1,738 research outputs found

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: Holistic design approach, design considerations and specifications

    Get PDF
    High-accuracy three-dimensional miniature components and microstructures are increasingly in demand in the sector of electro-optics, automotive, biotechnology, aerospace and information-technology industries. A rational approach to mechanical micro machining is to develop ultra-precision machines with small footprints. In part 1 of this two-part paper, the-state-of-the-art of ultra-precision machines with micro-machining capability is critically reviewed. The design considerations and specifications of a five-axis ultra-precision micro-milling machine—UltraMill—are discussed. Three prioritised design issues: motion accuracy, dynamic stiffness and thermal stability, formulate the holistic design approach for UltraMill. This approach has been applied to the development of key machine components and their integration so as to achieve high accuracy and nanometer surface finish

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Suppress vibration on robotic polishing with impedance matching

    Get PDF
    Installing force-controlled end-effectors on the end of industrial robots has become the mainstream method for robot force control. Additionally, during the polishing process, contact force stability has an important impact on polishing quality. However, due to the difference between the robot structure and the force-controlled end-effector, in the polishing operation, direct force control will have impact during the transition from noncontact to contact between the tool and the workpiece. Although impedance control can solve this problem, industrial robots still produce vibrations with high inertia and low stiffness. Therefore, this research proposes an impedance matching control strategy based on traditional direct force control and impedance control methods to improve this problem. This method's primary purpose is to avoid force vibration in the contact phase and maintain force-tracking performance during the dynamic tracking phase. Simulation and experimental results show that this method can smoothly track the contact force and reduce vibration compared with traditional force control and impedance control

    A review of dynamics design methods for high-speed and high-precision CNC machine tool feed systems

    Full text link
    With the development of CNC machine tools toward high speed and high precision, the traditional static design methods can hardly meet the demand. Hence, in this paper, the dynamics matching design methods of existing CNC machine tool feed systems were investigated and analyzed. Further, sub-system coupling mechanisms and optimization design studies were carried out for each sub-system. First, the required kinematic indexes must be achieved when designing the feed system dynamics of high-speed, high-precision CNC machine tools. Second, the CNC machine tool feed systems generally have four sub-systems: motion process, control system, motor, and mechanical structure. The coupling effect between the sub-systems should also be considered in the design. Based on the dynamics design, each sub-system should be optimized to maximize the system dynamic performance with minimum resource allocation. Finally, based on the review, future research directions within the field were detected

    PKM mechatronic clamping adaptive device

    Get PDF
    This study proposes a novel adaptive fixturing device based on active clamping systems for smart micropositioning of thin-walled precision parts. The modular architecture and the structure flexibility make the system suitable for various industrial applications. The proposed device is realized as a Parallel Kinematic Machine (PKM), opportunely sensorized and controlled, able to perform automatic error-free workpiece clamping procedures, drastically reducing the overall fixturing set-up time. The paper describes the kinematics and dynamics of this mechatronic system. A first campaign of experimental trails has been carried out on the prototype, obtaining promising results

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Alternative experimental methods for machine tool dynamics identification: A review

    Get PDF
    An accurate machine dynamic characterization is essential to properly describe the dynamic response of the machine or predict its cutting stability. However, it has been demonstrated that current conventional dynamic characterization methods are often not reliable enough to be used as valuable input data. For this reason, alternative experimental methods to conventional dynamic characterization methods have been developed to increase the quality of the obtained data. These methods consider additional effects which influence the dynamic behavior of the machine and cannot be captured by standard methods. In this work, a review of the different machine tool dynamic identification methods is done, remarking the advantages and drawbacks of each method.The present work has been partially supported by the EU Horizon 2020 InterQ project (958357/H2020-EU.2.1.5.1.) and the CDTI CERVERA programme MIRAGED project (EXP-00,137,312/CER-20191001)
    • …
    corecore