217 research outputs found

    Robust scheduled control of longitudinal flight with handling quality satisfaction

    Get PDF
    Classic flight control systems are still widely used in the industry because of acquired experience and good understanding of their structure. Nevertheless, with more stringent constraints, it becomes difficult to easily fulfil all the criteria with these classic control laws. On the other hand, modern methods can handle many constraints but fail to produce low order controllers. The following methodology proposed in this paper addresses both classic and modern flight control issues, to offer a solution that leverages the strengths of both approaches. First, an H∞ synthesis is performed in order to get controllers which satisfy handling qualities and are robust withrespect to mass and centre of gravity variations. These controllers are then reduced and structured by using robust modal control techniques. In conclusion, a self-scheduling technique is described that will schedule these controllers over the entire flight envelope

    Robust control of longitudinal flight with handling qualities constraints

    Get PDF
    Classical flight control systems are still widely used in industry because of acquired experience and good understanding of their structure. Nevertheless, with more stringent constraints, it becomes difficult to easily fulfill all the criteria with this classical control laws. This article aims at showing that this problem can be solved by first designing a high order controller satisfying all the constraints, then by reducing and structuring it in order to make it look like a classical controller. Firstly, an H∞ synthesis is performed in order to get a robust controller versus mass and center of gravity variations, which will satisfy the handling qualities; then it will be reduced by using robust modal control techniques

    Increasing eigenstructure assignment design degree of freedom using lifting

    Get PDF
    This paper presents the exposition of an output-lifting eigenstructure assignment (EA) design framework, wherein the available EA design degrees of freedom (DoF) is significantly increased, and the desired eigenstructure of a single-rate full state feedback solution can be achieved within an output feedback system. A structural mapping is introduced to release the output-lifting causality constraint. Additionally, the available design DoF can be further enlarged via involving the input-lifting into the output-lifting EA framework. The newly induced design DoF can be utilised to calculate a structurally constrained, causal gain matrix which will maintain the same assignment capability. In this paper, the robustification of the output-lifting EA is also proposed, which allows a trade-off between performance and robustness in the presence of structured model uncertainties to be established. A lateral flight control benchmark in the EA literature and a numerical example are used to demonstrate the effectiveness of the design framework

    Eigenstructure assignment in vibrating systems through active and passive approaches

    Get PDF
    The dynamic behaviour of a vibrating system depends on its eigenstructure, which consists of the eigenvalues and the eigenvectors. In fact, eigenvalues define natural frequencies, damping and settling time, while eigenvectors define the spatial distribution of vibrations, i.e. the mode shape, and also affect the sensitivity of eigenvalues with respect to the system parameters. Therefore, eigenstructure assignment, which is aimed at modifying the system in such a way that it features the desired set of eigenvalues and eigenvectors, is of fundamental importance in mechanical design. However, similarly to several other inverse problems, eigenstructure assignment is inherently challenging, due to its ill-posed nature. Despite the recent advancements of the state of the art in eigenstructure assignment, in fact, there are still important open issues. The available methods for eigenstructure assignment can be grouped into two classes: passive approaches, which consist in modifying the physical parameters of the system, and active approaches, which consist in employing actuators and sensors to exert suitable control forces as determined by a specified control law. Since both these approaches have advantages and drawbacks, it is important to choose the most appropriate strategy for the application of interest. In the present thesis, in fact, are collected passive, active, and even hybrid methods, in which active and passive techniques are concurrently employed. All the methods proposed in the thesis are aimed at solving open issues that emerged from the literature and which have applicative relevance, as well as theoretical. In contrast to several state-of-the-art methods, in fact, the proposed ones implement strategies that enable to ensure that the computed solutions are meaningful and feasible. Moreover, given that in modern mechanical design large-scale systems are increasingly common, computational issues have become a major concern and thus have been adequately addressed in the thesis. The proposed methods have been developed to be general and broadly applicable. In order to demonstrate the versatility of the methods, in the thesis it is provided an extensive numerical assessment, hence diverse test-cases have been used for validation purposes. In order to evaluate without bias the performances of the proposed methods, it has been chosen to employ well-established benchmarks from the literature. Moreover, selected experimental applications are presented in the thesis, in order to determine the capabilities of the developed methods when critically challenged. Given the focus on these issues, it is expected that the methods here proposed can constitute effective tools to improve the dynamic behaviour of vibrating systems and it is hoped that the present work could contribute to spread the use of eigenstructure assignment in the solution of engineering design problems

    State feedback control with time delay

    Get PDF
    In this thesis we start with an introduction to the theory of vibration control. We broadly classify the control methods into passive and active schemes. We introduce the problem of state feedback control and provide the classical solution in the form of Ackermann formula. We then identify the limitations of the classical approach and present the more elegant solution of partial pole assignment without spillover. We highlight the problem with model uncertainties and describe the method of pole assignment using data from measured receptances. This approach is extended for pole assignment for a linear vibrating system by using state feedback control delayed in time. This approach is significantly advantageous over various conventional state-space approaches which need to use information of , and matrices. Since the method relies solely on measured receptances, it negates the need to know , and matrices. It is shown that for a system with degrees of freedom, we may assign eigenvalues. Assigning eigenvalues in a time delayed system does not necessarily regulate the dynamics of the system or guarantee its stability. We separate the eigenvalues into two groups, primary and secondary, and propose method of a posteriori analysis to ensure that the primary eigenvalues have been assigned. The method is demonstrated by various examples. For state feedback control, the control is achieved by measuring the states of the system and feeding them back into the system after multiplying them with appropriate control gain. This makes it imperative to measure all the states of the system. In practical control applications, all states are not accessible for measurement. We address the problem of inaccessibility of states making it difficult to implement the state feedback control. We introduce the theory of linear state estimation also called observer design. We identify the limitations of this approach and introduce the concept of state reconstruction by delayed action. We develop a method to reconstruct the inaccessible states by introducing delay in the system and using information from accessible states. The results are demonstrated by examples

    Robust magnetic bearing control using stabilizing dynamical compensators

    Get PDF
    Abstract—This paper considers the robust control of an active radial magnetic bearing system, having a homopolar, external rotor topology, which is used to support an annular fiber composite flywheel rim. A first-order dynamical compensator, which uses only position feedback information, is used for control, its design being based on a linearized one-dimensional second-order model which is treated as an interval system in order to cope with parameter uncertainties. Through robust stability analysis, a parameterization of all first-order robustly stabilizing dynamical compensators for the interval system is initially obtained. Then, by appropriate selection of the free parameters in the robust controller, the H2 norm of the disturbance-output transfer function is made arbitrarily small over the system parameter intervals, and the norm of the input–output transfer function is made arbitrarily close to a lower bound. Simulation and experimental results demonstrate both stability and performance robustness of the developed controller

    Multi-domain optimization of the eigenstructure of controlled underactuated vibrating systems

    Get PDF
    The paper proposes a multi-domain approach to the optimization of the dynamic response of an underactuated vibrating linear system through eigenstructure assignment, by exploiting the concurrent design of the mechanical properties, the regulator and state observers. The approach relies on handling simultaneously mechanical design and controller synthesis in order to enlarge the set of the achievable performances. The underlying novel idea is that structural properties of controlled mechanical systems should be designed considering the presence of the controller through a concurrent approach: this can considerably improve the optimization possibilities. The method is, first, developed theoretically. Starting from the definition of the set of feasible system responses, defined through the feasible mode shapes, an original formulation of the optimality criterion is proposed to properly shape the allowable subspace through the optimal modification of the design variables. A proper choice of the modifications of the elastic and inertial parameters, indeed, changes the space of the allowable eigenvectors that can be achieved through active control and allows obtaining the desired performances. The problem is then solved through a rank-minimization with constraints on the design variables: a convex optimization problem is formulated through the \u201csemidefinite embedding lemma\u201d and the \u201ctrace heuristics\u201d. Finally, experimental validation is provided through the assignment of a mode shape and of the related eigenfrequency to a cantilever beam controlled by a piezoelectric actuator, in order to obtain a region of the beam with negligible oscillations and the other one with large oscillations. The results prove the effectiveness of the proposed approach that outperforms active control and mechanical design when used alone

    Optimal control with structure constraints and its application to the design of passive mechanical systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Page 214 blank.Includes bibliographical references.Structured control (static output feedback, reduced-order control, and decentralized feedback) is one of the most important open problems in control theory and practice. In this thesis, various techniques for synthesis of structured controllers are surveyed and investigated, including H2 optimization, H[infinity] optimization, L1 control, eigenvalue and eigenstructure treatment, and multiobjective control. Unstructured control-full- state feedback and full-order control-is also discussed. Riccati-based synthesis, linear matrix inequalities (LMI), homotopy methods, gradient- and subgradientbased optimization are used. Some new algorithms and extensions are proposed, such as a subgradient-based method to maximize the minimal damping with structured feedback, a multiplier method for structured optimal H2 control with pole regional placement, and the LMI-based H2/H[infinity]/pole suboptimal synthesis with static output feedback. Recent advances in related areas are comprehensively surveyed and future research directions are suggested. In this thesis we cast the parameter optimization of passive mechanical systems as a decentralized control problem in state space, so that we can apply various decentralized control techniques to the parameter design which might be very hard traditionally. More practical constraints for mechanical system design are considered; for example, the parameters are restricted to be nonnegative, symmetric, or within some physically-achievable ranges. Marginally statable systems and hysterically damped systems are also discussed. Numerical examples and experimental results are given to illustrate the successful application of decentralized control techniques to the design of passive mechanical systems, such as multi-degree-of-freedom tuned-mass dampers, passive vehicle suspensions, and others.by Lei Zuo.S.M

    Helicopter control law design using eigenstructure assignment.

    Get PDF
    corecore