian 2 2 2 2 18 [116,117]

Other ML methods 3 3 2 3 20 [118–120]

Phase portrait 1 1 0 1 1 [76]

Lookup table 1 1 0 1 1 [121]

Other time domain methods 4 2 1 1 42 [122–125]

Adaptive oscillators 4 1 1 0 29 [6,79,83,126]

Wavelet transform 3 3 0 3 61 [80,127,128]

For generally diminished ambulatory function, rule-based algorithms can exploit the
fact that gait features typically become less prominent but are not lost. This means that gait
remains periodic and features on which rules can be built exist. Applications seeking this
category should focus primarily on understanding the unique gait features of the target
population. Behboodi et al. [86] used such an approach for gait detection in children with
diplegic CP. The authors circumvented the lack of an identifiable heel strike in equinus gait
by using angular velocity at the shank, which still shows characteristic peaks, valleys, and
zero-crossings.

On the other hand, unilateral loss of ambulatory function typically means that gait
features remain on the unimpaired side but are lost on the other. A gait event detection
method must thus be extended to additionally capture the irregularities on the impaired
side. One approach is presented by Perez et al. [27], who derived a rule-based algorithm
from eight other studies, but corrected detection rules that would fail with impaired
gait. The authors claim that, whereas normal gait is regular and smooth, the thresholds
typically used to detect gait events are tricked by the irregularities found in neurological
impaired gait.

Depending on the impairment, assistive devices such as walking frames or orthoses
and training devices such as body-weight support systems or exoskeletons can enable or
enhance locomotion. The prominence of gait features can then depend on the assistive
device. For example, while considering complete SCI patients with functional electrical
stimulation (FES), Skellyet al. [13] chose to perform gait event detection using a fuzzy
inference system as it can specifically accommodate for the relatively large step-to-step
variability observed in FES gait. In Jasiewicz et al. [44], for example, algorithms were
significantly under-performing during gaits exhibited when using walking aids. Similarly,
with active neuroprostheses such as EES, the stimulation itself can substantially modify the
gait pattern [16].
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Table 6. Algorithm types categorized with respect to the impairment of subjects on which they were validated. Impairments
are categorized based on how they were characterized in the respective study. The number of impaired and unimpaired
subjects involved in the study suggest the reliability and popularity of the given algorithmic approach for that specific
impairment. Note that some studies (such as [63]) are listed more than once in the table depending on whether they
employed more than one category of impaired subjects. FIS—Fuzzy inference system, ANFIS—Adaptive neuro fuzzy
inference system, HMM—Hidden Markov model.

Impairment Algorithm Type Sensor Type References
Number of

Impaired Subjects
Number of

Unimpaired Subjects

Parkinson’s disease Rule-based method
IMU [55] 16 12

IMU [104] 5 15

Wavelet transform IMU [127] 48 40

Osteoarthritis Support vector machine IMU + IPS [75] 14 10

Huntington’s disease HMM IMU [63] 10 0

Cerebral palsy

Rule-based method
IMU [86] 5 7

IPS [92] 3 8

ANFIS EMG [74] 8 0

HMM IMU [113] 10 10

Spinal cord injury
Rule-based method IMU [44] 14 26

FIS IPS [13] 3 0

Elderly
Spectral analysis IMU [129] 92 0

HMM IMU [63] 10 0

Amputee Rule-based method

IMU [7] 1 8

IMU [37] 1 9

IMU + IPS [69] 3 5

IPS [110] 1 1

Stroke Rule-based method

IMU [130] 2 0

IMU + IPS [131] 1 0

IMU [132] 1 0

IMU [90] 4 10

IMU [133] 1 0

IMU [104] 4 15

IMU [134] 6 0

IMU [97] 10 22

IMU [135] 2 0

IMU [27] 1 1

HMM IMU [63] 10 0

Unspecified Hemiplegia/
Hemiparesis

Rule-based method IMU [14] 10 10

HMM IMU [3] 10 10

Performing algorithm validations with impaired subjects is essential for advancing
clinical applications, but, in doing so, patient safety should not be neglected. All studies
in Table 6 besides three, [75,133,135], explicitly state having received ethics approval and
obtained informed consent. However, only nine out of 27 mention any safety considerations
in their text and only one study has a dedicated section. We recommend that a section on
safety always be included in future studies, covering a basic risk analysis and mitigation
put in place, and documenting potentially hazardous system failures during experiments.
Some example considerations would be preventing skin irritation, ensuring that sensors
do not fall off while walking, or verifying that sensors can be securely manipulated by
the target population. Such a section will help the community accelerate meaningful
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development of sensors and algorithms for gait detection and build trust towards their use
in clinical applications.

4. Conclusions

In the present work, we performed a comprehensive systematic review and pro-
vided a broad overview on wearable sensors and methods used in real-time gait analysis.
We performed meta-data analysis and identified trends among researchers such as the
most sought-after gait events, body segments for IMU placement, and sensor types for
ground truth validation of IMU-based gait detection methods. Studies that validated
on subjects with impaired gait were then extracted and sensors and methods for clinical
applications discussed.

Based on popularity in our findings, we recommend performing gait detection in a
subject by using a rule-based method to determine toe off and heel strike. We propose
that an IMU is placed on either the foot or shank, and insole pressure sensors are used as
ground-truth for validation. When investigating new gait detection methods for clinical
use, it is crucial that they are evaluated on their target population and across relevant
conditions such as using various walking aids.

One of the limitations of the present review is that the performance of gait detection
methods could not be compared quantitatively due to the heterogeneity of the metrics used
across the algorithm types. Therefore, we suggest that future studies report performance
metrics that would allow benchmarking with respect to comparable methods.

In our review method, we did not consider clinical applications explicitly. However,
a subset of the reviewed publications revealed that the algorithm performance can be
heavily influenced by gait impairments up to a point where the impairment dictates the
algorithm choice. We believe it is a very relevant direction worth further systematic investi-
gation.

Real-time gait detection using wearable sensors provides an unprecedented means to
deliver clinical interventions for people with gait impairments. As opposed to traditional
gait detection equipment, wearable sensors can inherently be used in an ambulatory setting,
and, compared to offline gait analysis, real-time gait detection can be integrated in closed-
loop control. The right combination of sensor and gait detection method thus enables the
development of assistive devices that have the potential to increase the effectiveness of
rehabilitation and improve the lives of people with ambulatory deficits.
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Appendix A. Background of Wavelet Transform Method

One way to extract gait cadence is through frequency spectrum analysis. The two
prominent peaks in the frequency spectrum analysis of gait signals (e.g., angular velocity
of the foot) correspond to stride frequency and step frequency (first and second harmonics).
Cadence can be evaluated from one of the two peaks. However, to extract cadence in
real-time, we need to perform a Fourier transform (FT) over a window of data streamed
continuously, the so-called short-time Fourier transform.

STFT suffers from poor resolution in the time-frequency domain [11]. To improve
the resolution in one domain, the resolution in the other domain must be compromised.
For instance, to get better resolution of frequency content, we need to provide it with a
larger (time) window of data, thereby reducing the resolution in the time domain, resulting
in output cadence evaluated over a larger interval (see Figure A1). Hence, STFT can be
considered as a suitable technique for long duration, steady-state walking (quasi-periodic
with no abrupt changes), but not for fast motion transitions [11].

Figure A1. An illustration of the STFT (short-time Fourier transform) implementation in real-time. In the lower left plot, the
sagittal plane angular velocity (ωf) of the foot is shown in grey. The window of sample used during the snapshot (at around
time t = 38 s) is highlighted in blue. The upper left plot shows the frequency spectrum corresponding to time t = 38 s. The
red and yellow dots represent the paths traced over the duration by the peaks corresponding to the first harmonic (stride
frequency) and the second harmonic (step frequency), respectively. In the right plot, the time-frequency domain output (of
the entire data set) from an offline implementation of STFT is shown in blue dots while the corresponding output from the
implementation in real-time (for the first harmonic) is shown in the red dots. Note that the sampling interval is slightly
irregular in the real-time implementation due to computational complexity associated with STFT. It can be observed that
there is a clear separation between the first, second, and third harmonics (the green lines border the first harmonics, which
corresponds to the stride frequency).

The constraint of the resolution trade-off can be overcome with a wavelet transform
(WT). Much like an FT, a WT also decomposes the signal based on a set of basis functions.
While these basis functions are sinusoids in the case of FTs, the basis functions in the case
of WTs are wavelets. The difference is that, while sinusoids only differ in their frequencies,
wavelets are localized both in the time and the frequency domain. Therefore, unlike STFT,
which uses windows of fixed size in time domain, a WT uses windows of varying size in
the time-frequency domain, increasing the time resolution with high frequency signals and
vice versa [136,137].

There are two variants of discrete wavelet transform (DWT). The first variant, where
‘discrete’ implies discretized time-frequency domain while otherwise being identical to
continuous wavelet transform (CWT), is described in [137] and implemented in [11].
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Han et al. [11] used this version of DWT to extract step frequency/cadence and reports
that WT performs better than STFT in estimating step frequency when fast motion changes
occur. The second variant, which is filter bank-based, is described in [136] and imple-
mented in [138]. Klingbeil et al. [138] carried out step detection using this version of DWT
with a Daubechies wavelet. Here, the signal is split into the so-called detail levels and
then reconstructed with detail levels spread across 0.8 Hz to 3.2 Hz (assuming most of the
gait signal is in this range), followed by step detection using thresholds. The MATLAB
implementations of both version of DWT are available, but the former is called by the name
cwt (because of its resemblance to CWT), while the latter is called by the name dwt. Note
that, although Refs. [11,138] carried out the study in real-time, these studies were limited
to step detection and step frequency, but not ISTGF detection. Our own implementation of
wavelet transform for gait detection, based on cwt, is shown in Figure A2.

Figure A2. An implementation of wavelet transform for gait event detection. Sagittal plane angular velocity (ωf) of the foot
(top left plot), which is in time domain, was first transformed into time-frequency domain using wavelet transform (right
plot). Then, the high-frequency region was condensed into time domain (bottom left plot) by evaluating the cross section
area of the magnitude of wavelet transform. A real-time implementation of the method was limited by computational
complexity. HFC—high frequency content.

One limitation of WT is the high computational complexity required for such an
implementation, which we also noticed in our own implementation presented in Figure A2.
Since WTs involve comparing the signal to wavelets, the transform at the beginning and
end of the signal are less reliable because the wavelet cannot be overlapped completely
with the extreme ends of the signal. This leads to the so-called cone of influence, a region
outside of which the result of wavelet transform is no longer reliable. This is usually of
low significance in offline analysis since the entire signal is available for analysis at once;
however, in real-time analysis, the cone of influence becomes more important. This is
because what we are interested in for every iteration is the transform of the latest sample
of data, which is precisely where the reliability is poor.
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Abstract: Wrist-worn accelerometers are often applied to measure arm use after stroke. They measure
arm movements during all activities, including whole-body movements, such as walking. Whole-
body movements may influence clinimetric properties of arm use measurements—however, this
has not yet been examined. This study investigates to what extent arm use measurements with
wrist-worn accelerometers are affected by whole-body movements. Assuming that arm movements
during whole-body movements are non-functional, we quantify the effect of whole-body movements
by comparing two methods: Arm use measured with wrist-worn accelerometers during all whole-
body postures and movements (P&M method), and during sitting/standing only (sit/stand method).
We have performed a longitudinal observational cohort study with measurements in 33 stroke
patients during weeks 3, 12, and 26 poststroke. The P&M method shows higher daily paretic arm
use outcomes than the sit/stand method (p < 0.001), the mean difference increased from 31% at
week three to 41% at week 26 (p < 0.001). Differences in daily paretic arm use between methods are
strongly related to daily walking time (r = 0.83–0.92). Changes in the difference between methods
are strongly related to changes in daily walking time (r = 0.89). We show that not correcting arm
use measurements for whole-body movements substantially increases arm use outcomes, thereby
threatening the validity of arm use outcomes and measured arm use changes.

Keywords: stroke; upper extremity; arm use; upper limb performance; accelerometer; sensor;
walking; rehabilitation

1. Introduction

In approximately 80% of the cases, a stroke leads to impairments in arm function in
terms of muscle strength, voluntary control, coordination, and range of motion [1]. In-clinic
assessment of arm function after stroke is often assumed to indicate arm use in daily life,
i.e., the activities a person does with the arm in daily life. However, studies indicate that
arm function and arm use are different constructs and need to be measured separately after
stroke [2].

Wrist-worn accelerometers are often applied to measure arm use after stroke. For
example, wrist-worn accelerometers have been used to assess arm use during rehabilita-
tion poststroke [3–5], and to compare arm use levels between stroke patients and healthy
subjects [6,7]. Wrist-worn accelerometers have also been applied to compare the arm use
levels between the paretic and nonparetic arm after stroke [6,8]. Furthermore, studies ex-
plored the relationship between paretic arm use measured with wrist-worn accelerometers,
arm function, and arm capacity after stroke [3,9]. Moreover, the change in arm use after
stroke measured with wrist-worn accelerometers and the potential moderating role of
psychological factors have been investigated [4].
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Wrist-worn accelerometers measure arm use by recording the movements of the
arms during all daily activities [3–5,7,9–12]. Thus, arm movements due to whole-body
movements (e.g., walking, cycling, wheelchair transport, vehicle transport) influence arm
use measurements with wrist-worn accelerometers [13,14]. However, arm movements due
to whole-body movements are conceptually different from arm use during activities as
eating with knife and fork, combing hair, and drinking. Arm movements due to whole-body
movements are primarily non-functional, and therefore, they should ideally not be recorded
as arm use. Quantifying non-functional arm movements due to whole-body movements
as part of functional arm use is potentially problematic, since it may affect the clinimetric
properties (e.g., validity, sensitivity to change, reliability) of arm use measurements with
wrist-worn accelerometers [13]. For instance, when a patient walks, the non-functional arm
movements due to walking will be measured as arm use by wrist-worn accelerometers,
which may significantly increase the arm use outcomes of wrist-worn accelerometers,
thereby reducing the validity of the arm use measurements. Similarly, an increase in the
daily amount of walking after stroke may influence the change in daily arm use measured
with wrist-worn accelerometers, thereby threatening the validity of the measured arm
use changes.

These potential problems have been identified by previous studies, and different
methods have already been proposed to correct arm use measurements with wrist-worn
accelerometers for the effect of whole-body movements. These methods are measuring arm
movements during sitting and standing [13,15], or calculating a ratio outcome between
arms [14]. However, these methods are not widely adopted in the research field, because
(1) they require more complex sensor set-ups and/or signal analyses, and (2) the effect of
whole-body movements on arm use measurements with wrist-worn accelerometers is still
unclear and has not yet been quantified. Most studies report arm use measurements with
wrist-worn accelerometers without correcting for the effect of whole-body movements,
which may affect the clinimetric properties of arm use outcomes. Therefore, studies quan-
tifying the effect of whole-body movements on cross-sectional and longitudinal arm use
measurements with wrist-worn accelerometers are urgently needed to determine the neces-
sity of correcting arm use measurements regarding the effect of whole-body movements.

The present study quantifies the effect of whole-body movements on cross-sectional
and longitudinal arm use measurements with wrist-worn accelerometers after stroke. As-
suming that all arm movements during whole-body movements are non-functional, we
quantified the effect of whole-body movements by comparing the arm use outcomes of two
measurement methods: (1) Arm use outcomes measured with wrist-worn accelerometers
during all whole-body postures and movements (P&M method), and (2) arm use out-
comes measured with wrist-worn accelerometers during only sitting and standing periods
(sit/stand method) [13,15]. The difference between the arm use outcomes of these two
methods is the effect of whole-body movements on arm use measurements with wrist-worn
accelerometers. We hypothesized that (1) whole-body movements, especially walking,
increase arm use outcomes of wrist-worn accelerometers and the size of the effect depends
on the amount of walking, and (2) the positive effect of walking on arm use measurements
with wrist-worn accelerometers increases with time poststroke as a result of an increase in
the daily amount of walking after stroke.

2. Materials and Methods

2.1. Participants

The present study was a longitudinal observational cohort study and part of another
study investigating the change in objectively measured arm use during the first six months
after stroke [15]. When designing and reporting the present study, we followed the STROBE
recommendations for observational studies [16]. In the present study, we aimed to include
at least 28 stroke patients, since this sample size can detect a medium effect (Cohen’s
d = 0.50) with an alpha of 0.05 and a power of 0.80. Included were patients admitted to
Rijndam Rehabilitation (Rotterdam, The Netherlands) after an ischemic or hemorrhagic
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stroke that suffered from a paretic arm or leg (defined as National Institutes of Health
Stroke Scale (NIHSS) 5A/B or 6A/B 4 ≥ score > 0). Inclusion criteria were (i) 18 years
or older, (ii) Mini-Mental State Examination (MMSE) >19, (iii) able to sit at least 30 min
with back support. Excluded were patients who were more than three weeks after stroke
when admitted to the rehabilitation clinic. The study was performed between September
2016 and September 2019. The study was conducted in accordance with the Declaration of
Helsinki. The study was approved by the Medical Ethics Committee of Erasmus MC Uni-
versity Medical Center Rotterdam in The Netherlands (MEC-2015-687), and all participants
provided written informed consent.

2.2. Procedures

A researcher performed arm use measurements at 3 weeks, 12 weeks, and 26 weeks
poststroke, assessed arm function (Fugl-Meyer upper extremity assessment) and stroke
severity (National Institutes of Health Stroke Scale (NIHSS) [17,18]) and collected demo-
graphic data. At three weeks after stroke, all patients were inpatient at Rijndam Rehabilita-
tion and received standard poststroke treatment. At Rijndam Rehabilitation, the arm-hand
therapy after stroke consists of the Concise Arm and Hand Rehabilitation Approach in
Stroke (CARAS) [19,20]. At week 12 poststroke, some individuals were still at the reha-
bilitation center, while at week 26 poststroke, all patients were at home. The arm use
measurements at home were performed by the same researcher.

2.3. Arm Use Measurements

In this study, we used an arm use monitor developed and validated for the measure-
ment of arm use in stroke patients [13]. The arm use monitor consists of three accelerometers
(Activ8 Activity Monitor, Activ8; 30 × 32 × 10 mm; 20 g). One accelerometer was attached
to each wrist to measure arm movement intensity (see Figure 1), and one accelerometer
was attached to the front side of the nonparetic thigh to recognize body postures and move-
ments (lying, sitting, standing, walking, cycling, running). The applied accelerometers
measured with a sampling frequency of 12.5 Hz [13]. The sensors on the wrists converted
acceleration data to movement counts with 1.6 Hz resolution [13], and stored these data
in epochs of 30 s (per epoch 48 samples). The sensor on the thigh converted acceleration
data to movement counts and body postures/movements with 1.6 Hz resolution [13], and
stored these data in epochs of 30 s (per epoch 48 samples). The recognition of body postures
and movements (lying, sitting, standing, walking, cycling, running) by the sensor on the
thigh is based on (1) the orientation of the sensor compared to gravity, and (2) the intensity
of the movement (in movement counts) [13,21]. An Activ8 sensor on the thigh provides an
accurate recognition of whole-body postures and movements in stroke patients with an
accuracy ranging from 82 to 100% [21].

During weeks 3, 12, and 26 poststroke, patients wore the three accelerometers for
seven consecutive days. The wrist-worn sensors were attached with wristbands and were
taken off during the night and during water activities (e.g., showering, swimming). The leg
sensor was worn for seven consecutive days and attached with anti-allergic, water-resistant
skin tape. The data of the sensors were downloaded on a PC for further processing and
analysis after each measurement period of one week.

219



Sensors 2021, 21, 4353

 
Figure 1. Participants wore three accelerometers: One accelerometer on each wrist and one accelerom-
eter on the upper leg of the nonparetic side of the body.

2.4. Analysis of Sensor Data

To process and analyze the sensor data, we developed an algorithm in R [22] using
RStudio (version 1.2.50001, RStudio, Inc., Boston, MA, USA). Firstly, the data of the sensors
were time-synchronized based on the timestamps. We only analyzed waking hours from
7 a.m. to 10 p.m. Non-wear periods were excluded from further analysis and were defined
as zero movement counts measured for at least one hour. Per participant, a measurement
week was included in the analysis when at least two valid measurement days were available.
A valid measurement day was defined as a day with at least ten hours of data of the whole
sensor configuration.

In this study, we assumed that all arm movements during whole-body movements
(e.g., walking, cycling, wheelchair transport, vehicle transport) are non-functional and
conceptually different from arm use (e.g., combing hair, drinking, tooth brushing). Based
on this assumption, we quantified the effect of whole-body movements on arm use mea-
surements with wrist-worn accelerometers by comparing the arm use outcomes of two
measurement methods: (1) Arm use measured with wrist-worn accelerometers during all
whole-body postures and movements (P&M method), and (2) arm use measured with wrist-
worn accelerometers during only sitting and standing periods (sit/stand method) [13,15].
The difference between the arm use outcomes of these two methods is the effect of whole-
body movements on arm use measurements with wrist-worn accelerometers. Per valid
measurement day, we calculated the arm use outcomes described below.

P&M method:

1. Paretic arm use: Calculated by summing the movement counts of the sensor on the
paretic arm over all 30 s epochs.

2. Ratio between arms: Calculated as the paretic arm use during all whole-body postures
and movements divided by the nonparetic arm use during all whole-body postures
and movements.

3. Nonparetic arm use: Calculated by summing the movement counts of the sensor on
the nonparetic arm over all 30 s epochs.

Sit/stand method:

1. Paretic arm use: Calculated by summing the movement counts of the sensor on the
paretic arm over all 30 s epochs of which the posture was sitting or standing. An
epoch was classified as sitting or standing when at least 90% of the 48 samples of the
leg sensor were classified as sitting or standing.
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2. Ratio between arms: Calculated as the paretic arm use during sitting and standing
divided by the nonparetic arm use during sitting and standing.

3. Nonparetic arm use: Calculated by summing the movement counts of the sensor on
the nonparetic arm over all 30 s epochs classified as sitting or standing.

Next, for each week (weeks 3, 12, and 26 poststroke), we calculated a mean daily value
for each arm use outcome measure by averaging over valid measurement days.

2.5. Statistical Analysis

We performed the statistical analysis in R [22] using RStudio (version 1.2.50001, RStu-
dio, Inc., Boston, MA, USA).

Differences in arm use outcomes between the P&M method and the sit/stand method
were investigated at all time points (week 3, week 12, week 26 poststroke) by using
Bland and Altman plots [23]. For the Bland and Altman plots, we calculated the mean
difference in arm use outcome between the two methods (D), the SD of the differences in
arm use outcome between the two methods (SDdiff), and the limits of agreement (LOA) as:
LOA = D ± 1.96*SDdiff.

We applied Generalized Estimating Equation (GEE) [24] to test whether the P&M
method and the sit/stand method differ significantly in cross-sectional and longitudinal
arm use outcomes. In the GEE analysis, we included time (three levels: 3, 12, and 26 weeks),
method (two levels: P&M method, sit/stand method), and the interaction time*method as
factors. We used the Generalized Estimating Equation package (‘geepack’ package [25])
with as settings a Gaussian data distribution and an exchangeable correlation structure.
Statistical significance was set at p < 0.05. For significant effects, posthoc comparisons were
performed using the Estimated Marginal Means package (‘emmeans’ package) and by
applying a Bonferroni correction [26].

To investigate whether differences in arm use outcomes between the methods are
related to walking, we calculated Spearman’s rank correlation coefficients between the
daily walking time and the difference in arm use outcome between the methods at each
time point (week 3, week 12, week 26 poststroke). To examine whether changes in the daily
amount of walking after stroke are related to differences in longitudinal arm use outcomes
between the methods, we calculated Spearman’s rank correlation coefficients between
the change in daily walking time from week 3 to week 26 poststroke and the change in
arm use outcome difference between the methods from week 3 to week 26 poststroke.
Correlations were interpreted as follows: Very weak when 0.00 < r < 0.25; weak when
0.25 ≤ r ≤ 0.49; moderate when 0.50 ≤ r ≤ 0.69; strong when 0.70 ≤ r ≤ 0.89; very strong
when 0.90 ≤ r ≤ 1.00 [27].

3. Results

We included 33 stroke patients (26 males, 7 females). Table 1 shows the patient charac-
teristics. The arm use data of three measurement weeks (weeks 3, 12, 26) were available
from 18 patients, while from the other patients’ arm use data of only two measurement
weeks were available. At week three poststroke, arm use data were missing in three par-
ticipants as a result of a technical failure of the sensor system or non-wear of the system.
At week 12 poststroke, arm use data were missing in five patients, due to a technical
failure of the sensor system, non-wear of the system, or participant unavailability for the
measurement. Arm use data were missing at week 26 in seven participants because of
study dropout, a technical failure, or non-wear of the sensor system.
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Table 1. Patient characteristics (n = 33). Data are reported as mean ± SD [minimal value, maximal
value] unless otherwise stated.

Age in Years 55.9 ± 9.2 [37–75]

Gender 26 males, 7 females

Affected body side 12 left side, 21 right side

Dominant side affected 11 (33%)

Admitted to rehabilitation clinic in weeks poststroke 1.6 ± 0.7 [0.4–3.0]

Discharge from a rehabilitation clinic in weeks poststroke 10.5 ± 4.7 [3.7–20.3]

NIHSS a values week 12 poststroke 2.1 ± 2.7 [0–11]

Fugl-Meyer upper extremity assessment:
week 3 poststroke 25.5 ± 20.6 [4–64]
week 12 poststroke 41.2 ± 21.8 [4–64]
week 26 poststroke 51.2 ± 16.8 [9–64]

a National Institutes of Health Stroke Scale.

The daily monitor wearing time did not change over time (p = 0.73; Figure 2A). Daily
sitting and standing time decreased from week 3 to 12 and from week 3 to 26 (Figure 2B).
Daily walking time increased from week 3 to 12 and from week 3 to 26 (Figure 2C).

Figure 2. Boxplots of the daily monitor wearing time, daily sitting, and standing time, and daily walking time measured
with the sensor system. The percentage between brackets represents the change in median value between time points.

The P&M method showed higher paretic arm use, the ratio between arms, and
nonparetic arm use outcomes than the sit/stand method at all time points (p < 0.001;
Figures 3 and 4). The mean difference in paretic arm use outcome between the methods
increased over time (p < 0.001) from 31% at week 3 to 40% at week 12 and 41% at week
26 poststroke (Figure 4). The mean difference in ratio outcome between the methods did
not change over time (p = 0.16) and was 8–9% at the different time points (Figure 4). The
mean difference in nonparetic arm use outcome between the methods increased over time
(p < 0.001) from 17% at week 3 to 30% at week 12 and 32% at week 26 poststroke (Figure 4).
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Figure 3. Boxplots showing the arm use outcomes of the P&M method and the sit/stand method at week 3, 12, and
26 poststroke. p-values of the GEE analyses are included in the plots.

Figure 4. Bland and Altman plots showing the mean arm use outcome of the P&M method and the sit/stand method
versus the difference in arm use outcome between the methods. The horizontal line indicates the mean difference between
methods (D), and the dashed horizontal lines represent the limits of agreement (LOA). The D and LOA are expressed as a
percentage of the mean arm use outcome of the P&M method. Bland and Altman plots are shown for week 3 poststroke
(upper row), week 12 poststroke (middle row), and week 26 poststroke.
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The differences in paretic and nonparetic arm use outcomes between the methods
were strongly related to very strongly related to the daily walking time at all time points
(r = 0.83–0.92; Figure 5), indicating a significant positive effect of walking on cross-sectional
arm use measurements with the P&M method. The difference in ratio outcomes be-
tween the methods and the daily walking time were strongly related at week 3 poststroke
(r = 0.70; Figure 5), but very weakly to weakly related at week 12 and week 26 poststroke
(r = 0.22–0.33; Figure 5).

 
Figure 5. Scatterplots showing the daily walking time versus the difference in arm use outcome between the P&M method
and the sit/stand method. Scatterplots are shown for week 3 poststroke (upper row), week 12 poststroke (middle row), and
week 26 poststroke.

The increase in paretic and nonparetic arm use differences between the methods from
week 3 to week 26 was strongly related to very strongly related to the increase in daily
walking time poststroke (r = 0.89–0.90; Figure 6), indicating a significant positive effect of
walking on longitudinal arm use measurements with the P&M method. The change in the
ratio differences between the methods from week 3 to week 26 was moderately related to
the change in daily walking time (r = 0.64; Figure 6).
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Figure 6. Scatterplots showing the change in daily walking time from week 3 to week 26 poststroke versus the change in
arm use outcome difference between the P&M method and the sit/stand method from week 3 to week 26 poststroke.

4. Discussion

Results of this study confirm our hypotheses by showing that whole-body movements
increase cross-sectionally measured arm use outcomes of wrist-worn accelerometers by
8–41% if arm use data are not corrected for whole-body movements. We found that the
size of the effect of whole-body movements on arm use measurements depends largely
on the amount of walking. Since the daily amount of walking increased from week 3 to
week 26 after stroke, the average effect of whole-body movements on paretic arm use
outcomes increased from 31% at week 3 to 41% at week 26 poststroke when not correcting
for whole-body movements. These findings indicate that not correcting arm use data for
whole-body movements may threaten the validity of arm use outcomes and of measured
changes in arm use over time.

The positive effect of walking on arm use measurements with wrist-worn accelerom-
eters can be explained by the fact that wrist-worn accelerometers measure arm use by
recording all arm movements. This includes non-functional arm movements as a result
of the center of mass displacement during walking, which are measured as arm use by
wrist-worn accelerometers, and which consequently increase the arm use outcomes of
wrist-worn accelerometers. Since most patients increased in daily walking time from week
3 to week 26 poststroke (Figure 2), the positive effect of walking on paretic and nonparetic
arm use measurements increased from week 3 to week 26 after stroke.

The positive effect of walking on the ratio between arms is less clear. Our data suggest
that walking has a larger absolute effect on nonparetic arm use outcomes than on paretic
arm use outcomes (Figure 4A,C)—possibly because of more arm sway of the nonparetic
arm during walking—and that as a result, the ratio between arms is only slightly higher
during walking than during sitting/standing (Figure 4B). This would explain (1) why the
positive effect of whole-body movements on the ratio between arms did not substantially
change over time (Figure 4B), (2) why changes in daily walking time were not strongly
related to changes in the ratio difference between the two methods (Figure 6B), and (3) why
daily walking duration showed relatively weak associations with the difference in ratio
outcome between the methods (Figure 5B).

A noteworthy observation was that at all time points, the differences in paretic arm
use outcomes between the P&M method, and the sit/stand method were larger at higher
paretic arm use levels (Figure 4A). This can be explained by the fact that individuals with
higher paretic arm use levels spend more time walking during the day (see colored data in
Figure 4A), resulting in larger differences in paretic arm use outcomes between the two
methods. The relationship that we found between paretic arm use levels and daily walking
time is in line with other studies showing a relationship between the disability level of the
paretic arm and walking performance after stroke [28].

225



Sensors 2021, 21, 4353

Since whole-body movements, especially walking, greatly affect arm use measure-
ments with wrist-worn accelerometers and threaten the validity of arm use outcomes, it
is important to correct arm use measurements for this effect. The use ratio between arms
was proposed by a previous study [14] to correct for the effect of whole-body movements.
However, our results demonstrate that the ratio between arms cannot fully correct for the
effect of whole-body movements, since whole-body movements increased the ratio be-
tween arms on average by 8–9% at all time points (Figure 4B). To correct arm use outcomes
for the effect of whole-body movements, we propose to measure arm use by recording arm
movements with wrist-worn accelerometers during only sitting and standing periods. This
practical and simple method avoids the effect of walking and provides accurate arm use
measurements in stroke patients [13]. The sensor configuration of this method currently
consists of two wrist-worn accelerometers combined with an accelerometer on the upper
leg to detect whole-body postures and movements. To foster the clinical application of this
method, we are currently developing a minimal sensing solution by enabling the detection
of whole-body postures and movements based on wrist-worn accelerometers instead of
using an accelerometer on the upper leg.

Our study may have consequences for interpreting the results of other studies that did
not correct arm use measurements for the effect of whole-body movements. The arm use
outcomes of these studies may be affected by whole-body movements, especially walking.
For example, a recent study applied wrist-worn accelerometers to measure arm use during
the first 12 weeks after stroke without correcting for the effect of whole-body movements [4].
Results showed that the mean daily paretic arm use in 29 stroke patients increased by
approximately 85% from about 2.6 h in week 2 poststroke to almost 5 h in week 12 after
stroke. Since the study did not correct arm use measurements for whole-body movements,
it is possible that whole-body movements, such as walking, have affected the reported
arm use changes. This is plausible since we found a comparable (approximately 75%)
increase in the mean daily paretic arm use from week 3 to week 12 after stroke when not
correcting for whole-body movements, but a much smaller increase (19%) when correcting
for whole-body movements. This example shows that whole-body movements may have
affected the arm use outcomes of studies that did not correct for such an effect. A potential
effect of whole-body movements should be taken into consideration when interpreting the
findings of these studies.

Several limitations may have influenced the outcomes of this study. First, the relatively
small sample size and the single recruitment site may limit the generalizability of our results.
However, the sample size of the present study (n = 33) is larger than the required sample
size (n = 28) that we estimated a priori based on a statistical power analysis (see Methods
section). Second, at each time point in the study, there were missing data due to technical
issues, non-wear of the system, or unavailability of participants. To avoid that missing
data affected the outcomes of the study, we applied generalized estimating equations that
can handle missing data appropriately [24]. Third, the accuracy of the detection of sitting,
standing, and walking by the leg accelerometer is not perfect (approximately 90–95% [21]).
However, since the detection accuracy is very high, it is unlikely that misclassification
has affected the findings of the present study. Fourth, we did not consider the effect of
dominance on the paretic arm use measurements, since previous research indicated that
the difference in daily use between the dominant and non-dominant arm in healthy adults
is very small [10]. Fifth, the analysis in the present study assumed that all arm movements
during whole-body movements are non-functional. Although this assumption might not be
fully correct, previous research has shown that measuring arm movements with wrist-worn
accelerometers during only sitting and standing periods provides very accurate arm use
outcomes in stroke patients [13], thereby supporting the validity of our assumption.

5. Conclusions

This study shows that whole-body movements increase cross-sectionally measured
arm use outcomes of wrist-worn accelerometers with 8–41% if not correcting arm use data
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for whole-body movements. We found that the size of the effect of whole-body movements
on arm use measurements depends largely on the amount of walking. Since the daily
amount of walking increased from week 3 to week 26 poststroke, the average effect of
whole-body movements on paretic arm use outcomes increased from 31% at week 3 to 41%
at week 26 poststroke when not correcting for whole-body movements. These findings
indicate that not correcting arm use data for whole-body movements may threaten the
validity of arm use outcomes and of measured changes in arm use over time. To correct arm
use measurements with wrist-worn accelerometers for the effect of whole-body movements
and specifically walking, we propose a practical and valid solution that measures arm
use during only sitting and standing periods with wrist-worn accelerometers and an
accelerometer on the upper leg [13].
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Abstract: Neurological patients can have severe gait impairments that contribute to fall risks.
Predicting falls from gait abnormalities could aid clinicians and patients mitigate fall risk. The aim of
this study was to predict fall status from spatial-temporal gait characteristics measured by a wearable
device in a heterogeneous population of neurological patients. Participants (n = 384, age 49–80 s)
were recruited from a neurology ward of a University hospital. They walked 20 m at a comfortable
speed (single task: ST) and while performing a dual task with a motor component (DT1) and a
dual task with a cognitive component (DT2). Twenty-seven spatial-temporal gait variables were
measured with wearable sensors placed at the lower back and both ankles. Partial least square
discriminant analysis (PLS-DA) was then applied to classify fallers and non-fallers. The PLS-DA
classification model performed well for all three gait tasks (ST, DT1, and DT2) with an evaluation
of classification performance Area under the receiver operating characteristic Curve (AUC) of 0.7,
0.6 and 0.7, respectively. Fallers differed from non-fallers in their specific gait patterns. Results from
this study improve our understanding of how falls risk-related gait impairments in neurological
patients could aid the design of tailored fall-prevention interventions.

Keywords: gait analysis; machine learning; inertial measurement units; neurological disorders; falls

1. Introduction

Falls are one of the leading causes of mortality, morbidity, and make up a substantial portion
of health care costs worldwide [1]. Falls have a multifactorial origin and usually involve multiple
interrelated intrinsic, as well as extrinsic factors [2]. There has been a plentitude of reviews aimed at
the epidemiology of fall risk in the aging population. Identified risk factors in the aging population are
reduced lower extremity strength, sarcopenia, dizziness, vision impairments, a decline in cognitive
function, higher prevalence of comorbidities, polypharmacy, DBI drug use (cumulative anticholinergic
and sedative exposure), depression, and extrinsic factors, such as poor lighting in the house, loose
rugs, and slippery surface [2–5]. Healthy people can adapt easily to environmental perturbations,
such as recovering from slipping or tripping or walking on uneven surfaces. With aging and/or
age-related pathology, the ability to adapt to environmental perturbation while walking is diminished.
Yet, the most consistent predictors of falls are impairments gait and balance disorders [6,7]. Moreover,
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various neurological disorders further increase the risk of falls by deteriorating specific nervous system
functions contributing to gait and balance [8]. Therefore, the incidence of falls is high in neurological
patients; compared with healthy subjects, neurological patients had a 49% increased risk of falling
within 20 months [9,10]. Patients with Parkinson’s Disease have falls at least once during their disease
journey [11].Therefore, detecting gait impairments by wearable devices, such as inertial measurement
units (IMUs), during walking could help clinicians identify patients prone to falling [12]. IMUs are
attractive alternatives to laboratory motion analysis systems due to their small size, light weight,
portability, low cost, and their simple use in the real world.

Spatial-temporal gait variables derived from IMU recordings are outcome parameters for the
prediction of falls in patient groups. Fallers compared with non-fallers revealed higher standard
deviations and coefficients of variation of stride time, swing time, stance time, and percentage stance
time [13]. There exists a strong inter-relationship between cognition and gait control, since gait and
cognitive function share cortical areas and several neurotransmitters [14]. An additional cognitive
task while walking in clinical populations or older adults, might stress the system by competing for
cortical resources, placing the patient at an increased fall risk while performing dual tasks [15,16].
Therefore, the classification accuracy of fallers and non-fallers might be more accurate when walking
while performing a dual task. In a previous study, spatial-temporal gait variables obtained during
dual task increased classification performance of fallers and non-fallers in 377 older adults compared
to single task walking from 0.57 to 0.67 as quantified by the Area Under the receiver operating Curve
(AUC) [17].

Different computational approaches, such as supervised machine learning approaches artificial
neural network (ANN), K-nearest neighbors (KNN) or support vector machine (SVM), have become
popular for the classification of fall risk using different types of tests and/or activities performed by
healthy older persons or distinct group of patients [18,19]. Based on time-frequency domain features,
different activities were classified using ANN, KNN, quadratic support vector machine (QSVM),
and ensemble bagged tree (EBT), the classification accuracy of 85.8%, 91.8%, 96.1%, and 97.7% was
obtained for fall detection, respectively [18]. Using a functional movement test, including walking
and sit-to-stand with data from foot force sensors, different KNN-based classifiers were compared
by classification accuracy of falls for older adults [19]. Although accuracy was reported to be 100%
for local mean pseudo nearest neighbor method, the number of subjects included was small and was
relatively healthy without any neurological or orthopedic condition that would affect their gait pattern.

Although these studies have successfully classified falls only for general older populations, or just
focused on one specific neurologic disorder, the identification of gait impairments for the classification
of falls in a more heterogeneous neurological population based on spatial-temporal variables requires
a different approach [20,21].

Since the deconstruction of gait into clinically observable spatial-temporal components, such as
shorter steps or longer strides, could assist clinicians in having a gait assessment for falls under direct
clinical observation, there are advantages using these gait variables derived from IMUs to classify falls.
For example, computational approaches can perform automated analyses of multivariate datasets and
can deal with interdependency (collinearity) among gait variables from IMU, such as walking speed,
mean stride times, and variability in stride times. However, many of these popular computational
methods in previous studies with a relatively small sample size will result in overfitting due to the
structure of spatial-temporal gait data. Alternatively, multivariate partial least square (PLS) regression
or discriminant analysis (DA) analysis can be applied. PLS is a technique that combines features
from principal component analysis and multiple regression and is not impeded by collinearity among
variables. Besides, partial least square discriminant analysis (PLS-DA) is suitable for gait data in which
classes (faller vs. non-fallers) are predicted from a relatively large set of independent (gait) variables
with relatively few observations [22]. Clinically, the results of such a computational approach can assist
clinicians in interpreting gait performance of patients and use it as a prevention tool that can identify
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patients with high fall risk. By extracting those gait features that include the information to distinguish
classes, tailored intervention programs to reduce the probability of future falls can be developed [23].

The aim of the present study was to establish a quantitative model to classify fallers and non-fallers
using spatial-temporal gait characteristics and to identify the specific gait characteristics that contributed
to the classification model to target to mitigate falls risk. Considering the strong interrelation of many
spatial-temporal gait variables, we hypothesized that, based on a subset of general gait features, fallers
can be classified from non-fallers even in a heterogeneous group of neurological patients, and the
classification accuracy will be improved while walking with an additional dual task.

2. Materials and Methods

2.1. Participants

Participants (n = 384, age range: 49–80 years) with neurological disorders were recruited from
three neurology wards of the University Hospital of Tubingen between September 2014 and April
2015 [24]. The distribution of the major neurological disorders was: 19% Parkinson’s disease (8% of
fallers), 19% stroke (5% of fallers), 11% epilepsy (4% of fallers), 10% pain syndromes (3% of fallers),
9% multiple sclerosis (4% of fallers), 7% central nervous system tumor (2% of fallers), 6% vertigo (2% of
fallers), 6% dementia (2% of fallers), and 6% meningitis/encephalitis (1% of fallers) (see Reference [24]
for demographics). Participants were included if they were able to walk 20 m with or without walking
aid. Exclusion criteria were: inability to give informed consent, a falling frequency of more than
one fall per week, and impaired cognition (Mini-Mental State Examination (MMSE) score ≤10 [24]).
Participants were classified as fallers if they had fallen at least once during a two-year period before
recruitment. The ethics committee of the medical faculty of the University of Tübingen approved the
study (No. 356/2014BO2), and all participants gave written informed consent prior to participation.
The investigation was carried out following the rules of the Declaration of Helsinki of 1975, revised
in 2013.

2.2. Procedure

Participants were instructed to walk 20 m at a comfortable speed (Single Task; ST), with a dual
task (DT) containing mainly a motor component (walking and checking boxes on a paper sheet, DT1)
and with a cognitive task (serial 7 s subtraction, DT2) [25]. A complete gait dataset was available
for 349 of the 384 participants for ST, wherein 274 participants performed DT1 and 306 participants
performed DT2. Table 1 shows participants’ demographics for the two groups.

Table 1. Demographics of participants for the single task (ST) a motor dual tasks (DT1) and a cognitive
dual task (DT2).

Tasks
Non-Fallers Fallers

ST and DT1 DT2 ST DT1 DT2

No. Males 115 115 88 41 64
No. Females 75 73 71 43 54

No. Total 190 188 159 84 118

Age, years 61.6 ± 12.2 61.5 ± 12.2 65.0 ± 12.7 61.8 ± 12.5 65.0 ± 12.5

Height, m 1.73 ± 0.1 1.73 ± 0.1 1.70 ± 0.1 1.71 ± 0.1 1.72 ± 0.1

Weight, kg 82.04 ± 16.25 82.04 ± 16.2 76.31 ± 14.87 75.97 ± 15.56 77.07 ± 14.61

BMI, kg/m2 27.22 ± 4.79 27.25 ± 4.8 26.08 ± 4.34 25.8 ± 4.33 26.02 ± 3.97

Values are mean ± SD, BMI = body mass index, ST =walking at a comfortable speed without an additional task,
DT1 =walking and checking boxes on a paper sheet, DT2 = serial 7 s subtraction.
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2.3. Data Collection

An IMU-based wearable sensor system was attached with straps around the middle part of the
foot around the shoe, to collect data during walking. The IMU system had 3D accelerometers (±8 g),
3D gyroscopes (±2000◦/s), and 3D magnetometers (±1.3 Gs), resulting in nine degrees of freedom
(Rehawatch, Hasomed, Magdeburg, Germany) [26].

In each walking task, the following 27 gait variables were extracted from the accelerometer signals:
mean and standard deviation of stride duration (s), stride length (m), stride velocity (m/s), number of
steps (n), percent of stance (%), stance time (s), percent of swing (%), swing time (s), symmetry stance
phase, symmetry swing phases, single support phase (s), ankle dorsiflexion at heel strike (◦), plantar
flexion at toe-off (◦), circumduction of gait (cm), percent of gait cycle time variability (%), and percent
of gait cycle spatial variability (%) [26]. In certain combinations, these variables are sensitive to aging
and neurodegenerative diseases [10,12,27].

2.4. Statistical Analysis

The data set obtained from ST, DT1, and DT2 were analyzed separately. First, we evaluated if
the 27 gait variables correlated linearly or non-linearly with each other, determining the choice of the
subsequently used classification method. Partial Least Square Discriminate Analysis (PLS-DA) was
applied to classify fallers from non-fallers.

The 27 gait outcomes were the independent variables, and the dependent variable was the
classification of participants as non-fallers (Class 0) and fallers (Class 1). The PLS-DA model results
in a data dimensionality reduction (Latent Variables; LVs) and provides parameters to evaluate the
quality of the prediction and classification of the model. Besides, the Variable of Importance (VIP) gives
information about the contribution of individual gait variables to the model. The VIP is calculated as:

VIPj =

√√√√√√√√
p
∑N

k=1

[
SSk

(
wkj

||wk||2
)]

∑N
k=1(SS)k

. (1)

p is the total number of gait variables in the model. N is the number of LVs in the PLS-DA model,
k represents the exact component of LV, ssk explains the sum of the variance of the LVs, wkj quantifies
the contribution of variable j according to the kth LV, and wk is the contribution of the kth LV.

Variables with a VIP >1 indicate a significant contribution of the variable to the classification
model. The non-standardized data were tested for normality with the Shapiro-Wilk normality test in R.
Since not all variables were normal distributed, a non-parametric Mann–Whitney–Wilcoxon test in
R programming was applied [28] to test if the VIP variables >1 were significantly different between
non-fallers and fallers.

The standard of the goodness of the model was addressed by the PLS-DA model parameters
Q2, R2X and R2Y. The values of these parameters need to be higher than zero in order to have an
acceptable classification model. To avoid a too complex model with poor predictability (the problem of
overfitting), leave one out cross-validation method was used with PLS-DA classification for assessing
the classification model building [29].

Classification performance evaluation of the PLS-DA model was assessed by the receiver operating
characteristic curve (ROC curve) and the Area Under the Curve (AUC). In addition, for the non-fallers
group and fallers group, their corresponding true positive rate (sensitivity) and true negative rate
(specificity) were calculated based on the confusion matrix.

232



Sensors 2020, 20, 4098

3. Results

3.1. Classification of Fallers during Single and Dual Task Walking

The first five LVs for ST explained 61.4% variance of the original gait variables. Additional LVs
did not explain substantially more of the variability of the spatial-temporal gait variables. The quality
of the model based on five LVs was good as indicated by Q2 = 0.026, R2X = 0.22, R2Y = 0.61.

PLS-DA classified participants into fallers and non-fallers for ST with AUC = 0.77 (Figure 1A).
Figure 1B shows the classification results matrix. In the non-fallers group, the true positive rate and
true negative rate of the non-fall group are 84% and 76%, respectively. In the fallers group, the true
positive and negative rate, respectively, was 60% and 72%. Note that the AUC for each model is shown
in Figure 1A directly, and the true positive rate is directly presented in the diagonal square of the
confusion matrix in Figure 1B–D. The true negative rate was also calculated based on the confusion
matrix but not directly show in the figures and was presented in Table A1 in the Appendix A.

  

  
Figure 1. (A) shows the receiver operating characteristic (ROC) curves for partial least square
discriminant analysis (PLS-DA) classification, based on ST (yellow), DT1 (green), and DT2 (blue)
gait variables. (B–D) shows the classification matrix. The x-axis represents the participants in the
predicted groups and the y-axis shows the participants in the original groups. The dark blue means
more participants were assigned in this group. The numbers of participants and the percentages they
occurred in the original group are shown in the squares and braces. DT1 =walking and checking boxes
on a paper sheet; DT2 = serial 7 s subtraction.
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For DT1 and DT2, the first five LVs were also selected and explained 58.6% and 59.7% variance,
respectively. The goodness of the models of DT1 and DT2 was good as indicated by a Q2 = 0.018,
R2X = 0.063, and R2Y = 0.18 for DT1, and for DT2 of Q2 = 0.054, R2X = 0.220, and R2Y = 0.6.

Classification of fallers and non-fallers based on DT1 and DT2 gait data obtained an AUC = 0.69
and an AUC = 0.77, respectively. The ROC curve for DT1 and DT2 is shown in Figure 1A. According
to the confusion matrix in Figure 1C–D, in terms of DT1, the true positive rate and true negative rate of
the non-faller group are 95% and 58%, respectively. While the faller group obtained 17% true positive
and 72% true negative rate. For DT2, the true positive rate and specificity of the non-faller group
are 88% and 72%, respectively, while the faller group obtained 49% true positive rate and 73% true
negative rate.

3.2. Identified Gait Variables

Gait variables that contributed most to the classification model were identified by VIP scores with
a value >1 (see Figure 2A–C).

For ST, the fallers could be distinguished from non-fallers by higher number of steps, lower mean
stride velocity, stride length, and ankle dorsiflexion at heel strike with associated larger mean stance
time, stride duration, and ankle plantar flexion at toe-off (for all p < 0.05) (Figure 3A).

 

Figure 2. Cont.
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Figure 2. (A–C) shows the importance of the gait parameters by orange area (VIP > 1) from ST, DT1
and DT2. M =mean, SD = standard deviation. DT1 =walking and checking boxes on a paper sheet;
DT2 = serial 7 s subtraction.

 

Figure 3. Cont.
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Figure 3. (A,B) show the direction of variables that contribute more to the PLS-DA model in and DT1.
The x-axis represents the groups of fallers and non-fallers, and the y-axis shows the coefficients of each
variable in each square. The vertical bars indicate the confidence interval. Dots show the individual
data of the participants. DT1 = walking and checking boxes on a paper sheet. Note that the results for
DT2 were similar as for DT1.

For DT1 and DT2, fallers were characterized by lower mean stride velocity and stride length, and
a lower mean and standard deviation of ankle dorsiflexion at heel strike than non-fallers. On the other
hand, non-fallers showed a greater higher number of steps with a larger mean ankle plantar flexion
at toe-off than fallers (see Figure 3B). Additionally, for DT2, non-fallers showed a lower mean stance
time and stride duration than fallers. The variables from the PLS-DA model with a VIP score >1 were
also significantly different between the groups when separately tested (all p < 0.05). Figure 3 shows
the individual data of the participants in addition to the mean values and confidence intervals of the
variables with a VIP score >1 that contribute most to the PLS-DA model during ST and DT1. As can
be seen in figure irrespective of the variability between participants within a group, these variables
were significantly different between non-fallers and fallers. The results for DT2 were similar to DT1,
implying that no major difference was present between walking with an additional cognitive task and
walking when performing an additional motor task.

4. Discussion

Many people with neurological deficits have an increased fall risk. The present study aimed to
develop a model to classify fallers and non-fallers within a heterogeneous group of older adults with
neurological disorders. The model is based on spatial-temporal gait variables derived from IMU during
walking at a comfortable speed, walking with an additional motor task (DT1), and walking when also
performing a cognitive task (DT2) to identify spatial-temporal gait variables that differentiate fallers
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from non-fallers. We found that gait differed between fallers and non-fallers, and single task walking
resulted in the highest classification accuracy in the neurological patients.

4.1. Classification Performance of Fallers and Non-Fallers by ST, DT1, and DT2

Overall, the results showed that using PLS-DA fallers could be identified from non-fallers with an
AUC of 0.7. Adding DT2, the cognitive dual task, to the model, the AUC was still 0.7, but, with the
inclusion of DT1, the motor dual task in the model, AUC decreased to 0.6.

Random forest machine learning method classified Parkinson’s Disease patients versus controls
based on gait with an AUC of 0.76 [30]. Given the heterogeneity of the sample in the present study,
identification of fallers vs non-fallers with an AUC of 0.7 seems reasonably accurate (Figure 1).
The corresponding true positive rate and true negative rate in the fallers group provide more insights
into classification performance. In the fallers group, classification based on ST and DT1 produced a
similar true negative rate (specificity) around 0.7, suggesting that less than 30% of the non-fallers were
classified as fallers.

The true positive rate (sensitivity), however, was lower during DT walking (DT1: 0.17, DT2: 0.49)
compared with ST walking (0.72). This finding was unexpected since we anticipated that dual task
walking would enhance the differences between fallers and non-fallers. Fallers are expected to have a
significant different gait pattern in particularly during DT compared to non-fallers [31] because DT
increases the influence of supraspinal control mechanisms on gait compared to ST [32]. The type
of DT might be important in this respect. A motor-related DT (walking with a glass of water in
hand) improved the discrimination of fallers from non-fallers in otherwise disease-free older adults
based on spatial-temporal gait variables [33]. Similarly, a DT with a cognitive component (walking
while talking) slowed gait and shortened stride length compared to ST in neurological patients [34].
In the present study, we anticipated that the DT1, with a cognitive component, would demand more
cognitive flexibility than DT2, with a motor component. Contrary to this expectation, over 50% of
the patients were assigned to the incorrect group. In other words, gait performance under dual
task conditions did not improve classification performance compared to gait performance under a
single task. Likewise, counting backwards while walking was poorly (high p-value > 0.1) associated
with falls [35]. The heterogeneity of neurological patients in the present could contribute to the
poor classification performance during DT. To illustrate, while falls might be related purely to motor
symptoms (bradykinesia, hypokinesia, rigidity) in PD, cognitive dysfunction is likely to contribute to
falls in dementia [36]. Therefore, the prediction accuracy of fallers by including DT1 and DT2 in the
model would not necessarily improve due to a selective sensitivity of DT1 and DT2 to gait markers
of falls. DT1 focus on motor destitution should affect PD, but, for other patients, such as Dementia
patients, DT2 with a higher cognitive load presumably has a larger effect on them.

4.2. Contribution of Gait Variables to the PLS-DA Classification Model

Gait variables related to the domains of pace (stride velocity), rhythm (stride duration, stance/swing
time), variability (standard deviation of ankle dorsiflexion at heel strike), and spatial gait variables
(stride length, plantar flexion at toe-off, ankle dorsiflexion at heel strike) contributed significantly to
the classification model. These variables appear to be sensitive indicators of gait impairments in a
heterogeneous group of neurological patients to identify the risk of falling [37]. In line with previous
work [6,23,24], fallers versus non-fallers in the present study walked slower, a different rhythm, higher
gait variability, and impaired spatial gait (Figure 3) [38,39]. We extend current data demonstrating that
spatial-temporal gait measures can discriminate fallers from non-fallers among healthy older adults by
showing that some domains of gait are global and not disease-specific. The classification results in this
heterogeneous population might be explained by the fact that multiple types of fallers are included in
the dataset and sub-clinical mobility limitations (slow gait, low stability, obesity, arthritis) are randomly
distributed among older adults [40]. It is possible that, within different cohorts, they have different
risks for falls. The model predicts reasonably well falls because the risks for falls measured through the
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‘global’ gait variables are distributed across the cohorts. Therefore, there is a probabilistic chance for a
given outcome to predict a fall related to the risk measured with a relatively low error by this outcome.
This process is iterated across cohorts, resulting in a relatively accurate fall prediction across cohorts.

4.3. Improving Classification Accuracy of a Heterogeneous Population

Nevertheless, there are strategies that can be adopted in the future to improve the current
classification model to increase the accuracy of fall classification performance. Fall classification
is a multifaceted problem that involves complex interactions between physiological, behavioral,
and environmental factors. Most studies that aim to identify falls or classify fallers and non-fallers
focus on the factor of motor behavior, such as gait and balance, but do not include other indicators of
falls, such as patients’ characteristics [41].

As we know, the combination of intrinsic and extrinsic risk factors contributes to a fall incident.
The intrinsic factors include age, fall history, mobility impairments, sleep disturbances, neurological
disorders, the presence of co-morbidities, and medication use. Extrinsic factors include slippery
surfaces, improper footwear, poor lighting, and clutter [2,42,43]. A comprehensive fall classification
should involve the interactions between these risk factors. Clinically, many different test batteries are
used that examine gait and balance performance as indicators of fall risk. One of the most well-known
and widely-used clinical tests is the Time Up and Go (TUG) [44]. The advantage of TUG is that the
test is simple and easy to perform for older adults [45]. Other examples of the clinical test include the
Berg Balance Scale (BBS) [46], the Functional Gait Assessment (FGA) [47], and the developed Balance
Evaluation Systems Test (BESTest) [48]. However, clinical tests may suffer from ceiling effects, not able
to detect relatively small difference, and provide a general score of functioning.

Therefore, more likely, the combined variables from clinical tests and movement measurements
could optimize the classification of falls. For example, compared with the fall classification model with
only TUG variables, a six-minute walking test equipped with an IMU was added to the TUG to test the
model, the classification accuracy of falls in a group of 73 nursing home residents, using a decision tree
classifier, increased from 68% to 76% [49].

On the other hand, adding different types of gait variables also could improve the classification
performance. In the present study, commonly used spatial-temporal gait variables were calculated
from the data collected from wearable sensors during walking, to establish an accurate PLS-DA
classification model. However, when combining time/frequency domain and spatial-temporal gait
variables together to establish an advanced classification model to discriminate fallers from non-fallers,
the accuracy of classification will be enhanced. For example, a Random Forest (RF) classification
model classified eleven stroke patients and nine patients with neurological disorders other than stroke
(brain concussion, spinal injury, or brain haemorrhage) based on only spatial-temporal gait variables.
The classification model performed a moderate testing accuracy of 76.08%. While combining the time
domain gait variables and spatial-temporal gait variables and applying a Multilayer Perceptron (MLP)
classification model, the classification performance was increased to 84.78% accuracy [21].

The present study results show that in general for fall classification among diverse neurological
patients, spatial-temporal gait properties could be used as a biomarker for fallers, irrespective of
the specific diagnosis. However, for the identification of pathology specific gait characteristics,
e.g., gait features or gait signatures that are unique for a certain diagnostic group (e.g., Parkinson,
Stroke, Dementia), other types of gait data, as input to a classification model are needed [22]. The current
gait variables are spatial-temporal gait parameters averaged over a number of strides. These parameters
do not take into account of time, i.e., fluctuations of walking over a number of strides. Whereas the
spatial-temporal gait variables provide more overall information, adding gait variables that include
time, the so-called dynamic gait variables, will improve the sensitivity to identify specific diagnostic
groups of patients and provide more detailed information for prediction models [50].

Methodologically, gait classification performance can be improved by using a data pre-processing
method [51]. Principal Component Analysis (PCA) usually leads to an improvement in classification
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accuracy [52]. Although PCA is an often-used method for extracting unique features in multidimensional
data sets, its assumption (orthogonality) might neglect the significant interactions between the
spatial-temporal gait variables. Alternative a less known method for data pre-processing in advance to
applying to machine learning methods is the Signature Method. The Signature Method transforms the
original data by using path-integral to generate a continuous pathway of the gait data, which results in
new feature sets. It not only reduces the redundancy of the data, as well as PCA, but also generates
new features that better represent the interactions among these gait variables [53]. The drawback of
this new data pre-processing method is that the newly generated features are hard to relate back to
the original variables; therefore, it is very difficult to interpret the clinical meanings behind the new
features [53].

4.4. Selection of Classification Models for Clinical Applications

In order to make a proper program to mitigate fall risks and to improve the gait and mobility
impairments, to finally prevent a future fall, advanced computational models, such as machine learning,
are anticipated to have the capacity to automatize this process. They can provide a transparent and
accurate classification of fallers and non-fallers to assist early identification of fall risks before the
actual occurrence of a fall [41].

Different computational methods, such as machine learning, have been used for gait assessment, in
general, to construct a model for the classification of different patients and/or age-based groups [50,51].
These computing algorithms should have the capacity to weight the predictive variables, to illustrate
the additional clinical value of fall detection, and to assist clinicians in identifying the unique factors
that increase falls in a specific population [41].

However, many clinical gait datasets suffer from the co-linear and highly correlated data features,
as well as relatively small sample sizes, that are not appropriate for many of these approaches since
the accuracy of the widely used machine learning models is dependent on large sets of training
data. The more training data, the more accurate, sensitive, and specific the model built. However,
sufficient training data may not always be available for the populations in a clinical test. Besides,
more variables with less data samples would complicate the model with the low bias high variance to
overfit the classification results [51]. For clinical gait analysis, the multiple classical machine learning
methods, such as Support Vector Machine (SVM) or Neural Network (NN) approaches, have the
advantage to automatically selected the features that are used for a classification model, without
any prior feature selection [50]. Yet, for clinical relevance, the results of the computational model
parameters are necessary to be translated into meaningful clinical knowledge, despite the complex
interactions among the variables leading to the classification [51,54]. The lack of transparency of
the construction process in the machine learning classification models limits the reproducibility and
clinical interpretation of these advanced computational technologies. This ‘black box’ problem hinders
clinical application since clinicians need to understand the specific gait variables for diagnosis [55].
Therefore, in the present study, we applied a method that automatically identified gait parameters,
using VIP scores from the PLS-DA model, without a clinical diagnosis as a predictor. PLS-DA is
two-fold: Firstly, in clinical gait analysis, many of the gait variables are interrelated. PLS-DA is not
impeded by collinearity among variables, which will have a negative impact on the normal Linear
Discriminant Analysis. In terms of the fall classification model for clinical gait data, we mostly have
more variables than the number of subjects in a dataset. So, one advantage of the PLS-DA model is that
we can input various standardized gait variables even more than the number of participants, without
prior knowledge to select in advance, but the model still can accurately detect falls. In the present
study, we used Leave-One-Out cross-validation (LOOCV) to increase the sample size for training and
testing PLS-DA model and to minimize the drawbacks of limited sample size and bias of data [56].
Secondly, PLS-DA is transparent, i.e., several statistical parameters can be derived, such as the VIP
scores, to identify the weight of contribution by each variable to the classification model and Q2,
representing the predictability and validity of the model [57]. In this case, PLS-DA could provide more
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information to interpret fallers’ gait in clinical. Clinicians using these data science approaches might,
at an early stage, improve the identification of patients with fall risk.

When we construct a reliable and accurate computational model, gait patterns can be identified
by the model of new patients to identify the at-risk gait on early stage, to diagnose the potential
fallers without the prior knowledge of an accurate neurological pathology, and to finally determine
the high risk of falling for patients based on their mobility decline [58]. However, human clinical
decision-making can be supported and assisted by computational models, such as PLS-DA, but not
replace the diagnosis from clinicians. For instance, the identified gait variables could be used for new
individuals, to predict the fall risk for potential patients. Moreover, the established computational
model might be instrumented in IMU to monitor the interventions in patients’ real-world daily lives
and to optimize the efficacy of specific rehabilitation protocols [51].

5. Conclusions

The present study classified non-fallers and fallers based on spatial-temporal gait variables derived
from IMUs using PLS-DA while walking with or without a DT. The model successfully classified fallers
and non-fallers with a satisfactory AUC of 0.69 to 0.77. Thus, differences in gait among neurological
patients could be used to identify potential fallers from non-fallers even without DT gait that does
not seem to improve classification accuracy among patients with a diverse neurological diagnosis.
Number of steps, plantar flexion at toe-off, and ankle dorsiflexion at heel strike, stride length, stride
duration, stride velocity, and stance time were sensitive variables to classify fallers and non-fallers.
Fallers versus non-fallers have a slow pace and rhythm, high gait variability, and impaired spatial
gait pattern. Improving our understanding of how falls risk-related gait impairments in neurological
patients could aid the design of tailored fall-prevention interventions to decrease the fall risk for people
with neurological deficits.
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Appendix A

Table A1 indicates an overview of the PLS-DA fall classification evaluation results.

Table A1. Results of PLS-DA classification for the single task (ST) a motor dual task (DT1) and a
cognitive dual task (DT2).

Evaluation True Positive Rate % Ture Negative Rate %

AUC Non-Fallers Fallers Non-Fallers Fallers

ST 0.77 84 60 76 72
DT1 0.69 95 17 58 72
DT2 0.77 88 49 72 73

ST = walking at a comfortable speed without an additional task, DT1 = walking and checking boxes on a paper
sheet, DT2 = serial 7 s subtraction.
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Abstract: Perinatal stroke (PS), occurring between 20 weeks of gestation and 28 days of life, is a leading
cause of hemiplegic cerebral palsy (HCP). Hallmarks of HCP are motor and sensory impairments
on one side of the body—especially the arm and hand contralateral to the stroke (involved side).
HCP is diagnosed months or years after the original brain injury. One effective early intervention
for this population is constraint-induced movement therapy (CIMT), where the uninvolved arm is
constrained by a mitt or cast, and therapeutic activities are performed with the involved arm. In this
preliminary investigation, we used 3D motion capture to measure the spatiotemporal characteristics
of pre-reaching upper extremity movements and any changes that occurred when constraint was
applied in a real-time laboratory simulation. Participants were N = 14 full-term infants: N = six
infants with typical development; and N = eight infants with PS (N = three infants with PS were later
diagnosed with cerebral palsy (CP)) followed longitudinally from 2 to 6 months of age. We aimed to
evaluate the feasibility of using 3D motion capture to identify the differences in the spatiotemporal
characteristics of the pre-reaching upper extremity movements between the diagnosis group, involved
versus uninvolved side, and with versus and without constraint applied in real time. This would be
an excellent application of wearable sensors, allowing some of these measurements to be taken in a
clinical or home setting.

Keywords: perinatal stroke; kinematics; upper extremity; cerebral palsy; hemiplegia; constraint

1. Introduction

Perinatal stroke (PS) is caused by interrupted blood flow to the brain between 20 weeks gestation
and 28 days of life [1,2]. PS affects ~24.7/100,000 live births in the US annually [3]. Common
impairments as a result of the stroke include delays and impairments in motor, sensory, cognitive,
speech, and hearing abilities [4]. Many infants with PS do not demonstrate clinical signs right away,
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unless they develop seizures (resulting in a referral for brain imaging), and are often diagnosed once
motor asymmetries appear—months, if not years, after the original brain injury [5]. PS is the leading
cause of hemiplegic cerebral palsy (HCP), in which the arm, leg, and trunk on one side of the body
are more affected (involved side) by motor and sensory impairments than the other side (uninvolved
side). HCP leads to the impaired or delayed development of reach and grasp, affecting the child’s
upper extremity skills. The early detection of these impairments in at-risk infants is crucial in order to
provide appropriate referral and begin rehabilitation interventions.

The diagnosis of cerebral palsy (CP) is occurring at earlier ages, due in part to the recently
published guidelines and implementation of early diagnosis criteria [6–8]. Magnetic resonance imaging
(MRI) is sometimes used in the diagnostic process, but a diagnosis of CP is not given without an
observation of motor impairment. Current tools used to aid in diagnosis are based on reflexes
and motor skill performance, such as the Hammersmith Infant Neurological Exam (HINE) and the
Test of Infant Motor Performance (TIMP) [6]. The early identification of CP is enhanced using the
General Movement Assessment (GMA), which uses a gestalt observation of movement quantity and
quality [9,10]. The observations of abnormal movement patterns using the GMA as early as 10 weeks of
age have been shown to have strong predictive validity for a later CP diagnosis [11]. Combinations of
these tools have been used to improve diagnostic predictive ability, but there remains substantial room
for improvement, given the time between the injury to the central nervous system (CNS) and diagnosis
of motor impairment. There is a need for objective measures of motor impairment in these infants
for earlier, definitive diagnosis and a better understanding of the underlying pattern of impaired
coordination which is a result of an injured, developing nervous system. 3D motion capture may offer
a technology-based solution to detect the asymmetries and abnormal movement patterns in at-risk
infants [12,13]. By measuring kinematic characteristics of pre-reaching movements, we might be able
to use 3D motion capture to detect motor impairment prior to the emergence of clinical signs like an
early arm preference or delayed onset of reaching. Such a tool would aid in the early identification
of the underlying movement impairment and provide impairment-level targets for rehabilitation.
Importantly, delivering targeted interventions earlier in development leads to better motor outcomes
for children with CP [14].

Previous studies using 3D motion capture have identified the spatial and temporal parameters
of reaching and pre-reaching or spontaneous movements in infants with typical development (TD)
and in infants at high risk for CP [15–23]. A reaching movement is a movement of the hand that
ends in a hand–toy contact, typically in a midline position, whereas a pre-reaching or spontaneous
movement is any movement that does not meet the definition of a reach [17]. In research studies, these
pre-reaching movements are often defined as movements toward a toy and against gravity [13,17].
Most typically developing infants demonstrate an onset of reaching in a midline position around
3–5 months of age [21]. The developmental trajectory of reaching movements includes an (i) increased
frequency of successful hand–toy contacts with a decrease in spontaneous or pre-reaching movements;
(ii) straighter hand path measured by a lower straightness ratio, which means the length of the hand
path is getting shorter relative to the distance between the start and end point of the reach [23]; and (iii)
faster movement speed early in development with a decrease in movement speed with the onset of
reaching, in order to perform a more accurate movement [21]. Infants with CP show delays in the onset
of reaching, less coordinated reaches (a smaller number of reaches, longer straightness ratio, faster
speeds, and an increased number of movement units), and often an early arm preference [16,24,25],
whereas TD infants will demonstrate a fluctuating arm preference [15,20,23,26].

Constraint-induced movement therapy (CIMT) is a promising treatment option for infants with
HCP. CIMT involves constraining the uninvolved arm, using a cast, a mitt, or by a therapist holding
the arm, in order to provide therapy and encourage as much meaningful use and repetition of the
involved arm as possible. Pre- and post-CIMT treatment outcomes are commonly measured, and have
demonstrated positive treatment effects including improvements in kinematics [27–33]. Recent studies
have also shown an increased overall use of the involved limb during CIMT [34]. The effects of
constraint in real time on spatial and temporal kinematics of upper extremity movements, however,
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are unknown. Monitoring the kinematic characteristics of upper extremity movements during the
intervention could provide important feedback to therapists on the effectiveness of the intervention
and allow for the moderation of the intervention to increase desired behaviors. It could also help
to understand the underlying motor impairment and detect how CIMT may impact recovery and
development for these infants. Therefore, identifying a tool, such as 3D motion capture, that can track
these behaviors in real time, could greatly improve the therapeutic impact and outcomes for infants
with PS and CP.

In this preliminary investigation, our objective was to answer two primary questions that will
ultimately serve to guide future research. (i) Can 3D motion capture be used to detect differences in
pre-reaching and reaching behaviors, in terms of the timing and coordination of pre-reaching upper
extremity movements and frequency of reaches, between infants with TD, PS, and CP? If so, what are
the differences, and do they change with side (involved versus uninvolved) and age? (ii) Can 3D
motion capture detect changes in pre-reaching and reaching behaviors with and without the constraint
of an arm? If so, what are the changes, and are they differ with diagnosis, side, and age? The purpose
of this study was to generate specific hypotheses to guide future research on the use of 3D motion
capture and wearable sensors to objectively track changes in upper extremity gross motor skills in
infants with PS and CP, either for the early detection of impairment, or to monitor an intervention.
Moreover, we aimed to identify which specific kinematic variables could serve as biomarkers for
typical versus impaired upper extremity motor development in infants with PS and CP.

2. Materials and Methods

2.1. Participants

There were N = 14 full-term (>37 weeks gestational age) infants enrolled: 6 with TD, 5 with PS
and no diagnosis of CP, and 3 with PS who later received a diagnosis of CP. PS was confirmed with MRI
by a radiologist. The CP diagnosis, given to 3 of the infants with PS, was a clinical diagnosis made by a
physician, which we confirmed via chart review at an 18-month follow up. The infants with PS were
recruited from Nationwide Children’s Hospital in Columbus, OH, and by word of mouth. The infants
with TD were recruited from the Columbus, OH area through word of mouth. Some of the infants
included in this preliminary analysis were part of a larger study on upper extremity development
in infants with PS. Exclusion criteria for both groups included genetic disorders, and orthopedic or
visual impairments that could affect reaching behaviors. In order to capture early arm movements,
prior to the onset of reaching, infants came to the lab for their first data collection at around 2 months
of age (range 60–84 days old); 75.5 ± 9.3 days for the TD group, 70.4 ± 9.7 days for the PS group,
and 67.5 ± 10.3 days for the CP group. There was no significant difference in age between the groups
(F (2) = 0.96, p = 0.41). Parents were informed of the risks and potential benefits of their child
participating in this study. Parental permission was obtained prior to the start of data collection.
The Ohio State University Institutional Review Board (BUCK IRB# 2008H0197, 2019N0012) and the
Nationwide Children’s Hospital Institutional Review Board (NCH IRB# IRB08-00292) approved this
study and the data collection from human subjects that was performed therein.

2.2. Procedure

In this longitudinal study, infants came to the lab monthly for 5 sessions over a 5-month period,
starting at 2 months of age, in order to capture the window of pre-reaching and reach onset in typical
development. The infants’ movements were captured using a 10-camera Vicon motion capture system
(Vicon Motion Systems Ltd., Oxford, UK) [35]. The infants were seated in a custom-made chair reclined
30◦ from vertical with a wide strap securing their torso against the back of the chair, while still allowing
for free arm movement (Figure 1) [17]. Eight-millimeter diameter retroreflective markers were placed
on the infant: 3 on each hand, 1 on the forehead, 3 on the chair, and 1 on the toy. At each session,
movement was recorded at 120 Hz for nine 30 s trials: 3 with both hands free (bilateral; Figure 1), and 3
each with either arm constrained by the experimenter holding it against the infant’s side (constraint).
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The trial length was selected based on previous 3D motion capture studies of pre-reaching arm
movements [13,17,36]. A toy was presented in front of the infant within arm’s reach at midline and
shoulder height to stimulate upper extremity movement [13,17]. The 3D position for each marker was
calculated in Vicon Nexus 1.8.5 and low-pass filtered with a 4th order zero lag Butterworth filter, with a
cutoff frequency of 4 Hz [17–20]. The 3D linear positions and speed were calculated for each marker.

 
Figure 1. Infant seated in the custom chair and wearing retroreflective markers for 3D motion capture.

The spatial variables calculated for pre-reaching arm movements were movement length (length
of straight line from start point to end point of a movement in mm), length of the hand path (total
distance travelled by the hand from start to end of the movement in mm), and straightness ratio (ratio of
length of hand path to movement length). The temporal variables calculated were the movement speed
(average velocity of the movement, calculated by movement length over time in mm/s), movement
frequency (total number of movements in a trial over time in minutes), and reach frequency (total
number of reaches in trial over time in minutes). The variables selected were all reliable measures of
upper extremity coordination in pediatric populations [16,17,20,21,23,24,26].

Each dependent variable reported was calculated as a per-movement average. In this study,
we applied the definition developed by Bhat and Galloway (2006) for a “movement”: a hand
displacement of at least 30 mm in one direction, the end of which was indicated by a reversal of
direction measuring 15 mm or greater in length; and a “reach”: a movement that results in the
hand making contact with the toy [17,26]. Movements and reaches were identified using a custom
MATLAB program (The Mathworks Inc., Natick, Massachusetts) [37]. Reaches were confirmed with
the observation of video recordings of the trials. The calculations for the dependent variables were
performed using MATLAB. Each trial was quality checked by viewing a graph of the trajectory of
each hand. The start and stop points for each movement were labelled on the graphs and confirmed
or corrected by an experimenter. The quality check process ensured that no obvious artifacts were
included in the statistical analysis.

2.3. Statistical Analysis

Means and standard deviations of each variable were calculated for analysis by age for each
group, trial type, and side from multiple repeated trials for each participant at each time. Linear mixed
models for repeated measures were used to estimate the changes of each dependent variable over time
by group (CP, PS, TD). This statistical model was structured to account for the association of repeated
measures both over time and from the two sides (arms) of the same participant at each time point.
In the analysis, age was treated as a categorical variable by months of age. For infants with bilateral
injuries based on the MRI, where no side was classified as having greater involvement, both upper
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extremities were categorized as potentially involved in the analysis. Due to the small sample size,
no formal statistical tests were conducted to compare the changes from 2 to 6 months among different
diagnosis groups. Exploratory analyses were conducted to estimate the changes of the same measure
over time for each side by different groups. In addition, the estimated mean and standard deviation at
2-month and 6-month time points for all dependent variables were summarized for each group to be
used for the design of future studies. Variability was represented by the standard deviation of the mean.
SAS version 9.4 (The SAS Institute, Cary, NC, USA) [38] was used to conduct the statistical analysis.

3. Results

In this study, we successfully collected longitudinal 3D motion capture data on 14 infants with
and without PS and CP, prior to and during the emergence of reaching. A total of 642 trials containing
9784 unique movements were included in the statistical analysis, with at least one usable trial of each
type per session per participant. We will first give a description of the overall group differences from
the first to the final data collection. In the subsequent sections, we will describe the changes between
and within diagnosis groups in terms of the side (involved versus uninvolved), age, and constraint
versus no constraint (bilateral) in more detail.

To address our first question, whether 3D motion capture can detect group differences in the
timing and coordination of pre-reaching and reaching movements, we observed an overall change
in the means from 2 to 6 months for both spatial and temporal kinematic variables, indicative of
possible group–age interactions (Table 1). At 2 months of age, all three groups had similar means for all
kinematic variables, in that they were all within one standard deviation of the TD group. At 6 months
of age, there were visible differences between the group means for many of the variables. There was
some noticeable variability in the means from 3 to 5 months, with trends becoming most apparent at 5
and 6 months.

Table 1. Overall group mean (standard deviation) of the kinematic variables at 2–6 months of age.

2 Months 3 Months 4 months 5 Months 6 Months

Movement Length
(mm)

CP 62.4 (16.1) 68.6 (19.5) 58.4 (20) 79.8 (15) 52 (13.1)

NS 62.7 (13.1) 61.4 (16.1) 62.2 (18.4) 87.2 (14.2) 83.9 (16.8)

TD 64.8 (14.5) 62.2 (13.4) 73.5 (25.9) 79.9 (15.4) 90.2 (33.3)

Path Length (mm)

CP 119 (41.9) 116 (26) 112 (43.6) 138 (29.6) 103 (26.3)

NS 116 (20.4) 111 (30.9) 113 (38.7) 142 (22.2) 156 (32.1)

TD 121 (34.9) 113 (20.8) 129 (37.1) 144 (33.7) 155 (47.2)

Straightness Ratio

CP 1.9 (0.3) 1.74 (0.23) 2.09 (0.86) 1.87 (0.33) 2.12 (0.49)

NS 1.94 (0.3) 1.88 (0.4) 1.91 (0.47) 1.7 (0.22) 2.04 (0.36)

TD 1.89 (0.31) 1.91 (0.32) 1.9 (0.44) 1.89 (0.31) 1.9 (0.36)

Movement Speed
(mm/s)

CP 116 (40.4) 188 (61.4) 111 (55) 244 (130.6) 154 (74.4)

NS 151 (49.6) 149 (75.6) 130 (67.9) 207 (117.1) 203 (109.4)

TD 138 (46.8) 174 (72) 203 (136.6) 290 (148) 272 (158.8)

Movement
Frequency (#/min)

CP 13.12 (6.94) 24.22 (16.29) 5.25 (3.99) 10.67 (4.88) 6.28 (3.28)

NS 24.06 (15.14) 14.77 (12.81) 8.44 (6.8) 16.84 (9.61) 17.23 (5.11)

TD 17.94 (9.27) 14.5 (6.96) 12.93 (9.97) 18.26 (11.94) 17.99 (11.83)

Reach Frequency
(#/min)

CP 0.02 (0.07) 1.18 (1.19) 0.22 (0.46) 1.64 (1.52) 0.08 (0.2)

NS 0.15 (0.32) 0.58 (0.58) 1.17 (1.7) 1.63 (1.82) 3.46 (2.5)

TD 0.3 (0.66) 1.19 (1.35) 2.06 (3.06) 2.67 (3) 3.63 (3.48)

CP = cerebral palsy, PS = perinatal stroke, TD = typically developing.
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In terms of spatial variables, the infants with PS and TD both demonstrated an increase in the
mean movement length and path length from 2 to 6 months but the CP group did not: for the infants
with PS, both the movement and path length means were more than one standard deviation longer at
6 months than at 2 months (62.7 ± 13.1 to 83.9 ± 16.8, 116 ± 20.4 to 156 ± 32.1, respectively). Conversely,
the infants with CP demonstrated decreased mean movement and path lengths at 6 months compared to
2 months. Not surprisingly, since movement and path length both changed in the same direction
within groups, the straightness ratio did not change noticeably in any of the groups from 2 to 6 months.

In terms of the temporal variables, the infants with CP showed a slightly slower mean movement
speed of 116 mm/s, although still within one standard deviation of the other two at 2 months.
At 6 months, the infants with CP increased their mean movement speed to 154 mm/s, comparable to
the 2-month means of the other two groups; however, the infants with PS and TD increased their mean
movement speeds from 151 and 138 to 203 and 273 mm/s by 6 months, respectively. For movement
frequency, all groups had similar mean frequencies at 2 months, and the infants with PS and TD
appeared to maintain their mean frequencies around 18 movements/min from 2 to 6 months, while
the infants with CP decreased to a mean of just 6.3 movements/min at 6 months, which is within two
standard deviations below the means of the other two groups. Finally, all three groups had a mean
reach frequency close to 0 reaches/min at 2 months. The infants with CP remained near 0 reaches/min
at 6 months, while the infants with PS had a mean of 3.46 reaches/min and the infants with TD a mean
of 3.63 reaches/min, indicative of the typical onset of reaching.

To address our second question, whether 3D motion capture detected changes with versus
without constraint, we found that this varied based on the diagnosis group, age, and side (involved
versus uninvolved). We will describe the differences that were observed for each variable in the
proceeding sections.

3.1. Spatial Variables

We measured three spatial variables of pre-reaching movement: movement length (Figure 2),
length of hand path (Figure 3), and straightness ratio (Figure 4), as defined in Section 2.2. With regards
to our second question, the infants with CP did demonstrate some consistent differences in their
involved side with constraint versus bilateral, with a longer mean path length and larger mean
straightness ratio in the constraint versus bilateral condition, which was not observed for the PS group
or for any group with movement length.

3.1.1. Movement Length

Infants in all three groups (TD, PS, CP) had an average movement length around 60 mm at
2 months for both sides in the constraint and bilateral conditions (Figure 2). The changes with age
differed between diagnosis groups. The infants with TD and PS both increased mean movement length
over time, while the infants with CP did not, and even showed a trend for shorter movement length in
the involved side with age, which addresses our first question.

The infants with TD demonstrated increased movement length with age, more so in the bilateral
condition than the constraint condition. In the constraint condition, there was more variability, but still
a gross increase in mean movement length from 2 to 6 months.

The infants with PS showed similar changes with age in the bilateral condition as the infants
with TD, although the mean movement length for the uninvolved side in the bilateral condition did
decrease from 5 to 6 months. As with the infants with TD, infants with PS had more variability with
age in the constraint condition, particularly with the uninvolved limb, which showed a decrease at
4 months, an increase at 5 months, followed by another decrease at 6 months. The overall change
from 2 to 6 months was an increase in mean movement length for both limbs and both conditions.
At 6 months, the infants with PS had mean movement lengths about 20 mm less in the uninvolved
limb versus the involved limb in both the constraint and bilateral conditions.

250



Sensors 2020, 20, 7312

 
Figure 2. Mean movement length by age, side and condition. For typically developing infants, the left
arm is plotted alongside the involved limb and the right arm is plotted alongside the uninvolved limb.
Error bars show 1 standard deviation.

 
Figure 3. Mean hand path length by age, side, and condition. For typically developing infants, the left
arm is plotted alongside the involved limb and the right arm is plotted alongside the uninvolved limb.
Error bars show 1 standard deviation.
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Figure 4. Mean straightness ratio by age, side, and condition. For typically developing infants, the left
arm is plotted alongside the involved limb and the right arm is plotted alongside the uninvolved limb.
Error bars show 1 standard deviation.

The infants with CP followed a variable trend in both sides and conditions similar to the uninvolved
limb of the infants with PS in the constraint condition. There were peaks in the movement length at 3
and 5 months for all conditions for the infants with CP and decreases at 4 and 6 months. The movement
length for infants with CP was about the same at 2 months as it was at 6 months for the uninvolved side
in the bilateral condition. For the involved side of the infants with CP in both conditions, the movement
length was shorter at 4 and 6 months than at 2 months. Only the uninvolved side in the constraint
condition for infants with CP showed increased movement length from 2 months to 6 months. In all
conditions, the longest movement length for infants with CP occurred at 5 months.

3.1.2. Length of Hand Path

In human movement, the length of the hand path (Figure 3) can never be shorter than the
movement length (Figure 2). In this study, all groups had similar mean path lengths at 2 months.
The infants with TD and PS overall had increased hand path length with age, corresponding to the
increased mean movement lengths they demonstrated. The infants with CP showed a more variable
pattern again, with shorter path lengths on the involved side at 6 months versus 2 months. At the
age of 6 months, the path lengths for CP, PS and TD were: 103 ± 26.3, 156 ± 32.1 and 155 ± 47.2 mm
respectively, demonstrating a difference of more than one standard deviation between the infants with
CP and TD.

With constraint, the infants with PS and TD both showed more variation over time compared
to bilateral trials. The infants with PS showed a decrease from 2 to 4 months, followed by a sharp
spike from 4 to 5 months, followed by a decrease from 5 to 6 months in the uninvolved side constraint
condition, which was similar to the trend seen with movement length. The infants with PS showed an
inverse pattern with the constraint of the potentially involved limb, increasing from 3 to 4 months,
decreasing from 4 to 5 months, then increasing again from 5 to 6 months. The infants with CP did not
show clear differences between the constraint and bilateral conditions for mean path length, although
they did demonstrate a shorter mean path length in their involved side, particularly in the bilateral
condition, after 2 months.
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3.1.3. Straightness Ratio

Infants in all three groups started out with a similar mean straightness ratio at 2 months (Figure 4).
Noticeably, the infants with CP and PS showed greater variation in the straightness ratio between sides
and conditions, whereas the infants with TD maintained a relatively constant straightness ratio for
both sides and conditions over time.

The infants with CP showed decreased straightness ratios at 3 and 5 months for both sides and
conditions. Interestingly, at 5 months, the infants with CP had a lower straightness on their involved
side versus their uninvolved side in the bilateral condition, indicating straighter movements with
the involved arm. The infants with CP also had a higher straightness ratio for the involved side
in the constraint condition compared to bilateral, while the uninvolved side showed the opposite
pattern. At 6 months, the infants with CP had a higher straightness ratio with the involved side in
both conditions compared to the uninvolved side, which indicated less straight movements on the
involved side.

The infants with PS showed a slight trend for decreased straightness ratio in the involved side
from 2 to 6 months, with some variability. The uninvolved side followed a similar trend, although there
was a sharp increase for the uninvolved side in both conditions from 5 to 6 months. For the infants
with PS, the uninvolved side in the bilateral condition showed the lowest straightness ratio at all
time points, except at 6 months, indicating the straightest movements in that condition. Additionally,
at most time points the straightness ratio for infants with PS is higher for the constraint condition than
the bilateral condition for both involved and uninvolved sides, indicating straighter movements in the
bilateral condition.

The infants with TD did not demonstrate notable differences in straightness ratio with condition,
side, or age.

3.2. Temporal Variables

We measured three temporal variables of upper extremity movement: movement speed (Figure 5),
movement frequency (Figure 6), and reach frequency (Figure 7), as defined in Section 2.2.

 
Figure 5. Mean movement speed by age, side, and condition. For typically developing infants, the left
arm is plotted alongside the involved limb and the right arm is plotted alongside the uninvolved limb.
Error bars show 1 standard deviation.
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Figure 6. Mean movement frequency by age, side, and condition. For typically developing infants,
the left arm is plotted alongside the involved limb and the right arm is plotted alongside the uninvolved
limb. Error bars show 1 standard deviation.

 
Figure 7. Mean reach frequency by age, side, and condition. For typically developing infants, the left
arm is plotted alongside the involved limb and the right arm is plotted alongside the uninvolved limb.
Error bars show 1 standard deviation.

3.2.1. Movement Speed

All three groups demonstrated an increase in movement speed in both sides and both conditions
from 2 to 6 months (Figure 5). There were potential differences between groups at 2 months; the mean
for the involved side of the infants with CP was lower than those for the infants with PS and TD. At 6
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months, the mean movement speed for the uninvolved side in the constraint condition for infants with
CP was similar to the means of infants with TD and PS, but the means for the involved side in both
conditions, and the uninvolved side in the bilateral condition, were substantially lower. Additionally,
all three groups showed a decrease in the movement speed from 5 to 6 months for both sides and
conditions, with the exception of the involved side of the infants with PS, and the right hand of the
infants with TD, in the constraint condition.

The infants with CP showed peaks in their movement speed at 3 and 5 months and decreases at 4
and 6 months for both sides and conditions. The infants with CP appeared to move at faster speeds,
on average, with their uninvolved limb compared to the involved limb. Additionally, they moved at
faster speeds, on average, in the constraint conditions, compared to the bilateral conditions. The slowest
movement speeds were consistently in the involved side in the bilateral condition at all time points for
the infants with CP.

The infants with PS demonstrated a general increase in movement speed with age in both
conditions and sides, although there was a decrease noted at 4 and 6 months for all except the involved
side in the constraint condition. There was no clear difference in movement speed between sides or
conditions for the infants with PS, although at 5 and 6 months, the mean movement speeds were fastest
with the uninvolved side in the bilateral condition.

The infants with TD demonstrated a sharp increase in mean movement speed from 4 to 5 months
with the left side, and from 3 to 5 months with the right side. From 5 to 6 months, we saw a decrease in
the mean movement speed in all but the right side in the constraint condition. The infants with TD
also had faster mean speeds in the constraint condition compared to the bilateral for the left side at 4 to
6 months, but not with the right side.

3.2.2. Movement Frequency

The infants with CP and TD both had higher mean movement frequencies with constraint
compared to the bilateral conditions (Figure 6). The infants with PS showed no clear difference in the
mean movement frequency between conditions, although they did have a higher mean movement
frequency with the uninvolved side compared to the involved side at 6 months. The infants with
TD and PS both showed a minor trend for increased movement frequency between 4 to 6 months,
although this increase was more pronounced in the infants with PS, particularly in the uninvolved
limb. Meanwhile, the infants with CP had a sharp decrease in the mean movement frequency from 3
to 4 months, which increased slightly at 5 months, then decreased again at 6 months. Interestingly,
the infants with CP started out with similar mean movement frequencies as the infants with TD at
2 months, then increased to much higher mean frequencies at 3 months in the constraint condition,
then decreased sharply to frequencies below those of the infants with PS and TD at 4 to 6 months.
The infants with PS started at higher movement frequencies than the two other groups, but then
showed mean movement frequencies similar to the infants with TD for the remaining 4 months.

3.2.3. Reach Frequency

Infants with TD and PS both showed an overall increase in the reach frequency with age,
particularly after 3 months (Figure 7). The infants with CP mostly did not reach with their involved
side, except at 3 months and 5 months, and only in the constraint condition. The infants with CP did
show an increase in the mean reach frequency of the uninvolved side at 3 and 5 months, more so
in the constraint condition than bilateral, however, there were no reaches at 6 months. The infants
with PS demonstrated a fairly steady increase in the mean reach frequency with age, albeit with
some fluctuation. At 6 months, the involved side of the infants with PS had a much lower mean
reach frequency than the uninvolved side. The infants with TD showed a steady increase from 3 to 6
months with the left side, with the highest mean reach frequency in the left side constraint condition at
6 months. There was an increase in mean reach frequency from 2 to 4 months on the right side in both
conditions for infants with TD, but then a plateau from 4 to 6 months.
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4. Discussion

In this study, we demonstrated that the 3D motion capture may feasibly be used to measure
objective changes in pre-reaching upper extremity movements in infants with TD and infants with
neuromotor impairment, namely PS and CP. We successfully measured three spatial and three temporal
variables of upper extremity movement over a 5-month period in 14 infants with TD, PS, and CP.
Moreover, we observed trends in the data that generated several hypotheses, which can be used for
the design of further investigation. The main trends that we identified were related to differences
with diagnosis, changes with the real-time constraint of one arm, and changes over time with age and
development. In the subsequent sections, we will discuss the specific hypotheses that we generated
from these data, which can be applied to future research, and support for those hypotheses based on
previous research.

4.1. Hypothesis 1: 3D Motion Capture Can Be Used to Detect Differences in Kinematic Characteristics of
Pre-Reaching Movements between a Diagnosis of CP and TD, Particularly through an Interaction Effect
with Age

We observed trends for an age–diagnosis interaction for many of the dependent variables measured.
Most noticeable was the variability seen in the infants with CP and PS compared to infants with TD.
The infants with TD showed apparently linear trends with age that were consistent with previous
research, such as increased reach frequency, increased movement length, and increased movement
speed [17,20,21,36]. The infants with PS largely followed the trends of typical development, however,
with more fluctuation from month to month than the TD group. In contrast, the infants with CP had
trends in the opposite direction of typical development for multiple variables, including decreased
movement frequency, decreased movement length, and no change in reach frequency. Furthermore,
their month-to-month performance was more variable. These differences might be indicative of motor
impairment as a result of CNS injury as these infants all had a later diagnosis of CP. The results from this
study suggest that it might be possible to use 3D motion capture to differentiate between CP and no CP
in infants with PS and between CP and TD, based on kinematic measures of pre-reaching movements.

4.2. Hypothesis 2: 3D Motion Capture Can Be Used to Detect Asymmetries in Kinematic Characteristics of
Pre-Reaching Movements between the Involved and Uninvolved Side in Infants with PS and CP

We found preliminary evidence that 3D motion capture could be used to detect asymmetry in
pre-reaching movements in infants with PS and CP for certain spatiotemporal variables. In our analysis,
the infants with CP demonstrated largely decreased movement length, path length, movement speed,
movement frequency and reach frequency in their involved side versus uninvolved side. Previous
research has found that infants with HCP often begin to present with an increased asymmetry in
upper extremity use with development, but also that many of them demonstrate some impairment
in the uninvolved limb as well, in terms of the speed and accuracy of movement [24]. In this study,
the infants with TD and PS showed a steady increase in the movement speed and reach frequency
with age, consistent with typical development [21,39]. The infants with CP showed only a slight
increase in movement speed and more notably, only reached at 3 and 5 months, predominately with the
uninvolved arm. The slower movement speed and lack of reaches in the infants with CP might indicate
impairment in the involved upper extremity, and to a lesser extent, the uninvolved upper extremity,
as infants with HCP often demonstrate some impairment or delays in both upper extremities [40].

The infants with PS did not show consistent differences between the potentially involved and
uninvolved upper extremities, but based on our results, a larger sample size might reveal a larger
straightness ratio, slower movement speed, and decreased movement and reach frequencies in the
potentially involved limb, particularly at 5 and 6 months of age. The infants with PS who did not later
receive a diagnosis of CP might be demonstrating typical upper extremity development, given that
their means were similar to those of the infants with TD. We might speculate, however, that there were
some signs that the infants with PS were not following the same pattern of development as the infants

256



Sensors 2020, 20, 7312

with TD, based on the increased fluctuation in the means from month to month. The subtle differences
between infants with PS and TD for some kinematic variables of pre-reaching movements (movement
frequency, reach frequency, movement speed, straightness ratio), particularly with the involved limb,
might represent sub-clinical signs of motor impairment, or it might just be due to the small sample size.
Further research is needed to make a definitive conclusion about the results of the PS group.

4.3. Hypothesis 3: 3D Motion Capture Can Be Used to Detect and Monitor Changes in Spatial and Temporal
Characteristics of Pre-Reaching Upper Extremity Movements with Constraint Versus without Constraint in
Infants with TD and CP

Our preliminary analysis indicated that real-time changes with constraint could be observed in
the infants with CP and infants with TD for multiple variables of upper extremity movement. These
changes were most apparent in the temporal variables. Infants with CP and TD both demonstrated
increased movement speed, movement frequency, and reach frequency in the constraint condition
compared to the bilateral. For the infants with TD, the difference between the conditions became more
apparent at 4–6 months of age, which was consistent with the onset of reach development, usually
occurring between 3 and 5 months of age [21]. The infants with CP also demonstrated less precise
movement with constraint on their involved side, indicated by a longer hand path length and a larger
straightness ratio. Previous studies found the reverse trend for typical development, where the infants
demonstrated straighter movements, with a smaller straightness ratio, as they got older, highlighting
another possible indication of motor impairment in the infants with CP in this study [23]. Based on our
preliminary results, it is possible that constraint increases the use of the free arm in real time in both
infants with TD and CP. Our preliminary results also indicate that the infants with CP might show less
precise movements in their involved arm with constraint in real time, likely due to poorer coordination
and overall development in that arm as a result of both motor impairment and neglect [4,25,41].

4.4. Limitations

This study has limitations due to its small sample size because it is a preliminary study. Insights
that the data from this initial exploration provide are valuable for generating hypotheses for future
investigation. We attempted to not overstate our results and present them in a way that was consistent
with the study design. In order to draw any firm conclusions from the results of this study, it needs
to be replicated with a larger cohort and sufficient power. In this study, we generated hypotheses
about many independent and dependent variables by observing trends in the means from the data
we collected. While we observed many plausible and hypothesis-generating trends, there is a risk
with the small sample size that results could be skewed by a single participant. Based on our results,
we observed the difference in movement length between infants with CP and TD to be at least one
standard deviation with an 85% lower boundary of about 0.7. A sample size of 34 per group in a future
study could provide at least 80% power to detect such a difference.

Additionally, in this study, we used a 10-camera, 3D motion capture system (Vicon Motion Systems,
Ltd., Oxford, UK). It is possible that the cost and access to a 3D motion capture system could pose a
barrier to the replication or widespread application of our results. The ongoing development of more
inexpensive and portable wearable sensors that can calculate similar variables as 3D motion capture
will hopefully make the collection of kinematic data much more accessible and widely applicable.
There has been considerable progress in the methods and technology for wearable use in infants with
most of the information on physical activity and 24 h monitoring [42–47].

Another limitation of this study is the relatively large number of biomechanical variables involved
and their interdependence with each other. For example, the straightness ratio is a combination of
movement length and path length. Movement speed and movement length are inextricably related.
Thus, in a future study, care would need to be exercised for appropriate statistical comparisons between
the correlated variables. Furthermore, the relatively large number of measurements that is possible
increases the risk of false positives.
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4.5. Application and Future Directions

A major takeaway from this study is that 3D motion capture may be feasible for the longitudinal
tracking of pre-reaching and reaching behavior in infants with TD, PS, and CP. It is possible that further
research could identify specific kinematic variables that could be used as biomarkers in infants with
neuromotor impairment [12]. The benefit of a biomarker is that it can be monitored with intervention
and over time in at-risk infants, in order to measure progress and inform precise rehabilitation to
attain optimum health outcomes. 3D motion capture or future wearable sensors could be used for the
monitoring of spatial and temporal characteristics of pre-reaching movements. The ability to measure
objective changes in the spatial and temporal characteristics of upper extremity movement could be
extremely beneficial to a clinician who is using CIMT or another intensive upper extremity intervention
for a child with HCP. In the future, we would like to replicate this study with a larger cohort, as well as
with wearable sensors.

Wearable sensors, such as inertial measurement unit (IMU) sensors, are becoming increasingly
useful for measuring the kinematics of human movement, as they are a small, portable alternative to
3D motion capture. Previous studies in adults have found IMU sensors to perform comparably to the
Vicon 3D motion capture system, in terms of measuring joint angles [48,49]. IMU sensors have been
successfully applied to measure infant leg movement, mostly in terms of movement frequency [43–46].
Of note, most of these studies collect data on leg movements that are mostly single-plane and sampled
over a duration of one or several days. These are simpler than the multi-dimensional upper extremity
movements we measured and are sampled from a much larger data set. Despite the greater complexity
of tracking infant upper extremity movements, rapidly emerging wearable technologies using IMU
sensors show promise in this application. Notably, IMU sensor systems have been evaluated for their
feasibility to measure infant limb kinematics, and with the collection of movement data over a shorter
duration, like 60 s [42,47,50]. The variables measured in these kinematic studies using IMUs include
the frequency, duration, and acceleration of movements in both the upper and lower limbs, similar to
some of the variables we measured in this study [42,47,50]. Some of these recent infant IMU studies
aimed to develop sensor systems specifically for detecting early motor delay in infants [45,50]. In a
future study, we would like to test the feasibility of implementing the protocol in this paper with IMU
sensors. The use of these sensors would allow for the ability to measure and track some kinematic
variables of infant movement in a home or clinical setting.

Another promising approach for prediction in cases where multiple factors influence diagnosis,
and early detection is desirable, is machine learning. These approaches are well suited, often superior
to traditional means-based statistics, for handling the relatively large number of measurements possible
from biomechanics [51]. Machine learning approaches have proven successful at detecting upper limb
movement patterns from electromyography (EMG) with wearable sensors [52]. They have also proven
useful to predict outcomes from CIMT rehabilitation in adults after stroke [53]. Although machine
learning approaches have been used to predict the eventual diagnosis of CP based on components of
the GMA [54], the specificity of predictions from such models is not at the level desired for widespread
adoption [55]. We are not aware of attempts to combine data from various domains, including 3D
motion analysis like that presented here, along with observations such as the HINE, TIMP, and GMA,
into a machine learning approach for the prediction of an eventual CP diagnosis. Given the relationships
evident in a 3D biomechanical analysis from this study, a machine learning approach combining
biomechanical measurements with other observational data such as the GMA would seem promising.

5. Conclusions

This is a preliminary study with important findings. The exploration of spatiotemporal
characteristics of upper extremity movements prior to and during the age of reach onset shows
some interesting patterns of change over time, and potential differences between infants with TD and
CP. Constraint in real time might increase movement speed and frequency, and reach frequency in
infants with CP and TD. Importantly, constraint might increase the movement frequency of an involved
arm in real time in infants with CP. Finally, 3D motion capture or wearable sensors might be useful in
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tracking upper extremity pre-reaching and reaching movements in infants with neuromotor impairment
in the upper extremity, such as HCP. Due to the preliminary nature of this study, no recommendations
for the immediate application of these results can be made. Further investigation of the hypotheses
generated from this study is necessary for the further interpretation of results.
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Abstract: Disruptions of circadian motor behavior cause a significant burden for older adults as
well as their caregivers and often lead to institutionalization. This cross-sectional study investigates
the association between mobility-related behavior and subjectively rated circadian chronotypes in
healthy older adults. The physical activity of 81 community-dwelling older adults was measured
over seven consecutive days and nights using lower-back-worn hybrid motion sensors (MM+) and
wrist-worn actigraphs (MW8). A 30-min and 120-min active period for the highest number of steps
(MM+) and activity counts (MW8) was derived for each day, respectively. Subjective chronotypes
were classified by the Morningness-Eveningness Questionnaire into 40 (50%) morning types, 35
(43%) intermediate and six (7%) evening types. Analysis revealed significantly earlier starts for the
30-min active period (steps) in the morning types compared to the intermediate types (p ≤ 0.01)
and the evening types (p ≤ 0.01). The 120-min active period (steps) showed significantly earlier
starts in the morning types compared to the intermediate types (p ≤ 0.01) and the evening types
(p = 0.02). The starting times of active periods determined from wrist-activity counts (MW8) did
not reveal differences between the three chronotypes (p = 0.36 for the 30-min and p = 0.12 for the
120-min active period). The timing of mobility-related activity, i.e., periods with the highest number
of steps measured by hybrid motion sensors, is associated to subjectively rated chronotypes in
healthy older adults. The analysis of individual active periods may provide an innovative approach
for early detecting and individually tailoring the treatment of circadian disruptions in aging and
geriatric healthcare.

Keywords: circadian motor behavior; body-worn sensors; older adults

1. Introduction

Morning lark or night owl—what is your preferred time of the day? The growing
knowledge of and interest in the impact of circadian rhythms in daily life refers to circadian
medicine [1], where individual chronotypes and circadian characteristics play a key role in
society and health care [2].

Physiological processes and behaviors synchronized to a 24 h structure are defined as
circadian (lat. circa = approximately, -dian = day) [3,4]. The stability of circadian behaviors
is especially relevant in older adults and geriatric health care, where aspects of circadian
behavior may show deviations ranging from age-associated changes in subjective chrono-
types [5] to clinical syndromes [6]. Disease-related changes of the circadian system occur,
for example, as sleep disturbances with reversed day-night rhythms [7], or sundowning
phenomena with increased levels of physical activity (PA) and behavioral disturbances in
the afternoon and evening hours [8,9]. Disturbed circadian rhythms cause a significant
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burden for both the patients themselves as well as their caregivers [10] and often lead to
institutionalization, especially in home-dwelling dementia care [11].

Within chronobiological research and geriatric sleep medicine, subjective or proxy-
based psychopathometric instruments [12,13] and objective approaches like polysomnogra-
phy or body-worn motion sensors are usually applied to assess circadian characteristics [14].
Most commonly, uni- and multi-axial accelerometers attached to the non-dominant wrist,
so called actigraphs [15], are used as ambulatory assessment to quantify circadian mo-
tor behavior. The accumulated raw activity counts of wrist movements are analyzed by
non-parametric methods—e.g., by deriving an acrophase that refers to the timing of the
peak activity within an day [16], or analyzing the intradaily variability, and the interdaily
stability of the counts per minute [17]. As these actigraphs only record wrist movements,
these measurements and analyses provide a general assumption of temporal aspects of
PA and do not enable to detect specific motor behavior patterns. Studies in geriatric care
and investigations in community-dwelling older adults indicate the wrist activity to be
independent of the distribution of the step count [18,19]. Therefore, such actigraphic mea-
surements do not allow to derive personalized interventions, e.g., like physical activity
programs scheduled as circadian zeitgebers [20,21].

Hybrid motion sensors attached to the lower back can detect the patients’ body
postures over several days, allowing to analyze individual mobility patterns concerning
mobility-related behavior [22]. First studies conducted with older adults have investigated
inter-daily walking duration and step count with sensors attached to the participants’ trunk
or thigh [23,24]. Up to now, only a few approaches have been developed and applied
to investigate the temporal distribution 65 of mobility-related PA in older adults. For
example, the investigation led by Lim [18] analyzed the gait activity during the day using
the number of active minutes (≥4 steps per minute), and the study reported by Paraschiv-
Ionescu [25] analyzed the complexity of motor behavior by barcoding the participants’
motor behavior during the day. Both studies used sensor-based approaches to monitor
mobility-related physical activity but did not address chronotypes and circadian aspects
of motor behavior. As these mobility-related measurements promise an added value over
wrist-worn actigraphs for use in diagnostics and treatment, the primary aim of this study
is to investigate the association between the timing of mobility-related active periods and
subjectively rated chronotypes in healthy older adults.

2. Materials and Methods

2.1. Study Design

This investigation was part of the ChronoSense project—a cross-sectional study to
investigate the use of body-worn motion sensors to quantify chronotypes in older adults
(DRKS00015069, German clinical trial register). The study protocol was approved by the
Ethics Committee of the Medical Association North Rhine (registration number 2018192)
and the Ethics Committee of the German Sport University Cologne (registration number
156/2017).

2.2. Participants

Participants were recruited by sending out emails with information brochures to local
senior citizens’ networks and to employees of a large municipal association in the Rhineland
region in Germany, and through word-of-mouth referrals. Furthermore, invitation letters
were sent to persons who expressed interest in participating in studies of the Institute of
Movement and Sport Gerontology in the past. These persons had not participated in any
studies in the previous year.

Inclusion criteria for participation in the project were as follows: age of 65 years
or older, community-dwelling, a score on the Mini-Mental Status Examination (MMSE)
≥24 [26,27], subjective health (self-reported), no full-time employment and written in-
formed consent regarding the study procedures. Any acute or severe mobility impairment,
cardiovascular disorder, cognitive disorder or neurological disease (assessed with the
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Functional Comorbidity Index (FCMI)) [28], which can interfere with functional mobility,
led to exclusion from the project.

2.3. Instruments

The self-estimation of chronotype was assessed using the Morning-Eveningness Ques-
tionnaire (MEQ) [29]. The MEQ is a self-administered questionnaire, determining the
circadian chronotype based on 19 questions concerning the participant’s usual daytime
preferences. Five chronotypes are distinguished based on the total score of the MEQ:
definite evening type (16–30 points), moderate evening type (31–41 points), intermediate
type (42–58 points), moderate morning type (59–69 points) and definite morning type
(70–86 points). For further analysis, the moderate and definite evening type as well as the
moderate and definite morning type were each grouped together. In order to determine
the waking time during the day, the participants were asked to log their get up and got to
bed times in a sleep diary [30].

The wrist-worn MotionWatch 8 (Camntech, Cambridge, UK) was used for the actigrap-
hy-assessments. It integrates a triaxial accelerometer, a light sensor and an event marker
button. The MotionWatch 8 (MW8) was attached to the wrist of the participants’ non-
dominant hand. The participants were asked to push the event marker button when
getting up and going to bed. The sample frequency of the accelerometer was 50 Hz. The
raw acceleration measurements were processed by the on-board software of the MW8
to produce a quantitative measure of the activity during each epoch. For this, the X, Y
and Z-axes of the accelerometer were sampled with filtering at 3–11 Hz. The peak X2 +
Y2 + Z2 value was tracked. At the end of each second, the square root of the peak value
from that second was calculated. This was compared to a threshold of 0.1 g. Values below
this threshold were ignored to simplify the final activity graph. Activity that caused the
acceleration signal to exceed the threshold was counted as activity. At the end of each
epoch of 60 s, the number of activity counts were accumulated. This value was recorded as
the ‘Tri-Axial count’ for the epoch.

The mobility-related measurements were conducted using the Dynaport Move Moni-
tor + (MM+; McRoberts, The Hague, NL). The MM+ consists of a triaxial accelerometer,
a triaxial gyroscope (sample frequency for both sensors: 100 Hz), a triaxial magnometer,
a barometer and a temperature sensor. Data can be collected for up to seven consecutive
days. In order to enable a consistent recording of PA, waterproof self-adhesive foil (Opsite
Flexifix, Smith and Nephew, London, UK) was used to attach the MM+ to the participants’
lower back, approximately 3 cm right to the fifth vertebra of the lumbar spine (L5). The
participants were asked not to remove either sensor during the measurement period. To
ensure an assessment of habitual awake and rest phases, only sensor data of participants
with four or more complete measurement days were included.

2.4. Data Collection

Data collection covered the period of one week. During an individual appointment
in the laboratory, the MEQ was administered and participants were equipped with the
two sensors and received the sleep diary. Furthermore, the participants’ living situation
(e.g., marital status, income) as well as their health status (e.g., number and kind of chronic
diseases) were assessed using a custom-made questionnaire.

At the end of the measurement period, the sensors were removed from the participants’
body. The participants were asked to specify whether or not they had removed one or
both sensors during the measurement and to indicate the period if this was the case. In
order to ensure that the measurement period represented a habitual week in terms of the
participant’s PA and wake and rest periods, special events (e.g., acute illness) were noted.

2.5. Data Processing and Statistical Analysis

The MW8 raw data were processed using the validated proprietary MotionWare
software (CamNtech, Fenstanton, UK). Total counts per 60 s epochs as well as the getting
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up and bedtimes based on the event markers set by the participants were included in the
output. Average counts per minute were calculated for 24 h. The duration of wakefulness
(time from getting up to bedtime) for each day was calculated. In case a participant forgot
to set the marker, the corresponding time from the sleep diary was used instead.

The MM+ raw data were processed using the validated manufacturer’s own algorithm
(MoveMonitor, McRoberts, The Hague, NL). PA category (walking, stair walking, cycling,
shuffling, standing, sitting and lying) as well as the categories not-worn, activity duration
and number of steps per 60 s epoch were provided within the output. For the description
of this study sample, the average durations of PA types and total number of steps were
calculated for 24 h.

In order to quantify circadian aspects of mobility-related behavior, we determined an
active period for each day. The active period was defined as the time interval in which the
highest PA was measured during wakefulness (from getting up to bedtime). For the MW8,
the active period was determined based on activity counts, and the active period of the
MM+ was determined based on the number of steps. According to the recommendations
of the American College of Sports Medicine to be active for a minimum of 30 min per
day on five days per week [31], we chose to determine the active period for an interval of
30 min. Referring to the MEQ, rating the best time of the day for performing two hours of
physically hard work, we chose to determine a 120 min active period [29]. Matlab R2020a
(The Mathworks, Natick, MA, USA) was used to detect the time of the beginning of each
active period. To this purpose, the total number of steps or counts over a time interval
of 30 or 120 min was calculated repeatedly, starting with the first available data (when
participants got up) and repeated by shifting the start of the time intervals to each next
minute. This was repeated until the very last interval (30 or 120 min before the participant
went to bed). Subsequently, all intervals were sorted in ascending order and the interval
with the highest value (number of steps or number of counts) was determined as the active
period. As the sensor measurements were started at 8 pm on day one and ended at 8 pm on
day 8, the active periods were analyzed for day two (getting up) to day seven (going to bed).
Finally, the mean start times of the 30-min and 120-min active phases were determined for
each participant.

IBM SPSS Statistics 26.0 for Windows (International Business Machines, Armonk, NY,
USA) was used for statistical analysis. Boxplots were used to identify extreme values.
Values of more than three times the interquartile distance were excluded from further
analysis. Subsequently, the Kolmogorov Smirnov test was used to examine data for
normal distribution. One-way analyses of variance (ANOVAs) or Kruskal–Wallis tests
were performed to assess differences in the start times of the active period between the
three groups. Bonferroni post-hoc tests were used to examine significant differences. An
alpha < 0.05 was considered to be statistically significant.

3. Results

3.1. Participants

A total of 118 persons were screened with regard to the inclusion criteria. Twenty-three
persons declined to participate; 10 persons did not fit to the inclusion criteria. Eighty-five
persons agreed to participate. Two participants became ill during the measurement period
and were excluded from data analysis. One participant indicated that he was less active
than usual during the measurement period, and one participant did not wear the sensors ac-
cording to the instructions. The data of these two participants were excluded from analysis.
Finally, the data of 81 participants were analyzed. Table 1 shows their characteristics.
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Table 1. Sample characteristics.

N (%) Mean SD Min Max

Sample 81
Female 40 (49.4)

Age (years) 71.5 5.0 65 84
Mass (kg) 76.9 15.4 54 119
Height (cm) 170.3 8.3 154 188
MEQ score 57.7 9.9 31 77
Number of diseases 2.0 1.4 0 7
Duration of wakefulness (h) 15.9 0.8 13.5 18.1
Move monitor+ 75

Activity/posture
[hh:mm]/24 h

lying 09:01 01:38 06:18 14:29
sitting 09:13 01:53 05:08 14:13
standing 03:02 00:48 01:02 04:48
shuffling 00:29 00:10 00:11 01:11
walking 01:57 00:36 00:44 03:51
other activities * 00:05 00:11 00:00 00:59
not worn 00:13 00:25 00:00 03:07

steps/24 h 9860.1 3279.9 3278.0 17,319.2
MotionWatch 8 66

counts/min [24 h] 317.9 87.3 121.6 556.9
MEQ—Morningness-Eveningness Questionnaire (assessment of subjective chronotypes; scores can range from
16–86. Scores of 41 and below indicate “evening types”. Scores of 59 and above indicate “morning types”.
Scores between 42 and 58 indicate “intermediate types”); * summation of total activity durations for cycling and
stair walking.

MM+ data were available for 75 (93%) participants. The MM+ data of six participants
(7%) were missing due to technical problems. Six complete measurement days were
available for 67 participants (83%). Seven participants (9%) completed five measurement
days. One participant (1%) completed the minimum requirement of four measurement days.
MW8 data were available for 66 (82%) participants. MW8 data of 15 (18%) participants
were missing due to technical problems. Six complete measurement days were available
for all 66 participants.

The distribution of self-estimated chronotypes and the corresponding characteristics
of subgroups is shown in Table 2. Statistical analysis revealed no significant differences
between groups in the sample characteristics and their general level of PA.

Table 2. Sample characteristics of self-estimated chronotype subgroups.

Morning Type Intermediate Type Evening Type
p

N (%) M SD N (%) M SD N (%) M SD

Sample 40
(49.4)

35
(43.2) 6 (7.4)

female 15
(37.5)

22
(62.9) 3 (50.0)

Age (years) 72.1 5.2 71.4 5.1 67.8 3.1 0.10
Wakefulness (h/day) 16.1 0.6 15.8 0.8 15.9 0.8 0.55
MM+ Steps (number/24 h) 37 9791.2 3157.1 32 9823.9 3101.1 6 10,478.4 4310.3 0.98
MW8 Counts/min (24 h) 30 316.8 73.9 30 319.1 103.2 6 317.9 40.0 0.98

MM+ Move Monitor+, MW8 MotionWatch 8.

3.2. Active Period Analysis

Figure 1 shows the comparison of the summed 30 min time intervals of the number of
steps per minute for one subject from each chronotype group. The time of day at the peak
of each curve indicates the beginning of the 30 min active period based on the step count
for one participant of each chronotype group.

267



Sensors 2021, 21, 2121

Figure 1. Exemplary analysis of 30-min active period.

Significant differences within the circadian aspects of the step count (MM+) between
the three groups were detected (Figures 2 and 3).

Figure 2. Box-plot illustration of 30-min active periods beginnings in relation to the subjectively
rated chronotypes.
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Figure 3. Box-plot illustration of 120-min active periods beginnings in relation to the subjectively
rated chronotypes.

Compared to the morning type group, the intermediate type group showed a delay in
their 30-min active period of approximately one hour (p ≤ 0.01) and the evening type group
a delay of approximately two hours (p ≤ 0.01), respectively. These results were also found
for the 120-min active period. Compared to the morning type group, the intermediate
type group showed a delay of approximately one hour (p ≤ 0.01) and the evening type
group a delay of approximately two hours (p = 0.02), respectively. No differences within
the circadian aspects of the activity counts (MW8) were detected regarding the three
chronotype groups for both the 30- and 120-min active periods.

4. Discussion

The primary aim of this study was to investigate the association between the timing
of mobility-related active periods and subjectively rated chronotypes in healthy older
adults. The analysis revealed significant differences in the starting times for the 30-min
and 120-min active period (steps) between the chronotypes. The starting times of the active
periods regarding the wrist-activity counts did not reveal differences between the three
chronotype groups.

The “active-period” analysis is a novel approach in this field of research. Whereas the
usually applied wrist-worn actigraph approach showed no differences in activity-related
behaviors over the three chronotype groups, this study’s results reveal the hybrid motion
sensor to be able to quantify circadian aspects of mobility-related behavior, i.e., regarding
the number of steps. The timing of the peak wrist activity within a day, usually reported
as acrophase for wrist-worn actigraphy [16], seems to be independent of the timing of
the peak gait activity, reported as active period. These differences between objectively
measured wrist-based activity (counts) and mobility-related behavior (steps, postures) are
comparable to previous results [19]. Additionally, studies applied in an acute geriatric care
setting reported three peaks in the wrist-measured physical activity at 9 am, 12 pm and
5 pm, referring to the patients’ meal times and showing no relation to the distribution of
the step count within the patients’ day [18]. As compared to the usually used wrist-worn
actigraphy approach in chronobiological research and geriatric sleep medicine, analyzing
the active period of mobility-related behavior seems to provide more clinically relevant
and essential information. Such circadian aspects of mobility-related behavior could be
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applied to assess circadian disruptions based on the temporal distribution of the step count
within a day and subsequently derive, individually tailor and evaluate interventions to
treat circadian disruptions, e.g., exercise approaches based on step counts [20,21,32].

The participants included in this study were healthy, community-dwelling older
adults, on average 72 years old (SD 5), with a daily step count ranging from 3278 to 17,320
with on average 9860 steps per day (SD 3280). These activity measures reveal a general
active lifestyle, as the endorsed level of 7000–10,000 steps per day was almost achieved
in this group [33]. With a mean of 317 activity counts per minute [24 h] (SD 87), the study
sample shows comparable levels to other studies using the same actigraphy approach [34].
The included participants subjectively rated themselves mainly as morning type (n = 40,
49.4%) and intermediate type (n = 35, 43.2%), but only six participants rated themselves as
evening type (7.4%). This distribution of chronotypes is comparable to previous studies,
which reported more morning types in association with higher age [5].

An analysis and interpretation of this study and its results should consider the follow-
ing methodological limitations: established by Horne and Ostberg [29], the Morningness-
Eveningness Questionnaire usually categorizes five chronotypes. The definite and moder-
ate morning- and evening types were accumulated in order to analyze differences between
the three main chronotypes. The current analysis did not reflect inter-daily consistency of
active periods. Future analysis should address these aspects, e.g., via coefficient of variance.
A potential selection bias should be taken into account, as the sample has been shown to
be highly active with approximately 10,000 steps per 24 h.

The results of this study contribute to the growing knowledge and interest on the
impact of circadian rhythms in daily life and healthcare [1,2]. Analyzing the starting
times of the active periods for mobility-related behavior, e.g., by the number of steps
measured by hybrid motion sensors (MM+), seems to be a clinically relevant approach to
quantify circadian aspects in healthy older adults. Analyzing circadian aspects of mobility-
related activity, and potentially also temporal patterns of inactivity, could play a key role
in aging research and geriatric healthcare, especially in the assessment and treatment of
circadian disruptions. In addition to the presented results of not showing differences
in the assessment of active periods, the wrist-worn actigraphy approach (here MW8)
does not allow to derive, apply and evaluate individually tailored interventions. This is
essential for its clinical application, and therefore limits its use in general and especially in
geriatric healthcare [19]. The presented “active period analysis” provides an innovative
and clinically relevant approach to quantify circadian aspects of mobility-related behavior
with body-worn sensors in older adults. Especially in patients suffering from circadian
disruptions, an individual (in)active period could be used to derive, apply and evaluate
step-based interventions [35] potentially combined with day-structuring approaches. The
individual active period analysis may improve the early detection and individual tailoring
in the treatment of circadian disruptions in aging and geriatric healthcare that may have
promising effects for patients, caregivers and geriatric healthcare [1,2].
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Abstract: The distance one can walk at a time could be considered an important functional outcome
in people with a lower limb amputation. In clinical practice, walking distance in daily life is based on
self-report (SIGAM mobility grade (Special Interest Group in Amputee Medicine)), which is known
to overestimate physical activity. The aim of this study was to assess the number of consecutive
steps and walking bouts in persons with a lower limb amputation, using an accelerometer sensor.
The number of consecutive steps was related to their SIGAM mobility grade and to the consecutive
steps of age-matched controls in daily life. Twenty subjects with a lower limb amputation and
ten age-matched controls participated in the experiment for two consecutive days, in their own
environment. Maximal number of consecutive steps and walking bouts were obtained by two
accelerometers in the left and right trouser pocket, and one accelerometer on the sternum. In addition,
the SIGAM mobility grade was determined and the 10 m walking test (10 MWT) was performed.
The maximal number of consecutive steps and walking bouts were significantly smaller in persons
with a lower limb amputation, compared to the control group (p< 0.001). Only 4 of the 20 persons with
a lower limb amputation had a maximal number of consecutive steps in the range of the control group.
Although the maximal covered distance was moderately correlated with the SIGAM mobility grade
in participants with an amputation (r = 0.61), for 6 of them, the SIGAM mobility grade did not match
with the maximal covered distance. The current study indicated that mobility was highly affected in
most persons with an amputation and that the SIGAM mobility grade did not reflect what persons
with a lower limb amputation actually do in daily life. Therefore, objective assessment of the maximal
number of consecutive steps of maximal covered distance is recommended for clinical treatment.

Keywords: inertial measurement units; walking distance; lower limb amputation; rehabilitation; gait

1. Introduction

The two primary concerns for people with a lower limb amputation are mobility [1,2] and wearing
comfort of the prosthesis, in which mobility is most relevant for their quality of life [3,4]. However,
many persons with a lower limb amputation report that they are unable to use their prosthesis to the
extent they desire [2] and, moreover, they lose their independence [5,6]. To function independently,
one should be able to walk sufficient bouts. Therefore, in the context of independency, the walking
distance one can walk consecutively could be considered as an important outcome in persons with
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a lower limb amputation. In clinical practice, the self-reporting SIGAM (Special Interest Group in
Amputee Medicine) mobility grades [4] are often used to classify prosthetic users. The SIGAM mobility
grades describe a single-item scale comprising six clinical grades (A–F) of amputee mobility, and the
scale consists of 21 ‘yes’/‘no’ items. The SIGAM mobility grades include a walking distance item;
a threshold of 50 m at a time is used as a benchmark to denote an improvement of mobility [4] and
reflects sufficient independency. It is known, however, that people tend to overestimate their physical
activity when self-report measures are used [7–9]. As the SIGAM mobility grade is a self-reporting
questionnaire, it is very likely that the activity levels are overestimated in the SIGAM mobility grades.
This results in false positive outcomes, also known as bias towards independency. Since clinical
interventions, like prosthetic fitting, are partially based on questionnaires assessing functional level [10],
it is conceivable that clinical care might be subject to bias or subjectivity.

In contrast to self-reported measures (diaries and questionnaires [11–14]), there are also technical
approaches that were used to assess prosthetic mobility. All techniques differ in the type and number of
mobility aspects they measure, ranging from categories of ambulation to prosthetic use over a variety
of ambulation activities [12] and performance tests in laboratory settings [15]. Another more objective
way to measure mobility is the use of activity monitors [16–24]. The advantage of activity monitors
is that they can measure long-term and continuously in a person’s own environment, and assess
what persons with a lower limb amputation actually do, in a reliable and valid way [25]. Although it
was demonstrated that persons with a lower limb amputation are significantly less physically active
compared to the age-matched controls [17,18], none of the studies focused on the length of walking
bouts and the number of consecutive steps in these bouts.

The aim of this study was to assess the number of consecutive steps and walking bouts in persons
with a lower limb amputation and age-matched controls in daily life, using an accelerometer sensor.
We hypothesized that the maximal number of consecutive steps was correlated to the level of the
SIGAM mobility grades. We were particularly interested in whether physically active or independent
persons with a lower limb amputation (SIGAM mobility grade D or higher) covered longer distances
than 50 m during walking bouts, which is an important benchmark for mobility, as stated by Ryall [4].
We also assessed the relationship between the SIGAM mobility grade, maximal covered distance and
preferred walking velocity, to indicate the effect of gait capacity on physical functioning. Age-matched
subjects were included for comparison.

2. Materials and Methods

2.1. Subjects

Patients were recruited from the Prosthetics and Orthotics Centre in Nijmegen and from the
prosthetic training group at the rehabilitation clinic Sint Maartenskliniek in Nijmegen, The Netherlands.
Persons with a lower limb amputation were included when they had a unilateral transfemoral
or transtibial amputation or knee exarticulation, were at least 18 years old, and had no cognitive
disorders. They had to be free from neurological and clinical orthopedic problems (other than the
amputation), without stump pain, stump wounds, and foot pathology, which could influence their
daily activities. A control group of age-matched subjects without an amputation also participated
in this study. All participants gave written informed consent in accordance with the Declaration of
Helsinki. The study was approved by the internal review board of the Sint Maartenskliniek. The study
was carried out in the Netherlands, in accordance with the applicable rules concerning the review of
research ethics committees, and did not fall within the remit of Medical Research Involving Human
Subjects Act.

2.2. Accelerometers

The accelerometers (62 mm (length) × 41 mm (width) × 18 mm (height)) used in this study were
tri-axial piezo-capacitive MiniMods from Dynaport (McRoberts BV, The Hague, The Netherlands).
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The sample rate of the accelerometers was 100 Hz and data were stored on secure digital (SD) memory
cards. Three accelerometers were used during the measurement. Two were placed in the left and
right trouser pocket and one on the lower part of the sternum of the subject. The accelerometer that
was placed on the sternum was attached with means of a 10 cm wide elastic band around the chest,
to prevent irritation of the skin.

2.3. Protocol

The accelerometers were worn over two consecutive days in the participant’s own environment.
The researcher explained the measurement protocol, instructed the patient on how to attach and detach
the accelerometers and administered the SIGAM mobility grade. The participants were instructed
to perform their normal daily life activities during the two measurement days. At the end of both
measurement days, the participant had to fill out a short questionnaire on whether the activities
performed were representative for someone’s usual daily activities. The accelerometers were not
worn overnight.

To be able to calculate the maximal walking distance, step length was estimated by data form
a 10-m walk test (10 MWT). In addition, the 10 MWT was also used to assess the preferred walking
velocity, which is an excellent indicator of gait capacity. After attaching the accelerometers on the
first day, the participant performed a 10 MWT. The participant was instructed to walk 10 m at his
own comfortable pace. The start and finish of the 10 MWT were marked in the accelerometer data
by pushing a remote button, which was connected to the accelerometers. The researcher timed the
10 MWT and counted the number of steps.

2.4. Data Analysis and Outcome Measures

The main outcome measure of this study was the number of steps a subject walked consecutively
during the two measuring days. Walking could be well detected by accelerometers on a thigh [26]
or trunk [27]. Two custom written algorithms were used (MATLAB 7.1, The Mathworks Inc, Natick,
MA, USA). The first algorithm identified walking bouts, in which a subject was walking. A subject
was considered as walking when the orientation of all three accelerometers was upright and there
was sufficient movement of the sensors. As a measure for the movement of the sensor, we took the
square root of the sum of squares of the derivative of the three orthogonal accelerometer signals [28].
Finally, the signals of the accelerometers should have a repetitive character, which was determined
by the autocorrelation of the accelerometer signals. The second algorithm counted the number of
consecutive steps within each walking bout. The number of steps for each walking bout was calculated
by dividing the time of the walking bout by the step frequency of the walking bout, which was the
dominant frequency in the auto correlation of the accelerometer signals. Subsequent walking bouts
with an interval within 1 s were seen as a single walking bout.

All walking bouts were visually checked on time and steps, and the remaining data were
visually screened for walking bouts missed by the algorithm. Walking bouts missed by the algorithm
were added.

In addition to the number of consecutive steps within each walking bout, we were interested
in the frequency of walking bouts per hour. Therefore, categories of walking bouts were created
in bins of 5 steps (for the walking bouts in which 0 to 50 consecutive steps were walked), bins of
25 steps (from 50–100 consecutive steps), and bins of 100 steps (from 100–400 consecutive steps).
These frequencies were determined for both the persons with a lower limb amputation and the elderly
control group.

To estimate the maximal walking distance in the persons with a lower limb amputation, the maximal
number of consecutive steps was multiplied by the individual step length, based on the 10 MWT.
The individual step length was 10 m divided by the number of steps needed to accomplish the 10 MWT.
This estimated maximal walking distance was compared with the specific answer on the walking
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distance questions of the SIGAM mobility grades (“Do you usually manage to walk more than 50 m
(55 yards) at a time?”).

2.5. Statistical Analysis

Differences in the group characteristics and results of the 10 MWT were calculated with a
nonparametric independent samples test (Mann–Whitney test). To calculate the difference of the
frequency per hour between the groups (persons with a lower limb amputation vs. the elderly control
group) and walking bouts, a mixed model ANOVA was performed with persons with a lower limb
amputation or the elderly control group as between-factor, and walking bout bins as the within-group
factor. Spearman’s rank correlation coefficients were calculated between 10 MWT, the SIGAM mobility
grade, and the maximal covered walking distance, to indicate the relationship between gait capacity
and physical functioning. Statistics were performed in SPSS 12.0.1 (SPSS Inc. Chicago, IL, USA).
Differences were considered significant when p < 0.05.

3. Results

3.1. Participants

Twenty subjects with a lower limb amputation and ten age-matched controls participated in this study.
See Table 1 for characteristics of both groups. Nineteen subjects had data on two complete measurement
days. Eleven subjects generated data on only one complete day, because some participants failed to
start or recharge the accelerometers adequately or due to technical problems. Mean measurement
time for the complete days was 9:45 h ± 2:37 (SD) for the persons with a lower limb amputation and
11:20 h ± 1:40 (SD) for the elderly control group. All subjects, except one control subject who was sick
during the measurement days, indicated that the measurement days were normal with regards to their
standard daily activities.

Table 1. Characteristics of persons with a lower limb amputation and elderly controls, median
(interquartile range).

Characteristic Persons with A Lower Limb Amputation Elderly Control Group p-Value

Gender (M:F) 13:7 5:5
Age (years) 68 (60–74) 76 (69–81) 0.43
Height (cm) 171 (165–179) 172 (168–175) 0.93
Weight (kg) 77 (67–85) * 78 (75–78) 0.83

Amputation level
TT n = 9
KE n = 4
TF n = 7

n.a.

Reason for amputation

Traumatic n = 6
Vascular n = 10

Oncological n = 2
VOther n = 2

n.a.

SIGAM mobility grade

B n = 1
C n = 5
D n = 6
E n = 2
F n = 6

n.a.

TT = Transtibial amputation; KE = Knee exarticulation; TF = Transfemoral amputation; SIGAM mobility grades:
B = Therapeutic use only for transfers, C =Walks on level ground less than or equal to 50 m with/without aids,
D =Walks outdoor on level ground only, in good weather, more than 50 m with/without walking aid, and E =Walks
more than 50 m. No aids, except in adverse terrain or weather, F = normal or near normal gait. * Body weight
including the prosthesis. n.a. = not applicable.

3.2. Maximal Number of Consecutive Steps and 10 MWT

Table 2 shows the median and interquartile range of the maximal number of consecutive steps
and the 10 MWT. For both the maximal consecutive steps and the 10 MWT, the elderly control group
performed better than the persons with a lower limb amputation (p < 0.001 for the Mann–Whitney test).
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Table 2. Median and IQR (interquartile range) of the outcome measures for the persons with a lower
limb amputation and the elderly control group.

Variable Persons with A Lower Limb Amputation n = 20 Elderly Control Group n = 10 p-Value

Maximal consecutive steps 141 (60–217) 883 (362–1168) <0.001
10 MWT (s) 17.4 (10.3–25.5) 9.4 (9.1–10.6) <0.001

Maximal Number of Consecutive Steps per Individual

The maximal number of consecutive steps was significantly larger in the elderly control group
(p < 0.001, Table 2). However, some active persons with a lower limb amputation achieved similar
maximal consecutive steps. Figure 1 shows the maximal number of consecutive steps for each subject.
All elderly controls achieved more than 250 consecutive steps, except one. This elderly control subject
reached a maximal of 94 steps, but reported on the activities questionnaire that she walked less
than normal, due to illness. In contrast, only 4 of the 20 persons with a lower limb amputation
achieved the 250 consecutive steps. Furthermore, eight persons with a lower limb amputation had
even less than 100 consecutive steps. It was remarkable that one person with a lower limb amputation
(SIGAM mobility grade F) revealed the highest maximal number of consecutive steps of almost 2500.

 
Figure 1. Maximal numbers of consecutive steps of each subject. The SIGAM mobility grade is given
for every subject of the persons with a lower limb amputation. B = Therapeutic use only for transfers,
C =Walks on level ground less than or equal to 50 m with (Cb)/without aids (Cd), D =Walks outdoor
on level ground only, in good weather, more than 50 m with 2 crutches/sticks (Db) or 1 crutch/stick
(Dc), and E =Walks more than 50 m, no aids, except in adverse terrain or weather, F = normal or near
normal gait.

3.3. Frequency of Number of Steps per Hour

Figure 2 shows the frequency per hour per bin (number of consecutive steps). The mixed ANOVA
revealed an interaction effect (F14,392 = 2.41, p = 0.003) and a significant main effect for the number
of consecutive steps (F14,29 = 56.1, p < 0.001) and no significant main effect for group (F1,28 = 4.13,
p = 0.052). Post-hoc analysis showed that the elderly controls had significantly more walking bouts
with 10–25 consecutive steps and more than 100 consecutive steps (as indicated by the * in Figure 2).
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Figure 2. The mean frequency per hour of the number of steps per bin. Grey bars are persons with a
lower limb amputation, black bars are the elderly controls. * Post-hoc difference between the persons
with a lower limb amputation and the elderly control group.

3.4. 10 MWT and Maximal Covered Walking Distance

The left panel of Figure 3 shows the performance on the 10 MWT for the SIGAM mobility grades
for all persons with a lower limb amputation and the elderly controls (EC). Spearman’s rank correlation
between the SIGAM mobility grade and the 10 MWT was −0.78 (p = 0.0001). Based on the 10 MWT,
the median estimated maximal covered distance in the persons with a lower limb amputation was 67 m
(with an interquartile range of 22–93). The maximal covered distance is shown for the SIGAM mobility
grades in the center panel of Figure 3. Obviously, the higher the SIGAM mobility grade, the higher
the maximal covered distance (r = 0.61, p = 0.006). Nevertheless, a closer look showed that even some
persons with a lower limb amputation with a SIGAM mobility grade higher than C did not reach the 50 m.
The maximal covered distance was also significantly correlated with the 10 MWT (r = −0.66, p = 0.002).

r
p

r
p

r 
p

Figure 3. Relation between the SIGAM mobility grades, the 10 MWT, and the maximal covered distance.
B = Therapeutic use only for transfers, C =Walks on level ground less than or equal to 50 m with
(Cb)/without aids (Cd), D =Walks outdoor on level ground only, in good weather, more than 50 m with
2 crutches/sticks (Db) or 1 crutch/stick (Dc), and E =Walks more than 50 m, no aids, except in adverse
terrain or weather, F = normal or near normal gait. EC = elderly controls.

4. Discussion

The goal of this study was to assess the maximal covered walking distance and walking bouts in a
wide range of persons with a lower limb amputation in daily life. Forty percent of the persons with a
lower limb amputation (8 out of 20) did not reach walking distances of 50 m during a single walking
bout, which was indicated as an important benchmark for mobility and, therefore, important for
independent living and social participation. There was a significant positive correlation between the
maximal covered distance and the SIGAM mobility grades (Figure 3). In contrast to the persons with
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a lower limb amputation, the elderly control group, except for the sick subject, covered a walking
distance of at least 150 m, based on the maximal number of consecutive steps of at least 300 (Figure 1).
These results imply that the current SIGAM mobility grades do not sufficiently reflect what a person
with lower limb amputation actually does in daily life, but more what a person is able to do.

Several studies performed activity measurements in persons with a lower limb amputation with
daily duration of dynamic activities or daily number of steps as the main outcome measure [16–24].
The lower number of walking bouts, especially in the long walking bouts, compared to the age-matched
control subjects, supports the finding that persons with a lower limb amputation are less active.
However, none of these studies investigated walking bouts and the related maximal number of
consecutive steps. For persons with a lower limb amputation, maximal walking distance is an
important measure for social mobility and ADL independence. Since SIGAM mobility grades uses the
50 m walking distance as a limit for indoor and outdoor walking, this 50 m limit should correspond
with independence, and the level at which a person can participate in society [4]. Forty percent of the
persons with a lower limb amputation did not cover a walking distance of more than 50 m. Except for
the sick subjects, the elderly control group had a maximal number of steps of at least 300, which was
at least 150 m with a 0.5 m step length. Therefore, walking bouts of at least 300 steps seemed to be
the lower bound for walking mobility in the elderly control. In contrast, only 4 of 12 persons with a
lower limb amputation with normal or near normal gait (3 persons with a lower limb amputation with
SIGAM mobility scale grade F and one person with a lower limb amputation with grade D) took more
than 300 steps consecutively. A minimal walking distance of approximately 300–350 m is required for
community walking tasks, such as walking from the parking lot to the grocery shop or visiting a health
care practitioner [29–31]. In our study, 4 out of 20 persons with a lower limb amputation and 7 out of
the 10 elderly control had walking bouts of more than 600 steps, which indicated at least community
walking. Hence, walking mobility was affected in most persons with a lower limb amputation who
were defined as normal or near normal walkers.

The limited walking distance at a time, for persons with a lower limb amputation, could be
compensated by walking consecutive short distances more frequently, with rest periods in between.
However, persons with a lower limb amputation had significantly smaller short walking bouts compared
to the elderly control. Furthermore, detailed analysis revealed that in the persons with a lower limb
amputation data, consecutive short walking bouts with rest periods were not present, making it
impossible to reach similar long walking distances as the elderly control. There might be several
reasons why persons with a lower limb amputation avoid walking long distances. One explanation
might be that the persons with a lower limb amputation adapt their walking distance to keep their heart
rate response within a normal range [18]. Another explanation might be that persons with a lower limb
amputation had a poorer joint coordination, and thus might be easier to get fatigued, feel discomfort,
and have an unstable gait [32,33]. It seems that walking is already a maximum effort for a great part of
the persons with a lower limb amputation. Beside the physical limitation, outdoor gait performance of
the persons with a lower limb amputation is of course also dependent on a variety of other factors,
including personal interest, weather, terrain, comorbidities, prosthetic fit, social interactions, etc. [24].

Evaluation of daily functioning of persons with a lower limb amputation is highly based on
questionnaires such as the SIGAM mobility grade, which are based on self-report and estimates of
the physician. Several studies found that one of the risks of self-report activity questionnaires is an
overestimation of activity levels when using self-reported measures [7–9]. Bootsma-van der Wiel et al. [34]
found that discrepancies between what the elderly (>85 years) can do and actually do in activities of
daily living had important consequences when estimating disability in old people. As a consequence,
incorrect assessment of daily functioning might influence the care given. The clear positive correlation
between maximal covered distance and the SIGAM mobility grades and maximal covered distance
and 10 MWT implies a high association between gait mobility and gait capacity, which justifies the
SIGAM mobility grade as an evaluation for daily functioning. However, the limit of 50 m walking at a
time as a threshold for the SIGAM mobility grades of D and higher was not established by all persons
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with a lower limb amputation, with a SIGAM mobility of D or higher. Furthermore, 2 of the 6 persons
with a lower limb amputation with a SIGAM mobility grade of B or C, covered a larger distance than
50 m. Therefore, a discrepancy exists between the SIGAM mobility grades and performance in daily
life, which corresponds to the results of Albert et al. [35]. This finding implies that the SIGAM mobility
grade of persons with a lower limb amputation is more dependent on the type of activities one can
perform, than purely on walking distance. Therefore, daily functioning should not only question what
a person with a lower limb amputation can do but should also monitor the amputees actual daily
activities and walking distance. For the assessment of daily functioning, more information can be
obtained than only maximal number of consecutive steps and gait bouts. For example, the distribution
of walking bouts across the day, use of walking aids, how long the prosthesis was worn during the day,
and specific activities for a person with a lower limb amputation.

Limitations

A limitation of the current study is that data collection was limited to two days and the maximum
covered distance was estimated by multiplying the number of steps, with the step length measured
with the 10 MWT. Although a larger number of measurement days than 2 would have resulted in a
more accurate estimates of the maximal number of consecutive steps, the walking bouts of at least
300 steps in the elderly control group indicated that 1–2 days was sufficient to indicate their mobility.
The estimated covered distance was most likely an overestimate since daily life walking was less
regular than walking during a 10 MWT. Inertial measurement units attached to the shoe or ankle would
be a better alternative as it estimates gait velocity and step length in a valid and reliable way [36,37].
We chose the most convenient and easy way, by focusing on the number of steps, which could also
be simply assessed by using, for example, a smart watch or a smart phone [38–41]. The relatively
small sample size did not allow us to perform a sub-analysis within the persons with a lower limb
amputation. We expect that the level of amputation and reason for amputation group would affect the
maximal covered distance. Persons with a transfemoral amputation would most likely have a reduced
walking distance compared to the persons with a transtibial amputation.

5. Conclusions

The current study indicates that mobility is highly affected in most persons with a lower limb
amputation and that the SIGAM mobility grade does not reflect what persons with a lower limb
amputation actually do in daily life. Therefore, objective assessment of the maximal number of
consecutive steps of the maximal covered distance, is recommended for clinical treatment.
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Abstract: While the promise of wearable sensor technology to transform physical rehabilitation has
been around for a number of years, the reality is that wearable sensor technology for the measurement
of human movement has remained largely confined to rehabilitation research labs with limited
ventures into clinical practice. The purposes of this paper are to: (1) discuss the major barriers in
clinical practice and available wearable sensing technology; (2) propose benchmarks for wearable
device systems that would make it feasible to implement them in clinical practice across the world
and (3) evaluate a current wearable device system against the benchmarks as an example. If we can
overcome the barriers and achieve the benchmarks collectively, the field of rehabilitation will move
forward towards better movement interventions that produce improved function not just in the clinic
or lab, but out in peoples’ homes and communities.

Keywords: rehabilitation; motor function; wearable sensors; outcomes; measurement; implementation

1. Introduction

Wearable sensor technology to measure human movement is rapidly evolving. Motion-sensing
wearable devices continue to get smaller, lighter and have more data storage space, with even better
products anticipated in the future. These wearable devices are ubiquitous in the general public in
the form of a variety of commercially available, consumer-grade products. Here, we use the term
‘device’ to refer to the wearable unit, ‘sensor’ to refer to the sensors within the device, and ‘wearable
device system’ to refer to the collective hardware and software package (see Box 1 for other operational
definitions used in this paper). This paper intentionally excludes cell phones as a wearable because cell
phones are used for a multitude of purposes and are not routinely ‘worn’ in the same location within
and across people. Because of the focus on movement, this paper also excludes wearable sensors
designed to measure physiological signals such as heart rate, oxygen saturation, and respiratory rate.
Wearable devices include one or more specific sensors, with accelerometers being the most common
sensor for quantifying human movement. Many devices also include magnometers, inclinometers,
gyroscopes, and light sensors.
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Box 1. Operational Definitions.

Commercially-available: device systems that can be purchased through companies or organizations.
Laboratory-available: device systems developed in one or more labs and not available for purchase by the

general public.
Consumer-grade: device systems that are marketed directly to consumers, intended to be used by anyone.
Research-grade: device systems that are marketed to researchers and healthcare professionals, intended for

use to be managed by someone with specialized training.
Activity: Execution of a task or action, such as walking, dressing, or bathing [1].
Capacity: Activity that is assessed in a structured setting, usually with a standardized tool, such as the 10 m

walk test or the Box and Block test. Alternate terms are function and functional capacity [1].
Performance: Activity that is assessed in an unstructured, free living setting. Performance can be measured

directly via wearable devices, or via self-report with questionnaires [1].

The potential benefit of wearable sensor technology for physical rehabilitation has been discussed
in the literature since the early 2000s [2]. The real promise for rehabilitation is that wearable device
systems can measure human movement in real world settings, not just in the structured environment
of the clinic or laboratory. People seek physical rehabilitation services to improve their movement in
daily life, so rehabilitation professionals need a way to quantify that movement in order to best help
their patients. In the published literature to date, two overlapping scientific cohorts are responsible for
the majority of the progress with wearable sensor technology. The first cohort includes the engineering
groups, who are developing and testing sensors, software, and algorithms. The second cohort includes
clinician scientists who are validating sensor-derived metrics in clinical populations and deploying
these metrics to answer questions and measure outcomes in rehabilitation studies. While wearable
device systems to measure human movement have become more commonplace in research studies,
they have not yet been widely implemented in routine clinical practice [3]. Multiple barriers arising
both from clinical rehabilitation practice and from the current state of commercially-available devices
need to be overcome before there is widespread adoption into routine care. We note that these barriers
and their relative importance may vary somewhat around the globe.

The purposes of this paper are to: (1) discuss the major barriers in clinical practice and available
wearable sensing technology; (2) propose benchmarks for wearable device systems that would make it
feasible to implement them into clinical practice across the world; and (3) evaluate a current wearable
device system against the benchmarks as an example. This field is in its early stages. The evolution
of the telephone is a good analogy for our field. Early telephones look and function nothing like the
sleek, smart phones we use today, with advancements in telephone technology spread out over more
than 100 years. This paper is intended as a small step, specifically focused on helping the collective
advancement of wearable sensor technology from research groups into routine clinical practice.
Our larger goal is to move the field of physical rehabilitation forward towards better interventions that
produce improved movement performance in homes and communities, not just improved capacity in
our clinics and labs.

2. The Current Situation in Clinical Care

There are multiple factors influencing physical rehabilitation that may impact the implementation
of wearable device systems into routine clinical rehabilitation practice. Many influencing factors are
generic, i.e. they influence any type of change in clinical practice. This paper intentionally focuses on
two key factors most strongly influencing clinical uptake of wearable sensor technology. These key
factors are the time constraints present in everyday clinical practice and the salience of information from
wearable device systems by physical rehabilitation professionals. Note that medical- or research-grade
devices that are deployed into clinical care must meet all the clinical standards, defined by the
International Organization of Standards (ISO/TC 173 for Assistive Products and ISO 10667-1:2011 for
Assessment Service Delivery), and evaluated by regulatory agencies. Regulatory approval is a long,
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challenging process, varying somewhat by geographic location; a discussion of this process is outside
the scope of this review.

2.1. Busy Clinical Practice Affords Little Time for Anything Else

Across the world, patients are seen in a variety of rehabilitation settings including acute and
long-term hospitals, specialized facilities (skilled nursing, inpatient or acute rehabilitation), outpatient
clinics, virtual visits, or at home, each with different requirements for productivity. In the United States
for example, productivity standards for physical therapists can be upwards of 85% with reimbursement
only for billable units [4]. This means that therapists are working under the expectation that upwards
of 6 h 48 min of their 8-h workday are devoted to direct patient care, with patients scheduled back to
back and little or no time in between. Meeting these standards can be challenging as direct patient
care time is often limited by the patients themselves, both within the hospital or inpatient setting
and outside the hospitals in outpatient, ambulatory care settings. Common disruptions to direct
patient care time in the inpatient setting are delays or interruptions due to hygiene or dietary concerns,
and conflicting medical needs. Similar disruptions in the outpatient setting most frequently arise from
transportation delays. Figure 1 provides two examples of typical rehabilitation sessions (Figure 1A:
inpatient, physical therapy, Figure 1B: outpatient occupational therapy) to illustrate how planned,
scheduled direct patient care time does not often equate to actual care time [5,6].

Figure 1. Clinicians encounter many barriers to spending time in direct patient care. Examples of inpatient
physical therapy (PT) 1 h session (A) and outpatient occupational therapy (OT) 45 min session (B).

In addition, regardless of the clinical setting or geographic location, physical rehabilitation
professionals (physicians, physical and occupational therapists, etc.) in today’s busy clinical environment
have many competing priorities above and beyond direct patient care that limit available time [3,7–9].
Rehabilitation clinicians have administrative demands related to documentation, addressing patient and
family concerns, and coordination of care with other healthcare team members [10,11]. Competing demands
on time are often balanced by the rehabilitation professional multi-tasking, providing group treatments
(allowable in some settings or countries, but not allowable in others), and completing administrative tasks
while providing treatment during a session. Collectively, these pressures limit time and energy to trial
new technology, including wearable device systems.
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Figure 2A shows an example of current time costs for using a wearable sensor system within
clinical practice, with time estimates based on our laboratory protocol [12]. Asking rehabilitation
professionals to charge, program, don/doff, process, and share results (both with the patient and
other health professionals through an electronic medical record) of wearable device systems is
unrealistic if it cannot be completed quickly during a patient treatment session. Figure 2B shows a
clinically-feasible time cost that would foster implementation of wearable device systems into routine
clinical rehabilitation practice.

Figure 2. Time Cost for Clinical Implementation of Wearable Device Systems. A: Current time cost in
clinical practice. B: Estimated time cost for realistic implementation into clinical practice. The first two
boxes in A & B are estimates for an experienced clinician using a wearable device system with a new
patient. Red boxes indicate non-billable time while green boxes indicate billable time. EMR: electronic
medical record. * Wear time may vary from hours to several days.

The above examples are drawn from the healthcare system in the United States. While other
countries might not currently face such severe time constraints, all counties face at least some.
Additional challenges faced across multiple continents include under-sourced physical rehabilitation
services (i.e. a limited number of professionals available), which may lead to self-imposed pressures
for professionals to treat as many people as quickly as possible. Regardless of the unique situations in
each country, it is unlikely that these time constraints and competing priorities are going to change
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in the foreseeable future. For wearable device systems to be widely implemented into rehabilitation
care around the globe, the technology needs to fit in seamlessly, minimizing disruption to busy,
clinical settings.

2.2. Clinicians Are Still Building towards Understanding the Added Value of Wearable Sensor Data for Clinical
Rehabilitation Practice

The World Health Organization’s International Classification of Function, Disability, and Health
(WHO-ICF) describes three levels of classification for any health condition (disorder or disease),
including body function and structure, activity, and participation [1]. Activity is considered the ability
to execute tasks or actions and can be subdivided into the capacity for activity, i.e. what a person can
do in a structured environment, and performance of activity in daily life, i.e. what a person actually
does (see Box 1). Established in the field of physical rehabilitation is the importance of standardized
outcome assessments to evaluate change over the course of clinical care [13]. Recommended activity
level measures included in rehabilitation clinical practice guidelines around the world nearly always
assess capacity, not performance [14]. But as mentioned in the Introduction, individuals who engage
in physical rehabilitation services typically seek improvement in movement performance within their
daily lives [15]. Assessing the impact of rehabilitation interventions in the context of an individual’s
life could, therefore, serve as a primary indicator of effectiveness of rehabilitation interventions.
Examples of using performance-level tracking in physical rehabilitation are the use of a single wearable
sensor worn at the ankle to track daily walking (e.g., steps/day), or the use of two wearable sensors worn
on the left and right wrists to track upper limb activity (e.g., use ratio, which is the relative duration of
activity in one limb vs. the other). Objective, performance-level tracking via wearable devices across
clinical episodes of care for decision-making, however, is an emerging, yet not established practice.

While there is promise for the adoption of performance-level tracking within clinical populations,
several clinical assumptions stand in the way of wide-spread adoption. First, there is the widespread
assumption that capacity measures taken in the clinic reflect performance measures in daily life.
Capacity is a snapshot of ability at a singular time point in a structured environment, whereas
performance measures capture real-world activity that includes the ecological validity of an individual’s
free-living condition. Published data on gait speed, an index of walking capacity, and steps per day,
an index of walking performance, illustrate this problem. Gait speed, measured in the clinic, generally
accounted for 30–45% of the variance in steps/day, leaving up to 70% of the variance in daily stepping
unexplained [16,17]. For example, individuals in a recent study with self-selected gait speeds around
0.8 m/s ranged from about 750 steps/day to over 6000 steps/day (see Figure 2B of [18]). Without a direct
measure such as those provided by wearable device systems, a clinician has limited insight about
walking or other movement performance in daily life. Up to the present time, physical rehabilitation
clinicians have had to rely primarily on self-report measures to quantify the amount, frequency and
duration of movement outside of clinical services. Unfortunately, self-report measures have been
shown to lack consistency with more direct assessments [19,20]. Thus, wide-spread adoption of
wearable device systems into routine clinical rehabilitation practice will provide new, important
information for clinical management.

The second clinical assumption is that a change in an individual’s capacity is equivalent to a
change in that individual performance in daily life. Over the past few years, multiple reports have
now demonstrated discrepant outcomes in capacity and performance over the course of research and
clinical interventions [21–24]. Each of these aforementioned belief barriers will require educational
strategies tailored towards rehabilitation professionals to improve adoption of performance tracking
with wearable device systems within clinical populations.

The great news is that emerging data exist demonstrating the utility of performance-level tracking
at improving a variety of outcomes and monitoring the effects of disease processes on movement
longitudinally [25,26]. Performance monitoring as part of research interventions has been effective at
increasing daily stepping, improving daily physical activity, and reducing sedentary time in healthy
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populations (see [27] for review). In clinical populations, performance tracking has been effective at
improving functional outcomes including walking endurance [28,29] and daily walking activity [30,31]
in the lower limb, and has proven to be sensitive to changes in real-world upper limb use across both
research and clinical interventions [22,32]. Further, tracking has also been sensitive to the degradation
of movement in daily life in both static [33] and progressive [34] disease processes. Advantages of
having performance-level measurements from electronic, internet-connected wearable device systems
include: (1) the storage of data in secure, remote databases; (2) the ability to analyze these measurements
across large data sets; and the subsequent ability to recommend specific actions based on the results of
these measurements. Increased adoption of performance monitoring in the clinical environment could
provide the big data required to elucidate the full potential of wearable sensing technology.

3. The Current Situation with Wearable Device Systems

3.1. Commerically-Available, Consumer-Grade Device Algorithms Have Limited Accuracy in Disabled Patient
Populations

A major barrier for widespread clinical adoption of wearable sensor technology is that the most
accessible wearable device systems, those marketed directly to consumers, have questionable accuracy
in rehabilitation populations. Using terminology set out in the V3 framework [35], the problem is
not in the verification of the sensor itself, but rather lies in the analytic and clinical validation of
the algorithm. People seeking rehabilitation services often do not move normally, such that the
algorithms programmed into consumer-grade devices are inaccurate in identifying or quantifying their
movement [36–41]. Continuing with our mainstream metric of walking performance, steps/day has
been evaluated across many consumer-grade devices. Studies have evaluated the accuracy of these
devices across a variety of functional activities and environmental settings, at different placements
on the body, and across a wide range of abilities. There was wide variability in the accuracy of
these devices in individuals with normal gait speed [42,43]. Furthermore, in individuals who utilize
assistive devices (e.g., cane, walker) [44–46], walk with slower speeds (e.g., < 0.8 m/s) [36–41], or have
interruptions in continuous walking [47,48], even higher levels of inaccuracy have been identified.
The Fit-Bit Ultra (Fitbit Inc., San Francisco, CA, USA) consumer-level device, for example, has been
shown to systematically under-estimate steps for individuals with a diagnosis of stroke and traumatic
brain injury over a 2-min walk test, with greater inaccuracy for those who took less steps per minute
and those that walked ≤ 0.58 m/s [41]. As many individuals who seek physical rehabilitation walk
at slower speeds, this poses a major barrier for accurate, objective monitoring. In contrast to the
consumer-grade devices, commercially-available, research-grade sensors such as the Step Activity
Monitor (Modus Inc., Edmonds, WA, USA) have demonstrated strong reliability and accuracy across
varied levels of abilities, including differing medical diagnosis, variable gait speeds, and use of assistive
devices [41,49–54] with limited data across differing environmental conditions [40,54–56]. Though this
research grade device is accurate and reliable in individuals with physical impairments, the device
may lack key features that would be essential for widespread clinical adoption (see Section 4 below).
Unfortunately, this discussion is an example of only one variable derived from a wearable device.
When additional variables are examined, the depth of work to integrate these devices into clinical
practice grows exponentially.

3.2. Research-Grade Device Systems Are Expensive and Not yet Clinician- and Patient-Friendly

Most research-grade devices work in conjunction with software systems that require a separate
computer program to set-up, download and examine the data. To be feasible in the clinic,
every rehabilitation professional would need the necessary computer program loaded onto their
laptop or other computer they use for clinical care, which would be expensive. In addition, cost of
devices for multiple patients and multiple limbs (e.g., wear one device on each wrist to measure
upper limb performance) could quickly make wearable sensor technology unreachable for most clinics.
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Beyond the cost, current output from research-grade wearable device systems is not easily accessible in
a timely manner for rehabilitation professionals or for their patients. Current research-grade systems
require training to use. Training involves both how to use the device (e.g., turning on/off, charging,
specific requirements for sensor placement wear) and how to use the system (e.g., programming the
device, uploading/storing data, translating device output into clinically relevant values). For wearable
device systems with proprietary software algorithms, only the default outputs (or variables) are
available. If the clinician needs variables beyond the defaults, they would need a research colleague
to write code and extract them. Research-grade system outputs (default or otherwise, see Table 1
for variables summary) are difficult to provide quickly during or outside of a treatment session.
Furthermore, if the rehabilitation clinician has taken the effort to extract the data and variables,
the output is not yet patient-friendly. Researchers have tried to bridge this gap by transforming
outputs into patient-friendly graphs, but the process is cumbersome and has not yet yielded improved
results [57]. For the clinically-important information derived from the sensors to be widely utilized by
patients and clinicians, wearable device systems will likely need to be less expensive, continuously
streamed [58], and on an accessible consumer-based platform [9]. Wearable device systems will
need to be compatible with and seamlessly integrated into the electronic medical record to be readily
adopted [59] and to contribute to the quality and effectiveness of rehabilitation services.

3.3. Standardization of Output Variables in Research Is Limited to Date, with Much Work to Do

The pathway to routine clinical rehabilitation implementation for wearable sensor technology
is not just impeded by current clinical care and available devices, but also by the state of the science
about the output variables. While it is clear that measurement of outcomes is essential in both research
and clinical practice, the pathway to an established outcome measure or sensor-based variable is a
long, hard one [60,61]. It is critical that measures and variables are thoroughly vetted, since scores
obtained may be used to make diagnostic and rehabilitation management decisions. Prior to any
measure being routinely implemented into clinical rehabilitation care, multiple studies evaluating
the psychometric properties and clinical utility of the measure are necessary [60–63]. Beyond the
verification of sensor signals [35], variables must first demonstrate reliability, or consistency of results
obtained, indicating that one can trust that the obtained value is stable. Validity is the second hurdle,
with multiple layers of validity. These layers, in hierarchical order, include: (1) face validity (does the
variable appear to capture the underlying construct); (2) content validity (does the variable adequately
capture/sample the underlying construct); (3) criterion-related validity (how does the variable agree
with other measures or the gold-standard measure of the same construct); and (4) construct validity
(how well does the variable measure the construct). If a sensor-based variable were to be used to make
diagnostic decisions, discriminitive validity (how does the variable distinguish between those with
and without a specific condition) and predictive validity (how well does the variable predict future
outcome) would also need to be demonstrated in the population of interest. Responsiveness is the
third and final hurdle and includes the ability of the variable to capture the range of the construct and
its sensitivity to change over time.

Table 1 is a sample list of variables proposed in the literature to measure important rehabilitation
constructs that might be used for diagnostic or clinical decision-making. These variables have largely
been derived from data captured on research-grade devices and calculated with custom software
developed in laboratories. The variables are intended to capture different movement constructs
that may be of interest to physical rehabilitation clinicians. We have excluded most measures of
general physical activity (e.g., caloric expenditure), except steps/day, since general physical activity
measures are an extensive topic in their own right. Variables are presented based on their intention to
quantify movement at either the lower (generally captured via one sensor on one leg) or upper limb
(generally captured with one sensor on each arm). Based on the available data, variables are marked
as to their exploratory status and how quality and quantity of data are related to reliability, validity,
and responsiveness.
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Table 1. A sample of wearable-derived variables proposed in the literature. This list is not exhaustive,
with new variables proposed all the time. Published variable data have been judged as: Green= sufficient
data for implementation into clinical practice; Yellow= some data available to-date, but not yet sufficient
for implementation; and Red = no data yet.

Variable Name
Explored In: Evaluation in Health Condition:

Absence of Health
Condition

Health
Condition

Reliability Validity Responsiveness

Lower Limb [16,18,21,30,34,40,41,49,53,57,64–70]

Time-based variables
% time inactive • • • • •

Walking duration • • • • •
Amount-based variables

Steps/day • • • • •
Bouts/day • • • • •
Steps/bout • • • • •

Intensity-based variables
Stepping intensity • • • • •
Maximum output • • • • •

Mod. intensity minutes • • • • •
Peak activity index • • • • •

Other variables
Step length variability • • • • •

Upper Limb [21,32,71–96]

Time-based variables
Hours/duration of use • • • • •

Use/activity ratio • • • • •
Amount-based variables

Acceleration area • • • • •
Activity counts • • • • •

Mono-arm use index • • • • •
Intensity-based variables
Acceleration variability • • • • •
Acceleration magnitude • • • • •
Acceleration asymmetry • • • • •

Laterality index • • • • •
Magnitude ratio • • • • •

Bilateral magnitude • • • • •
Other variables
Variation ratio • • • • •

Jerk asymmetry • • • • •
Spectral arc length • • • • •

There are three key points to take away from this table. First in looking at the left-hand column,
there are many variables with different names and often different formulae that may be capturing
similar or related constructs of movement. This is both good and bad. Similarity is good because it
signifies that the movement construct is considered important by multiple groups. Different names
and different formulae are bad for future progress because they make comparisons across studies,
samples, and populations difficult. Second in looking at the next two columns, exploratory data are
available for many variables. This highlights the creativity that will be needed to really understand
movement constructs, variables, and relationships with clinical practice. Third and most importantly
in looking at the right-hand columns, there is a tremendous amount of work needed for most of these
variables to demonstrate the reliability, validity, and responsiveness necessary for adoption into routine
rehabilitation clinical practice. Only one variable, steps/day has sufficient established psychometric
and clinical utility to make it worthy of recommendation to clinicians, i.e. evidence of strong, stable
psychometric properties across multiple studies with large samples. Another variable, the use ratio for
the upper limb, is making good progress towards this goal, after its initial proposal some 20 years
ago [81]. Since many of the other variables are only recently proposed, it may be a long time before
needed data are available. We are hopeful that once one or a few variables are deployed into routine
care, the process for deploying other variables may be accelerated.
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To achieve standardization of variables derived from wearable devices, our field will need to
communicate and collaborate on issues such as: (1) sensor placement on the limbs; (2) filtering
algorithms for raw data; and (3) sensor-independent reporting of variables (e.g., gravitational units and
not activity counts, which vary by manufacturer). Comparisons across studies are often impossible due
to these issues [97]. For example, it is unfortunately not possible to compare upper limb activity levels
in a small sample of children with Duchene Muscular Dystrophy [98] to a larger, referent sample of
typically developing children [83]. The two studies evaluated conceptually-similar variables, but used
different calculations, different sensors, and different filtering algorithms. Going forward, it would be
of great benefit to develop open-access databases for normative or referent data, in order to compare
those with and without specific health conditions. Further progress might be made by pooling or
sharing currently available datasets for meta-analyses.

3.4. Different Clinical Populations Will Need Different Metrics for Clinical Decision-Making

Much of the variable development summarized above has occurred in the stroke rehabilitation
population. While individuals with stroke represent a substantial portion of the world-wide physical
rehabilitation population, there are many other clinical populations that could benefit from the ability to
capture motor performance in daily life. Given the heterogeneity of physical rehabilitation populations,
it is highly likely that different clinical populations will need different wearable-derived variables
for clinical decision-making [99]. Important sensor variables developed for one population may not
be clinically relevant for another population. For example, the use ratio is an upper limb variable
reflecting the relative time one limb is active compared to the other [81,100]. The use ratio has clear
clinical relevance in rehabilitation populations with asymmetric effects on the limbs, such as stroke,
hemiparetic cerebral palsy, limb amputation/prosthetic use, and recovery from unilateral upper limb
surgery. It has little clinical relevance, however, for those with very mild or no asymmetries in motor
abilities, such as children with Duchene’s Muscular Dystrophy or hyperactivity disorders, or for adults
with some brain injuries, and many spinal cord injuries. The ultimate goal of any clinical assessment,
including variables derived from wearable devices is that a value or score on the variable informs
clinical-decision making, such that without this value or score, a different clincial decision would have
been made and a worse outcome might have occurred. Thus, our challenge going forward extends
beyond establishing reliability, validity, and responsiveness for wearable-derived variables towards
demonstration of how the score or value can change clinical practice.

3.5. Special Considerations for Complexity in Some Populations

3.5.1. Children

Wearable device systems can be a powerful assessment tool for children as objective assessment
of their motor activity is difficult. Direct behavioral observation can be used to objectively assess
children in their typical environments but that is costly, time-consuming, and only feasible in research.
Clinic-based assessments are time consuming, require trained experts, have subjective components,
and require the children to be assessed outside of their familiar environment. Furthermore, children
under 10 or children with special needs cannot always follow commands or accurately report on
their performance [101]. Proxy-reports from parents or teachers have limited accuracy [101,102].
Wearable devices, therefore, can provide pediatric rehabilitation clinicians with real-world, objective
performance data on their patients [103–106]. Wearable devices have been used to research the behavior
of children with attention deficit-hyperactivity disorder (ADHD) in the classroom [107]. In autism
spectrum disorder research, wearable devices have been used to study sleep patterns, stereotyped
behaviors, and metabolic disease risk [108–114]. Researchers have also used wearables to identify
infants with developmental delays and infants with movement disorders associated with cerebral
palsy [115,116] and children with ADHD [105]. While their value for pediatric physical rehabilitation
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is clear, two special considerations for pediatric wearable device system use are the data collection
protocol and the physical design of the device.

Particularly in pediatric studies, there has been wide variation in data collection procedures with
respect to device placement and wearing duration. Devices are placed on the waist, ankle, one or both
wrists, or a combination of these sites. The issue of device placement is further complicated by the
different, and often more intense, movement activity in children (e.g., swinging, climbing, and sliding
on playgrounds) compared to adults. While multiple sensors can quantify movement in ways a single
sensor cannot, multiple sensors create a greater burden for the wearer, particularly on infants and
small children. Implementation of wearable sensor technology into pediatric clinical practice will
require thoroughly vetted protocols that can maximize sensor information and minimize the number of
sensors and duration of wear. Thoroughly vetted protocols will also be an important part of convincing
parents to allow and promote device wearing in their children.

Routine clinical implementation of wearable devices and systems for pediatric rehabilitation
populations will also depend on the physical design of the device and how it is secured to the
individual. Size, weight, aesthetics, and ease of donning/doffing, are all key considerations. An ideal
wearable device for pediatric patients would be small and light enough for infant wrists and ankles but
robust enough to handle the stresses encountered while being worn by a child or teen for prolonged
periods. The device must not impede or alter the movements that are being recorded [117]. The strap
should be strong, non-absorbent, easy to remove and clean. For young children, playful or colorful
aesthetics may increase compliance [118]. Simple hook-and-loop or buckle closures make donning and
doffing devices easy for caregivers. Some pediatric populations will have sensory sensitivities and,
for them, strapping that is soft and compliant but secure needs to be available. Devices are ideally
waterproof, which can prevent recording interruptions during hand washing or bathing, and data
capture can continue during swimming or other water-based activities. If these special considerations
to implementation are overcome, wearable device systems can bring uniquely powerful diagnostic
and prognostic information into pediatric care, a setting where real-world, objective assessment is
otherwise very difficult.

3.5.2. Individuals with Cognitive Deficits

Great potential exists for the use of wearable devices in the routine clinical care of individuals
with cognitive impairment. For example, ankle-mounted accelerometers have been used to distinguish
between healthy controls and participants with Alzheimer’s disease prior to the onset of major
clinical behavioral impairments [119]. Cognitively impaired individuals cannot always accurately
report on their performance in daily life and proxy-reports from caregivers may lack accuracy [120].
Wearable devices can avoid these issues by providing clinicians with objective, real-world data.

Several special considerations arise from the individual’s cognitive impairment. Those individuals
with more severe impairment may not understand the purpose of a wearable device. Devices that
are small, light, and comfortable are more unobtrusive and will help avoid resistance to wear [3].
Device discomfort has led to as much as 25% withdrawal from studies of a neurological population [121].
The level of caregiver support available will be critical for success, as individuals with severe impairment
may not be able to communicate discomfort (e.g., excess tightness, skin irritation) during device
use. Device design could facilitate comfortable wearing by employing soft but strong materials and
avoiding hard edges near areas of fragile skin. There will be a trade-off between the simplicity to don
and doff by the patient themselves [3,121] versus minimizing the proclivity to remove the devices
when it is not appropriate to do so. An option of a more secure clasp that requires caregivers or
clinicians to remove may be appropriate. When possible, wearable devices will need to be attached to
the patient and not their clothing, to avoid inadvertently laundering or discarding the device [121].
Wearable devices with long battery life could remove the need for cognitively-impaired individuals
and/or caregivers to remember to monitor and charge the battery. Devices that are aesthetically
pleasing may facilitate compliance [3], such as the emerging devices designed to appear as watches or
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jewelry (e.g., Motionlogger Micro Watch, AMI, Ardsley, NY, USA; Motiv Ring, Motiv, San Francisco,
CA, USA). Lastly, cognitive impairment heightens the need for clear caregiver education related to
the device protocol and interpretation of results, preferably with simple graphical instructions and
data visualizations.

4. Benchmarks for Future Development

4.1. Proposed Benchmarks

While there are serious barriers to implementation of wearable device systems into routine
physical rehabilitation practice, there is also substantial opportunity for growth and development
in the nascent wearable sensor technology field. Here, we propose benchmarks for wearable device
systems that might be readily adopted into clinical practice. Figure 3 is a visual illustration of the
barriers and benchmarks. Each barrier is represented by a circle, with barriers that will be more difficult
to overcome indicated by larger circles and hotter colors. Once barriers are overcome (circles shrink
enough to fit through the funnel), then wide-spread clinical implementation (green rectangle) will be
possible. The specific benchmarks (Table 2) are intended to serve as a guide for engineers, software
developers, clinician-scientists, and clinicians alike as we pursue this important goal. They arise from
the 10+ year history of using wearable device systems in our laboratory with more than 400 research
participants, our clinical practice experience, and discussions with a range of rehabilitation clinicians.

Figure 3. Barriers and benchmarks for implementation of wearable sensor technology into routine
clinical rehabilitation practice. The warmest colors and largest circles indicate barriers that will
take more work to overcome. Once the barriers are sufficiently reduced, then widespread clinical
implementation (green rectangle) will be possible.
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Table 2. Benchmarks for wearable device systems that will facilitate implementation into routine
physical rehabilitation clinical practice.

Benchmark

Convenience for purchase and use Commercially-available, consumer-grade device system that can be easily used
by clinicians and consumers; comprehensive, accessible tech support.

Initial set-up time for clinician 5–6 min for first time with new patient.

Routine set-up time for clinician ≤1 min in subsequent times with same patient.

Time to extract data and generate output or report ≤5 min

Ease of donning/doffing for patient ≤2 min; without assistance from another person if intended for home use.

Comfort for extended wear
Soft plastic or other flexible strapping that can be tolerated 12–24 h/day; no hard

edges on device that push into skin; water resistant so does not have to be
removed for bathing, dishwashing, etc.

Device operations ≥95% of the time, device collects, stores, and/or uploads data as programmed
and does not malfunction.

Algorithms for extracting data and generating
variables of interest

≥90% accuracy to measure intended construct; must be accurate across a broad
range of movement abilities typically seen in physical rehabilitation clinics.

Standardization of variables of interest

Reliability: consistently captures construct with reliability coefficients of ≥0.80.

Validity: comprehensively captures construct that has known relevance to
clinical decision-making and management.

Responsiveness: detects changes of ≥5%; changes of 5–10% or higher provide
relevant information for clinical decision-making and management.

Values can be computed & reported in sensor-independent units.

Report to clinician and patient

Consumer friendly, targeting audience with ≤ secondary school education; 1–3
key outcome variables presented; simple graphics with colors to make

accessible across languages and language and/or cognitive deficits; ability to
integrate into electronic medical record.

As with any technology, wearable device systems that are commercially-available with
comprehensive, accessible technology support for end-users (rehabilitation professionals and patients)
are necessary for routine implementation into clinical practice [122]. Moving a system from laboratory
development into commercial production therefore becomes an important goal for system developers.
System developers and their manufacturing partners will need to ensure that any systems sold as
medical- (or research-grade) devices will need to meet the clinical safety standards defined by the
International Organization of Standards (ISO/TC 173 for Assistive Products and ISO 10667-1:2011
for Assessment Service Delivery) and evaluated by national or multi-national regulatory agencies.
Ideally, a system would be marketable to both clinicians and direct to consumers, as that would
facilitate uptake [59,123]. While it is possible that research-grade device systems that are compliant
with clinical regulatory standards can be adopted into clinical care, systems that are sold directly to
patients and other consumers will better enable the wide-spread, ubiquitous adoption that would
be most desirable. Time benchmarks flow from the previously discussed need to maximize patient
care time and minimize undue burden for busy clinicians (Figures 1 and 2). While many, varying
protocols for wearing duration may be used going forward, a device that can be comfortably worn
for 12–24 h at time would be an excellent staring point and would facilitate adherence to wearing.
A device system that works as intended/programmed for every patient is a prerequisite for wide-spread
clinical adoption [59]. If devices are fickle and do not work (i.e. fail to record, store, or upload data)
even a small percentage of the time, rehabilitation clinicians and patients will become frustrated and
discontinue use. The most challenging and time-consuming benchmarks to achieve will be accurate
algorithms and standardization of variables of interest that are reliable, valid, and responsive in
the heterogeneous physical rehabilitation clinic populations. Since clinicians typically carry patient
caseloads that include more than one patient population (e.g., Monday morning caseload includes a
person with stroke, a person with multiple sclerosis, and a person with Parkinson disease), algorithms
that work across populations and the ability to select specific variables of interest will make it easier to
implement a wearable device system into daily practice. Finally, consumer-friendly reports that are
quickly understandable to clinicians, patients, and families and integrated into the electronic medical

296



Sensors 2020, 20, 5744

record will allow the movement performance data collected from daily life to be used for shared clinical
decision making and motivation.

4.2. Example Application of Benchmarks to A Currently-Available System

This section applies the benchmarks to a currently-available wearable device system as an
example. The example system is the Actigraph wGT3X-BT device paired with the ActiLife software
(Actigraph Inc, Pensacola, FL, USA). This system is one of the most commonly used in North America.
Figure 4 is a picture of the wearable devices on a participant (Figure 4A) and a screen-shot of the
software interface (Figure 4B). The wGT3X-BT contains a solid state, triaxial, microelectromechanical
system (MEMS) accelerometer, an ambient light sensor, and a capacitive proximity sensor to detect
wear time. It measures 4.6 × 3.3 × 1.5 cm and weighs 19 g.

Figure 4. (A): Photo of a participant wearing the Actigraph wGT3X-BT devices on each wrist.
(B): A screen shot of the ActiLife software interface used to interact with the wearable device.
The software provides options to change various recording parameters (start and stop times, sampling
rate, etc.) prior to recording/collecting data.

Sampling rates can be set within a 30–100 Hz range, with slower sampling rates enabling longer
data collection periods. The accelerometer has a dynamic range of +/− 8 g. Memory is 4 GB, with a
battery life of 25 days and data storage possible for up to 180 days. The device has Bluetooth
communication capability, which when activated, reduces battery life.

We benchmark this wearable device system’s use for capturing upper limb performance in daily life,
indexed by the use ratio variable in Table 3. As briefly mentioned in the previous section, the use ratio
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is a variable quantifying the relative duration of movement in one limb to the other. Determination of
benchmark achievement was decided based on ours and others experience with the wearable device
system (convenience, time, ease, comfort, device operations, and reporting benchmarks) and the
references included in the prior section (algorithm and standardization benchmarks).

Table 3. Application of benchmarks to a current wearable device system, the Actigraph wGT3X-BT and
ActiLife software for measuring upper limb performance in daily life, indexed by the use ratio variable.

Progress toward Benchmark

Convenience for purchase and use

Commercial-availability achieved. Can be easily purchased.
Consumer-grade not achieved. Marketed and sold as research-grade device.
Technology support helpful for researchers but would be too difficult for
clinician or patient consumers.

Initial set-up time for clinician Not achieved. Current time estimate is 18 min.

Routine set-up time for clinician Not achieved. Current time estimate is 8–10 min.

Time to extract data and generate output or report Not achieved. Current time estimate, using ActiLife + custom-written
software in MATLAB or R is 15 min

Ease of donning/doffing for patient Achieved. Can be done at home for most patients without assistance
from another person.

Comfort for extended wear
Achieved. Allows for variety of strapping options and has been worn
12–24 h by hundreds of patients, with many wearing it for 24 hrs 1x/wk
or 1x/month. Water resistant.

Device operations Achieved. Have lost data <2% of the time.

Algorithms for extracting data and generating
variables of interest

Achieved for use ratio. Algorithm is stable across a range of movement
abilities in typical adults and children, and persons with stroke.

Standardization of variable of interest: Use ratio

Reliability achieved. Test-retest reliability coefficient = 0.86 [79]

Validity achieved for adult stroke population, but not other populations [99].
Captures relative use of the upper limbs, which is stable and narrowly
distributed in referent populations [83,88], but wide-ranging post stroke.

Responsive to change achieved. Can detect changes of ≤5% [32,79].
Clinical relevance of change not achieved. Currently unknown how much
change is clinically meaningful.

Sensor-independent units achieved. Values are a ratio, making differences
across sensors irrelevant.

Report to clinician and patient
Not achieved. Current output can be consumed by trained researchers
but is not clinician-, patient-, or family friendly. Output is not integrated
with electronic medical record.

As can be seen in the right column of Table 3, around half of the proposed benchmarks have been
achieved to date for this wearable device system and variable of interest. We respectfully note that this
system is targeted for researchers and not for rehabilitation clinicians and patients. The conclusion
drawn from Table 3 is that this wearable device system and its corresponding variable of interest does
not yet meet all the benchmarks proposed here for widespread implementation into routine clinical
rehabilitation practice. This variable of interest first appeared in published literature in the year 2000.
Similarly, the wearable device system has been commercially available for more than 10 years and is
the device system that is most commonly used in rehabilitation research studies. Thus, even a system
that is commonly used by researchers is not yet ready for clinicians and patients.

Many new commercially- and laboratory-available wearable device systems are introduced each
year. We are unable to benchmark a newer device system for this review because new systems,
by default, have limited publications about how they operate and the variables that are derived from
them. Publications from commercial entities are often not available at all, or come in the form of
white papers that are not peer-reviewed. Publications from research laboratories about brand new
device systems often report information about the device system and testing in a few healthy, young
participants and/or a few patients, but do not yet have sufficient information/detail for assessing
progress towards achievement of the proposed benchmarks for adoption into clinical care. As can be
seen in this benchmarking exercise, it takes a long time for new devices to be picked up by the clinical
research community and the generation of subsequent publications documenting clinical feasibility
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and standardization of variables. Nonetheless, the benchmarking exercise serves as a useful example
of the collective progress that needs occur.

5. Conclusions

In the foreseeable future, the promise of wearable sensor technology for improving physical
rehabilitation practice will be realized (Figure 3). A key goal for the field is to work to move
wearable device systems that measure human movement into routine clinical practice. Major barriers
to implementation arise from both current clinical practice and from the wearable device systems
themselves. Clinical practice barriers include the busy clinical environment and a not-yet full realization
of the value of the critical information that can be obtained. Wearable device system barriers include:
(1) consumer-grade devices that are not accurate for many physical rehabilitation patient populations;
(2) research-grade devices that are not user-friendly for clinicians or patients; (3) insufficient published
data regarding reliability, validity, and responsiveness of output variables that can inform clinical
decisions; and (4) the need to have these data on a range of output variables so that clinicians can select
the most appropriate ones for specific patients.

As noted in the Introduction, we are at the beginning of this effort. Next generation wearable
sensors and device systems will be smaller, faster, and allow enormous flexibility for clinicians
and patients to gather data via wireless sensors networks and secure cloud technology, facilitating
widespread adoption. Comparing the current status of the field to the development of telephones
through smart phones, we are entering the early 1900s, when telephones were present and available
in select locations, and switchboard operators were required to make connections between parties.
Similarly, wearable devices systems have become increasing common in the research-world and require
research-trained personnel to make them work. The collective efforts of engineers, computer scientists,
clinician-scientists, and clinicians can push us all towards a future with sleek, ubiquitous, and easy to
use wearable device systems in physical rehabilitation practice.
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Abstract: Physical activity monitoring with wearable technology has the potential to support stroke
rehabilitation. Little is known about how physical therapists use and value the use of wearable
activity monitors. This cross-sectional study explores the use, perspectives, and barriers to wearable
activity monitoring in day-to-day stroke care routines amongst physical therapists. Over 300 physical
therapists in primary and geriatric care and rehabilitation centers in the Netherlands were invited to
fill in an online survey that was developed based on previous studies and interviews with experts.
In total, 103 complete surveys were analyzed. Out of the 103 surveys, 27% of the respondents were
already using activity monitoring. Of the suggested treatment purposes of activity monitoring, 86%
were perceived as useful by more than 55% of the therapists. The most recognized barriers to clinical
implementation were lack of skills and knowledge of patients (65%) and not knowing what brand
and type of monitor to choose (54%). Of the non-users, 79% were willing to use it in the future. In
conclusion, although the concept of remote activity monitoring was perceived as useful, it was not
widely adopted by physical therapists involved in stroke care. To date, skills, beliefs, and attitudes of
individual therapists determine the current use of wearable technology.

Keywords: wearable technology; rehabilitation; stroke; implementation; physical therapy

1. Introduction

Stroke is a major cause of disability and is an age-dependent problem [1]. With
an aging society and improved acute care, the number of stroke survivors living with
long-term stroke consequences is increasing beyond the level of increase of professional
capacity [2,3]. Many stroke survivors show deteriorated levels of functioning, with low
levels of physical activity [4,5]. Being physically active is an important determinant of
social participation and is a major target of stroke rehabilitation [6]. Furthermore, being
physically active is related to physical and psychosocial functioning, quality of life, and
reduction of cardiovascular risk factors [7–10].

Physical activity is one of the components of physical behavior, that covers all move-
ments, postures, and activities of a person’s during their daily life [11]. Another component
is sedentary behavior, which is associated with cardiovascular disease incidence and mor-
tality and depressive symptoms too [12,13]. Targeting stroke rehabilitation by increasing
physical activity and decreasing sedentary behaviors may help to suppress the burden
of stroke.

Stroke rehabilitation could benefit from remote monitoring of physical behavior with
wearable sensor technology [14]. The development of wearable activity monitors has
rapidly evolved over the last decades in academic research and the consumer market [15,16].
They provide an objective insight into behavior in a non-invasive and continuous way
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and can be applied in the home environments as well as in in- and outpatient settings
to patients and therapists [17]. In addition, increased patient involvement by providing
feedback on physical activity may enhance compliance and stimulate self-management [18].
The objective insights also allow therapists to set tailored therapy goals, guide patients
towards them, and evaluate progress [19,20].

Although the body of evidence of remote monitoring of physical activity is growing in
academic research, its clinical implementation lags behind [21,22]. Adopting technologies
in day-to-day care routines seems challenging for therapists, who are key players in
adopting remote monitoring of physical activity [22], since it requires careful attention,
precious time, sufficient organizational and technical infrastructure, and knowledge [23–27].
Studies indicate that physical therapists acknowledge the potential benefits and practical
purposes of wearable activity monitoring in rehabilitation therapy [28–30]. However, so
far these studies have applied individual interviews and small focus groups. To provide an
extensive insight into the current uses and clues on how to push the clinical implementation
of this technology in stroke care forward, a study with a wide group of physical therapists
involved in stroke care is needed. Therefore, the current study aimed to explore the use,
perspectives, and barriers to potential applications of wearable activity monitoring in
day-to-day stroke care amongst physical therapists in the Netherlands.

2. Materials and Methods

2.1. Participants and Data Collection

This cross-sectional study used an online survey (LimeSurvey®) among physical
therapists in the Netherlands involved in post-stroke rehabilitation. Therapists were
included if they were involved in the treatment of at least one stroke patient in the last
month in a rehabilitation center, geriatric care center, or in primary care in the Netherlands.
Participants were invited by e-mail with a web link via contact persons of seven primary
care stroke networks in the Netherlands and ten Dutch rehabilitation centers and via a
newsletter of the special interest group “rehabilitation” of the Royal Dutch Society of
Physical therapy (KNGF: Koninklijk Nederlands Genootschap voor Fysiotherapie). After
three weeks, a reminder for filling in the questionnaire was sent. Surveys were filled
in anonymously.

2.2. Survey Development

A research team of physical therapists, human movement scientists, and researchers
developed the survey based on literature and interviews. The survey included questions on
demographic and occupational characteristics. Literature was used to formulate questions
on the following topics: innovativeness (multiple choice answers to the question on inno-
vativeness were based on the descriptions of the adoption categories of Rogers [31]), health
care technology, activity monitoring outcome measures, perceived usefulness, barriers,
and willingness to use it in the future [15,16,27,29,32] (See Supplementary Materials for the
complete survey). To measure the attitudes of the participants regarding these questions, a
5-point Likert scale was used [33]. Participants were also asked if they were familiar with
activity monitoring, if they use it for tracking their own activities, and if they already use it
in stroke care. If a participant answered “yes” to the question concerning use in stroke care,
they were defined as a user, and otherwise as a non-user. The users received additional
questions about the use in day-to-day practice. They were asked how long they have been
applying it, for how many patients per week, for what purpose, and what outcome of
physical behavior they were interested in. Additionally, with an open-ended question, the
reason for use was questioned. At the end of the survey, all participants were asked by
an open-ended question if they wanted to share anything else on activity monitoring in
stroke care.

To ensure common understanding, definitions were explained in between the ques-
tions (see Supplementary Materials). Experts and physical therapists checked the initial
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survey for face validity, comprehensibility, vocabulary, and layout. The survey was pilot-
tested by five physical therapists in primary care before distribution.

2.3. Data Analysis

RStudio (version 1.2.50001, RStudio, Inc., Boston, MA, USA) was used for the data
analyses. Descriptive analysis was provided for all questions with means (SD), frequencies,
and percentages. The Likert package [34] was used to visualize the questions answered
with a Likert scale. Differences between users and non-users were carried out with Chi2

and Mann–Whitney U tests. The significance was set at α = 0.05.
All individual answers to the open-ended question were collected in Microsoft Excel

for qualitative analysis. All answers were divided into emergent themes. The most
frequent, remarkable, or important issues that were relevant to this study were extracted
and reported in the results.

3. Results

3.1. Participants

Over 300 physical therapists received the e-mail with the invitation to fill in the online
questionnaire. Of them, approximately 100 therapists were recruited via a primary care
stroke network and approximately 200 therapists were recruited via a contact person within
their rehabilitation center. The survey was available from 1 March till 1 June 2020. n = 132
started the survey via the web link and n = 103 completed the questionnaire (78%). Only
complete surveys were used for further analysis.

Table 1 shows the demographic characteristics of the participants. The mean age
of the study sample was 42.2 (SD 12.1) years. Most of the participants worked in a
rehabilitation center as a physical therapist (n = 58). Nine participants were employed
in two or three different settings. All therapists were involved in the treatment of stroke
patients. Other patient groups treated by the therapists were congenital and acquired brain
injuries, (inactive) elderly, chronic diseases, orthopedic conditions, and sports injuries.

Table 1. Demographic characteristics of respondents.

Total (n = 103)
Users (n = 28)

(27%)

Non-Users
(n = 75)
(73%)

p-Value

Age, mean (SD) 42.2 (12.06) 41.70 (13.24) 45.30 (12.11) 0.212
Gender (m/f) 26/76 8/20 18/56 0.420

Years of work
Experience, n

(%)

<5 9 (8.7%) 2 (7.1%) 7 (9.3%) 0.331
5–10 18 (17.5%) 8 (28.6%) 10 (13.3%)
10–15 22 (21.4%) 7 (25.0%) 15 (20.0%)
15–20 7 (6.8%) 2 (7.1%) 5 (6.7%)

>20 years 47 (45.6%) 9 (32.1%) 38 (50.7%)

Setting a (n) Primary care 34 7 27
Rehabilitation 59 21 38
Geriatric care 20 2 18

a = participants were allowed to fill in multiple answers; user is defined by answering “yes” on the question if
they already use activity monitoring during their work as a physical therapist.

Twenty-seven percent used activity monitoring in the treatment of stroke patients and
were defined as users. Characteristics of both groups and differences between them are
presented in Table 1.

More than half of the non-users (59%) were familiar with activity monitoring before
filling in this questionnaire. Similar percentages of users (54%) and non-users (53%) used
a smartphone app or consumer-grade activity tracker for monitoring their own lifestyle
and sports activities. Two participants (1.9%) considered themselves as people who were
initially reluctant to use new healthcare technology and innovations. Most of the therapists
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in the total study sample described themselves as a person who had no problem going
along with pioneers in healthcare technology and innovation but who did not initiate
it themselves (60%). Only one (0.9%) of the therapists described himself as someone
who invented and designed new healthcare technology and innovations and 18% of the
total sample said they were someone who followed the latest developments in healthcare
technology and innovation and looked for applications in practice.

The most often used health care technologies in the total study sample, other than
activity monitoring, were applications and websites supporting the patient with practicing
(21% often, 5% very often). The least often used was technology that supported diagnostics
(15% often, 0% very often). Users of activity monitoring used significantly more other
health care technologies (apps/websites, p = 0.036; online consulting (expert) colleagues,
p = 0.023; technology that supports diagnostics, p = 0.009; and technology that supports
treatment, p = 0.026) compared to non-users (Figure 1).

Figure 1. Other health technology used by participants, with differences between users and non-users.

3.2. Users

Most users (54%) have been applying activity monitoring between six months and
two years. Thirty-six percent have been applying activity monitoring shorter than six
months, and eleven percent longer than two years. Most of the users applied activity
monitoring between one and five patients per month (61%). Thirty-two percent applied
activity monitoring in one patient per month or less, and seven percent in more than five
patients per month.

Figure 2A shows the treatment purposes of activity monitoring of the users. Almost
all therapists used the monitor to create awareness for the patient with regard to their
physical behavior (96%). Giving feedback about their physical behavior (82%) was also
often recognized as a useful activity monitoring purpose. Figure 2B shows the activity
monitor outcomes of interest during treatment. Most of them were interested in the number
of steps. Additional outcomes of interest reported by users were heart rate and demands
vs. capability, or in other words, the relation between what a patient did compared to what
the patient was capable of.
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(A) 

(B) 

Figure 2. Treatment purposes (A) evaluated by users and outcome of interest of users (B). LPA= low physical activity,
MVPA = moderate to vigorous physical activity, VPA = vigorous physical activity.

In addition to the purposes in Figure 2A, users filled in for what reason they applied
activity monitoring. Some of them reported new purposes compared to the ones provided
in the answers; that they were instructed or motivated by external factors such as other
colleagues who were already working with activity monitors or research/projects initiated
by their organizations.
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3.3. Perceived Usefulness

All participants (users and non-users) were asked for their opinion about the useful-
ness of activity monitoring for stroke patients. Six out of seven suggested purposes were
considered useful by more than half of the study sample (Figure 3).

 
Figure 3. Perceived usefulness for eight different activity monitor purposes.

One significant difference was found between users and non-users: the users per-
ceived creating awareness as more useful than non-users (p = 0.031). The participants
were asked if they could come up with useful purposes other than noted in the question.
Sixteen participants (16%) filled in the open-ended question on useful purposes other than
mentioned in the question (Figure 3). Providing insight into a patients’ demands vs. their
capabilities (n = 6) was the most common purpose. Two mentioned heart rate and one
mentioned arm/hand use.

3.4. Barriers

The most present barriers reported by the whole sample were lack of skills and
knowledge of patients (65%), not being sure what monitor to purchase (54%), finding it
too expensive (47%), and taking too much time (27%). Overall, seeing no added value
for their patients and their work as physical therapists was not recognized as a barrier by
participants (Figure 4).

Non-users agreed more strongly with the following barriers compared to users: not
knowing much about the effectiveness (p = 0.015), lacking knowledge and ability to apply
the technology themselves (p = 0.013), finding it too expensive (p = 0.043), and not being sure
what monitor to purchase (p = 0.035). Other barriers did not show significant differences
between users and non-users.
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Figure 4. Barriers of using activity monitoring as a physical therapist.

3.5. Future Thoughts of Non-Users

Seventy-nine percent of the therapists who were not currently using activity moni-
toring were willing to use it in the future. Nineteen percent were neutral to this question,
and two percent did not want to use activity monitoring in the future. In addition, partici-
pants were asked whether they would likely use activity monitoring in the next five years.
Fifty-five percent of the non-users considered the change big or very big. Eight percent
considered the change small or very small.

3.6. Additional Thoughts

The survey’s last question asked all participants if they wanted to share anything
else on activity monitoring. Thirty-two participants (31%) filled in this question. Several
positive and enthusiastic thoughts on activity monitoring were provided. Participants
report that activity monitoring offers valuable insight into a patients’ behavior. About half
of the 32 participants added some critical notes; they had doubts about the added value
to the standard care relative to the effort. A few stated that applying technology was not
always a holy grail and could not define therapy. Multiple participants mentioned that the
usefulness was highly dependent on the age and stroke severity of the population.

4. Discussion

This study showed that, although physical therapists perceived wearable monitoring
as potentially useful in stroke rehabilitation, only a minority of 25% actually used it in
clinical care. Therapists that already used activity monitoring during treatment of stroke
patients used it more often than other health care technologies and described themselves
as being more innovative compared to non-users. The most recognized barriers were lack
of knowledge and skills of patients, financial constraints, and not being sure what monitor
to purchase.

The vast majority of our sample had not yet adopted the use of activity monitoring
in day-to-day stroke care. The low numbers of technology used in treatment amongst
physical therapists were in accordance with other studies that focused on technology
use in rehabilitation practice [21,22]. A majority of 80% of therapists not using remote
monitoring technology (non-users) did see value in the concept of objective physical
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behavior measurements with wearable technology, such as raising the patients’ awareness
of their behavior and the ability of providing objective feedback in order to promote
physical activity and were willing to use it in the future. Correspondingly, a majority
disagreed with seeing no added value for their work as a therapist and for their patients as
a barrier. Other studies also found positive attitudes and excitement of therapists towards
the concept of objective physical behavior data collection in clinical practice [28,35].

The discrepancy between the levels of adoption of activity monitoring and its per-
ceived potential value suggests the presence of barriers. Potential barriers to adoption were
indeed identified. The most frequently recognized barrier (65%) was perceived lack of skills
and knowledge to use wearable monitoring technology in patients. Obviously, cognitive
problems and generally older age might complicate the use of technological devices in
daily life in stroke patients [36]. Especially for this group of patients, a user-friendly design
of technology is desirable [14,28]. Issues with older and more severely affected patients
were also explicitly stressed by the therapists in the open-ended questions. It should be
noted that these results represent a perception of the therapists and are not confirmed by
the patients themselves. Mercer et al. [37] found that older patients with chronic conditions
also saw meaningful potential for wearable activity trackers but acknowledged that help
from health professionals was desired to integrate the use in their daily life. In addition,
caregivers who know the patient and his circumstances can play a crucial role in successful
adoption [38,39]. Their support and encouragement might help patients to learn how to
use wearable technology in their daily lives. To further improve the adoption of remote
monitoring of physical behavior, collaboration with end-users, both therapists, patients,
and their caregivers is to be recommended [28]. Whether the device matches the needs of
end-users seems a critical factor for successful use [40].

Another frequently recognized barrier, especially by the non-users, is the lack of skills
in selecting and using the appropriate wearable activity monitor suitable for the patient.
This might be aggravated by the increasing amount of available consumer and research-
grade wearable monitors and their different specifications [23,41]. Research-grade devices
are generally accurate and reliable but are not easy to use in clinical practice, whereas
consumer-grade devices have limited accuracy in rehabilitation populations [23]. A clear
overview of best practices and skill training for therapists may help to overcome this
barrier. The non-users also expressed significant doubts about the effectiveness of wearable
monitoring for stroke patients’ treatment. The field of research on the effectiveness for
stroke patients is still evolving, more high-quality evidence might be a positive stimulus
for use in the future [40,42]. Another critical concern physical therapists shared in the
open-ended questions was that using technology can not define the course of therapy.
Using technology should address the clinical need and the interaction between a patient
and professional should not be forgotten [40].

Next to the individual skills and knowledge, successful, sustainable, and widespread
adoption of technology is likely to be dependent on beliefs and attitudes of health care
professionals [25,43,44]. Only one percent of the therapists in our study explicitly indicated
being a person designing health care technologies and only 18% indicate that they are
up-to-date and are looking for ways to adopt technology in daily practice. This low or
absent innovative attitude might hamper the wide adoption in clinical practice. Therefore,
if it is not widely accepted and fully integrated within organizations or the health care
system, the use of wearable monitors will depend on the individual professional. Other
stakeholders that have the potential to support and facilitate wider adoption of wearable
technology are, for example, the policymakers of health care organizations, activity monitor
companies, educational programs, and post-graduate training of professionals.

Our study has some limitations. As common in electronic surveys [21,27], non-
response bias might have influenced our results. Respondents were probably more inter-
ested in contributing to a study on innovative technology than non-respondents, which
may have overestimated the results. Since our respondents were selected based on being a
physical therapist involved in stroke care, caution against generalizing our results to other
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health care occupations and patient populations is at its place. In addition, generalizability
to other countries is limited since health care can be organized in a different way. We do not
expect that geographical differences within the Netherlands have influenced our results
since we tried to attempt diverse regions. No validated questionnaire that met our study
purpose was available in the literature, and therefore to the best of our knowledge, we
developed a survey with experts from the field and based on sufficient previous literature.
The survey was pilot-tested amongst therapists and showed to be understandable and
feasible. In addition, due to our study’s narrative and exploratory nature, we could not
establish in-depth and underlying thoughts regarding the use of wearable technology
for stroke patients. From our results, no extensive requirements or (sensor) features of
wearable monitors for clinical practice could be derived. Future studies should provoke
a more profound discussion with therapists about the need and requirements for wear-
able monitors and relevant datasets for clinical use. However, together with qualitative
studies [28,29], our study contributed to a comprehensive understanding of physical thera-
pists’ perspectives who, in the present years, are key stakeholders in adopting wearable
technology in stroke care.

5. Conclusions

Our explorative study showed that despite physical behavior monitoring with wear-
able technology becoming commonplace in the consumer market and in academic research,
it is not widely used by physical therapists involved in treatment of stroke patients. The
concept of quantifying physical behavior with wearable monitors was perceived as useful
by therapists, however, several barriers were identified. In current stroke care, physical
therapists’ skills, beliefs, and attitudes determine the current use of wearable technology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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