6,574 research outputs found

    Peer to peer multidimensional overlays: Approximating complex structures

    Get PDF
    Peer to peer overlay networks have proven to be a good support for storing and retrieving data in a fully decentralized way. A sound approach is to structure them in such a way that they reflect the structure of the application. Peers represent objects of the application so that neighbours in the peer to peer network are objects having similar characteristics from the application's point of view. Such structured peer to peer overlay networks provide a natural support for range queries. While some complex structures such as a Voronoï tessellation, where each peer is associated to a cell in the space, are clearly relevant to structure the objects, the associated cost to compute and maintain these structures is usually extremely high for dimensions larger than 2. We argue that an approximation of a complex structure is enough to provide a native support of range queries. This stems fromthe fact that neighbours are importantwhile the exact space partitioning associated to a given peer is not as crucial. In this paper we present the design, analysis and evaluation of RayNet, a loosely structured Voronoï-based overlay network. RayNet organizes peers in an approximation of a Voronoï tessellation in a fully decentralized way. It relies on a Monte-Carlo algorithm to estimate the size of a cell and on an epidemic protocol to discover neighbours. In order to ensure efficient (polylogarithmic) routing, RayNet is inspired from the Kleinberg's small world model where each peer gets connected to close neighbours (its approximate Voronoï neighbours in Raynet) and shortcuts, long range neighbours, implemented using an existing Kleinberg-like peer sampling

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    IF-MANET: Interoperable framework for heterogeneous mobile ad hoc networks

    Get PDF
    The advances in low power micro-processors, wireless networks and embedded systems have raised the need to utilize the significant resources of mobile devices. These devices for example, smart phones, tablets, laptops, wearables, and sensors are gaining enormous processing power, storage capacity and wireless bandwidth. In addition, the advancement in wireless mobile technology has created a new communication paradigm via which a wireless network can be created without any priori infrastructure called mobile ad hoc network (MANET). While progress is being made towards improving the efficiencies of mobile devices and reliability of wireless mobile networks, the mobile technology is continuously facing the challenges of un-predictable disconnections, dynamic mobility and the heterogeneity of routing protocols. Hence, the traditional wired, wireless routing protocols are not suitable for MANET due to its unique dynamic ad hoc nature. Due to the reason, the research community has developed and is busy developing protocols for routing in MANET to cope with the challenges of MANET. However, there are no single generic ad hoc routing protocols available so far, which can address all the basic challenges of MANET as mentioned before. Thus this diverse range of ever growing routing protocols has created barriers for mobile nodes of different MANET taxonomies to intercommunicate and hence wasting a huge amount of valuable resources. To provide interaction between heterogeneous MANETs, the routing protocols require conversion of packets, meta-model and their behavioural capabilities. Here, the fundamental challenge is to understand the packet level message format, meta-model and behaviour of different routing protocols, which are significantly different for different MANET Taxonomies. To overcome the above mentioned issues, this thesis proposes an Interoperable Framework for heterogeneous MANETs called IF-MANET. The framework hides the complexities of heterogeneous routing protocols and provides a homogeneous layer for seamless communication between these routing protocols. The framework creates a unique Ontology for MANET routing protocols and a Message Translator to semantically compare the packets and generates the missing fields using the rules defined in the Ontology. Hence, the translation between an existing as well as newly arriving routing protocols will be achieved dynamically and on-the-fly. To discover a route for the delivery of packets across heterogeneous MANET taxonomies, the IF-MANET creates a special Gateway node to provide cluster based inter-domain routing. The IF-MANET framework can be used to develop different middleware applications. For example: Mobile grid computing that could potentially utilise huge amounts of aggregated data collected from heterogeneous mobile devices. Disaster & crises management applications can be created to provide on-the-fly infrastructure-less emergency communication across organisations by utilising different MANET taxonomies

    A Comparative Survey of VANET Clustering Techniques

    Full text link
    © 2016 Crown. A vehicular ad hoc network (VANET) is a mobile ad hoc network in which network nodes are vehicles - most commonly road vehicles. VANETs present a unique range of challenges and opportunities for routing protocols due to the semi-organized nature of vehicular movements subject to the constraints of road geometry and rules, and the obstacles which limit physical connectivity in urban environments. In particular, the problems of routing protocol reliability and scalability across large urban VANETs are currently the subject of intense research. Clustering can be used to improve routing scalability and reliability in VANETs, as it results in the distributed formation of hierarchical network structures by grouping vehicles together based on correlated spatial distribution and relative velocity. In addition to the benefits to routing, these groups can serve as the foundation for accident or congestion detection, information dissemination and entertainment applications. This paper explores the design choices made in the development of clustering algorithms targeted at VANETs. It presents a taxonomy of the techniques applied to solve the problems of cluster head election, cluster affiliation, and cluster management, and identifies new directions and recent trends in the design of these algorithms. Additionally, methodologies for validating clustering performance are reviewed, and a key shortcoming - the lack of realistic vehicular channel modeling - is identified. The importance of a rigorous and standardized performance evaluation regime utilizing realistic vehicular channel models is demonstrated

    Ad hoc networking in a medical environment

    Get PDF

    X-BOT: a protocol for resilient optimization of unstructured overlays

    Get PDF
    Gossip, or epidemic, protocols have emerged as a highly scalable and resilient approach to implement several application level services such as reliable multicast, data aggregation, publish-subscribe, among others. All these protocols organize nodes in an unstructured random overlay network. In many cases, it is interesting to bias the random overlay in order to optimize some efficiency criteria, for instance, to reduce the stretch of the overlay routing. In this paper we propose X-BOT, a new protocol that allows to bias the topology of an unstructured gossip overlay network. X-BOT is completely decentralized and, unlike previous approaches, preserves several key properties of the original (non-biased) overlay (most notably, the node degree and consequently, the overlay connectivity). Experimental results show that X-BOT can generate more efficient overlays than previous approaches.(undefined

    Greedy routing and virtual coordinates for future networks

    Get PDF
    At the core of the Internet, routers are continuously struggling with ever-growing routing and forwarding tables. Although hardware advances do accommodate such a growth, we anticipate new requirements e.g. in data-oriented networking where each content piece has to be referenced instead of hosts, such that current approaches relying on global information will not be viable anymore, no matter the hardware progress. In this thesis, we investigate greedy routing methods that can achieve similar routing performance as today but use much less resources and which rely on local information only. To this end, we add specially crafted name spaces to the network in which virtual coordinates represent the addressable entities. Our scheme enables participating routers to make forwarding decisions using only neighbourhood information, as the overarching pseudo-geometric name space structure already organizes and incorporates "vicinity" at a global level. A first challenge to the application of greedy routing on virtual coordinates to future networks is that of "routing dead-ends" that are local minima due to the difficulty of consistent coordinates attribution. In this context, we propose a routing recovery scheme based on a multi-resolution embedding of the network in low-dimensional Euclidean spaces. The recovery is performed by routing greedily on a blurrier view of the network. The different network detail-levels are obtained though the embedding of clustering-levels of the graph. When compared with higher-dimensional embeddings of a given network, our method shows a significant diminution of routing failures for similar header and control-state sizes. A second challenge to the application of virtual coordinates and greedy routing to future networks is the support of "customer-provider" as well as "peering" relationships between participants, resulting in a differentiated services environment. Although an application of greedy routing within such a setting would combine two very common fields of today's networking literature, such a scenario has, surprisingly, not been studied so far. In this context we propose two approaches to address this scenario. In a first approach we implement a path-vector protocol similar to that of BGP on top of a greedy embedding of the network. This allows each node to build a spatial map associated with each of its neighbours indicating the accessible regions. Routing is then performed through the use of a decision-tree classifier taking the destination coordinates as input. When applied on a real-world dataset (the CAIDA 2004 AS graph) we demonstrate an up to 40% compression ratio of the routing control information at the network's core as well as a computationally efficient decision process comparable to methods such as binary trees and tries. In a second approach, we take inspiration from consensus-finding in social sciences and transform the three-dimensional distance data structure (where the third dimension encodes the service differentiation) into a two-dimensional matrix on which classical embedding tools can be used. This transformation is achieved by agreeing on a set of constraints on the inter-node distances guaranteeing an administratively-correct greedy routing. The computed distances are also enhanced to encode multipath support. We demonstrate a good greedy routing performance as well as an above 90% satisfaction of multipath constraints when relying on the non-embedded obtained distances on synthetic datasets. As various embeddings of the consensus distances do not fully exploit their multipath potential, the use of compression techniques such as transform coding to approximate the obtained distance allows for better routing performances

    Using current uptime to improve failure detection in peer-to-peer networks

    Get PDF
    Peer-to-Peer (P2P) networks share computer resources or services through the exchange of information between participating nodes. These nodes form a virtual network overlay by creating a number of connections with one another. Due to the transient nature of nodes within these systems any connection formed should be monitored and maintained to ensure the routing table is kept up-to-date. Typically P2P networks predefine a fixed keep-alive period, a maximum interval in which connected nodes must exchange messages. If no other message has been sent within this interval then keep-alive messages are exchanged to ensure the corresponding node has not left the system. A fixed periodic interval can be viewed as a centralised, static and deterministic mechanism; maintaining overlays in an predictable, reliable and non-adaptive fashion. Several studies have shown that older peers are more likely to remain in the network longer than their short-lived counterparts. Therefore using the distribution of peer session times and the current age of peers as key attributes, we propose three algorithms which allow connections to extend the interval between successive keep-alive messages based upon the likelihood that a corresponding node will remain in the system. By prioritising keep-alive messages to nodes that are more likely to fail, our algorithms reduce the expected delay between failures occurring and their subsequent detection. Using extensively empirical analysis, we analyse the properties of these algorithms and compare them to the standard periodic approach in unstructured and structured network topologies, using tracedriven simulations based upon measured network data. Furthermore we also investigate the effect of nodes that misreport their age upon our adaptive algorithms and detail an efficient keep-alive algorithm that can adapt to the limitations network address translation devices

    Device discovery in D2D communication: A survey

    Get PDF
    Device to Device (D2D) communication was first considered in out-band to manage energy issues in the wireless sensor networks. The primary target was to secure information about system topology for successive communication. Now the D2D communication has been legitimated in in-band by the 3rd Generation Partnership Project (3GPP). To initiate D2D communication, Device Discovery (DD) is a primary task and every D2D application benefits from DD as an end to end link maintenance and data relay when the direct path is obstructed. The DD is facing new difficulties because of the mobility of the devices over static systems, and the mobility makes it more challenging for D2D communication. For in-band D2D, DD in a single cell and multi-cell, and dense area is not legitimated properly, causing latency, inaccuracy, and energy consumption. Among extensive studies on limiting energy consumption and latency, DD is one of the essential parts concentrating on access and communication. In this paper, a comprehensive survey on DD challenges, for example single cell/multi-cell and dense area DD, energy consumption during discovery, discovery delay, and discovery security, etc., has been presented to accomplish an effective paradigm of D2D networks. In order to undertake the device (user) needs, an architecture has been projected, which promises to overwhelm the various implementation challenges of DD. The paper mainly focuses on DD taxonomy and classification with an emphasis on discovery procedures and algorithms, a summary of advances and issues, and ways for potential enhancements. For ensuring a secure DD and D2D, auspicious research directions have been proposed, based on taxonomy
    corecore