A review of dynamics design methods for high-speed and high-precision CNC machine tool feed systems

Abstract

With the development of CNC machine tools toward high speed and high precision, the traditional static design methods can hardly meet the demand. Hence, in this paper, the dynamics matching design methods of existing CNC machine tool feed systems were investigated and analyzed. Further, sub-system coupling mechanisms and optimization design studies were carried out for each sub-system. First, the required kinematic indexes must be achieved when designing the feed system dynamics of high-speed, high-precision CNC machine tools. Second, the CNC machine tool feed systems generally have four sub-systems: motion process, control system, motor, and mechanical structure. The coupling effect between the sub-systems should also be considered in the design. Based on the dynamics design, each sub-system should be optimized to maximize the system dynamic performance with minimum resource allocation. Finally, based on the review, future research directions within the field were detected

    Similar works

    Full text

    thumbnail-image

    Available Versions