
Greedy Routing and Virtual Coordinates for
Future Networks

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Ghazi Bouabene
aus Tunesien

Basel, 2012

Original document stored on the publication server of the University of

Basel edoc.unibas.ch

This work is licenced under the agreement Attribution Non-Commercial No

Derivatives 2.5 Switzerland. The complete text may be viewed here:

creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Christian F. Tschudin, Universität Basel, Dissertationsleiter
Prof. Dr. Guy Leduc, Université de Liège, Korreferent

Basel, den 18.09.2012

Prof. Dr. Jörg Schibler, Dekan

Attribution-Noncommercial-No Derivative Works 2.5 Switzerland

You are free:

to Share — to copy, distribute and transmit the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

• For any reuse or distribution, you must make clear to others the license terms of this work. The best way
to do this is with a link to this web page.

• Any of the above conditions can be waived if you get permission from the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

Quelle: http://creativecommons.org/licenses/by-nc-nd/2.5/ch/deed.en Datum: 3.4.2009

Your fair dealing and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license) available in German:
http://creativecommons.org/licenses/by-nc-nd/2.5/ch/legalcode.de

Disclaimer:
The Commons Deed is not a license. It is simply a handy reference for understanding the Legal Code (the
full license) — it is a human-readable expression of some of its key terms. Think of it as the user-friendly
interface to the Legal Code beneath. This Deed itself has no legal value, and its contents do not appear in
the actual license. Creative Commons is not a law firm and does not provide legal services. Distributing of,
displaying of, or linking to this Commons Deed does not create an attorney-client relationship.

Abstract

At the core of the Internet, routers are continuously struggling with
ever-growing routing and forwarding tables. Although hardware ad-
vances do accommodate such a growth, we anticipate new requirements
e.g. in data-oriented networking where each content piece has to be
referenced instead of hosts, such that current approaches relying on
global information will not be viable anymore, no matter the hardware
progress. In this thesis, we investigate greedy routing methods that can
achieve similar routing performance as today but use much less resources
and which rely on local information only. To this end, we add specially
crafted name spaces to the network in which virtual coordinates repre-
sent the addressable entities. Our scheme enables participating routers
to make forwarding decisions using only neighbourhood information, as
the overarching pseudo-geometric name space structure already orga-
nizes and incorporates “vicinity” at a global level.

A first challenge to the application of greedy routing on virtual
coordinates to future networks is that of routing dead-ends that are
local minima due to the difficulty of consistent coordinates attribu-
tion. In this context, we propose a routing recovery scheme based on a
multi-resolution embedding of the network in low-dimensional Euclidean
spaces. The recovery is performed by routing greedily on a blurrier view
of the network. The different network detail-levels are obtained though
the embedding of clustering-levels of the graph. When compared with
higher-dimensional embeddings of a given network, our method shows a
significant diminution of routing failures for similar header and control-
state sizes.

A second challenge to the application of virtual coordinates and
greedy routing to future networks is the support of “customer–provider”
as well as “peering” relationships between participants, resulting in a
differentiated services environment. Although an application of greedy
routing within such a setting would combine two very common fields of
today’s networking literature, such a scenario has, surprisingly, not been
studied so far. In this context we propose two approaches to address
this scenario.

In a first approach we implement a path-vector protocol similar to
that of BGP on top of a greedy embedding of the network. This allows
each node to build a spatial map associated with each of its neighbours
indicating the accessible regions. Routing is then performed through
the use of a decision-tree classifier taking the destination coordinates

as input. When applied on a real-world dataset (the CAIDA 2004 AS
graph) we demonstrate an up to 40% compression ratio of the routing
control information at the network’s core as well as a computationally
efficient decision process comparable to methods such as binary trees
and tries.

In a second approach, we take inspiration from consensus-finding in
social sciences and transform the three-dimensional distance data struc-
ture (where the third dimension encodes the service differentiation) into
a two-dimensional matrix on which classical embedding tools can be
used. This transformation is achieved by agreeing on a set of constraints
on the inter-node distances guaranteeing an administratively-correct
greedy routing. The computed distances are also enhanced to encode
multipath support. We demonstrate a good greedy routing performance
as well as an above 90% satisfaction of multipath constraints when re-
lying on the non-embedded obtained distances on synthetic datasets.
As various embeddings of the consensus distances do not fully exploit
their multipath potential, the use of compression techniques such as
transform coding to approximate the obtained distance allows for bet-
ter routing performances.

Acknowledgements

I would like to thank many people who contributed to this work in
various ways.

First, I would like to thank my advisor Prof. Dr. Christian Tschudin
for the exploration freedom he gave me and for his confidence during
the years. Also, I would like to thank Dr. Christophe Jelger with whom
I had the chance to work during the first years of my Ph.D. Our close
collaboration on the ANA EU project was not only fun, but also an
occasion to revisit the basics of computer communications, from both a
design and a software point of view.

A special thanks goes also to Dr. Manolis Sifalakis with whom I had
the chance to collaborate during the last years of my Ph.D. His tireless
positive thinking helped me concretize many of the ideas presented in
this work.

I would also like to thank the following colleagues, for some, close
friends, for making this journey memorable and fun: Paola Ranaldi,
Diego Milano, Marcel Lüthi, Michael Springmann, Nenad Stojnic, David
Adametz, Ihab Al Kabary, Julia Vogt, Matthias Amberg and Filip Brink-
mann. Some of the lunch time discussions we had are simply unforget-
table.

On the private side, I would like to thank Simone Haselier for shar-
ing this journey with me, and I am very grateful to my parents and my
brothers for their love and caring advice.

Contents

1 Introduction 1
1.1 Definition of greedy routing on virtual coordinates . . . 3
1.2 The power of geometric virtual coordinates 4

1.2.1 Virtual coordinates as an evolution tool 5
1.2.2 Applications of virtual coordinates and vector spaces 9

1.3 Challenges to the deployment of greedy routing on virtual
coordinates in future networks 11

1.4 Summary of contributions 14

2 Obtaining Coordinates for Greedy Routing 15
2.1 Theoretical approaches to the problem of virtual coordi-

nates attribution . 16
2.1.1 Distance labelling techniques 16
2.1.2 Geometric Approaches 20

2.2 Embedding techniques in the networking literature . . . 36
2.2.1 Tree and hierarchical-based techniques 37
2.2.2 Distance labelling and compact routing techniques 39
2.2.3 Graph drawing techniques 40
2.2.4 Lipschitz based techniques 41
2.2.5 Hyperbolic space techniques 43
2.2.6 Graph sampling techniques and the revival of trees 44

2.3 Summary . 45

3 on Guaranteeing packet delivery in greedy routing 47
3.1 Introduction . 48
3.2 Greedy Routing Dead-End Problem 49
3.3 Related work . 53
3.4 A cluster-based approach 56

vii

viii Contents

3.4.1 Construction of a cluster graph 58
3.4.2 Cluster graph embedding 59
3.4.3 Cluster-level state 60
3.4.4 Operation of greedy routing 61
3.4.5 Multiple cluster levels 62

3.5 Evaluation . 63
3.5.1 Experimental set-up 63
3.5.2 Clustering algorithm used for the tests 64
3.5.3 Greedy routing performance 64
3.5.4 State overhead for clustering 69

3.6 Discussion . 70
3.6.1 On the general effects of clustering 70
3.6.2 Clustering versus inter-domain routing 72

3.7 Conclusion . 73

4 Greedy Routing and administrative policies 75
4.1 Introduction . 76
4.2 Administrative relationships and policies 77

4.2.1 Security policies 78
4.2.2 Traffic policies 78
4.2.3 Administrative relationships and policies 78

4.3 Administrative policies and future networks 82
4.3.1 Administrative policies and greedy routing . . . 82

4.4 The problem from a graph viewpoint 85
4.4.1 Relation to social sciences and Cognitive Social

Structures . 88
4.5 Understanding the problem from a distance matrix view-

point . 90
4.5.1 Relation to tensor decomposition and 3-way mul-

tidimensional scaling 91
4.6 Why is there a requirement for a single embedding ? . . 94
4.7 Strategies for solving the preferences problem 95
4.8 Strategies for solving the policy dead-end problem . . . 96
4.9 Roadmap . 97

5 Geometric areas for policy support 99
5.1 BGP and administrative policies 100

5.1.1 Path selection in BGP 102
5.1.2 Storage costs in BGP 103

5.2 BGP-like approach using Geometric aggregation 104

Contents ix

5.2.1 Control data storage in our approach 106
5.2.2 Aggregation of the received announcements . . . 107
5.2.3 Aggregation through classification 108
5.2.4 Quick overview of classifiers 109
5.2.5 Using classifiers to store routing data 113
5.2.6 How to compute decision trees 117
5.2.7 Representing routing information using decision

trees . 118
5.3 Multiple Classes and Distance Function Regression . . . 125

5.3.1 Relation to distance metric learning 129
5.4 Comparison with conventional routing and forwarding ta-

ble structuring . 131
5.5 Usage for forwarding tables 135
5.6 Extension to other network node features 136

6 Satisfying routing strategies 139
6.1 Constraints for Best-Path Routes 140
6.2 Constraints for Multi-path Support 143

6.2.1 Representing Path Preferences 144
6.3 Multi-path Constraints Extraction 148
6.4 Solving the system of constraints 149
6.5 Embedding the consensus distances 153

6.5.1 Metric embedding of the consensus distances . . 153
6.5.2 Ordinal embedding of the consensus distances . . 154
6.5.3 Hyperbolic Embedding of the consensus distances 155
6.5.4 Summary on embedding methods 157

6.6 Transform coding of the consensus distances 157
6.6.1 Using the KLT transform 160
6.6.2 Summary on transform coding 162

6.7 Approximate Distance Oracles on the consensus distances 163
6.8 Discussion and future work 167

7 Conclusion 169
7.1 Summary . 170
7.2 Outlook . 172

List of Figures 175

Bibliography 179

Chapter 1

Introduction

1

2 Chapter 1. Introduction

At the core of the Internet, routers are continuously struggling with
ever-growing routing and forwarding tables that store control informa-
tion about every participant network. Such a large control storage is
due to the lack of structure of the Internet IPv4 and IPv6 address space,
manifested by its fragmentation and the distortion between the hierar-
chical addressing scheme and the actual graph connectivity.

Until the late 1990’s, the number of forwarding table entries for core
domain routers was growing exponentially, putting the very functioning
of the network at risk as some of the older deployed routers were sus-
pected not to be able to cope with the large amount of data. Since then,
with the adaptation of the Classless Inter-Domain Routing (CIDR) ad-
dress aggregation scheme [92] and the progress of routing hardware [52],
the threat of growing routing and forwarding tables seems to be under
control.

In our view, the resolution of such a problem through a hardware ap-
proach can be quite short-sighted with regard to the changes that could
affect the network. Indeed, the predictions in [52], comparing the rout-
ing table growth to the hardware evolution rate, are mainly based on
the connectivity network growth model thus assuming that the network
usages will continue to be the same relying on the same architectures
and following the same paradigms. When considering however the latest
network developments, one can see that such an assumption is deemed
to to be wrong. When taking the upcoming data-oriented paradigm for
communication [59, 68] as an example, one can already get a feeling of
the consequences of such a global-knowledge scheme. In this proposed
paradigm of communication, the network participants express their in-
terests in reaching a data element rather than a network host as in the
classical host-oriented protocol. Thus the destination “addresses” as
well as the routing data allowing to forward incoming requests must be
based on a description of the desired data. In such a context, a pure and
simple extension of the current global-knowledge based scheme for rout-
ing and forwarding to the data-centric case would be simply not feasible.
Such an extension would require each multi-homed network participant
to maintain an index on the location of every existing piece of informa-
tion in the global network. Even if one could extend the mechanisms
of address aggregation to the names of data, when considering the vol-
umes of nowadays user generated content, the index sizes are likely to
go far beyond any current size of host-based indexes. One might also
note that the namespace fragmentation effects in the data-centric case
would be far more dramatic than in the case of IPv4 or IPv6, as several

1.1. Definition of greedy routing on virtual coordinates 3

distant network nodes can hold similar copies of a piece of data.

In this thesis, we advocate a move away from such global-knowledge
based methods and propose to incorporate local-knowledge based algo-
rithms within future network designs in order to avoid such eventual
bottlenecks. As a candidate local-knowledge based algorithm, we pro-
pose the technique of greedy routing based on virtual coordinates.

1.1 Definition of greedy routing on virtual
coordinates

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 (−0.49, −1.14)

 (2.19, −0.81)

 (−0.78, −0.30)

 (0.75, 0.88)

 (1.40, 1.78)

 (−1.88, −0.02)

 (1.20, −0.14)

 (1.40, 1.78)

 (0.14, 0.34)

 (−0.89, 0.52)
 (1.20, 0.78)

 (0.18, −0.21)

 (2.21, 0.06)

 (−1.59, −0.99)

 (−2.68, −0.82)

 (−2.35, −1.73)

Figure 1.1: Example of virtual coordinates attribution reflecting network
proximity

In the general greedy routing method, the main goal is to achieve a
successful routing process by having each participant store only a partial
knowledge base on the network. As we will discuss in chapter 2, such a
lightweight operation cost comes at the condition of a structuring of the
address-space. Such a structuring allows to infer routing decisions based
(either totally or partially) on operations on the local and destination
addresses. In the particular case of greedy routing on virtual geometric

4 Chapter 1. Introduction

coordinates, the “addresses” attributed to the network participants are
of a geometric nature, usually corresponding to geometric points in some
d-dimensional Euclidean space. Note that the attributed coordinates do
not need to correspond to physical coordinates but are rather reflecting
positions in the network graph. An example of such coordinates in a
two-dimensional Euclidean space is shown in figure 1.1.

Given an incoming packet with a destination coordinate Cd, greedy
geometric routing at node u proceeds as follows :

(i) u computes the distance between its own address and the des-
tination address De(Cd, Cu) where Cu are the coordinates at-
tributed to node u and De is the norm used within the geometric
space (usually chosen to be the Euclidean distance)

(ii) u computes the distance De(Ci, Cd) for all direct neighbours i
of u

(iii) Let j be the neighbour with the smallest distance De(Cj , Cd) :

(i) u forwards the packet to j only if

De(Cj , Cd) < De(Cu, Cd)

(ii) Otherwise, consider that the packet reached its final des-
tination at node u

Hence, the only control information required to perform greedy rout-
ing in such a context where addresses encode geometric coordinates, is
the list of addresses of the one-hop neighbours in the network graph.
This empowers scalability and clearly contrasts with current stateful
routing solutions that require to maintain routing information for (sets
of) nodes far beyond the immediate neighbourhood.

1.2 The power of geometric virtual coordi-
nates

Our interest in greedy routing on virtual geometric coordinates, is not
only due to the scalability offered by the local-knowledge based func-
tioning, but also by the evolutionary power of virtual geometric coor-
dinates and the corresponding vector spaces. Indeed, as will be seen
in chapter 2, several approaches to greedy routing do exist. However,
it is the particular variant based on geometric coordinates that we are

1.2. The power of geometric virtual coordinates 5

data element

network host

Figure 1.2: Idealized example of a data-oriented greedy embedding : host
coordinates reflect the type of data they offer access to (or lie on a path to).

mainly interested in. Our interest is motivated by the high generaliza-
tion power that lies behind the notion of virtual coordinates as well as
the range of potential future applications made possible by the vector
space representation.

1.2.1 Virtual coordinates as an evolution tool

Simply put, our vision is to position virtual coordinates to be the com-
mon simple abstraction on which future network designs would agree.
By designing network functionality to operate on an abstract entity such
as a virtual coordinate, we believe that we can achieve a highly evolv-
able infrastructure by simply modifying the meaning behind the virtual
coordinates. In order to implement a new functionality into a deployed
network, one would simply be required to express the problem in terms
of virtual coordinates and “feed” these new coordinates to the deployed
system. Such a problem expression in terms of coordinates is the main
reason behind our choice of vector spaces as a host for the virtual co-
ordinates. Indeed, given the plethora of mathematical and algorithmic
tools that such a space offers, it is the most likely one to accommodate
different types of applications.

As an example to demonstrate the flexibility of such an approach,
let us imagine an already deployed network that relies on greedy routing
on top of virtual coordinates. In this case, the virtual coordinates are
attributed to network hosts so as to indicate their proximity at the net-
work level, as it is the case in figure 1.1. When considering the current
communication paradigm, such a deployed infrastructure fits into the
classical category of host-oriented networking in which the source and
destination coordinates indicated in the packet headers correspond to

6 Chapter 1. Introduction

network hosts.

Imagine now that due to the current usages of the network, we wish
to switch the paradigm to a data oriented one in which we are indif-
ferent to the provider of the data. In such a paradigm, users would be
indicating interest in data element and thus the source and destination
coordinates in packet headers should also reflect such an interest in data
instead of hosts. In order to integrate such a (radical) shift to to the de-
ployed infrastructure, it would be sufficient in our approach to express
the problem of data centric routing in terms of virtual coordinates. The
transition is then made transparent by modifying the meaning behind
the virtual coordinates values in order to indicate proximity in terms of
data instead of hosts an then feeding the new virtual coordinates to the
deployed infrastructure instead of the old ones.

A sketch of such a transition is as follows. First, virtual coordinates
could be attributed to the data elements so as to reflect their similarity.
Note that the notion of data similarity can be very wide as it can be
measured based on the data names, structural properties or content.
The data coordinates can therefore be obtained through various meth-
ods such as locality sensitive hashing on either the data names or the
content [50], or by applying feature extraction methods on the data con-
tent [115]. Here, one can already see the advantage of relying on vector
spaces for the choice of virtual coordinates as one can preserve the wide
spectrum of data proximity representation by simply leveraging several
ready-made tools developed within other computing fields.

The rest of the task then is to perform an alignment of the network
coordinates to the data ones by attributing coordinates to the hosts
so as to reflect their proximity to the data coordinates. Note that the
proximity of a host to a data in this case does not only depend on it
storing the data but also on the fact that it lies on a path towards a
host storing the data. A sketch example of coordinates attribution re-
flecting such a proximity is given in figure 1.2. In this case, the points
indicated by a cross are the virtual coordinates representing data ele-
ments while the points symbolized by a dot represent network hosts. As
it can be seen from the data coordinates scattering, depending on the
coordinates attribution mechanism, data items would tend to be repre-
sented as clusters. In order to find the dot coordinates corresponding to
the network hosts, one could imagine using a reachability advertisement
mechanism in which each node storing a specific piece of data (or cluster
in case of aggregation), would announce its presence in a similar way
to BGP’s path advertisements. Hosts can thereby discover their net-

1.2. The power of geometric virtual coordinates 7

work distance to particular pieces of data and be assigned coordinates
reflecting such a proximity through, for example, a network of springs
emulation (where the host coordinates would be pulled towards their
offered data’ coordinates) or any of the methods described in chapter 2.

A major advantage of a coordinate system such as in figure 1.2, is
that it could allow to leverage the power of greedy routing to perform
data-centric routing thus avoiding the storage at every participant node
of a global data index. This could be achieved by using the same princi-
ple for routing on data coordinates: given a destination data coordinate,
a node can simply verify which of its neighbours is the closest to the
destination by verifying the geometric distance between the coordinates
attributed to the neighbour (dot points in figure 1.2) and those of the
desired destination data. In a sense, such an approach could be seen
as a dual to coordinates based Distributed Hash Table (DHT) propos-
als such as [90, 91]. Indeed in these proposals, the network hosts are
first attributed coordinates so as to reflect their network vicinity. Each
data element is later-on hashed to be attributed virtual coordinates and
then stored on the network host closest to the obtained coordinates. The
data-oriented example sketched above would therefore be the reverse of
such a scheme as it is the data elements that are first attributed the co-
ordinates according to their similarity and the network host coordinates
are later-on computed as a function of their data proximity.

The biggest advantage however of the computed virtual coordinates
attributed to the data points is that they can be easily integrated
within the deployed network nodes guaranteeing a smooth network evo-
lution. Indeed given that the network participants already implement
the greedy routing functionality, it is sufficient to replace the older con-
trol state consisting of the virtual coordinates based on network locality,
by the newly obtained coordinates representing data proximity. As a
result, we could in theory modify the behaviour of the network with a
complete shift in the networking paradigm without changing the core
deployed functionality. Each participant node (router) can simply con-
tinue to operate in the same greedy way: given a destination coordinate,
a list of neighbours coordinates and its own coordinates, a node simply
forwards the packet to the node closest to destination.

Naturally, such a scenario is an idealized case, and such a network
paradigm switch would in reality incur more difficulties. It is our belief
however that although the usage of virtual geometric coordinates would
not completely resolve all the transition challenges, it would certainly
alleviate a large number of them. When contrasting such a smooth

8 Chapter 1. Introduction

transition with the current efforts for the deployment of a data centric
network [88] where the driving idea is the development of a fully new
protocol suite one can see that our approach would ease the deployment
of new functionality to the production network as it would more easily
comply with already deployed infrastructure.

Moreover, and as an additional argument for the flexibility of greedy
routing on virtual coordinates, an example scheme such as above could
be further extended to support the co-existence of both networking
paradigms within the same deployed infrastructure. In fact, given that
the required network functionality can be factorized, one could simply
extend the deployed functionality to support the presence of different
types of virtual coordinates. Each node would then have to maintain
several parallel “realms” of virtual coordinates, each corresponding to a
different functionality as in the case of host-oriented and data-oriented
routing. Not only would such a scheme allow for the co-existence and
thus competition (in a positive sense) of different networking styles, it
would also allow an easy collaboration between the different paradigms.
To continue on the example corresponding to figure 1.2, one could for
example imagine using a communication relying on both paradigms :
greedily routing the request based on the data-oriented coordinates,
while transmitting the response (the actual data transfer) via greedy
routing on network-proximity-based coordinates, thus allowing for a
faster data transit.

In contrast, most of the future network architecture proposals that
target to achieve the same diversity in the networking functionality [79]
rely on the concept of virtualization. In this case, the main idea is to
share the resources of the deployed routers and switches among differ-
ent network architectures (styles, paradigms) by running several virtual
machines, each implementing the desired functionality. Although such
a scheme offers the infrastructure for the easy deployment of novel net-
working paradigms as well as for their “peaceful” coexistence, it does
not favour the collaboration between the different “virtual” networks.
By having each proposal boxed into a virtual machine, the probability
of an interaction at a higher level (i.e. above the virtual machine) simi-
lar to the one proposed above is rather low. In our case however, due to
the interconnection between the different realms (compartments) at the
functional level (by for example sharing the greedy routing functional-
ity), such a collaboration would be made much easier.

1.2. The power of geometric virtual coordinates 9

c

d

e a b c d e f g h ia

b

c

d

e

f

g

h

i

Second character
First character

Th
ird

ch
ar

ac
te

r
d/* namespace

Figure 1.3: Visualization of hierarchical name aggregation : announced
namespace is too wide. When represented in a vector space, compacter ag-
gregations such as the red ellipsoid would be possible

1.2.2 Applications of virtual coordinates and vector
spaces

In addition to the evolution capability brought by their abstract nature,
virtual coordinates, when restricted to vector spaces, also offer the ad-
vantage of their structure and the variety of algorithmic and mathemat-
ical tools that can apply on them. Applying such tools on networking
problem can allow for easier and better solutions.

As an example, one of the typically recurrent needs in communica-
tion protocols is the possibility of aggregation of the address elements.
Such a feature is not only used while storing control information to re-
duce the information load, but also as a part of “reachability announce-
ment” protocols in order to reduce the amount of control messages.
An example of such a reachability protocol are path-vector protocols
announcing the reachability of hosts, data or services. A dominant
approach for achieving aggregation in the networking literature are hi-
erarchical name-spaces of which IP addresses, File System names and
URLs are typical examples. A major disadvantage of using such systems
however is their coarse-grained nature.

Taking again a data reachability announcement example (in this
case it might as well be on top of a host-oriented paradigm), imagine a
host that wishes to announce itself as a provider for three different files,
named : “d/de”, “d/ee” and “d/fg”. Note that we restricted the file

10 Chapter 1. Introduction

names in this case to be three-character sized (not counting the slash
sign), so as to be able to represent the files in a three-dimensional space
as in figure 1.3. When announcing the files’ presence to its neighbour-
ing nodes, the node can naturally specify all their three names. If it
wishes however to aggregate the announcements according to the hier-
archical naming, the natural choice would be to announce the presence
of files “d/*” where the wildcard “*” means any number of any val-
ued characters. When visualized in a three-dimensional space where
each dimension indicates the variation of one of the characters, such an
announcement would be equivalent to the plane in figure 1.3, orthog-
onal to the first axis at value “d” in which the first letter is fixed to
value “d” while the other two values are free. Such an announcement
would be an overkill in our view as it would announce a far too wide
address-space thus inducing other network participants into requesting
non-serviced files. When considering however the possibility of using
geometric-space-specific tools to perform the aggregation, one can eas-
ily find a more fine-grained representation for the three different points
as is the case of the red ellipsoid in figure 1.3. In fact when abstracting
the file names as points in a multi-dimensional Euclidean space, sev-
eral tools from the Machine Learning and more particularly clustering
as well as from the database information retrieval literatures can be
leveraged to perform such an aggregation.

Another advantage of such an easy address-space aggregation is the
possibility of fine-grained geocasting [66] that is the equivalent of a
broadcast limited to a particular region of the address-space. Hence,
similar to the announcement case, leveraging analytical tools to define
more fine-grained namespace regions could allow for a more efficient
geocasting.

Another nice application emerging from the use of virtual geometric
coordinates is that of trajectory-based routing [81, 82] that allows the
sender node to indicate a desired path to be followed by its packets. In
classical datagram oriented communication, the dominant approach so
far to do so is that of source-routing. In this approach, the sender sim-
ply indicates the sequence of hops to be taken by its transiting packet.
Such a mechanism requires however a prior network knowledge from the
sender and incurs a load on the packet header as it requires storing sev-
eral node identifiers. When taking advantage of the analytical nature
of a vector-based address space, one could simply formulate a function
approximating the path to be followed by the transiting packet. Such
a scheme would neither require a prior knowledge of the network node

1.3. Challenges to the deployment of greedy routing on virtual
coordinates in future networks 11

Figure 1.4: Example usages of trajectory based routing : blue spiral for
service announcement, orange loop (boomerang) for monitoring, Green curve
to avoid given transit points

identifiers nor incur a load on the packet header as compact path formu-
lations would be possible such as polynomial functions [82] or parametric
curves [81]. As pictured in figure 1.4, such a capability could for exam-
ple be used for service announcements, by sending a message on a spiral
trajectory, for network monitoring by sending a control message on a
boomerang trajectory, or simply for incurring path deviations towards
a destination, due to security or legislation reasons for example.

1.3 Challenges to the deployment of greedy
routing on virtual coordinates in future
networks

In our view, the greedy routing on virtual coordinates technique can be
considered as promising candidate component for future network, due to
all the possible usages described in the sections above. However, in order

12 Chapter 1. Introduction

to allow this technique to convince future networks design communities
to make the jump towards it, the minimum pre-requisite is to make it
capable of correctly achieving today’s networking requirements.

A first major challenge to the application of greedy routing on vir-
tual coordinates is that of routing dead-ends. These are local-minima to
the distributed greedy routing algorithm that are due to the difficulty of
virtual coordinates assignment. In fact, in the greedy routing algorithm
depicted on page 4, two notable aspects are worthy of further atten-
tion. First, the distance minimising condition at step 3.a is key to the
stability of geometric greedy routing so that packets deviating from the
correct path do not end up bouncing from one edge of the network to
another in infinite routing loops. Second, reaching the termination con-
dition at step 3.b does not guarantee that a packet reached its correct
recipient. Indeed, in some cases an intermediate node might be closer
to the destination than any of its direct neighbours, halting in this way
the forwarding process. Such a node is a local minimum in the greedy
routing process. The problem of local-minima has confronted research
on geometric greedy routing since the early days, and has been there-
after more or less addressed in proposals that either extend the basic
greedy routing heuristic (e.g. perimeter flooding [89] or face routing
[63]), or devise sophisticated distance functions and coordinate spaces
(e.g. [64], [104], [40]). In this context, we expand the solution space
by proposing a routing recovery scheme based on a multi-resolution
embedding of the network. By recovery, we mean a mechanism al-
lowing to reset the packet on a correct path in case a greedy routing
dead-end is reached. The recovery in our case is performed by rout-
ing greedily on a blurrier view of the network. Such a coarser-grained
view of the network is obtained by embedding several clustering-levels
of the graph in different low-dimensional Euclidean spaces. When com-
pared with higher-dimensional embeddings of the network, our method
shows a significant diminution of routing failures for a similar header
and control-state sizes.

A second big challenge to the application of virtual coordinates
and greedy routing to future networks is the support of administra-
tive relationships between the network participants inducing a differ-
entiated services environment. A typical example of such relationships
are the customer-provider and peer-peer [17] relationships between the
Autonomous Systems (AS) providers in the internet that result in some
paths being accessible to some customer AS and not to others.

In contrast, geometric greedy routing mechanisms have been mainly

1.3. Challenges to the deployment of greedy routing on virtual
coordinates in future networks 13

designed for operation in policy-free single-organisation networks or col-
laborative (under a common policy) communities. In such a case, all
the nodes forming the network belong to the same administrative en-
tity and their communication is oblivious to special policy rules such
as those expressing administrative (and possibly competing) incentives.
For an Internet-scale shared network infrastructure however, it is un-
likely that the different parties contributing their resources, will abide
to a policy-free access model, if nothing else because of security con-
cerns, traffic engineering and pricing issues. The challenge therefore is
to make a simple method such as greedy routing compatible with such
complex policies without depriving it from its simplicity property. Al-
though an application of greedy routing within such a setting would
combine two very common fields of today’s networking literature, such
a scenario has surprisingly not been studied so far. In this context we
propose two approaches to solve the problem.

In a first approach, explored in chapter 5, we implement a path-
vector protocol similar to that of BGP on top of a greedy embedding
of the network. By propagating reachability announcements, each node
can then build a spatial map associated with each of its neighbours indi-
cating the address-space regions to which the neighbour offers access to.
By viewing the routing decision through a neighbour as an attribution
of a destination coordinate to one of the two sets offered or non-offered,
such a decision problem becomes then similar to a classification problem.
Routing is then performed in our case through the use of a decision-tree
classifier taking the destination coordinates as input. When applied on
a real-world dataset, the CAIDA 2004 AS graph [35], we demonstrate a
considerable compression of the routing control information as well as a
computationally efficient decision process comparable to methods such
as binary trees and tries.

By extending the number of classes to not only carry a reachability
information but also a distance one, we obtain an equivalent to distance
based administrative greedy routing. In fact, although such an approach
is built on simple off-the-shelf tools, it is in fact comparable to a metric-
learning solution in which each node learns a different distance function,
per-neighbour, allowing to better fit to the paths advertised by the
neighbour. Such a distance-per-neighbour model is in fact an important
step forward in the greedy embedding literature that has been so far
struggling to find the destination metric space (Euclidean, Hyperbolic,
etc.) to fit at best any network graph.

In a second solution attempt to the problem of administrative greedy

14 Chapter 1. Introduction

routing, we take inspiration from the social sciences approach by search-
ing for a consensus structure on the network distances. The goal is to
find agreed upon values for the source-destination network distances so
that they satisfy the different perceptions of the network participants.
This is achieved by defining a set of constraints on the inter-node dis-
tances so that a successful greedy routing following the administrative
rules is guaranteed. When searching for such distances, we take ad-
vantage of special properties of the administrative network at hand to
encode multipath support in the obtained distances. We demonstrate
a good greedy routing performance as well as a good multipath sup-
port (and hence fault tolerance) of the obtained distances on synthetic
datasets. As various embeddings of the consensus distances do not fully
exploit their multipath potential, we also experimentally investigate the
possible use of compression techniques such as transform coding to ap-
proximate the obtained distance values.

1.4 Summary of contributions

The main contributions of this thesis are the following:

(i) As a design contribution, we propose to promote virtual coor-
dinates within future networks as a consensus generic represen-
tation of communication network elements (hosts, data, etc.).

(ii) In the context of greedy geometric routing, we propose a novel
failure recovery scheme based on a multi-resolution embedding
of networks in low-dimensional Euclidean spaces.

(iii) We identify a major challenge to greedy routing algorithms in
general (be they geometric or not), that consists in the admin-
istrative relationships among participants. We also lay the first
main guidelines to address this challenge.

(iv) We demonstrate the advantage of virtual coordinates through
the use of classification tools to efficiently address the adminis-
trative relationships problem

(v) We propose a method to extend the capability of greedy rout-
ing algorithm through a pre-processing of the network distances
on which the routing is performed. The simple greedy routing
algorithm can then be influenced to support features such as ad-
ministrative compliance as well as multi-path routing and fault
tolerance.

Chapter 2

Obtaining Coordinates
for Greedy Routing

15

16 Chapter 2. Obtaining Coordinates for Greedy Routing

A B

0

0.1

0.2

0.1.1

0.1.2

0.2.1

0.1.2.1

Original graph edges not

considered in the tree

d (f(A), f(B))=5
L

Figure 2.1: Example of node labeling along a spanning tree of the graph
allowing for label-based greedy routing

As virtual coordinates attribution to the network nodes play a cen-
tral role in our work, the goal of this chapter is to introduce this topic
to the reader. Note that the range of methods described in this chapter
might be quite broad as we attempt to provide a survey of the network
labelling techniques. Nevertheless, many of the mentioned methods in
this chapter will be referred to and used in the coming chapters. In
the following, we reference the possible theoretical methods for virtual
coordinates attribution and their limitations as well as the approaches
to the problem in the networking literature.

2.1 Theoretical approaches to the problem
of virtual coordinates attribution

2.1.1 Distance labelling techniques

Let us start by first defining the problem of virtual coordinates attri-
bution and our expectations from any candidate solution. Given our
intention to use the virtual coordinates for greedy routing, an essential
task therefore is to be able to determine which of the neighbour nodes is
in fact closest to the destination based only on the destination node’s co-
ordinates that is included in the packet header, and on the neighbours’
coordinates. Note that as implied by the greedy routing algorithm in
section 1.1, it is the order of the neighbours distances to the destina-
tion that matters more than the actual distance values. Nevertheless,
one could assume that when provided with coordinates offering a good

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 17

approximation of the original network distances, the order sequence of
the distances should in principle also be well represented. Therefore, a
common way of approaching the problem of greedy routing on virtual
coordinates is to search for coordinates that approximate at best the
original network distance values (or an isotonic transformation of the
distances preserving their order). Such a problem can be defined as
follows. Given an undirected, possibly weighted, graph G, let dG be the
shortest path distance between any two nodes s and t ∈ G. Given a
label space L, a node labelling is a function f : G → L attributing to
each node u ∈ G a label f(u) ∈ L. Let dL be a distance function defined
on the label space L allowing to compute a dissimilarity value between
any two given labels l1, l2 ∈ L. Our goal of obtaining a good labelling
of the graph is then to find a label space L, a mapping function f and
a distance function dL such that :

dG(s, t) ' dL(f(s), f(t)), ∀s, t ∈ G

Notice in the definition above the intentional use of the term label
instead of coordinates in order to define the attributes assigned to the
graph vertices. This is due to the fact that the coordinates denomination
inherently carries a geometric meaning, thus suggesting that the label
space L should necessarily be a geometric one. However, and as can be
seen in the definition above, there is in reality no such requirement from
the greedy routing objective point of view. As far as greedy routing is
concerned, the labels can be of any nature: binary, ascii, integer values, a
multidimensional vector of floating point values, etc. Also, the distance
dL can respectively be the Hamming distance, the edit (Levenshtein)
distance, or any of the Minkowski Lp metrics, as long as the condition
of a good distance approximation for all nodes of the graph holds.

A common method in the networking literature for achieving such a
non-geometric labelling of the graph vertices allowing an approximation
of the graph distances is the use of tree graphs and the tree-distance
metric. A typical procedure of doing so is to consider a labelling of one
of the spanning trees of the graph with incrementally growing labels
where the label assigned to a child node is prefixed by that of its parent
as shown in figure 2.1. The distance function between two nodes s and
t then used is :

dL(f(s), f(t)) = de(f(s), C) + de(f(t), C)

where de is the edit or Levenshtein distance and C is the longest
common prefix label present in both f(s) and f(t) (C is also the at-

18 Chapter 2. Obtaining Coordinates for Greedy Routing

tributed label to the closest common ancestor of s and t). Such a
simple scheme has however the disadvantage of generating very large
sized labels in case the depth of the spanning tree is not well balanced.
Another critical disadvantage in such a case is the poor approximation
of the original graph distances due to the fact of ignoring some of the
edges of the graph. Indeed, given that the graph edges not belonging
to the tree cannot be considered when evaluating the distances on the
labels, the returned distance is thus the length of the path traversing
from the source node towards the closest common ancestor and then
down to the destination. Hence in the case of two (originally) neigh-
bour nodes such as nodes A and B in figure 2.1, the tree distance could
be a poor approximation of the original graph distance dG(A,B). The
literature of tree-metric embedding [33, 21, 3] targets to alleviate the
poor distance approximation problem, by finding a better tree structure
(not necessarily a spanning tree of the graph), such that the distances
on the chosen tree approximate at best the original graph distances.

More generally, the tree-based methods lie under the umbrella of
Distance Labelling Methods that in turn rely on general sparse graph
spanners (spanners are subgraphs of the original graph including all of
the original graph’s vertices with fewer edges, such as trees). Being a
quite theoretical research topic, the literature in the distance labelling
field is mainly concerned with uncovering upper and lower-bounds of
both Exact and Approximate distance labelling.

The Exact Distance Labelling literature [49, 86], is a branch of the
graph labelling methods that aims at attributing positive integer labels
to the nodes of the graph (network) while maintaining the choice of the
distance function dL open, so that for any pair of nodes s and t belong-
ing to the graph, we have the exact equality dG(s, t) = dL(f(s), f(t)).
The major challenge for this family of methods is then the size of the
attributed labels as well as the complexity of the distance function. To
our knowledge, the latest reported lower bound on the size of labels for
general graphs is Θ(n) bits [49].

In the less constrained branch of approximate distance labelling [4,
48, 110], the exact equality condition is relaxed and a stretch of the
original distances is allowed. Different types of stretch are considered
in this literature, such as the additive stretch :

dG(s, t) ≤ dL(f(s), f(t)) ≤ dG(s, t) + β

, the multiplicative stretch :

dG(s, t) ≤ dL(f(s), f(t)) ≤ α ∗ dG(s, t)

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 19

and the affine stretch :

dG(s, t) ≤ dL(f(s), f(t)) ≤ α ∗ dG(s, t) + β

The best approximate distance labelling scheme reported to our
knowledge allows for a multiplicative stretch where α = 2k − 1, given
an integer k, with labels of size O(n1/k log n log (n∆)) bits [110], where
n is the number of nodes in the graph and ∆ is the diameter of the
graph, i.e. the largest distance between any two nodes. Note that the
distance estimation cost of this solution is constant at O(k). The labels
attributed to the nodes in this case are a combination of unique node
identifiers and distance values selected among the full data set so as to
guarantee the stretch condition. To get an idea about this result, for an
example network such as the Internet Autonomous System Graph, with
around 33000 vertices, and a diameter of say 9 hops, in order to have
a 3-multiplicative stretch approximation of the distances (k = 2), we
must use labels of size O(49572) bits. Although such a label size is con-
siderably inferior to the O(n2) size of a regular distance matrix, it is still
inconvenient for applications such as datagram-based routing in which
the destination labels are carried within the packet. Therefore, a nat-
ural prolongation of the field of approximate distance labelling is that
of Compact Routing [109, 70] that combines labelling techniques with
locally stored routing information called Distance Oracles to perform
efficient routing while requiring small sized routing tables and labels.
The role of the distance oracle data structure in this case is to approx-
imate the distance between any pair of nodes by storing only a subset
of the distance values and relying on triangular inequality compliance
to induce upper and lower bounds on the distance values.

Another effort to label graph nodes in the 1970’s was mainly focused
on embedding the graph into a Hypercube data structure [53, 10]. In
this case, the vertices of the graph were attributed binary labels (corre-
sponding to vertices of a multidimensional hypercube) and the chosen
label distance function dL was the Hamming distance. Due to the fact
that not all graphs are addressable according to a purely binary al-
phabet, the authors in [53] adopted a ternary alphabet and a modified
Hamming distance that ignores the “bit” differences in case the third
(new) symbol is encountered. However, also in this proposal, the ma-
jor problem remains the size of the attributed labels required for the
embedding that is of O(n− 1) bits.

As can be seen from the above presented results, with the exception

20 Chapter 2. Obtaining Coordinates for Greedy Routing

of spanning tree labelling, all the solutions for both approximate and
exact distance labelling would require node labels that are too large
to be shipped into a packet header. For the exceptional case of the
spanning tree labelling methods, the price to pay however is the poor
approximation, or stretch, of the original graph distances.

2.1.2 Geometric Approaches

Other graph labelling techniques considered the possibility of embedding
the graph into a geometric space meaning that the labels attributed
to the vertices of the graph are multidimensional points belonging to
a Hilbert space for example. Although this might sound limiting when
compared with the wider distance labelling goals above, it does however
offer several advantages. First, by priorly selecting the target embedding
space’s characteristics, such as the distance function and the dimension-
ality, one already fixes the resulting label size and the complexity of the
distance approximation procedure. The variable in this case would then
be the quality of the obtained embedding. Also, some of the applica-
tions from which the original graph was extracted (such as molecular
structures or communication networks), might carry a geometric com-
ponent by nature. This is typically the case of sensor networks where
one might be interested in the recovery of sensory data collected within
a specific geographic region. Hence, adopting a geometric labelling in
such cases would be natural. Generally, graph data analysts recur to
geometric embedding methods due to the wide variety of mathemati-
cal and algorithmic tools applicable in vector spaces, thus easing the
relational data analysis.

Graph drawing techniques

A straightforward way of obtaining geometric coordinates associated
with graph vertices is to recourse to graph drawing techniques. These
techniques, usually employed to visualize the graph data-structure, as-
sociate each graph vertex to a point in a low-dimensional (2 or 3-D) ge-
ometric space (usually Euclidean). A line segment between two points
is then drawn in the geometric space if the corresponding vertices are
related by an edge in the graph. A simple method for obtaining geo-
metric coordinates for the vertices of a graph would then be to draw
it using one of the techniques presented below, and attribute to each
graph vertex the low-dimensional coordinates of its associated point in
the drawing as a label.

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 21

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(a) Original generated network using
unit-disk graph method with 100 nodes

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

(b) All geometric points are initialized
around a circle at the beginning of the al-
gorithm

−10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

(c) Graph drawing after 100 iterations

−6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

(d) Graph drawing after 500 iterations
(stable state)

Figure 2.2: Example of the Kamada-Kawai springs-network graph drawing

22 Chapter 2. Obtaining Coordinates for Greedy Routing

Due to their visual purpose, graph drawing techniques focus more
on the aesthetic aspects of the drawing such as planarity and cluttering
avoidance, than on the precise representation of the graph distances and
might not always provide a good approximation of the original distances.

The most commonly used techniques for graph drawing are the force-
based techniques [62, 44, 112]. Force-based graph drawing techniques
may vary according to the nature of the physical force they simulate in
order to embed the graph. Physical phenomena such as elasticity (of
rubber-bands or springs), gravity, electricity and magnetic fields can be
simulated in a system corresponding to the graph. The common idea for
these drawing techniques, independently of the simulated phenomenon,
is that the system corresponding to the graph in the geometric space,
namely the set of geometric points and segments representing the ver-
tices and the edges of the graph, would be initiated in a random, highly
energetic and highly unstable state. The graph drawing techniques then
let the system “evolve” in time, by simulating all the different physical
interactions among the geometric points and segments until an equilib-
rium state is reached, in which the simulated physical system is in a
minimal energetic state.

The most widely known technique of force-based graph drawing is
that of spring-networks proposed by Kamada and Kawai [62]. In this
particular model, both elastic and electrical forces are combined in the
simulated system. Each geometric point associated to a graph vertex
is assumed to carry an electrical charge. Two points associated with
graph vertices related by an edge, are also assumed to be linked by a
mechanical string that has stability properties (Hook’s law) related to
the corresponding graph edge’s weight. Typically this means that the
length of the spring (edge between two geometric points) at a rest state
is proportional to the weight of the edge between the graph vertices
associated with those points. An obvious intention of using such a
system is to maintain the proximity information between the nodes, by
constantly having a force pulling neighbour nodes close to each other.
The electrical charges attributed to the geometric points act instead as
a repulsive force, pushing two vertices away from each other in case they
are too close. The intention of using such forces in this case is to avoid
cluttering of the drawing and obtain a better repartition of the points
in the space. Such a wide repartition would enhance the readability of
the embedding and offer an aesthetically more pleasant drawing.

When started at an initial state by attributing either chosen or ran-
dom coordinates to the graph vertices, the system will at first behave

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 23

quite chaotically, with the spring forces pulling nodes together and the
electrical ones pushing them apart. However, with time, (or in a simula-
tion environment through iterations) the system’s behaviour will stabi-
lize until finally reaching an equilibrium state in which the total forces
applied in the system are minimal and thus the positions of the geo-
metric points are fixed (or there are minimal, insignificant, variations).
Figure 2.2 shows an example of the evolution of such a system between
the start, middle of the iterations, and the final obtained state. Note
that several variations and simplifications of this model exist. Notably,
a simplification considering only the spring forces between the points,
and not relying on any electrical repulsion forces, results in a system
that minimizes the difference between the distance of the points in the
geometric space and the distance of their corresponding vertices in the
graph. Such a system would then run a simulation having a similar
result as a Multidimensional Scaling approach described further below.

Such graph drawing methods relying on physical phenomena simula-
tions are very intuitive and thus quite attractive to practitioners. How-
ever, a general criticism is that in a centralized execution environment,
in which the totality of the graph information is available, a computa-
tionally more efficient approach would be to simply formulate the total
energy of the simulated system as a function of the points’ positions
and to minimize it using regular optimization techniques such as gradi-
ent descent or non-linear programming methods in general. This would
avoid the need of computationally simulating a physical system that
would only output a local minimum of the energy function as a result.
However, and as will be shown in the applications review section, such
a physical system simulation gains in importance when the embedding
application is to be distributed among several hosts (computing agents)
holding only parts of the total connectivity information (graph).

Spectral decomposition methods

Other graph drawing techniques rely on more analytical approaches
to attribute geometric coordinates to the graph vertices. A notable
such method, developed within the framework of spectral graph theory
is that of the Laplacian Eigendecomposition or Eigenmaps [7]. This
method is also usually categorized under the set of local methods for
embedding [31] as it is mainly concerned with preserving the proximity
of adjacent nodes in the embedding and gives no importance to the
distances between non-adjacent nodes.

24 Chapter 2. Obtaining Coordinates for Greedy Routing

More Formally, provided that we wish to attribute to each vertex i
belonging to the graph G, a d-dimensional vector yi= (yi1, yi2, .., yid) in
a Euclidean space, the Laplacian eigenmaps method targets to minimize
the following error function :∑

i,j

‖yi − yj‖2Wij

where ‖yi − yj‖2 is the squared Euclidean distance between points
yi and yj and Wij is a weight value associated with the pair of vertices
i and j. In the classical Laplacian eigenmaps approach, also denoted as
the “simple-minded” one by the authors [7], the weights are attributed
so that :

Wij =

{
1 if i and j are connected
0 otherwise

In this case, the matrix W is then equivalent to the incidence matrix of
the graph. Notice in this case the zero-valued weights for non-connected
vertices. This means that the inter-point distance for non-connected
vertices does not contribute at all to the embedding error function and
that instead, this method focuses on maintaining the locality of neigh-
bour nodes only, by making sure that any large distance between two
neighbours nodes is penalized (hence the classification of this method
among the local methods).

When further expanded and simplified, the error function above is
equal to ∑

i,j

‖yi − yj‖2Wij = tr(Y TLY)

where Y is the matrix listing all nodes’ coordinates, tr(X) is the trace
of a matrix X, namely the sum of its diagonal values and L is known
as the Laplacian matrix of the graph and is defined as

L = P −W

where P is a diagonal matrix indicating the nodes’ degrees, such
that Pii =

∑
j 6=iWij . Hence, minimizing the above embedding error

function becomes equivalent to

argmin
Y TPY=1

tr(Y TLY)

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 25

where the constraint Y TPY = 1 is there to ensure that the embed-
ding remains within a d-dimensional space and does not collapse into a
lower dimensional space. Such a quadratic form is then minimized by
the eigenvectors of the Laplacian matrix L (i.e. the yi vectors such that
Lyi = λyi where λ is the eigenvalue associated with the vector). These
eigenvectors can be found by performing a Singular Value Decomposi-
tion (SVD) on the matrix L. A d-dimensional solution can be found
by taking the d eigenvectors of L with the smallest eigenvalues (except
for the first one that has eigenvalue 0). Note that the Laplacian ma-
trix is also used for graph-based clustering algorithms such as spectral
clustering [98] as the eigen-problem resolution above also accounts as a
relaxation of the minimum-cut problem in a graph.

Another similar technique relying on eigen-decomposition operations
(or Singular Value Decomposition) of matrices related to the graph is
that of Classical Multidimensional Scaling [12]. As its name indicates,
this method is usually classified among the Multi-Dimensional Scaling
(MDS) methods detailed further below. However, in our view, such an
approach for graph (or more precisely metric) embedding bares more
similarity with the spectral methods presented here then with the rest
of the MDS methods. The Classical MDS method takes as input the
shortest path distance matrix D of the graph. Assuming that the tar-
geted embedding is a Euclidean one, in which the matrix Y holds the
attributed coordinates of the nodes, then a direct relation between the
graph (desired) distance values and the inner-product matrix K = Y Y T

can be established [12], where the squared distance between two points
i and j can be expressed as:

D2
ij = Kii +Kjj − 2Kij

thus allowing to extract the matrix K through a double-centring
operation

K = −1

2
JD(2)J

where J is a constant matrix so that J = I−n−111′ (and 1 is the vector
with all components set to 1). By performing an SVD decomposition
of the K matrix, one can find matrices Λ and Q such that

K = QΛQT = (QΛ1/2)(Λ1/2QT) = Y Y T

Hence, by taking embedding coordinates matrix Y = QΛ1/2, one
can find a Euclidean embedding that matches exactly the desired graph

26 Chapter 2. Obtaining Coordinates for Greedy Routing

distances. However, such a spectral decomposition of the K matrix
may lead to several eigenvalues and eigenvectors, thus leading to a very
high dimensional Euclidean embedding of the graph. A simple way of
obtaining a lower, d-dimensional embedding is to select Y such that it is
composed of d eigenvectors of K with the largest eigenvalues. Such an
operation is in fact equivalent to a linear dimensionality reduction on the
high-dimensional data matrix Y (exact embedding), through Principal
Component Analysis. Note that the above performed linear operations
on the graph distance matrix allows to find a matrix K minimizing an
error function known as strain

S(Y) = ‖XXT − Y Y T ‖2

An important remark on the classical MDS approach is that it as-
sumes a direct relation between the node’s distances and the inner-
product matrix K, as if the distances were necessarily generated in a
high dimensional Euclidean space. This might be true for some input
distance data, but not quite, when the distance data is generated from
other structures such as a graph.

Therefore, the recently proposed method of Structure Preserving
Embedding (SPE) [102], sets to search for an inner-product matrix (also
denoted as kernel) K such that it satisfies particular constraints on the
embedded distances. More precisely, the goal in the SPE approach is
to be able, based solely on the embedded positions and a graph genera-
tion algorithm, to reconstruct the original graph. By graph generation
algorithm, we mean for example a k-Nearest Neighbours (k-NN) algo-
rithm that, given the position of a point, creates an edge relation to
the k-nearest points in the vicinity of the chosen one. Another example
of a graph generating algorithm is the ε-ball one, adding an edge (con-
nection) between a given point and all points lying within a distance
inferior to ε from it. When choosing a particular graph generation al-
gorithm such as the ε-ball one, in order to be able to reconstruct the
initial graph, one must ensure that the distance between non-connected
nodes is superior to ε. This then defines a set of linear constraints on
the embedding distances such that :

Dij(Aij −
1

2
) ≤ ε(Aij −

1

2
)

where Aij is the incidence matrix of the graph. Due to the direct relation
between the distance matrix and the kernel matrix, the set of constraints
defined above also apply to the kernel (inner-product) matrix K. Hence

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 27

−10
0

10
20 0

10

20

30

−15

−10

−5

0

5

10

15

Figure 2.3: Example dataset (known as the Swiss-roll) where the data lies on
a lower-dimensional manifold. Generating a k-NN graph on the data, results
in an approximation of the manifold

a better K matrix in this case is searched so as to satisfy the conditions
allowing to correctly reconstruct the graph. The solution for K can be
found using a Linear Programming technique known as Semi-Definite
Programming. Then, an eigendecomposition of the matrix K, similar
to the ones performed above, is performed in order to obtain the point
coordinates.

Relation to manifold-learning and dimensionality reduction :
Manifold learning is a sub-field of non-linear dimensionality reduction
methods counting methods such as ISOMAP [108], Locally Linear Em-
bedding [96], and Maximum Variance Unfolding [116]. In this case, the
input data is a (very) high-dimensional vector data. In principle such
an input dataset has nothing to do with the graph embedding prob-
lem, as the provided data is already residing in a (yet high-dimensional,
but still) vector space. Thus in order to reduce the dimensionality of
the data, one could in principle simply apply linear or kernel Princi-
pal Component Analysis. However, in the particular case of manifold
learning, the input data is assumed to lie on a low-dimensional manifold
(surface) that is itself embedded in a higher dimensional space as can
be seen in the example of figure 2.3. Hence, although the input data
appears to be high dimensional, it varies in fact according to fewer di-
mensions defined by the manifold. One is then interested in retrieving

28 Chapter 2. Obtaining Coordinates for Greedy Routing

an embedding that unfolds the manifold into a space corresponding to
its intrinsic dimensionality.

A typical method for doing so within the manifold learning litera-
ture is to build a graph-based approximation of the manifold as can be
seen on the example of figure 2.3. To build such a graph, several algo-
rithms such as the k-nearest neighbours or the ε-balls ones mentioned
above could be used. Hence, the problem of manifold learning-based
dimensionality reduction reduces to that of a graph embedding. As
mentioned previously, in order to embed the graph, the manifold learn-
ing techniques then divide into local and global approaches.

Similarly to the Laplacian eigenmaps, the local methods focus mainly
on preserving the vicinity of neighbour vertices. One typical such ex-
ample is the Maximum Variance Unfolding (MVU) [116] also known as
Semidefinite Embedding that similarly to the SPE method presented
above, also relies on Semidefinite Programming for finding a better
inner-product matrix K guaranteeing the proximity of neighbour nodes
while at the same time pushing non-connected points away from each
other. An example of global methods instead is that of ISOMAP [108]
that simply performs a classical multidimensional scaling operation on
the shortest path distance matrix of the obtained graph. The shortest
distance between two points on the graph can in this case be considered
as a piecewise linear approximation of the distances on the manifold,
as “travelling” on the graph avoids taking any shortcuts through di-
mensions not belonging to the manifold as can be seen in figure 2.3.
ISOMAP is considered as a global approach as it also takes into con-
sideration the distances between non-neighbour nodes.

To summarize, although at first sight the problem of nonlinear di-
mensionality reduction appears not to have anything in common with
graph embedding, a lot of effort has been invested in this field during
the previous decade, and many of the well established graph embedding
techniques have been revisited and updated. Hence a close observation
on the future developments of this field might be in the interest of any
graph embedding practitioner.

Distance matrix based methods

Another approach to the problem of graph embedding is to consider
it from the point of view of distance matrices. By distance matrix,
we mean the matrix D in which the entry Dij for each pair of points
i, j belonging to the graph G is equal to the length of the shortest

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 29

v

u

w

1

1

3

1

1

0

0 2

1

1

u

u

v

w

wv

02

Figure 2.4: Comparison between relation (graph) view and distance (ma-
trix) view of the data

path between i and j. Note that the undirected graph G can be either
weighted, in which case the length of a path is the sum of the weights of
its constituent edges, or unweighed that is equivalent to having a weight
equal to 1 on all edges. Once translated into this form, one can apply a
metric embedding method taking as input a distance matrix and finding
an embedding in a given target metric space such that the distances
in the embedding are in accordance with the input values. An impor-
tant remark differentiating this approach from the previously presented
graph drawing and spectral methods is that it focuses completely on
the distance view of the data and ignores its relational property. To il-
lustrate this, consider the example of figure 2.4 where a weighted graph
comprising three vertices u, v and w and the corresponding shortest
path distance matrix are shown. Notice the reported distance between
the node v and w that is equal to 2. This is quite normal since the
path between the two passing through u has a smaller weight sum than
the direct connection. The problem when considering the data from a
distance matrix point of view only is that one can no longer see the ex-
istence of the link (v, w). Indeed, one might only assume that different
paths with distances larger then the reported shortest one might exist,
but one cannot infer it from the distance data. Thus when considering
the graph embedding from a distance matrix point of view only, one
should keep in mind its lossy property. Such an issue constitutes in fact
the fundamental difference between distance-vector and link-state based
routing protocols in the computer networks literature.

Typical approaches of embedding an input distance matrix into a Eu-
clidean geometric space are those of Multi-Dimensional Scaling (MDS)
[12, 25], to which the previously presented Classical MDS belongs. Tra-
ditionally, MDS methods divide into what are called metric and non-
metric methods. In the metric approaches, an exact matching of the
distance values is usually desired. Note that the notion of “exact match”

30 Chapter 2. Obtaining Coordinates for Greedy Routing

relaxes to scaling operations on the distances. Indeed, given that the
MDS methods developed initially as a data exploratory approach in
which a researcher is interested in uncovering the structure of the el-
ements that generated the input distances by mapping it on a visual
surface (sheet of paper or screen) a scaling of the original distances by
a given ratio is mainly desired. Such a scaling is also known under
the name of Ratio MDS. In the metric MDS technique, one is mainly
concerned with the minimization of an error function allowing to es-
timate the embedding’s quality. Many such estimators exist, such as
the strain function previously presented, the raw stress, the S-Stress
function, Kruskal’s Stress I and II and Sammon’s stress. The most
commonly used error measure is the weighted stress :

σ =
∑
i,j

wij(de(i, j)− dG(i, j))2

where de(i, j) is the distance between points i and j in the embedding
(equivalent to dL(f(i), f(j))), dG(i, j) is the original graph distance and
wij is a weight value associated with the pair (i, j). The incorporation
of such weight values in the objective function offers a lot of flexibility
allowing for example to embed distance matrices with missing values as
well as rectangular distance matrices indicating only the the distance
between two different sets of elements (such as customers and prod-
ucts) by setting some of the weight values to zero in both cases. Several
approaches from the nonlinear optimization literature such as gradient
descent or simulated annealing can be used in order to find a solution
minimizing the stress function above. A common and elegant approach
based on the iterative majorization technique is proposed in [28, 46]
and is known as the “Scaling by Majorizing A COmplicated Function”
(SMACOF) algorithm. As its name indicates, this method performs the
nonlinear optimization by iteratively majorizing the stress function by
a simpler function for which the minimum can be analytically deduced.
The algorithm then chooses the minimum of the majorizing function at
iteration i as a base for the new majorizing function at iteration i+ 1 .
By base we mean a point at which the majorizing function’s value co-
incides with that of the stress function while having all its other values
superior to the stress values. With an increasing number of iterations,
the minimum of the majorizing function and that of the stress function
(or a local minimum) will coincide. Such an algorithm offers the advan-
tage of a guaranteed convergence. We refer the interested reader to Borg
and Groenen’s book [12] for more details on the SMCAOF algorithm.

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 31

In the non-metric forms of MDS, also known as ordinal MDS, one
is not concerned at all about preserving the original distance values (or
a ratio of them), but targets mainly to preserve the order between the
distances. Indeed, in many applications, it is the order between the
objects of interest that matters most. Traditionally, ordinal MDS was
developed in the area of psychometrics that is a sub-field of psychology
focused on measuring responses to various stimuli. More precisely, psy-
chometricians are mainly interested in uncovering the structure between
the different subjects and stimuli that resulted in the observed distances.
In most of the data collection settings then, the measurements did not
produce a numeric result by attributing a value to the similarity be-
tween two stimuli A and B but rather resulted in a similarity ordering
such as “stimulus A is closer to B than it is to C”. Such an observation
thus defines an order constraint on the distances between the mapped
stimuli such that dG(A,B) < dG(A,C). Note that one could easily at-
tribute initial distances dG such that they obey the order constraints
and then simply use metric MDS to find a matching embedding. How-
ever, searching for an embedding that respects the constraints without
tying the distances to specific values offers much more flexibility and is
more in line with a data exploratory objective. Note that such an ordi-
nal embedding is also ideal for our purpose of greedy routing. Indeed,
as previously mentioned, it is in fact the order between the distances of
the neighbours to the destination that matters most when choosing the
next hop and not the actual values of the distances.

Ordinal MDS finds an embedding by performing an alternate op-
timization that is in a sense similar to the Expectation Maximization
(EM) algorithm [32]. In a first iteration, a metric MDS embedding is
performed. Note that this step requires actual distance values to be
available. In case only an ordinal relationship between the distances
is available, one can simply generate values respecting the order rela-
tionship. Once the metric embedding performed, the distance matrix
D′1 containing the distances between all of the embedded points at the
first iteration is collected. The main idea of the alternate optimization
then is to perform an optimization operation on the collected distances
in order to correct them so that they follow the desired order. Note
that in order for this step of the optimization to be complementary
to the previous one, the searched correct distances should be the clos-
est possible to the embedding distances D′1. In order to perform this
step, a constrained optimization technique known as isotonic regression
is applied in which the least squared difference between the D′1 values

32 Chapter 2. Obtaining Coordinates for Greedy Routing

and the desired corrected distances is minimized subject to the order
constraints on the distances. As will be discussed in chapter 6, several
order relationships can exist between the distances, some of them being
total, meaning that a precedence relationship is indicated (or can be
inferred) between any pair of nodes and some defining an order among
only a subset of the distances. When a total order on the distances is
defined, a simple solution to this problem consists in using the “Pool
Adjacent Violators Algorithm (PAVA)” [72, 29] with Kruskal’s Up-and-
Down-Blocks algorithm. As its name indicates, in case a set of example
constraints is defined so that de(A,B) ≤ de(A,C) ≤ de(A,D) and as-
suming that D′1(A,B) = 4, D′1(A,C) = 2, and D′1(A,D) = 1 then
the algorithm would first proceed by pooling the adjacent distances
D′1(A,B) and D′1(A,C) by setting them both equal to their average
equal to 3. Then considering that the constraint D′1(A,C) ≤ D′1(A,D)
would still be violated, the algorithm then simply sets all the three dis-
tance values to their common average i.e. (3+3+1)/3 = 2.33. Once the
desired distances are updated so that they satisfy the order constraints,
the process reiterates by performing a metric embedding (through stress
minimization) of the updated distances. The process terminates when
only a threshold number of constraints are violated or when the maxi-
mum number of iterations is reached.

An interesting point about the distance-based multidimensional scal-
ing methods is that, since the search for the optimal embedding is done
through the use of optimization techniques on an error function, or in
other words without assuming any geometric properties on the desti-
nation space in which the graph vertices are to be embedded, these
methods could in principle be applied for an embedding in any target
space as long as its distance function is well defined and is differen-
tiable. Therefore, MDS techniques for embeddings in Hilbert spaces
with generic Minkowski norms (i.e. non-Euclidean) [55] as well as in
hyperbolic-geometry-based spaces [26] have also been proposed.

Note that the MDS methods and in particular the alternate opti-
mization approach can in fact reveal to be computationally very de-
manding and hence in some cases (especially that of ordinal MDS) ap-
plicable only to small sized datasets. A notable simplification of the
MDS algorithm allowing to efficiently retrieve an MDS-like embedding
is that of Landmark-MDS [30, 87]. Although this technique was mainly
applied with classical MDS, it could in fact also be applied with stress-
based MDS approaches. The basic idea of this approach is to select a
subset of the data objects and declare them as landmarks. The MDS

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 33

(1,2,2)

L1
L2

L3

(1,1,2)(2,1,1)

(2,1,1)

(0,2,3)(3,2,0)
(2,0,2)

Landmark node

Figure 2.5: Example of a landmark-based addressing of network nodes. As
shown, nodes equally distant from the landmarks would receive the same
coordinates

operation is then performed based on the distances between the land-
marks only, and an embedding (coordinates) for the landmark points
is found. The coordinates of the non-landmark points are then com-
puted based on linear combinations of the landmarks’ positions and
each node’s original distances to each of the landmarks (a triangulation
for example). Naturally, the success of this method highly depends on
the set of chosen landmarks. This method is in fact very similar to the
Lipschitz approaches presented below.

Lipschitz based methods

Another distance-based embedding family of methods that also relies on
a subset representation of the original graph distances are the Lipschitz
based ones [14, 61]. In this family of methods, a subset of the objects
between which the distance values are reported is selected to act as a
landmark. The coordinates of the rest of the elements are then derived
from their distances to the landmarks. The main idea behind the Lips-
chitz embedding is that an information about the distance between any
two points u and v can be extracted from their corresponding distances
to the common set of landmarks. Typically, assuming that the elements
for which we are provided with the distance matrix D are originally
residing in a metric space, one can leverage the triangular inequality
condition by selecting an element w, among the objects, as a landmark
and deduce :

34 Chapter 2. Obtaining Coordinates for Greedy Routing

D(v, w) +D(w, u) ≥ D(v, u) (2.1)

and also that

D(v, u) +D(u,w) ≥ D(v, w) (2.2)

⇒ D(v, u) ≥ |D(v, w)−D(u,w)| (2.3)

Hence, when combining (2.1) and (2.3), one can obtain both an
upper and a lower bound on the distance between any two points based
only on their respective distances to a third landmark point. In the
classical Lipschitz method, the landmarks are in fact sets of points such
that there are (A0, A1, .., Ak) landmark sets where each Ai is itself a set
of nodes. The coordinates attributed to each vertex x (in the case of
the application of the Lipschitz method to graph embedding) in such
a setting would the be the k-dimensional vector (D(x,A0), .., D(x,Ak))
where

D(x,Ai) = min
∀y∈Ai

D(x, y)

Note that the bounding rules extracted above in the case of a single
landmark can be also extended to cover the case where each landmark
Ai is a set of nodes. Figure 2.5 shows an example of the attributed
coordinates to the graph vertices in a case where three singleton land-
marks are used. An interesting result on Lipschitz embeddings is given
by Linial et al. [77] that proved that when applying an Lp distance
(Minkowski) metric on such obtained coordinates, one can still obtain
a bounding rule such that

c

blog2Nc
D(u, v) ≤ Lp(f(u), f(v))) ≤ D(u, v) (2.4)

where f(x) are the Lipschitz coordinates attributed to a node x. This
means that when applying an Lp metric on the coordinates obtained
through the distances to the landmarks, one is guaranteed to get a value
close enough (or slightly stretched) from the original distance. We would
like to point out here that such a result is in fact highly counter-intuitive.
Indeed, especially when considering the case of singleton landmark sets
Ai, the obtained coordinates are in fact merely a simplification of the
original distance matrix D by keeping only a few of its columns (or
rows) that correspond to the distances to landmarks. Such an operation

2.1. Theoretical approaches to the problem of virtual coordinates
attribution 35

does not uncover the underlying object configuration that generated
the distances, as it was the goal for example for the multi-dimensional
scaling methods. Thus it might seem quite absurd to apply a Minkowski
norm such as the Euclidean one on the obtained coordinates and to
expect that it reflects the original distances. Nevertheless, the authors
in [77] proved the above guarantee (2.4) on the distance approximation
provided that an appropriate set of landmarks is selected. This is in fact
the main drawback of this proposed Lipschitz embedding, as the number
of required landmarks (when counting both the number of landmark
sets and their cardinality) would almost be equal to the number of all
elements, thus leading to very high dimensional coordinates.

Therefore, several approaches targeting to leverage the potential of
Lipschitz embeddings while requiring fewer landmark elements such as
[38, 45, 114] have been proposed. The FastMap approach [38] is in fact
quite an interesting mix between landmark-based methods and (lin-
ear) dimensionality reduction techniques. The main assumption in the
FastMap method is that the elements that generated the distances are
residing in a high dimensional Euclidean space. The idea then is to find
a way of performing a dimensionality reduction while having at hand
only the distance values (this is in a sense the same problem setting as
for classical MDS). The interesting property of the FastMap method is
that it proceeds recursively by incrementally selecting the axis on which
to perform the linear projection in order to obtain the coordinates. In
order to find the first axis, the method proceeds by selecting the two
most distant elements of the set, namely the two points i and j such
that D(i, j) is the biggest value in D. The axis on which to perform
the projection is then the (imaginary) line going through the points
corresponding to elements i and j in the assumed high-dimensional Eu-
clidean space. The intention behind the selection of the two furthest
elements, is to find an approximate of the axis maximizing the variance
of the imaginary high-dimensional points similar to that identified by
the PCA method. However, since we have only distance data at hand,
the intuition is that the two most distant points in the dataset should
reside approximately on this line. The elegance of the FastMap method
resides in that it then computes the coordinates of every point accord-
ing to this imaginary axis (i.e the position of its projection on the axis)
by simply using Pythagorian rules involving the distance values of each
point to the two selected landmarks, thus not requiring to know the
imaginary points’ coordinates nor to derive the imaginary axis’ formu-
lation. Once the coordinates according to the first axis are computed,

36 Chapter 2. Obtaining Coordinates for Greedy Routing

the method derives, again based on Pythagorean rules and the newly
computed coordinates, a new distance function dH corresponding to dis-
tances withing the (k − 1)-dimensional subspace H orthogonal to the
first axis (assuming that the imaginary space is k-dimensional). Using
this distance function, the algorithm then proceeds recursively to select
the next imaginary axis within H that would naturally be orthogonal
to the previous one. Other similar methods such as SparseMap [45] and
MetricMap [114] also perform variations on a similar mixture between
landmark based methods and dimensionality reduction techniques.

In fact Lipschitz based methods bare a lot of similarity with the
distance labelling techniques based on the expanding balls idea such
as those of distance oracles and compact routing discussed above. Both
methods rely on landmark vertices. Perhaps the main difference between
the two, is that the distance labelling methods do not operate on the
distance values as if they were coordinates but try to bound the unknown
distances at best by storing the fewer possible values. This results in
that the attributed node labels in the Lipschitz method are distance
values to the selected landmarks, while in the compact routing approach
they mainly consist of a combination of node and landmark identifiers.

For more details on Lipschitz methods, we refer the interested reader
to the excellent review by Hjaltason and Samet [58].

2.2 Embedding techniques in the network-
ing literature

In the networking literature, three main communities have been in-
terested in the coordinates attribution to the participant nodes of the
network. These are mainly those of node localization, Round-Trip Time
(RTT) estimation and that of greedy routing.

In the node localization literature [36, 100, 80, 103], one is mainly
interested in recovering the geographic or physical coordinate of every
node. A typical application example is that of sensor networks where
one is interested in identifying the location at which a measurement was
taken. In a setting where only a few sensor nodes know their physical
location, one is therefore interested in inferring the locations of other
participant nodes from the little position information available. To the
difference of greedy routing that could in principle accept any values for
the coordinates as long as they lead to a successful routing, in the node
localization case, there is only one ground truth for the nodes’ positions

2.2. Embedding techniques in the networking literature 37

that one targets to uncover.

In the case of the RTT estimation [27, 117, 42, 105, 101], a typical
application of the coordinates attribution is to be able to quickly se-
lect the closest server (in terms of transmission delay) among a list of
candidates by simply checking the distances between the coordinates of
the requesting node and those attributed to the candidate servers. The
main motive for doing so is to avoid measuring the round-trip time to
all candidates in order to determine the best one, as this would be costly
in both time and resources. Hence, the main goal here is to be able to
infer most of the distance values from fewer measured ones. In a sense,
such an operation can be seen as a regression one and bares similarities
with the above discussed FastMap and MetricMap methods that target
to minimize the amount of distance computations, as these techniques
developed within the Multimedia Retrieval community where a distance
evaluation between two indexed objects can be computationally costly.
In the routing community instead, the network data is usually assumed
to be fully available under two principal forms, distance vectors (or ma-
trix) or simply as a relational data (graph). Indeed, protocols from
the link-state family (such as OSPF) and from the distance-vector fam-
ily (RIP), as well as path-vector protocols are since long applied to
real-world networks and therefore the full data collection approach is
no longer a taboo in the routing community. A similar need for infer-
ence in greedy routing might be desired in highly volatile environments
in which the cost of event-based updates on the global network state
might be too high. In such cases, one might then be interested in in-
ferring the new network distance values from a combination of the old
values and a fewer newly measured values.

Although these three main communities have different goals and
requirements, they do share the same need for (distributed) graph em-
bedding techniques. In the rest of this chapter, we will proceed by
introducing main contributions within the greedy routing literature by
following the order of the embedding families described above.

2.2.1 Tree and hierarchical-based techniques

Starting with the tree-based labelling of network nodes, Kleinrock and
Kamoun [65] proposed the technique of hierarchical addressing and its
usage for routing. Their approach however strongly relied on routing ta-
bles and aggregation and is in fact the seminal work behind the current
Internet routing methods. Tree-based greedy routing techniques have

38 Chapter 2. Obtaining Coordinates for Greedy Routing

also been more recently proposed. In the NIRA [120] proposal for ex-
ample, the authors target to resolve the problem of stateless multipath
routing in the inter-domain AS graph while respecting the valley-free
forwarding rules later defined in chapter 4. They do so by assigning a
unique identifier to each core domain (for example Tier-1 domains, i.e.
domains having no providers), and having each provider node attribute
a descendant identifier to its customers. Routing is then performed
greedily (although this was not the focus of the authors) by ascending
the tree towards the least common ancestor between the source and
destination that can be identified based solely on the source and des-
tination address. In order to support multipath routing however, the
proposed scheme results in a large number of attributed addresses per
node.

In another recent proposal [60], the authors propose an extension to
the classical hierarchical addressing scheme by embedding the network
graph into a ringed-tree data structure that is in fact a classical tree
graph in which neighbouring branch nodes are interconnected (the edges
within the ringed-tree graph might in fact correspond to paths in the
original graph). By attributing polar coordinates to the vertices of the
ringed tree, a horizontal (or peripheric) greedy routing is made possible
thus reducing the stretch of hierarchical routing. Such an approach is
however not purely greedy as the virtual edges require the nodes to store
additional control state.

An interesting extension to tree-based routing is that of tree-covers.
In this approach, the main idea is to obtain several hierarchical ad-
dressings of the graph by labelling several different spanning trees of
the same network. Following this approach, the authors in [106] pro-
pose a greedy routing method allowing to identify a path to destination
along one of the trees with the least stretch. However, similar to the
NIRA proposal, such a scheme induces several addresses per node as
well as incurs a heavy load on the packet headers.

Another interesting usage of tree-covers is made in [40] where the
authors separately embed several spanning trees of the graph into k in-
dependent d-dimensional R spaces such that the distance within each
embedding is isometric to the distances on the tree. To find such an iso-
metric embedding, the authors rely on an algorithm by Linial et al. [77].
The coordinates of the node in each of the k Rd spaces are concatenated
to form a kd-dimensional coordinate vector. By using a modified L∞
Minkowski norm to route greedily on the obtained coordinates, the au-
thors prove a bounded routing stretch. The proofs are however tailored

2.2. Embedding techniques in the networking literature 39

to Unit Disk Graph models as they are the favourite tool for modelling
wireless sensor networks and might not therefore easily extend to other
graph families.

2.2.2 Distance labelling and compact routing tech-
niques

Within the distance labelling approach to greedy routing on virtual co-
ordinates, the techniques relying on hypercube methods were the first.
In a 1971 paper, Graham and Pollak [54] focused on the problem of
local loop switching in telephone networks, thus proposing a greedy
routing methods at the very beginning of the datagram communication
model. By using their graph embedding technique within a hypercube
data structure [53], they attribute binary addresses to the network par-
ticipants and rely on a modified hamming distance to perform greedy
routing without storing any control information. Similar to the theoret-
ical graph embedding case, the attributed node labels suffer from their
length that is in the order of O(n− 1) bits.

In the more general approach to distance labelling, the explored
techniques mainly relied on partial routing tables, making them part of
the compact routing family [70, 109]. In fact one of the most interesting
proposals using such approaches although pre-dating compact routing
is that of Landmark Hierarchies by Tsuchiya [111]. In this case, each
network node is defined to be a level-0 landmark. It then announces
its presence on a radius r0 by broadcasting a HELLO message contain-
ing its unique identifier, with a TTL value of r0 hops. Accordingly, all
neighbouring nodes lying within this range will store a forwarding table
entry indicating the next hop towards the level-0 landmark. A subset
of the level-0 landmarks is then selected to act as level-1 landmarks and
broadcast their presence on a radius r1 > r0. Restrictions on the choice
of r1’s value are imposed so that a level-1 landmark is always reachable
to every node with at most r0 hops. Similarly to the previous level, all
nodes receiving the level-1 HELLO message, store a forwarding entry
towards the announcing landmarks. This operation can then proceed
recursively until the desired number of levels is reached. The attributed
label to a network node is then the hierarchical concatenation of the
landmark ids at different levels from which a HELLO message was re-
ceived, i.e < Level − 2 id, Level − 1 id, Level − 0 id > in the case of a
three-levelled hierarchy and where the Level-0 id is simply the unique id
of the node. Routing to a destination label then proceeds by following

40 Chapter 2. Obtaining Coordinates for Greedy Routing

the forwarding instructions matching the lowest-level identifier in the
label. Typically the packet would start by heading towards the wide-
region of the destination incrementally closing in on the destination as
lower-level ids are matched.

A similar and more recent example of such an approach is the S4
proposal [78]. In this method, a set of landmark nodes is selected so
that every network participant maintains a forwarding table entry (i.e.
next hop) towards every landmark. In addition, each node s maintains
a next hop entry for nodes within its attributed cluster Ck

Ck(s) = {c ∈ G| dG(c, s) ≤ dG(c, L(c))}, k ≥ 1

comprising all network nodes c belonging to the graph G, that are closer
to node s than k times their distance to their closest landmark L(c).

In the packet header towards a destination, one must then simply
indicate the identifier of the closest landmark to the destination along
with the destination’s unique identifier. The packet can then be for-
warded towards the closest landmark first, by using the globally stored
state. When closing on the destination, the forwarding state per cluster
is then leveraged to avoid passing through the landmark and to also
reduce the routing stretch. Note that when k = 1 the proposal is in fact
equivalent to compact routing in [109]. This method depends however
on the number and quality of the landmarks choice.

2.2.3 Graph drawing techniques

Probably one of the most influential works in the area of geometric
greedy routing is that by Rao et al known as NoGeo [89]. The results
in this proposal were among the first to make a strong argument in
favour of virtual geometric coordinates in sensor networks as opposed
to physical coordinates. The virtual coordinates in this case are ob-
tained through the use of a technique similar to the network of springs
approach mentioned above. In fact, given that the used spring model
relies simply on the elastic force without taking into account the electro-
static repulsive force between the graph vertices, such an approach can
in fact be compared to a distributed multidimensional scaling operation.

In order to initiate the distributed embedding operation, nodes resid-
ing at the border (perimeter) of the sensor network must be identified.
This is achieved by having one central beacon node, broadcast a hello
message counting the number hops as it progresses through the net-
work. Each node farther away from the beacon than any of its two hop

2.2. Embedding techniques in the networking literature 41

neighbourhood then declares itself as a border node. By then having all
border nodes exchange hello messages, a graph distance matrix between
the border nodes is derived. By applying multidimensional scaling on
the obtained matrix, virtual coordinates in a low-dimensional Euclidean
space are obtained for the border nodes. Non-border nodes can then
be attributed initial null coordinates or random ones. The network
of springs emulation begins as described above by having each node
readjust its position according to that of its neighbours. An important
specificity of NoGeo’s network of springs approach is that the border
nodes are anchored to their position (attributed through MDS) so as to
avoid the collapse of all the coordinates to a single point. In a sense the
NoGeo approach can also be apparented to Landmark MDS methods
discussed above. The authors then demonstrate that by using Euclidean
distance for routing greedily on the obtained coordinates, good routing
performances are obtained. Having ourselves implemented and used
this technique, we can assert its good performances on reasonably sized
UDG graphs. The method however has poorer performances on other
types of graphs, especially trees and scale-free graphs, as the quality of
the embedding decreases.

Another approach targeting to relieve such poor performances is the
GSpring proposal [75]. With a few differences, the virtual coordinates
assignment in this proposal is pretty similar to that in NoGeo. The par-
ticularity is that the authors associate the failure of the greedy routing
process (i.e. the dead-end phenomenon) from a node s to a node t with
the presence of node t’s coordinates within the Voronoi cell associated
with s (where the Voronoi cell is computed based on the coordinates of
the direct neighbours only). Therefore, in addition to the distributed
embedding, the authors propose a corrective protocol in which each
node geocasts a message destined to its associated Voronoi cell. In case
an “intruder” node is detected, a repulsive force on the virtual coordi-
nates is then exerted to move the intruder out of the cell (or equivalently
move the cell away from the intruder node). At the network level, such
a repulsive force can act as a “de-concavification” of the general shape
of the network embedding. The greedy routing failure rate reduction
remains however too low for the induced cost of the corrective protocol.

2.2.4 Lipschitz based techniques

One of the most important approaches to greedy routing when relying
on the Lipschitz embedding methods is that of Beacon Vector Routing

42 Chapter 2. Obtaining Coordinates for Greedy Routing

(BVR) [41]. In this proposal, a given number d of landmark nodes
(denoted as beacons in this proposal) are randomly selected and broad-
cast a HELLO message to the entire network. As it progresses, the
HELLO message registers the number of hops traversed. The label, or
in this case coordinates, attributed to each network node is then the
d-dimensional vector reflecting the distances to each of the landmark
nodes in accordance with the Lipschitz idea (and in contrast with the
distance labelling approaches in which the attributed labels are land-
mark identifiers). By using a modified L1 Minkowski distance, greedy
routing proceeds on the obtained coordinates by heading towards the
closest beacon to the destination as long as it is closer to the destination
than to the current node, and by moving in the direction of other bea-
cons once the current node is more in the range of the closest beacon
than the destination is. To the difference of the landmark-based dis-
tance labelling techniques, the success of greedy routing is in this case
not guaranteed. In some cases, the packet could end up at the closest
beacon to the destination as a dead-end. In these cases a scoped flooding
technique is used. A general criticism to this approach is that, similarly
to the compact routing schemes, it requires a rather large number of
beacons to function. This results in the inclusion of a high-dimensional
coordinates vector in the packet header.

Another similar approach is the GLIDER proposal [39] that includes
methods from compact routing to avoid routing failures by alternating
between two routing modes. Initially, the network is divided into clus-
ters, or tiles, by selecting a set of landmark nodes and the Voronöı cell
associated with the node (i.e. the set of nodes closer to the landmark
than to any other landmark) is declared as the landmark’s cluster. Lips-
chitz coordinates are then attributed to each node based on its distance
to nearby landmarks (after centring and squaring operations). The main
specificity of the GLIDER proposal is that the greedy routing based on
the Lipschitz coordinates is only performed within the clusters (i.e. be-
tween two nodes belonging to the same Voronöı cell). This is what the
authors refer to as the local routing mode. The authors’ main idea be-
hind this, is that the difference between the Lipschitz coordinates within
the cell approximate well a landmark based routing in a continuous do-
main that is proven to converge. For the global routing between the
cells, discovery-based or simply source routing could be possible. As
for all the proposals based on landmark nodes, the performances in this
case also depend highly on the quality of the landmark selection.

2.2. Embedding techniques in the networking literature 43

2.2.5 Hyperbolic space techniques

An important effort in the previous years has been invested into greedy
routing based on hyperbolic (or Lobachevsky) geometry coordinates.
As mentioned previously, these embedding spaces present several ad-
vantages probably the most important of which for greedy routing is
the exponential space expansion. This leads to an exponential growth
of the distances the further we are from a reference point. Such a
space reveals particularly convenient when embedding tree graphs as
their number of nodes tends to grow exponentially which would lead to
a compactification of the leaf vertices when embedded in a Euclidean
space. Typically this would lead to greedy routing failures as the direct
distance between two leaf nodes would be smaller than the distance via
the parent nodes. When evaluated in the hyperbolic embedding case
however, the distances between the leaves would also grow exponen-
tially the further away from the root of the tree, thus rendering the
path through the parent nodes greedily more advantageous.

Following this idea, Kleinberg [64] proposes an embedding of graphs
into the hyperbolic plane and proves the success of greedy routing. Note
that the embedded graph however (and that for which the routing is
guaranteed), is in fact only a spanning tree of the graph instead of the
complete graph. By proving that any tree graph admits a greedy em-
bedding (i.e. an embedding guaranteeing the success of greedy routing)
in the hyperbolic plane, the author deduces that by taking a spanning
tree of any graph, greedy routing in the hyperbolic space is guaran-
teed to succeed. The author even proposes a distributed algorithm for
the computation of the virtual coordinates. In [37], the authors crit-
icize this approach, as to be fully correct, it would induce too large
coordinates given the exponential increase of space, leading to exponen-
tially growing numbers as components of the coordinates vector. The
authors then propose an embedding resulting in a more succinct rep-
resentation of coordinates using a complex data-structure they refer to
as the dyadic tree. While acknowledging the theoretical contribution of
these two methods, the proposed solutions are in our view far too com-
plex given the resulting tree-based routing. Therefore, from a practical
point of view, it might be more accessible to a practitioner to simply im-
plement a hierarchical addressing scheme for achieving similar routing
results.

In a different approach to the greedy embedding within a Hyperbolic
space and focusing on the specific case of scale-free Internet-like graphs,

44 Chapter 2. Obtaining Coordinates for Greedy Routing

the authors in [84, 11, 71] leverage real-world datasets and statistical
approaches such as Maximum-Likelihood Estimations to attribute the
node coordinates. The main assumption being that the Internet graph
growth has been “dictated” by a hidden metric-space, of which the au-
thors statistically demonstrate the hyperbolic nature. Such a statistical
approach to the embedding problem is a quite interesting addition to
the panel of existing tools and bares a slight resemblance with the man-
ifold learning methods discussed previously. However, the proposed ap-
proaches are so far too closely tailored to scale-free Internet-like graphs.

2.2.6 Graph sampling techniques and the revival of
trees

Similar to Kleinberg’s idea, other proposed approaches choose to embed
a simplification of the graph such as a spanning tree instead of embed-
ding the entire graph. The main idea being that by selecting a simpler
structured sample of the network, a correct embedding can be more
easily found.

In [20], the authors build a random spanning tree of the graph. Each
node is then attributed n coordinates reflecting distances isometrically
according to what the authors refer to as tree-branches. By then per-
forming a random projection, dimensionality is reduced to a logarithmic
level with a guaranteed stretch according to the Johnson-Lindenstrauss
lemma [61]. Whenever a greedy routing dead-end is reached, the au-
thors rely on tree-based routing as a recovery guaranteeing routing suc-
cess with a reasonable stretch. The modalities of the isometric tree
embedding are however not clear in [20].

Another recent proposal relying on spanning-tree addressing is that
by Zhang et al. [121], where the authors argue against the need of a
geometric, and even a metric space for greedy routing and propose an
embedding of the tree vertices in a semi-metric space. In this proposal.
The embedding technique is a fairly simple traversal and numbering of
the tree branches and guarantees a logarithmic label size and thus a
succinct namespace. By using a distance function somehow related to
the L∞ norm (by taking the minimum absolute difference instead of the
maximum), the authors guarantee a successful greedy routing process.
Once again, although such a result is a novel contribution to addressing
and routing panel of solutions, its benefits are mainly equivalent to those
of hierarchical addressing.

2.3. Summary 45

2.3 Summary

As seen above, a natural mismatch exists between the theoretical ap-
proaches to graph embedding and the practical takes on the problem
within the networking field. One can see for example that spectral em-
bedding methods along with Multi-Dimensional Scaling techniques have
been rather snobbed by practitioners. This is most probably due to the
centralized nature of these methods as they require a global knowledge
as well as a centralized operation.

An important property of the Multi-Dimensional Scaling techniques
however is their ability to deal with asymmetric, incomplete and multi-
perception data due to their historic development within the psycho-
metrics and social sciences fields where such data sets are frequently
encountered. Such a property is therefore of high interest to us, as we
later link some of the problems addressed in this work to others iden-
tified in those fields. Therefore, Multi-Dimensional Scaling embedding
techniques will be playing an important role in the rest of this thesis
independently from their global knowledge as well as centralized oper-
ation requirements. This is also mainly due to the fact that we target
to establish a proof of concept solution to the problems addressed in
the coming chapters, rather than a deployable one. Nevertheless, the
proposed solutions based on centralized MDS methods could still be
later-on distributed in a similar way the NoGeo proposal does distribute
the embedding error minimization operation.

46 Chapter 2. Obtaining Coordinates for Greedy Routing

Chapter 3

on Guaranteeing packet
delivery in greedy
routing

47

48 Chapter 3. on Guaranteeing packet delivery in greedy routing

3.1 Introduction

After more than a decade of research, geometric routing have become
an attractive option for novel networks. Compared to their stateful
counterparts, geometric routing protocols entail a low route-discovery
overhead and are robust to topology changes. Most importantly, nodes
do not need to maintain destination routing information and forward
packets based only on local state. These features sum up to better scal-
ability, energy conservation and increased robustness in face of volatile
network conditions.

In geometric routing a rather simple stateless distributed algorithm
routes messages from node to node along a source-destination path,
based only on position information (node coordinates). A greedy rout-
ing algorithm forwards every packet to the node in the one-hop neigh-
bourhood, which lies closest to the final destination.

In order to enable greedy routing, however, node coordinates need to
reflect the relative network distances between nodes. As the assignment
of node coordinates might not be a perfect approximation of network
distances or due to the presence of obstacles, in practice, simple greedy
routing is not always guaranteed to work. Depending on the geome-
try of the resulting network graph, the density of the network and the
presence of void regions in the graph, the forwarding process might halt
at local minima nodes with no neighbour closer to the destination than
themselves.

In this chapter, we explore the effects of clustering as a low cost
approach for improving the performance of greedy routing. The key
idea is to re-use the connectivity information acquired during the pre-
processing phase, and construct a graph of interconnected clusters that
form a reduced connectivity topology. Node-local routing decisions
thereafter, by means of the same greedy algorithm, can be performed
either at the base level (based on actual node coordinates) or at the
cluster level (based on cluster coordinates). The assumption we make
and empirically evaluate in this work is that local minima and void re-
gions in the connectivity graph of a sensor field (base level) are likely to
be transposed or reformed at the cluster level view, which when com-
bined with routing at the base level graph are often overcome. Our
aim is therefore to measure to which extend such additional low-cost
embeddings would improve the greedy routing performance compared
to a single high-dimensional one. As the work in chapter can be seen as
an extension to the classical greedy routing technique, a main concern

3.2. Greedy Routing Dead-End Problem 49

here is then to be compliant with al types of networks, including mainly
sensor networks, as they make at most use of greedy routing.

The remaining of this chapter is organised as follows. We start by
describing the problem of greedy routing dead-ends due to local minima
in section 3.2. We then describe the various approaches in literature in
section 3.3. Section 3.4 provides a description of our framework for
deploying clustering and constructing hierarchical cluster views (levels)
for greedy routing. In Section 3.5 we provide an evaluation over multi-
ple configurations, of clustering methods, coordinate embeddings, and
topologies, reporting a significant improvement in the effectiveness of
greedy routing. These results essentially ratify our vote for simplicity.
Section 3.6 provides some general insightful conclusions on our observa-
tions, and finally section 3.7 summarises and concludes the paper.

3.2 Greedy Routing Dead-End Problem

As previously detailed about the greedy routing algorithm, an impor-
tant condition for the loop avoidance of the routing procedure is that a
node forwards a packet to a neighbour only if the neighbour is closer
to the destination than the current node. Therefore, in case the com-
puted virtual coordinates do not correctly reflect the order of distances
between all nodes, a situation where a node finds itself closer to the
destination than all of its neighbours might frequently happen. Figure
3.2 shows several examples of such a situation according to different
embedding methods. In this figure, an example network of 1920 nodes
was generated using the unit-disk graph generation model, in which net-
work nodes are randomly spread around a surface, and two nodes are
considered to be connected if they lie within a threshold distance from
each other. This network with the “physical coordinates” is displayed
in figure 3.1a along with an example of a failed greedy route based on
Euclidean distances on the physical coordinates. As can be seen, the
node at which the routing failure occurs is closer to destination than
all of its neighbours due to the presence of a void area between it and
the destination. More precisely the greedy routing failure is due to the
shape of the face (i.e plane area) enclosed by the void that presents
a concavity at the failing node. In case the void region would have
been convex at the failed node, a neighbour closer the destination could
always be found.

In fact, greedy routing performs better when based on virtual coordi-

50 Chapter 3. on Guaranteeing packet delivery in greedy routing

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

START

DESTINATION

(a) Generated network using unit-disk graph method with
1920 nodes

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

START

DESTINATION

(b) NoGeo 2D Embedding and example greedy failure (Em-
bedding stress 0.3125)

Figure 3.1: Various greedy routing dead-end examples

3.2. Greedy Routing Dead-End Problem 51

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15
START

DESTINATION

(a) SMACOF 2D embedding and example greedy failure
(Embedding stress 0.119)

0 5 10 15 20

−12

−10

−8

−6

−4

−2

0

2

4

6

DESTINATION

(b) Zoom on the SMACOF dead-end case. One can see
that the slightest distortion in the embedding can lead to a
dead-end, although globally the path was valid

Figure 3.2: Various greedy routing dead-end examples

52 Chapter 3. on Guaranteeing packet delivery in greedy routing

C

B

D

A

F

E

G

Figure 3.3: Example of greedily unembeddable graph in 2D Euclidean space

nates as the graph embedding techniques usually produce embeddings
with (mostly) convex void regions as can be seen in figures 3.1b and
3.2a. In figure 3.1b, an embedding of the graph in a two-dimensional
Euclidean space is produced using the NoGeo [89] technique. The border
nodes used for this embedding are those indicated by the blue squared
nodes in figure 3.1a. As can be seen from this embedding figure, the
NoGeo method forces the virtual coordinates to adopt a (excessively)
convex shape. This however does not solve all the greedy routing dead-
end problems as the network seems to fold on itself, thus producing
a concave external face (the white space surrounding the graph). In
figure 3.2a a better embedding is obtained when using the metric mul-
tidimensional scaling embedding technique via the SMACOF algorithm
[12]. However, as can be seen from the example failed greedy route in
this figure and in figure 3.2b where a closer look at the failure point is
shown, the slightest misrepresentation of the network distances might
lead to a greedy routing dead-end, even if the route to the destination
was globally on the right path.

Such cases of greedy routing failure are often due to distortions be-
tween the embedding space distances and the real network distances.
Indeed as discussed in the previous chapter, an exact representation of
the network distances in a low-dimensional Euclidean space is in most
cases practically infeasible. This leads to situations as in the SMACOF
embedding case of figure 3.2a (in which the Kruskal embedding stress I
is 0.119 i.e. reasonably low) where a slight deviation of the embedding
distances can ruin a globally satisfactory result. Therefore, one obvious
measure against the greedy routing dead-ends might consist in obtain-
ing better quality embeddings that better preserve the order between
the original network distances. This can be achieved either by adopt-
ing a better embedding techniques, as it was the case for our example

3.3. Related work 53

network in which the centralized stress minimization SMACOF method
performs better than the decentralized NoGeo, or, in case the embed-
ding method is fixed, by increasing the dimensionality of the target
embedding space. Indeed adding more dimensions to the target space
offers more room and thus possibilities of placing the network nodes
differently, hence resulting in a decrease in the embedding stress (or
distortion) and therefore in a decrease of greedy routing failures.

Note however than in some cases, no matter the quality of the em-
bedding, greedy routing failures are deemed to be unavoidable. This
is due to the fact that certain families of graphs cannot possibly be
embedded in some target space so that a perfect greedy routing, where
all routes between all pairs of points are correct, is possible. This has
for example been demonstrated by Papadimitriou et al [83], that have
shown that the bipartite graph K1,6 (star graph with one centre node
and six neighbours) and its generalization, the family of bipartite graphs
Kk,k+5 do not admit an embedding in the two-dimensional Euclidean
space allowing for a successful greedy route between all pairs of points.
The example case of the star graph is shown in figure 3.3. In the em-
bedding of the graph in the figure, one can see that no greedy route
is possible from node E to G as E is closer to the destination than its
neighbour A. An intuitive demonstration of the infeasibility of an em-
bedding guaranteeing successful greedy routing in this case, is that in
order for the routes between any two nodes X, Y different from A, to
pass through node A in both directions, then the line segment [X,Y]
must be the hypotenuse of the triangle XAY hence inducing that the
angle ∠XAY must be superior to π

3 . This therefore limits the possible
neighbours of A to five as the sum of all adjacent ∠XAY angles must
be inferior or equal to 2π.

3.3 Related work

Early work on geometric routing was focused on physical geographic
coordinates (e.g. [63, 13, 73] and other), which fuelled research on lo-
calisation and approximation of the actual network node coordinates
from partial geo-positioning information [100, 36, 15, 105]. As node co-
ordinates involved geo-positioning, addressing routing problems related
to the morphology of the coordinate space (presence of void areas) led to
hybrid routing approaches alternating between the classical greedy rout-
ing mode and another recovery mode that is enabled whenever a greedy

54 Chapter 3. on Guaranteeing packet delivery in greedy routing

routing dead-end is met. One example of such a recovery method is
scoped flooding that is notably used in [89] where the network node at
which the greedy routing dead-end occurred simply broadcasts (floods)
the packet to all of its direct neighbours that in turn are requested to
broadcast it to all their neighbours until the number of broadcast hops
reaches a fixed threshold (hence the scoped denomination). The hope
is that one of the flooded packets would be able exit the void’s con-
cavity and reach a point where a greedy route towards the destination
is again possible. This method however offers no guarantee that the
packet would not, after a few greedy steps, fall again into the same
local-minimum and poses additionally the problem of packet replicas,
as for each greedy dead-end encountered towards the destination, mul-
tiple replicas of the packet are created that in turn can generate other
replicas in dead-end situations.

Another one such recovery mode is the quite famous technique of
face routing [13, 63, 43, 74]. In this particular recovery mode, the con-
nectivity graph is modified (by ignoring some of the links) in order to
obtain a planar graph, i.e a graph drawn on a euclidean two-dimensional
plane so that none of its edges intersect in points other than the graph
vertices. This graph planarization is usually achieved via distributed al-
gorithms computing variants on Gabriel Graphs and Delaunay triangu-
lations. Whenever a greedy routing failure is encountered, face-routing
then proceeds by routing along the interior of the faces of the planar
graph (by following the right hand rule) and switching between faces
only when a face closer to the destination node is encountered. In the
most classical implementation, the distance of the face to the destination
is determined by the distance of the point of intersection of one of the
face edges with the straight line between the source and the destination
coordinates. Note that when given a planar-graph, face-routing meth-
ods could be applied on their own as a routing technique, independently
from greedy geometric routing. Their major disadvantage then being a
rather large worst case routing stretch, in addition to the requirement
of a planar graph.

While geographic positioning coordinates provide a natural met-
ric space for geometric routing, virtual coordinates offer an alternative
whereby the coordinates assigned to nodes are not implied from physical
locations but can be chosen to fit certain criteria. Such criteria typically
include the shape and dimensionality of the coordinate space, the con-
vexity of void regions, and other, which aim to enhance the performance
of greedy routing itself without resorting to face routing.

3.3. Related work 55

The use of solely virtual coordinates for greedy geometric routing be-
came popular with the NoGeo[89] proposal. Due to its elegant simplicity
and good performance, this seminal work has been used thereafter as
a reference system for comparisons. At the same time it also fuelled
further research on understanding under what conditions (topology of
the graph, adjustments of the routing metric), low-dimensional graph
embeddings on the plane, guarantee successful greedy routing [83, 34, 5].
A general insight in these works is that not every network graph admits
to a Euclidean embedding that guarantees greedy routing as previously
discussed.

A notable example of a virtual coordinates method where a better
embedding is searched is GSpring [75] discussed in the previous chapter.
In this approach the virtual coordinates are initialized according to a
model slightly different from the one in [89] but still in the framework
of network or springs graph drawing methods. The specificity of the
GSpring approach however is that the embedded network nodes con-
tinuously try to better the quality of the embedding by detecting and
correcting greedy routing failures. This method however may suffer
from oscillation issues, as different nodes’ corrections can be conflict-
ing thus resulting in a perpetual oscillating coordinates. Moreover, the
correction mechanism in this approach is dependant on the problem to
be corrected. Indeed, in order to correct the embedding for a better
functioning greedy routing, this approach relies on greedy routing to
perform the geocast operations, hence no correction could be possible
in the case of a highly dysfunctional routing.

In the proposal by Kleinberg [64], discussed in the previous chap-
ter, the author proposed to embed network graphs into the hyperbolic
space and proved that any graph admits an embedding guaranteeing
the success of greedy routing between all pairs of nodes. He also pro-
poses a distributed method for computing the node coordinates in the
hyperbolic plane. However, and as pointed by [37], the major drawback
of using hyperbolic virtual coordinates is that the coordinate values
would also increase exponentially, thus requiring an addressing scheme
with Ω(n log(n)) bits in the worst case to encode the hyperbolic vir-
tual coordinates. In their paper [37] Eppstein and Goodrich propose
a more succint representation of the virtual coordinates requiring only
Ω(log(n)) bits for every coordinate through the use of a complex data
structure denoted as dyadic tree.

Although these two methods brought significant theoretical results
to the field of greedy geometric routing, they do not seem to be picked

56 Chapter 3. on Guaranteeing packet delivery in greedy routing

by the practician community. This is not only related to the theoretical
complexity of the proposed methods, but also to the fact that they both
guarantee in reality a greedy routing following paths along the spanning
trees of network graphs. This is to say that, in practice, a more classical
approach of attributing hierarchical addresses (such as IP addresses) to
the network nodes along the spanning tree, and relying on hierarchical
tree distance (or longest prefix-match) method would achieve the same
goal. Indeed, provided that the hierarchical addresses are correctly at-
tributed, such a greedy routing technique would guarantee a successful
route between all pairs of nodes without requiring any additional state
than the list of neighbour nodes. While acknowledging the significance
and theoretical foundations of these contributions, in this chapter we
chose to empirically explore if simple and computationally more sus-
tainable tactics that lend to immediate deployment with different types
of networks including small sensors, can yield comparable effects (i.e.
overcome local minima, nullify void regions). As we show later, our first
results support this intuition.

Finally a work, which bears a notable relevance to the one presented
here, is presented in [39]. The authors exploit a clustering method to
divide a network in compartments (tiles), based on which they factor
the routing process in inter- and subsequently intra-compartment rout-
ing. The clustering method creates a Voronoi complex around a set of
appointed landmarks (cluster heads), which then function as “attrac-
tors” for the different segments of routing paths. A cluster graph is the
result of a Delauney triangulation among the landmarks.

Our work goes beyond a specific cluster mechanism and is more
broadly scoped on the effects of clustering. From this end, we observed
that it is actually more effective to start routing at the base level and
resort to the cluster level only when local minima are found, by con-
trast to the strategy in [39] where routing always starts at the tile-level.
Another realisation from our exploration is the un-necessitated need for
landmarks to achieve the path-curving effects of [39]. Finally we do not
resort to explicit planarisation of the embedded coordinate space.

3.4 A cluster-based approach

In cases of an already deployed geometric routing system, the only pos-
sible corrective measure that could improve the quality of the greedy
embedding would be to increase the dimensionality of the target geo-

3.4. A cluster-based approach 57

−25 −20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

25

(a) MDS Embedding of network with 1000 nodes and re-
sult of agglomerative clustering with 100 obtained clus-
ters

−10

−5

0

5

−10

−5

0

5

10

(b) MDS Embedding of the resulting cluster graph (vertex colours cor-
respond to the cluster colour in (a))

Figure 3.4: Example of detail-level views of the network coordinates

58 Chapter 3. on Guaranteeing packet delivery in greedy routing

metric space. This would reduce the distortions between the embedded
and network distances and would therefore reduce the greedy routing
errors.

Our goal in the rest of this chapter is to evaluate the feasibility of
another, non-explored, embedding enhancement method in such scenar-
ios, when relying on clustering. Our intuition is that by routing greedily
on a coarser view of the network, the participating nodes can take deci-
sions based on regional proximities allowing to oversee small disparities
between the embedded and the network distances. Said differently, pic-
turing the network graph at the cluster level should allow to blur away
small void concavities at the lower network level similar to the one in
figure 3.2b. An example of this intuition is pictured in figure 3.4, where
a multi-dimensional scaling embedding of a 1000 nodes network is first
shown in figure 3.4a along with the result of an agglomerative clustering
procedure. In figure 3.4b, the embedding with the same method of the
resulting cluster graph (in which two clusters are neighbours if two of
their nodes are neighbours at the flat level). As can be observed from
the figure, the same structure of the network graph is extracted after
the embedding, however stripped out of low-level details. Our intention
therefore is to exploit the different details capability offered by the com-
bined clustering and embedding in order to obtain better greedy routing
results.

We will experimentally demonstrate in the following that relying
on the clustering approaches, for bettering the embedding qualities,
achieves better routing results than the dimensionality increase ap-
proach, at a similar cost.

To test our ideas and hypotheses we developed a simple framework
that enabled us to experiment with different clustering algorithms and
embedding approaches in Matlab. The main components of this frame-
work, which are detailed in the following sections are responsible for the
creation of clusters, their embedding in a virtual coordinate space, the
management of routing state, and finally for applying a greedy routing
strategy based on the selected distance metric.

3.4.1 Construction of a cluster graph

Our method requires a cluster graph view of the network. Most of
the proposed virtual coordinate schemes rely on a global preprocessing
phase to discover the network connectivity, and thereafter a local routing
phase where a greedy algorithm is used to forward messages across the

3.4. A cluster-based approach 59

network. During the initial phase a cluster graph can be produced by
assigning the network graph nodes to groups (clusters) and then consider
the adjacency relations between the different formed clusters.

One can use any of the graph clustering techniques available in liter-
ature [98], such as spectral clustering, minimum-cut based approaches,
agglomerative methods, or other. However, a key requirement for effi-
cient application scenarios such as wireless sensor networks, is that the
clustering algorithm is simple enough for fast and distributed computa-
tion. To this end, clustering protocols from the wireless sensor networks
literature such as [76, 6] can be applied. Naturally the quality of a clus-
tering method in place, will affect the intra-cluster density as well as
the cluster graph connectivity, and therefore is likely to influence the
performance of greedy routing. As our goal is to study the average
qualitative effects of clustering, rather than to seek a highly effective
clustering algorithm, we experiment with two very different algorithms
(of diverse sophistication) and multiple seeded configurations. This en-
abled us to produce a broad variety of cluster graphs for the evaluation.
The algorithms we used were a spectral clustering variant of [51, 22],
and at the other end of the range we employed a simple agglomerative
approach, both of which are discussed further in the evaluation section.

3.4.2 Cluster graph embedding

In the second step, we need to embed the cluster graph so as to be able
to perform greedy routing on it. Here, it would be possible to produce a
new embedding into any metric space (not necessarily Euclidean) and of
any dimensionality. However proposing a new embedding is beyond our
scope as it would bias our objective of assessing the effects of clustering
over existing systems. For this reason, we apply the same embedding
technique that is being used at the base level. At the same time, as
we discuss later on, this enables multi-level scaling and is aligned with
our second goal to keep the deployment cost minimal by re-using the
existing algorithmic code-base.

Our reference systems have been NoGeo, classical MDS and metric
MDS and therefore we resort to the same embedding techniques to pro-
duce the embedding of the cluster graph in a d-dimensional Euclidean
space (d being equal to the dimensionality of the base graph embed-
ding). For more information on these systems we refer the reader to
chapter 2 as well as [89, 12]. At the end of this process each cluster re-
ceives a coordinate in a metric space, such that the same greedy routing

60 Chapter 3. on Guaranteeing packet delivery in greedy routing

Network node Gateway node

(2,1)

(2,2)

(1,2)

(3,1)

(3,2)

a

cluster A address: (4,1) cluster B address: (4,2)

cluster C address: (4,3)

(a) Network and cluster addressing

(b) Neighborhood information at node a

(2,1)

Cluster Gateway

(4,2) (3,2)

(4,3) (3,1)

(2,2)

Flat Level
Neighbour Table

Cluster Level
Neighbour Table

Figure 3.5: Network and cluster Graph embedding example

algorithm can be performed interchangeably on the cluster graph and
the node graph.

3.4.3 Cluster-level state

In our framework we do not rely on cluster heads. Instead all members
of a cluster maintain state that allows them to share the same knowl-
edge about the cluster. This avoids the operational dependency on
particular nodes as well as the need for additional election algorithms.
Specifically, each node maintains the coordinates of its cluster in the
embedding of the cluster graph, and the cluster adjacency information
of neighbour clusters. The latter consists of the neighbour cluster coor-
dinates alongside a respective inter-cluster gateway’s coordinates. An
inter-cluster gateway is any network node in a cluster that has at least
one neighbour in another cluster.

Figure 3.5 exemplifies the overall neighbourhood information stored
at each node for the base level and the additional cluster level. Note that
the cluster-level information should not impose any scalability problems
as it would sum up to O(k) (k being the number of neighbour clusters –
independent of the network size, and related to the density of the graph).
An evaluation of the memory cost entailed is provided in Section 3.5.4.

3.4. A cluster-based approach 61

3.4.4 Operation of greedy routing

In order to enable greedy routing at the cluster level, the packet header
has now been extended so as to contain both the destination node’s
coordinates in the base level embedding, as well as those of its cluster
in the embedding of the cluster graph.

Routing at the cluster level

Given a destination cluster coordinates a forwarding node first computes
the distance from its own cluster. It then selects among its neighbour
clusters the one with the smallest distance to the destination’s cluster.
If the current cluster is closer to destination than the selected neighbour
cluster, a stop condition is reached at the cluster level (in accordance
with the basic greedy algorithm). In order to reach a selected neighbour
cluster, a node needs first to route greedily to the respective gateway
node in its own cluster. Hence the gateway’s coordinates are prepended
in the packet that is greedily forwarded to it. Finally, at the neighbour
cluster’s gateway node the temporary coordinates are removed and for-
warding towards the destination coordinates is resumed.

Note that a stop condition might also be reached in case the neigh-
bour cluster’s gateway is not greedily reachable. Such a phenomenon
may occur if the clustering approach introduces concave void regions in
the intra-cluster graph.

Cross-level routing

The benefits of clustering come into effect when one combines greedy
routing at the cluster level with routing at the base level. We are cur-
rently considering two possibilities, in the first, denoted as top-down,
greedy routing starts at the cluster-level and concludes at the base level,
while in the other, denoted bottom-up, routing starts at the base level
and, if a local minimum is encountered, the algorithm tries to progress
further at the cluster level.

In the top-down approach, even if the destination cluster is reached,
routing has to always switch to the base level for intra-cluster delivery
to the destination node. By contrast in the bottom-up approach, it is
likely that routing is concluded at the base level (if no local minima are
encountered) without switching to the cluster level graph.

A third possibility would be to continually alternate between the two
levels, whenever a local minimum is encountered. However, unless some

62 Chapter 3. on Guaranteeing packet delivery in greedy routing

B

A

C

D

a

b

d

c

cluster B

cluster A

cluster C

cluster D

(a) Embedding at the flat level (b) Embedding at the cluster level

network link

network path

Figure 3.6: Greedy routing loops between network levels

additional sophistication is introduced (constraints), this behaviour can
lead to routing loops as exemplified in Figure 3.6. Node a which is a
local minimum at the base level (Figure 3.6.a), wishes to greedily route
to node d. By switching to the cluster level and using the cluster level
embedding of Figure 3.6.b, greedy progression is possible and node a
forwards the packet to cluster B, i.e. at gateway node b. However,
cluster B is a local minimum at the cluster graph, and routing at this
level reaches a stop condition. Switching back to the base level, will
result in b forwarding the packet back to a, and an infinite loop is
created. Clustering in this case will not solve the problem. To avoid
worsening the problem either, for now we forbid the switching between
the two levels more than twice, by nullifying the destination cluster’s
address in the packet.

3.4.5 Multiple cluster levels

The practise that we have described so far can be repeated to introduce
additional cluster levels, by recursively clustering over the cluster graph.
The greedy routing would function in a similar way to the two-level case,
however, the gateway nodes between clusters at the third level are in
fact clusters as well (of level 2).

The rationale is that while the first cluster level performs some de-
gree of “averaging” over the network graph connectivity and “smooth-

3.5. Evaluation 63

ing” the concave voids, the additional clustering further refines the ab-
stract topology by averaging and smoothing among cluster groups. This
would effect a more gradual (as opposed to sudden) bending of the (Eu-
clidean) path between two nodes, however at the cost of higher path
stretch. In our evaluation we experimented with up to two levels of
clustering, in order to discover the degree of additional improvement
compared to the cost of this process.

Another approach when experimenting with multiple cluster lev-
els would be to use more than one cluster graphs in parallel, at the
same level (each produced with different clustering method or the same
method with a different seed). Using a copy and branch operation dur-
ing the switch to the cluster level, greedy routing would then be carried
out in both cluster graphs. The idea would be that while routing along
one cluster graph might reach a stop condition, it may progress along
the other. In case the packet gets delivered along both paths the des-
tination would eliminate the copies. This approach however requires
further investigation in regard to choosing the right action policy when
stop conditions are met. We have not experimented yet towards this
direction.

3.5 Evaluation

In this section we present the results of exploration with clustering.
We report on the performance improvement observed (in finding greedy
paths) compared to three reference geometric embeddings, namely No-
Geo, classical MDS and metric MDS. We also examine the overhead
of clustering regarding the additional per-node state and the average
per-path routing stretch.

3.5.1 Experimental set-up

All simulated topologies have been produced using the Unit Disk Graph
approach [23], by randomly scattering nodes on a fixed size grid and
establishing a link between two nodes whenever a minimum threshold
distance exists between them. The number of nodes in the topologies
range from 500 to 5000, incremented in 500 nodes steps. The tests
are therefore repeated as a function of network size, where we keep the
graph density constant: average node degree 7 (this degree exhibits a
reasonable number of route failures in the base embeddings to allow
for comparison). We also conducted tests as a function of the network

64 Chapter 3. on Guaranteeing packet delivery in greedy routing

density, where we keep the network size fixed at 2000 nodes and vary
the average node degree (by changing the Unit Disk radius).

The two MDS systems were based on the Matlab implementations,
while the NoGeo system was based on a simulator running the network
of springs method described in [89].

3.5.2 Clustering algorithm used for the tests

As we are interested in exploring the effects of clustering in general
rather than focusing on a specific clustering approach, we have used
two diametrically opposite clustering methods in terms of sophistication.
This should provide us with some boundary insights on the performance
variability in regard to clustering method sophistication.

The first is a centralised spectral-clustering algorithm [51, 22] that
tries to find optimal clusters following a relaxation of the normalized
minimal cut problem through an eigen-decomposition of the Laplacian
matrix discussed in the previous chapter. This method relies on knowl-
edge of the graph’s adjacency matrix.The second is a simple distributed
agglomerative clustering method that creates clusters in a stochastic
manner. First, a “root” node initiates the cluster formation by broad-
casting a cluster-join to its k-hop neighbours (where k is set in advance).
Nodes that are not already members of a cluster, upon receiving the in-
vitation will join the cluster. Then a new root node is chosen in the
proximity of the last formed cluster, and the operation repeats until all
nodes are assigned to a cluster.

In all tests the generated cluster graph is embedded in a 3-dimensional
Euclidean space.

3.5.3 Greedy routing performance

To evaluate the routing performance, we forward greedily a packet from
every node in the network to all other nodes (N × (N − 1) routes for a
network of N nodes), and we monitor the percentage of those packets
that failed to reach their destination. We call this metric Greedy Failure
Rate (GFR), and we plot it as a function of network size and network
density. The results shown in the figures are averages over 10 runs with
topologies of same characteristics (network size and density).

One first general observation regarding the cross-level routing, con-
firmed in all plots, is that the bottom-up strategy always yields better

3.5. Evaluation 65

Figure 3.7: NoGeo greedy route failures with spectral clustering

Figure 3.8: NoGeo greedy route failures with agglomerative clustering

results than the top-down approach. This validates our intuition ex-
plained in section 3.4.4.

Starting with the NoGeo system, Figure 3.7 reports the GFR as a
function of the network size, when the NoGeo embedding was used in
combination with spectral clustering. Figure 3.8 reports on the same
test when the agglomerative clustering was used instead. In each of
them, we practically evaluated two orthogonal aspects: one being the

66 Chapter 3. on Guaranteeing packet delivery in greedy routing

Figure 3.9: Classical MDS embedding using spectral clustering

Figure 3.10: Metric MDS Greedy routes failure using agglomerative clus-
tering

absolute performance improvement (GFR reduction) when we employ
clustering over the base embedding, and the second is how this improve-
ment compares to the performance of a more accurate base embedding
in a higher dimensional space (3D, 6D and 9D curves in the figures).

One sees a notable improvement from the introduction of cluster-
ing, which for the various network sizes, ranges between 15% and 25%

3.5. Evaluation 67

Figure 3.11: Average stretch using NoGeo embedding

Figure 3.12: Average node degree variations on a 2000 nodes network

when one cluster level was used, and between 20% and 35% when two
cluster levels were used. An interesting observation is that between ag-
glomerative and spectral clustering there is no substantial difference in
the average GFR, which suggests that the measured effects might be
statistically quantifiable for different embedding systems, irrespective
of clustering method. However, such a hypothesis needs more thorough
examination with additional clustering methods. The variance in the
datasets (may be perceived in the smoother curves) for the GFR, was
smaller in the case of spectral clustering, most likely because of its less

68 Chapter 3. on Guaranteeing packet delivery in greedy routing

Figure 3.13: Average storage overhead per node for 1 and 2 cluster levels

stochastic nature (in generating cluster graphs).
Looking at the groups of curves in the same two figures, one can

observe an asymptotic reduction of the GFR as the dimensionality of
the base embedding (NoGeo) increases from 3D to 9D, and which is
further “magnified” in larger networks. An analogous pattern seems
to exist as the number of cluster levels increases in all configurations.
A noticeable difference, between these two groups, is that the NoGeo
lines are curved with a monotonically decreasing angle, compared to
the more linear clustering performance curves. As a result although
clustering yields better results than high dimensional embeddings at
the beginning, as the network size increases (with a fixed density), a
high-dimensional embedding scales better.

Analogous improvements and observations are reported in Figures
3.9 and 3.10, in comparison to the classical MDS and metric MDS base
embeddings respectively. As the results were similar in all configura-
tions, we only show metric MDS with agglomerative clustering, and
classical MDS with spectral clustering. An additional observation here,
in the case of classical MDS (Figure 3.9), is that clustering performs
substantially better. On the other hand, increasing the dimensionality
of the base embedding does not noticeably improve the performance,
rather after a certain network size it actually worsens it.

Looking at the consequent average route stretch factor (Figure 3.11)
of the successful greedy routes, as anticipated (and conformed also in

3.5. Evaluation 69

[39]) the different clustering methods, transparently from the greedy
algorithm, curve the Euclidean paths in order to get round the local
minima. Yet, the increase of the stretch factor is quite small, i.e. ≤ 0.15
of the respective stretch of the 6D and 9D NoGeo, and ≤ 0.09 of the
3D NoGeo.

Regarding the network density, Figure 3.12 reports on the perfor-
mance of the same configurations as before, as a function of the net-
work density in the case of a NoGeo embedding. Clustering in this case
provides a significant performance improvement in networks with an av-
erage degree below 11. Beyond this threshold, clustering still performs
better, however with a minimal improvement, as the performance of all
configurations converges asymptotically to near-zero GFR.

3.5.4 State overhead for clustering

To assess the overheads introduced by using our framework for sup-
porting clustering in geometric routing, we assume the following simple
reference model for comparisons: For addressing across l hierarchically
organised cluster levels, each embedded in a d dimensional space, a
node’s addressing information occupies l×d units in the packet header.
This is required to enable greedy routing decisions and distance calcu-
lations at all different levels (1 unit comprising the space requirement
for a coordinate, in one dimension).

To increase on the other hand the performance of greedy routing us-
ing an embedding approach (without clustering), one can increase the
dimensionality of the embedding space. An increasing of the dimension-
ality to d′ = (l × d), would impose the same addressing space require-
ments as l clusters (same packet overhead, and each neighbour record
in the adjacency matrix of a node, would occupy the same amount
of space). This analogy will be the basis for our memory overheads
comparisons (multiple clustering levels versus a high dimensional base
embedding). It practically means that we would like to compare 1-level
clustering regime with a 6D base embedding of the network graph, and
2-level clustering with a 9D base embedding of the network graph.

We then calculate the space overheads of the different clustering
configurations evaluated earlier as follows: For a d-dimensional base
embedding of a network graph with approximate density (node degree)
k, the average amount of adjacency state maintained in each node is (k+
1)×d. In the case of clustering with our framework, using l cluster levels,
the same d-dimensional embedding across all levels, and an average

70 Chapter 3. on Guaranteeing packet delivery in greedy routing

node degree ki for the graph in level li, the amount of adjacency state
maintained in each node totals l × d +

∑l
i=1(2 × ki × d) (multiplier 2

represents the fact that for each cluster adjacency record a node needs
to store both the cluster address and a respective gateway address).

Figure 3.13 reports the resulting averaged estimates over the 10
topologies, for each of the configurations discussed in the previous sec-
tion. In all cases but one, the memory cost does not vary significantly as
the network size increases. The exception were the configurations where
agglomerative clustering was used. The exception of agglomerative clus-
tering can be explained by the variability in the clustering performance
for the agglomerative methods, which leads to cluster graphs with dif-
ferent average node degrees. This result suggests that the choice of
clustering method has a variable impact, but a careful choice of cluster-
ing method can retain the scalability in regard to network sizes.

A comparative examination of the plots reveals that the overhead
of one level of spectral clustering when compared to a 6D embedding
would amount to having each node store less than two additional 6D
neighbour addresses (10 additional unit coordinates). In the case of a
2-leveled spectral clustering compared to a 9D embedding, the overhead
amounts to storing three additional 9D addresses. On average, one sees
an overhead of approximately 8-15% in the case of spectral clustering
and 15-35% in the case of agglomerative clustering. This overhead be-
comes 15-35% and 20-70% respectively, when comparing 2-level cluster-
ing with the 9-dimensional base embedding. At the same time the cost
from a 6-dimensional base embedding to a 9-dimensional one increased
by 50%. Therefore, roughly we may say that the overhead of adding
clustering levels increases twice as fast as the cost of the corresponding
dimensionality increase in the base embedding.

3.6 Discussion

3.6.1 On the general effects of clustering

Clustering in greedy geometric routing has the potential of indirectly
creating two interesting effects, which motivated our work. Both of
these effects are confirmed by our results.

The first is on void regions that are the product of an embedding of
the network graph in a low dimensional space. On one hand the cluster
graph essentially “thins” the densely connected regions of the network
graph, which results in a more uniformly connected and spread-out sub-

3.6. Discussion 71

Cluster 1

Cluster 2

1.3

 2.1

A
B

(a) Classical hierarchical
addressing

Cluster (1,0)

Cluster (2,0)

(1,0),(3,2)

(2,0),(3,3)

A
B

(b) Our coordinates hierearchies

Figure 3.14: Difference from classical hierarchical addressing

graph. Thinning happens as the clustering process “packs” these regions
inside cluster nodes. As a result of this the routing process is factored in
two levels: (a) within clusters where the dense connectivity is more likely
to yield successful routing under a greedy regime, and (b) across clusters
whose more uniform connectivity and arrangement in their coordinate
space reduces areas of local minima and makes greedy routing more
effective. From a macroscopic perspective the overall effect can be seen
as a thinning and zooming out process that dilutes void regions.

On the other hand clusters function as attractors that curve the tra-
jectory of routing paths. To understand how this works imagine that
in greedy routing the destination applies a pulling force on the packet,
which in every forwarding decision pulls the packet a little bit closer.
Then every time routing decisions are transposed to the cluster level a
second force component (at the direction of the cluster) is temporarily
added to the destination pulling force, influencing the resulting motion
of the packet along the norm of the net addition of the two components.
As this happens implicitly and still under a greedy regime, it is signifi-
cantly less complex and problematic than face or other hybrid routing
methods for recovering from local minima1. This latter effect, which is
a direct consequence of the first, has also been pointed in [39].

The confirmation of the positive impact that these effects have on
greedy routing has inspired some ideas for follow up work. The first
relates to resolving the problem of routing loops in a regime that would
allow continuous hopping between embedding levels (see section 3.4.4).
This practically would make the benefits from the first effect more pro-

1Although to conclude the absolute superiority we would have to design a suitable
routing performance benchmark for this comparison

72 Chapter 3. on Guaranteeing packet delivery in greedy routing

nounced. One possibility towards this direction may be to consider an
in-packet path history mechanism similar to the one used in [41].

One additional exploration would be to compare the performances of
our approach with combinations of different embeddings of the network
graph that are not necessarily cluster views of it. One could imagine
routing on two different embeddings of the base level graph, referring
to one if a dead-end is reached on the other. This would be somehow
similar to the notion of different realities in [90]. In the same way
one could picture a comparison with a three-level routing in which the
second and third levels are both embeddings of a cluster view of the
network graph using different clustering methods.

3.6.2 Clustering versus inter-domain routing

Drawing on the similarity of the two level identifiers (cluster level, node
level) with network and host identifiers in the Internet, one may be
tempted to think that there is a similarity between the work we present
here and hierarchical routing techniques [65] or inter-domain routing
[17] in the Internet. However, this similarity is neither conceptual, nor
functional. Network hierarchies in classical and inter-domain routing
serve as a measure to aggregate and reduce the amount of control in-
formation required for the operation of stateful routing. No such need
exists in geometric routing.

Also, a major advantage of our method over classical hierarchical
addressing is that we do not hide away proximity information at the
low network level. Consider the example of figure 3.14. In figure 3.14a,
a classical hierarchical addressing scheme was used in which a node’s
full address consists of the concatenation of the address of the cluster
to which the node belongs with the node’s address within the cluster.
A particular disadvantage of such an addressing scheme is that the ob-
tained addresses can only indicate proximity within the boundaries of
the cluster. When provided two nodes’ addresses 1.1 and 1.3 one can
deduce that the two nodes are close to each other as they belong to the
same cluster. However, and as shown by the example two nodes in fig-
ure 3.14a, two direct neighbours may have very distant addresses if they
happen to belong to different clusters. Such a situation is well known
in classical networking and is accounted for by the use of routing state.
In contrast, in our hierarchical embedding addresses, the proximity of
nodes’ addresses is maintained beyond the cluster borders. Consider
the example addressing of figure 3.14b. In this example, the network

3.7. Conclusion 73

connectivity graph is first embedded (without any clustering) and both
nodes A and B are attributed the two-dimensional coordinates (3, 2)
and (3, 3) respectively indicating a proximity between the two nodes.
At a second stage, the cluster graph is in turn embedded in a two-
dimensional space, resulting in Cluster 1 being attributed address (1, 0)
and Cluster 2 (2, 0). Since, the full address of a node in our model is
the concatenation of its coordinates at the different levels of the graph,
node A’s full coordinates then become (1, 0), (3, 2) as shown in the fig-
ure. When comparing the addresses of the two nodes A and B in our
scheme, one has simply to ignore the cluster-level part of the addresses
in order to have an estimation of the distance between the two nodes at
the flat network level.

Functionally, another major difference is that our proposal considers
routing in both directions of the hierarchy (from cluster level to node
level, as well as from node level to cluster level). In classical and inter-
domain routing approaches, routing always starts at the aggregate level,
and concludes at the host level.

3.7 Conclusion

In this chapter we have provided some insights on the effects of clus-
tering for improving the performance of greedy routing. We looked at
clustering from a general perspective (as opposed to focusing on a spe-
cific method), and we proposed a framework that enables cluster based
greedy-routing over any low-dimensional embedding. In our evaluation,
with clustering methods of varying sophistication, we measured and re-
ported significant improvement of up to 25% (1-level clustering) and
35% (2-level clustering), over a number of reference systems in the lit-
erature. We experimented with a variety of configurations (different
network sizes and densities), so as to develop a better understanding on
the effects of clustering, and quantify its overheads over the stateless na-
ture of geometric routing. Finally, based on the insights we acquired, we
have identified a number of interesting directions for further exploration
and follow work.

74 Chapter 3. on Guaranteeing packet delivery in greedy routing

Chapter 4

Greedy Routing and
administrative policies

75

76 Chapter 4. Greedy Routing and administrative policies

4.1 Introduction

Greedy geometric routing strategies were initiated and became popu-
lar within the ad’hoc and sensor networking communities [63],[13],[89].
Not only these techniques seem to be more natural in the context of
local wireless communication, they also offer the advantage of consid-
erably reducing the amount of control information storage required for
the functioning of the routing process. This routing table compression
capability constitutes a major favorable argument in the case of sensor
network nodes where memory usage is of critical importance. Greedy
routing techniques achieve this goal by introducing the notion of prox-
imity in the network addresses. Indeed, in all greedy routing proposals,
the network addresses are attributed to the network nodes so as to re-
flect their vicinity; i.e. two network nodes that are only a few hops
away from each other, will be attributed two network addresses that
are considered close to each other given a chosen distance function.

Since their introduction, greedy routing methods have considerably
evolved to support many interesting features. Properties such as guar-
anteed message delivery ([64], [40]), scalability to a large number of
nodes [41],[20] and autonomous address attribution (and re-attribution
in case of changes) ([89], [75]) are challenges that have been successfully
addressed by the research community.

Given the impressive list of advantages mentioned above, geometric
greedy routing techniques started lately to gain attention outside of the
usual communities where they hatched out. Indeed given the constant
rise in the amount of control information that current internet routers
have to store in their routing and forwarding tables (more than 300 000
forwarding entries per-router for IPv4 [1]), the idea of shrunk routing ta-
bles sounds very appealing. Therefore, greedy routing is more and more
considered notably within clean-slate efforts as a possible replacement
for the current standard routing techniques [71].

Our belief is however that, in their current state of the art, greedy
routing techniques cannot be directly applied for large scale networks
similar to the current Internet. Note that the problem there is by far
not scalability. Indeed this issue has been identified and targeted since
very early works in the field [19, 41] and some greedy routing techniques
show very good performance with a large number of nodes. In our view,
the problem comes from the fact that greedy routing mechanisms have
been mainly designed and used for uni-corporate networks such as a sen-
sor network of a single University or company or a collaborative ad’hoc

4.2. Administrative relationships and policies 77

community. In such use-cases, all the nodes forming the network belong
to the same administrative entity and therefore share the same goals. In
such circumstances, greedy routing methods have not so far been chal-
lenged by any administrative incentives issues where multiple parties,
with conflicting priorities, are involved in constructing the network.

Note that this will most certainly not be the case when greedy rout-
ing is applied to a network similar to the current Internet. Indeed in
such a network and as demonstrated by the BGP specification, special
measures have to be considered in order to satisfy the constraints of
different parties. A pure and simple routing method based solely on the
proximity of the machines might be scalable, but will most certainly
not be sufficient when communications are subject to security, quality
of service, customer-provider and pricing concerns. Our goal in this
work can therefore be pictured as trying to set up the basis for a Border
Gateway Protocol specific to geometric greedy routing techniques so as
to get these techniques one step closer to a large scale deployment.

We start our study by a definition and brief state of the art of net-
working policies and routing with administrative constraints. We then
introduce via an example our new administrative challenge that we be-
lieve to be a requirement for the future development of these techniques.
Finally we propose a set of possible solutions that will be detailed in
the following chapters.

4.2 Administrative relationships and poli-
cies

Let us start by first clearly defining the wide notion of networking poli-
cies and specifying the type of policies that we will be focusing on.

Policies in communication networks are the mean by which network
administrators (or users in general) indicate their preferences and re-
quirements to the software agents performing the communication tasks.
Due to the fact that a user’s preference panorama can be rather large,
consequently, networking policies can be quite diverse including (but
not limited to) security policies, quality of service or traffic policies and
administrative policies.

78 Chapter 4. Greedy Routing and administrative policies

4.2.1 Security policies

In this case the user or the administrator uses security policies to ex-
press preferences regarding the right of access and modification that is
attributed to users or software agents with regard to services and data.
A typical example would be to limit the access to a critical service to a
particular set of users (or agents). In current Internet solutions, this is
done by instructing the host on which the service is residing to disregard
any connection attempt initiated by machines other than the listed au-
thorized ones (using software firewalls for example). In the more specific
context of routing, security policies can be used to avoid “dangerous ar-
eas” of the network. Indeed, in the case of possible multiple paths to a
destination, policies can help choose the safest one avoiding to traverse
nodes known for spying on transiting data. The support of such poli-
cies requires a visibility of the full packet path which in turn requires a
functioning routing mechanism. Hence we consider the support of such
policies as future work.

4.2.2 Traffic policies

Policies can also be used in the context of quality of service and traf-
fic provisioning. In this context, administrators can specify quotas at-
tributed to users (or network neighbours) regarding bandwidth or total
amount of data traffic. Such policies are usually implemented “on top”
of routing, meaning that the policy verification mechanism operates as
an add-on to the routing process and is not inherent to it. Therefore
also in this case, the priority is given to the achievement of a functioning
routing mechanism before focusing on the traffic issues.

4.2.3 Administrative relationships and policies

Administrative policies are our main concern in this chapter. Adminis-
trative policies play a role in networks subject to financial agreements
between different providers.

Administrative relationships A typical example of a network sub-
ject to administrative relationships is the Internet. In this case the
global network is formed by the concatenation of smaller networks op-
erated by different Internet Service Providers. These providers being for
the most private, profit-oriented companies, packet transits between the
different constituent networks are subject to monetary issues. Hence, a

4.2. Administrative relationships and policies 79

AS 1

AS 2 AS 3

Customer to Provider relation

Peer Peer relation

Figure 4.1: Relationship Between Network Providers

link between two networks belonging to two different service providers
can usually be attributed one of the following relationships defined by
[47] : customer-provider, peer-peer and sibling-sibling relationship.

In the customer-provider relationship, one of the two service providers
is purchasing network access from the other. The network purchasing
the connection is referred to as the customer while the other is known
as the provider. In such a relationship the customer network pays the
provider for both incoming and outgoing traffic.

In the peer-peer relationship, the two network providers agree to
establish a connection that is not subject to financial tariffing. Such
an agreement usually happens when the two networks transfer through
each other approximately the same amount of traffic in both directions.
A Peering link might in some cases be specifically created between two
frequently communicating networks to avoid them both having to pay
providers in order communicate with each other.

Siblings relationships are usually the result of a merger between two
Internet Service Providers or can also be the result of traffic engineering.
A sibling relationship between two independent networks usually means
that they in fact belong to the same authority that operates both of
them. For the rest of the chapter we will ignore sibling relationships
as they are a relatively rare phenomenon and since the two (or more)
sibling nodes can simply be represented by a single node (an aggregation
of the two sibling nodes) with as neighbouring nodes the union of the
neighbours of the component nodes.

Figure 4.1 depicts a graphical model for representing administrative
relationships between different providers as introduced by Dimitropou-
los et al [35] . In this figure, a directed edge indicates a customer-
provider relationship between the 2 nodes, initiating from the customer
and pointing towards the provider. The direction of the edge hence

80 Chapter 4. Greedy Routing and administrative policies

AB C

AB C

AB C

AB C

AB C

AB C

Allowed Transits Via A Forbidden Transits Via A

(a) (b)

Figure 4.2: Allowed and Forbidden Crossings that A offers to neighbours

indicates the cash flow from the customer towards the provider. The
peering relationships between two nodes is depicted by an undirected
edge indicating that there is no monetary exchange between the two.
Hence, in this figure, AS 2 and AS 3 both purchase connectivity from
the provider AS 1. AS 2 and AS 3 also maintain a peering relationship
with each other.

Note that this is simply a logical representation of the relationship
between the different network players and does not represent data flow
direction restrictions between the different nodes. All that can be in-
ferred from an edge in a diagram such as in figure 4.1 is the presence of
at least one network link between the two nodes allowing data to flow
in both directions.

Administrative policies Administrative policies are policies defin-
ing routing decisions in a context subject to administrative relations
between the network operators. Indeed, in such a context, policies are
for example used to discriminate between multiple possible paths to
a destination based on the administrators preferences. In BGP this
is done by assigning a preference value to a provider that is usually
correlated with its monetary cost. This way, when multiple paths to
a destination are possible, the routing agent can favour the cheapest
providers leaving the more expensive ones for backup uses only. In the
same logic, paths to a destination that are transiting via peers are pre-
ferred to paths via providers as they don’t incur any communication
costs. Similarly, paths transiting via customer nodes are usually the
most preferred as they do not imply monetary costs and they do not
burden the peering links. Indeed, relying too much on a peer for transit
might create an imbalance in the traffic load between the two, pushing

4.2. Administrative relationships and policies 81

(a) (b)

Allowed Paths Forbidden Paths

Figure 4.3: Valley-free paths

the peer to re-examine the relationship and possibly terminate it.

Administrative policies also determine how routes are advertised in
the network which in turn determines how packets are forwarded. Based
on the relation with two of its neighbours, a node might decide to offer
or refuse to transit packets between the two. A typical example is a
customer operator refusing to transit communications between two of
its providers as this would induce costs in both directions, all for a
communication in which the operator has no interest. Figure 4.2 shows
a list of the most commonly used transit rules in the Internet that are
deducible from economic incentives. In the list of forbidden transits in
Figure 4.2.a, one can see that node A would refuse to transit packets
between two of its peers. This might sound strange as one would think
of a peering relation as an agreement to share all links and hence offer
all possible transits. However, in a peering relationship as it is used
in the current Internet, a node offers a transit towards its peer only
to its customer nodes. Any other type of (non-paid) communication is
considered a burden on the peering link and is therefore denied.

Note that the transit authorization works for communications in
both directions. Hence in the authorized cases of figure 4.2.a, data can
traverse node A in both directions, namely B → A→ C and C → A→
B.

Given that a path between two nodes in a network subject to admin-
istrative constraints would be a concatenation of such transits, routing
in a network similar to the internet exhibits a pattern known as “Valley-
free routing”. This pattern suggests that any route between two nodes
is formed by zero or more customer-to-provider links, followed by zero
or one peer-peer links and finally followed by zero or more provider-
to-customer links. In a representation such as Figure 4.3, in which
provider nodes are drawn above customers and peer nodes are drawn

82 Chapter 4. Greedy Routing and administrative policies

at the same level, the path taken by a message would first travel up-
wards following customer-to-provider links, then horizontally according
to a peering link, and finally downwards following provider-to-customer
links. All paths in which the message would be moving downwards first
and then upwards again are forbidden according to the transit rules of
Figure 4.2, hence the name valley-free. Note that due to the fact that
peer → peer → peer paths similar to that in figure 4.3.b are also forbid-
den, a denomination as valley and plateau free routing would be more
appropriate.

4.3 Administrative policies and future net-
works

Very large networks, the size of the Internet cannot possibly be created
and managed by a single organization. Indeed such large networks are
usually the result of a long-lasting constructive effort involving multiple
parties.

A viable example to this statement is the current Internet or more
precisely the inter-domain network. As mentioned above, the structure
of the Internet can be divided into several interconnected but indepen-
dent large networks that are the Autonomous Systems, mainly managed
by large companies (AT&T, DuPont, ..) and Universities.

Due to the fact that the deployment and maintenance of such a large
network infrastructure induces considerable costs, the interconnection
and packet transiting between the Autonomous systems is consequently
subject to business agreements. This fact is most likely to remain true
for any upcoming large-scale network to be developed, be it an extension
of the current Internet, or a fully new global network. Therefore, the
above stated relationship agreements that are the customer-provider
and peer-peer relationships are not likely to faint away and will most
probably affect the way data is transferred in future large networks.

4.3.1 Administrative policies and greedy routing

Sensor networks as well as ad-hoc networks communities in which greedy
routing developed, have so far mainly considered simple environments
where the network belongs entirely to a single entity, be it a company
or a University. In such an environment, all the nodes taking part in

4.3. Administrative policies and future networks 83

Domain 1

Domain 2

Domain 3

Domain 4

Network node

Network link

A

B

C

D

Figure 4.4: Multi-party Network

the network activity share the same goals and will generally collaborate
towards the good functioning of the network.

The context that we consider in our case is a more challenging one
where the network is not formed by a single party but is instead built
by several network providers agreeing to collaborate to build a larger
network. In an ideal world, these providers could agree to equally share
their resources allowing packets to flow freely between the different net-
work domains. In such a case the network could still be considered as a
single entity network belonging to the “Confederation” of providers, and
the current state of the art greedy routing strategies could be directly
applicable to it.

Sadly, and as argued above, it is very unlikely that the different
parties building the network will offer free full access to their resources.
Instead, it is most probable that these parties will develop complex
interactions pretty much similar to those found in BGP/AS interactions
and will be trying to protect their interests in a networking context
subject to security, traffic engineering and pricing issues.

To illustrate this, let us consider the example in Figure 4.4. In this
case the communication network is built by four different providers each
of which is responsible for the nodes within its domain as indicated in
Figure 4.4. What happens if the domain providers do not intend to fully
collaborate ? What if there are security or pricing concerns ?

84 Chapter 4. Greedy Routing and administrative policies

domain 1

domain 3

domain 4

domain 2

Figure 4.5: Administrative relations between domains of Figure 4.4

A

C

B

Domain 2

Domain 1

Domain 4

Domain 3

A

D

Figure 4.6: MDS embedding of network in Figure 4.4

Let us suppose that the provider of Domain 4 decides to econom-
ically charge the nodes of Domain 2 for any transiting packets (i.e.
packets not destined to Domain 4 nodes). According to the terminol-
ogy defined above, in such a setting Domain 4 can be referred to as
a service provider to Domain 2. Reciprocally, Domain 2 is referred to
as the customer of Domain 4. Let us also suppose that Domain 1 is a
provider for Domain 2 with cheaper transit fees than 4. Finally, both
domains 1 and 4 are customers of domain 3. Figure 4.5 summarizes the
administrative relationships between the domains of Figure 4.4.

In such an environment, imagine now if we were to attribute ad-
dresses to the network nodes based on their non-administrative network
distances with the intention of performing greedy routing. Figure 4.6
shows such a possible address attribution computed using metric multi-
dimensional scaling [12] method in a two-dimensional Euclidean space.

4.4. The problem from a graph viewpoint 85

A BC

D

(a) Network topology

A BC

D

(b) Admin relationship

Figure 4.7: Example topology and its administrative relationships

In such a context, If we are now to route, for example from a node A
residing in Domain 2 to a node B residing in Domain 3, greedy routing
will be transiting through Domain 4 that has a shorter hop count to
Domain 3 than the route via Domain 1. Considering that Domain 1
offers a cheaper transit to Domain 3, relying only on greedy routing is
clearly not in the interest of the provider of Domain 2. We refer to this
issue as the preference support problem.

A more important problem appears in our setting when routing from
node C in Domain 1 towards node D in Domain 4. In such a case, the
greedy routing procedure will direct the packets towards the route via
Domain 2 as it would be the one with the shortest path. However, since
in the current setting Domain 2 is a client of both 1 and 4, it will most
certainly not offer them a transiting service for which it would have to
pay. Therefore, the packets originated at Domain 1 destined to Domain
4 will be bounced back when entering Domain 2 creating a constant
point of failure at node C in Figure 4.4. We refer to this issue as the
policy dead-end problem.

4.4 The problem from a graph viewpoint

The introduction of administrative relationships in the network creates
problems as it implies that the different operators all have a different
view of the network graph. In order to illustrate this, let us consider the
example network of Figure 4.7.a. The vertices in this figure represent
Internet Service Providers. Figure 4.7.b represents the administrative
relationship between the different providers.

According to the transit rules depicted in Figure 4.2 let us consider
the possible paths that packets emanating from node B can traverse.
First of all one can notice that packets emanating from B and destined
to C will be refused transit on both nodes A and node D since A

86 Chapter 4. Greedy Routing and administrative policies

A BC

D

A’s view

A B

D

B’s view

AC

D

C’s view

A BC

D

D’s view

Figure 4.8: Different views of nodes on the same network

has a peering relationship with both B and C, and D ’s only way to
C is via A, thus implying a provider to provider transit. Hence in
B ’s view of the network, node C is disconnected or might as well be
invisible. Also, although a connection loop exists between the three
nodes A, B and D, packets starting from B cannot traverse the loop in all
directions. For example, B can reach node D via the path B → A→ D
(as D is a customer of A). However, the path B → D → A is not
possible as it violates the valley-free rules of administrative routing.
Hence this induces directionality in the edges seen by a particular node
in the network. The representation of a node’s view of the network can
therefore be modelled using a directed graph in which an undirected
edge of Figure 4.7.a would be represented by two directed edges pointing
in opposite directions.

Figure 4.8 shows B’s view of the network along with the view of
the other nodes. One should notice the striking difference between the
different views in which vertices and edges can be missing. For example,
one can see that also in the case of node C, only a partial view of the
network is obtained as packets originating from C cannot reach B and
vice versa. In the case of node A, only an edge from D to B is missing as
the path A→ D → B is blocked by D. The only node with a complete
view of the network graph, i.e. the packets of which can freely traverse
any path of the network in this case is node D.

Representing the effects of administrative relationships on the per-

4.4. The problem from a graph viewpoint 87

Rij

k=1
k=2

k=3

Figure 4.9: Example of a row-dominated LAS on a 3x3x3 incidence matrix.
The red rows are selected as consensus values.

ceived network topology in such a way helps getting an intuition about
the complications that it adds to greedy routing. In order to allow
for greedy routing, an embedding of the network graph has first to be
realized in a given metric space. All nodes participating in the greedy
routing process, will then base their routing decisions by computing dis-
tances between the coordinates of the same embedding. In a network
non-subjected to administrative relationships, the network graph is a
single undirected graph upon which all nodes agree. Hence, provided
that the embedding correctly matches the network graph, any rout-
ing decision made by a node in the embedded world will automatically
match its view of the network.

The complication in our case, and as demonstrated by Figure 4.8, is
that each node participating in the greedy routing process has a differ-
ent perception of the network graph. And yet, the classical approach
of greedy geometric embedding requires that there should be a single
embedded world (coordinate-space) upon which nodes should base their
greedy routing decision.

The problem is then of finding such an embedding that satisfies all
the different views at the same time. Such a problem is in fact analogous
to embedding multiple graphs into a single metric space.

88 Chapter 4. Greedy Routing and administrative policies

4.4.1 Relation to social sciences and Cognitive So-
cial Structures

A similar phenomenon involving multiple graph views was previously
studied in the domain of social network analysis. In a 1987 paper [69],
Krackhardt proposed the notion of Cognitive Social Structures (CSS)
that arise in a context where multiple individuals taking part in a social
network are related by an asymmetric relationship such as “A considers
B as a friend” or “A asks B for advice”. Note that these relationships
are by nature asymmetric since they represent social connections that
are not necessarily reciprocal since having a person A considering an-
other person B as a friend does not necessarily mean that person B feels
the same about A. Given this setting, and assuming a complex network
in which an individual cannot possibly keep track of all the existing re-
lationships between the other network participants, and adding the fact
that each individual can differently perceive the manifestation of a rela-
tionship between two individuals, each participant in the social network
will develop a different view, or perception, of the global network.

In an empirical experiment where different managers belonging to
the same company were asked to report on “who in their view asks for
advice from whom ?” (also an asymmetric relation in this case), each
individual gave an impression of the network that is different from that
reported by other participants to the experiment. The reported net-
works consisted in multiple directed graphs, similar to those arising in
the case of administrative routing, denoted as cognitive social structures.

Social scientists were interested in CSS in two manners. The first
study approach is to consider the different views as a phenomena to
study independently. One can for example study the centrality of the
perceiver node in his perceived network and compare it to the centrality
value for the same node as reported in other participants’ view. Such
a comparison would allow to determine the ego bias in an individual’s
opinion about his role in a community. Another approach to study the
CSS structures is that of finding a consensus structure between the dif-
ferent views. The motivation for such a consensus can vary from uncov-
ering the ground truth in case this couldn’t be measured, to building a
more tractable data structure allowing to study the social network more
easily.

Two main approaches for finding a consensus structure exist. The
first approach named Locally Aggregated Structures (LAS) builds a com-
mon network by selecting component parts of the different network

4.4. The problem from a graph viewpoint 89

views. More specifically, the chosen common relation in the consen-
sus graph between two nodes i and j is mainly depending on the views
of the concerned nodes i and j (hence the local denomination). Follow-
ing the notation of Krackhardt, in a network defined by an asymmetric
relation R where Ri,j,k when set to one indicates the presence of a re-
lationship from node i to j in the network perceived by node k (Ri,j,k
set to zero otherwise), and denoting by R′ the relation defining the
consensus graph, the LAS approach can be divided into :

Row Dominated LAS : R
′

i,j = Ri,j,i , and

Column Dominated LAS : R
′

i,j = Ri,j,j

When representing the different network views as a three-dimensional
matrix in which the two first dimensions describe a typical incidence ma-
trix and the third dimension indicates the perceiver node, both the row
and column dominated LAS can be pictured as a diagonal slicing of the
three-dimensional incidence matrix as can be seen in figure 4.9. Another
form of Locally Aggregated Structure is to consider boolean functions
between the values of the concerned nodes i and j such as :

LAS from intersection rule : R
′

i,j = Ri,j,i ∩Ri,j,j , and

LAS from union rule : R
′

i,j = Ri,j,i ∪Ri,j,j , and

where the intersection rule dictates that a relation between i and j
is to be reported in the consensus graph only if it is present in both
views belonging to i and j. In the case of the union rule, the relations
needs to be reported in the view of only one of the two concerned nodes
in order to be included in the consensus graph.

Another approach to obtaining a consensus structure is to consider
the relation between i and j as a function of all the available perceptions
of this relation. Namely, R

′

i,j = f(Ri,j,1, Ri,j,2, ..., Ri,j,n) where n is
the number of participants in the network. A typical such function is
the majority vote according to which a relation is represented in the
consensus graph if more than half of the participants do perceive it.

90 Chapter 4. Greedy Routing and administrative policies

4.5 Understanding the problem from a dis-
tance matrix viewpoint

A′s view :



A B C D

A 0 1 1 1

B 1 0 2 1

C 1 2 0 2

D 1 2 2 0

 B′s view :



A B C D

A 0 1 ∞ 1

B 1 0 ∞ 1

C ∞ ∞ 0 ∞
D 2 1 ∞ 0



C ′s view :



A B C D

A 0 ∞ 1 1

B ∞ 0 ∞ ∞
C 1 ∞ 0 2

D 1 ∞ 2 0

 D′s view :



A B C D

A 0 1 1 1

B 1 0 2 1

C 1 2 0 2

D 1 1 2 0


(4.1)

One could also look at the problems incurred by administrative re-
lationships from a point of view complementary to the graph one that
is that of distance matrices.

Given that each node participating to a network subject to admin-
istrative relationships will have an independent view of the network
(graph), this also implies that it will have a distance matrix describing
the distances between the nodes of that graph. The challenge of finding
an embedding to allow for greedy routing on such a network becomes
the one of finding an embedding in which the distances between the
embedded nodes match those belonging to multiple distance matrices.
Table 4.1, shows the different distance matrices that correspond to the
views of the nodes participating in the network of Figure 4.7.

A first noticeable challenge to the task of finding an embedding are
the asymmetries that can be seen in the matrices corresponding to a
given node’s view. For example, one can see that the distance from
node D to A in node B ’s view is different from the opposite distance.
This can be explained by the fact that node D refuses to offer transit
towards A to B and hence in A’s view, D ’s distance to B is equal to
A’s distance to B incremented by one hop that is 2. However, given
that node A offers transit towards D, it announces to B its real shortest
distance that is 1.

4.5. Understanding the problem from a distance matrix viewpoint 91

Note that these asymmetries are the logical consequence of the di-
rected edges that can be seen in the partial graph views of each node,
as packets initiated at the node to whom the view belongs can travel
along some edges in one direction and not the other.

Another difficulty visible in Table 4.1 are the incoherences that ap-
pear between the different matrices. Consider for example the distance
from node D to A in the two matrices belonging to B and C ’s views.
In this case the two nodes A and D should appear close in the view of
node C and distant in the case of B ’s view. This clearly complicates
the task of finding an embedding in which to perform greedy routing,
as it is difficult to find two points in a metric space that are at the same
time close and far from each other.

Another point to be made about the different “matrix views”, that
might ease the process of finding an embedding, is that the nodes par-
ticipating in such a network do not require to have a full distance matrix
detailing the distances from every node to every other. In order to reach
a decision on where to forward a packet to a given destination, a node
is required to know only the distance from its neighbour towards the
destination, in order for it to select the neighbour closest to destination.
Hence only a partial view of the distance matrix is required, namely the
rows of the distance matrix belonging to the neighbours. This removes
a big part of the difficulties related to the asymmetries in the distance
matrix. The problem of finding a greedy embedding that satisfies ad-
ministrative relationships becomes then that of fitting multiple partial
incoherent distance matrices into a single metric space.

4.5.1 Relation to tensor decomposition and 3-way
multidimensional scaling

When considering the multiple views problem from the distance matri-
ces angle, the problem can be related to that of tensor data decompo-
sition and more precisely 3-way multidimensional scaling [12]. Tensor
data analysis is concerned with data in the form of multidimensional
arrays where a vector is considered as a one-dimensional or one-mode
array, a matrix as a two-mode one etc. Such datasets are frequently en-
countered in fields such as psychometrics, linguistics and chemometrics.
The most common approaches for studying such a data structure rely
on generalizations of the matrix (two-mode tensors) operations such
as Singular Value Decomposition and Principal Component Analysis
to n-mode data structures such as the Canonical Polyadic Decomposi-

92 Chapter 4. Greedy Routing and administrative policies

-1-2 1 2

1

2

-1

-2

A B

C D

-2 2

2 2

-2 -2

-2 2

0 0.5

1 0

-1-2 1 2

1

2

-1

-2

A B

C D

-2 1

2 1

-2 -1

-2 1

Centroid configuration Individual K’s perception

W k

Figure 4.10: Example of Individual differences model through dimension
weighing

tion (also known as PARAFAC and CANDECOMP) and the Tucker3
method [67]. All these methods share the common goal of obtaining
transformations on the data allowing for a compacter representation, in
a similar way PCA uncovers data features in order to represent it in a
lower-dimensional space and thus obtain a lossless compression. Lossy
compression would also be possible when using the above mentioned
methods as they allow for a spectral representation of the tensor data
and thus the possibility of incrementally deleting irrelevant details.

Such methods are generally applied to generic data types or feature
vector data, where the data represents characteristics of the described
objects, or, differently said, when the objects generating the data are
already embedded in a high-dimensional space. When the data how-
ever describes similarities or dissimilarities between a set of objects (the
spatial configuration of which is unknown), it is better analysed in the
framework of 3-way multidimensional scaling. In this particular case of
MDS, the provided data to be embedded in a metric space consists in
a three-dimensional data structure where the third dimension defines
the perception of different individuals of the distances. Such datasets
arise frequently in the field of psychometrics where one measures the
reactions of several test subjects to different stimuli. A typical exam-
ple of such a test is the case of Helm’s colour data [57]. In this test,
14 individuals (test subjects) were questioned about the similarity of 10
different colours ranging from red to purple. An intuitive data collection
scheme was then used in which the participants assigned the similarity
values physically by placing a coloured chip on a surface with regard to
two other differently coloured chips so as to reflect the colour similarity.
Due to the specifics of the data collection device and to the presence of

4.5. Understanding the problem from a distance matrix viewpoint 93

both colour-normal and colour-deficient subjects, such a test results in a
three-dimensional data array where a value Di,j,k indicates the distance
(difference) between colours i and j as perceived by participant k. In
the MDS literature, several approaches exist for embedding such a data
structure. A first method denoted as Generalized Procrustean Analysis
consists in first performing separate embeddings of each of the partici-
pant’s perceptions of the distances and to later-on conduct procrustean
analysis between all pairs of embeddings. In a procrust operation, the
goal is to fit a given point configuration (known as the testee) into an-
other configuration (the target) through the use of both rigid motions
(i.e. transformations maintaining an object’s shape such as translations,
rotations, reflections) as well as dilations and linear distortions. As a re-
sult, a “centroid configuration” can be computed such that it minimizes
the differences to all of the transformed embeddings. The advantage of
such an approach is that each node’s perceived embedding can then be
approximated by performing a transformation of the agreed-upon cen-
troid configuration. This allows us to encode the individual differences
of each participant in a single transformation. The major drawback of
the method however is its computational complexity. Indeed, given a
set of N perceivers, this method requires the computation of N separate
embeddings and performing an optimization operation simultaneously
minimizing the errors of N(N−1) procrust operations. Therefore other
methods such as INDSCAL [12], have been developed to search directly
for a centroid configuration as well as the transformations for each of the
different perceivers. However in this case, the transformations are lim-
ited to linear distortions of the centroid configuration or in other words
applying weights to dimensions when evaluating the distances within
each node’s perception. Figure 4.10 shows an example of the dimen-
sion weighting approach. In order to evaluate the distance between two
points in a given participant’s perception, a linear distortion (dimension
weighting) of the centroid configuration is performed by multiplying the
matrix corresponding to the agreed-upon configuration with a diagonal
matrix Wk corresponding to the dimension weights of the perceiver.
The perceiver’s distance between two nodes can then be evaluated in
the transform result. Other methods such as IDIOSCAL allow for non-
diagonal transformation matrices therefore making combined operations
such as translations and rotations also possible.

A possible angle of view on the above mentioned operations can be
taken from the distance function perspective. For example, the IND-
SCAL operation results in that different weights are applied to the point

94 Chapter 4. Greedy Routing and administrative policies

coordinates’ dimensions when computing the Euclidean distance. In
other words, this method allows to find, for each node, a different dis-
tance function that is more appropriate to its perception of the dissim-
ilarities. In chapter 5, we explore the feasibility of applying a different
distance function per network node, without however restricting our
search for the distance function to a weighted Euclidean one.

Another possibility of dealing with tensor data for 3-way MDS ap-
plications can be to unfold the multidimensional data structure. This
operation transforms the N-way data structure (in our case 3-way) into
a more common 2-way data structure : a matrix. Common multi-
dimensional scaling tools can them be applied to find an embedding
corresponding to the obtained matrix. In chapter 6, we discuss the
use of possible existing such transformations and we introduce our own
transformation that is more suited for our greedy routing needs.

4.6 Why is there a requirement for a single
embedding ?

Given that each node’s perception of the network graph can itself be
interpreted as an independent graph of its own, a legitimate question
would then be to ask why not embed all these graphs separately and
then perform greedy routing upon them ?

The problem with this approach is that of mapping between ad-
dresses belonging to the different embeddings. Assume that nodes A, B
and C of the example figure 4.7, each embed their views of the network
separately. Suppose now that node C wishes to send a packet to node
D. This requires that node C knows the address of node D in its own
embedding and that neighbour A’s address is closer to D ’s coordinates.
When the packet is then forwarded to A, the destination address of the
packet is that of node D in C ’s embedding. However, in order to per-
form its routing decision, node A requires to know node D ’s address in
its own embedding. This address will most probably be different from
the one attributed to node D in C ’s embedding.

Hence two options are possible. Either have a coordination mecha-
nism between all the nodes so that the coordinates attributed to all the
nodes in the different embeddings are the same, i.e. node D has the same
coordinates in the embeddings of both C and A. In this case, we are
back to the single agreed upon embedding fitting all the different views.
Or, we need to implement a mapping system between the different “real-

4.7. Strategies for solving the preferences problem 95

ities”, allowing to translate a node’s address within a given embedding
into its address within another embedding. Such a mechanism could
in principle be implemented through the use of unique identifiers upon
which all nodes agree. Messages would then be sent to nodes using their
unique identifiers. Each node relaying the packet would then map the
destination’s identifier to an address in its own embedding in order to
perform a greedy routing decision. Such an identifier/address mapping
system would then require each node to store both an identifier and
an address for every other node in the network. Note that this defies
the purpose of greedy routing in the first place, as the main goal of
using greedy routing was specifically to limit the size of routing tables
by avoiding to store an entry for every existing node. Even more, if
we are to store such an id/address table, one can for the same storage
cost replace it by a id/next hop table, hence avoiding the risk of failure
incurred by greedy routing.

4.7 Strategies for solving the preferences
problem

As mentioned previously one of the two major failures of greedy rout-
ing in a network subject to administrative constraints is its failure to
support node preferences in routing. Indeed as demonstrated by the
example of figure 4.4 in some cases the shortest path to a destination is
not necessarily the most preferred one, especially when monetary con-
straints define the way routing is to be done.

Two approaches to solve this problem can be taken. The first ap-
proach consists in finding an embedding that encodes the preferences
of the nodes in the distances between their attributed coordinates. Ex-
pressed differently, in case two next hops are possible towards a given
destination, then the preferred next hop should appear closer in the
embedding to the destination than the other, in order to be selected by
the greedy algorithm. Such an approach however complicates the em-
bedding procedure as it adds additional constraints on the coordinates
to be attributed to the network nodes. The methods for finding an em-
bedding that satisfies such constraints on the node coordinates will be
discussed in chapter 6.

A second approach to tackle this issue is to store the node prefer-
ences locally in a similar way BGP does. Whenever a node is confronted
with a choice between two possible paths, it can then simply consult its

96 Chapter 4. Greedy Routing and administrative policies

locally stored preference list, and forward the packet to the indicated
preferred next hop. The advantage of this method being that the encod-
ing of the preferences and their usage is done locally at the forwarding
node, and does not require a cooperation between the different nodes
in order to find coordinates matching the preferences of all parties. A
necessary condition however to the feasibility of such a solution is that
the node is able to determine the possibility of multiple paths to a desti-
nation. Determining such a possibility in a greedy routing environment
is equivalent to having both possible next hops appearing closer to the
destination node in the embedding than the current forwarding node
is. Finding an embedding that satisfies such a property can reveal to
be a quite difficult task as shown in chapter 6. Indeed, the classical
approach of performing such an embedding, namely multi-dimensional
scaling, relies solely on the shortest path distance matrix of the graph
to assign the nodes coordinates. However, relying only on the shortest
distance for the embedding can result in hiding the presence of other
possible paths.

4.8 Strategies for solving the policy dead-
end problem

The main problem of greedy routing in a network subject to adminis-
trative relationships is that of being lured towards forbidden paths. As
argued above, such a problem is the result of incoherences or disagree-
ment between the network nodes. An edge or a distance, depending
on the way we are looking at the problem, might appear differently to
different nodes. Consequently two approaches could be taken to solve
this.

A first approach, inspired from the cognitive social structures ideas
would be to find a consensus situation on which all the nodes agree. This
consensus can satisfy the requirements of the nodes either fully or to the
best feasible. An example of such a consensus is to have all nodes agree
on using the same distance matrix for the embedding. Approaches for
finding a single distance matrix satisfying the requirements of all nodes
are studied in chapter 6.

A second approach to solve this issue is that of replication. Instead
of finding a consensus, the disagreements between the different nodes
can be solved by replicating nodes and edges. In case nodes disagree on
the directionality of a given edge, or on the distance between two nodes,

4.9. Roadmap 97

the problem can be solved introducing replicas of the edges or vertices,
each satisfying the requirements of a given node. This approach divides
in two subgroups in which the replications are done either before or
after the embedding. In the first case, the network graph is modified in
order to better exhibit the different views implicated by the administra-
tive rules. The hope is then that an embedding of the modified graph
containing replicas would reflect the administrative constraints. In the
second case, replicas are introduced in the embedding space through
the use of virtual points of presence where a node announces different
geometric positions (coordinates) to his neighbours depending on its
interest of being perceived closer to a given set of destinations or not.

A third way of approaching the problem is to consider the possibility
of breaking up with the idea of a geometric embedding space and that
of having all nodes share a common distance function. This method,
that is also partly inspired from the 3-way MDS methods, and most
precisely the dimension weighting techniques, is studied in chapter 5,
where after agreeing on a set of global identifiers for the nodes, each
network node searches a distance function that is describing at best the
distance information communicated by its neighbours.

4.9 Roadmap

In the coming two chapters, we will be addressing the policy dead-end
problem from two different angles apparented to those identified above.
An important remark however, is that for the rest of this thesis we
will be focusing on the problem of greedy routing at the domain-level.
This means that all of the network participants that we will from now-on
refer to as nodes are in fact network domains representing all underlying
nodes similar to those of figure 4.5.

Our choice of doing so is motivated by the above described complex-
ity of the problem of greedy routing on administrative constraints and
the abundance of branches to explore. Thus it is more convenient for
now to explore the effects of each possible solution at the domain-level
graph first. Note that this does not however hinder the possibility of
an administrative greedy routing solution as a two-levelled greedy rout-
ing procedure similar to that proposed in chapter 3 could be possible.
In such a scenario, one of our proposed solutions for greedy routing
at the inter-domain level could be coupled with the classical geometric
greedy routing at the intra-domain level. In a similar way to the exam-

98 Chapter 4. Greedy Routing and administrative policies

ple figure 3.5 in chapter 3, intra-domain routers would be required to
maintain two distinct neighbourhood tables for both the intra-domain
and the inter-domain graph (analogous to the cluster-level graph).

Chapter 5

Geometric areas for
policy support

99

100 Chapter 5. Geometric areas for policy support

C

B
D

A
F

E

Path advertisement is forwarded

to neighbour

Path advertisement is not forwarded

to pointed neighbour

Customer to provider relationship

Peer to peer relationship

Figure 5.1: Propagation of NLRI announcement initiated by node A

In the previous chapter, we identified two main problems preventing
greedy geometric routing methods from being directly applicable in a
network subjected to administrative relationships. The first problem
that we identified as the preference support one is that of having greedy
routing always favouring the shortest possible path (in terms of number
of network hops) that might not always be the most preferred one by
a network operator (in general a cheaper and reasonably longer path is
preferred). The second problem that we qualified as policy dead-ends
is that of having greedy routing pushing a packet towards a path that
it cannot traverse due to the transit rules identified in section 4.2.3. In
this chapter we will depict a solution that takes inspiration from the way
in which administrative policies are handled in current Internet routing.
To do so, let us first study the way administrative policies are handled
in the Border Gateway Protocol (BGP).

5.1 BGP and administrative policies

In this section we will study the way the current inter-domain routing
protocol that is BGP deals with administrative relationships between
the Internet providers. In this study we will only focus on the Au-
tonomous Systems (AS) level of routing and control information and
disregard any Internet Protocol (IPv4, IPv6) level details. Hence our
study takes place at the level of the AS connectivity graph. More pre-
cisely the vertices in the graphs that we treat represent Autonomous

5.1. BGP and administrative policies 101

System nodes and not hosts within the AS. Although this approach is
a simplification of the administrative routing problem, it allows us for
now to focus mainly on the administrative challenge.

In order for an AS network to determine which paths can be taken to-
wards another AS, the AS-level routers in the Internet rely on the BGP
protocol that falls into the family of path-vector protocols. According to
this protocol, each node participating in the AS-level network announces
its presence in the network by sending a Network Layer Reachability In-
formation (NLRI) message to all of its neighbours, independently of
its administrative relationship with them. Each neighbour AS node
receiving such an announcement can then decide to further propagate
the advertisement to its own neighbours (except the announcing node)
depending on its administrative policies. In the current Internet, the
policies upon which this decision is made are mainly the valley-free
ones specified in section 4.2.3. Namely, in case the announcer is a cus-
tomer of the node receiving the announcement, then the receiving node
will simply further propagate the presence announcement to all of its
neighbours. The motivation is that the announcing node is paying a
connectivity service and hence earns the right to be announced to all
of the provider’s neighbours. In case the announcing node is a provider
or a peer, the receiving node will propagate the announcement only to
its customer nodes as speculated by the transit rules of section 4.2.3.
A node receiving an NLRI announcement from a neighbour that is not
the originator of the announcement message must also decide whether
or not to keep on propagating it. The valley-free policies are also used in
this case, however not with regard to the announcement originator (as it
might not necessarily be a direct neighbour) but with regard to the rela-
tionship with the neighbour from which the announcement was received.
As before, in case this neighbour is a customer, the announcement is
propagated to all other neighbour nodes. Otherwise, the announcement
is further propagated only to the customer nodes. Figure 5.1 shows the
propagation of node A’s announcement in the network subjected to the
depicted administrative relationships. As it can be seen from the figure,
node B, when receiving an announcement from its customer node A,
further propagates this announcement to all its neighbours. However,
when node D receives the announcement from both neighbours B and
C decides to propagate it only to its customer F and no to its peer E
since both C → D → E and B → D → E crossings violate the transit
rules defined in section 4.2.3.

As BGP is a path-vector protocol, each AS node propagating an

102 Chapter 5. Geometric areas for policy support

NLRI announcement message includes its identifier in the packet’s path
trace. These identifiers are in this case the Autonomous System Numbers
(ASN) that uniquely identify an AS network and are assigned to it by
the Internet Assigned Numbers Authority (IANA). A node receiving
such an announcement learns about a possible path from the announcer
to it and hence can obtain a (source-route) path towards the announcer,
simply by inverting the sequence of the traversed AS identifiers. Note
that such a reverse path from the receiver to the announcer is in all cases
a valid path with regard to administrative policies. A simple proof of
this fact is that in order for the announcement to reach the current
node, it must have traversed a sequence of authorised administrative
crossings only. As mentioned in section 4.2.3, such authorized transits
are always traversable in both directions.

Following this process a node might learn multiple paths towards a
destination. These paths can be learned through different neighbours
or also through a single neighbour. Indeed, a neighbour node might in
turn have learned multiple paths to a destination and further propagated
them to the current node. In the example of figure 5.1, node D learns
two different paths towards node A (via B and C) and announces both
of them to its customer F. In BGP, whenever a node learns a new path
towards a given destination, it must decide whether to update its routing
information and to further propagate the new path announcement.

5.1.1 Path selection in BGP

In current implementations, BGP maintains several Routing Informa-
tion Bases (RIB). The main RIB, called the Local RIB (Loc-RIB) con-
tains the border router’s selected routes towards all possible destina-
tions. All routing decisions in the router are based on the information
stored in the Loc-RIB that contains a single entry per-destination. In
addition the BGP process stores a separate Adjacent RIB, Incoming
(Adj-RIB-In) for each one of its neighbours. In this RIB are stored
all the NLRIs (i.e. path advertisements) that were received from the
neighbour.

In order to add an entry in the Loc-RIB to a given destination, two
steps of filtering need to be done. The first filtering step consists in
selecting in each Adj-RIB-In, the best entry for the destination. Indeed
a neighbour node might advertise several possible paths towards a given
destination as the NLRI message might’ve traversed different network
paths to reach it. This selection is in most cases based on the length of

5.1. BGP and administrative policies 103

C

B
D

A
F

E

Figure 5.2: Undirected AS level graph corresponding to the relationship
graph of figure 5.1

the AS-Path that the NLRI message traversed. Hence the path adver-
tisement with the smallest number of AS hops is usually favoured. All
other announcements received from the neighbour and originating from
the destination are then deleted from the Adj-RIB-IN base. Given that
only one entry per-destination is stored in the Loc-RIB table, the sec-
ond filtering step consists in selecting the best route to the destination
among those offered by several neighbours. In other words, the node
needs to select for the given destination, the best route among those
stored in several Adj-RIB-In. In current implementations, this selection
process is however not based on the length of the route. The strategy
chosen instead is that of minimizing the internal cost of packet transits
by forwarding them to the AS neighbour offering a cheaper path to the
destination. Hence the route selection in this case is subject to local
preferences that do not necessarily match with optimality of the route
in terms of network distance.

5.1.2 Storage costs in BGP

Given that the Loc-RIB base contains a single entry per destination,
the number of entries in a network of N AS nodes can go up to N − 1
in each table. The number of entries can in some cases be smaller
than this amount in case an AS cannot reach some other ASs due to
administrative policies. Note that this upper-bound is also valid for
the size of the Adj-RIB-In tables as only one entry per destination is
stored in this case. Hence a theoretical upper-bound for the amount
of routing control data entries stored in a BGP router is (N − 1) ∗
(d + 1) where d is the number of AS neighbours (or degree) of the
AS to which belongs the router. In the current Internet, with more
than 39000 ASs participating to the inter-domain network [1], and a
maximum connectivity degree going up to 2600 [35], a theoretical upper
bound for the number of AS-level BGP RIB entries is above one hundred

104 Chapter 5. Geometric areas for policy support

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5.3: 2-D Embedding of an example undirected AS level graph with
500 nodes

million entries (spread over several tables). A major concern in this
case is the difficulty of aggregating those entries. Indeed given that
the advertised destinations and paths rely on the AS number that is
merely a flat identifier, each AS node operating in the Internet must
at least store a routing entry for every possible destination. At the
IP-level, the situation is even more aggravated by the IP address-space
fragmentation. Indeed, some autonomous systems might announce IP
address pool composed of several discontinuous prefixes. Hence when
operating at the IP level, a single destination AS might be represented
by several RIB entries. According to [1], an average BGP RIB base in
current BGP routers contains up to 12 Million entries, although only
39000 ASs are participating in the inter-domain network.

5.2 BGP-like approach using Geometric ag-
gregation

In order to prevent greedy geometric routing from forwarding packets
towards forbidden paths, we proceed in two steps. In a first step, an
embedding of the undirected AS-level graph is computed. In this graph,

5.2. BGP-like approach using Geometric aggregation 105

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

Figure 5.4: Node coordinates accessible by green star node via the blue
squared neighbour in the example network of figure 5.3

each vertex represents an Autonomous System and an undirected edge
between two vertices represents a communication link between the two
ASs, independently of their administrative relationship type. For sim-
plification, in case multiple links between ASs exist, only a single edge is
represented in the undirected AS-level graph that we consider. Figure
5.2 shows such an undirected AS-level1 graph for the example network
of figure 5.1. We proceed by embedding this undirected graph into a
d-dimensional Euclidean space. Note that any of the classical methods
for graph embedding could be used at this point. Hence the embedding
procedure can be performed in a centralized fashion (by first collecting
the AS-level topology), or in a distributed fashion by having a repre-
sentative within each AS. Note that routing greedily on the coordinates
obtained with this embedding will still be subject to the two shortcom-
ings induced by administrative policies.

Therefore, in the second step we propose to make use of the ob-
tained embedding coordinates as aggregatable identifiers rather than
for performing greedy routing based on their differences. We rely on a
mechanism similar to BGP’s path advertisement protocol. In our pro-
posal, each AS node participating to the network announces its presence

1Note that for the rest of the document whenever we refer to an undirected net-
work, we mean one not subjected to administrative relationships

106 Chapter 5. Geometric areas for policy support

by sending a message similar to BGP’s NLRI to its neighbours. How-
ever, instead of indicating its unique AS number in the announcement
message, the node indicates its d-dimensional coordinates obtained via
the embedding of the undirected AS-level graph. Each node receiving
the announcement will then decide whether or not to further propagate
it to other neighbours based on its relationship with the announcer.
Similar to BGP, in case the announcer is a customer, the announce-
ment is further propagated to all other nodes. In case the announcer is
a provider or a peer, the announcement is propagated only to customer
neighbours. The same rules apply for a node receiving an announce-
ment from a neighbour that is not the originator of the announcement.
However, also similarly to BGP, the announcement is propagated based
on the relationship with the relaying neighbour and not the announcer.
Hence, if the relaying neighbour is a customer, the announcement is
further propagated to all other neighbours. Otherwise, it gets relayed
only to customer neighbours.

When relaying an announcement message, each node in our proposal
appends its obtained d-dimensional coordinates to the announcement’s
path vector. A node receiving such an announcement can therefore
obtain a path towards the announcer by simply reversing the received
path vector.

5.2.1 Control data storage in our approach

Once the exchange of announcement messages stabilized, each node in
the network can determine which destinations are available via which
neighbour. Note that this is very similar to BGP in which case a node
is able to determine, by looking at the Adj-RIB-In base corresponding
to a neighbour which AS numbers were advertised by the neighbour.
The difference in our case is that the advertised nodes are not flat AS
identifiers but rather points in a d-dimensional Euclidean space. Hence,
each node in our network can build a spatial map of which nodes are
accessible via each one of its neighbours.

Figure 5.3 shows a 2-dimensional embedding of an undirected AS-
level graph of an example network with five hundred nodes subjected to
administrative relationships. The embedding in this figure was obtained
by using our implementation of the SMACOF algorithm [12]. Figure
5.4 shows an example result of the NLRI announcements received by
the green starred node from its neighbour depicted as a blue square2,

2Note that the two neighbour nodes (green and blue) might appear distant from

5.2. BGP-like approach using Geometric aggregation 107

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 5.5: Node coordinates (plotted in red) accessible by green starred
node via the blue squared neighbour, same as in the example network of
figure 5.4. Here, they are contrasted with nodes (plotted in black) accessible
via other neighbours

when using the virtual coordinates within the announcements instead
of flat identifiers. The advantage of such a representation is that the
sub-part of the network that is accessible via a neighbour is expressed
in a geometric space (in this case a two-dimensional Euclidean space)
as a cloud of points, on which several geometric tools could be applied
to compress their representation, as discussed in the following section.

5.2.2 Aggregation of the received announcements

As can be seen from the example in figure 5.4, the set of points accessi-
ble via a neighbour is quite spread over the embedding space. However,
one can notice the presence of a significant number of subgroups of
points that are quite close to each other like the circled set of points
in the centre of the figure. Hence a first optimization could be to re-

each other in this figure due to the fact that the embedding is distance-based and
the two nodes have a distance of 1 from each other.

108 Chapter 5. Geometric areas for policy support

duce the amount of control information storage by finding a compact
representation for these groups.

For the example circled subset of points in figure 5.4, a straight
forward approach would be to compute the convex hull of this cloud and
to store in the routing table only the vertices lying on its edges, avoiding
by such the storage of the inner-vertices. Later-on, in order for a node
to determine whether a destination is accessible via a neighbour or not,
it needs simply to compute whether the destination node lies within
the polygon (subspace) defined by the convex hull. Note that storing
a multidimensional polygon can still turn out to be quite costly as one
needs to store the list of multidimensional vertices defining the borders
of the polygon. Another way of reducing the accessible node coordinates
could then be to use an analytically defined shape to approximate the
area’s convex hull, such as an ellipsoid. This would reduce the cost
of storing the offered network areas (or the cloud of multidimensional
points), to the cost of storing a formula. However this method can
introduce errors due to wrong approximations of certain polygons. We
consider in the following section another form of aggregation of the
control information storage through space splitting.

5.2.3 Aggregation through classification

Another approach to the problem of aggregating the RIB information is
to consider it as a classification problem. As mentioned previously, once
the discovery phase is finished, each network node is able to determine
from the advertisements received via each neighbour, a spatial map of
the destinations accessible via that neighbour. When combining the list
of received announcements from all of its neighbours, a node can get
a full map of all the network nodes that it can possibly communicate
with. Hence when combining the map of announcements received via
a particular neighbour with the full map of all accessible nodes, the
node can obtain a spatial map in which the subset of the network co-
ordinates accessible via this neighbour is differentiated from the ones
that were announced by other neighbours. Such a map can be seen in
figure 5.5. In this case, the red nodes are the ones accessible by the
green starred node via the blue squared neighbour, while the black ones
are coordinates announced by other neighbours. Determining whether
the particular neighbour offers an access to a destination can then be
translated into determining to which of the two categories do the desti-
nation coordinates belong. Hence routing when using this spatial map

5.2. BGP-like approach using Geometric aggregation 109

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

non−offered

offered

Support Vectors

Figure 5.6: Decision surface computed by SVM for the example of figure
5.5 using 277 support vectors

can then be thought of as a classification problem : i.e. given a des-
tination’s coordinates, determine to which of the two classes accessible
or non-accessible it belongs. The advantage of seeing the problem un-
der this angle is that it allows us to compress the routing control data
required to the mere storage of the classifier.

For the rest of this chapter we will be investigating the potential use
of classifiers as a mean to compress the network coordinates received

In the next section, we will give a brief overview of classification
methods and the traditional goals and challenges in this field. We en-
courage the reader familiar with classification literature to proceed to
section 5.2.5, where we differentiate our usage of classifiers from the
classical one presented below.

5.2.4 Quick overview of classifiers

In the classification problem, one is provided with a data set containing
a sample of multidimensional points along with a discrete label data
indicating to which class each data point belongs. In the binary classi-

110 Chapter 5. Geometric areas for policy support

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x

y

Reachable

Non−Reachable

Figure 5.7: Class separation computed by the decision tree for the case of
Figure 5.5

fication problem, the number of classes in the data set is two. The role
of a classifier then is to find a separation methods between the multidi-
mensional data points belonging to different classes. The goal is to be
able, when encountering a new non-labelled data point, to attribute it
to one of the two (or more) classes. The provided data set on which the
classifier is initially computed is referred to as the training data and is
assumed to be a sample from the possible existing data points. Since
the classical use of classifiers is to perform a prediction on the class of a
given data point, great importance is given to the generalization power
of the classifier. A good classifier must not necessarily fit exactly to the
training data set as this might contain incoherences, errors, or outliers
(extremely rare cases). In that case the classifier would fit exactly to
a skewed view of reality and therefore perform poorly with real-world
data, although it had perfect predictions with the training data set.
This problem is commonly known as over-fitting.

Classifiers can be differentiated based on whether they rely on the
probability distributions of the data samples or not. In the first category,
for each class, a probability density function is assumed to indicate for
every possible data value the probability that the data point belongs

5.2. BGP-like approach using Geometric aggregation 111

N N R N

R

R R R

N N R

R R

N

R N R R R R R

R N N N N

N R R N R R

R N N R N

N R R R

R N N R

x2 < 0.226314

x1 < −0.824999 x1 < −2.3357

x1 < −1.56922 x1 < 2.61175 x1 < −2.65665 x1 < 1.70399

x2 < −1.94763 x1 < 1.93491 x1 < 1.63567

x1 < −1.71038 x2 < −3.25106 x2 < 2.38706

x2 < −0.206434 x2 < −2.76569 x2 < 2.26825

x2 < −0.76043 x1 < −0.407207 x1 < −1.15734

x1 < −2.68599 x2 < −0.850872 x2 < −0.861588 x2 < 0.778374

x1 < −1.9006 x2 < −0.502976 x2 < −1.47338 x1 < −0.30225 x1 < 0.066187 x1 < 1.12734

x1 < −0.518436 x1 < 0.122963 x1 < −0.061682 x1 < −0.390371 x1 < 1.11118

x1 < −0.31154 x1 < 0.660071 x2 < −0.177942 x1 < −0.907428 x1 < −0.714094

x2 < −2.28031 x2 < −0.599873 x1 < 1.83799 x1 < −0.730352

x2 < −0.801276 x1 < 1.87318 x2 < 0.0099765

x1 < 0.494869 x2 < 0.028156

 x2 >= 0.226314

 x1 >= −0.824999 x1 >= −2.3357

 x1 >= −1.56922 x1 >= 2.61175 x1 >= −2.65665

 x2 >= −1.94763 x1 >= 1.93491 x1 >= 1.63567

 x1 >= −1.71038 x2 >= −3.25106 x2 >= 2.38706

 x2 >= −0.206434 x2 >= −2.76569 x2 >= 2.26825

 x2 >= −0.76043 x1 >= −0.407207 x1 >= −1.15734

 x1 >= −2.68599 x2 >= −0.850872 x2 >= −0.861588 x2 >= 0.778374

 x1 >= −1.9006 x2 >= −0.502976 x2 >= −1.47338 x1 >= −0.30225 x1 >= 0.066187 x1 >= 1.12734

 x1 >= −0.518436 x1 >= 0.122963 x1 >= −0.061682 x1 >= −0.390371 x1 >= 1.11118

 x1 >= −0.31154 x1 >= 0.660071 x2 >= −0.177942 x1 >= −0.907428 x1 >= −0.714094

 x2 >= −2.28031 x2 >= −0.599873 x1 >= 1.83799 x1 >= −0.730352

 x2 >= −0.801276 x1 >= 1.87318 x2 >= 0.0099765

 x1 >= 0.494869 x2 >= 0.028156

Figure 5.8: Partial view of the decision tree generating the class separation
in figure 5.7, exhibiting a maximum depth equal to 14. R value at leaf means
the coordinates is reachable and N non-reachable

to the class. Hence when provided with an unknown data point, this
family of classifiers can provide levels of certainty about the association
of the point with a given class.

A more categoric family of classifiers simply tries to find a separa-

112 Chapter 5. Geometric areas for policy support

tion method between the multidimensional points. Among these, the
Perceptron[93] is probably the most simple approach. The goal of the
perceptron method is to draw a separation line (or hyper-plane in the
case of multidimensional data) that splits the data points belonging to
the two classes. Ideally, the goal is to have all data points belonging to
the first class lying on one side of the hyperplane and all data points
of the second class on the other side. In the classification terminology
this hyperplane is referred to as the decision surface as it is the only
element needed to perform the classification decision of a newly encoun-
tered point. One has simply to verify on which side of the hyperplane
the new point resides in order to determine the class to which it be-
longs. One major drawback of the perceptron, is its poor generalization
capability, as multiple separation hyperplanes might be possible (in case
the classes are linearly separable) and hence any of these lines might be
selected regardless of its generalization properties. Linear Support Vec-
tor Machine (SVM) [24] classifiers solve this problem by computing the
separation hyperplane that maximizes the margin between the training
data points belonging to the two classes. The intuition being to leave
the most possible space between the decision surface and the training
data in order to account for real data points that fall in this region and
hence to obtain better prediction results.

However not all training data is linearly separable as can be seen in
the example of figure 5.5. For such cases, both the perceptron and the
SVM approaches proceed by first transforming the given data points
into a higher dimensional space in which they would be linearly separa-
ble. A linear decision surface is then computed in the high-dimensional
space. When translated back into the initial training data space, this
decision surface will describe a non-linear trajectory. In the SVM case,
this transform is done via the kernel method. In the Perceptron, the
transformation into the higher dimensional space is achieved by insert-
ing additional layers between the input and the output layers. The
possible curvatures taken by the decision surface depend on the number
of additional layers. With one additional layer, problems with convex
decision surfaces can be solved, while with two layers more complex
(possibly any) decision surfaces can be learned. Also in the non-linear
case, the main difference between the perceptron and the SVM ap-
proaches remain in the better generalization capability of the SVM due
to its margin maximization constraint. Figure 5.6, shows the non-linear
separation line obtained by using the Support Vector Machine method.

Another family of classifiers performs the class separation task by

5.2. BGP-like approach using Geometric aggregation 113

recursively splitting the data samples according to a value of one of the
input attributes. Typically the attribute and the value are chosen so as
to discriminate at best between the two classes.

In the case where the input values are d-dimensional (Euclidean)
variables, the decision surface encoded by the data split can be rep-
resented by a d − 1-dimensional hyperplane that is orthogonal to the
dimension of the split and intersecting it on the point corresponding to
the separation value. Ideally, all the data points lying on one side of the
separation hyperplane should belong to the same class. If this is not the
case, then the space splitting procedure can be recursively repeated on
each of the two subspaces delimited by the separation hyperplane(s). In
fact, the space splitting procedure can be recursively repeated until all
data points are correctly classified. This classification method is known
as the Decision Tree method, as the different separation steps can be
represented as a tree as shown in figure 5.8. This figure shows the deci-
sion tree obtained when applying the recursive space splitting method
to the two-classes data set of Figure 5.5.

The inner-nodes of this tree (also denoted as branches), indicate
both the parameter (or dimension in case of d-dimensional data) and
the value at which the split is to occur. The leaf nodes indicate the
classification decision that is computed by the tree. When classifying
an unknown data point, according to the decision tree, one must simply
traverse the tree following the branches that correspond to the data
values. The class attributed to the data point is then the value of the
leaf node that is reached. Figure 5.7 shows the class attributions (or
in other words the region splits) to the two-dimensional points when
applying the decision tree of figure 5.8.

5.2.5 Using classifiers to store routing data

Given a dataset similar to the one depicted in figure 5.5, we can train
a classifier that allows to efficiently discriminate between the offered
and non-offered destination coordinates. In case all data classification
is correctly done we could then store only the necessary data to perform
the classification operation and hence dispose of the rest of the data.
To give an example, let us assume that a node A received from a neigh-
bour node B a list of reachable destination coordinates and that when
combining this list with those received from other neighbours than B,
the node can construct a dataset similar to that of figure 5.5. Let us
also assume that in the case of this dataset, the reachable destination

114 Chapter 5. Geometric areas for policy support

coordinates can be linearly separated from the non-reachable ones (i.e.
we can draw a hyperplane on one side of which the reachable destina-
tion coordinates lie and the non-reachable on the other). In such a case,
node A can reduce the routing information received from its neighbour
B, to the mere information required to perform the classification task.
In this case, all we need to store is a d-dimensional vector ω (where d is
the dimensionality of the destination coordinates) and a scalar value ω0

that together define the separation hyperplane’s equation ωT x+ω0 = 0.
Hence all the destination coordinates received via neighbour B can then
be deleted since in order to determine if a destination address belongs
to the reachable group via B or not, node A can simply check on which
side of the hyperplane the destination point lies.

We would like to highlight at this point that our intention of using
classifiers strongly differs from the classical use of these methods. In-
deed, in the regular usage, and as mentioned in the previous section,
one is mainly interested in the generalization capabilities of classifiers
in order to perform inference tasks on new data points. In our case
however, our main purpose is to use these methods as a compression
tool for our received node coordinates. Our belief is that, by extract-
ing the features of the network at hand, such as network connectivity,
and representing it in a feature space, the decision surface computed
by the classifier should be minimal, as the classifier would learn the
hidden rules that guided the service differentiation in the network and
thus the routing decision process. Also, in addition to the compression
of the neighbour’s routing table, classification methods also present the
advantage of speeding up the forwarding procedure. Indeed, in the pre-
vious example case of nodes A and B, node A would have to perform a
simple linear computation (to determine the sign of ωTxd + ω0 where
xd is the destination’s coordinates vector) in order to determine if the
destination is reachable via node B or not. Hence the forwarding oper-
ation’s (decision computation) cost is the same minimal cost for all the
destination coordinates.

When selecting the appropriate classification method for our desti-
nation reachability data, two properties are to be optimized. These are
the size of the data required to perform the classification operation as
well as the speed of the classification in order not to delay (and hopefully
speed-up) the forwarding procedure. Note that in our particular usage
of classifiers we do not allow for classification errors since they would
induce false routing information. Hence when evaluating the amount
of data required for performing the classification (the size of the classi-

5.2. BGP-like approach using Geometric aggregation 115

fier), we also take into account the amount of misclassified destination
coordinates. The goal being to store those coordinates in addition to
the classifier data-structure in order to ensure that the obtained classi-
fication decision is correct.

In the classification methods listed in the previous section, the ones
relying on assumptions on the probability distributions of the data are
in fact not well suited for our purposes since they are mainly tailored to
perform inference on new data. Indeed, in those methods, the provided
dataset is assumed to be only a subset of the real-world data which is
not the case for our coordinates reachability dataset. Also, in our case
the membership of destination coordinates to the reachable (or non-
reachable) class is dependant on the cascade of administrative relation-
ships in the network between the node and the destination and hence it
might be difficult to estimate a probability distribution function. Note
that one could consider applying unsupervised learning techniques such
as Gaussian Mixture Models to approximate the probability distribu-
tion of the reachable and non-reachable classes however this bares a big
similarity with the reachable area’s shape approximation approach via
more categoric methods such as decision trees and SVM, while requiring
an additional decision step based on the probability estimations.

Linear classification methods are also not well suited for our purposes
as they induce large data storage. Indeed, as can be seen on figure 5.5,
our coordinates reachability dataset is hardly linearly separable. Hence
relying on a linear classification method would induce a large amount
of classification errors, and since we do not allow for such errors (by
storing misclassified points), this would inflate the size of data required
to perform the classification operation correctly.

By design, the Support Vector Machine classification method was
tailored to enhance inference (prediction) decisions by maximizing the
margin between the two different classes (in both linear and non-linear
cases). Such a behaviour has the disadvantage of increasing classifica-
tion errors by having some points lying on the wrong side of the deci-
sion surface and within the margin, thus inflating the amount of data
required to perform reachability classification correctly. As we are not
concerned by prediction capabilities, we can tune the SVM parameters
in order to fit as close as possible to the dataset as demonstrated by
the decision surface in figure 5.6 hence reducing the number on mis-
classified points. However, in order to operate, the SVM classification
method requires storing a subset of data points that are close to the
decision surface that are known as the support vectors. As can be seen

116 Chapter 5. Geometric areas for policy support

from the example in figure 5.6, the number of such data points can be
rather large (277 support vectors in the case of 500 nodes). Not only
would such a large number increase the size of the classifier data struc-
ture, but in the case of SVM, it would also slow down the classification
procedure. Indeed in order to determine to which class a data point be-
longs, the SVM method must check the sign of a value, the computation
of which involves all the support vectors data points. Hence the bigger
the set of support vectors, the longer the computation. For these two
reasons, we did not consider using the SVM method for our destination
classification task.

In multi-layer perceptron classification method, we are only required
to store the parameters of each of the perceptron nodes (neurons). These
parameters consist of a multidimensional vector representing the gradi-
ent of the hyperplane defined by the perceptron node as well as its bias
value. Hence in case a relatively small multi-layer perceptron network
is used, the storage required for the classification method as well as the
processing time would be minimal. However, due to their design, mul-
tilayer perceptron networks are hard to tune towards a desired result
minimizing the amount of misclassified points. Therefore, without elim-
inating the possible use of the multi-layer perceptron (and other generic
forms of neural networks), we would rather for the time being focus on
more accessible types of classifiers.

In the case of decision trees, the storage cost of the classification
method depends mainly on the number of branches (inner nodes) of the
tree since the leaf nodes simply encode a binary value. The branches
instead, contain a floating point value indicating at which point the
splitting hyperplane should intersect the dimension of the split. Hence
each branch node is in fact encoding one single component of the mul-
tidimensional destination coordinates, along with the dimension index
at which the split is to occur. Note that in the case of the classifica-
tion tree method, a perfect fit to the data is always possible. Indeed,
one can simply recursively repeat the space-splitting method until each
data point is correctly classified without any concern about over-fitting
the data (since we do not need to perform any predictions, over-fitting
is not a concern). However, some bad positioned data points, such as
a reachable coordinate completely surrounded by non reachable ones,
might require multiple additional space splits in order to be correctly
classified, hence inflating the size of the tree. Therefore, partial tree
pruning might reveal beneficial, as storing a few additional error co-
ordinates could induce less storage than a classification tree perfectly

5.2. BGP-like approach using Geometric aggregation 117

fitting the dataset.
The decision tree method also offers the advantage of indexing the

destination coordinates dataset and hence speeding-up the forwarding
process. In the example decision tree of figure 5.8, the depth of the tree,
i.e. the number of inner-nodes on the longest path from the root to a
leaf is equal to 13, meaning that in the worst case, it would take up to
13 comparison instructions in order for the classification tree to reach
a decision on whether some destination coordinates are reachable via a
neighbour or not. This performs much better than iterative comparisons
on the list of received coordinates that could take up to N-1 comparisons,
and still comparable with the cost of a binary search of O(logN).

5.2.6 How to compute decision trees

In order to determine on which attribute and value to perform a split,
the recursive space splitting approach can rely on multiple measures, the
most common of which is the Information Gain. This measure relies
itself on the notion of entropy defined by Shannon that measures the
level of purity (uncertainty) associated with a set. The entropy of a set
Sv is defined as follows :

H (Sv) = −
M∑
i

P (ci|Sv) log2 (P (ci|Sv))

where M is the number of classes in the dataset and P (ci|Sv) is the
probability of class ci given the set Sv. Given a sample dataset Sv, the
probability of a class ci given that set (i.e. P (ci|Sv)) is simply equal to
the number of element within Sv belonging to class ci, divided by the
total number of elements of Sv. When separating the elements of a set
S according to their value with regard to an attribute a, the information
gain over this attribute can then be measured as follows :

IG (a) = H (S)−
∑
v

Sv
S
H (Sv)

where S is the set of points before the split, and Sv are the subsets
resulting from the partition. The difference between the entropy of
the set before split and the normalized sum of entropies of the resulting
subsets allows to measure the amount of information gained by the split,
or in other words, the level of set purity that was gained. Hence in order
to determine on which attribute to perform a split, the recursive space

118 Chapter 5. Geometric areas for policy support

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 5.9: 2-dimensional embedding of CAIDA 2004 graph (embedding
stress = 0.33) and an example of destination coordinates offered by blue
squared node to neighbour green starred node. The offered destinations are
plotted in red

partitioning algorithm must evaluate for each of the possible attributes
(and for each of the possible values of every attribute), the amount of
information gained by performing a partition at that attribute and value
and select the combination with the maximum gain.

In our use of the recursive partitioning algorithm, we stop the devel-
opment of the decision tree (i.e. we stop the splitting recursion), when
the number of data points associated with a tree branch node is smaller
than a constant threshold (in our case 5 data points). This will avoid
defining multiple splits to correctly identify some outlier points, thus
resulting in more storage than is necessary to store the point.

5.2.7 Representing routing information using deci-
sion trees

For the reasons depicted above we decided to evaluate the performances
of our routing information representation using decision trees classifica-
tion. We applied the recursive space splitting algorithm on the embed-
ding coordinates of the Autonomous Systems connectivity graph as it
was collected by CAIDA [2] in 2004.

In the CAIDA dataset are listed 16300 autonomous system nodes

5.2. BGP-like approach using Geometric aggregation 119

along with their connection information labelled with the administra-
tive relationship type : Peer-Peer, Customer-Provider, Sibling-Sibling.
We simplify the dataset by pre-processing it in order to get rid of the
sibling relationship by collapsing all sibling components into a single
vertex summarizing all the relationships to other network nodes. This
reduces the number of vertices in the graph to 16156. We then perform
a centralized multidimensional scaling embedding using the SMACOF
[12] iterative majorization technique in order to embed the AS graph
into a two-dimensional Euclidean space, based on the shortest-path dis-
tance matrix. Note that the shortest path is computed independently of
the link’s administrative types and hence these distances do not neces-
sarily correspond to the distances subjected to administrative routing.
The Embedding coordinates of the AS graph can be seen on figure 5.9.
In order to determine for each node which destination coordinates are
offered by neighbour nodes, we simulate the path vector announcement
protocol using the embedding coordinates in the announcement instead
of regular node identifiers. Hence, similar to the example of figure 5.5,
a spatial map in which the set of reachable destinations can be differ-
entiated from the non reachable ones can be inferred as in figure 5.9.

Each node in our simulation then builds a decision tree to represent
the destination coordinates received from its neighbour. Hence there
are 2 decision trees built per network link.

The recursive space-splitting approach proceeds by maximizing the
information gain value for every computed split and stopping the growth
of the decision tree when the size of a non-homogeneous data point
subset is lower than 5 points. We then evaluate the storage required for
each computed decision tree by summing the number of its branch nodes
along with the classification errors. In order to measure the classification
error, we simply resubmit the network coordinates data labelled with the
class membership (offered/non-offered) of each data point (in classical
classification terminology, this is equivalent to resubmitting the training
data to evaluate the training fitness).

Figure 5.10 shows the storage amount (in number of entries) required
for every network link in both directions, given that the announced
offered destinations from a node to its neighbour is different from the
set of points announced by the neighbour (hence on the X axis of figure
5.10 there are double as many values as there are network links). A
striking observation in this figure is the unfairness of required storage
between different links in the network, namely that there is a minority of
network links (and hence nodes) having to bear with very large amounts

120 Chapter 5. Geometric areas for policy support

0 1 2 3 4 5 6 7

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

index of network links as they appear in the graph (directional)

N
u
m

b
e
r

o
f
e
n
tr

ie
s
 o

f
re

a
c
h
a
b
ili

ty
 d

a
ta

s
e
t
p
e
r

n
e
tw

o
rk

 l
in

k

Figure 5.10: Number of table entries according to the reachability dataset
of CAIDA 2004 AS graph vs the network link index as it appears in the
graph file. Note that the maximum number of entries never exceeds the half
of the number of AS nodes (16156), since in that case one can simply store
the complement subset (i.e. the non-offered destination coordinates instead
of the offered ones)

0 1 2 3 4 5 6 7

x 10
4

0

500

1000

1500

2000

2500

3000

index of network links as they appear in the graph (directional)

S
iz

e
 o

f
th

e
 c

o
m

p
u
te

d
 d

e
c
is

io
n
 t
re

e
 p

e
r

lin
k
 :
 b

ra
n
c
h
e
s
 +

 e
rr

o
rs

Figure 5.11: Size of the computed decision tree per link in the CAIDA 2004
dataset

of data compared to the rest of the links.

Figure 5.11 shows the size of the computed decision tree per network
link for the same network graph. Notice that the unfairness between
the minority of central links and the rest is still visible, however the
discrepancy is greatly reduced.

5.2. BGP-like approach using Geometric aggregation 121

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

C
o

m
p

re
s
s
io

n
 r

a
ti
o

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.12: Compression ratio achieved when using the decision tree
method with regard to the embedding position. One can see that the central
(core) nodes are the ones profiting at most from the usage of the classifier.

In order to better visualize the results of figures 5.10 and 5.11, figure
5.12 displays the compression ratio achieved when using the decision tree
classification method as a function of the node coordinates. In order to
obtain the compression ratio value for a given network node, we simply
divide the sum of all the storage size of the trees computed for the node’s
neighbours by the sum of the storage required without compression (i.e.
the values in figure 5.10) as follows:

Ratio (n) =

∑
i sizeDecisionTree (n, i)∑
i sizeOfferedArea (n, i)

where i iterates on the neighbours of node n and sizeDecisionTree(n,i)
returns the size of the computed decision tree for the reachability dataset
announced by i to n (consisting of the number of branch nodes along
with the amount of errors) and sizeOfferedArea(n,i) returns the number
of entries required to store the destination coordinates announced by
neighbour i to node n.

Note that not all the nodes do necessarily benefit from the decision
tree usage. In fact, the nodes having to store a very small amount of
offered destination coordinates might end up storing more data when

122 Chapter 5. Geometric areas for policy support

using the decision trees as many space splits might be required to isolate
the few spread individual offered coordinates. Given the small size of
the received destination coordinates, the concerned nodes can simply
rely on the storage of the received coordinates list as is as it does not
incur a heavy storage load.

However, one can notice in figure 5.12 that the nodes profiting at
most from the usage of the decision tree method to represent the reach-
ability data are in fact those at the centre of the network, namely the
main tier nodes in the AS-graph. These are the nodes having to store
the peak values of figures 5.10 and 5.11. As can be seen from the figure,
the compression ratio for these nodes can go down to 0.4 meaning that
when using the decision tree classifier a node can get rid of 60% of the
reachability data without introducing any routing errors.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Depth of the two−class decision tree

C
u

m
u

la
ti
v
e

 r
a

ti
o

 o
f

n
o

d
e

s

Figure 5.13: Cumulative distribution of the depth of the computed decision
tree per network link

Figure 5.13 shows the cumulative distribution of the depth of the
decision trees computed for every network link. By depth of the tree,
we mean the longest path from the root to a leaf node. This value is im-
portant since it represents the worst case scenario for the classification,
i.e. the longest series of comparison instructions before the classifier
can reach a decision on whether the input destination coordinates are
offered by a neighbour node or not. As can be seen from the figure, the
largest depth value of the computed decision trees is 45, meaning that
in the worst case, it would take a node at maximum 45 comparison in-
structions in order to determine if a destination coordinate is accessible
via a neighbour (instead of parsing a list of 16155 entries) hence guar-
anteeing a fast decision. A more important fact, visible in the depth
distribution in figure 5.13 is that for almost 90% of the network links the

5.2. BGP-like approach using Geometric aggregation 123

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

Figure 5.14: Example unidimensional map (bar-code) of the destination
nodes offered by a neighbour in the CAIDA 2004 network : node ids at which
a bar is displayed are those announced by the neighbour

0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

Achieved compression ratio

N
u

m
b

e
r

o
f

n
o

d
e

s
 w

it
h

 c
o

rr
e

s
p

o
n

d
in

g

c
o

m
p

re
s
s
io

n
 r

a
ti
o

 (
lo

g
 s

c
a

le
)

unique identifiers

2−dimensional coordinates

3−dimensional coordinates

Figure 5.15: Compression Ratio distribution: comparison between identi-
fiers and 2 and 3-dimensional network coordinates

computed decision tree has a depth inferior or equal to 10 meaning that
a striking majority of the inter-domain routing decisions in the CAIDA
2004 graph can be performed in less than 10 comparison instructions.

Note that the achieved decision speed is mainly due to the infor-
mation gain optimization of the split. Indeed, when constructing the
decision tree, the recursive splitting algorithm optimizes the purity of
the resulting subsets that also corresponds to the amount of informa-
tion gained by performing the split. This optimization is naturally also
valid for the operation of the decision tree and guarantees an optimal
series of decisions (comparisons) in order to classify the input data in
the fastest possible way.

Also, we would like to point out that the achieved compression ratio
and the minimal tree depth are mainly due to the use of the embed-
ded network coordinates. Indeed, although these coordinates cannot be
used for a successful greedy routing, they are still encoding topological
features of the network graph that are then exploited by our classifica-
tion process as demonstrated above. In order to empirically prove this

124 Chapter 5. Geometric areas for policy support

we will in the following perform the same classification procedure when
using flat node identifiers instead of the two-dimensional coordinates.
The identifiers attributed to the network nodes in this case are flat suc-
cinct identifiers that are randomly attributed to nodes without carrying
any proximity information. In this case, we simply perform the classical
inter-domain path advertisement approach using node identifiers in the
announcements.

Note that this procedure also allows us to deduce a unidimensional
“spatial” map of the nodes offered access to by a neighbour as in fig-
ure 5.14. In this figure, the horizontal axis represents the node identi-
fiers and a vertical black bar is drawn on the index of the nodes that
have been announced by the neighbour. Hence, the same classification
method used above could be applied to the example unidimensional case
of figure 5.14 in order to find a separation “surface” that allows us to
represent the unidimensional data in a compacter way.

Table 5.1: Compression Ratio Distribution when using classifier on identifier
data

Compression Ratio Number of nodes

0.89 2
0.90 to 0.98 6

0.99 16148

Table 5.1 shows the compression ratio distribution obtained when
using the decision tree classifier on the one-dimensional reachability data
based on unique identifiers attributed to nodes. As can be seen from
the table, the compression ratios are far from the performances achieved
when applying the decision tree classification on the reachability dataset
using spatial coordinates. This is due to the fact that the embedded
coordinates allow for a better separation between the offered and the
non-offered destination coordinates since it is very likely that a subset
of close-by nodes belong to the same class.

However, the distribution of offered destination flat identifiers is
“spatially” highly fragmented as can be seen in figure 5.14, thus re-
quiring as many spatial splits as there are data points.

Effect of dimensionality when using decision-tree classifier In
figure 5.15 we give in a logarithmic scale, a histogram that compares
the distributions of compression levels achieved for numbers of nodes,

5.3. Multiple Classes and Distance Function Regression 125

E

C D

Customer to Provider relation

Peer Peer relation

B

A

cascade of 4

providers

(a) administrative
relationships

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

 (A)

 (B)

 (D)

 (C)

 (E)

(b) Metric embedding based on the non-administrative
distances

Figure 5.16: The non-administrative distances can in some cases strongly
under-estimate the real distance of the administratively authorized path

when using unstructured flat identifiers, 2-dimensional embedded coor-
dinates and 3-dimensional embedded coordinates. This histogram re-
veals 2 important things. On one hand the superiority of employing
virtual geometric coordinates against an unstructured identifier space
that is discussed in the previous section. On the other hand the min-
imal improvement of increasing the dimensionality of the embedding
(Kruskal’s stress 1 error parameter was 0.25 for the 3D case versus 0.33
for the 2D case). This suggests that a 2D embedding is sufficient to ob-
tain a good discrimination between offered and non-offered destination
coordinates, without the need for higher-dimensional node coordinates
that could increase the decision tree storage costs.

5.3 Multiple Classes and Distance Function
Regression

When using the decision tree classification method in the previous sec-
tion, an important element of the reachability data was not taken into
consideration. This element consists in the network distance value to-
wards reachable destination coordinates.

Indeed, the previously used reachability data was binary, simply in-
dicating whether a destination’s coordinates is offered or not. Hence in

126 Chapter 5. Geometric areas for policy support

a situation where a node determined that a destination is accessible via
two or more of its neighbours, the node is unable to determine which
of the two is closer to the destination. One could imagine that the Eu-
clidean distance between the neighbour and the destination could give a
good estimate of the network distance. However, given that the embed-
ding coordinates that we use are obtained when considering the shortest
distance matrix between network nodes without considering admin-
istrative relationships, the obtained embedding distances might be
a poor estimation.

To give an example, consider the case of Figure 5.16 where both
providers B and D offer access to destination E to node A. When con-
sidering the non-administrative network distance towards destination
E, both B and D have the same distance (equal to 2 through C) that
would also be reflected in their attributed coordinates distance to node
E ’s coordinates as shown in figure 5.16b. In such a situation, when
relying simply on the binary reachability data and the Euclidean dis-
tance between the embedding coordinates, node A might be tempted to
forward packets destined to E to neighbour D thinking that it is at a
similar distance to destination as neighbour B (D might even appear
closer to E due to embedding distortions), while in reality the autho-
rized path is much longer as can be seen on figure 5.16 (note that the
path D → C → E violates the valley-free constraints).

Hence, in order to allow node A to better decide on the next hop to
the destination, the administrative distance, retrievable from the num-
ber of hops in the received announcement, need also to be reflected in
the reachability data. This can be easily achieved by extending the pre-
vious classification solution to perform a multi-class decision instead of a
binary one. Instead of considering a model in which destination coordi-
nates can belong to only one of two classes (reachable or non-reachable),
we consider a model where it can be part of one of many classes corre-
sponding to the shortest distances along administratively allowed paths
to a destination’s coordinates. In this model, there is a finite number of
classes equal to d+ 1 where d is the network diameter when considering
administratively allowed paths. The additional class (+1) is the one at-
tributed to non-offered destination coordinates. Figure 5.17 shows the
same reachability data of figure 5.5 with each data point labelled with
a class corresponding its administrative distance to the destination or
with the non-reachable class label in case the neighbour node did not
announce its coordinates. As can be seen from the figure, the number
of obtained classes is fairly limited as the most administratively distant

5.3. Multiple Classes and Distance Function Regression 127

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

non−offered

1

3

2

4

0

Figure 5.17: Destination coordinates labelled with a class corresponding to
their distances to neighbour, or to the non-reachable class in case there is no
administratively authorized path towards them

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x

y

non−offered

3

2

4

1

Figure 5.18: Output of multi-class decision tree on the dataset of figure 5.17

nodes from the neighbour are at a distance 4. The same classification
method can then be applied on this dataset trying to separate at best
the offered nodes with the same distance from offered destinations with

128 Chapter 5. Geometric areas for policy support

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Size of the computed decision tree per link: branches + errors

C
u
m

u
la

ti
v
e
 R

a
ti
o
 o

f
n
o
d
e
s

Empirical CDF

Figure 5.19: Cumulative Distribution of the size of computed multi-class
decision trees

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Depth of the multi−class decision tree

C
u
m

u
la

ti
v
e
 r

a
ti
o
 o

f
n
o
d
e
s

Figure 5.20: Cumulative Distribution of the depth of the computed multi-
class decision trees

a different distance and from the non-offered destination coordinates.
Figure 5.18 shows the result of such a classification on the dataset of
figure 5.5, when using the decision tree method. The same information
gain approach is also used in this case to construct the classification
tree.

We applied this classification approach to the CAIDA 2004 au-
tonomous systems graph. Figure 5.19 shows the obtained cumulative
distribution of tree sizes results, where the computed size accounts for
the number of branch nodes plus the classification errors. One can no-
tice that the maximum tree size almost doubled when compared to the
binary classes case. However and as shown by the cumulative distri-
bution plot, a large majority of the links result in decision trees with a
size smaller than 4000 meaning that the cost of the decision tree is lower
than that of storing a distance vector of 4000 elements. Considering that

5.3. Multiple Classes and Distance Function Regression 129

the computed multi-class decision trees (with the errors compensation)
allow us to correctly compute the distances to all the network nodes,
this means that we are able to restore more than 16000 distance val-
ues by using only 4000 entries and hence we have a compression ratio
similar to that of the binary classes case.

Figure 5.20 shows the obtained depth of the multi-class decision
trees. In this figure one can see that the worse case tree depths also
double compared to the previous binary case. However as shown by the
cumulative distribution curve, almost 80% of the links incur a worst
classification depth of a little more than 50 instructions which is satis-
factory considering that the plotted values are only the extreme cases.

Note that the multiple classification when relying on a decision tree
can result in classification errors either indicating that a non-reachable
node is reachable (or vice-versa), or indicating that a reachable node is
at a wrong distance from the neighbour. Therefore, in case we target a
lossless compression of the routing data, a compensation for the errors
would be necessary by additionally storing them. This error storage
was taken into account for the storages costs reported in figure 5.19 as
it was the case for the binary dataset.

5.3.1 Relation to distance metric learning

In the multiple classification method used above, each node was pro-
vided with a dataset consisting of d-dimensional coordinates and their
corresponding distance values. By using a classification tool, each node
then found a method for approximating the distance value when given
a destination’s coordinates as input.

Figure 5.21 shows a plot of the received reachability dataset. In
this figure, the blue points are data points transmitted by the neigh-
bour to the node, consisting of a 3-dimensional point where the first
two dimensions are the network coordinates and the third dimension
is the communicated distance value. In this figure, all non-reachable
destination coordinates have been attributed a high constant value for
the distance (bigger than the network diameter and equal to 10 in this
case), in order to reflect the impossibility of reaching these destina-
tions. The surface, on which all the data points lie, is constructed by
performing an interpolation between the data points thus allowing to
better visualize the distance data variations. Figure 5.21 is in fact a
visual explanation for the failure of greedy routing based on the Eu-
clidean distance in a network subject to administrative relationships.

130 Chapter 5. Geometric areas for policy support

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−10

0

10

20

30

40

50

x
y

d
v

Neighbour 2 Distance

dv vs. x, y

Figure 5.21: Interpolated “distance function” based on the reachability
dataset of figure 5.17

Indeed, the interpolated surface strongly differs from the output of the
Euclidean distance function represented in Figure 5.22, that would de-
scribe a cone centred at the neighbour’s coordinates and in which the
distances increase linearly the further we get from the neighbour node.
Instead, the transmitted dataset’s surface is very irregular describing
sudden peaks in the distance value at the non-reachable point coordi-
nates. Therefore another way of approaching the problem of greedy
routing under administrative relationships is to consider it as a distance
function regression, or distance metric learning [118, 119] one, in which
a node after having received the reachability dataset from its neighbour,
must infer a distance function that fits the received dataset better than
the implicit Euclidean one. Note that our multiple classes decision tree
can be compared to a regression tree fitting the transmitted distance
vector data. However approaching the regression problem under the
multiple classification angle has the advantage of reducing the size of
the generated decision tree, as the number of obtained classes is minimal

5.4. Comparison with conventional routing and forwarding table
structuring 131

−3
−2

−1
0

1
2

3

−2

0

2

0

1

2

3

4

x
y

Figure 5.22: Euclidean distance function from the neighbour node in figure
5.5 (blue node)

thus incurring a minimal value storage cost at the tree leaves. In the re-
gression tree case however, the generated values at the leaf nodes would
be very diverse thus reducing the compression benefit of our method.

5.4 Comparison with conventional routing
and forwarding table structuring

In the following, we position the above presented work with regard to
the common techniques of structuring and management of routing and
more precisely forwarding tables in the current Internet.

One of the most wide spread data-structures in today’s router de-
vices is the trie with its many variants, binary, multi-bit, Patricia, Lulea
etc. [113]. Trie data structures are highly efficient when performing
longest prefix matching tasks. The goal of this task is to find the best
matching routing entry in a context where a hierarchical addressing
scheme, similar to the Internet IP addressing, is assumed and routing

132 Chapter 5. Geometric areas for policy support

information entries are aggregated according to this scheme. Note that
the necessity of performing longest prefix matching in this context comes
from the fact that exceptions to some larger range prefix rules may be
needed as for example having an entry “1.∗ → interface A” and an
additional forwarding rule “1.2.3.∗ → interface B” (where the asterisk
∗ stands for any values). Therefore, when handling a packet label, one
must verify that the rule with the longest prefix is matched as a label
such as 1.2.3.4 would be matching both prefixes. In its most simple
form that is the binary trie, the search proceeds by examining bit by bit
the label to be matched. Starting from the root of the trie, the search
simply moves down the trie structure by following the branch that fits
to the bit’s value. Some of the nodes encountered down the trie (either
branch or leaf nodes), have a prefix associated with them, so that the
path from the root to them is the value of the key. These nodes can
carry an associated state such as the interface value associated with the
matched prefix (or key). When matching an input label while moving
down the trie, the last encountered node with a matching prefix is al-
ways remembered, so that when a progress down the trie is no longer
possible, the rule associated with the last matching prefix (that is also
the longest) is used. An interesting aspect of the tries is that the key
strings (or prefixes) do not need to be stored and can be computation-
ally retrieved, if necessary, by taking the path from the trie root to
the last encountered node with an associated prefix. However, as said
above, tries are useful for matching longest prefixes in a system with
hierarchical identifiers. In cases where the identifiers are flat, as in the
Autonomous Systems identifiers, or present a different type of structure
as in the case of our virtual coordinates, the use of tries is beneficial only
from an access speed point of view and presents no advantages when it
comes to compressing the routing information. Indeed, when the iden-
tifiers attributed to the network domain nodes present no hierarchical
structure between them, all of the values associated with the domain
labels will be stored at individual leaf nodes of the trie (i.e. one leaf
node per domain). Therefore, when the associated state is a distance
value, as in our use above, relying on a trie data structure would induce
the same cost as the storage of the full distance vector (i.e. a distance
value per network domain node).

In fact, when no hierarchy in the identifier space is assumed, one
would better compare our method with those of label switching such as
MPLS and Ethernet forwarding, that fall under the category of exact
label matching. In this area of application, the dominant information

5.4. Comparison with conventional routing and forwarding table
structuring 133

retrieval approach is hashing, that, when provided with a label to be
matched, the label is fed to a hash function translating it into an ar-
ray index. This index is then used to retrieve the information (value)
associated with the label from an array storing all the values. In the
particular context of Ethernet switching, hashing is highly appreciated
as it is very efficient from a memory access point of view, thus allowing
to perform wire-speed forwarding. Although “normal” hashing meth-
ods can have a linear complexity in terms of memory access in case of
conflicts (i.e. O(N) memory access with N keys to be stored), a variant
named perfect hashing, that adapts a parametric hashing function to
the data at hand, allows to avoid conflicts and thus results in a fixed
cost for the retrieval operation. However, also in the case of the hashing
methods, no compression of the routing/forwarding data is performed.
Indeed given that all the values associated with the labels to be hashed,
be they interface identifiers or distance values, are stored in the value
array, this method results in the same cost as storing the full distance
vector.

Another approach to the problem of exact label matching is that of
binary search. In the case of one dimensional label data such as AS iden-
tifiers or MAC addresses, equipped with an order primitive (be it the
natural order, or lexicographic order), a binary search guarantees a la-
bel matching (retrieval) operation with a complexity of O(logN) where
N is the number of labels to be stored. This is due to the organization
of the data in a binary search tree data structure. The construction of
such a tree proceeds by first storing the given labels in a sorted array.
The median label (node stored in the middle of the array) is selected as
root of the tree. As a left child of the root node, is selected the median
node of the sorted array subset at the left of the root (i.e. the median
of the label values inferior to the value of the root). At the right child is
stored the median of the label values superior to that of the root. The
construction of the tree then continues recursively by having each inner
node storing the median of the values superior to it on its right branch
and that of the inferior labels on its left until no further subdivision is
possible. When matching a particular label value, one then is simply
required to navigate down the tree following the right branch of a node
if the value to be matched is superior to the encountered node’s value
or the left branch in the contrary case until a node with the searched
value is encountered. In the case where multidimensional labels (i.e.
multiple keys) are to be indexed, the extension of the binary search tree
is denoted as k-d-tree [8]. This specific type of binary trees operates the

134 Chapter 5. Geometric areas for policy support

same way except that instead of considering the full value of the mul-
tidimensional label (that would have to be computed as a function of
the different features or dimensions), the recursive splits are performed
along one dimension at a time. Thus, in an example two-dimensional
data, the root node would be selected as the median of all points when
sorted according to the x (or first) dimension. On the next subdivision,
namely the children of the root, the subdivisions are then performed
along the y dimension. The construction of the tree then continues re-
cursively in a similar way to the uni-dimensional case by looping in a
round-robin fashion on the dimensions for the split. A search on this
data structure also proceeds in a similar way to the uni-dimensional case
by comparing the value of the multidimensional label at the dimension
indicated by the node performing the split (with the value indicated by
the node). The complexity of the search operation in such an algorithm
is on average O(logN), however, differently from the uni-dimensional
case, the worst case complexity can go up to O(N) memory accesses.
Although such a data structure offers a fast information retrieval on
average, it shares with methods such as tries and hash tables, the dis-
advantage of requiring the storage of all the data points to be indexed
at the interior nodes of the tree, thus performing no compression.

Other variants of the recursive space-splitting methods are quadtrees,
octrees [97], and more general R-trees [56]. These data-structures, used
mainly in graphical applications and spatial databases, allow to approx-
imate general shapes by defining their minimal bounding boxes that
are, in most cases, squares and rectangles. The quadtree, for example,
initiates by subdividing the given space (assumed to be a finite two-
dimensional grid) into four equal areas. In the tree data-structure, this
is indicated by having four branches out of the root node. In case a space
tile contains no points, or a number of data points inferior to a threshold
one, no further subdivision is required. In the contrary case, the subdi-
vision process continues recursively until it is no longer necessary. Such
a scheme could be used in our case for aggregating the cloud of points
received via path advertisements similar to those of figure 5.4. This
would notably have the advantage over the k-d-tree method of not re-
quiring to store all the data points as the shape of the offered area would
by approximated by the tiles (of different size/granularity) indicated in
the quadtree. Thus only the data defining the size and the positions
of the bounding boxes (encoded in the tree) is necessary. Similarly to
previously discussed methods such as convex hulls, the above methods
do not guarantee a good discrimination between the set of offered and

5.5. Usage for forwarding tables 135

non-offered destination coordinates. The approximated bounding boxes,
around the set of offered node coordinates, may indeed contain a large
number of non-offered coordinates, thus resulting in routing errors.

To summarize, when comparing our decision-tree learning approach
to the set of existing methods for organizing spatial data, we find that
it offers the best compromise. First due to its compression capability,
as it allows to find a minimal decision surface discriminating between
the data points and thus requiring to store only the tree defining that
surface (thus disposing of the initial data points). Second, as it allows
for fast information retrieval due to the information gain optimization.
This guarantees a swift decision process, requiring only a small number
of memory accesses. In addition, such a data structure presents an
algorithmic simplicity, as well as a strong similarity to data structures
commonly used in the networking literature. Such a similarity, makes
it a viable candidate for a deployment within the networking field.

5.5 Usage for forwarding tables

Note that in most of the discussion above, the information base being
indexed was mainly the routing table, or more precisely the Adj-RIB-
In base. Our intention was to demonstrate that the received routing
information from a single neighbour could be indexed and compressed,
which in turn could be a motivation for maintaining it and using it for
multipath routing. Indeed, as discussed above, in the actual BGP im-
plementations, once the Loc−RIB and the forwarding base computed,
the information of the Adj − RIB − In tables are deleted, to free re-
sources, leaving only one path indicated per destination. This is not an
optimal choice as such an information could come handy in cases of link
failures or general support of multipath routing.

In case the single path model based on forwarding tables persists,
our model presented above would still be applicable and would perform
equally good. In a forwarding table based on virtual coordinates, an in-
coming packet is to be matched to an outgoing interface. Thus, instead
of performing classification where the goal is to retrieve the adminis-
trative distance value to the input coordinates, we can simply choose
the corresponding outgoing interface as the result of the classification
process. This could reduce the size of the forwarding tables (hopefully
also by 60%) and offer a fast forwarding decision process.

136 Chapter 5. Geometric areas for policy support

5.6 Extension to other network node fea-
tures

As mentioned above, our use of the obtained virtual coordinates in this
chapter was merely as topological features, fed to a feature extraction
engine that is the decision tree classifier, in order to represent and ac-
cess the routing data more efficiently. Therefore a legitimate question
can be to ask whether other characteristics of the network nodes could
be incorporated into this model, in order to allow for a more efficient
routing.

A typical information about the reachability of a network node is
not only its network position but also the type of services it provides.
Indeed, one might be able to a access a network node at the routing
level, but this does not guarantee access rights at all application levels.
A typical example of this can be a network node providing only web
services (HTTP protocol access) to other network nodes and reject-
ing any other type of access. Such an exclusion information is usually
not carried along in the conventional path advertisement protocol and
is therefore not visible to other nodes. For our example scenario, we
imagine an extended path advertisement message (NLRI) in which a
node, not only announces its reachability via its neighbours, but also
the types of services it offers access to.

Thus in case the path advertisement message already contained the d
dimensional virtual coordinates attributed to the node, considered as d
features of that node, the additional type of offered service information
can be considered as one additional feature describing the advertising
node. Hence, our visible routing space information, analogous to that
pictured in figure 5.5, is now composed of d+1 dimensional points that
are also the input to our classification method. Note that in order for
these points to be part of a d+1 dimensional Real vector space, then
the d+1 dimensional feature indicating the type of offered services must
be of a numeric form. One could for example imagine making use of
the TCP port numbers attribution to indicate the offered services. For
our example of a web server (only) node, the d+1 dimensional feature
transmitted in the path advertisement message would then have a value
of 80. This might be a requirement for certain types of classifiers, but
is however not a necessity for our decision-tree based classification ap-
proach, as the decision tree learning algorithm can easily cope with
categoric (i.e. non numeric) data. Our proposed classification method
can then proceed in the same exact way described previously by trying

5.6. Extension to other network node features 137

to find a separation surface that describes at best the multi-dimensional
data.

Such a scheme offers several advantages. First it allows for a routing
visibility across the conventional network layers, as a service requesting
node can plan for its entire communication session just by considering
information at the router level and not having to establish a communi-
cation request. Moreover, such a model can also be beneficial for the
application service providers as it gives them the flexibility of indicat-
ing which types of services are to be accessed via which neighbour. A
network node (or domain) offering both a web and a file transfer service
can for example indicate to other network nodes that the web service
is to be accessed via its neighbour A while the FTP service requests
should be incoming via neighbour B. This can be easily done by hav-
ing the node advertising an NLRI message containing the coordinates
< x, y, 80 > via A and another containing coordinates < x, y, 21 > via
B where (x, y) are the coordinates attributed to the node (in case of a
two-dimensional embedding). In the current Internet, such an ingress
influence is usually obtained by splitting the attributed IP address space
into two separate prefixes and announce them as being two different ASs
(domains). Our approach therefore could offer a more elegant solution.

Note that indicating such service-level details might result in an in-
crease of the routing information. However, as shown in the evaluation
results above, the classification method, requiring to store only the de-
cision boundaries between the points representing the entries (and not
the entries themselves), would hopefully allow to shrink the required
data storage while still offering a fast retrieval.

The above proposed example of offered services information is just
one of many possible features that could be taken into account. Other
features such as congestion levels, round-trip times, trust values, and so
on, could also be incorporated to the reachability message.

138 Chapter 5. Geometric areas for policy support

Chapter 6

Satisfying routing
strategies

139

140 Chapter 6. Satisfying routing strategies

A BC

D

Figure 6.1: Repeated example of administrative relationship network gen-
erating multiple views on distances that was shown in figure 4.7

In this chapter, we explore the option of embedding multiple net-
work views. or perceptions, into a single target coordinate space using a
consensus data structure method inspired by network analysis for Social
Networks. Our goal here is practically to find a common distance ma-
trix that summarizes the different perceptions of distances. Instead of
deriving the consensus distance values from the network graph, as is the
case of Locally Aggregated Structures discussed in chapter 4, we define
a method allowing to search for consensus distance values satisfying at
best our objective of administrative greedy routing.

Later on we show that our distance values “customization” to the
problem at hand, allows to extend the functionality of greedy routing
beyond the mere point to point reachability to support features such as
fault tolerance and multi-path support.

6.1 Constraints for Best-Path Routes

A possible first attempt for obtaining consensus distance values, can be
based on the idea of Locally Aggregated Structures (LAS), a consensus
approach for aggregating Cognitive Social Structures (CSS). Note that
the LAS method in this case would have to be applied to distance ma-
trices and not to the incidence matrices. To do so, one could start by
gathering the different distance matrices into a single three-dimensional
matrix, in which the third dimension indicates the viewer of the dis-
tances. Then, diagonal “slices” of the three-dimensional matrix are
obtained by maintaining only the rows (or columns) of the nodes rep-
resented in the values as in Section 4.4.1. For the network of figure 6.1
(same as 4.7), matrix 6.1 shows the obtained consensus structure when
applying a row-LAS like operation on different perceptions of network
distances. These perceptions are correspondent to the matrices of page
90.

6.1. Constraints for Best-Path Routes 141



A B C D

A 0 1 1 1

B 1 0 ∞ 1

C 1 ∞ 0 2

D 1 1 2 0

 (6.1)

One notices here several deficiencies with the resulting matrix values.
A first problem is the incoherence of the distances with regard to the
triangular inequality. The triangular inequality is a necessary condition
for an embedding in a metric space. For example, taking the distances
d(i,j) between nodes A, B and C in the resulting matrix (where the row
index i indicates the source, and the column index j the destination),
we get

d(B,C) > d(B,A) + d(A,C)

Such a violation of the triangular inequality makes an isometric em-
bedding in a metric space, such as a low-dimensional Euclidean space,
infeasible. Second, an important problem with this consensus structure
is that even if a greedy embedding were admissible (e.g. in a non-metric
space), the reported distances would still cause routing deadlocks. For
example consider the row-vector of node A, where a distance of 1 is
reported from node C. This allows practically node B to route packets
destined to C through A while in reality A will refuse to relay theses
packets any further. In fact such a case between the nodes A, B and
C is a good example of the requirements on the consensus values of
the distances. Thus, in order for node C, not to be fooled into routing
greedily to B via A, the consensus distances must satisfy the following
condition :

D′(C,B) ≤D′(A,B)

where D′ is the consensus distance matrix, making C appear closer to
B than A and therefore discouraging B from considering A as a greedy
next hop towards C.

Hence, the order relationships of the consensus distances are actually
more important than the exact distance values, when we want to comply
with the loop avoidance rule of greedy routing: “a node may forward a
packet to a neighbour only if the neighbour is closer to the destination
than the current node”. Continuing in the same line of thinking, we

142 Chapter 6. Satisfying routing strategies

must also ensure that B cannot reach destination C via A, i.e.

D′(B,C) ≤D′(A,C) (6.2)

and also that we encourage administrative authorised paths, namely C
is encouraged to route via A to D,

D′(A,D) <D′(C,D)

that D is discouraged from forwarding packets to C through B,

D′(D,C) ≤D′(B,C) (6.3)

or that even if B appears as a viable candidate, A is still preferred to
B,

D′(A,C) <D′(B,C)

and that D will prefer to reach C via A

D′(A,C) <D′(D,C) (6.4)

When combining the constraints (6.2),(6.3) and (6.4) above, we have

D′(B,C) ≤D′(A,C) <D′(D,C) ≤D′(B,C) (6.5)

The conclusion is that finding a consensus distance matrix whose
values admit to greedy routing (for all possible paths), is infeasible when
there are conflicting constraints, as in this example above. Also, it can
be shown that this is independent of the target embedding space, as no
space, be it pseudo-metric, semi-metric and other variants, would allow
a distance value to be strictly inferior to itself as in (6.5). Unfortunately
this example is not a special case, as one may easily produce other
analogous network graphs that exhibit this infeasibility. This is typically
due to the conflict of interests between the network participants making
a single embedding, satisfying all participants’ requirements, impossible.

Nevertheless, in the remaining of this chapter we will seek a con-
sensus data structure that minimizes the amount of such conflicting
constraints and, following this, the number of greedy routing violations.
The underlying hope is that, if the number of violations is small, they
maybe compensated by a small amount of routing state that will lead
to successful routing. Before explaining how to perform such a mini-
mization, we first provide some background on the constraints definition
mechanism.

6.2. Constraints for Multi-path Support 143

A

BC

D

Figure 6.2: Example topology with possibility of multipath support

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

B

A

C

D 

A B C D

A 0 1 1 4

B 1 0 2 3

C 1 2 0 3

D 4 3 3 0


Figure 6.3: Multipath supporting consensus matrix of example network in
figure 6.2 and its embedding

6.2 Constraints for Multi-path Support

In the example of the previous section we looked at the constraint set of
the consensus distances that would need to be satisfied for administra-
tive single path greedy routing between every source-destination pair.
Another more interesting possibility could be to search for consensus
distance values that allow the existence of multiple possible paths to a
destination and/or even incorporate paths preferences, as we will discuss
in the following section.

Consider the example of the network in figure 6.2 where node D is
a client of both nodes B and C, which in turn, are clients of node A.
Let us consider some of the constraints involved when representing all
possible paths in the consensus distances for this case.

In order to force D to consider the path D → B → A → C in
a greedy decision (in addition to the direct link), consensus distances

144 Chapter 6. Satisfying routing strategies

must be chosen such that,

D′(B,C) <D′(D,C)

Given the administrative relationships in place, the only other case
where multiple paths are available is from node D to B through the path
D → C → A→ B. This requires that,

D′(C,B) <D′(D,B)

Figure 6.3 shows a distance matrix whose values satisfy both of these
two constraints (in addition to forbidding downhill routing through node
D), and one respective feasible two-dimensional ordinal embedding of
the consensus distances.

It is worth pointing that the presence of administrative policies when
we are considering multiple paths, is often beneficial when searching for
a distance matrix that admits greedy routes! In absence of administra-
tive policies the number of multi-path constraints would be substantially
larger and, therefore the probability of conflicts emerging, higher. For
instance, when ignoring the administrative relationships in our example
case, we would have to consider constraints for the additional (multiple)
routes between B and C (through the valley of D),{

D′(D,C) <D′(B,C) (to take path B → D → C)

D′(D,B) <D′(C,B) (to take path C → D → B)

In this case half of the multipath constraints become unsatisfiable,
and a multipath greedy embedding solution improbable. Note however,
that despite this added benefit enabled by the administrative policies,
one can still not guarantee the conflict free nature of the multipath
constraint set, as shown in the previous example.

6.2.1 Representing Path Preferences

When considering multiple possible paths towards a destination, a nat-
ural question arises about the decision on the best or administratively
most preferred route. The question is if such information must be en-
coded into the consensus distances and if so, how ?

Starting from the latter part of the question, an intuitive step to
encode preferences is by expressing them as additional constraints. For
example in the graph of figure 6.2, to force the greedy routing process

6.2. Constraints for Multi-path Support 145

A

BC

D E

Figure 6.4: In this case both nodes D and E have multiple paths to A.
Contradictions in their preferences can therefore appear

into favouring the path D → B → A over D → C → A, one would add
a constraint

D′(B,A) <D′(C,A)

The path preferences can be pre-configured administratively or simply
follow a cost minimization logic. For example, the typical path pref-
erence rules from BGP may be adopted, such that paths via customer
neighbours are preferred over paths via peer neighbours, which in turn
are favoured over paths via provider neighbours.

The problem we see with this approach is that each node partic-
ipating to the network will be imposing its own path-preference con-
straints on the consensus data and hence on all other nodes. Therefore
the probability of contradictory constraints due to conflicting prefer-
ences increases. Let us illustrate this with another example in figure
6.4. Node E has two possible paths towards destination A via either
provider B or C. If E’s favourite path to A is E → B → A and that
instead, D’s only path to A is D → C → A (given that it has a peering
relationship with B, it cannot transit to A), then both nodes E and D
will be imposing on the consensus distances the following contradictory
constraints, which can allow only one them to be satisfied{

D′(B,A) <D′(C,A) (introduced by E)

D′(C,A) <D′(B,A) (introduced by D)
(6.6)

Note that the consequences of constraint violations do not affect
equally both nodes. If the preference constraint of node E is not satis-
fied, greedy routing still succeeds through a less preferred path. How-
ever, if the preference constraint of node D is not satisfied, greedy rout-
ing fails to reach node A.

146 Chapter 6. Satisfying routing strategies

This situation leads us to think that path preferences should not
be “encoded” in the consensus distances, since this would increase the
complexity of the constraints system. Instead, in order to decide on the
most preferred path to a destination, we can simply modify the greedy
routing process so as to take into consideration the preferences of the
node locally, or to deduce them from the administrative relationship
between the node and its neighbour. Algorithm 1, shows the proposed
modification of the greedy routing process.

The getPreference(j) function returns the local preference for neigh-
bour relay. In case it has been indicated by the administrator, the
function returns the respective value as a preference. Otherwise the
returned preference value depends on the administrative relationship to
the neighbour, such that paths via customers are favoured over paths
via peers and then over paths via providers.

The new greedy routing process is implemented by forwardPacket.
Notice that the distance comparison in this case is used only to infer
the reachability of a destination through a neighbour: if the neighbour
is closer to the destination than the current node, this indicates that a
path to the destination exists. The actual selection of the best candidate
next hop is then based only on the preference heuristic (as opposed to
the distance).

Another interesting function call in this algorithm is CrossingAu-
thorized() in line 17. This function checks, based on the administrative
relationships with the previous node (node l that relayed the packet
to the local node), and the candidate next hop, if the valley-free tran-
sit conditions are respected (see section 4.2.3). Not only this helps to
quickly eliminate violating candidates as next hops (thus avoiding to
compute several distances), but also reduces greedy routing failures,
as the embedding may have placed neighbour nodes that do not of-
fer transit towards a destination closer to the destination than feasible
neighbours.

In summary, keeping the neighbour preferences locally to nodes (in-
stead of integrating them into the consensus) and relying on the mod-
ified greedy routing process that takes preferences into account, limits
the number of constraints on the consensus distances and increases the
probability of finding consensus distance values that satisfy multipath
greedy routing.

6.2. Constraints for Multi-path Support 147

Algorithm 1 Modified Greedy Routing to account for Path Preferences

1: procedure getPreference(j). returns preference for neighbour
j

2: if Preference p is predefined then
3: return p
4: else if j is a provider then
5: return 0
6: else if j is a peer then
7: return 1
8: else if j is a customer then
9: return 2

10: end if
11: end procedure
12: procedure ForwardPacket(dest) . main forwarding routine
13: l← previous node . packet was relayed to current node by l
14: currentDist← Distance(currentNode, dest)
15: bestNode← NULL
16: for j in neighbours do
17: if CrossingAuthorized(l,j) then
18: if Distance(j, dest) < currentDist then
19: if getPreference(j) > getPreference(bestNode)

then
20: bestNode← j
21: end if
22: end if
23: end if
24: end for
25: if bestNode 6= NULL then
26: Forward packet to bestNode
27: else
28: Declare routing dead-end
29: end if
30: end procedure

148 Chapter 6. Satisfying routing strategies

6.3 Multi-path Constraints Extraction

Algorithm 2 Constraint Extraction algorithm for multipath support

1: procedure ExtractConstraints
2: for i ∈ V do . V is the set of vertices, i is the source node
3: for j ∈ V & j /∈ neighbours(i) do. j is the destination node
4: for k ∈ neighbours(i) do
5: if offersAccess(k, j, i) then
6: add a constraint: D′(k, j) < D′(i, j)
7: else
8: add a constraint: D′(i, j) ≤ D′(k, j)
9: end if

10: end for
11: end for
12: end for
13: end procedure

We are now ready to discuss the process of generating the concensus
distances for representing the multiple paths for the greedy routing pro-
cess, from the administrative policy graph. The first step is to create
the set of constraints that need to be satisfied by the distances.

Algorithm 2 is responsible for this step, through a simple heuristic.
If a neighbour node offers access to a destination node a constraint forces
it to appear closer to the destination than the current node. Otherwise,
the neighbour is eliminated as a candidate for greedy routing by intro-
ducing a constraint that places it further from the destination than the
current node. The fact that a neighbour offers access to a destination
can be infered using the function offersAccessTo() that itself relies on
received path advertisements.

This process generates a large number of constraints. In fact, each
node in the network will be generating d constraints for every possible
destination (that is not a direct neighbour), where d is the node’s degree.
Hence the total number of constraints Nc in a network with n nodes is

6.4. Solving the system of constraints 149

D’(A,B) D’(A,C)

D’(A,D) D’(A,E)

D’(B,C)
D’(B,D) D’(B,E)

D’(C,D) D’(C,E)

D’(D,E)

Figure 6.5: Hasse diagram representing the order constraints on the network
distances in the example of figure 6.4. The dotted edges are the constraints
that would be introduced due to route preferences as in equation (6.6). Such
contradictions manifest as loops in the Hasse diagram

equal to :

Nc =

n∑
i=1

di ∗ (n− 1− di) = (n− 1) ∗
n∑
i=1

di −
n∑
i=1

d2i

= 2(n− 1)|E| −
n∑
i=1

d2i

where |E| is the number of edges in the network. In the following
section we discuss how to resolve such a large constraint system.

6.4 Solving the system of constraints

Solving the constraint system involves two steps. The first is to iden-
tify and resolve possible conflicts among the constraints. The second
step then is to generate a consensus set of distance values that satisfies
the constraint set. Resolving the detected contradictions practically im-
plies the removal of the minimum number of constraints such that the
remaining ones can be satisfied by a consensus solution. The hope is
that the removed contradictions represent just a small minority of the
constraints at hand.

The problem at hand in its general form is a central theme in Linear
Programming as well as Order Theory. In Linear programming it is

150 Chapter 6. Satisfying routing strategies

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4
x 10

6

Number of nodes

N
um

be
r

of
 m

ul
tip

at
h

co
ns

tr
ai

nt
s

Figure 6.6: Number of generated multipath distance constraints for the test
networks

addressed as an optimisation problem against an objective function by
using the Simplex Method or the Barrier Method. In absence of an
explicit objective function and given the fact that our constraints are
actually a set of inequalities that define an order over a set of distances,
we resort to a solution from Order theory[99].

We start by representing node distances as vertices in a directed
graph and the inequality constraints as directed edges “heading” from
vertex A towards vertex B if the inequality A < B is true. This is called
a Hasse diagram. Figure 6.5 shows such a diagram for the constraint
system of the example in figure 6.4.

Any two contradicting constraints (either directly or indirectly),
form loops in the Hasse diagram such as illustrated by the dashed edges
in figure 6.5. Not only such a representation helps to visualize the com-
plexity of the constraint system, but it also offers an approach to find
and resolve the contradictions it contains. Specifically, resolving the
constraints contradictions reduces to detecting (and breaking) loops in
the Hasse diagram, which for a general directed graph can be achieved
using Tarjan’s algorithm [107]. This algorithm performs a variation of
a Depth-First Search traversal to detect strongly connected components
(SCC), i.e. subsets of graph nodes for which a path exists from each
member of the SCC to all others (and hence the equivalence with loops).
Once the SCCs are detected, loops can then be broken by removing one
of the looping edges, i.e. one of the constraints in the system. Although
such a removal would introduce routing errors (or multipath representa-
tion errors), all of the remaining edges of the SCC can still be satisfied
by the consensus distances.

Once the constraints contradictions have been eliminated, the next

6.4. Solving the system of constraints 151

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

Number of nodes

R
at

io
 o

f m
ul

tip
at

h
co

ns
tr

ai
nt

s
vi

ol
at

io
ns

Constraints Violations Comparison

Non−administrative unembedded distances

corrected unembedded consensus distance

Figure 6.7: Multipath constraints violations in the case of the non-embedded
non-administrative graph distances compared with the amount of infeasible
constraints. Plenty of potential for improvment!

step is to generate the consensus distances.

Note that the Hasse diagram describing the constraint system has
now turned into a Directed Acyclic Graph (DAG). A possible way to
generate consensus distances that satisfy the greedy routing constraints
can be to simply traverse the DAG starting from “root nodes” (i.e.
nodes with no incoming edge, such as D′(A,B) and D′(A,C) in figure
6.5) and assigning monotonically increasing values to each traversed
vertex. With such a method one can generate an infinite number of
possible solutions that satisfy the non-conflicting constraints.

Note that more realistic distances can be produced by starting with
the shortest distances of the network without administrative relation-
ships and “correcting” them to satisfy the set of constraints represented
by the DAG. Such a task can be achieved by an optimization method
known as isotonic regression [29]. Given a vector of values and a set of
linear constraints, the role of the isotonic regression is to find a suffi-
ciently close, to the original vector that satisfies the given constraints.

Although the isotonic regression method is perfectly fit to our prob-
lem, the large amount of constraints on the distance values generated by
our consensus approach prohibits the use of such a method in a practical
manner. Instead, we have developed a heuristic distance-correction al-
gorithm to approximate the outcome of the isotonic regression method,
by using the monotonic Hasse diagram traversal explained above. First,
we assign to the vertices of the Hasse diagram, the corresponding short-
est path distance value in the non-administrative case. Then, starting

152 Chapter 6. Satisfying routing strategies

from the root nodes, we traverse the DAG graph updating the values
of a vertex with a small threshold if it is inferior to that associated to
the node preceding it. When the traversal is finished, we obtain a set of
distances that violate only the infeasible set of constraints, and that are
fairly close to the original distances of the non-administrative graph.

To test the feasibility of our consensus method and see if the amount
of infeasible constraints (that we remove) remains reasonably small, we
applied the algorithms discussed so far, on a small set of generated
network graphs of sizes varying from 100 to 1000 nodes1 and subject
to administrative relationships. The small network sizes turn out to
be sufficient for exhibiting the benefits of our method and at the same
time it is suitable for comparison later-on, with the computationally
demanding ordinal embedding technique.

Figure 6.6 shows the number of multipath constraints generated by
Algorithm 2 as a function of the network size. Figure 6.7 shows the
number of multipath constraints violations of the corrected consensus
distances when compared with the shortest path distances on the undi-
rected graph (i.e. when not considering administrative policy relation-
ships). Note that this choice of comparison is due to the fact that
the shortest distances in the non-administrative case, are a “natural”
consensus distance structure that can be easily extracted from the net-
work graph. The other alternative would be to compare with the LAS
derived structures that present the deficiencies discussed in section 6.1.
Hence, in order to evaluate the benefit of our consensus distances search
approach, we will, in the rest of this chapter, compare with the perfor-
mances of the non-administrative shortest distances as an alternative
consensus structure.

The number of violations in our method is proportional to the num-
ber of removed constraints. As can be seen from figure 6.7, this number
remains fairly low, varying around the 5% of the constraint set (and
by contrast to the around 37% of the undirected graph embedding).
This result suggests that a fair amount of multipath routes as well as
a routing resilience is possible when routing greedily on our consensus
distances.

1the networks were generated so as to reflect the properties of the CAIDA AS
graph in terms of connectivity and administrative relationships distribution. We
thank Dr. Xenofontas Dimitropoulos for providing us with this dataset

6.5. Embedding the consensus distances 153

6.5 Embedding the consensus distances

Now that we have the consensus distance matrix which admits to greedy
routing, the next and final step is to embed the distances in a low
dimensional space, such that greedy routing can be performed using the
obtained node coordinates. It turns out, as we will see in this section,
that this is the most challenging task.

6.5.1 Metric embedding of the consensus distances

When embedding the obtained consensus matrix using techniques of
Metric Multi-Dimensional Scaling (M-MDS), we get a very poor com-
pliance to the multi-path constraints, with a violation percentage that
is around 37%, far above the 5% of the non-embedded distances, as can
be seen in figure 6.8 (the consensus distances are labelled as “corrected”
in the figure). In fact, we observe that the resulting embedding distor-
tions are almost as severe as if we have directly produced an embedding
of the undirected graph (not accounting for the administrative policy
relationships), which in figure 6.8 violates 35% of the constraint set (line
labelled “undirected metric”).

This could be due to the fact that in the process of generating the
consensus distances we did not concern ourselves with a metric space
where these distances may be manifested. In other words, although we
made sure that greedy routing is possible on those distances, we nev-
ertheless did not additionally cater for compliance with the triangular
inequality in face of an imminent embedding to a metric space.

To correct this shortcoming, an intuitive approach is to increase the
value of the consensus distances by a constant value until the triangular
inequality rule is respected, and while maintaining their relative order
(which guarantees their compliance to the constraint set). Estimat-
ing such a value is the goal of Additive Constant methods [12, 18, 95]
that may produce an additive transformation for our consensus distance
matrix, such that the between-node distances are guaranteed to be Eu-
clidean in some (high-dimensional) vector space. Note that such a trans-
formation, being additive does not modify the order of the distances and
therefore preserves the constraints for the greedy routing. The only (and
rather important) problem is however, the high dimensionality of the
space in which the distances are Euclidean. This dimensionality can go
up to N − 1, with N being the number of nodes in the graph!

154 Chapter 6. Satisfying routing strategies

A test with Cailliez’s [18] method for estimating the additive con-
straints, is rather discouraging as to the effectiveness of this approach
in our problem. We see in figure 6.8 (line labelled “euclidized metric”)
that the resulting constraint violations when embedding in a 2-D space,
is on average around 37%.

6.5.2 Ordinal embedding of the consensus distances

What we have seen so far is that the embedding of the consensus dis-
tances in a metric space is a rather challenging task. A high-dimensional
embedding can be reasonably accurate but impractical, and a low-
dimensional embedding introduces distortions that lead to additional
violations of constraints beyond those that we have excluded in the con-
flict resolution process. One strategy is to try and reduce (ideally elim-
inate) the number of constraint violations induced by the embedding
distortions, by adapting the embedding values to respect the violated
constraints. After all, as mentioned previously, in the case of greedy
routing and our multipath constraints, it is the order between the dis-
tance values that matters more than the values themselves. Therefore,
we are interested in an incremental embedding process that tries to pre-
serve, in every step, the order of the consensus distances (i.e. guarantee
that most of the multipath constraints are satisfied in the resulting em-
bedding). This is exactly the scope of the Ordinal Multi-Dimensional
Scaling (O-MDS) methods. Such a method preserves the desired order
of the distance values in the input matrix by performing an iterative
optimization task similar to the Expectation Maximization (EM) algo-
rithm [32]. This process involves and iterative sequence of alternating
M-MDS and isotonic regression.

First, an embedding of the consensus distance matrix is produced.
In this initial embedding the set of distances De between the embedded
points is computed. Then, isotonic regression is used for “correcting”
the distance matrix De such that the values of De obey the same order
as the respective in the input matrix. The resulting corrected De matrix
is then the input of the next iteration of embedding using metric MDS.
This process repeats until a termination criterion is met. Note that if
the set of constraints is too large for isotonic regression (typically in our
case), the heuristic correction method that we described in the previous
section can be used instead.

To test and compare the effectiveness of this strategy, we applied
it to the consensus distance matrix, the transformed consensus matrix

6.5. Embedding the consensus distances 155

(with the additive constant for admissible Euclidean embedding), and
also to the shortest path distance matrix of the undirected network
graph (where administrative policies are not taken into account).

As we see in figure 6.8, the O-MDS embedding of both the consen-
sus distance matrix and the transformed consensus matrix (labelled as
“corrected ordinal” and “euclidized ordinal” respectively) achieves an
improvement over the respective M-MDS embeddings (labelled as “cor-
rected metric” and “euclidized metric” respectively). The percentage
of constraint violations has dropped to about 30% (except for the ex-
ample case of 700 nodes). Moreover, the performance of the consensus
distance matrix seems to be slightly superior than the transformed con-
sensus matrix. Finally, for the the shortest path distance matrix of the
non-administrative network graph (labelled as “undirected ordinal”), O-
MDS embedding provides no improvement whatsoever over the M-MDS
embedding (labelled as “undirected-metric”), with regard to constraint
violations. Hence, as expected, ordinal embedding methods allow to
obtain slightly better results than the M-MDS case. The surprising
fact however remains that the ordinal embedding of the “Euclidized”
distances, performs slightly worse than the ordinal embedding of the
consensus distances. This might be due to the increase in the inherent
dimensionality of the data points when transformed to satisfy the trian-
gular inequality condition. Indeed as previously discussed, such a trans-
form requires a very high-dimensional embedding in order to correctly
represent the transformed distances and might therefore be an expla-
nation for the poor performances exhibited with the low-dimensional
embeddings reported above.

6.5.3 Hyperbolic Embedding of the consensus dis-
tances

So far we have been attempting to find embeddings for the consensus
distances in a low-dimensional (2-D) Euclidean metric space. As it has
been shown in recent literature [83], often the nature of an undirected
graph renders such a low-dimensional embedding difficult (or even infea-
sible), with regard to admissibility for greedy routing. For this reason
we have also tried to embed the consensus distances in a hyperbolic
metric space, where latest findings [64] show that an admissible embed-
ding to greedy routing of an undirected graph is always possible as a
greedy embedding of its spanning tree is guaranteed.

Given that the example network graphs used in our tests, are re-

156 Chapter 6. Satisfying routing strategies

100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of nodes

R
at

io
 o

f m
ul

tip
at

h
co

ns
tr

ai
nt

s
vi

ol
at

io
ns

Constraints Violations Comparison

undirected unembedded
corrected unembedded
undirected metric
undirected ordinal
corrected metric
corrected ordinal
euclidized metric
euclidized ordinal
undirected hyperbolic
corrected hyperbolic

Figure 6.8: Constraints violations according to embedding method

100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of nodes

G
re

ed
y

F
ai

lu
re

 R
at

e

Greedy routing performance comparison

undirected unembedded
corrected unembedded
undirected metric
undirected ordinal
corrected metric
corrected ordinal
euclidized metric
euclidized ordinal
undirected hyperbolic
corrected hyperbolic

Figure 6.9: Greedy Routing failures according to embedding method

producing the Internet’s Autonomous System graph properties, they
essentially share similarities to a tree graphs as they belong to the fam-
ily of scale-free graphs. Our intention in the following is therefore to
evaluate the performances of the consensus distances when embedded in
such a space, as it would be a more appropriate one for the example net-
works at hand. In a hyperbolic embedding, the data points are mapped
to coordinates in the Poincarré Disk model, where the distance between
data points exponentially increases the closer we get to the border of
the disk. In order to obtain the Poincarré disk coordinates, we used

6.6. Transform coding of the consensus distances 157

the implementation provided by Crovella et al. [26]. In the results pre-
sented in figures 6.9 and 6.8, we report the performance achieved by a
hyperbolic embedding for both the shortest path distance matrix of the
undirected network graph (where administrative policies are not taken
into account) and the consensus distance matrix (labelled as “corrected
hyperbolic”).

As predicted, the use of the hyperbolic coordinates seems to im-
prove the performance with regard to the multipath constraints vio-
lations, achieving a violation percentage (for the consensus distances)
below 20%. Nevertheless, when looking at the greedy routing success
rate, using our modified greedy algorithm (that takes into account ad-
ministrative policies) the hyperbolic embedding does not perform any
better than the other embedding techniques considered so far, with a
failure rate above the 70%.

6.5.4 Summary on embedding methods

As shown by the results above, the embedding procedure, independently
of its specifics (Euclidean, hyperbolic, ordinal etc.), fails to exploit the
full potential of the computed multipath capable consensus distances.
When compared with the multipath constraints violations prior to the
embedding, all the embedded consensus distances (according to different
embedding methods) violate much more constraints and exhibit results
similar to those of the undirected graph distances (i.e. shortest distances
without considering administrative relationships). Moreover, when con-
sidering the greedy failure rate performances shown in figure 6.9, one
can see that none of the embedding procedures, when applied to both
non-administrative graph distances as well as the corrected ones (i.e. our
consensus distances computed above) provide useful results. Indeed, as
shown in figure 6.9, all of the embedding methods seem to converge with
the increase in the network size to a greedy failure rate (when subjected
to administrative constraints) at around 70% thus making a practical
usage of the consensus distances infeasible.

6.6 Transform coding of the consensus dis-
tances

Given the discouraging results attained so far by trying to embed the
consensus distances in a low-dimensional metric space, we attempt a

158 Chapter 6. Satisfying routing strategies

change of strategy in this section onwards. Initially, our motivation for
attempting a metric-space embedding was to enable (almost) stateless
greedy routing on the embedded node coordinates. This practically
meant

(i) Near-zero storage for routing state
(ii) Fast forwarding decisions with almost zero memory accesses

In face of the dead-end in finding a sufficiently well-performing solu-
tion we decide to relax our initial requirements, and seek for a solution
that meets the following goals

(i) Sufficiently small storage required for routing state
(ii) Fast forwarding decision requiring only a few memory accesses

Therefore, we search for alternative ways of exploiting the consensus
distance matrix and its multipath routing support information.

Starting with the redefined first goal, when provided with the full dis-
tance matrix data, we start considering compression methods to reduce
the amount of data to be stored. Such methods would either enable us
to store the exact distance between two network nodes in case of lossless
compression, or an approximate distance in case of lossy compression,
the quality of which depends on the compression ratio.

Lossless compression methods have two main variants, the Huffmann
coding and Arithmetic coding. Both methods build a statistical model
of the data by measuring the probabilities (frequencies) of all symbols
(values) being present in the dataset. From this they construct an en-
coding scheme requiring only a few bits for the most frequent symbols
(instead of an equal number of bits for all symbols) and thus result in
reduced storage for the presented dataset. Although we can envision
similar methods applied on our consensus distance matrix, they would
however still require the same number of records in the routing table
(as the distance matrix), albeit with a less storage required per record.

Another family of compression methods are the lossy and more par-
ticularly transform coding methods. These are commonly used for image
compression (an image is by nature a 2-D matrix!), by retrieving and
deleting the most irrelevant details in the dataset, and maintaining only
values carrying most of the information. The most prominent techniques
of transform coding for digital signals represented as vectors and matri-
ces, are the Discrete Fourier Transform, the Discrete Cosine Transform,
the Karhunen-Loève Transform and the Wavelet Transform.

6.6. Transform coding of the consensus distances 159

The Karhunen-Loève Transform (KLT), also know as Principal Com-
ponent Analysis (PCA), represents the values in a matrix as a linear
combination of its eigenvectors and eigenvalues. In the more particular
case of symmetric matrices, that is also our case, this transform is in
fact equivalent to a spectral spectral decomposition of the matrix, com-
putable via an eigendecomposition. This decomposition allows to find
an orthonormal matrix Q (i.e QQT = I) and a diagonal matrix Λ, such
that

D = QΛQT

where the columns of the Q matrix are the eigenvectors of the matrix D
and the diagonal values of Λ are the corresponding eigenvalues. When
considering this decomposition as follows

D = (QΛ)QT = λ1q1q
T
1 + λ2q2q

T
2 + ...+ λnqNqT

N

we obtain a spectral decomposition of the matrix D into a sum of
matrices, as each outer product qiq

T
i produces a matrix of the same size

as D. Note that the “contribution” of these component matrices to the
matrix D is proportional to the magnitude of the corresponding eigen-
value λi, meaning that the matrices associated with a large eigenvalues
carry most of the information and those with smaller values indicate
less relevant details. Hence, compressing our distance matrix using the
KLT transform can be achieved by storing only k < N − 1 of the qi
eigenvectors in a decreasing order of their eigenvalues magnitude. The
advantage of the KLT transform over other transform coding methods
is that it is the most adapted to the data at hand in a least squares
sense [85] (by producing a transform basis for each dataset).

By contrast, other transform coding methods such as the Cosine and
the Wavelets transform for example, use a fixed basis on all datasets to
be compressed. A fixed basis has the advantage of not requiring to
transmit the transform basis along with the compressed data. For ex-
ample, in the case of the KLT transform a compressed image would
be impossible to decode unless the eigenvectors forming the basis of
the transform are also communicated with the image data. Fixed basis
transforms include the Discrete Fourier Transform (where the basis are
the sine and cosine functions of different frequencies), the Discrete Co-
sine transform (the basis is the cosine function at different frequencies)
and the Wavelet Transform (the basis is formed by a set of orthogonal
functions called wavelets).

160 Chapter 6. Satisfying routing strategies

Figure 6.10: Multipath constraints violations when using the KLT transform
on both the consensus distances and the undirected distances

6.6.1 Using the KLT transform

Given that the KLT (PCA, SVD) transform provides us with the ba-
sis that is best fit to our distance data at hand, and considering the
fact that the compression is meant to be node-local (i.e. no transfer of
compressed data between nodes), we chose to apply it to the computed
consensus distances and see if better performances than the embedding
methods can be achieved. In order to measure the benefit of our con-
sensus distance matrix computation through the constraints resolution
process, we also applied the KLT transform method to the undirected
distance matrix, i.e. the shortest path distances between network nodes
without considering any administrative concerns. The obtained results
for the multipath constraints violations and the greedy routing failures
are respectively shown in figures 6.10 and 6.11. A general comment
about both results is that better performances are achieved when com-
pared to the embedding strategies. A surprising result however is the
clear dominance at low compression ratios of the KLT transform when
using the undirected distance matrix over our computed consensus dis-
tance matrix. Indeed, when considering the greedy failure rate results

6.6. Transform coding of the consensus distances 161

Figure 6.11: Greedy Failure Rates with administrative concerns when us-
ing the KLT transform on both the consensus distances and the undirected
distances

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Distance Value

C
u
m

u
la

ti
v
e
 R

a
ti
o

 o
f
v
a
lu

e
s

Case of the undirected distances

(a) Cumulative distribution of the
undirected distance values

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Distance Value

C
u
m

u
la

ti
v
e
 R

a
ti
o

 o
f
v
a
lu

e
s

Case of the corrected distances

(b) Cumulative distribution of the cor-
rected distance values

Figure 6.12: Difference of the distance value distribution between the undi-
rected and the corrected distances for the example case of 600 nodes

on figure 6.11, one can see that the KLT transform applied on the
consensus distance matrix performs worse than when applied on the
undirected distances and this independently from the network size and
the desired compression ratio. An even more interesting result is visible
in figure 6.10. In this case, when the desired compression ratio is high
(75% for example), meaning that both initial matrices are rather well

162 Chapter 6. Satisfying routing strategies

approximated, the performances of the approximated distances with
regard to multipath constraints violations are similar to those of the
initial matrices visible in figure 6.7 where the corrected consensus dis-
tances clearly outperform the undirected distance matrix. However,
as the compression ratio decreases, the performances achieved by our
consensus distances tend to worsen which is to be expected as the ma-
trix approximation is less and less precise, thus more likely to violate
the order constraints on the distances. What is however surprising, is
the effect of the compression ratio reduction on the KLT transform of
the undirected distance matrices as it seems to have the reverse effect,
namely that of enhancing the performances in terms of constraints vio-
lations. Indeed, the KLT transform on the undirected distances in figure
6.10 achieves the best results in terms of multipath constraints viola-
tions at the lowest compression ratio of 5% with results slightly above
the 15% of constraints violations, thus getting close to the (boundary)
performances of the original corrected distance matrix. Such an effect
could perhaps be explained by the differences between the distribution
of values in the two matrices. When applying our constraint correc-
tion methods based on the Hasse diagram traversal, a few high distance
values (with superiority constraints on them) tend to drag a large part
of the distance values towards them thus creating a cleavage between
two groups in which the order “steps” are of very different magnitude.
An example of the undirected and corrected distance values distribu-
tion for the example case with 600 nodes is given in figure 6.12. A
possible explanation for the exhibited results can therefore be that in
such a context where the data points are compacted (clustered), a poor
approximation of the values might have more severe consequences than
in the sparser case.

6.6.2 Summary on transform coding

As can be seen from the results above, acceptable performances in
terms of multipath constraints violations and greedy failure rate can
be achieved at rather low compression ratios even without relying on
our consensus distances. An important drawback of this solution how-
ever, affecting the second main objective of greedy routing that is fast
forwarding decision is the rather large amount of coefficients involved in
the computation of a distance towards a destination. Indeed, although
a compression ratio of 15% can sound appealing from a memory us-
age aspect, it also means that 0.15 ∗N2 coefficients will be involved in

6.7. Approximate Distance Oracles on the consensus distances 163

the computation of the distance of a neighbour to a destination thus
potentially slowing down the forwarding decision. A transform coding
based solution as the one presented above might therefore not be suited
to most application scenarios. For cases where the network nodes are
however willing to trade computation against memory usage, the above
solution might be interesting. One such case is in fact that of Ether-
net switches having to process incoming packets at wire speed. In the
classical literature of network switching, the complexity of the decision
operation is computed in terms of memory operations, due to the fact
that a memory access is much more time consuming than computational
instructions. Furthermore, special fast access memories have been de-
veloped in this context allowing to considerably reduce the information
retrieval time. Therefore the reduced amount of information required
when using our transform coding method could allow to entirely fit
the required coefficients in a fast access memory allowing to completely
avoid any external memory slow accesses.

Another application field where such a method could also be applied
is Network on Chips (NoC) [9] where processing units in a Very Large
Scale Integration (VLSI), rely on datagram communication paradigms
for exchanging data fast and asynchronously. In these architectures
routing and switching operations replace the more classical cross-bar
and bus models. Processing units on those chips share the same op-
erational incentives and challenges with network switches in the afore-
mentioned Ethernet switch example. Being computational by nature,
these units are likely to trade computational power based on informa-
tion stored on registers, etc. instead of relying on external memory
accesses.

6.7 Approximate Distance Oracles on the
consensus distances

Another approach to distance matrix compression was proposed by Tho-
rup and Zwick in their approximate distance oracles [110] method. In
this proposal, the network distances are approximated through the stor-
age of a sub-sample of the distance values. Similar to the Lipschitz
methods and those of compact routing discussed in chapter 2, the main
idea is that the distance between a pair of nodes u and v can be approx-
imated (bounded) with the distance values of both nodes u and v to
a third reference point w, by using the triangular inequality condition.

164 Chapter 6. Satisfying routing strategies

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0
.2

0
.4

0
.6

0
.8

p
a
ra

m
e
te

r k
=

2

N
e
tw

o
rk

 S
iz

e
 in

 N
o
d
e
s

Greedy Failure Rate

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

p
a
ra

m
e
te

r k
=

2

N
e
tw

o
rk

 S
iz

e
 in

 N
o
d
e
s

Multipath Constraints Violation Ratio

0
2
0
0

4
0
0

6
0

0
8

0
0

1
0
0

0
0

0
.1

0
.2

0
.3

0
.4

0
.5

p
a
ra

m
e
te

r k
=

2

N
e
tw

o
rk

 S
iz

e
 in

 N
o

d
e
s

Compression Ratio of distance oracle

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0
.2

0
.4

0
.6

0
.8

p
a
ra

m
e
te

r k
=

3

N
e
tw

o
rk

 S
iz

e
 in

 N
o
d
e
s

Greedy Failure Rate

u
n
d
ire

c
te

d
 n

o
n
−

e
m

b
e
d
d
e
d

u
n
d
ire

c
te

d
 a

p
p
ro

x
im

a
te

d
c
o
n
s
e
n
s
u
s
 n

o
n
−

e
m

b
e
d
d
e
d

c
o
n
s
e
n
s
u
s
 a

p
p
ro

x
im

a
te

d
E

u
c
lid

e
a
n
 c

o
n
s
e
n
s
u
s
 a

p
p
ro

x
im

a
te

d

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

p
a
ra

m
e
te

r k
=

3

N
e
tw

o
rk

 S
iz

e
 in

 N
o
d
e
s

Multipath Constraints Violation Ratio

0
2
0
0

4
0
0

6
0

0
8

0
0

1
0
0

0
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5
p
a
ra

m
e
te

r k
=

3

N
e
tw

o
rk

 S
iz

e
 in

 N
o

d
e
s

Compression Ratio of distance oracle

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0
.2

0
.4

0
.6

0
.8

p
a
ra

m
e
te

r k
=

4

N
e
tw

o
rk

 S
iz

e
 in

 N
o
d
e
s

Greedy Failure Rate

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0
.1

0
.2

0
.3

0
.4

0
.5

p
a
ra

m
e
te

r k
=

4

N
e
tw

o
rk

 S
iz

e
 in

 N
o
d
e
s

Multipath Constraints Violation Ratio

0
2
0
0

4
0
0

6
0

0
8

0
0

1
0
0

0
0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5
p
a
ra

m
e
te

r k
=

4

N
e
tw

o
rk

 S
iz

e
 in

 N
o

d
e
s

Compression Ratio of distance oracle

F
ig
u
re

6
.1
3
:

A
p
p
rox

im
a
te

D
ista

n
ce

o
ra

cles
resu

lts
co

m
p
a
riso

n
w

h
en

va
ry

in
g

th
e

p
a
ra

m
eter

k

6.7. Approximate Distance Oracles on the consensus distances 165

Thus, a necessary condition for the efficient use of such a method is
that the triangular inequality condition on the distances holds. As dis-
cussed above, the consensus distances generated through our constraints
resolution mechanism do not necessarily satisfy this condition. Never-
theless, the obtained distance values can be transformed so as to fulfil
this condition by simply adding a large enough constant to all distance
values as discussed in [12, 94]. The principle behind such a transform
is very simple. Consider all the strictly positive values c for all node
triplet i, j and k violating the triangular inequality :

c = D′(i, j)−D′(i, k)−D′(k, j) > 0

and consider cmax to be the highest such value for all the triplets (i,j,k),
(i.e. the highest triangular inequality violation). Then by simply adding
cmax to all the values of D′ we obtain the matrix D′′ where :

D′′(i, k) + D′′(k, j) = D′(i, k) + D′(k, j) + 2 ∗ cmax
= D′(i, j) + cmax = D′′(i, j)

hence having the highest triangular inequality violation corrected
in D′′, meaning that all other smaller violations are in turn corrected.
Given that the consensus distances have been transformed through a
simple shift with an additive constant, the greedy routing constraints
are guaranteed to remain satisfied as the inter-value order remains the
same. As discussed in [94] and [18], the additive constant cmax can fur-
thermore be selected to not only guarantee the metric compliance of the
transformed distances but also to obtain Euclidean distances. Hence,
by applying the constant shift operation on our consensus distances, we
can make them viable to be used with the approximate distance oracle
method.

Figure 6.13 shows the obtained results when applying the approxi-
mate distance oracles method to the consensus distances computed for
the 100 to 1000 nodes example cases studied above. In this case, we
approximate the distance values of the non-administrative distances (la-
belled as undirected in the figure), along with the values of the consensus
distances obtained through the constraints resolution process as well as
those of the transformed consensus distances satisfying Euclidean prop-
erties. Reported are the performances of greedy administrative routing,
multipath constraint violations as well as the obtained compression ra-
tio with regard to different values of a parameter k specific to the dis-
tance oracle method. This parameter influences the amount of distance

166 Chapter 6. Satisfying routing strategies

data that is required to be stored on each node, that is in the range of
O(kn1+1/k) where n is the number of nodes in the network. Note that
this parameter also influences the quality of the distance approximation
as the distance oracle method guarantees a stretch of factor 2k − 1,
provided that the triangular inequality holds.

In order to highlight the effect of distance approximation when com-
pared with the original distance values, we also re-plot the greedy ad-
ministrative failure rate as well as the multipath constraints violations
for both non-embedded non-administrative distances (labelled as undi-
rected non-embedded in figure 6.13) as well as the non-embedded con-
sensus distances that were previously reported in figure 6.7.

A first important remark when studying the multipath constraints
violations results is that the performances of the approximated con-
sensus distances as well as of the approximated Euclidean consensus
distances are rather close to those of the non-embedded consensus dis-
tances, mainly remaining below the 20% violation rate. When contrast-
ing with the non-administrative distance values and their approxima-
tion through the distance oracle methods, one can see a diminution of
over 15% in the violations rate, thus meaning that the consensus dis-
tances approximation allows for a better multipath support and a fault
tolerant greedy routing. When observing the variation of the greedy
routing performances as a function of the parameter k, one can see that
the failure rate tends to remain close to the performance of both non-
embedded consensus and non-embedded non-administrative distances,
with about only 10% difference in the case where k = 2. Note that
the exhibited greedy routing performance with about 30% failure rate
might seem rather high and thus unsatisfactory. One should however
keep in mind that such a failure rate is measured when considering a
routing procedure between all pairs of nodes. Therefore, when consider-
ing a real-world network, in which the established communications are
only a small sample of all possible node pair communications (as nodes
mainly communicate with a few content provider nodes), such a greedy
failure rate might result in much fewer failures in practice. Also when
considering the achieved compression ratio reaching the 5% for the case
of 1000 nodes when k = 2, such a greedy failure rate can be considered
rather fair compared to the enormous storage gain.

Another interesting comment here is that, although the distance or-
acle method highly relies on the metric nature of the provided distance
values in order to offer a good approximation, this does not seem to be
relevant in our application needs. Indeed when comparing the perfor-

6.8. Discussion and future work 167

mances of both the consensus distances and their transformed version
satisfying Euclidean (and thus metric) properties, one can see that they
are generally similar for both the greedy routing success as well as for
the multipath constraints violations.

To summarize, by using the approximate distance oracle method on
the consensus distances, we can see that a better multipath constraints
support (and thus also fault tolerance) can be achieved for similar greedy
administrative routing failure rates as well as similar compression ratio
as in the case of transform coding methods. The major advantage of
the approximate distance oracle method over transform coding ones dis-
cussed above is that the cost of the distance approximation is constant
and is of complexity O(k) [110], when compared with the O(r∗N2) cost
in the transform coding case, where r is the achieved compression ratio
and N the number of network nodes. Hence relying on the approxi-
mate distance oracles method for compressing the obtained consensus
distances clearly better fulfils the two goals of greedy routing usage,
that are minimal routing data storage and fast forwarding process.

6.8 Discussion and future work

So far in our exploration to find an embedding solution that admits to
multipath greedy routing we have not considered all the possible consen-
sus matrices satisfying the constraints. Instead we have experimented
with only one candidate constraint-complying distance matrix and sev-
eral embedding and compression algorithms are applied on it. However
the number of possible consensus distance matrices is infinite as they
can be generated by simply traversing the DAG representing the order
constraints (Hasse diagram).

An interesting follow-up exploration direction is to understand if
any of the candidate solutions of possible distance matrices, is more
suited for a metric embedding or the compression algorithms applied
on it. Such a solution space exploration is usually achieved though
optimization algorithms such as Semi-Definite and Linear Programming
(so long as the constraints on the distances are linear). As a first step
we would need to define a suitable objective function for assessing the
quality of a distance matrix with regard to the algorithms used.

Another track we would like to pursue before condemning the embed-
ding solutions are the Lipschitz methods [61]. Given that the obtained
distances can be transformed so as to fulfil the triangular inequality

168 Chapter 6. Satisfying routing strategies

condition, the hope is that a distance approximation method à la Lip-
schitz may become feasible. The distance between two nodes could
be approximated by their relative distances to a third landmark node.
Although Lipschitz coordinates would contradict our general thrive for
vector-space based (geometric) coordinates, the question is whether they
could nevertheless lead to better greedy routing performance as it was
the case for the approximate distance oracles.

Regarding the exploration of further ideas in transform coding in
order to reduce the amount of stored coefficients, we are considering
to test the use of different compression ratios at different nodes of the
network. Depending on their position in the network and their commu-
nication needs, different nodes might have different needs for accuracy
of the consensus distance matrices (e.g. less central nodes probably
requiring a less precise approximation than core nodes).

Finally, an interesting by-product that emerged out of our approach,
whose effects we would be interested to know, is the following distributed
consensus requirement. In order to resolve the global constraints sys-
tem, each node (domain), participating in the network is required to
submit its constraints on the distance values, thus revealing its network
policies to the node(s) that use this information. This is in conceptual
conflict to the current approach of policy management in BGP, where
a node refusing to offer relay service, simply stops propagating the re-
ceived advertisements, thus keeping this refusal information local. This
somewhat counter-intuitive philosophy, actually promotes cooperation
incentives instead of independent stand-alone decisions for the network
to function correctly.

Chapter 7

Conclusion

169

170 Chapter 7. Conclusion

7.1 Summary

Our goal in this thesis was to improve the geometric greedy routing
techniques, in order to make them better candidates for application
in future networks. To this goal, we mainly identified two immediate
challenges.

A first challenge, we addressed in chapter 3, is that of greedy rout-
ing dead-ends. In our proposed solution, we adopted a novel multi-
resolution embedding of the network graph and modified the greedy
routing algorithm accordingly. We were then able to obtain better rout-
ing results than high-dimensional embeddings of the network graph,
with an equivalent cost in data storage. Our proposed approach of
multi-resolution embedding is a novel evolution direction for the field
of failure recovery in geometric greedy routing, extending beyond the
classical face routing and scoped flooding.

As a second challenge, we were the first to identify the support of
administrative policies as a requirement for the admittance of greedy
routing techniques in both present and future networks. While study-
ing the feasibility of this feature, we showed that, more sophisticated
virtual coordinates attribution techniques than the present ones need
to be considered. As discussed in chapter 4, the differentiated services
introduced by the administrative relationships, induce different percep-
tional views of the network that are not possible to combine within a
single embedding. To do so, we extended the current greedy geometric
routing techniques in two fashions.

In a first approach, we used classification methods to find a distance
function that better suits the perception of each node. We started by
extracting the features of the participating nodes that consisted, in our
case, in their topological position. Then, we developed a decision process
differentiating distance data received through a neighbour node. The
main intuition is that, if the service differentiation is dependant on the
network node features, then the classifier should be able to learn the
process causing the differentiation. By doing such a learning, we build a
classifier able to reproduce the differentiation based on the input node
features that are now used as virtual coordinates. This allows for a
compression of the routing control data since the classifier encodes only
the decision surface that requires less storage than the received feature
data (virtual coordinates).

In a second approach to the problem of multiple perceptions, instead
of modifying the distance function operating on the virtual coordinates,

7.1. Summary 171

we simply modified the distance values. The main idea was to search
for consensus distance values that satisfy at best the perceptions of the
different participating nodes, and their expectations from the greedy
routing process. In fact we showed that the consensus distance values
can be forged so as to satisfy more complex goals than basic point to
point routing. By manipulating the distance values, we could extend
the functionality of greedy routing to support not only administrative
policies, but also multi-path and fault-tolerant routing. This method is
in fact another demonstrator for the evolution capability of greedy rout-
ing. By simply modifying the distance values on which the algorithm
operates, and without modifying the actual routing algorithm, we could
significantly change its behaviour.

Stepping back to evaluate our contribution to the greedy geometric
embedding and routing field, one can see that the two above proposals
are in fact novel development alternatives. Indeed when considering the
evolution of geometric greedy embeddings, one can see that the target
embedding space and the corresponding distance function, were always
priorly fixed, independently of the application scenario. First, the com-
munity mainly focused on low-dimensional Euclidean spaces as a target
embedding space, until Papadimitriou et al. [83] showed that it is not
the most ideal one. Then following the work of Kleinberg [64], the com-
munity recently converged on the Hyperbolic plane as a favourite space
for embedding, and most recent works focus on methods for finding
the best hyperbolic virtual coordinates, given a network graph. Our
classifier proposal, in chapter 5, is therefore a considerable shift in the
approach to distance-based greedy routing, where instead of priorly fix-
ing the target space and searching for the best possible coordinates,
we priorly fix the virtual coordinates and search for the best possible
distance function, thus adapting it at best to our goals. This has the
advantage of more easily complying with the multiple perceptions of the
network, as all participating nodes are required to agree on the same
virtual coordinates while remaining free to adapt the distance function
to their perception.

Also, our distance values modification method proposed in chapter 6,
can be seen as a pre-processing phase, prior to the embedding procedure,
allowing to influence the resulting embedding (and hence embedded
distance values), to satisfy a particular goal. This method, similar to
the notion of conditioner in data analysis, would hopefully inspire other
developments prior to the embedding step.

A final remark is that, all along the thesis, we heavily relied on vec-

172 Chapter 7. Conclusion

torial data analysis tools developed within other computational fields.
Our intention was to demonstrate our argument about the variety of
already existing tools, made available through the use of virtual coor-
dinates, that could be leveraged to solve networking problems.

7.2 Outlook

Many extensions of our above proposed methods remain to explore. In
the case of the classification-based forwarding proposed in chapter 5, a
natural extension would be to include additional node features in the
decision process. Indeed, basing the discrimination process on other
node characteristics than their topological position could enhance the
quality, and perhaps the speed of the classification. In addition to the
features discussed in section 5.6, an interesting feature in the particular
case of valley-free routing on administrative relationships can be the
tier-indicator of the node. This feature informs about the role played
by the node in the global network by indicating, for example, a tier
value of 1 or 2 for the main core domain nodes, and higher values for
others. A the tier-indicator is in fact correlated with the the number
of peers, customers and provider neighbours a node has, these values
might as well be included in the classification process.

When considering our distance pre-processing method described in
chapter 6, an immediate enhancement would be the distribution of the
constraints resolution process. Indeed, in order to comply with the
current model of administrative relationships handling, we need to find
a more distributed fashion of computing the consensus distances, that
does not reveal the internal policies of the nodes. One possible direction
towards this goal would be node replication that consists, in making a
node appear as two or more separate entities that each satisfy a given
perception of the network. Note that this would be in fact equivalent
to multiple address assignment.

This replication process can be achieved in two ways. A first way
would be to perform replication in the network graph prior to any dis-
tance extraction and embedding. In fact such an idea is similar to the
NIRA proposal [120] where a node is attributed different hierarchical
identifiers according to its relationship to its neighbours. A straight for-
ward improvement of this method would then be to enhance it beyond
basic hierarchical forwarding and employ more flexible virtual node co-
ordinates.

7.2. Outlook 173

Node replication can also be achieved in the embedding space, by
associating several multi-dimensional points with a single network node.
This can be achieved through the use of the methods of Multidimen-
sional Unfolding (MDU) [16] and Correspondence Analysis (CA). These
methods, close to the MDS family, allow to embed rectangular distance
matrices by associating virtual points to the row indices, that are of a
different type than those corresponding to the column indices. Thus by
associating with a network node A, several distance row vectors, each
satisfying a different node’s perception of A’s distances, we could ob-
tain as many virtual coordinates corresponding to different perceptions
of node A’s role. The greedy routing process would then have to be
adapted to the presence of multiple coordinates.

Another usage of our above presented methods would be to con-
sider routing between different typed of entities such as the host-to-data
model discussed in chapter 1. Here again, the MDU and CA methods,
allowing to embed bipartite datasets, could be the most promising track.

Finally, we would like to consider the possible application of our
above proposed methods beyond the scope of communication networks
and extending to novel fields such as Networks On Chips. Although
the community in this field does not yet consider greedy routing as a
candidate solution, the problem requirements are in fact so similar that
it could be only a matter of time. In this context, the problem of greedy
routing on administrative relationships might also become relevant, as
the connectivity between the inner-switches could be also subjected to
(hardware) policies.

Also, when considering the current effervescence of the new field of
Network Science, focusing on the study of network data structures –
be they telecommunication, social, or other networks, we hope that our
proposed methods of multi-resolution embedding, perceptional greedy
traversal, and distance values pre-processing can reveal useful to other
fields of study.

174 Chapter 7. Conclusion

List of Figures

1.1 Example of virtual coordinates attribution reflecting net-
work proximity . 3

1.2 Idealized example of a data-oriented greedy embedding :
host coordinates reflect the type of data they offer access
to (or lie on a path to). 5

1.3 Visualization of hierarchical name aggregation : announced
namespace is too wide. When represented in a vector
space, compacter aggregations such as the red ellipsoid
would be possible . 9

1.4 Example usages of trajectory based routing : blue spiral
for service announcement, orange loop (boomerang) for
monitoring, Green curve to avoid given transit points . . 11

2.1 Example of node labeling along a spanning tree of the
graph allowing for label-based greedy routing 16

2.2 Example of the Kamada-Kawai springs-network graph
drawing . 21

2.3 Example dataset (known as the Swiss-roll) where the
data lies on a lower-dimensional manifold. Generating
a k-NN graph on the data, results in an approximation
of the manifold . 27

2.4 Comparison between relation (graph) view and distance
(matrix) view of the data 29

2.5 Example of a landmark-based addressing of network nodes.
As shown, nodes equally distant from the landmarks would
receive the same coordinates 33

3.1 Various greedy routing dead-end examples 50

175

176 List of Figures

3.2 Various greedy routing dead-end examples 51

3.3 Example of greedily unembeddable graph in 2D Euclidean
space . 52

3.4 Example of detail-level views of the network coordinates 57

3.5 Network and cluster Graph embedding example 60

3.6 Greedy routing loops between network levels 62

3.7 NoGeo greedy route failures with spectral clustering . . 65

3.8 NoGeo greedy route failures with agglomerative clustering 65

3.9 Classical MDS embedding using spectral clustering . . . 66

3.10 Metric MDS Greedy routes failure using agglomerative
clustering . 66

3.11 Average stretch using NoGeo embedding 67

3.12 Average node degree variations on a 2000 nodes network 67

3.13 Average storage overhead per node for 1 and 2 cluster
levels . 68

3.14 Difference from classical hierarchical addressing 71

4.1 Relationship Between Network Providers 79

4.2 Allowed and Forbidden Crossings that A offers to neigh-
bours . 80

4.3 Valley-free paths . 81

4.4 Multi-party Network . 83

4.5 Administrative relations between domains of Figure 4.4 84

4.6 MDS embedding of network in Figure 4.4 84

4.7 Example topology and its administrative relationships . 85

4.8 Different views of nodes on the same network 86

4.9 Example of a row-dominated LAS on a 3x3x3 incidence
matrix. The red rows are selected as consensus values. . 87

4.10 Example of Individual differences model through dimen-
sion weighing . 92

5.1 Propagation of NLRI announcement initiated by node A 100

5.2 Undirected AS level graph corresponding to the relation-
ship graph of figure 5.1 103

5.3 2-D Embedding of an example undirected AS level graph
with 500 nodes . 104

5.4 Node coordinates accessible by green star node via the
blue squared neighbour in the example network of figure
5.3 . 105

List of Figures 177

5.5 Node coordinates (plotted in red) accessible by green
starred node via the blue squared neighbour, same as
in the example network of figure 5.4. Here, they are con-
trasted with nodes (plotted in black) accessible via other
neighbours . 107

5.6 Decision surface computed by SVM for the example of
figure 5.5 using 277 support vectors 109

5.7 Class separation computed by the decision tree for the
case of Figure 5.5 . 110

5.8 Partial view of the decision tree generating the class sep-
aration in figure 5.7, exhibiting a maximum depth equal
to 14. R value at leaf means the coordinates is reachable
and N non-reachable . 111

5.9 2-dimensional embedding of CAIDA 2004 graph (embed-
ding stress = 0.33) and an example of destination coor-
dinates offered by blue squared node to neighbour green
starred node. The offered destinations are plotted in red 118

5.10 Number of table entries according to the reachability
dataset of CAIDA 2004 AS graph vs the network link
index as it appears in the graph file. Note that the max-
imum number of entries never exceeds the half of the
number of AS nodes (16156), since in that case one can
simply store the complement subset (i.e. the non-offered
destination coordinates instead of the offered ones) . . . 120

5.11 Size of the computed decision tree per link in the CAIDA
2004 dataset . 120

5.12 Compression ratio achieved when using the decision tree
method with regard to the embedding position. One can
see that the central (core) nodes are the ones profiting at
most from the usage of the classifier. 121

5.13 Cumulative distribution of the depth of the computed
decision tree per network link 122

5.14 Example unidimensional map (bar-code) of the destina-
tion nodes offered by a neighbour in the CAIDA 2004
network : node ids at which a bar is displayed are those
announced by the neighbour 123

5.15 Compression Ratio distribution: comparison between iden-
tifiers and 2 and 3-dimensional network coordinates . . . 123

178 List of Figures

5.16 The non-administrative distances can in some cases strongly
under-estimate the real distance of the administratively
authorized path . 125

5.17 Destination coordinates labelled with a class correspond-
ing to their distances to neighbour, or to the non-reachable
class in case there is no administratively authorized path
towards them . 127

5.18 Output of multi-class decision tree on the dataset of fig-
ure 5.17 . 127

5.19 Cumulative Distribution of the size of computed multi-
class decision trees . 128

5.20 Cumulative Distribution of the depth of the computed
multi-class decision trees 128

5.21 Interpolated “distance function” based on the reachabil-
ity dataset of figure 5.17 130

5.22 Euclidean distance function from the neighbour node in
figure 5.5 (blue node) . 131

6.1 Repeated example of administrative relationship network
generating multiple views on distances that was shown in
figure 4.7 . 140

6.2 Example topology with possibility of multipath support 143

6.3 Multipath supporting consensus matrix of example net-
work in figure 6.2 and its embedding 143

6.4 In this case both nodes D and E have multiple paths to
A. Contradictions in their preferences can therefore appear145

6.5 Hasse diagram representing the order constraints on the
network distances in the example of figure 6.4. The dot-
ted edges are the constraints that would be introduced
due to route preferences as in equation (6.6). Such con-
tradictions manifest as loops in the Hasse diagram . . . 149

6.6 Number of generated multipath distance constraints for
the test networks . 150

6.7 Multipath constraints violations in the case of the non-
embedded non-administrative graph distances compared
with the amount of infeasible constraints. Plenty of po-
tential for improvment! 151

6.8 Constraints violations according to embedding method . 156

6.9 Greedy Routing failures according to embedding method 156

List of Figures 179

6.10 Multipath constraints violations when using the KLT trans-
form on both the consensus distances and the undirected
distances . 160

6.11 Greedy Failure Rates with administrative concerns when
using the KLT transform on both the consensus distances
and the undirected distances 161

6.12 Difference of the distance value distribution between the
undirected and the corrected distances for the example
case of 600 nodes . 161

6.13 Approximate Distance oracles results comparison when
varying the parameter k 164

180 List of Figures

Bibliography

[1] BGP reports : http://bgp.potaroo.net/.

[2] The Cooperative Association for Internet Data Analysis : CAIDA.
http://www.caida.org/home/.

[3] Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding met-
rics into ultrametrics and graphs into spanning trees with con-
stant average distortion. In Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, SODA ’07, pages
502–511, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics.

[4] Ittai Abraham and Cyril Gavoille. On approximate distance labels
and routing schemes with affine stretch. In 25th International
Symposium on Distributed Computing (DISC), volume 6950 of
Lecture Notes in Computer Science (ARCoSS), pages 404–415,
Rome, Italie, 2011. Springer.

[5] A.Moitra and T.Leighton. Some results on greedy embeddings in
metric spaces. In Proceedings of the 49th Annual Symposium on
Foundations of Computer Science (FOCS), 2008.

[6] Seema Bandyopadhyay and E.J. Coyle. An energy efficient hi-
erarchical clustering algorithm for wireless sensor networks. In
INFOCOM 2003. Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications. IEEE Societies, volume 3,
pages 1713 – 1723 vol.3, march-3 april 2003.

[7] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for di-
mensionality reduction and data representation. Neural Compu-
tation, 15:1373–1396, 2002.

181

182 Bibliography

[8] J.L. Bentley. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509–517,
1975.

[9] Tobias Bjerregaard and Shankar Mahadevan. A survey of research
and practices of network-on-chip. ACM Comput. Surv., 38(1),
June 2006.

[10] I. Blake and J. Gilchrist. Addresses for graphs. Information The-
ory, IEEE Transactions on, 19(5):683 – 688, sep 1973.

[11] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov.
Sustaining the internet with hyperbolic mapping. Nature Com-
munications, 1(6), 09 2010.

[12] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling:
Theory and Applications. Springer, 2005.

[13] Prosenjit Bose, Pat Morin, Ivan Stojmenović, and Jorge Urrutia.
Routing with guaranteed delivery in ad hoc wireless networks.
Wireless Networks, 7(6):609–616, 11 2001.

[14] J. Bourgain. On lipschitz embedding of finite metric spaces in
hilbert space. Israel Journal of Mathematics, 52:46–52, 1985.

[15] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-
less low cost outdoor localization for very small devices. IEEE
Personal Communications Magazine, 7(5):28–34, October 2000.

[16] Frank Busing. advances in multidimensional unfolding. PhD the-
sis, Leiden University, April 2010.

[17] M. Caesar and J. Rexford. Bgp routing policies in isp networks.
Network, IEEE, 19(6):5 – 11, nov.-dec. 2005.

[18] Francis Cailliez. The analytical solution of the additive constant
problem. Psychometrika, 48:305–308, 1983. 10.1007/BF02294026.

[19] Qing Cao and Tarek Abdelzaher. Scalable logical coordinates
framework for routing in wireless sensor networks. ACM Trans.
Sen. Netw., 2(4):557–593, 2006.

[20] Guanhong Pei Cedric Westphal. Scalable routing via greedy em-
bedding. In IEEE INFOCOM 2009 - The 28th Conference on
Computer Communications, 2009.

Bibliography 183

[21] Victor Chepoi, Feodor F. Dragan, Ilan Newman, Yuri Rabi-
novich, and Yann Vaxès. Constant approximation algorithms
for embedding graph metrics into trees and outerplanar graphs.
In Proceedings of the 13th international conference on Approxi-
mation, and 14 the International conference on Randomization,
and combinatorial optimization: algorithms and techniques, AP-
PROX/RANDOM’10, pages 95–109, Berlin, Heidelberg, 2010.
Springer-Verlag.

[22] Fan R. K. Chung. Spectral Graph Theory (CBMS Regional Con-
ference Series in Mathematics, No. 92). American Mathematical
Society, February 1997.

[23] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit
disk graphs. Discrete Mathematics, 86(1-3):165 – 177, 1990.

[24] C. Cortes and V. Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[25] Trevor F. Cox and M.A.A. Cox. Multidimensional Scaling, Second
Edition. Chapman and Hall/CRC, 2 edition, 2000.

[26] Andrej Cvetkovski and Mark Crovella. Multidimensional scaling
in the poincaré disk, 2011.

[27] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris.
Vivaldi: a decentralized network coordinate system. In Proceed-
ings of the 2004 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, SIGCOMM
’04, pages 15–26, New York, NY, USA, 2004. ACM.

[28] Jan de Leeuw. Applications of convex analysis to multidimen-
sional scaling. In J.R. Barra, F. Brodeau, G. Romier, and B. Van
Cutsem, editors, Recent Developments in Statistics, pages 133–
146. North Holland Publishing Company, Amsterdam, 1977.

[29] Jan de Leeuw, Kurt Hornik, and Patrick Mair. Isotone optimiza-
tion in r: Pool-adjacent-violators algorithm (pava) and active set
methods. Journal of Statistical Software, 32(5):1–24, 10 2009.

[30] V. de Silva and J. Tenenbaum. Sparse multidimensional scal-
ing using landmark points. Technical report, Stanford University,
2004.

184 Bibliography

[31] Vin De Silva and Joshua B. Tenenbaum. Global versus local meth-
ods in nonlinear dimensionality reduction. In Advances in Neural
Information Processing Systems 15, volume 15, pages 705–712,
2003.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likeli-
hood from incomplete data via the em algorithm. JOURNAL OF
THE ROYAL STATISTICAL SOCIETY, SERIES B, 39(1):1–38,
1977.

[33] Kedar Dhamdhere, Anupam Gupta, and Harald Räcke. Improved
embeddings of graph metrics into random trees. In Proceedings of
the seventeenth annual ACM-SIAM symposium on Discrete algo-
rithm, SODA ’06, pages 61–69, New York, NY, USA, 2006. ACM.

[34] Raghavan Dhandapani. Greedy drawings of triangulations. In
Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’08, pages 102–111, Philadelphia, PA,
USA, 2008. Society for Industrial and Applied Mathematics.

[35] Xenofontas Dimitropoulos, M. Ángeles Serrano, and Dmitri Kri-
oukov. On cycles in as relationships. SIGCOMM Comput. Com-
mun. Rev., 38:102–104, July 2008.

[36] L. Doherty, K.S.J. pister, and L. El Ghaoui. Convex position es-
timation in wireless sensor networks. In INFOCOM 2001. Twen-
tieth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, 2001.

[37] David Eppstein and Michael Goodrich. Succinct greedy graph
drawing in the hyperbolic plane. In Ioannis Tollis and Maurizio
Patrignani, editors, Graph Drawing, volume 5417 of Lecture Notes
in Computer Science, pages 14–25. Springer Berlin / Heidelberg,
2009.

[38] Christos Faloutsos and King-Ip Lin. Fastmap: a fast algorithm for
indexing, data-mining and visualization of traditional and multi-
media datasets. SIGMOD Rec., 24:163–174, May 1995.

[39] Qing Fang, Jie Gao, L.J. Guibas, V. de Silva, and Li Zhang.
Glider: gradient landmark-based distributed routing for sensor
networks. In INFOCOM 2005. 24th Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings
IEEE, volume 1, pages 339 – 350 vol. 1, march 2005.

Bibliography 185

[40] R. Flury, S.V. Pemmaraju, and R. Wattenhofer. Greedy routing
with bounded stretch. In INFOCOM 2009, IEEE, pages 1737
–1745. EthZ, 2009.

[41] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien
Ee, David Culler, Scott Shenker, and Ion Stoica. Beacon vec-
tor routing: scalable point-to-point routing in wireless sensornets.
In NSDI’05: Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation, pages 329–342,
Berkeley, CA, USA, 2005. USENIX Association.

[42] P. Francis, S. Jamin, Cheng Jin, Yixin Jin, D. Raz, Y. Shavitt,
and L. Zhang. Idmaps: a global internet host distance estimation
service. Networking, IEEE/ACM Transactions on, 9(5):525 –540,
oct 2001.

[43] Hannes Frey and Ivan Stojmenovic. On delivery guarantees of
face and combined greedy-face routing in ad hoc and sensor net-
works. In Proceedings of the 12th annual international conference
on Mobile computing and networking, MobiCom ’06, pages 390–
401, New York, NY, USA, 2006. ACM.

[44] Thomas M. J. Fruchterman and Edward M. Reingold. Graph
drawing by force-directed placement. Softw. Pract. Exper.,
21(11):1129–1164, November 1991.

[45] Hristescu Gabriela and Farach Martin. Cluster-preserving embed-
ding of proteins. Technical report, Rutgers University, Piscataway,
New Jersey, 1999.

[46] Emden R. Gansner, Yehuda Koren, and Stephen North. Graph
drawing by stress majorization. In GRAPH DRAWING, pages
239–250. Springer, 2004.

[47] Jie Gao, Leonidas J. Guibas, John Hershberger, Li Zhang, and
An Zhu. Geometric spanner for routing in mobile networks. In
Proceedings of the 2nd ACM international symposium on Mobile
ad hoc networking & computing, MobiHoc ’01, pages 45–55, New
York, NY, USA, 2001. ACM.

[48] Cyril Gavoille, Michal Katz, Nir Katz, Christophe Paul, and
David Peleg. Approximate distance labeling schemes. In Fried-
helm auf der Heide, editor, Algorithms - ESA 2001, volume 2161

186 Bibliography

of Lecture Notes in Computer Science, pages 476–487. Springer
Berlin / Heidelberg, 2001.

[49] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz.
Distance labeling in graphs. J. Algorithms, 53:85–112, October
2004.

[50] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
search in high dimensions via hashing. In Proceedings of the 25th
International Conference on Very Large Data Bases, VLDB ’99,
pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[51] C. Gkantsidis, M. Mihail, and E. Zegura. Spectral analysis of
internet topologies. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications.
IEEE Societies, volume 1, pages 364 – 374 vol.1, march-3 april
2003.

[52] Brighten Godfrey, Kevin Fall, Gianluca Iannaccone, and Sylvia
Ratnasamy. Routing tables: Is smaller really better? In Proceed-
ings of the ACM Workshop on Hot Topics in Networks (HotNets),
2009.

[53] R. Graham and H. Pollak. On embedding graphs in squashed
cubes. In Y. Alavi, D. Lick, and A. White, editors, Graph
Theory and Applications, volume 303 of Lecture Notes in Math-
ematics, pages 99–110. Springer Berlin / Heidelberg, 1972.
10.1007/BFb0067362.

[54] R. L. Graham and H. O. Pollak. On the addressing problem for
loop switching. The Bell systems Technical Journal, 50(8):2495–
2519, 1971.

[55] Patrick J. F. Groenen, Rudolf Mathar, and Willem J. Heiser.
The majorization approach to multidimensional scaling for
minkowski distances. Journal of Classification, 12:3–19, 1995.
10.1007/BF01202265.

[56] A. Guttman. R-trees: a dynamic index structure for spatial
searching, volume 14. ACM, 1984.

[57] C.E. Helm. A multidimensional ratio scalling analysis of color
relations. Technical report, DTIC Document, 1959.

Bibliography 187

[58] G.R. Hjaltason and H. Samet. Properties of embedding methods
for similarity searching in metric spaces. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 25(5):530 – 549, May
2003.

[59] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.
Plass, Nicholas H. Briggs, and Rebecca L. Braynard. Networking
named content. In Proceedings of the 5th international conference
on Emerging networking experiments and technologies, CoNEXT
’09, pages 1–12, New York, NY, USA, 2009. ACM.

[60] Newso James and Dawn Song. Gem: Graph embedding for routing
and data-centric storage in sensor networks without geographic
information. In Proceedings of the 1st international conference
on Embedded networked sensor systems, SenSys ’03, pages 76–88,
New York, NY, USA, 2003. ACM.

[61] William Johnson and Joram Lindenstrauss. Extensions of lipschitz
mappings into a hilbert space. In Conference in modern analysis
and probability (New Haven, Conn., 1982), volume 26 of Con-
temporary Mathematics, pages 189–206. American Mathematical
Society, 1984.

[62] T. Kamada and S. Kawai. An algorithm for drawing general undi-
rected graphs. Inf. Process. Lett., 31(1):7–15, April 1989.

[63] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless
routing for wireless networks. In MobiCom ’00: Proceedings of
the 6th annual international conference on Mobile computing and
networking, Boston, 2000.

[64] Robert Kleinberg. Geographic routing using hyperbolic space. In
INFOCOM 2007. 26th IEEE International Conference on Com-
puter Communications. IEEE, pages 1902 –1909. IEEE, 6-12 2007.

[65] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for
large networks: Performance evaluation and optimization. Com-
puter Networks, 1(3):155–174, 1977.

[66] Y.-B. Ko and N.H. Vaidya. Geocasting in mobile ad hoc net-
works: location-based multicast algorithms. In Mobile Computing
Systems and Applications, 1999. Proceedings. WMCSA ’99. Sec-
ond IEEE Workshop on, pages 101 –110, feb 1999.

188 Bibliography

[67] Tamara G. Kolda and Brett W. Bader. Tensor decpompositions
and applications. SIAM review, June 2008.

[68] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Er-
molinskiy, Kye Hyun Kim, Scott Shenker, and Ion Stoica. A data-
oriented (and beyond) network architecture. In Proceedings of the
2007 conference on Applications, technologies, architectures, and
protocols for computer communications, SIGCOMM ’07, pages
181–192, New York, NY, USA, 2007. ACM.

[69] D. Krackhardt. Cognitive social structures. Social Networks,
9(2):109–134, 1987.

[70] D. Krioukov, K. Fall, and X. Yang. Compact routing on internet-
like graphs. In INFOCOM 2004. Twenty-third AnnualJoint Con-
ference of the IEEE Computer and Communications Societies, vol-
ume 1, page 219, 7-11 2004.

[71] Dmitri Krioukov, Fragkiskos Papadopoulos, Marián Bogu ná, and
Amin Vahdat. Greedy forwarding in scale-free networks embedded
in hyperbolic metric spaces, 2009.

[72] J.B. Kruskal. Nonmetric multidimensional scaling: A numerical
method. Psychometrika, 29(2):115–129, 1964.

[73] Fabian Kuhn, Roger Wattenhofer, Yan Zhang, and Aaron
Zollinger. Geometric ad-hoc routing: of theory and practice. In
Proceedings of the twenty-second annual symposium on Principles
of distributed computing, PODC ’03, pages 63–72, New York, NY,
USA, 2003. ACM.

[74] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Asymp-
totically optimal geometric mobile ad-hoc routing. In Proceed-
ings of the 6th international workshop on Discrete algorithms and
methods for mobile computing and communications, DIALM ’02,
pages 24–33, New York, NY, USA, 2002. ACM.

[75] Ben Leong, B. Liskov, and R. Morris. Greedy virtual coordinates
for geographic routing. In Network Protocols, 2007. ICNP 2007.
IEEE International Conference on, pages 71 –80, 16-19 2007.

[76] C.R. Lin and M. Gerla. Adaptive clustering for mobile wireless
networks. Selected Areas in Communications, IEEE Journal on,
15(7):1265 –1275, sep 1997.

Bibliography 189

[77] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs
and some of its algorithmic applications. In Foundations of Com-
puter Science, 1994 Proceedings., 35th Annual Symposium on,
pages 577 –591, nov 1994.

[78] Yun Mao, Feng Wang, Lili Qiu, Simon S. Lam, and Jonathan M.
Smith. S4: Small state and small stretch routing protocol for large
wireless sensor networks. In In Proc. of the USENIX NSDI Conf,
2007.

[79] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. Openflow: enabling innovation in campus net-
works. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March
2008.

[80] Radhika Nagpal, Howard Shrobe, and Jonathan Bachrach. Orga-
nizing a global coordinate system from local information on an ad
hoc sensor network. In Proceedings of the 2nd international con-
ference on Information processing in sensor networks, IPSN’03,
pages 333–348, Berlin, Heidelberg, 2003. Springer-Verlag.

[81] Badri Nath and Dragoş Niculescu. Routing on a curve. SIG-
COMM Comput. Commun. Rev., 33(1):155–160, January 2003.

[82] Dragos Niculescu and Badri Nath. Trajectory based forwarding
and its applications. In Proceedings of the 9th annual international
conference on Mobile computing and networking, MobiCom ’03,
pages 260–272, New York, NY, USA, 2003. ACM.

[83] Christos H. Papadimitriou and David Ratajczak. On a conjecture
related to geometric routing, 2005.

[84] F. Papadopoulos, D. Krioukov, M. Bogua, and A. Vahdat. Greedy
forwarding in dynamic scale-free networks embedded in hyperbolic
metric spaces. In INFOCOM, 2010 Proceedings IEEE, pages 1 –9,
2010.

[85] William A. Pearlman. Digital Signal Compression: Principles and
Practice. Cambridge Univ Pr, Oct 2011.

[86] David Peleg. Proximity-preserving labeling schemes. Journal of
Graph Theory, 33(3):167–176, 2000.

190 Bibliography

[87] John C. Platt. Fastmap, metricmap, and landmark mds are all
nystrom algorithms. In Microsoft Research, 2005.

[88] The NDN project team. Named data networking (ndn) project.
Technical report, PARC, October 2010.

[89] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott
Shenker, and Ion Stoica. Geographic routing without location in-
formation. In MobiCom ’03: Proceedings of the 9th annual inter-
national conference on Mobile computing and networking, pages
96–108, New York, NY, USA, 2003. ACM.

[90] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Shenker. A scalable content-addressable network. In
Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, SIG-
COMM ’01, pages 161–172, New York, NY, USA, 2001. ACM.

[91] Sylvia Ratnasamy, Brad Karp, Scott Shenker, Deborah Estrin,
Ramesh Govindan, Li Yin, and Fang Yu. Data-centric storage in
sensornets with ght, a geographic hash table. Mob. Netw. Appl.,
8(4):427–442, August 2003.

[92] Y. Rekhter and T. Li. An architecture for ip address allocation
with cidr. RFC 1518 (Historic), September 1993.

[93] F. Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological review,
65(6):386, 1958.

[94] V. Roth, J. Laub, J.M. Buhmann, and K.R. Müller. Going met-
ric: Denoising pairwise data. Advances in Neural Information
Processing Systems, 15:817–824, 2002.

[95] Volker Roth, Julian Laub, Motoaki Kawanabe, and Joachim M.
Buhmann. Optimal cluster preserving embedding of nonmetric
proximity data. IEEE Trans. Pattern Analysis and Machine In-
telligence, 25:2003, 2003.

[96] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290(5500):2323–
2326, 2000.

Bibliography 191

[97] H. Samet. The quadtree and related hierarchical data structures.
ACM Computing Surveys (CSUR), 16(2):187–260, 1984.

[98] Satu Elisa Schaeffe. Graph clustering. Computer Science Review,
1:27 – 64, 2007.

[99] B.S.W. Schröder. Ordered sets: an introduction. Birkhauser, 2003.

[100] Yi Shang, Wheeler Ruml, Ying Zhang, and Markus P. J.
Fromherz. Localization from mere connectivity. In Proceedings
of the 4th ACM international symposium on Mobile ad hoc net-
working & computing, MobiHoc ’03, pages 201–212, New York,
NY, USA, 2003. ACM.

[101] Y. Shavitt and T. Tankel. Big-bang simulation for embedding
network distances in euclidean space. Networking, IEEE/ACM
Transactions on, 12(6):993 – 1006, dec. 2004.

[102] Blake Shaw and Tony Jebara. Structure preserving embedding. In
Proceedings of the 26th Annual International Conference on Ma-
chine Learning, ICML ’09, pages 937–944, New York, NY, USA,
2009. ACM.

[103] Aleksandrs Slivkins. Distance estimation and object location via
rings of neighbors. In Proceedings of the twenty-fourth annual
ACM symposium on Principles of distributed computing, PODC
’05, pages 41–50, New York, NY, USA, 2005. ACM.

[104] Guang Tan, Marin Bertier, and Anne-Marie Kermarrec. Convex
Partition of Sensor Networks and Its Use in Virtual Coordinate
Geographic Routing. In INFOCOM 2009, Rio de Janeiro Brésil,
04 2009.

[105] Liying Tang and Mark Crovella. Virtual landmarks for the in-
ternet. In Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, IMC ’03, pages 143–152, New York, NY,
USA, 2003. ACM.

[106] Mingdong Tang, Hongyang Chen, Guoqing Zhang, and Jing Yang.
Tree cover based geographic routing with guaranteed delivery. In
Communications (ICC), 2010 IEEE International Conference on,
pages 1 –5, May 2010.

192 Bibliography

[107] Robert Tarjan. Depth-first search and linear graph algorithms. In
Switching and Automata Theory, 1971., 12th Annual Symposium
on, pages 114 –121, oct. 1971.

[108] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A
global geometric framework for nonlinear dimensionality reduc-
tion. Science, 290(5500):2319–2323, December 2000.

[109] Mikkel Thorup and Uri Zwick. Compact routing schemes. In
Proceedings of the thirteenth annual ACM symposium on Parallel
algorithms and architectures, SPAA ’01, pages 1–10, New York,
NY, USA, 2001. ACM.

[110] Mikkel Thorup and Uri Zwick. Approximate distance oracles. J.
ACM, 52(1):1–24, January 2005.

[111] P. F. Tsuchiya. The landmark hierarchy: a new hierarchy for
routing in very large networks. SIGCOMM Comput. Commun.
Rev., 18(4):35–42, August 1988.

[112] W. T. Tutte. Convex representations of graphs. Proceedings of
the London Mathematical Society, s3-10(1):304–320, 1960.

[113] George Varghese. Network Algorithmics,: An Interdisciplinary
Approach to Designing Fast Networked Devices (The Morgan
Kaufmann Series in Networking). Morgan Kaufmann, December
2004.

[114] J.T.L. Wang, Xiong Wang, D. Shasha, and Kaizhong Zhang. Met-
ricmap: an embedding technique for processing distance-based
queries in metric spaces. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 35(5):973 –987, oct. 2005.

[115] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative
analysis and performance study for similarity-search methods in
high-dimensional spaces. In Proceedings of the 24rd International
Conference on Very Large Data Bases, VLDB ’98, pages 194–205,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[116] K.Q. Weinberger and L.K. Saul. Unsupervised learning of image
manifolds by semidefinite programming. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2, pages II–988 –
II–995 Vol.2, june-2 july 2004.

Bibliography 193

[117] Bernard Wong, Aleksandrs Slivkins, and Emin Guen Sirer. Merid-
ian: A lightweight network location service without virtual coor-
dinates. In In SIGCOMM, pages 85–96, 2005.

[118] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance met-
ric learning, with application to clustering with side-information.
Advances in neural information processing systems, 15:505–512,
2002.

[119] L. Yang and R. Jin. Distance metric learning: A comprehensive
survey. Michigan State University, pages 1–51, 2006.

[120] X.. Yang, D.. Clark, and A.W. Berger. Nira: A new inter-domain
routing architecture. Networking, IEEE/ACM Transactions on,
15(4):775 –788, aug. 2007.

[121] Huaming Zhang and Swetha Govindaiah. Greedy routing via
embedding graphs onto semi-metric spaces. In Mikhail Atallah,
Xiang-Yang Li, and Binhai Zhu, editors, Frontiers in Algorith-
mics and Algorithmic Aspects in Information and Management,
volume 6681 of Lecture Notes in Computer Science, pages 58–69.
Springer Berlin / Heidelberg, 2011.

	Introduction
	Definition of greedy routing on virtual coordinates
	The power of geometric virtual coordinates
	Virtual coordinates as an evolution tool
	Applications of virtual coordinates and vector spaces

	Challenges to the deployment of greedy routing on virtual coordinates in future networks
	Summary of contributions

	Obtaining Coordinates for Greedy Routing
	Theoretical approaches to the problem of virtual coordinates attribution
	Distance labelling techniques
	Geometric Approaches

	Embedding techniques in the networking literature
	Tree and hierarchical-based techniques
	Distance labelling and compact routing techniques
	Graph drawing techniques
	Lipschitz based techniques
	Hyperbolic space techniques
	Graph sampling techniques and the revival of trees

	Summary

	on Guaranteeing packet delivery in greedy routing
	Introduction
	Greedy Routing Dead-End Problem
	Related work
	A cluster-based approach
	Construction of a cluster graph
	Cluster graph embedding
	Cluster-level state
	Operation of greedy routing
	Multiple cluster levels

	Evaluation
	Experimental set-up
	Clustering algorithm used for the tests
	Greedy routing performance
	State overhead for clustering

	Discussion
	On the general effects of clustering
	Clustering versus inter-domain routing

	Conclusion

	Greedy Routing and administrative policies
	Introduction
	Administrative relationships and policies
	Security policies
	Traffic policies
	Administrative relationships and policies

	Administrative policies and future networks
	Administrative policies and greedy routing

	The problem from a graph viewpoint
	Relation to social sciences and Cognitive Social Structures

	Understanding the problem from a distance matrix viewpoint
	Relation to tensor decomposition and 3-way multidimensional scaling

	Why is there a requirement for a single embedding ?
	Strategies for solving the preferences problem
	Strategies for solving the policy dead-end problem
	Roadmap

	Geometric areas for policy support
	BGP and administrative policies
	Path selection in BGP
	Storage costs in BGP

	BGP-like approach using Geometric aggregation
	Control data storage in our approach
	Aggregation of the received announcements
	Aggregation through classification
	Quick overview of classifiers
	Using classifiers to store routing data
	How to compute decision trees
	Representing routing information using decision trees

	Multiple Classes and Distance Function Regression
	Relation to distance metric learning

	Comparison with conventional routing and forwarding table structuring
	Usage for forwarding tables
	Extension to other network node features

	Satisfying routing strategies
	Constraints for Best-Path Routes
	Constraints for Multi-path Support
	Representing Path Preferences

	Multi-path Constraints Extraction
	Solving the system of constraints
	Embedding the consensus distances
	Metric embedding of the consensus distances
	Ordinal embedding of the consensus distances
	Hyperbolic Embedding of the consensus distances
	Summary on embedding methods

	Transform coding of the consensus distances
	Using the KLT transform
	Summary on transform coding

	Approximate Distance Oracles on the consensus distances
	Discussion and future work

	Conclusion
	Summary
	Outlook

	List of Figures
	Bibliography

