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BruneI University, Control Engineering Centre, Department of Electrical Engineering and Electronics, 

Uxbridge, Middlesex, UB8 3PH. U.K. 

ABSTRACT 

The work presented in this thesis was motivated by the desire to establish an alternative 

approach to the design of robust polynomial controllers. The procedure of pole-placement forms 

the basis of the design and for polynomial systems this generally involves the solution of a 

diophantine equation. This equation has many possible solutions which leads directly to the idea 

of determining the most appropriate solution for improved performance robustness. 

A thorough review of many of the aspects of the diophantine equation is presented, which 

helps to gain an understanding of this extremely important equation. A basic investigation into 

selecting a more robust solution is carried out but it is shown that, in the polynomial framework, 

it is difficult to relate decisions in the design procedure to the effect on performance robustness. 

This leads to the approach of using a state space based design and transforming the resulting 

output feedback controller to polynomial form. 

The state space design is centred around parametric output feedback which explicitly 

represents a set of possible feedback controllers in terms of arbitrary free parameters. The aim 

is then to select these free parameters such that the closed-loop system has improved performance 

robustness. Two parametric methods are considered and compared, one being well established 

and the other a recently proposed scheme. Although the well established method performs slightly 

better for general systems it is shown to fail when applied to this type of problem. 

For performance robustness, the shape of the transient response in the presence of model 

uncertainty is of interest. It is well known that the eigenvalues and eigenvectors play an important 

role in determining the transient behaviour and as such the sensitivities of these factors to model 

uncertainty forms the basis on which the free parameters are selected. Numerical optimisation 

is used to select the free parameters such that the sensitivities are at a minimum. 

It is shown both in a simple example and in a more realistic application that a significant 

improvement in the transient behaviour in the presence of model uncertainty can be achieved 

using the proposed design procedure. 
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CHAPTER 1 

INTRODUCTION 

1.1 Historical Background 

The problem of designing accurate control systems in the presence of significant plant 

uncertainties is classical, Dorato (1987). This problem has been dealt with as far back as the 

1920's when Black (1927) proposed using feedback with large loop gains to overcome the 

problem of significant variations in vacuum tube characteristics in the design of a vacuum tube 

amplifier. Dorato (1987) details the development of robust control theory from this early proposal 

and the classical work of Nyquist (1932) and Bode (1945) through to the late 1980's. 

In the 1960's and 1970's much attention was focused on the state variable approach and 

in particular the linear quadratic Gaussian (LQG) method for optimal control. Kalman (1964) 

and Safonov and Athans (1977) showed that the optimal LQG state feedback control laws had 

some very strong robustness properties with infinite gain margins and 60-deg phase margins. 

However, in practice it is often necessary to employ Kalman filter theory to obtain an optimal 

estimate of the state vector which is then taken as an exact measurement in the LQG design. 

Doyle (1978) showed that when an estimate of the state vector is used, the design can exhibit 

arbitrarily poor stability margins and the robustness properties vanish. 

LQGIL TR (linear quadratic Guassian/loop transfer recovery), Doyle and Stein (1979, 

1981), provides a means of overcoming these problems by designing the Kalman filter such that 

the full state feedback properties are 'recovered'. One drawback is the inability of the method 

to deal with non-minimum phase systems as the procedure involves cancelling some of the filter 

poles with plant zeros. 

Of particular importance to the shaping of robust methods today are three major discoveries 

in the late 1970's and early 1980's (Morari and Zafiriou, 1989). Youla et at (1976) showed that 

it is possible to parameterise all stabilising controllers for a particular system in a very effective 

manner, which guarantees that the resulting feedback controller automatically yields a closed­

loop stable system. This effectively gives rise to a set of possible controllers which greatly 

simplifies the search for a more robust one. Zames (1981) postulated that measuring performance 

in terms of the oo-norm rather than the traditional2-noml might be closer to practical needs. This 

helped to establish the H _ optimal control approach to robust controller design. The work of 

Doyle in a number of papers in the early 1980's (Doyle and Stein, 1981; Doyle and Wall, 1982: 

Doyle, 1982) is quite important in the development of robust control theory. He argued that 

model uncertainty is often described very effectively in terms of norm-bounded perturbations. 

- 12 -



1. I mrodUCIWn 

He developed the structured singular value approach for testing 'robust stability' (i.e., stability 

in the presence of model uncertainty) and 'robust performance' (i.e., performance in the presence 

of model uncertainty), and is probably the primary motivation for the modern eo-norm objective. 

Other techniques for robust design include representing the model uncertainty stochasti­

cally as in Wonham (1967) and the game theoretic or minimax approach which basically 

represents the uncertainty as a factor that maximises a performance measure which is being 

minimised by the control variable (for example Ragade and Sarma, 1967; Bertsekas and Rhodes, 

1973). The minimax approach can, however, become quite complicated for relatively simple 

design problems. It is also worth mentioning quantitative feedback theory (Horowitz, 1979, 

1982; Horowitz and Sidi, 1980) which is based on loop gain shaping and the use of templates 

to represent the model uncertainty, each of which contains the set of possible plant transfer 

function values at a particular frequency. Other authors (for example Gourishankar and Ramar, 

1976; Owens and O'Reilly, 1989) have suggested that the design be based on the sensitivities 

of the eigenvalues and eigenvectors. The conditioning of the matrix of eigenvectors has also 

been suggested as a good basis on which to design robust controllers (Kautsky et ai, 1985; Byers 

and Nash, 1989). Further information on these methods and other alternative approaches to the 

robust control problem can be found in Dorato (1987), Maciejowski (1989) and Morari and 

Zafiriou (1989). 

A discussion of a number of preliminary points regarding some basic definitions in the 

general robust control problem is presented next, followed by more specific information on the 

type of system being considered and the problem of interest. This naturally leads to a discussion 

of the objectives of this work and an outline of the thesis. 

1.2 Preliminaries 

Robust design attempts to take account of uncertainty in the model and disturbances on 

the system. Model uncertainty arises due to the difference between the real plant and the model 

being used for the design of the controller. When modelling a system it is often necessary to 

make certain assumptions such that the problem can be simply defined and a model easily 

obtained. Examples of such assumptions are linearity, the order of the model, the time delay, 

noise characteristics and the time invariance of parameters. The errors introduced by such 

assumptions can give rise to model uncertainty. 

Model uncertainty can generally be split into two categories, unstructured and structured. 

To help understand the difference between the two, consider the typical feedback control system 

shown in figure 1.1 where P is the plant, C is the controller, w (t) is the demand signal, e (t) is 

the error, u (t) is the input and y(t) the output. 

------------- ~ ~~--~-

- 13 -



1. I mroduction 

e(t) u(t) c p yet) 
~-

Figure l.1 - Block Diagram of a Typical Feedback Control System 

P can be expressed as 

P=M+~ (1.1) 

where M represents the derived model of the plant and ~ the modelling error or uncertainty 

due to the violation of certain assumptions as outlined above. 

An unstructured description of the model uncertainty essentially bounds the magnitude of 

possible perturbations, i.e. 

II ~II ~ Il <-too (1.2) 

but does not trace the origins of the perturbations to specific elements of the plant. A structured 

description can be represented as 

~=K£ (1.3) 

and attempts to specify some information, using K, regarding which elements of the plant are 

subject to perturbations. £ represents the unknown magnitude of the perturbations. 

Clearly the unstructured approach may lead to controller designs which are unnecessarily 

conservative as it can include perturbations which do not actually occur in the plant. A structured 

approach on the other hand has the drawback that it does not deal with perturbations that affect 

the order of the plant (Maciejowski, 1989). 

- 14 -



1. /nlrodJl.ction 

The robustness problem itself can primarily be split into two types, robust stability and 

robust performance. The stability problem is concerned with ensuring that the closed-loop system 

remains stable in the face of model uncertainty, whereas robust performance is concerned with 

how the closed-loop system behaves subject to model uncertainty. 

1.3 Definition of the Problem 

This work is concerned with discrete single-input single-output (SISO) systems in 

input-output (or polynomial) form. The open-loop system is as shown in figure 1.2 

e(t) C 
A 

u(t) B + Y (t) 
-
A + 

Figure 1.2 - Block Diagram of the Open-Loop System 

which can be expressed as 

(1.4) 

where 

-I -1 -2 -II. 
A (z )=I+az +az +···+a z 

p I 2 ". 
(1.5) 

( 
-I) b b -I b -2 + b -II. B p z = 0 + IZ + 2Z + . . . ". Z (1.6) 

C ( -I) 1 -I -2 + -II, Z = +c z +c z + ... c z 
p I 2 ", 

(1.7) 

and Z-I can be interpreted as the backward shift operator. The signals yet), u(t) and ee,) are the 

sampled system output, the control input and a white noise sequence respectively. C,(Z-l) is a 

colouring polynomial for the signal e(t), used to characterise the disturbance more accurately . 

• IS· 



1. I mroduction 

For this type of system, the problem considered is that of performance robustness. To 

ensure that the problem remains tractable it is assumed that the orders of the system polynomials 

Ap(Z-l) and Bp(Z-l) are fairly accurate and that information is available on which coefficients are 

perturbed, thus the problem is one of structured model uncertainty. For the general polynomial 

system this can be expressed as 

( 1.8) 

(1.9) 

where aI' .. " an ,bo, .. " bn are the known nominal values of the coefficients and &21, •• " &2n , a b a 

Mo, .. " Mnb are the unknown errors or variations in the coefficients, some of which may be 

zero. 

The concept of pole-placement for controller design has its roots in classical control theory 

and the idea of placing poles in certain locations to achieve a desired closed-loop behaviour is 

intuitively appealing. The methods for perfomling such a design are generally quite straight­

forward and all of these points help to explain why pole-placement has become very popular in 

industry for controller design. On the basis of this the approach of pole-placement is adopted as 

the design procedure for this work. 

Before continuing with details of the objectives of this thesis and an outline of the various 

chapters, it is useful to review the pole-placement design procedure for polynomial systems. 

1.4 Pole-Placement Design for Polynomial Systenls 

Following Wellstead and Sanoff (1981), servo and regulatory control can be applied to 

the system in (1.4) using the control law: 

(1.10) 

where 

- 16 -



1. I nJroduclion 

(1.11) 

G ( -1) -1 -2 -11, 
P Z = go + g 1 Z + g 2Z + ... + gil Z , (1.12) 

H ( -1) h h -1 h -2 h -1110 
P Z = 0 + 1Z + 2Z + ... + 1110 Z (1.13) 

and w (t) is the demand signal. 

Note that the pole-placement design assumes the time delay, td is incorporated in B/z-1), 

hence nb = fib + td where fib is the true order of Bp (Z-1). This will lead to some of the leading 

coefficients of Bp (Z-1) being zero. Also, due to sampling, the time delay will always be at least 

one, so bo will be equal to zero. 

This gives rise to the closed-loop system as shown in figure 1.3 

e(t) c 
A 

w (t) + 1 u(t) B + Y 
H - - -

F A + -

(t) 

G 

Figure 1.3 - Block Diagram of the Closed-Loop System 

which can be expressed as 

(1.14) 

- 17 -



J. IlIlroductWlI 

HTp(Z-I) = 1 + tlZ-
1 + ~Z-I + ... + tll,z -, specifies the desired closed-loop pole positions then 

Fp(Z-I) and G p(Z-I) are obtained from the solution to the diophantine equation 

(1.15) 

where Cp(Z-I) is included on the right hand side (RHS) of the equation to minimise the variance 

of the disturbance. To explain, consider the disturbance tenn 

(1.16) 

The variance of d(t), E[d2(t)] can be expressed as 

E[d2(t)] = E[e 2(t) + c;e 2(t -1) + c;e\t - 2) + ... 

. . . +c1e(t)e(t - 1) + c2e (t)e(t - 2) + ... 

. . . + c1c2e(t - l)e(t - 2) + ... ] (1.17) 

But as e(t) is an uncorrelated sequence 

E[e(t - a)e(t - ~)] = 0 for a;t ~ (1.18) 

Therefore 

E[d2(t)] = E[1 + c; + c; + ... ]a! (1.19) 

where cr. is the variance of e (t). 

Clearly if C p(z -I) can be removed from the disturbance term, the variance will be minimised. 

This can be achieved by forcing the denominator of the closed-loop system to contain Cp(Z-I) 

as a factor, hence the fonn of the diophantine equation (1.15). 

This gives the closed-loop system as 

- 18-
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(1.20) 

where the denominator of the demand signal term still contains Cp(Z-I) which can be removed 

using the precompensator, Hp(Z-I), by incorporating it as a factor, i.e. 

(1.21 ) 

Essentially the precompensator term, H/(Z-I) is used to ensure that the output yet) tracks 

the command input wet) in the steady state. Considering the response of the closed-loop system 

to a step input, for zero steady state error 

__ B=--p (_1 )_H....:....p '_(1_)--....:C p:....-(_l)_ = 1 
A p ( 1 )F p ( 1 ) + B p ( 1 )G p ( 1 ) 

(1.22) 

The form of H/(I) which ensures that this equation is satisfied is not unique. If Ap(Z-I) is 

forced to contain a factor of (1 - Z-I) by cascading a digital integrator with the open-loop system, 

then A/I) = 0 and hence H/(l) can be obtained from 

(1.23) 

and as this represents a scalar value, nh' = O. Therefore Hp(Z-I) = H/(l)C/z-l
) and nh = nco 

However in practice the model parameters A/z-I), Bp(Z-I) and C/z-I
) are generally not 

accurately known and estimates are used. Hence F/z-I) and G p(Z-I) are obtained from 

(1.24) 

where Ap(Z-I), B p(Z-I) and C p(Z-I) are estimates of the model parameters. Hp(Z-I) is then 

calculated as above using the estimates of the model parameters. 

- 19 -



1. 1 ntroduction 

1.5 Objective of the Thesis 

From a robustness point of view the diophantine equation is extremely interesting due to 

the large number of possible solutions, all of which lead to a stabilising controller that places 

the closed-loop poles in the desired locations. Particular solutions may however yield a 

closed-loop system with improved robustness properties. 

The robust design problem can now be stated as the determination of suitable Fp(Z-l) and 

G iz-l) polynomials which satisfy the diophantine equation (1.15) and which minimise the effect 

of &Zl' ... , &zIlG' Mo, ... , Mllb on the transient response of the closed-loop system. 

Uncertainty in the Cp(Z-I) polynomial is not considered as it does not affect the transient 

behaviour of the closed-loop system. It is incorporated, however, in the precompensator Hiz-l) 

which is selected to achieve zero steady state error. The presence of uncertainty does not represent 

a problem for steady state tracking if the procedure for selecting the precompensator outlined in 

the previous section is used. Considering the expression for the precompensator, in the steady 

state 

(1.27) 

and it is clear that good steady state tracking will always be maintained as Hp(l) is independent 

of any uncertainty in Cp(Z-I). 

Now consider how to solve this problem and obtain the robust Fp(Z-l) and Gp(Z-l) poly­

nomials. Section 1.1 gave an indication of various approaches to the solution of the robust control 

problem and it was noted that a major development was the Youla parameterisation which 

effectively gives rise to a set of possible controllers, allowing the most robust one to be found. 

Obtaining a solution to the diophantine equation represents a similar situation where there are 

a set of controllers and the problem becomes one of searching for the most robust controller. 

The concept of searching for a robust controller is quite natural in robust design and is 

easily fonnulated in tenns of an optimisation problem. Indeed many robust techniques involve 

some fonn of optimisation in the design of a suitable controller. The rapid development in 

computing technology over recent years opens up the possibility of solving the optimisation 

problem numerically, Maciejowski (1989). 

This thesis presents an alternative approach to the solution of the robust design problem 

as outlined above, based on the theme of utilising modem computing technology to conduct the 

seaICh for a robust controller, in the form of a numerical optimisation problem. 

·20-
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1.6 Outline of the Thesis 

Chapter 2: The diophantine equation is clearly extremely important in the design of a 

controller for systems in input-output form. This chapter discusses a number of the aspects of 

this equation to help gain a better understanding of the robust controller design problem. There 

are two main approaches to solving the equation and they are both reviewed, followed by a 

discussion of various problems that may be encountered when attempting to find a solution. A 

simple approach to finding a more robust controller is then developed but it is shown that the 

method has a number of shortcomings, which leads directly to the idea of a state space design. 

Chapter 3: The link between polynomial and state space systems is established showing 

that, as would be expected, an output feedback state space design must be used. As the aim is 

to use optimisation techniques to select a more robust controller, a parametric design is used 

which effectively specifies a set of possible controllers. Two of the main parametric output 

feedback methods are reviewed and a comparison made of their performance on some test 

examples. The method which performs better is however not used as the structure of the type of 

problem being considered here causes it some difficulty. This is discussed more fully when the 

overall design is applied to an example in chapter 5. 

Chapter 4: After determining the set of possible controllers using parametric design, the 

problem becomes one of how to selec't the free parameters such that the resulting controller yields 

a closed-loop system with improved performance robustness. This issue is addressed in this 

chapter, which first introduces how to quantify mathematically the effect of errors in the model. 

A mathematical description of the output is then obtained using modal decomposition and from 

this a number of possible cost functions are derived for use with numerical optimisation algo­

rithms. A general introduction into such algorithms is then given. 

Chapter 5: The previous chapters develop the overall robust design technique, this chapter 

applies the method to an example. With the application of the method arises questions and 

problems associated with its implementation on a computer and a small discussion of some of 

the most important points is given. It is then shown why one of the parametric design methods 

cannot be used on the this type of problem. A comprehensive set of results is then obtained which 

helps to illustrate the relative benefits of each of the proposed cost functions and the typical 

improvement that can be achieved with this robust design approach. 

Chapter 6: The application of the method to a more realistic problem is considered in this 

chapter. Daley (1987) considered the application of self-tuning control to a hydraulic rig to help 

overcome problems associated with varying supply pressure and load. From the basic physical 

equations of the plant a nonlinear continuous time simulation of the rig is set up and a robust 

controller designed from a model obtained using system identification techniques. It is shown 
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that the robust controller performs well compared to the controller obtained from the minimum 

order solution to the diophantine equation. Also the perfomlance compares favourably with that 

of the self-tuning controller of Daley (1987). 

Chapter 7: The conclusions drawn from the preceding chapters are presented here. The 

chapter brings together and highlights both the advantages and the disadvantages of this type of 

approach to designing robust controllers. There are still a number of problems with the method 

and a discussion of these follows, leading onto some suggestions for future work. 
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CHAPTER 2 

THE DIOPHANTINE EQUATION 

2.1 Introduction 

Section 1.4 detailed the pole-placement design procedure for polynomial systems. From 

this it is clear that the diophantine equation 

(2.1) 

is extremely important, as the whole design centres around obtaining its solution, which of course 

gives the Fp and G p controller polynomials. Once a solution has been found the third controller 

polynomial, the precompensator H p is easily obtained. As the solution of this equation is such 

an important part of the design stage it is useful to gain an understanding of the conditions under 

which solutions exist, the range of possible solutions and the approaches that can be used to 

obtain a solution. 

There are basically two approaches to the solution of the equation and these are discussed 

more fully in the following two sections. Various problems associated with finding a solution 

are then discussed, followed by details on some work carried out on obtaining more robust 

solutions to the diophantine equation. However, before proceeding with these topics it is useful 

to present two theorems (Kucera, 1979) which clarify the conditions for the existence of solutions 

and the range of possible solutions. 

THEOREM 2.1: 

The equation (2.1) has a solution if and only if the greatest common divisor of Ap and Bp 

is a factor of the right hand side (RHS), CpTp. 

PROOF: 

STEP 1 - Let Fo and Go be a solution to the diophantine equation and the greatest common 

divisor of Ap and Bp be gpo 

Then 

(2.2) 

(2.3) 

and 
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(2"+) 

It is well known that two polynomials, Pp and Qp' always exist such that 

(2.5) 

Multiplying by CoTo gives 

(2.6) 

Hence the solution of (2.1) 

[] 

This theorem basically outlines the conditions for a solution to exist to the diophantine 

equation. Its importance will become clear later when the problems associated with this equation 

are discussed. 

THEOREM 2.2: 

Let Fo and Go be a solution to equation (2.1). The general form of the solution is 

Fp = Fo-BrXp 

Gp = Go+ArXp 

where Ao and Bo are as defined in theorem 2.1 and Xp is some polynomial. 

PROOF: 

Clearly 

and 

therefore 
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(2.11) 

(2.12) 

From theorem 2.1, Ap = gpAo and Bp = gpBoo The polynomials Ao and Bo are coprime and 

satisfy ApBo = BpAo, so Bo must be a divisor of -CFp - Fo) and Ao a divisor of (G p - Go), i.e. 

(Fp -Fo) = -BJ(p 

(Gp -Go) =AJ(p 

for some polynomial Xp , hence the general fonn for the solution to (2.1). 

(2.13) 

(2.14) 

o 
Theorem 2.2 highlights the fact that there are infinitely many solutions to the diophantine 

equation (2.1). 

The equation can be solved by either matrix methods or by polynomial methods (Kucera, 

1979; Clarke, 1982; Mohtadi, 1988; Astrom and Wittenmark, 1989). A review of each approach 

is given, followed by a discussion of problems associated with the equation and various suggested 

methods to help overcome these problems. The chapter finishes with a novel investigation aimed 

at obtaining a more robust solution to the diophantine equation. 

2.2 Solution via Polynomial Methods 

The polynomial solution outlined here follows that of Kucera (1979), although many 

authors have presented similar derivations. 

From theorem 2.2, the general fonn of the solution is 

Fp = Fo-BJ(p 

Gp = Go+AJ(p 

where Xp is some polynomial. 

(2.15) 

(2.16) 

There are many ways to calculate this solution, one of which is to use an extended Euclidean 

algorithm which calculates a greatest common divisor (GCD), gp of Ap and Bp' along with two 

pairs of coprime polynomials Pp, Qp and Rp, Sp satisfying 
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ApPp +BpQp = gp 

ApRp + BpSp = 0 

Also 

CpTp 
CoTo=--

gp 

Hence the general solution is 

2. The Diophantine Equation 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Note that CoTo must be a finite polynomial, which fOnTIS a useful check on the existence 

of a solution. 

A special solution is the minimum degree solution with respect to (w.r.t) Fp or Gp' It is 

calculated using the polynomial division algorithm to find (in the case of the minimum degree 

solution w.r.t Fp) 

where up is the quotient and v p the remainder. Then 

and the minimum degree solution is obtained by putting Xp = uP' therefore 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

This is a unique solution and may not necessarily be the same as the minimum degree 

solution w.r.t G p' 
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Appendix A contains details of the extended Euclidean algorithm and the polynomial 

division algorithm. 

2.3 Solution via Matrix Methods 

The equation (2.1) can be transfonned to a matrix equation of the fonn As! = b and matrix 

methods used to obtain a solution. 

Expanding (2.1 ) gives 

ApFp = to + (aJo + ft)Z-l + (a,Jo + aJI + fJz-2 + ... + allJ,.,z-{lIe U/> 

BpG p = b~o + (blgO + b~I)Z-1 + (b2g0 + blgl + b~2)Z-2 + ... 

b 
-{II. + ",> ... + g z 

lib ", 

Assuming 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

which can always be achieved by padding with zero tenns if necessary, the diophantine equation 

can be represented as 

(2.30) 

If nc + n, S n. + n, then the equation can be expressed as 
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1 0 0 0 bo 0 0 0 fa 
1 0 1 a l bl bo 0 It 

~ a l 1 b2 bl bo 
ci + tl 

h 
~ a l b2 bl 

a2 1 b2 bo 

a" a l b" bl h, - (2.31) ,. b 

0 a" a2 0 b" b2 go CIa t" ,. b C I 

0 0 a" 0 0 b" gl 0 ,. b 

000 a" 0 0 0 ,. btl g,., 
b 

o 

which clearly is of the fonn As! = b where As is a sylvester matrix of the coefficients of Ap and 

Bp ' x is a vector of unknown controller polynomial coefficients and b is a vector containing the 

coefficients of CpTp. 

If n, is set to nb - 1 and n, to na - 1 then this will give rise to the minimum order solution 

andAs will be square. The set of equations can then easily be solved by inverting As or preferably, 

from a numerical point of view, by one of a number of algorithms to solve a set of linear equations 

such as Crouts factorisation method, NAG (1990). If n, or n, are set to higher values then A. will 

no longer be square and it is necessary to arbitraily set some of the unknowns to find a solution. 

Section 2.5.3 discusses this aspect in greater depth later on. 

2.4 Problems Associated with Finding a Solution 

Theorem 2.1 gives a good indication of when problems will arise with finding a solution 

to the diophantine equation. If Ap and Bp have an exact common factor which is not a factor of 

the RHS, then no solution exists. 

In practice, however it is more likely that a near common factor will be encountered. There 

are two principle ways that such a factor can arise (Mohtadi, 1988). 

1) As the sample rate increases the poles and zeros of a discrete system tend to map to a 

region close to the (1,0) point in the z-plane (A strom et ai, 1984), obviously leading 

to common factors. 

2) It is possible to overparameterise real systems during identification if slow sample rates 

are used in conjunction with high order models resulting in a possible common factor. 
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Although a solution can generally be obtained in the presence of a near common factor, it 

tends to be a poor one in tenns of numerical robustness. To help understand the problems that 

can arise with such a factor, consider a simple example. 

Example 2.4.1: 

Ap = (l + dz-1
) (1 + 2z-1

) 

Bp = (1 + Z-I) (3z-1
) 

(2.32) 

(2.33) 

(2.34) 

where d is selected as 0.9999 and 1.0001. The following solutions were obtained using 

Pro-Matlab version 3.5e. 

Matrix solution: 

d =0.9999 

d = 1.0001 

Fp = 1 + 1.0001e4z-1 

Gp =-3.3343e3-6.6663e3z-1 

Fp = 1-9.99ge3z-1 

G p = 3.3323e3 + 6.667e3z-1 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Polynomial solution: 

The general solution is used with the arbitrary polynomial set to 1. 

d =0.9999 

tJ = 1.0001 

F = 1 - 4.9999z -1 _ 1.0008e4z -2 - 1.000ge4z -3 -
p 

2.0011e4z-4 -l.OOO4e4z-5 (2.39) 

G = 1 + 0.334e4z -1 + 1.0008e4z -2 + 1.3343e4z -3 + 
p 

1.6674e4z -4 + 0.666ge4z -5 (2.40) 

F = 1 - 5.0001z-1 + 0.9992e4z-2 + 0.9991e4z-
3 

+ 
p 

1.998ge4z-4 +0.9996e4z-5 

G = 1 - 0.3327e4z -I - 0.9992e4z -2 - 1.3324e4z -3 -
p 

(2.41) 

1.665ge4z-4 -0.6665e4z-5 (2.42) 
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Clearly the presence of a near common factor causes the value of some coefficients to be 

quite large which is undesirable. Of more significance though is the dramatic change in the values 

with a small change in d around the nominal value of 1 (for an exact common factor). 

A second problem with finding a solution occurs when the coefficients of B p become small. 

The reason for this in the case of the matrix approach is that columns of As are close to zero and 

the matrix becomes ill-conditioned. For the polynomial approach large multipliers appear in the 

extended Euclidean algorithm resulting in large values for some of the coefficients of the resulting 

polynomials. This is an important problem as the magnitude of the coefficients of B p is dependent 
on the sample rate (Mohtadi, 1988). 

Intuitively, for the polynomial solution, a simple approach to overcoming the problem of 

a common factor is to force the RHS to contain it as a factor and find a solution to 

(2.43) 

and then g p can be dealt with in the same way as C p in the precompensator. For example consider 

the closed-loop system 

(2.44) 

To eliminate gp and Cp from the denominator, Hp must contain gpCp as a factor, i.e. 

and H ' can be calculated as before for zero steady state error. , 

(2.45) 

Clearly this has the disadvantage of increasing the order of the precompensator polynomial 

but has the advantage of being extremely easy to implement. When calculating Cr:to, if a 

remainder is left then g, is not a factor of C,Tp and the above procedure must be carried out 

giving CoTo = CpTp and hence a solution. 

The procedure does assume that the common factor is exact which will generally not be 

the case. In example 2.4.1 with a near common factor the extended Euclidean algorithm returned 

H, = 1 and hence failed to detect its presence. Clearly the above procedure is worthless in such 

I case. 
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For the matrix approach the only complete solution is to isolate the offending common 

factor in Ap and B p and remove it from the polynomials before constructing the simultaneous 

equations (Tuffs, 1984). Again this relies on having an exact common factor so is not appropriate 
for practical problems. 

It is possible to fonnulate a recursive solution to (2.1) by introducing an arbitrary signal 

;(t) to produce a regression model (Edmunds, 1976; Alix et ai, 1982) 

(2.46) 

where et(t) = C pTp~(t), a (t) = Ap~(t) and b (t) = B p~(t). 

This can then be used as the basis of a recursive estimator with a parameter vector [F p G p], 

a measurement et (t) and a data vector 

[aCt) a(t-l) ... b(t-td) b(t-td-l) ... ] (2.47) 

The problem of a common factor is also present in this framework and appears as linear 

dependence in the data vector. Theorem 2.1 showed that no solution exists unless the common 

factor is also a factor of the RHS so it is reasonable to expect the estimator to experience some 

difficulty in converging to a solution as in fact none exists. 

Another approach (Lawson and Hanson, 1974; Tuffs, 1984) is to examine the 'pseudo­

rank' l of the A" matrix and if a rank deficiency is detected, calculate a 'minimum-nonn' solution, 

i which minimises the Euclidean length of Ii = b - A"i. Such a solution is numerically very 

robust. The major drawback here is that it has not been proved that the closed-loop system is 

stable under all conditions. 

Berger (1988) suggests splitting the desired closed-loop poles into two parts J, and K,. 

The fIrSt part, J, is chosen to satisfy the desired design criteria whilst K" the second part, is 

initially set to zero but can be adjusted to improve the conditioning of the set of linear equations. 

It is necessary to specify bounds for the coefficients of K r 

For the problem of small B, coefficients due to rapid sampling (which can also give rise 

to a common factor), Middleton and Goodwin (1986) have proposed a method which involves 

replacing the Z-1 operator with the a operator which is defined as 

1 Lawson and Hanson (1974) define the pseudo-rank of a matrix A to be the rank of a matrix A that replaces A as 
a result of a specific computational algorithm. 
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(2.48) 

where e is the sampling interval. It is claimed that the use of this operator gives rise to a number 

of benefits including improved finite word length characteristics and an improvement in the 

conditioning of the sylvester matrix. Of course the implementation of control strategies in the 0 
operator are more complex than those in the more common shift operator. 

There are many other discussions of the diophantine equation and its properties in the 

literature together with a number of proposed methods for overcoming the problems associated 

with finding a solution. Such a proliferation of methods indicates that no one approach can deal 

with all the shortcomings of this equation and that the calculation of its solution should be carried 

out with some care. 

2.5 Obtaining a More Robust Solution 

Putting aside the problems associated with the equation, another interesting aspect is the 

number of possible solutions as highlighted by theorem 2.2. As a first step towards the goal of 

designing polynomial controllers with improved performance robustness, it would be interesting 

to investigate the robustness properties of various solutions to the diophantine equation. 

The matrix approach appears to be the more popular method of solving the equation. This 

is probably due to a greater general familiarity with the theory of matrices, the fact that the matrix 

representation of the equation is of a standard form and lastly because the matrix method is more 

easily implemented on a computer. Thus it seems appropriate to base the investigation on this 

approach. It is assumed that there are no problems with common factors or small coefficients 

and so standard matrix analysis is used to solve the equation. 

Based on this method for solving the equation, the effect of errors (or perturbations) in the 

model parameters is considered which helps to establish a suitable robustness criteria. It will be 

seen that vector and matrix norms play an important role in the evaluation of this criteria and so 

a brief discussion and definition of them is included, followed by some comments on how to 

select alternative solutions. A set of results using the proposed robustness criteria are presented 

for a number of examples and conclusions drawn about the suitability of such an approach for 

improving performance robustness. 

- 35 -



2. The Diopharuine Equation 

2.S.1 The Effect of Parameter Perturbations 

If the parameters are subject to perturbations then the matrix equation (2.31) can be 

represented as 

(2.49) 

where As, x and b represent the true values and Ms, & and M the errors. 

Itis necessary to establish some sort of measure to gauge the robustness of various solutions. 

The matrix form of the diophantine equation is of a standard form on which much work has been 

carried out. Perturbation theory for linear systems can be used to help establish the appropriate 

criteria. 

A suitable measure of robustness could be obtained by computing an upper bound for the 

relative perturbation II & II III x II. There are a number of such bounds, the following is taken from 

a derivation in Lancaster and Tismenetsky (1985). 

Subtracting As:! = b from (2.49) gives 

(As + Ms)ilx +M~x = M (2.50) 

or 

(2.51) 

Lancaster and Tismenetsky (1985) show that the existence of (I + As-
1 Msfl is implied if 

(2.52) 

where the particular norm used must satisfy 

11/11 = 1 (2.53) 

Also 

II (I + As-IMsfl II < (1- prl (2.54) 
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& = (/ + A -1M )-IA -1M - (/ + A -1M )-IA -I A A 
- I I I _ Iss L.lt'1s:! 

and if 11·11" is any vector norm compatible with 11.11, 

As:! = b implies that II b II " < II As II II x II" hence 

Thus 

1I£1!.1I" < II AsIIIIA;111 .II~II" +_P_ 
IIxll" - I-p IIbll" I-p 

2. The Diophantine EqUlJlion 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

Define K(A.r) = II As II II A;ll1 to be the condition number of A.r and note that 

p = II A;'IIII M,U = 1C(Ai~,~,11 (2.59) 

Thus 

(2.60) 

It would seem reasonable to suggest that the solution which minimises the upper boun~ 

U. is the most robust solution as this minimises the maximum possible variation in x. 
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However, these results are really only valid for small perturbations in As and b. As the 

relative perturbation of A, increases, there will come a point when the evaluation of Ub will return 

a negative value, due to K(As) II Msil /11 Asil becoming> 1. The relative perturbation of x should 

always be positive, thus the value of Ub will be invalid. 

At this point it is worth noting that the essential difference between sensitivity and 

robustness analysis is that sensitivity based results are concerned with small perturbations, 

whereas more significant parameter variations are considered with robust design techniques. 

The above perturbation theory gives rise to a sensitivity result, hence the upper bound becoming 

invalid for larger changes. However, sensitivity analysis can provide a useful insight into 

appropriate robustness measures. 

Upon closer examination of the expression for Vb it can be seen that the condition number 

of As has a large influence on the upper bound of the relative perturbation of x. Based on this 

observation and the knowledge of the benefits of achieving well conditioned matrices, it would 

seem reasonable to suggest that the conditioning of the sylvester matrix would be a useful measure 

of robustness for systems with not necessarily small parameter perturbations. 

2.5.2 Matrix and Vector Nornls 

The upper bound, Ub of the relative perturbation and the condition number depend on 

vector and matrix norms, of which there are many. The most commonly used matrix norms are 

P or Holder norms and the Frobenius or Euclidean norm. 

The P norm is defined as 

IIA!.II p 

IIAllp = !~~ Ilxll p 

for any x, where II xii p = (I XII p + ... + I xnl p)lI
P and p is generally taken as p = 1,2 or 00. 

The Frobenius norm is defined as 

- 3X -
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However because of the assumption in (2.53) that II/II = 1 the Frobenius norm cannot be 

used as II/II F = n 112. Essentially the aim here is to find the minimum condition number and it is 

well known (Golub and Van Loan, 1983; Horn and Johnson, 1985) that if a point is a minimum 

with respect to one norm it will also be a minimum with respect to another norm. This equivalence 

of norms means that anyone of the p norms could be used to calculate the condition number and 

select the most robust solution. 

2.S.3 Selecting the Order of the Controller Polynomials 

A common approach to solving equation (2.31) is to use the minimum order solution 

(Kucera, 1979; Wellstead and Sanoff, 1981; Clarke, 1982) where 

(2.63) 

(2.64) 

although a number of other authors have proposed using alternative solutions (for example 

Astrom and Wittenmark, 1980; McDermott and Mellichamp, 1984; Warwick et ai, 1985). The 

choice of which solution is 'best' is still an area of on-going research and of course will depend 

on the design objectives. 

To select other solutions the orders of F p and G p will have to be changed. For the matrix 

equation this will mean changing the dimension of the matrix and vectors. Thus it is necessary 

to understand the conditions under which n/ and n, can be selected. 

In equation (2.31), the number of columns containing Ap coefficients = the number of F, 

coefficients = n/ + 1, and the number of columns containing B p coefficients = the number of G, 

coefficients = n, + 1. 

i.e. (2.65) 

where Nt: = the number of columns and N" = the number of unknowns. 

The number of A, coefficients = n. + 1, and B, coefficients = n" + 1. Again examining 

equation (2.31) it is clear that the coefficients are moved down by one row for each successive 

column, therefore the number of extra rows created is n/ for the A, coefficients and n, for the 

B, coefficients. 
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. I.e. (2.66) 

where N, = the number of rows and Ne = the number of equations. 

From equation (2.29) it is clear that the two values in the brackets will be equal, so either 
can be used. 

As the number of rows and columns are affected there are three possible situations that 
could arise, assuming that A" is of full rank: 

i) The number of rows = the number of columns 

and 
n =n -1 g a 

and a solution can be easily obtained. This case only occurs for the minimum order 

solution. 

ii) The number of rows < the number of columns 

This corresponds to the case where the number of unknowns > the number of 

equations, thus by setting some of the unknowns arbitrarily it is possible to easily 

obtain a solution. 

iii) The number of rows> the number of columns 

In this case there are more equations than unknowns, which can lead to problems 

of inconsistency where a set of values for the unknowns is obtained which do not 

satisfy all of the equations. To guarantee that such problems do not arise it is 

necessary to investigate the conditions under which this case will never occur. 

Limits for n, and ng such that the number of rows ~ the number of columns are 

and 
n, ~ n.-l 

As n, = n. - 1 and n, = nil - I are the minimum order solution, these conditions will 

always be fulfilled and case iii) can never occur. 

Suitable choices for n, and n, can be deduced from the conditions mentioned above. To 

summarise, all of the following constraints must be satisfied : 
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a) n" + nj = nb + ng 

b) ng ~ n,,-l 

c) nj ~ nb-1 

d) if Nu > N. then some of the unknowns must be arbitrarily assigned 

The fIrSt constraint means that if the order of F p is increased then the order of G p must be 

increased by the same amount. 

2.5.4 Simulation Results 

Three examples are considered 

1) A non-minimum phase system (taken from Wellstead and Sanoff, 1981) 

(1-1.6z-1 + 0.6z-2)y(t) = (Z-1 + 1.5z-2)u(t) + (1 - OAz-1)e(t) 

and it is desired to have a closed loop pole at 0.8 

(2.67) 

It is assumed that the Ap, Bp and Cp polynomial coefficients are subject to uniformly 

distributed random perturbations of 2%,5% and then 15%. 

2) A system proposed by Berger (1984) 

(1-2z-1 +Z-2)y(t) = (Z-1 +0.1z-2)u(t) 

and the desired closed loop poles are all assumed to be zero. 

(2.68) 

The Ap ' B p polynomial coefficients are now assumed to be subject to normally dis­

tributed random perturbations with variances of firstly 0.01 % and 0.02% respectively 

and then 5% and 10% respectively. 

3) A hydraulic rig (taken from Daley, 1987) 

(1-0.54666z-1)y(t) = (1.28621z-1)u(t) 

and the desired closed loop pole positions are 0.75 + jO.2 

(2.69) 

The Ap ' B, polynomial coefficients are time-varying with respect to the supply 

pressure. The relative size of the variations are 10% and 125% respectively. 
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A digital integrator is cascaded with each system to achieve the desired steady state 

perfonnance as outlined in section 1.2, hence two closed loop poles being specified for example 

3 which is a fIrst order system. 

The minimum order solution is unique, however when nl and ng are increased beyond their 

minimum order values, a set of solutions is obtained. The size of the set increases as nl and n, 

increase. Consider the case where nl and ng are increased by one from their minimum order 

values. This particular set of solutions will be referred to as the minimum order + 1 solutions. 

Section 2.5.3 outlined how the size of equation (2.31) was affected by changes in nl and n,. From 

this work, in particular equations (2.65) and (2.66), it is clear that the number of unknowns in 

equation (2.31) increases by two whereas the number of individual equations (or rows of the 

matrix A.) only increases by one. In order to solve equation (2.31) for a particular solution it is 

necessary to arbitrarily set one of the unknowns. The mathematics involved can be greatly 

simplified if the unknown is set to zero as this is equivalent to deleting one of the columns from 

the sylvester matrix As. It is important to ensure that the resulting square sylvester matrix is of 

full rank, else the solution will suffer from numerical problems as outlined in section 2.4. 

If nl and ng are increased by two from their minimum order values then the minimum order 

+ 2 set of solutions is obtained. In this case it is necessary to arbitrarily set two of the unknowns, 

and if zero is again used this translates to deleting two columns from the sylvester matrix. 

It is possible to continue increasing nl and ng resulting in even larger sets of solutions. 

However, for the purposes of this investigation only solutions up to and including the minimum 

order + 2 set will be used, as this should give a sufficient indication of the performance of the 

robustness measures and the suitability of this approach. 

The levels of perturbation specified for examples 1 and 3 define the approximate level of 

random perturbation required, and for example 2 the actual variance of the perturbation is given. 

On the basis of this, four sets of random perturbations are generated for each example to allow 

a better investigation into the correlation between the measures of robustness (condition number 

and upper bound) and the true relative perturbation. This results in four plots appearing in each 

figure corresponding to the four sets of random perturbations. 

For the minimum order + 1 solutions the x -axis on the graphs corresponds to which column 

was deleted from the sylvester matrix. However, as to is fixed at 1, column 1 was not actually 

deleted and in its place are the results for the minimum order solution. For the minimum order 

+ 2 solutions the x-axis can no longer be used to indicate which columns are deleted as it is now 

necessary to remove two. Instead all possible solutions are shown in no particular order except 

that the minimum order solution is still first. The 2-norm was used for calculating the condition 

number and upper bound throughout. The graphs are located at the end of the chapter. 
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The 2% perturbation results for example 1 are shown in figures 2.1 and 2.2. The upper 

bound and the condition number agree quite well with the lowest minima indicating the best 

solutions. From the graph of the true relative perturbation it appears that the measures are 

generally selecting good solutions as regards robustness. Figures 2.3 and 2.4 show the 5% 

perturbation results. The upper bound is only valid for the minimum order + 1 solutions where 

there is good agreement with the condition number on which solutions are better. The upper 

bound for the minimum order + 2 solutions demonstrates the effect of higher levels of pertur­

bation, highlighting its inadequacy as a robustness measure. Comparing the condition number 

and the true relative perturbation, it can again be seen that generally the condition number selects 

the better solutions. When the level of perturbation is increased still further to 15% (figures 2.5 

and 2.6) the upper bound becomes totally invalid for all solutions. Again the results show a good 

correlation between the condition number and the true relative perturbation. 

Moving on to the second example, the results for a low level of perturbation are shown in 

figures 2.7 and 2.8. Even at this level of perturbation the upper bound is not valid for all solutions 

and so should be ignored. Comparing the condition number and the true relative perturbation it 

can be seen that the correlation between the two is not as good as for the first example. Figures 

2.9 and 2.10 show the results with a higher level of perturbation and again the same conclusions 

can be drawn when comparing the condition number and the true relative perturbation. 

Lastly in figures 2.11 and 2.14 the results for the third example are given. As would be 

expected, due to the high level of perturbation for this example, the upper bound is again invalid. 

There is a slightly better correlation between the condition number and the true relative per­

turbation than for example 2, but still not as good as for example 1. 

2.6 Conclusions 

Having established that the diophantine equation is important in the calculation of a 

pole-placement controller, this chapter has outlined some important points regarding the equation 

and obtaining a solution to it. Such an understanding is useful when considering the problem of 

robustness. 

There are two approaches to solving the equation, polynomial methods and matrix methods. 

Neither appears to have any distinct advantages although the matrix approach seems to be more 

popular, possibly due to the greater general familiarity with matrix theory, the fact that the matrix 

representation of the equation is of a standard form and also because the matrix approach is 

easier to implement on a computer. 
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A solution to the equation only exists if Ap and Bp are coprime or if the right hand side 

contains their common factor. The consequence of this statement only becomes apparent when 

it is understood how common factors can arise for discrete time systems. It is clear that the sample 

time plays an important role in the occurrence of such factors and so should be chosen carefully. 

With exact common factors it is possible to easily detect and overcome their presence, 

however it is more likely that near common factors will be present which show themselves as 

ill-conditioning of the matrix equation. Many techniques have been proposed for the case of near 

common factors but no one method appears to have totally overcome the range of possible 

problems that could be encountered. 

The occurrence of small Bp polynomial coefficients also causes problems when trying to 

solve the equation, which is important as the magnitude of the Bp coefficients is also a function 

of sample time. Obtaining a solution clearly suffers from a number of problems but putting them 

aside, another interesting aspect is the number of possible solutions to the equation. 

Any solution will meet the design objective by placing the poles in their desired locations, 

but different solutions may have interesting properties from the point of view of additional design 

goals. The goal in this case is to find controllers where the closed-loop transient response is 

robust to changes in the open-loop model parameters. 

From the derivation of an upper bound on the relative perturbation of the solution to the 

matrix form of the equation, it can be seen that the conditioning of the sylvester matrix is 

important. An investigation into obtaining better conditioned matrices by changing the order of 

F p and G p is then presented. Although the correlation between the conditioning and the true 

relative perturbation was not perfect, it is clear that the commonly used minimum order solution 

is not necessarily the best in this sense. 

However this is really only addressing the problem of numerical robustness in the sense 

that the controller polynomial coefficients will be less affected by changes in the model poly­

nomial coefficients. This is certainly a desirable property to achieve but its effect on the stated 

goal is difficult to assess. The transient response is dependent on a number of factors, one of 

which is the poles of the system, i.e. the roots of the characteristic polynomial. Minimising the 

change in the characteristic polynomial's coefficients does not necessarily minimise the change 

in the roots (or pole positions). The reason for this is that the relationship between the roots of 

a polynomial and its coefficients is not a simple one. 

It is clear that an alternative approach is needed which can investigate the effect of model 

parameter perturbations on the factors that directly effect the transient response. There is a 

growing interest in parameter space methods (Siljak, 1989) which, in the algebraic framework, 
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relates the changes in the coefficients of a polynomial to changes in the roots. However the 

transient response is not solely dependent on the pole positions so this approach would not enable 

a full investigation into transient response robustness. 
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CHAPTER 3 

STATE SPACE DESIGN FOR POLYNOMIAL SYSTEMS 

3.1 Introduction 

The previous chapter presented an initial investigation into obtaining controllers with 

improved performance robustness by utilising alternative solutions to the diophantine equation. 

The major conclusion was that although extra design freedom exists and it is easy to select 

alternative controllers, the specification of a suitable robustness measure, on which to base the 

choice of controller, was quite difficult. The main reason for this is that in the polynomial 

framework there is no simple approach to assessing the effect of model uncertainty on the 

response of the closed-loop system. 

In a state space framework it is well known that the transient behaviour of a system is 

governed by the eigenvalues and eigenvectors. Further, this description readily allows access to 

these factors and hence provides a good basis for an investigation into improving performance 

robustness. All of these points highlight the main reasons for turning to a state space based 

approach for the design of robust polynomial controllers. Of course the polynomial description 

of a system only provides a relationship between the input and output, so if state space methods 

are to be used to design the controller polynomials it will be necessary to use an output feedback 

approach. 

The state space design needs to provide extra degrees of freedom which can then be utilised 

as in the polynomial design outlined in the previous chapter to improve performance robustness. 

There are a number of options and it is worth noting that any robust state space design method 

could be used to illustrate the overall robust polynomial controller design procedure. Due to the 

close link between the eigenstructure (eigenvalues and eigenvectors) and the transient response 

it is natural to consider the techniques of eigenstructure assignment and parametric methods for 

the state space design. 

Of course it is necessary to define a suitable robustness measure on which to base the 

selection of the extra design freedom. There are a number of possibilities for such a measure, 

but as already mentioned the eigenvalues and eigenvectors are very important in detennining 

the shape of the transient response and so it is reasonable to expect that they will play an important 

role in the definition of a suitable measure. A complete discussion of this issue is presented in 

the following chapter. 
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In this chapter a more detailed explanation of the relationship between the eigenva­

lues/eigenvectors and the transient response is given using modal decomposition, hence 

emphasising the reasons for turning to a state space based design. A discussion of the overall 

design with the transformation of the polynomial system to state space form and of the controller 

back to polynomial form is then presented. An introduction to eigenstructure techniques is then 

given, leading onto a discussion of parametric methods and in particular a review and comparison 

of two specific parametric output feedback methods, followed by some conclusions on their 

suitability. 

3.2 Modal Decomposition 

To understand the factors that effect the transient response, consider the modal decom­

position of the discrete linear state space system (Kailath, 1980 and Ogata, 1987) 

x(k + 1) = Ax(k) + B u(k) 

y(k) = Cx(k)+Du(k) 

Assuming the initial state is x (0) and the initial input is u(O), from equation (3.1) 

x(1) =Ax(O)+Bu(O) 

x(2) = Ax(1) + Bu(l) 

= A 2X (0) + AB u (0) + B u (1) 

x(3) =A~(2)+Bu(2) 

=A 3x (0)+A 2Bu (0)+ABu(1) +Bu(2) 

It is well known that 
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where ~ are the eigenvalues and Y; the right eigenvectors of the matrix A, so clearly 

AV=VA (3.8) 

where V = [YI ... y,.] and A = diag[A.I ... A.n]. Therefore 

(3.9) 

Clearly A Ir. can be expressed by 

(3.l0) 

and substituting (3.9) gives 

Air. = VAIr.V-1 (3.l1) 

and as 

WI 

y-l = W = (3.12) 

where !J are the left eigenrows of the matrix A , 

A.I 0 0 WI 

A A: = £YI y.] 
0 (3.13) . 

0 

0 0 A.II 
T 
~ 

Thus 
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(3.14) 

Clearly equation (3.6) becomes 

(3.15) 

and the output can be expressed as 

(3.16) 

Clearly the eigenvalues and eigenvectors are extremely important in detennining the shape 

of the transient response. The eigenvalues affect the rate of decay and the eigenvectors the gain 

associated with each mode. 

Having shown the importance of the eigenvalues and eigenvectors, it is necessary to 

establish the link between the two representations which will then allow a state space approach 

to be used in the design of the controller polynomials. 

3.3 The Link between Polynolnial and State Space Representations 

The single-input single-output (SISO) polynomial system defined in equation (1.4) can be 

expressed in observable canonical form, Ogata (1987), as 

Xl 0 0 0 0 -a" Xl bIt -a"bo 

x2 1 0 0 0 - a,,_l x2 b,,_l -all_lbo 

- + u(k) 

X,.-l 0 0 1 0 -~ X,,_l b2 -apo 

x,. 0 0 0 1 -al x" l 
b1-a1bo 

.+1 

(3.17) 
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y(k) = [0 0 o 1] (3.18) 

where there are n states, m(= 1) inputs and r(= 1) outputs. Note that it is assumed that nG = nb = n 

which can always be achieved by padding with zero terms if necessary. Also the time delay, td 

will always be ~ 1 due to sampling and assuming the system is strictly proper, bo will always be 

o as the time delay is included in Bp(Z-l). Hence in the analysis it is unnecessary to consider a 

D matrix in the state space description. 

It is well known that the poles of a closed-loop system may be arbitrarily placed by using 

state feedback if and only if the system is controllable (Friedland, 1986). For output feedback 

however it is also required that r + m > n, which can be achieved by adding a dynamic com­

pensator of suitable order. Following Brasch and Pearson (1970), for convenience the com­

pensator dynamics will be taken to be a number of integrators. It is also assumed that every state 

in the compensator is observable and controllable. Therefore the new system with dynamic 

compensator of order p can be represented as 

(3.19) 

(3.20) 

where the dimension of x 1 is (n xl),:!2 is (p xl), U2 and Y2 are (p xl). Yl and U1 are scalars. 0; xj 

indicates a zero block of dimension i x j and Ip indicates a p x p identity block. 

Output feedback can then be applied via the control law 

(3.21) 

In state space fonn, the problem is then to determine the controller gain matrix K, which 

places the closed-loop eigenvalues in the desired locations, and yields a closed-loop system 

where the transient response is robust to changes in the elements of the A and B matrices. 
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Once K., has been obtained via a suitable state space design method it is necessary to 

interpret it in a polynomial framework. Note that the original input and output are U1 and Yl and 

that the relationship between Y:2 and 0 is 

~(k) = !h(k -1) 

The control law can also be partitioned in a similar way 

where the sub blocks of Ky are of appropriate dimension. Rewriting gives 

u1(k) = K 11Yl(k) + K1ib,(k) 

!h(k) =K21Yl(k)+K2ib,(k) 

From (3.22) and (3.25) . 

Hence (3.24) becomes 

Which gives 
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Thus giving the expressions for F/z-1) and G /Z-1). The precompensator polynomial, 

Hp(Z-I) is calculated as before for zero steady state error. 

3.4 State Space Design 

Having shown in the previous sections how closely related the eigenvalues and eigenvectors 

are to the transient response, and how state space methods can be used in the design of polynomial 

controllers, the next step is to consider the actual state space design to be used. 

The eigenvalues and eigenvectors are clearly very important as regards the transient 

response, hence it is desirable to consider the placement of not only the eigenvalues but the 

eigenvectors as well. Such a design procedure is more commonly known as eigenstructure 

assignment (Burrows, 1990). 

Consider the linear time invariant state space representation of a system 

i =Ax+Bu (3.29) 

(3.30) 

where there are n states, m inputs, r ou tpu ts and A, B, C are matrices of appropriate dimensions. 

The D matrix will be zero due to the nature of the transformation from polynomial to state space 

form and the time delay of the system, as outlined in section 3.3. Output feedback can be applied 

to the system via the control law 

u=Ky - -
(3.31) 

Eigenstructure assignment can then be described as the assignment of the closed-loop 

eigenvalues and eigenvectors (either left or right) using the control law (3.31). 

Srinathkumar (1978) discusses eigenstructure assignment using output feedback and 

concludes that min(n,m +r -1) eigenvalues may be arbitraily placed as well as (r -1) eigen­

vectors partially assigned with m entries in each vector arbitraily chosen. Clearly for all n 

eigenvalues to be arbitraily assigned using output feedback, r + m > n. This result was originally 

obtained by Kimura (1975). 
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Whilst the choice of a closed-loop eigenvalue may be arbitrary, under certain assumptions, 

the corresponding closed-loop eigenvector is constrained to lie in a subspace of the full state 

space. This subspace is tenned the allowable eigenvector subspace and Burrows (1990) discusses 

in detail various approaches to detennining it and the corresponding controller gain matrix. 

Of course having a technique for assigning the whole eigenstructure does open up the 

question of what is the most suitable position for the eigenvalues and eigenvectors? The concept 

of placing the eigenvalues (or poles) of a system is extremely well known and the effect on the 

characteristics of a system for various eigenvalue locations is clearly understood. By selecting 

appropriate eigenvectors it is hoped to achieve a system with better robustness properties. 

However, rather than concentrating on the specific values for the eigenvectors it is conceptually 

more appealing to consider the actual design goal as is the case in parametric methods. 

The design procedure is the same as the eigenstructure assignment techniques but the 

objectives are slightly different. With parametric methods the actual position of the eigenvectors 

is not of direct concern as the aim is to satisfy additional design objectives, which of course is 

exactly the situation in this case and as such parametric methods will be investigated further as 

the basis of the state space design. 

There are a number of approaches to the problem of parametric output feedback design. 

Kalsi (1990) compared the approaches of Roppenecker and 0' Reill y (1989) with that of Fahmy 

and O'Reilly (1988a). Roppenecker and O'Reilly (1989) select the free parameters to ensure 

that the closed-loop right eigenvectors are orthogonal. They express the controller gain matrix, 

K, in tenns of r free parameter vectors, where r is the number of outputs, and show that the 

choice of the first r - 1 vectors is arbitrary as regards the orthogonality condition. They then 

propose a method for calculating the remaining free parameter vector such that the orthogonality 

condition holds. However, it may not always be possible to obtain a value for this vector which 

then requires adjusnnents to be made to the initial choice of the first r - I vectors and the pro­

cedurerepeated until a solution is found. ThemethodofFahmy and O'Reilly (1988a) is essentially 

a multi-stage design where pan of the eigenstructure is assigned with successive feedback loops. 

Such a procedure requires the previously assigned eigenstructure to be protected against further 

feedback loops. Fahmy and O'Reilly (1988a) propose four procedures to implement the design: 

partial eigenvalue/right eigenvector assignment, partial eigenvalue/left eigenvector assignment 

and two procedures to protect the eigenvalues and eigenvectors (the choice of which procedure 

depends on whether it is required to protect the left or right eigenvectors). 

Kalsi (1991) applied each method to a number of test examples and compared how 

accurately the closed-loop cigenstructure was assigned. It was concluded that the method of 

Roppcneckcr and O'Reilly (1989) had quite poor numerical properties whereas the method of 

Fahmy and O'Rcilly (l988a) assigned the desired eigenstructure quite accurately. The problem 

of multiple cigenvalues was considered in a third method, Fahmy and O'Reilly (l988b). 
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Although the method of Fahmy and O'Reilly (1988a) accurately assigns the eigenstructure, 

the protection part of the design can sometimes cause difficulties. The protection may not be 

exact or may be extended to include additional eigenvalues that have not yet been correctly 
assigned. 

Daley (1990) has proposed a new scheme which restricts the free parameters of a state 

feedback approach to yield the output feedback controller. This involves placing constraints on 

the free parameters which could make their choice quite difficult. However, Daley (1990) has 

shown that the constraints will be satisfied if the free parameters are selected from the null spaces 

of various matrices which are relatively simple to generate. 

To assess the numerical behaviour of this new method a similar procedure to that of Kalsi 

(1990) can be adopted and a comparison made with the method of F ahmy and 0' Reill y (1988a), 
which is known to perform well. 

This section first reviews the two methods highlighting the major points of each. They are 

then applied to a number of test examples to see how accurately the closed-loop eigenvalues are 

placed and whether any problems are experienced in the design of a suitable controller. 

3.4.1 The Parametric Output Feedback Method of Fahmy and O'Reilly 

Consider a discrete linear time-invariant multivariable system described by 

(3.32) 

(3.33) 

where x E RII
, U E R'" and Y E Rr

, n is the number of states, m the number of inputs and r the 

number of outputs, with r + m > n. A, Band C are matrices of appropriate dimensions. 

Fahmy and O'Reilly (1988a) propose a multi-stage approach to the problem of parametric 

output feedback design, where successive output feedback loops are applied to assign the whole 

of the eigenstructure. It is necessary to protect previously assigned eigenvalues and eigenvectors 

from the effect of subsequent output feedback loops. 

The eigenstructure is assigned using two procedures, partial eigenvalue-right eigenvector 

assignment and partial eigenvalue-left eigenvector assignment. The procedures are used in 

sequence, hence the multi-stage nature of this design approach. After the first stage the partially 

assigned eigenstructure should be protected using either an input reduction matrix or an output 

reduction matrix. 
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First consider the two cases of partial eigenstructure assignment. In each case the appli­

cation of output feedback in the form u (t) = Ky (t) is considered to assign a part of the closed-loop 

system eigenstructure. 

i) Partial eigenvalue - right eigenvector assignment 

Consider a subset As = {At,' . " A.s}, where s S; r of the closed-loop eigenvalue set A". Note 

that the specified closed-loop eigenvalues should all be different from the open-loop 

eigenvalues. The matrices K and C are partitioned as 

(3.34) 

where Kll is an m x s matrix and C1 a s x n matrix. Fahmy and O'Reilly (1988a) obtain 

the equation 

KCVs=Fs (3.35) 

where Vs is the matrix of the first s right eigenvectors defined as 

~ = adj[A.;I-AJBL (3.36) 

and Fs is defined as 

(3.37) 

where t ' = I ~l - A I t and L are the free parameter vectors. 

Equation (3.35) can be solved for Klh giving 

(3.38) 
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where Kl2 is arbitrary, and it is suggested that it is taken as a zero matrix as its role is 

cancelled out when considering the whole eigenstructure. If s = r then 

(3.39) 

The free parameter vectors L are chosen under the following conditions 

(i) I CIV.I * 0 

(ii) L E R' for a real eigenvalue Aj 

(iii) L = L E R' or L = .£ E C' for a complex conjugate pair of eigenvalues ~. Aj = A.; 

[] 

ii) Partial eigenvalue - left eigenvector assignment 

Take s ~ m. The matrices K and B are partitioned as 

(3.40) 

where Kll is an s x r matrix and Bl a n x s matrix. This gives the equation 

W)JK=G,r (3.41) 

where W,r is the matrix of the first s left eigenrows defined as 

!i =iCadj[A./-A] 
(3.42) 

and G.r is defined as 
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G= • (3.43) 

with i' being the free parameter vectors. 

Setting the K12 to a zero matrix, equation (3.41) can be solved for Klh giving 

(3.44) 

and the free parameter vectors i" can be chosen under similar conditions as those for t. 

[] 

Using either i) or ii) K can be determined to partially assign the eigenstructure. The system is 

then 

:!i+l = (A +BKC}:!J: +Bl!Jc 

on which subsequent calculations are performed. 

(3.45) 

(3.46) 

As previously mentioned it is necessary to protect parts of the eigenstructure which have already 

been assigned when considering the application of another feedback loop. This can be achieved 

in one of two ways. 

iii) Protection of the assigned eigenstructure using an input reduction matrix 

Consider the system in (3.32) and (3.33), an eigenvalue A; can be made uncontrollable by 

choosing an input reduction matrix Ii such that 

w~BIi =0 .;.:;.., 
(3.47) 
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The system then becomes 

(3.48) 

(3.49) 

and the eigenvalue will be invariant under output feedback. It is then shown, in Fahmy 

and O'Reilly (1988a), that the left eigenrow associated with this eigenvalue will also be 

invariant under output feedback. 

If an output feedback matrix K is then determined for this system, the true K will be given 

by 

(3.50) 

o 
iv) Protection of the assigned eigenstructure using an output reduction matrix 

Consider the system in (3.32) and (3.33), an eigenvalue A.i can be made unobservable by 

choosing an output reduction matrix t such that 

CCv.=o 
~ 

The system then becomes 

(3.51) 

(3.52) 

(3.53) 

and the eigenvalue and associated right eigenvector will be invariant under output feedback. 

If an output feedback matrix K is then determined for this system, the true K will be given 

by 

(3.54) 
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[] 

The approach for a two stage design is then as follows. 

1. Divide the self-conjugate set of eigenvalues An into two sets of self-conjugate sets of 

eigenvalues, As and A" The upper bound on s is dependent on whether the right or left 

eigenvectors are to be assigned first, see i) and ii) above. 

2. Use either method i) or ii) to determine an output feedback matrix K} that partially assigns 

the first s eigenvalues and eigenvectors. 

3. If the left {right} eigenvectors were assigned then the eigenstructure must be protected as 

outlined in iii) {iv)}. 

4. If method i) {ii)} was used to assign the first part of the eigenstructure then use the approach 

of ii) (i)} to determine K2 which will assign the remaining eigenstructure. 

5. The overall controller gain matrix K is then obtained as 

(3.55) 

3.4.2 The Parametric Output Feedback Method of Daley 

Considering the system in (3.32) and (3.33), Daley (1990) shows that the application of 

output feedback, !:h = Ky~' can be achieved using state feedback, !:h = Kh, by ensuring that 

K = [K 0] where K is an m x n matrix and Ky a m x r matrix. Note that C must be of the 
Jl y , Jl 

form C = [I 0], where 1 is a r x r identity matrix. This does not represent a severe restriction, 

as the required form for C can be easily achieved by a state transformation. In this case due to 

the structure of C in the observable canonical form, a simple re-ordering of the states of the 

system and augmented dynamic compensator will achieve the desired form for C. 

The general form for the state space system is then 
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X II +p k+l 

Yl 1 

Y2 0 

-

Yp+l k 0 

o 0 
-a" 0 

-a,,_1 0 

-a2 0 

0 0 
1 0 

0 1 

o 0 

o 0 

o 0 o 0 
o 0 o 0 

o 1 o 0 

0 0 1 0 

0 0 Xl 

0 0 X2 

0 0 x,,+p k 

State feedback can be applied via the control law 

u(k) = Kx!,(k) 

3. State Space Design for Polynomial Systems 

o 0 
+ btl 0 

btl -1 0 

x"+P k b2 0 

1 

o 
o 

0 Up +1 k 

(3.56) 

(3.57) 

(3.58) 

and the controller gain matrix, Kx can be parameterised as 

(3.59) 

where F is a m x n matrix of free parameters and V is a n x n matrix of closed-loop right 

eigenvectors. 

K% will assign a specified set of distinct closed-loop eigenvalues, A = {At, .... ,A-,.},provided 

that the closed-loop eigenvectors satisfy 

(3.60) 
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and the pair [A ,B] is fully controllable. The inverse in (3.60) exists provided that the closed-loop 

eigenvalues are all different from the open-loop eigenvalues. If 

(3.61) 

where the dimensions of Fl and F2 are m x r and m x (n - r) respectively and 

(3.62) 

where W is the matrix of closed-loop left eigenrows and the dimensions of Vll , W ll are r x r; 

V
12

, W
12 

are r x (n - r); V2h W21 are (n - r) x rand V22' W22 are (n - r) x (n - r), then in order 

for 

0] (3.63) 

FI and F2 must be constrained such that 

(3.64) 

It is then shown in Daley (1990) that the constraint in (3.64) will always be satisfied if the 

free parameter vectors in F2 satisfy 

(3.65) 

where j = r + 1 ~ n and [.], denotes the first r rows of the matrix. For there to be non-trivial 

solutions to equation (3.65) the dimension of the null-space of[/-F1V~11[(AJ -A riB],] must 

be non-zero, which will be the case if 

(3.66) 
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where 

CXllllSll CXl2llS12 cxlrllSlr [I 
~lllS21 ~2llS22 ~llS2r b 

~= r= (3.67) 

cxqlllSql cxq2llSq2 cxqrllSqr L 

CXll' CXI2,' •• , cxqr are arbitrary scalar parameters, q = n - r and 

(3.68) 

Thus selecting the free parameters using (3.65) and (3.66) allows an output feedback 

controller gain matrix Ky to be determined using (3.59) and (3.60). 

3.4.3 Examples used for the Comparison of the Methods 

In Kalsi (1991) three examples are considered. 

Example 1 - Topaloglu and Seborg (1975) 

2.0 
-5.0 
o 

n = 3, m = 2 and r = 2. The desired closed-loop eigenvalues are {-10,-9,-8}. 

Example 2 - Owens (1988) 

-0.5 0 0 0 0 4.0 1.0 2.0 

0 -8.0 0 0 0 3.0 4.0 0 

A= 0 0 0 0 o , B= 0 2.0 1.0 , 

0 0 0 1.0 0 1.0 1.0 1.0 

0 0 0 0 2.0 2.0 1.0 3.0 

[4.0 0 0 0 

1~0] c= 0 1.0 0 2.0 

0 0 1.0 0 

-76-

(3.69) 

(3.70) 



3. Stale Space Design/or Polynomial Systems 

n = 5, m = 3 and r = 3. The desired closed-loop eigenvalues are {-1,-2,-3,-5 + j5}. 

Example 3 - Sobel and Shapiro (1985) 

-20 0 0 0 0 0 0 
0 -25 0 0 0 0 0 
0 0 0 0 1.0 0 0 

A= -0.744 -0.032 0 -0.154 -0.0042 1.54 0 
0.337 -1.12 0 0.249 -1.0 -5.2 0 
0.02 0 0.0386 -0.996 -0.0003 -0.117 0 

0 0 0 0.5 0 0 -0.5 

20 0 
0 25 
0 0 

0 0 0 1.0 0 0 -I 

B= 0 0 c= 0 0 0 0 1.0 0 0 
0 0 0 0 0 1.0 0 

(3.71) 
0 0 

0 0 
0 0 1.0 0 0 0 0 

0 0 

n = 7, m = 2 and r = 4. The desired closed-loop eigenvalues are 

{-1.5±jl.5,-2+ j,-17,-22,-o.7}. 

For the purposes of this comparison a fourth example is also considered here 

Example 4 - Fahmy and O'Reilly (1988a) 

1.0 0 

A = 0 1.0 
o 0 
o 0 

1.0 

0 

1.0 

1.0 

1.0 1.0 

0 
B= 

0 

0 
, 

1.0 

1.0 0 

(3.72) 

n = 4, m = 2 and r = 3. The desired closed-loop eigenvalues are {-I ±jO.5,-3,-4}. 

The approaches of sections 3.5.1 and 3.5.2 are used to design an output feedback matrix, 

K, for each of the four examples. Although a direct comparison cannot really be made as Fahmy 

and O'Reilly (1988a) is a multi-stage design, it is possible to compare how accurately the 

closed-loop eigenvalues are placed. This will then give an indication of the numerical properties 
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of each method. It was found in Kalsi (1991) that the approach of Roppenecker and O'Reilly 

(1987) sometimes placed eigenvalues quite inaccurately and so it was concluded that the method 

may exhibit poor numerical properties. 

For example 3, the condition of r + m > n (required by both methods) is not satisfied so 

it is necessary to augment the system with a dynamical compensator of suitable order. In this 

case a 2nd order compensator will satisfy the condition, hence the system is now 

-20 0 0 0 0 0 0 0 0 

0 -25 0 0 0 0 0 0 0 

0 0 0 0 1.0 0 0 0 0 

-0.744 -0.032 0 -0.154 -0.0042 1.54 0 0 0 

A= 0.337 -1.12 0 0.249 -1.0 -5.2 0 0 0, 

0.02 0 0.0386 -0.996 -0.000295 - 0.117 0 0 0 

0 0 0 0.5 0 0 -0.5 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

20 0 0 0 

0 25 0 0 
0 0 0 1.0 0 0 -1 0 0 

0 0 0 0 
0 0 0 0 1.0 0 0 0 0 

0 0 0 0 
0 0 0 0 0 1.0 0 0 0 

B= 0 0 0 0 , c= 
0 0 1.0 0 0 0 0 0 0 

(3.73) 

0 0 0 0 
0 0 0 0 0 0 0 1.0 0 

0 0 0 0 
0 0 0 0 0 0 0 0 1.0 

0 0 1.0 0 

0 0 0 1.0 

The additional closed-loop eigenvalues will be placed at {-30, -35}. Such a choice should 

ensure that the augmented eigenvalues have a minimal effect on the transient behaviour of the 

closed-loop system. 

For examples 2,3 and 4, C is not in the required fonn for the method of Daley (1990). 

Hence it is necessary to apply a state transfonnation to each system. 

In the case of example 2, the state transfonnation matrix was found to be 

0.25 0 0 0 0 

0 0.2 0 -0.9 0 

T= 0 0 0.5 0 -0.7 (3.74) 

0 0.4 0 0.45 0 

0 0 0.5 0 0.7 

·78· 



3. Slale Space Design/or Polynomial Systems 

hence 

-0.5 0 0 0 0 
0 -0.8 0 8.1 0 

A'=T-1AT= 0 0 1.0 0 1.4 , 
0 1.6 0 -6.2 0 
0 0 0.7143 0 1.0 

16.0 4.0 8.0 
5.0 6.0 2.0 

B'=T-1B = 2.0 3.0 4.0 
-2.2222 -3.1111 0.4444 
1.4286 -0.7143 1.4286 

[1.0 0 0 0 

~J C'=CT= ~ 1.0 0 0 (3.75) 
0 1.0 0 

For example 3 

0 0 0 0 0 0 0.7 0 0.7 
0 0 0 0 0 0 0 1.0 0 
0 0 0 1.0 0 0 0 0 0 

0.5 0 0 0 0 0 0.5 0 -0.5 
T= 0 1.0 0 0 0 0 0 0 0 (3.76) 

0 0 1.0 0 0 0 0 0 0 
-0.5 0 0 0 0 0 0.5 0 -0.5 

0 0 0 0 1.0 0 0 0 0 
0 0 0 0 0 1.0 0 0 0 

giving 

-f). 577 -0.0042 1.54 0 0 0 -0.5978 -0.032 -0.4438 
0.1245 -1.0 -5.2 0 0 0 0.3604 -1.12 0.1114 
-0.498 -0.0003 -0.117 0.0386 0 0 -0.484 0 0.512 

0 1.0 0 0 0 0 0 0 0 
A'=r1AT= 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 
0.2115 -0.0021 0.77 0 0 0 -10.2989 -0.016 -10.2219 

0 0 0 0 0 0 0 -25.0 0 
-0.2115 0.0021 -0.77 0 0 0 -9.7011 0.016 -9.7781 
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0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

B'=r1B = 0 0 1.0 0 
0 0 0 1.0 

14.2857 0 0 0 
0 25.0 0 0 

14.2857 0 0 0 

1.0 0 0 0 0 0 0 0 0 
0 1.0 0 0 0 0 0 0 0 

C'=CT = 
0 0 1.0 0 0 0 0 0 0 
0 0 0 1.0 0 0 0 0 0 (3.77) 

0 0 0 0 1.0 0 0 0 0 
0 0 0 0 0 1.0 0 0 0 

and for example 4 

0 -1.0 1.0 0 

T= 
1.0 1.0 -1.0 -1.0 
0 1.0 0 0 (3.78) 

0 0 0 1.0 

which gives 

1.0 2.0 0 1.0 1.0 2.0 

A'=T-1AT= 0 1.0 0 0 B'=T-1B = 
1.0 1.0 

0 1.0 1.0 1.0 ' 2.0 1.0 ' 
0 1.0 0 1.0 0 1.0 

[1.0 0 0 

~] C'=CT= ~ 1.0 0 (3.79) 
0 1.0 

3.4.4 Results for the Method of Fahmy and O'Reilly 

In each example the free parameters L in eqn (3.37) were chosen randomly 
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Example 1 

The output feedback matrix 

K = [-62.3913 89.0 ] 
, - 105.0 159.0 

was obtained which placed the closed-loop eigenvalues at 

-9.99999999997717 

-9.00000000003750 

-7.99999999998551 

Example 2 

The output feedback matrix 

[ 

7.0749 - 3.2769 - 23.9639J 
K, = 7.5643 - 3.5401 - 25.5432 

-1.9588 1.5799 5.1844 

was obtained which placed the closed-loop eigenvalues at 

-5.00000000000000 + j 4.99999999999994 

-3.00000000000041 

-1.99999999999951 

-1.000000000000 16 

Example 3 

The output feedback matrix 

3.1412 -0.5958 0.8563 0.2503 
0.5197 -0.2009 24.2762 7.4052 

K= 
6.6958 9.9175 -143.9334 -14.7714 

, 
32.3750 46.0288 -698.4580 -63.5818 

was obtained which placed the closed-loop eigenvalues at 
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5.7946 -0.7882 
31.2904 -4.6199 

-143.9688 18.0386 
-693.0210 79.0398 

(3.82) 
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-1.49999999999999 + j 1.49999999999999 

-2.00000000000000 ± j 0.99999999999998 

-16.99999999999997 

-21. 99999999999998 

-0.70000000000001 

-29.99999999999999 

-35.00000000000068 

Example 4 

The output feedback matrix 

K =[ -30.5551 
y -52.9081 

- 66.3419 

- 116.9301 
81.4301 ] 
143.7831 

was obtained which placed the closed-loop eigenvalues at 

-1.00000000000235 + j0.49999999999770 

-4.00000000001050 

-2. 99999999998448 

3.4.5 Results for the Method of Daley 

Again the free parameters were chosen randomly for each example 

Example 1 

(3.83) 

With the a's in S, which are arbitrary, set to 1, the following output feedback matrix was 

obtained 

_[-10.9141 
Ky - -105.0 

88.9999 ] 
1560.3744 

which placed the closed-loop eigenvalues at 

-10.00000000506724 

-8.99999998539417 

_8.00000000995767 

(3.84) 
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and with the a's chosen randomly as 

a 12] = [0.0500 0.7615] 

the output feedback matrix was 

K =[79.2752 
y -105.0 

89.0 ] 
-111.6407 

giving the closed-loop eigenvalues at 

-9.99999999983979 

-9.00000000027615 

-7.99999999988574 

Example 2 

(3.85) 

(3.86) 

With the a's setto 1, Vll was singular and so it was not possible to obtain a solution. However, 

selecting them randomly as 

a 13] = [0.7702 0.7702 0.8278] 
~3 0.1253 0.1253 0.0159 

(3.87) 

gave a non-singular VII and thus a solution. Note that the second column is the same as the 

fmt, this is due to the second column of ~ being the complex conjugate of the fmt. Also it 

appears that any set of randomly chosen a's gave rise to a solution. 

The output feedback matrix 

[ 

0.6111 

K, = 2.8451 
-0.3818 

-1.2109 
- 3.5558 
-0.1552 

1.3832 ] 
0.9548 

-1.6337 

was obtained which placed the closed-loop eigenvalues at 
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-5.00000000000 115 + j 4.9999999999987 6 

-2.99999999999987 

-2.00000000000008 

-0.99999999999996 

Example 3 

For this example it was not possible to find a set of a's which gave a non-singular VII' hence 

no solution was found. 

Example 4 

With the a's set to 1, the following output feedback matrix was obtained 

K =[-33.9803 56.6120 -63.2181] 
y 41.8266 -73.1659 80.3171 

which placed the closed-loop eigenvalues at 

-1.00000000000107 + jO.49999999999948 

-4.00000000000489 

-2.99999999999250 

and with the a's chosen randomly as 

an] = [0.8459 0.8459 0.4121] 

the output feedback matrix was 

[
-17.5717 

K, = 27.8993 
45.6026 - 58.4437] 

- 77.5729 97.6308 

placing the closed-loop eigenvalues at 

-1.00000000000074 ± jO.49999999999965 

-4.0Q000000000432 

-2.99999999999422 
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3.4.6 Discussion of the Results 

Clearly the results show that the numerical properties of both methods are quite good with 

the closed-loop eigenvalues being placed extremely accurately. 

The method of Fahmy and O'Reilly (1988a) was able to find a solution which gave a 

non-singular matrix of right eigenvectors for all the examples. However the method of Daley 

(1990) has some difficulty in obtaining a non-singular sub-block of the matrix of right eigen­

vectors in all cases. The rather unsatisfactory step of randomly selecting arbitrary scalars has to 

be done in example 2 in order for a solution to be obtained. For example 3 no solution was 

obtained at all. 

The main problem with the method of Daley (1990) is clearly that of ensuring the 

invertibility of VII' 

This could be overcome by defining a vector sub-space that r must lie in such that Vn is 

invertible. r could then be selected from the intersection of this space and the null space of ~, 

which is a requirement for non-trivial solutions to equation (3.65). 

For V~II to exist, its columns must be linearly independent, i.e 

(3.92) 

for all COj where at least one is non-zero. Note that yJI denotes the i'th column vector of Vn' 

Writing this equation in vector form 

(3.93) 

From equation (3.60) 

(3.94) 

Therefore 

[SJI ... S,t,] [COl' •• co,t ~ 0 (3.95) 
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where Sj = [(A;I-ArIB],. This can be expressed in a more compact form 

(3.96) 

where 

~. = [SI ' , ,S,] and r' = [roLli, . ,ro,t{ (3.97) 

Equation (3.96) is clearly of the standard form Ax = b. For the case when b = 0 it is well - - -
known that the set of solutions will form a basis of a vector subspace, generally known as the 

null space of A. However, the case of b * 0 is of interest here and all that can now be stated is 

that the set of solutions will lie in some vector subspace but that they may not necessarily fonn 

a basis of that space. 

For equation (3.96) this makes it difficult to define the set of possible r' vectors. It is 

possible to investigate this subspace further which may possibly lead to a way of defining the 

set of solution vectors to equation (3.96), However, a more significant problem remains, namely 

that of the arbitrary scalar weights. Recalling that equation (3.92) must be valid for all ~ 

(i = 1 ~ r), where at least one is non-zero, it is clear that even if the set of r' vectors could be 

found it would be extremely difficult to deduce the set of FI vectors using the fonn of r' in 

equation (3.97). No solution to this problem was found and so the idea of obtaining a set of FI 

vectors such that Vll is non-singular was not pursued further. It should be noted, however, that 

the problem of a singular Vll only caused problems occasionally and did not prevent the appli­

cation of the method in most cases. 

A second possible problem is in the determination of a space for the FI vectors such that 

there are non-trivial solutions to equation (3.65). The linear independence identity is used to 

ensure the dependence of a set of vectors, the columns of[/-FI V1N(A/-ArIB],]. The only 

condition for dependence is that at least one set of scalar weightings (one or more non-zero) 

exists such that the weighted sum of the vectors is zero. This can be achieved by selecting a set 

and forcing the sum to be zero, hence the reason that the FI vectors must lie in a null space. 

Oearly this is actually selecting a subspace of the total space that the FI vectors may be in. This 

subspace may not necessarily include a set of FI vectors that yield a non-singular VII' 
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3.5 Summary 

This chapter has outlined the transformation of the polynomial system to state space form 

and detailed the interpretation of the output feedback matrix in terms of controller polynomials. 

Due to the importance of the eigenvalues and eigenvectors in determining the shape of the 

transient response it has been suggested that parametric methods be used to design the state space 

controller. 

Two approaches to the problem of parametric output feedback design have been investi­

gated and their performance assessed when applied to a number of design examples. 

The method of Fahmy and O'Reilly (1988a) is a multi-stage design where successive 

output feedback loops are applied until the whole eigenstructure is assigned. It can be argued 

that this gives the method greater flexibility and a wider set of possible feedback matrices. 

However, it is difficult to know how to split the set of desired closed-loop eigenvalues. Good 

solutions were obtained for all the examples considered. 

The second method, Daley (1990), can be thought of as a parametric state feedback design 

where the free parameters are constrained to effectively give output feedback. Problems arise 

when dealing with these constraints. It is necessary to ensure the invertibility of a sub-block of 

the matrix of right eigenvectors, which appears to be quite difficult for examples 2 and 3. By 

randomly selecting some arbitrary scalars in the design process it was possible to obtain a solution 

for example 2. However, this is an unsatisfactory way of approaching the problem as potentially 

many random choices may have to be made in order to find a solution. 

The results of the comparison show that both methods appear to have good numerical 

properties, but the method of Daley (1990) did experience a number of difficulties. Although 

this does not stop the method being used it does suggest that the method of Fahmy and O'Reilly 

(1988a) would be more suitable. However when applied to a transformed polynomial system 

the method of Fahmy and O'Reilly (1988a) failed to find a solution at all. The reasons for this 

failure appear to be linked to the structure of the open-loop system matrices and a more detailed 

discussion is included in chapter five where the robust design is applied to an example. 

As mentioned in the introduction there are a number of options when considering the state 

space design. In the area of eigenstructure assignment techniques a number of interesting methods 

have recently been proposed, unfortunately too late for consideration in this work. 

Burrows and Patton (1988, 1989a, 1989b, 1990a, 1990b) have carried out much work in 

the area of robust eigenstructure assignment, utilising numerical minimisation methods to select 

appropriate sets of eigenvectors from prespecified regions of the complex plane on the basis of 

a number of robustness measures, including low norm control law and maximally orthogonal 
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eigenvectors. White (1991) has proposed a scheme which appears to be as numerically stable as 

Fahmy and O'Reilly (1988a) but which overcomes the problem of protection by assigning the 

desired eigenstIUcture in just one stage. 

It would certainly be interesting to investigate these methods further and assess their impact 

on the robustness of the polynomial system. However, it is worth reiterating at this stage that 

any effective robust state space design procedure could be used as the aim is to illustrate and 

prove the concept of designing a polynomial controller via the state space domain. 

The overall conclusion of this chapter is that the method of Daley (1990) is to be used as 

the basis of the state space design, which is assumed in all of the following chapters. 
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CHAPTER 4 

SELECTING A ROBUST CONTROLLER 

4.1 Introduction 

The robust design procedure basically consists of transfonning the polynomial system to 

state space form, carrying out a state space design and transforming the resulting controller back 

to polynomial form. The previous chapter outlined this procedure and presented details of the 

state space design, which is based on methods that explicitly represent a set of possible feedback 

controllers in terms of arbitrary free parameters, and as such are called parametric methods. The 

problem of how to select a controller from this set, such that the closed-loop system is more 

robust, is addressed in this chapter. Different controllers are effectively selected by changing 

the values of the free parameters and so the robust design reduces to the problem of selecting 

appropriate values for these parameters. 

One of the reasons for turning to a state space based design was the ease with which the 

factors that effect the transient response can be investigated as highlighted by the discussion in 

section 3.2 on modal decomposition. However, it is necessary to have some way of mathemat­

ically quantifying the effect of model uncertainty on these factors. 

Consider the graph in figure 4.1 which shows the value of a function I(x) plotted against 

the variable x. 

f(x) 

f(a+h) 

f(a) 

--------------.--.-----.--.- --.-----.- --r-'-' · , , · : --.----- f(a+h)-f(a) 
: r(a)h .............•. 1 ................ . 

. h , 
:. 
I 
I 

a 

, , 

· .' , · 
a+h x 

Figure 4.1 - Plot of a Function I(x) against x 

At X = a the function value is f(a) and when x is changed to a + h the function value 

becomes f(a + h). The gradient at x = a is given by f(a) where 
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(4.1) 

I(a + h) - I(a) is called the increment (of I(x) from x = a to x = a + h) and is denoted by 

AI 

AI = I(a + h) - I(a) (4.2) 

r(a)h is called the differential (at x = a with increment h) and is denoted by dl 

dl=r(a)h (4.3) 

The differential is also sometimes referred to as the sensitivity, denoting that the expression 

evaluates how sensitive the function is to changes in the variables. 

The increment is the actual change in the function due to a change in the variable whereas 

the differential is an estimate of the change in the function. The differential hence fonns the 

basic mathematical tool needed to estimate the change in the factors that affect the transient 

response due to a change in the model parameters. Further information on differential calculus 

can be found in Salas and Hille (1990). 

It is now possible to define a function consisting of expressions for the differentials of the 

factors of interest. This function is often referred to as a cost function, an objective function or 

a performance index. As it effectively represents the sensitivity to model uncertainty, it is 

desirable to obtain the lowest possible value for the function, which has clearly reduced the 

robust design to an optimisation problem as desired. 

With complicated functions, as is the case here, there may be many local minima, at which 

the function has the lowest value with respect to the neigh bourhood of possible points. The lowest 

local minimum is called the global minimum and clearly the ultimate goal of any optimisation 

procedure is to find this point. For complicated functions this represents an extremely difficult 

task and a more realistic target would simply be to aim for a good local minimum point which 

yields the desired level of improvement. 

Having established how to quantify the effect of model uncertainty, the next section 

considers the problem of defining appropriate cost functions. Following this is a more detailed 

discussion of numerical optimisation which helps to classify the problem being considered 

allowing the selection of the most suitable optimisation algorithm. 
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4.2 Cost Functions 

The previous chapter illustrated, through modal decomposition, how important the 

eigenvalues and eigenvectors are in determining the shape of the transient response. The way 

these factors are affected by structured model uncertainty will directly determine how the 

transient response is affected. This opens up a number of possibilities for evaluating performance 

robustness. Gourishankar and Ramar (1976), Owens (1988) and Owens and O'Reilly (1989) use 

eigenvalue sensitivity as the basis on which to select robust controllers. The sensitivity of the 

whole eigenstructure (eigenvalues and eigenvectors) is the approach used by Crossley and Porter 

(1969), Ling and Wang (1988). Other authors have investigated alternative approaches such as 

the conditioning of the matrix of right eigenvectors, V, which is claimed to improve the sensitivity 

of the transient response (Kautsky, Nichols and Van Dooren, 1985; Byers and Nash, 1989; 

Owens, 1991b). The cost function in this case should descIibe the change in the output of the 

system due to a change in some or all of the model parameters. 

Before considering the details of some alternative cost functions it is necessary to quantify 

the error in the state space model. Chapter 3 described how the polynomial system is transformed 

to a state space system. From this it is clearly unnecessary to consider errors in the C matrix, as 

all its elements will be constant, hence the model uncertainty can be represented as 

A =Ao+M 

B = Bo + till 

(4.4) 

(4.5) 

where M and till are the increments of A and B defined as 

u 

M = LPlt, (4.6) 
, = 1 

u 

till = L Q,t, (4.7) 
, = 1 

P, and Q, represent the known infomlation about the structure of the errors and t, the 

unknown magnitude of the errors. The increments can be approximated by the differentials 

dA=M 

dB = till 
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where 

(4.10) 

(4.11) 

and t£, is the change (or increment) in E. Clearly the partial derivatives are 

aA =p 
aE, ' (4.12) 

aB 
aEt = Q, (4.13) 

assuming the E,'S are independent. 

4.2.1 Eigenvalue Differential Cost Function 

A number of authors have derived expressions for eigenvalue sensitivity, for example 

Crossley and Porter (1969), Ling and Wang (1988), Skelton (1988). In general all such 

expressions are derived from the equation 

A v· =A.V. 
c~ ,~ (4.14) 

where Ac denotes the closed-loop system matrix, ~ and Yi its associated eigenvalues and right 

eigenvectors respectively. Similarly for the left eigenvectors,!f; 

(4.15) 

Following Porter and Crossley (1972), partially differentiating (4.14) with respect to e. 
gives 
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(4.16) 

Pre-multiplying by !!i 

(4.17) 

From (4.15) 

(4.18) 

Which means that 

(4.19) 

Hence (4.17) becomes 

(4.20) 

For normalised eigenvectors !0" Yi = 1, hence 

(4.21) 

Also as Ac =A +BKC 
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dAc d(A + BKC) dA dB 
-= =-+-KC 
dE, dE, dE, dE, 

=P,+Q,KC 
(4.22) 

Hence 

d~ T 
dE, =}f; (P, + Q,KC)Y.,; (4.23) 

and the eigenvalue differential can then be expressed as 

(4.24) 

where dAi' denotes the differential of the i'th eigenvalue to the t'th error. As already stated the 

aim is to determine the value of the free parameters which yield the lowest value for this function. 

However the function is comprised of two parts, the known d'A./iJE, and the unknown flE.,. As 

there is no control over the value of .1£" the cost function should only consist of the known partial 

derivative part, giving the eigenvalue differential cost function as 

U IJ (dA.)2 
1 =11 = 1: .1: ~i' -' 

,= 1, = 1 dE, (4.25) 

The partial derivative is squared to ensure that the cost function remains positive. ~il are 

positive weights used to place importance on each of the eigenvalues. 

4.2.2 Eigenstructure Differential Cost Function 

The previous section evaluated an expression for the eigenvalue differential, however from 

the modal decomposition it is clear that the differential of the whole eigenstructure (eigenvalues 

and eigenvectors) should be considered. This has also been dealt with by a number of authors, 

for example Crossley and Porter (1969), Porter and Crossley (1972), Ling and Wang (1988) and 

again are generally derived from equations (4.14) and (4.15). However, for the parametric method 

the right eigenvectors are expressed as 
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(4.26) 

which can be used to evaluate an expression for the eigenvector differential. Partially differ­
entiating (4.26) gives 

avo dO .. .J -Arl diD -== ' BL+(A.J -Arl-D L 
dE, dE, 'dE, 

(4.27) 

Substituting dA/dE, from (4.23) gives 

As W = V-I, where W is the matrix of left eigenrows and V is the matrix of right eigen­

vectors, it is relatively simple to find an expression for the partial derivative of the left eigenrows. 

dWT dfeTV-I) dV dV 
-==!...= ~ =-e~V-I-V-1 =-e~W-W 
dE, de, ~ dE, ~ dE, (4.29) 

where ~ is the i'th column of the unit matrix. 

The right eigenvector differential can then be expressed as 

dy;, = (-(Ai - A rl <!i (P, + Q,KC )y;1 - P,) (Ai - A riB L + (/...;1 - A r1QiJ)AE" 

(4.30) 

where dl!;, denotes the differential of the j'th right eigenvector to the t'th error. Similarly the left 

eigenrow differential is 

·97 • 



d T T av 
w· =-e·W-W~ 
~, ~ aE, ' 

4. Selecting a Robust COnlToller 

(4.31) 

The differentials are vector values and as with the eigenvalue differential consist of a 

known and unknown part. Using only the known partial derivative part and ensuring that the 

cost function is a positive scalar value gives the eigenstructure differential cost function as 

(4.32) 

where 11·11 denotes any vector norm, and Tlil are positive weights. As itis necessary to also consider 

the eigenvalue differential to ensure the eigenvalue sensitivities do not become too large, the 

overall cost function will be 

(4.33) 

where 0' is also a positive weight. 

4.2.3 Transient Response Differential Cost Function 

The previous cost functions merely consisted of expressions for the eigenvalue and 

eigenvector sensitivities, as it is known that they are important in determining the sensitivity of 

the transient response. However, as an expression for the transient response was actually derived 

in chapter 3, it would be interesting to directly determine its differential and hopefully define a 

transient response differential cost function. It should be noted that other authors have also looked 

at this problem, for example Skelton (1988) defines an expression for output sensitivity by 

differentiating the state equations. 

The differential of the transient response is given by 

d (k) = ay(k) & 
y aE, I 

(4.34) 

and from chapter 3 
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(4.35) 

hence the partial derivative is 

ay(k) " avoW!( k-l ) a = CoL a~ A~X(O)+ L A~-j-lBuU) 
e, ,=1 e, j=O 

(4.36) 

which gives 

ay(k) " avow!( k-l ) 
-=--=C oL ~~ A~X(O)+ L A~-j-lBuU) + ae, , = 1 ae, j = 0 

VoW~ kA~-l_' x(O)+ L (k - . -1)A~-j-2-' BUU')+A~-j-l-UU) ( 
aAo k - l( aAo alJJ)) 

~~ , ae, - j = 0 J , ae, - , ae, -

(4.37) 

This is quite a complicated expression, the evaluation of which is dependent on particular 

values of k, the discrete time sequence. It is clearly not very useful as regards defining a cost 

function, however upon closer examination it can be seen that the eigenvectors of the system 

always appear in the form of ~~. This does suggest that a more suitable representation of the 

eigenvector differential would be obtained by considering the term ~~. 

Partially differentiating this term gives 

(4.38) 

and the transient response differential cost function can be defined as 

(4.39) 

where 

----------------------- --~---~----------
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J ~~ ~T a!!l 
3= ~ ~Yit -a ~ +Yi-a 1=li=1 ~ ~ 

(4.40) 

and now 11·11 denotes any matrix norm and 0, Yit are positive weights. 

4.2.4 Conditioning Cost Function 

Wilkinson (1965) showed that the conditioning of the matrix of eigenvectors is related to 

the sensitivity of the eigenvalues. This can be seen from the Bauer-Fike theorem, Golub and 

Van Loan (1983), which states that if /..l is an eigenvalue of A + E and V-I A V = D = diag(A.1••• A./l) 

then 

(4.41) 

where 11·11 F denotes the Frobenius norm and KF(V) = II VII F II V-III F' 

The theorem basically states that the eigenvalues of a matrix move at a rate no greater than 

Kp(V) (the Frobenius norm condition number of the matrix of right eigenvectors) per unit change 

in II Ell (the error in the matrix). 

Kautsky et al (1985) propose a number of different measures of robustness based on the 

conditioning of the matrix of eigenvectors. 

i) '1 = II cll_ = m~x{c) 
J 

ii) '2 = ~(V) 

iii) '3 = n -11211 v-III F 

iv) '4 = n-lirSin29j JI2 

where n . II. denotes the infinity norm, II· II F the Frobenius norm and K2(V) the 2-nonn condition 

number of the matrix V 

1C2(V) = I Va 2 n y-1U 2 (4.42) 
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c = [C.,· . ·clt ] is the vector of condition numbers, which assuming that the right eigenvectors are 

normalised such that II £; 112 = 1, are defined as 

Ci = 1I~1I2 (4.43) 

and lastly OJ are the angles between the eigenvectors v j and certain corresponding orthononnal 

vectors v .. 
~ 

All these measures attain their minimum simultaneously when the assigned eigenvalues 

are as insensitive as possible. Kautsky et al (1985) go on to propose two further weighted measures 

(L d~ sin2 e .)1/2 
. J J 

vi) '4(D) = J (Ld~)112 
. J ) 

J 

A suitable set of weights is given by dt = (1 -I Ajl ) for the discrete time case. Using these 

weights has the effect of minimising an upper bound on the stability margin of the closed-loop 

system. 

Byers and Nash (1989) also propose a number of measures of robustness 

vii) 's = ~[V] 

viii) 
-1 

'6=-'s 

ix) 
212 '7 = II VII F + II V- II F 

-1 
x) '8=-'7 
xi) '9 = log['7] 
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and state that although no cost function is unifonnly better than the others, functions rg and r9 

generally perfonn well. r9 is recommended for general use, particularly if ill-conditioned 

problems are to be encountered. However, a recent paper, Owens (1991a) suggests that r9 may 
not be effective in certain cases. 

From the literature it is certainly very difficult to judge the suitability of any particular 

conditioning based cost function. Owens ( 1991 b) does discuss a number of the possible functions 

and gives some insight into their relative benefits. From this and remembering the Bauer-Fike 

theorem, a good initial choice would seem to be 

(4.44) 

Owens (1991b) also reports that considering (KF(V»2 resulted in a faster convergence to 

the solution for the example considered. 

4.3 Optimisation Techniques 

The Numerical Algorithms Group (NAG) library of FORTRAN 77 routines contains a 

number of quite sophisticated optimisation algorithms. It was felt that using the routines in this 

library would greatly simplify the implementation of the robust design method and further details 

of the reasons for this decision can be found in the following chapter. 

The aim of this section is to introduce the concepts behind numerical optimisation and 

some of the tenninology used. This will then allow the problem being considered to be classified 

which will aid in the selection of an appropriate optimisation routine. The section finishes with 

a brief introduction to some of the main types of algorithms. Because the NAG routines are to 

be used the following is biased to their approach and is largely taken from NAG (1990). 

4.3.1 Introduction and Terminology 

The solution of optimisation problems by a single, all-purpose, method can be cumbersome 

and inefficient. For this reason such problems are classified into particular categories for which 

various algorithms are best suited. The problem can be characterised by the properties of the 

cost function and the constraint functions, for example 

-102 -



Properties of cost Function 

Nonlinear 

Sums of squares of nonlinear functions 

Quadratic 

Sums of squares of linear functions 

Linear 

Properties of Constraints 

Nonlinear 

Sparse linear 

Linear 

Bounds 

None 

4. Selecting a Robust Controller 

It is necessary to express these types of problems mathematically for numerical optimi­

sation. Firstly, consider unconstrained problems where there are no restrictions on the value of 

the variables. Mathematically the problem can be stated as 

minimise F C!.) 
:! 

where x E Ria are the variables and F C!.) the function. 

(4.45) 

The NAG library makes special provision for problems which can be expressed as the sum 

of squared functions, often referred to as a least squares problem. The mathematical statement 

of this problem is 

minimise {f[=i~/~} (4.46) 

where the i'th element of the m-vector [is the function h<!), which is often referred to as a 

residual. 

Now consider the problem subject to constraints of some kind. As indicated above there 

are a number of categories of constraints, probably the most straightforward of which are bounds 

on the variables. For the problem of (4.45) the variables can be bounded by 

(4.47) 
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where X; are the respective elements of the vector X and I; the lower bounds and Ui the upper 

bounds on the value of Xi' This does assume that bounds exist on all the variables, but by allowing 

u; = 00 and Ii = -00 all the variables need not be restricted. 

Next consider linear constraints, which are defined as linear functions in more than one 

of the variables, e.g. 3x1 + 2x2 ~ 4. Mathematically such constraints can be described by 

Equality constraints a?'x =b· =.J _ J i = 1,2", ',ml 

Inequality constraints fi'x ~ b; i =m1 + 1", ',~ 
fi' x '5: b; i = m2 + 1" . . ,Tn] 

Range constraints T i =m3+ 1", ',m4 s·<a·x<t-)-=.J_-) 

j = 1", ',m4 -m3 

Bound constraints [. <x· < u· ,- ,- J i=12···n " , 

where each f!; is a vector of length nand bj , Sj and tj are constant scalars. Also note that any of 

the categories above may be null. 

If F C!.) is a linear function, the linearly constrained problem is termed a linear programming 

problem and if F C!.) is a quadratic function, the problem is termed a quadratic programming 

problem. 

Lastly, in the discussion of the characterisation of the problem, consider the case of (4.45) 

subject to nonlinear constraints, e.g. x~ + X3 ~ O. The above mathematical description of the linear 

constraints still applies but now the following constraints must also be considered 

Equality constraints i = 1,2,· . ',ms 

Inequality constraints i =ms+ 1,·· ',"" 

Range constraints i ="" + 1" . ',"", 
j = 1,2,·· ',m,-"" 

where each c; is a nonlinear function and Vj' Wj are constant scalars. Again any category may be 

null. 
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The problem facing the optimisation algorithms is to find a minimum of the given function 

F(!J subject to constraints of one of the above types. It is worth mentioning here that the function 

is likely to have many minima, each called a local minimum because the function has the lowest 

value at that point with respect to the neighbourhood of possible points. The lowest of these local 

minima is termed the global minimum for obvious reasons. In the face of this, all that can be 

expected of the algorithms is that they find a local minimum point, and by starting the algorithm 

in a number of places it is hoped to find a local minimum that yields a desirable result. 

For an algorithm to find a minimum point (either local or global) it must have some way 

of determining whether or not a particular point is a minimum. Also it must have a method of 

determining the direction to move, such that a minimum point can be found. The next part of 

this discussion attempts to address this point by first reviewing some of the required mathematics 

and defining conditions for a minimum. 

The vector of first partial derivatives of F~) is called the gradient vector and is denoted 

by g C!.), i.e. 

[ 
aF C!.) aF~) aF ~)]T 

g C!.) = a ' a , ... , a 
Xl X2 Xn 

(4.48) 

The gradient vector is of importance in optimisation because it must be zero at an 

unconstrained minimum of any function with continuous first derivatives. 

The matrix of second partial derivatives of the function is termed its Hessian matrix and 

is denoted by G ~). Its (i ,j)'th element is given by 

(4.49) 

If F~) has continuous second partial derivatives then G~) must be positive semi-definite 

at any unconstrained minimum of the function. 

In nonlinear least squares problems, the matrix of first derivatives of the vector valued 

function [is termed the Jacobian matrix. 
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4.3.2 Classification of the Problem 

At this stage it is possible to determine which category the problem of interest lies in. To 

do this it is necessary to first of all examine the cost functions being considered. The variables 

are obviously the free parameter vectors used to determine the eigenvectors and hence the output 
feedback matrix. 

Consider the relationship between the variables which are the free parameter vectors i, 
introduced by the parametric design approach, and the value of the function, which is made up 

of terms dependent on the closed-loop eigenvalues and eigenvectors. The relationship is clearly 

a very complicated one and it is not a straightforward task to determine the character of it. The 
closed-loop system matrix is given by 

(4.50) 

for state feedback. Consider the expression for the state feedback matrix 

(4.51) 

and the expression for the right eigenvectors 

(4.52) 

where the definition of the terms involved can be found in chapter 3, which discusses the 

parametric design methods in detail. Note that it was concluded in that chapter that the method 

of Daley (1990) will form the basis of the state space design. 

Because of the dependency of the right eigenvectors y; on the free parameter vectors t , 

nonlinear terms will be present in the evaluation of Kx. Hence the problem is of a nonlinear 

nature. 

Because the parametric design approach of Daley (1990) is forcing the state feedback 

matrix to be in the form [K, : 0], such that output feedback can be used, the free parameter vectors 

L are subject to constraints which from chapter 3 were shown to be 

(4.53) 

·106 -



4. Selecting a Robust Controller 

Again because of the dependency of the eigenvectors on the free parameter vectors, this 

equation is of a nonlinear nature. However Daley (1990) did reduce this constraint equation to 

two further equations 

(4.54) 

(4.55) 

This has not removed the non-linearity, but does give an indication of how the actual 

constraints can effectively be removed. r contains all the free parameter vectors associated with 

Fl which can be chosen freely provided that r lies in the null space of the matrix ~. Once Fl is 

determined, the remaining free parameter vectors can be selected subject to equation (4.54). This 

also requires the vectors to be selected from a null space. All the null spaces involved will have 

a set of basis vectors, and any vector that lies in these null spaces will simply be a linear 

combination of the basis vectors. For example consider a null space described by the set of basis 

vectors 

(4.56) 

To select a vector y which lies in this null space, it must satisfy 

(4.57) 

where the scalar values, ~ are completely arbitrary. 

This clearly demonstrates that to effectively remove the constraints from the problem, the 

scalar multipliers of the basis vectors of the null spaces should be used as the free parameters. 

If this approach is taken the robust design can then be classified as an unconstrained 

nonlinear optimisation problem. Examining the eigenvalue differential cost function, I. it is 

easily seen that it consists of the sum of a number of squared terms. This clearly fits into the 

description of the least squares type of problem. However to gain any real benefit from the least 

squares formulation in the NAG library it is necessary to ensure that the number of squued terms 

is greater than the number of variables. The cost functions J2 and J, consist of a number of terms 
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which are norms of vectors or matrices. It is possible to force these into a least squares framework 

by squaring the norms, but such a step would only really be necessary if computational efficiency 

(the major advantage of the least squares framework) becomes critical. 

4.3.3 Common Optimisation Methods 

All the algorithms in the NAG library generate an iterative sequence x(k) that converges 

to the solution x· in the limit. The sequence is usually constructed by satisfying 

x(k + 1) =x(k)+a(k)p(k) (4.58) 

where the vector p (k) is termed the direction of search and a(k) is the step length. 

The step length is chosen such that FfJ..(k + 1» < FfJ..(k» and is computed by performing 

a one-dimensional optimisation. The NAG library uses two techniques for one-dimensional 

optimisation, one fits a quadratic polynomial using only function evaluations and the other uses 

additional information about the gradient to fit a cubic polynomial. 

The major differences between the various methods arise due to the need to use varying 

levels of information about the derivatives of F fJ..) in defining the search direction, further details 

can be found in Gill and Murray (1981). Four common algorithms for unconstrained minimisation 

are 

i) Newton-Type Methods (Modified Newton Methods) 

Newton-type methods use the Hessian matrix GfJ..(k», or a finite difference 

approximation to G fJ..(k », to define the search direction. Newton-type methods are 

the most powerful methods available for general problems and will find the minimum 

of a quadratic function in one iteration. 

ii) Quasi-Newton Methods 

Quasi-Newton methods approximate the Hessian G fJ..(k» by a matrix B (!(k» which 

is modified at each iteration to include information obtained about the curvature of 

FW along the latest search direction. Although not as robust as Newton-type 

methods, quasi-Newton methods can be more efficient because G(!(k» is not 

computed, or approximated by finite differences. Quasi-Newton methods minimise 

a quadratic function in n iterations. 

iii) Conjugate-Grtldient Methods 
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Unlike Newton-type and quasi-Newton methods, conjugate gradient methods do not 

require storage of an n by n matrix and so are ideally suited to solve large problems. 

Conjugate-gradient type methods are not usually as reliable or efficient as 

Newton-type, or quasi-Newton methods. 

iv) Downhill Simplex Method 

This method is due to NeIder and Mead (1965) and is a completely self-contained 

approach that does not use one-dimensional minimisation, unlike the previous 

methods. It requires only function evaluations, so no derivative information is 

needed. The method is not very efficient in terms of the number of function evalu­

ations that it requires but is numerically quite robust. 

4.4 Summary 

The previous chapter discussed the state space design where it was decided to use para­

metric methods which explicitly represent a set of possible feedback controllers in terms of 

arbitrary free parameters. This chapter has been concerned with the problem of selecting the free 

parameters such that the resulting controller yields a closed-loop system with improved per­

formance robustness. 

To achieve this a suitable function relating the sensitivity of the closed-loop system to 

structured model uncertainty can be defined, and the free parameters selected such that this 

function is minimised. This has clearly reduced the robust design to an optimisation problem as 

desired, which can then be solved using numerical methods. Of course it can only be expected 

that a local minimum point is found and by starting the optimisation procedure from a number 

of points it is hoped to find a local minimum which yields the desired level of robustness. 

For performance robustness the effect of model uncertainty on the shape of the transient 

response is of interest. Through modal decomposition it was shown that the sensitivity of the 

transient response is strongly related to the sensitivity of the eigenvalues and eigenvectors, 

leading to the definition of a number of cost functions. One further cost function was also included 

which is based on the conditioning of the matrix of right eigenvectors. 

Having established suitable cost functions, the fundamentals of numerical optimisation 

were discussed in more detail, showing how problems can be categorised to help in the selection 

of an appropriate optimisation algorithm. The problem being considered can be classified as an 

unconstrained nonlinear problem, although for the design method of Daley (1990), some 

re-arrangement of the problem had to be carried out. This involved re-defining the free parameters 

to be scalar multipliers of the basis vectors of the null space of a matrix. 
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CHAPTERS 

IMPLEMENTATION AND APPLICATION OF THE 

ROBUST DESIGN PROCEDURE 

S.1 Introduction 

The problem being considered is that of designing a polynomial controller for a system in 

input-output form, such that the closed-loop system is robust to changes in the parameters of the 

plant being controlled. The preceding chapters have defined this problem and proposed a possible 

approach to solving it, involving transforming to state space form and performing a parametric 

output feedback design. The extra degrees of freedom in the design are then chosen to satisfy 

some robustness criteria using the techniques of numerical optimisation. 

There are still a number of unanswered questions though, involving the choice of cost 

function and optimisation technique. General answers are not easily provided as to a certain 

extent they are dependent on the actual plant being considered. To help illustrate how to make 

suitable choices, the application of the proposed design method to an example is considered in 

this chapter. 

At this stage a secondary set of problems comes to light, namely those related to the 

implementation of the method. This is an important aspect, as the way the method is implemented 

will have a significant effect on its performance mainly in terms of speed. A discussion of the 

major points regarding the implementation is presented which highlights the computational 

requirements of the method as well as detailing some of the main problems encountered and 

how they were overcome. 

As previously mentioned in chapter three the state space parametric method of Fahmy and 

O'Reilly (1988) experienced some difficulties when applied to transformed polynomial systems. 

The problems encountered with this approach when applied to the example being considered 

are also discussed in this chapter leading to the conclusion that the state space design should be 

based on the parametric method of Daley (1990). 

A comprehensive set of results is presented for each of the cost functions which aims at 

highlighting how the weights are chosen and the typical improvement that can be achieved with 

this approach. The chapter finishes with a discussion of these results and conclusions about the 

performance of the proposed cost functions. 
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5.2 Implementation of the Robust Design Procedure 

Pro-Matlab v3.5 is a very flexible interactive package that allows easy development of 

ideas and designs. It contains a large number of quite complex in built functions largely relating 

to matrix operations, such as inversion, singular value decomposition and factorisations. A 

number of other functions for particular tasks are available through optional toolboxes, for 

example in the areas of control system design and system identification. The package is installed 

on a Sun 3/60 workstation running under the UNIX operating system in a windows environment. 

To help illustrate the programs being used a number of flowcharts have been included 

which can be found at the end of the chapter. Appendix B contains listings of the actual programs 

for more detailed information. 

Figure 5.1 outlines the overall design from specifying a polynomial system to obtaining 

the robust controller polynomials. The loop is indicative of the optimisation procedure where a 

local minimum value of the cost function is sought. Figure 5.2 expands on the parametric design 

stage and as can be seen a significant level of computation is required for this part, which suggests 

that it will largely determine the time taken to perform one iteration of the optimisation phase. 

Such a design is very easy to implement in Pro-Matlab due to the number of inbuilt 

functions. However Pro-Matlab only has the downhill simplex method of optimisation available I 

which, although numerically robust, does not perform well on complex problems. 

The Numerical Algorithms Group (NAG) library contains a number of routines for 

numerical optimisation based on various algorithms, as outlined in chapter 4. The library routines 

are however written in Fortran 77. 

This suggests a number of possible options; 1) Perform the whole design in Pro-Matlab; 

2) Attempt to link Pro-Matlab and Fortran 77 and lastly 3) Perform the design entirely in Fortran 

77. 

Considering each of these options in turn, firstly 1). This would involve writing all of the 

required optimisation routines, which although possible has a number of drawbacks. For 

numerical optimisation, speed is certainly an extremely important factor, which will be effected 

by the design of the algorithm (i.e how quickly it converges) and the actual implementation on 

the computer. This is really heading into the realms of mathematicians and computer scientists 

and it is felt that the development of satisfactory algorithms would have become a research topic 

in its own right, and so is outside the scope of this work. Also for speed considerations it should 

be remembered that as Pro-Matlab is an interactive package all commands are interpreted and 

it is well known that interpreted computer languages are considerably slower than compiled 

I1be Mathworks Inc, suppliers o~Pro-~tl~b. ~ve rece~llly introduced an 'optimisation toolbox' which contains 
a number of more complex numencai opumlsauon algorithms. 
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languages, such as Fortran 77. Pro-Matlab itself is written in the language C and as such provides 

an easy interface to routines written in this language. Hence the optimisation routines could be 

written in C, thus increasing the speed with which they run. 

This leads to the conclusion that if a compiled language and Pro-Matlab are to be interfaced, 

why not use Fortran 77 (option 2) and gain access to the NAG library routines. This avoids 

having to write the optimisation routines but presents another problem. Because Fortran 77 and 

C (the language Pro-Matlab is written in) are very different in the way they store and reference 

data, an interface between Fortran 77 and Pro-Matlab is not a simple proposition. Pro-Matlab 

does provide facilities for setting up such an interface but it was found to be quite limited and 

not particularly useful for this type of application. 

Of course, option 2 could be tackled by not providing such a rigid link between the two. 

A more flexible link could be established by simply writing the required data to a file. This does 

require Pro-Matlab and Fortran 77 to be set up to read the same type of file format, which presents 

another difficulty as Pro-Matlab has its own special fomlat (needed because the basic data 

structure is a matrix). This approach also suffers from speed problems as writing to a file is 

extremely time consuming in relation to processor time. 

The third option is really quite similar to the first except that now the optimisation routines 

are available (from the NAG library) but many of the necessary matrix functions are not. Some 

of the algorithms to perform these functions can be almost as complicated to implement as the 

numerical optimisation algorithms. Certainly speed considerations would not be as much of a 

problem but accuracy would be. Pro-Matlab is significantly more accurate than Fortran 77, which 

can be verified by some simple tests, such as inverting a matrix. This is quite logical as the 

version of Fortran 77 on the sun workstation only works up to double precision whereas Pro­

Matlab works to a much higher level of precision. 

Clearly the best approach is to try and establish a link between Pro-Matlab and Fortran 77 

in order that the maximum benefit can be gained from the facilities available in both. 

5.2.1 The Link Between Pro-Matlab and Fortran 77 

From the introductory discussion on the implementation it is clear that the best way to 

proceed is to establish a link via data files. However, because file access is slow, all calculations 

associated with the optimisation should be performed entirely in Fortran 77. This will entail 

developing some routines to perform functions which are available in Pro-Matlab, but will lead 

to a much faster implementation of the design. The basic scheme is then to perform as much of 

the pre-optimisation work as possible in Pro-Matlab, transfer all required data via a file to the 

Fortran 77 routine and after a sub-optimal solution is found transfer the results back to Pro-Matlab 

for all post-optimisation work. 
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Obviously a common data file fonnat is required and as Pro-Matlab provides a set of 

Fortran 77 routines to read and write Pro-Matlab fonnat files, the simplest way to proceed would 

be to use the Pro-Matlab file fonnat. The two routines are called LOADMAT and SA VEMA T 

and the argument list for both routines is the same and consists of 

type - Matrix type flag; considering the type flag as a decimal integer, the ones 

decimal place is used to indicate numeric or textual interpretation of the 

matrix data (0 for numeric and 1 for textual); the 1000's decimal place is 

used to indicate the machine fonnat for the matrix data (0 for Intel 8086 

based machines, 1 for Motorola 68000 based machines and a 2 for Vax d 

fonnat). A flag of 1000 indicates numeric data in a 68000 machine fonnat 

and a flag of 1001 indicates textual interpretation of the 68000 machine 

fonnat data. 

mrows - Number of rows in the matrix. 

ncols - Number of columns in the matrix. 

imagf - Imaginary flag; 0 for no imaginary part or 1 for an imaginary part. 

namlen - Number of characters in the matrix name plus 1 (for zero byte string 

terminator). 

name - Character array holding the matrix name. 

rpart - Real part of the matrix (mrows x ncols double precision elements stored 

column wise). 

ipart - Imaginary part of the matrix (only used if imagf = 1). 

lunit - Logical Fortran 77 unit. 

irec Direct access record counter (set to 1 to start at the beginning of the file). 

flag - ReadlWrite status flag; 0 - good read/write, 1 - end of file, 0 - error during 

read/write. 

LOADMA T reads a double precision matrix from a Pro-Matlab format file and successive 

calls to the routine will allow all matrices to be read until the end of the file has been reached. 

Before calling the routine only the logical unit number, lunit, must be specified. A logical unit 

number is assigned using the OPEN statement in Fortran 77. When opening the file it must be 

specified as unformatted and direct access. More infonnation on file handling in Fortran 77 can 

be obtained from Edgar (1989). All the remaining arguments are returned by the routine. 
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SA VEMA T is used for the reverse process where successive calls will write a double 

precision matrix to the specified file (denoted by the logical unit number). However, before 

calling this routine it is necessary to specify a number of the arguments, namely:- type, mrows, 

ncols, imagf, namlen, name, rpart, ipart, lunit, irec. The only argument returned by the routine 

isfiag, to indicate the success of the write operation. 

Now consider what data will actually be passed using the data files. To answer this it is 

necessary to take a closer look at the parametric design method. The flowchart in figure 5.2 will 

help here. The first step is to calculate r, which is dependent on the null space of~. This null 

space does not depend on the free parameters, which are the scalar multipliers of the null space 

vectors. Hence the null space can be calculated in Pro-Matlab and passed to the Fortran 77 

optimisation routine using the file. The next step which requires additional data is the calculation 

of the right eigenvectors Y;. Recall that 

(5.1) 

If ('A,l - A riB is calculated in Pro-Matlab for all i and stored in the file, then the calculation 

of the eigenvectors during optimisation will only involve one multiplication of a matrix and a 

vector. 

From the flowchart it is apparent that this is all the data that can be calculated prior to 

optimisation as all other values are dependent on the free parameters. However, it is also necessary 

to consider the calculation of the cost functions to determine what additional data is required. 

Consider the eigenvalue differential cost function 

dAi T :\ = ~ (P, + Q,KC)y; 
a£, 

(5.2) 

for this expression, !i, Y; and K will all be calculated as a result of performing the parametric 

design at each iteration. The only information missing is C, but as it will always be in the fonn 

[/ : 0] there is no need to store it in the data file. 

Now consider the eigenstructure differential cost function 
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This requires O .. J - A r 1 to be calculated in Pro-Matlab for all i and stored in the file. Of 

course it is possible to store just (AJ - A r l andB separately and explicitly calculate (~I - A rIB 

in Fortran 77 when it is needed. However, as speed is of much greater concern than storage in 

this case, both CAJ - A r l and O .. J - A rIB will be calculated and stored for all i. 

The remaining cost functions require no further data, however to assist in the construction 

of the Fortran 77 routines a number of other variables are stored in the file which give information 

on the dimensions of the matrices involved and which eigenvalues are complex conjugates. 

It was also decided to store all the necessary weights and initial values for the free para­

meters in another file so as to allow changes to be easily made. 

Once the optimisation has been performed in Fortran 77, the only data required to continue 

with the conversion of the controller back to polynomial form is the value of Kyo A number of 

other variables, however, are also returned to aid in the analysis of the solution. 

To determine what routines need to be written in Fortran 77, it is again necessary to consider 

the parametric design and the cost functions. To evaluate the functions is relatively simple once 

the parametric design has been carried out. The design relies on routines being available to 

calculate the null space of a matrix, in order to determine the vectors in F2, and to calculate the 

inverse of real and complex matrices. Although Pro-Matlab has such functions, they are not 

directly available in the NAG library and the following sections discuss how to implement the 

required routines. 

5.2.2 Calculation of the Null Space of a Matrix in Fortran 77 

The parametric design method requires the calculation of null spaces of matrices. Pro­

Matlab has a function to perform this task but as the design is carried out during optimisation, 

it is necessary to write a Fortran 77 routine to calculate the null space of a matrix. The algorithm 

is based on the singular value decomposition (SVD). 

Consider the SVD of a m x n matrix A, where m ~ n 

(5.4) 

where D is a m x n matrix, VI and vi are orthonomlal matrices of dimension m x m and n x n 

respectively. Ifrank{A} = r S n then D is defined as 
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(5.5) 

where V is a r x r diagonal matrix of the singular values of A. 

Let U1 = [Un U1:J and U2 = [U21 U22] where the dimension of the sub-blocks are Ull -

m x r, U12 - m x (m - r), U21 - n x r, U22 - n x (n - r). Then 

U22 is a basis for the null space of A. 

UI2 is a basis for the null space of AT. 

UII is a basis for the range space of A . 

U21 is a basis for the range space of A T. 

Of course the next problem is to calculate the SVD of the matrix A. This can be achieved 

by finding the matrix of right eigenvectors of the matrix AA T which will be equal to UI and the 

matrix of right eigenvectors of the matrix A T A which will be equal to U2• The NAG library 

routine F02ABF can be used to calculate the eigenvectors of a matrix. Details of the routine can 

be found in appendix C. 

5.2.3 Calculation of an Accurate Inverse of a Matrix in Fortran 77 

It was found in practice that in the calculation of the F2 vectors from the null space of 

(5.6) 

(where j = 1 -+ n - r) the calculation of the inverse of Vll was extremely important In Pro­

Matlab, which has greater precision, there were no problems in calculating an accurate inverse, 

but in Fortran 77, with only double precision, this was not the case. It is recommended in NAG 

(1990) that when finding the inverse of a real matrix A" the equation 

A,x, =1 (5.7) 

be solved for X" which is the inverse. 1 is the identity matrix of the same order as A,. The 

algorithms for solving such a set of real linear equations are faster in execution and numerically 
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more stable and accurate. Hence for real matrices this equation is simply solved using two NAG 

routines. F03AFF factorises the matrix A, into upper and lower triangular form and F04AHF 

uses this form to solve the set of equations using backward substitution with correction. Details 

of these routines are in appendix C. 

For complex matrices, such as VH , the following procedure is used to ensure an accurate 

inverse is found. Consider the complex equation 

(5.8) 

where Ac is the complex matrix and Xc its unknown inverse. 

If the equation is transformed to a real equation of the same form, then NAG routines for 

solving a set of real equations can be used to find the inverse. Consider equation (5.8) in terms 

of its real and imaginary parts 

(A, + jA;)(X,+ jX;) =1 (5.9) 

where I is the same dimension as the original complex Aco Combining real and imaginary parts 

the equation can be written as 

which gives rise to two real equations 

A,x -A·X· =1 , I I 

or, alternatively, in vector form 
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[Ar -Ad[;;] =1 (5.13) 

[Ai A'l[;;] = a (5.14) 

which can be combined into one real matrix equation 

(5.20) 

This equation is clearly of the correct fonn and can be solved for the real and imaginary 

parts of Xc' 

5.3 Application of the Robust Design Procedure 

Having established how the method is implemented on a computer, it is possible to proceed 

with an application to a simple example. The definition of this example is presented first including 

the calculation of a controller from the minimum order solution of the diophantine equation, 

which can be used to assess the performance of the robust control schemes. With the definition 

of the model it is also natural to consider the transfoffilation to state space fonn and the definition 

of the model uncertainty. 

A slight detour is then taken to consider the details of the problems experienced with the 

parametric method of Fahmy and O'Reilly (1988) when applied to this example. The conclusion 

of this work is that the method of Daley (1990) should be used as the basis of the state space 

design. This is followed by a discussion of the design in the state space framework to assess the 

number of free parameters, which naturally leads to the selection of an appropriate optimisation 

routine. As there are a large number of results, they are presented in a rather compact fonn and 

an explanation of this layout is given before the results themselves are presented for each cost 

function. 

5.3.1 Definition of the Systenl and Prelilninary Work 

The following non-minimum phase system is to be considered (taken from Wellstead and 

Sanoff, 1981) 
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(5.16) 

The open-loop poles are located at z = 1 andz = 0.6, and it is desired to place the closed-loop 

poles at z = 0.75 + jD.2. 

As outlined in chapter 1, for zero steady state error it is necessary to ensure that the system 

has integral action. In this case it is easily verified that the Ap(Z-I) polynomial is of the form 

(5.17) 

and so the system already has integral action. It is worth noting that the integral action should 

be invariant under parameter variation else the steady state error would vary with coefficient 

changes. Hence if a system exhibits integral action which is not structural then an integrator 

should still be cascaded with the system. For this example it is assumed that only the (1- 0.6z-1) 

part of Ap(Z-I) is time varying, hence there is no need to cascade an integrator in this case. 

It is also assumed that the A/z-1
) and B/z-1

) coefficients vary by the same amount and 

that the variation will be of the order of +50% of their nominal magnitude. 

For the purposes of a comparison the controller obtained from the minimum order solution 

of the diophantine equation can be calculated. The minimum order controller polynomials are 

Fp(Z-I) = 1.0 - 0.3466z-1 

G p (z -1) = 0.0466 - 0.0220z-1 

Hp (Z-I) = 0.0410 - 0.0164z-1 

(5.18) 

(5.19) 

(5.20) 

and the corresponding pole positions for the nominal and perturbed closed-loop system are 

Original Perturbed Distance Moved 

0.75±jO.2 0.8967 ±jO.3727 0.1467 ± jO.17Z7 

0.4 0.3834 -0.0166 

Table 5.1 - Pole Positions for the Perturbed Closed-Loop System with the 

Minimum Order Controller 
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Figure 5.3 shows the transient response of the nominal and perturbed closed-loop system 

which is clearly significantly affected by parameter variations. 

Now consider the robust design and hence the transformation of the system to state space 

fonn. Following the procedure outlined in chapter 3 

1.6 1.0 1.0 0 
1.0 

A= , B= 
1.0 

-0.6 0 1.5 0 

1.0 0 0 0 

c= 1.0 
(5.21) 

0 1.0 0 0 

where the actual dimensions are dependent on the value of p. Notice that the system states have 

been re-arranged such that C is in the correct form for the parametric design procedure of Daley 

(1990). 

It is then possible to easily define the structured model uncertainty as 

-PI 0 

M= £1 (5.22) 

P2 0 

ql 0 

M= £1 (5.23) 

q2 0 

and as the variation in the coefficients will be of the same order it is only necessary to set the 

p's and q's to 1. Note that u, the number of error terms, is equal to 1. The form of M with -PI 

and +P2 is due to the integral action in A,(Z-I). 
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5.3.2 Problems Associated with the Parametric Method of Fahmy and O'Reilly 

The parametric design method ofFahmy and 0' Reill y ( 1988) has consistently had problems 

calculating an output feedback controller for transfonned polynomial systems. The problem 

appears to be linked with the structure of the open-loop system matrices and the following outlines 

how the method fails. 

Considering the given example, but not transfonned such that C = [I : 0] (which is 

unnecessary for this method), with p = 3 the system matrices are 

0 -0.6 0 0 0 1.5 0 0 0 
1 1.6 0 0 0 1 0 0 0 

A= 0 0 0 0 o , B= 0 1 0 0, 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 

0 1 0 0 0 

C= 
0 0 1 0 0 

(5.24) 
0 0 0 1 0 
0 0 0 0 1 

and the desired closed-loop eigenvalues are [0.75 ±jO.2 -0.01 -0.02 -0.03]. 

First stage - right eigenvector assignment 

Choose s = 3, hence require three free parameter vectors which are chosen randomly as 

0.0329 0.0329 - 0.2530 
0.8892 0.8892 5.2730 

Fs = ft. [2 kl = _ 10.7023 - 10.7023 - 6.1485 
(5.25) 

0.7486 0.7486 9.6141 

The first three right eigenvectors are then calculated as 

0.71- jO.31 0.71 + jO.31 1.24 

-0.91 + jO.l5 -0.91 - jO.l5 -0.61 

Vs = [y. Y2 ~]= 1.11- jO.30 1.11 + jO.30 -527.30 (5.26) 

- 13.32 + j3 .55 -13.32 - j3 .55 614.85 

0.93 - jO.25 0.93 + jO.25 -961.41 
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. . 
gIvIng 

~.0946 0.0059 0.0045 
- 2.5596 0.1329 0.1200 

Ku = 
30.8060 -1.7202 -1.4541 (5.27) 

- 2.1547 0.1010 0.1001 

Intermediate stage - eigenvalue/eigenvector protection 

To protect the eigenvalues placed in the first stage it is necessary to calculate an output 

reduction matrix t which satisfies 

tcvs =0 

Transposing this equation gives 

and t can be obtained from the null space of (CVsl. 

giving 

[ 

~.91- iO.15 
(CVsl = -0.91 + iO.15 

-0.61 

1.11 + iO.30 
1.11-i0.30 

-527.30 

-13.32 - i3 .55 
- 13.32 + i3 .55 

614.85 

t = [-6.4858e -15 -0.8870 -0.0415 0.4599] 

0.93 + ~O.25] 
0.93 - }O.25 

-961.41 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

Note that the first element of this vector is close to zero, which appeared to be the case for 

all other examples considered. This suggests that something about the structure of A, B and C 

causes this to happen. 

Now 
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0 -0.7418 0.0088 0.0068 0 
1.0 1.5054 0.0059 0.0045 0 

Al =A +BKIC = 0 -2.5596 0.1329 0.1200 0 (5.32) 
0 30.8060 -1.7702 -1.4546 0 
0 -2.1547 0.1010 0.1001 0 

CI = tc = [0 - 6.4858e - 15 - 0.8870 - 0.0415 0.4599] (5.33) 

and the second stage design is based on AI' Band C l' The leading zeros in Clare a result of the 

combination of the zero in t and the structure of the first two columns of C. 

Second stage -left eigenvector assignment 

This stage assigns the remaining two eigenvalues and their associated left eigenvectors. 

The two free parameters, which are scalars, are chosen as 

[ 
3.4949 ] 

G, = _ 12.5092 

giving the eigenvectors as 

W,T=~ ~]= 

-D.3523e - 13 
0.7041e -15 

154.9955 
7.2569 

- 80.3684 

0.2266e -13 
-0.6715e -15 

-369.8497 
-17.3164 
191.7748 

The effect of the leading zeros in C1 can clearly be seen. Recall that 

and the matrix W,Bl is 

-125 -

(5.34) 

(5.35) 

(5.36) 



5. Implementation and Application of the Robust Design Procedure 

W)11 = [--o.5213e - 13 154.9955] 
0.3332e -13 - 369.8497 

(5.37) 

which is certainly close to singular and is the cause of the failure of the method. 

The problem does appear to be closely related to the structure of C, particularly the first 

two columns. To eliminate the zeros in these columns a state transformation could be used. 

Selecting 

0.9103 0.3282 0.2470 0.0727 0.7665 
0.7622 0.6326 0.9826 0.6316 0.4777 

T= 0.2625 0.7564 0.7227 0.8847 0.2378 (5.38) 

0.0475 0.9910 0.1534 0.2727 0.2749 
0.7361 0.3653 0.6515 0.4364 0.3593 

the transformed system is 

-12.0329 -7.5397 -10.2049 -6.0669 -8.6642 

-12.8911 -8.1191 -11.0231 -6.5661 -9.2630 

A' = T-1AT = 11.8317 7.5256 10.2769 6.1440 8.4681 (5.39) 

0.8081 0.4876 0.6447 0.3776 0.5905 

15.3245 9.4643 12.6977 7.5067 11.0975 

-6.2748 0.0613 0.9066 7.6603 

-5.9431 0.8272 2.0939 5.7442 

B'=T-1B = 4.0784 -1.7437 -0.3933 - 3.8486 (5.40) 

0.7715 1.8398 -1.2741 -1.3003 

10.5666 -0.0395 -1.7258 -10.1938 

0.7622 0.6326 0.9826 0.6316 0.4777 

0.2625 0.7564 0.7227 0.8847 0.2378 (5.41) C'=CT = 
0.0475 0.9910 0.7534 0.2727 0.2749 

0.7361 0.3653 0.6515 0.4364 0.3593 

Performing the design using the same free parameters, it is found that Kll for the first stage 

is the same as previously. Also (CV"l is the same leading to 

c = [-6.4858e -15 -0.8870 -0.0415 0.4599] (5.42) 
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as before and 

C1 = [0.1038 -0.5441 -0.3726 -0.5953 -0.0571] 

In the second stage 

-18.1343 43.279 
95.0704 -226.8566 

WT = , 65.1146 -155.3763 
104.0310 -248.2383 
9.9754 -23.8032 

which appears to have removed the problem of leading zeros. However 

W,B = [ 0.1335e - 11 
1 -0.3024e -11 

154.9955 ] 
-369.8497 

and again the problem of singularity stops a solution being obtained. 

(5.43) 

(5.44) 

(5.45) 

The fact that the problem is related to the structure of C can be verified by changing some 

of its elements. It was found that only two elements needed to be changed in order for a solution 

to be obtained, and as would be expected these are in the first two columns. For example with 

o 1 0 0 0 

C = 0.219 0.047 1 0 0 
o 0 0 1 0 
o 0 0 0 1 

a solution is obtained where 

-10.4063 30.9594 2.4719 
-2.6056 

K, = 31.4037 
0.1382 0.1248 
-1.7946 -1.5172 

-2.1898 0.1054 0.1038 

-127 -

-15.3845 
0.0002 

o 
o 

(5.46) 

(5.47) 



5. Implemenuuion and Application of the Robust Design Procedure 

It should be pointed out that a number of differen t strate gies for overcoming the encountered 

problems were tried. These included specifying different desired closed-loop eigenvalues, 

assigning the left eigenvectors first and changing the split between the two stages. However no 

approach managed to ensure that a solution could be obtained. Another possibility is to use a 

different canonical form in the transformation from polynomial to state space representations. 

This however does not alleviate the problem as a similar structure for the C matrix is obtained 

when the dynamic compensator is augmented with the system. 

The most probable reason for the failure of the method is overprotection. To explain, 

consider the equation 

(5.48) 

where V, represents the matrix of the first s right eigenvectors assigned in the first stage. Recall 

from chapter three that t must be chosen such that this equation is satisfied for the first s right 

eigenvectors to be protected from subsequent feedback loops. This equation can also be inter­

preted as requiring Vs to lie in the null space of t C . If the dimension of this null space is greater 

than s then other right eigenvectors may be protected leading to overprotection and the method 

would fail in the second stage, as is the case here. 

A complete analysis of this problem and an investigation into ways of overcoming it is 

really outside the scope of this work, hence the parametric method of Daley (1990) will be used 

as the basis of the state space design. 

5.3.3 Determining the Number of Free Parameters 

Chapter four outlined how to avoid subjecting the optimisation procedure to constraints 

by effectively re-defining the free parameters as the scalar multipliers of the basis vectors of 

various null spaces. Hence to determine the number of free parameters it is necessary to obtain 

the dimensions of the null spaces involved and this section outlines how this is achieved. 

Consider the system as outlined in section 5.3.1. There will be p + 2 states, p + 1 inputs 

and p + 1 outputs, hence 

n =p+2 

r=p+l 

m =p+l 
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and 
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Clearly 

q=n-r=p+2-p-1=1 

FI = [[I ... [,] 

F2 = fL] 

Recall that the whole of F} is selected from the null space of~, where 

~= 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(3.56) 

In this case the ex's are all chosen as 1 and the dimension of ~ is clearly (r x rm) as q = 1 

and the dimension of Mile is (r x m ). 

Section 5.2 discussed details of the implementation which included a section on how to 

calculate the null space of a matrix using its singular value decomposition. From this the 

dimension of the null space of ~ can be deduced as (rm x (rm - r », assuming full rank. Thus the 

number of free parameters used in the calculation of F} is rem -1). 

The remaining vectors in F2 are each obtained by calculating the null space of Zit 

(i = r + 1 --+ n). In this case there is only one F2 vector and it lies in the null space of 

(5.57) 
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The dimension of Z" is obviously (r x r), so the existence of the null space is dependent 

on the rank of the matrix. Daley (1990) has shown that this null space will exist and that the rank 

of Z" will be deficient by at least 1. Hence the dimension of the null space will be (r x 1) and 

only one free parameter is needed for the calculation of the F2 vector. 

This brings the total number of free parameters, Nf to 

Nf = r(m - 1) + 1 (5.58) 

5.3.4 Selecting the Optimisation Routine 

This section considers the choice of the optimisation algorithm. For simplicity and to allow 

a quick assessment of the robust design approach it was decided to use algorithms that require 

no derivative information. It is recognised that derivative information will generally improve 

the efficiency of optimisation in all areas, and algorithms that utilise such information could be 

used if unsatisfactory results are obtained from the function value only algorithms. 

Most routines of this type in the NAG library are based on the quasi-Newton method, 

which really only leaves the question of whether the problem is of a least squares type. The only 

cost function which easily fits this description is the eigenvalue differential cost function, J1• 

Note that for this example u = 1 so there are only n residual terms in the function. For any real 

benefit to be gained by describing the problem in a least squares manner, the number of residuals, 

N" should be greater than the number of variables (or free parameters), Nf , i.e. 

or r(m - 1) + 1 > n (5.59) 

For p = 1, N, = 3 and N" = 3 and as p increases Nf increases at a higher rate than N". Thus 

there is no justification in expressing the problem in a least squares framework, hence it was 

decided to use NAG routine E04JAF to perform the optimisation. Further details of this routine 

can be found in appendix C. 

5.3.5 Layout of the Results 

All the results will be laid out in the following format 

x) Initial comments 
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WT = [ ... J 

J . = ... or.g 

5. Implementation and Application of the Robust Design Procedure 

lopl y = ... 

EigenvaluelEigenvector Sensitivities: 

0.75±jO.2 -0.01 -0.02 ... 

orig ... . .. . .. 

opt ... . .. . .. 

orig ... . .. . .. 

opt ... . .. . .. 

Pole Positions: 

Original Perturbed Distance Moved 

Controller Polynomials: 

F/z- I
) = .. . 

G/z-I )= .. . 

H/z-I
) = .. . 

Final comments 

Where 

x specifies a reference number for the particular set of results. Hence when discussing 

results only this number need be quoted. 

Initial comments 

These comments briefly introduce the set of results explaining what they represent. 

XT is a vector that specifies the initial values for the free parameters, where the first r(m - 1) 

elements are used in the calculation of FI , and the remaining element in the calculation 

of F2• 

WT is a vector that specifies the value of the weights used. Clearly the interpretation is 

dependent on the cost function being used. 

--_. ----_ .. _._ ..• _-
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- specifies the n eigenvalue sensitivity weights ~i 

- for the eigensttucture differential cost function, specifies the 

weights 1li' and for the transient response differential cost 

function specifies the weights "Ii 

- specifies the weight cr 

For the conditioning cost function no weights need to be specified. 

lori, specifies the value of the cost function at the starting point. 

lop, y specifies the value of the cost function at the final point. The value ofy is used to indicate 

the conditions under which the routine terminated. 

y = 1 - indicates that a minimum point was found. 

y = 2 - indicates that not all the conditions for a minimum were satisfied but 

that no lower point could be found. 

EigenvaluelEigenvector Sensitivities: 

The eigenvalue sensitivities are given in the first two rows followed by the eigenvector 

sensitivities. For each entry there are two numbers. The upper entry corresponds to the 

sensitivity at the starting point and the lower one to the sensitivity at the final point. For 

the eigenvalue differential cost function results there will clearly not be entries for the 

eigenvector sensitivities and for the conditioning cost function results this table will not 

be given. 

Pole Positions: 

The first column of this table corresponds to the closed-loop pole positions for the 

nominal system, the second column to the closed-loop pole positions for the perturbed 

system and the third to how far the poles have actually moved. This table is only given 

for relatively good results and always for the conditioning cost function results. 

Controller Polynomials: 

The three controller polynomials are only specified for particularly good sets of results. 

Final comments 

These contain any conclusions that can be drawn and outline the reasons behind the 

decisions for the next set of results, e.g. how the weights should be changed. 
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5.3.6 Results for the Eigenvalue Differential Cost Function 

The following results were obtained for the system described in (5.16), using the eigenvalue 

differential cost function. The desired closed-loop pole positions are 0.75 + jO.2 and the maxi­

mum level of perturbation was assumed to be +50% of the nominal values of the A/z-1) and 

Bp(Z-l) polynomial coefficients. The value of p represents the order of the controller. 

p=1 

1) The starting point is randomly selected and as no infonnation is available on suitable 

weights they are all set to 1. 

XT = [0.3586 0.8694 - 0.2330] 

WT = [1.0 1.0 1.0] 

Jorig = 1.792632 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 

orig 0.9463 0.4071e-l 

opt 0.9463 0.4071e-l 

Joptl = 1.792632 

No improvement in the sensitivities so try a different starting point. 

2) Again the starting point is randomly selected and the weights are all set to 1. 

XT = [3.8833 66.1931 - 93.0856] 

WT = [1.0 1.0 1.0] 

Jon, = 1.792632 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 

orig 0.9463 0.4071e-l 

opt 0.9463 0.4071e-l 

J opt 1 = 1.792632 

Again no improvement at all and note that the sensitivities are the same as in 1). A number 

of other starting points were tried with the same result and the weights were also changed 

but did not effect the outcome. It appears that with p = 1 no significant improvement in 

robustness can be achieved, so try increasing p. 
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p=2 

3) As with the previous results the starting point is randomly chosen and the weights all set 
to 1. 

XT = [~.0101 ~.0392 0.0012 0.0011 -0.0226 -0.0129 -0.0351] 

WT = [1.0 1.0 1.0 1.0] 

Jorig = 8.021354 JOpt2 = 1.789106 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.9824 1.7910 1.6980 
opt 0.9452 0.6246e-l 0.4555e-l 

Clearly with the p = 2 case there is scope for improvement, however it is necessary to 

adjust the weights to concentrate more on the dominant eigenvalue sensitivities. A different 

starting point is also used to see if a lower initial function value can be obtained. 

4) The starting point is again randomly selected and the weights adjusted to place more 

emphasis on the dominant eigenvalues. 

XT = [0.0022 ~.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027] 

WT = [1.0 1.0 0.1 0.1] 

Jorig = 1.783400 Jopt2 = 1.782130 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.9437 0.8S48e-l 0.l224 

opt 0.9428 0.1304 0.1660 

Note that the initial function value is lower than the final function value of3). Other starting 

points were tried but no lower initial value was obtained, hence the values used here 

represent a good starting point. Examining the sensitivities it is again clear that the weights 

need to be adjusted to concentrate even more on the dominant eigenvalue sensitivities. 

S) Using the same starting point as 4), the weights were continually adjusted through a number 

of iterations leading to the result presented here. 
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XT = [0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027] 

WT = [1.0 1.0 0.0001 0.0001] 

lorig = 1.781173 lOP/2 = 0.527665 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.9437 0.8548e-1 0.1224 

opt 0.4023 32.39 31.47 

A significant improvement in the dominant eigenvalue sensitivities has been achieved but 

at the expense of the sensitivities of the other poles. At this stage it is useful to detennine 

the pole positions for the perturbed closed-loop system to assess how good this result is. 

Pole Positions: 

Original Perturbed Distance Moved 

0.75±jO.2 0.6981 ± jO.3395 -D.0519 ± jO.1395 

-0.01 0.2315 0.2415 

-0.02 0.0013 0.0213 

One of the controller poles has become quite significant and so this solution is not 

particularly good even though the dominant pole movement has been very much reduced. 

By adjusting the weights it should be possible to overcome this problem. 

6) For the same starting point as 4), the results presented here are the best compromise that 

could be achieved between reducing the dominant eigenvalue sensitivity and increasing 

the sensitivities of the other poles. 

XT = [0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027] 

WT = [1.0 1.0 0.0005 0.0005 J 

lorig = 1. 78 1 18 1 i opI2 = 1.023105 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.9437 0.8548e-l 0.1224 

opt 0.5692 19.64 19.10 

Pole Positions: 
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Original Perturbed 

0.75±jO.2 0.7869 ± jO.3611 
-0.0099 

-0.0201 

Controller Polynomials: 

Fp(Z-I) = 1.0-0.0640z-1-O.2027z-2 

Gp (Z-I) = 0.1940 -0.2329z-1 +0.0812z-2 

Hp (Z-I) = 0.0704 - 0.0282z-1 

0.0967 

0.0025 

Distance Moved 

0.0369±jO.1611 

0.1066 

0.0226 

The transient response of the closed-loop system with this controller is shown in figure 

5.4 which is clearly a significant improvement over the response for the minimum order 

controller shown in figure 5.3. Of course it is natural to consider what level of improvement 

can be achieved by increasing p further. 

p=3 

7) Repeating the same procedure as above a good starting point was found and the weights 

adjusted to achieve a satisfactory compromise but with a significant level of improvement. 

XT = [-0.0724 -0.6805 -1.8138 -2.9852 -4.5878 -2.7362 -1.7356 

-3.1889 0.8057 3.4629 0.8311 -1.8653 -0.8210] 

WT = [1.0 1.0 0.0 0.0005 0.0005] 

Jorig = 1.583238 J Opl 1 = 1. 163915 

Eigenvalue Sensitivities: 

0.75 ±jO.2 -0.01 -0.02 -0.03 

orig 0.8877 0.3603e-1 2.6900 2.6830 

opt 0.6385 2.298 19.98 17.26 

Pole Positions: 

Original Perturbed Distance Moved 

0.75 ±jO.2 0.8094 ± jO.3646 0.0594 ± jO.1646 

-0.0098 -0.0079 0.0019 

-0.0201 0.0222 ±jO.0193 0.0423 ± jO.0193 

-0.0301 0.0523 :!: )0.0193 
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This is quite a good result but comparing it with 6), the best result for the p = 2 case, it 

can be seen that the dominant pole sensitivities are not as good here. However it was 

expected that with p = 3 a better result would be obtained. Try a different starting point. 

8) A number of alternative starting points were tried and the procedure for adjusting the 

weights carried out in each case. The best result obtained is presented here. 

XT = [0.5634 -0.2503 1.0725 -1.8525 -1.8031 -3.0674 2.3256 

-1.4839 -0.9125 -4.3826 -6.6312 -0.6958 -6.5606] 

WT = [1.0 1.0 0.002 0.0001 0.002] 

JO';I = 1.798684 lOPll = 1.017731 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.9483 0.1555 0.4801 

opt 0.5661 9.5444 0.8613 

Pole Positions: 

Original Perturbed 

0.75±jO.2 0.7861 ±jO.3603 

-0.01 -0.0195 

-0.02 0.0044 

-0.03 0.0846 

Controller Polynomials: 

Fp(Z-I) = 1.0 - 0.0366z-1 
- 0.2071z-2 

- 0.0040z-3 

Gp(Z-l) = 0.1966 -0.2326z-1 +0.0779z-2 +0.OOI6z-3 

Hp(Z-I) = 0.0725 - 0.0290z-1 

-0.03 

0.2811 

9.8610 

Distance Moved 

0.0361 ±jO.1603 

-0.0095 

0.0244 

0.1146 

Note that a better result was obtained from what would be classed as a worse starting point 

as the initial function value is higher than for 7). This illustrates the fact that these functions 

probably have many local minima and it is extremely important to try a number of alter­

native starting points. The transient response for the closed-loop system with this controller 

is shown in figure 5.5. Clearly this result is only a slight improvement over the p = 2 case 

which suggests that this type of result represents the best level of improvement that can 

be obtained. To verify consider increasing p again. 
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p=4 

9) After trying a number of randomly chosen starting points and suitable adjustment of the 

weights, this result was the best obtained. 

XT = [-1.3462 -3.7481 -3.6908 -{).6515 -1.0806 -3.9009 -3.4066 

3.4978 -3.1640 -1.5535 -1.6996 -{).0319 0.2454 -1.4202 

-1.6027 0.3568 -1.4492 -{).0576 -2.1061 -{).7171 -1.1195] 

WT = [1.0 1.0 0.003 0.002 0.002 0.003] 

lori, = 2.694211 IOPI 1 = 0.808537 

Eigenvalue Sensitivities: 

0.75±jO.2 -0.01 -0.02 -0.03 -0.04 

orig 1.1430 0.9609 2.7600 1.1640 4.5700 

opt 0.4816 7.0310 3.8370 3.1740 6.9960 

Pole Positions: 

Original Perturbed Distance Moved 

0.75±jO.2 0.7530±jO.3517 0.OO30±jO.1517 

-0.0099 0.1210 

-0.0199 -0.0173 

-0.03 -0.0322 

-0.0401 0.0046 

Controller Polynomials: 

Fp{Z-l) = 1.0 - 0.0359z-1 
- 0.2681z-2 

- 0.0131z-3 
- 0.1481e - 3z-4 

G
p
{Z-I) = 0.2359 - 0.2870z-1 + 0.0913z-2 + 0.0051z-3 + 0.5933e - 4z-4 

H,(Z-l) = 0.0754 - 0.0302 

0.1309 

0.0026 

-0.0022 

0.0447 

On initial inspection this appears to be significantly better than both the p = 2 and the p = 3 

cases. However one of the controller poles has moved considerably but even at 0.1210 it 

could be argued that it would still not significantly influence the shape of the response. 

The transient response associated with this controller is shown in figure 5.6 and clearly it 

is better than has been obtained previously, but only just. It certainly suggests that the 

benefits of considering controllers beyond third or fourth order is questionable. 
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5.3.7 Results for the Eigenstructure Differential Cost Function 

This cost function contains the eigenvector differential and to help determine if this term 

leads to better solutions, the same starting points for the best results for the eigenvalue differential 

cost function are used. Also from the previous set of results it is clear that the case of p = 1 need 

not be considered. 

p=2 

10) Using the same starting point as 6) and refining the weights lead to two sets of results 

presented here and in 11). 

XT = [0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027] 

WT = [1.0 1.0 5.0e - 4 5.0e - 4 1.0 1.0 1.0 1.0e - 2 1.0e - 4] 

lori, = 1.921558 10Pl2 = 1.789696 

EigenvaluelEigenvector Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.9437 0.8548e-1 0.1224 
opt 0.9455 0.270ge-3 0.3976e-1 

orig 2.6830e2 4.1390e2 4.5320e4 

opt 7.7010 2.1200 1.751Oe2 

11) Second result 

XT = [0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027] 

WT = [1.0 1.0 5.Oe - 4 5.0e - 4 1.0 1.0 1.0 I.Oe - 2 1.0e - 6] 

lori, = 1.782585 10pI2 = 1.317259 

EigenvaluelEigenvector Sensitivities: 

0.75±jO.2 -0.01 -0.02 

ong 0.9437 0.8548e-1 0.1224 

opt 0.7054 12.07 11.75 

orig 2.6830e2 4.1390e2 4.5320e4 

opt 2.542004 1.2840e5 9.4000e4 
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Examining the results in 10) and 11) it can be seen that there appears to be a conflict 

between the dominant eigenvalue sensitivities and their associated eigenvector sensiti­

vities. When the dominant eigenvalue sensitivities are decreased the eigenvector sensiti­

vities increase and vice versa. A number of alternative starting points were tried but all 

were subject to this conflict and no satisfactory result could be obtained. 

A value of p = 3 was used with the same starting point as 8) to determine if this problem 

could be overcome by introducing more design freedom. However the conflict was still 

present and it is felt that increasing p further would not help in this situation. 

Perhaps a better approach to the application of this cost function would be to start at the 

sub-optimal points found using the eigenvalue differential cost function. The aim would 

then be to try and reduce the eigenvector sensitivities without adversely affecting the 

eigenvalue sensitivities. 

12) Using the sub-optimal point found in 6) as the starting point and again refining the weights 

as before. 

p=3 

XT = [0.0086 -{).0173 -0.0420 0.0032 -0.0234 0.0063 -0.0018] 

WT = [1.0 1.0 5.0e - 4 5.0e - 4 1.0 1.0 1.0e - 4 1.0e -7 5.Oe - 10] 

lori, = 1.116970 lopt 2 = 1.098190 

EigenvaluelEigenvector Sensitivities: 

0.75±jO.2 -0.01 -0.02 

orig 0.5692 19.64 19.10 

opt 0.6052 17.55 17.06 

orig 9.3860e7 1.4490e8 1.0570e10 

opt 6.6140e7 1.0200e8 7.4690e9 

This result is quite encouraging as some improvement has been made. However by 

examining the transient response of the closed-loop system with the controller for this 

result, figure 5.7, it can be seen that the level of improvement in the eigenvector sensitivities 

really needs to be much greater to have any significant effect on performance robustness. 

A higher value of p could achieve this. 
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13) This time the sub-optimal point found in 8) is used as the starting point and appropriate 

weights selected. 

XT = [133.8 -25.6 395.1 -365.1 12.1 -1214.0 173.6 

-254.0 -23.5 -622.4 -1672.8 -205.3 -929"+] 

WT = [1.2 1.2 2.0e - 3 1.0e - 4 2.0e - 3 1.0 1.0 

l.Oe - 6 l.Oe - 6 1.0e - 6 1.0e - 4] 

Jorig = 1.639185 JopI2 = 1.320894 

EigenvaluelEigenvector Sensitivities: 

0.75 ±jO.2 -0.01 -0.02 -0.03 

orig 0.5661 9.5440 0.8613 9.8610 

opt 0.5726 9.4594 0.6515 9.5769 

orig 2.4360e3 4.5300e7 5.1630c6 1.0150e7 

opt 8.3265e2 3.3762e7 3. 1700c6 1.4671e7 

This is a slightly better improvement than in 12) but by comparing the transient response 

shown in figure 5.8 with that in figure 5.5 (the result from the eigenvalue differential cost 

function), it can be seen that no real improvement has been achieved. Assuming this is the 

typical improvement that can be expected when p is increased, it would suggest that a very 

high order controller is needed to gain any real advantage over the controllers obtained 

using the eigenvalue differential cost function. 

5.3.8 Results for the Transient Response Differential Cost Function 

From the modal decomposition it was seen that for performance robustness a slightly 

different form for the eigenvector differential was more appropriate and was included in the 

transient response differential cost function. From the previous results it would seem reasonable 

to start from the sub-optimal points found using the eigenvalue differential cost function and 

only the case of p = 3 is considered. 

14) Using the sub-optimal point found in 8) and after refinement of the weights the following 

result was obtained. 

XT = [133.8 -25.6 395.1 -365.1 12.1 -1214.0 173.6 

-254.0 -23.5 -622..+ -1672.8 -205.3 -929.4] 
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WT = [1.0 1.0 2.0e - 3 1.0e - 4 2.Oe - 3 1.0 1.0 

1.0e - 4 1.0e - 4 1.0e - 4 1.Oe -7] 

lorig = 1.639185 lOPI2 = 1.320894 

EigenvaluelEigenvector Sensitivities: 

0.75±jO.2 -0.01 -0.02 -0.03 

orig 0.5661 9.5440 0.8613 9.8610 
opt 0.5722 9.6320 0.3183 9.4160 

orig 1.5640e6 4.7530e7 1.2000e8 1.1l90e8 
opt 8.9320e4 1.5950e7 3.0490e7 1.5060e7 

This is very similar to the result in 13) and by examining the transient response in figure 

5.9 it can be seen that no real improvement over that shown in figure 5.5 has been achieved. 

Again it is expected that a very high order controller would be required to make any 

significant improvement in the eigenvector sensitivities. 

5.3.9 Results for the Conditioning Cost Function 

This cost function is quite different to the others as it is not directly concerned with 

sensitivities. No weights are needed so the problem of iteratively refining them does not exist. 

On the basis of the previous results it was decided to restrict the investigation to the cases of 

p = 2 and p = 3. 

p=2 

15) A number of randomly selected starting points were tried and this was the best result 

obtained. 

X T =[-D.0243 -0.0113 -D.0083 -0.1591 -0.0685 -0.25180.0159] 

lorig = 58.251362 i opl2 = 14.445608 

Pole Positions: 

Original Perturbed Distance Moved 

0.75 ±jO.2 0.8854 ±jO.3750 0.1354 ±jO.1750 

-0.01 -0.0098 0.0002 

-0.02 -0.0200 0.0000 
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This is clearly not as good as the result obtained using the eigenvalue differential cost 

function for the p = 2 case, which can be verified by comparing the transient response in 

figure 5.10 with that in figure 5.4. Indeed the response is only slightly better than that for 

the minimum order controller shown in figure 5.3. A higher value of p may yield a more 
desirable result. 

16) Again a number of randomly selected starting points were tried and this represents the best 

result obtained. 

XT = [-0.5621 -0.9059 0.3577 0.3586 0.8694 -0.2330 0.0388 

0.6619 -0.9309 -0.8931 0.0594 0.3423 -0.9846] 

lOTig = 1.847105e3 JOPl2 = 25.646076 

Pole Positions: 

Original Perturbed Distance Moved 

0.75±jO.2 0.8872±jO.3751 0.1372±jO.1751 

-0.01 -0.0082 0.0018 

-0.02 -0.0239 -0.0039 

-0.03 -0.0300 0.0000 

This result is very similar to that in 15) and again the transient response shown in figure 

5.11 is significantly worse than that in figure 5.5 (the best result from the eigenvalue 

differential cost function). 

5.4 Summary and Discussion of the Results 

This chapter has considered the application of the proposed robust design method to a 

simple polynomial system to help illustrate the design procedure and give an indication of the 

improvement that can be achieved. 

With the application of the method a number of issues regarding its implementation arise. 

These aspects are important as they can have a significant effect on the performance of the design 

procedure. From the results it is clear that it is necessary to perform the optimisation, which 

involves carrying out the state space design, many times to help in the selection of appropriate 

weights. Because of this, it is desirable to implement the method such that the optimisation can 

be performed reasonably quickly without sacrificing accuracy. For these reasons a joint Pro­

Matlab / Fortran 77 implementation is adopted. 
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The frrst step of the design is to transfonn the system to state space fonn which then allows 

the model uncertainty to be defined. In this case the uncertain parameters are of the same 

magnitude and vary by the same amount leading to a simple definition of the uncertainty. 

The problems with the parametric method of Fahmy and O'Reilly (1988) were then dis­

cussed in depth for this example and it was concluded that the method of Daley (1990) should 

be used for the state space design. It was then possible to show how to detennine the number of 

free parameters in the design and hence decide on an appropriate optimisation routine. 

The results for each cost function were then presented for values of p (the order of the 

controller) in the range of 1 to 4. Note that the lowest value of p must be chosen such that 

r +m > n, which is a requirement of the parametric state space design, and that it may not 

necessarily always be 1. 

There are a few interesting points to note about the results. Firstly, the refinement of the 

weights is relatively easy with typically up to 4-5 iterations needed to find a good solution. Their 

choice is quite straightforward if based on the associated sensitivities and if a model of the 

perturbed system is available such that the perturbed closed-loop pole positions can be examined. 

Secondly, the cost functions which utilise eigenvector differential infonnation, do not 

appear to produce results which are significantly better than those obtained using the eigenvalue 

differential cost function. Of course it is expected that the eigenvalue sensitivities will be the 

most important as they affect the rate of rise and decay of the transient response. However the 

eigenvector sensitivity information should have helped produce better solutions. Examining the 

results shows that a conflict between the eigenvalue and eigenvector sensitivities appears to 

arise. This conflict prevents good solutions from being obtained. The most probable reason for 

this is that the method does not have the freedom necessary to reduce all the sensitivities. This 

was verified by the results which showed that for higher values of p, where there is greater design 

freedom, there was a slightly better improvement. The problem, however, is that to yield sig­

nificantly better results it is expected that a very high order controller would be required. 

Lastly considering the transient responses of the various controllers it is clear that a sig­

nificant improvement can be achieved using the eigenvalue differential cost function but the 

conditioning cost function only produced a slight improvement over the minimum order 

controller. This is almost certainly due to the fact that conditioning is quite a general criteria 

which, among other factors, minimises an upper bound on the sensitivities of 1lll the eigenvalues. 

The results for the eigenvalue differential cost function with all the eigenvalues weighted evenly 

showed that very little improvement in their sensitivities could be achieved, which explains what 

is effectively happening with the conditioning cost function. 
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This highlights the fact that it is often necessary to sacrifice the sensitivity of certain poles 

such that the sensitivity of other poles can be improved. In this case the controller or added poles 

are placed close to zero and as such have little effect on the transient response compared with 

the two dominant poles. The sensitivity of the dominant poles can then be decreased by allowing 

the sensitivities of the added poles to become large, which is verified by examining the results. 

This trade off is quite important as it requires the choice of the weights to be made with some 

care so as not to allow the added poles to have a significant effect on the transient response when 

the system is subject to model uncertain ty. It is reall y necessary to have some idea of the maximum 

level of parameter variations in order that the movement of the added poles subject to this 

maximum change can be checked to ensure that they do not become dominant. In this case the 

aim was to keep the added poles within the z = 0.1 circle for the maximum variation of 50%. 

Figure 5.6 illustrates the best transient response behaviour when the system is subject to 

parameter variations. As the order of the controller, p is increased there are more free parameters 

in the design process, so it is expected that higher order controllers would yield better results 

which is verified here as the corresponding controller for figure 5.6 is fourth order. 
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P is the order of the controller 

To obtain the correct fonn for C 

Adjust 

Free Parameters 

Specify Polynomial System 

Transfonn to State Space Fonn 

State Transfonnation 

Select Initial Free Parameters 

Perfonn Parametric Design 

Evaluate Cost Function 

N 

Generate F and G from K 

Figure 5.1 - Flowchart of the Robust Polynomial Controller Design Procedure 

Note: F ,a and H are controller polynomials in terms of the backward shift operator, Z-I. 

K is the state space output feedback malrix. 

The paramelric design stage is expanded in figure 5.2. 
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5. Implementation and Applicalion of lhe Robusl Design Procedure 

Calculare the Null Space of c: 

Calculate r 
From this Null Space 

Calculate vi 

i=ltor 

i = r+l y 
r----~ i>n 

i = i+l 

Calculate the Null Space ofZi 

Calculate ~ 

From this Null Space 

Calculate vi 

i=r+lton 

Calculate W = Inverse of V 

Figure 5.2 - Flowchart of the Parametric State Space Design Procedure 

c= 

V=£L ... ~] 

!; = (~/-ArIBJj 
~ =1-FIVl:£('A,/-ArlB]r 

t r= 
L 

Vu = the 1st r rows of the 1st r right eigenvectors. 

F, = [[I" ·Ll andF2 = [£+1" '["1 
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CHAPTER 6 

APPLICATION TO A HYDRAULIC RIG 

6.1 Introduction 

Hydraulic systems include some of the most powerful and fast-moving devices in engin­

eering and are widely used in many industrial plants. The design of controllers for such systems 

can be quite difficult due to a number of factors including non-linearities (such as the relation 

between flowrate and pressure), variations in oil viscosity resulting from changing temperature 

and load dependent gain (Daley, 1990). Applying the proposed robust design procedure to a 

realistic industrial system of this type would provide useful infomlation on the general applic­

ability of the method. The hydraulic test rig considered in Daley (1987) would be a good system 

to consider as it was designed and built to be representative of real industrial plants. 

The rig consists of a stiff shaft which is driven by a hydraulic motor and loaded with a 

hydraulic pump. The oil flow to the motor is controlled by an electrohydraulic servo-valve and 

the pressure differential across the pump can be changed to increase or decrease the loading on 

the shaft. A schematic of the hydraulic circuit of the rig is shown in figure 6.1. 

Daley (1987) considered the application of self-tuning control to this system and assessed 

the performance of the closed-loop system when subjected to varying supply pressure and load. 

The results were compared to a more traditional proportional plus integral plus derivative (PID) 

controller and shown to be significantly better. 

The aim here is to design a fixed term controller for the system which is robust to varying 

supply pressure and load, such that the performance is better than the PIO controller and hopefully 

comparable to that of the self-tuning controller. Of course the self-tuning controller will in general 

be more flexible to variations in the plant parameters and perform well over a wide range of 

possible parameter values. However over a specified range, for which the robust fixed term 

controller is designed, it is hoped that the relative performance of the two controllers will be 

similar. Also, in this range the fixed term controller may even perform slightly better as there 

will be no tuning transients as with the self-tuning controller. 

As it is not possible to perform tests on the real rig, it is necessary to constnIct an accurate 

simulation of the system. To do this, use can be made of commercially available simulation 

languages which contain the basic integration algorithms necessary to perform a continuous time 

-------------~-
----------_._ .. _-_. __ .... - - -- .. -- -
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6. Application to a Hydraulic Rig 

simulation, as well as an environment in which quite complex system equations can be specified. 

In this case the Advanced Continuous Simulation Language (ACSL) package is used and further 

details on the simulation can be found in the following section. 

Using the simulation it is possible to show how the proposed method can be applied to a 

real plant, from system identification to controller design and implementation. Three robust fixed 

term controllers are developed, the first considering only variations in the supply pressure, the 

second only variations in the load and the third variations in both. 

6.2 Nonlinear Simulation and Model Identification 

A model of the rig can be developed by considering the equations for each part of the 

system. Figure 6.1 shows a schematic of the hydraulic circuit of the rig. 

The flowrate, Qy, through the valve can be approximated by the square root relationship 

of an orifice 

(6.1) 

where X" is the spool valve displacement, P" is the supply pressure, Pm is the pressure differential 

across the motor and Ke is the valve flow coefficient. For continuity of flow 

(6.2) 

where a is the shaft position, Cr is the motor displacement, V, is the total trapped volume, B is 

the oil bulk modulus and Kl is a leakage coefficient. The motor torque is 

(6.3) 

where 11", is the efficiency of the motor. Neglecting static and coulomb friction 

T", =/G+D9+T, (6.4) 

·IS3 -



6. Application to a Hydraulic Rig 

where I is the total inertia of the pump, motor and shaft, D is the viscous friction coefficient and 

(6.5) 

where P p is the pressure differential across the pump and IIp is the efficiency of the pump. 

If it is assumed that the dynamics of the servo-valve are much faster than the dynamics of 

the load, the servo and torque motor can be approximated by a pure gain term, i.e. 

(6.6) 

where u is the input voltage to the torque motor. The output voltage is given by 

y =K,6 (6.7) 

where K, is the tachometer constant. 

These equations are very simple to simulate in ACSL and the program for the open-loop 

system can be found in appendix D. One problem however is the choice of suitable values for 

the many constants in the above equations. From the data supplied by the manufactures of some 

of the components of the rig, tests on the actual rig, Dholiwar (1991), and a process of trial and 

error, the following values were obtained 

B = 7000.0e5 N/m2 

Ka = 2.4e-6 

K. = 0.0625 m/V 
C" = 9.56e-7 m3/rad 

11", = 1.0 

11p = 1.0 

1= 1.08e-4 Kg m2/rad 

D = 5.94e-4 Kg m2/rad s 

V, = 3.51e-5 m3 

Kl = 2.12e-13 m4s/Kg 

K, = 8.0e-3 V s/rad 

The nominal value of the supply pressure, p. is taken as 68.96e5 N/m2 (1000 Ibf/in2), and 

it is assumed that it could increase up to a maximum value of 137 .93e5 N/m2 (2000 Ibf/in2). The 

loading can be varied by changing the value of the pressure differential across the pump, P po Its 

nominal value is 22.98e5 N/m2 (333 Ibf/in2) and the maximum load is assumed to correspond to 

a pressure differential of 44.83e5 N/m2 (650 Ibf/in2). 
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Clearly from the above it would be possible to derive a model theoretically but as the aim 

is to show how the proposed method would be applied to a real plant, system identification 

techniques will be used. For the purposes of identifying a model of the open-loop system, a 

1.5Hz square wave input is applied as shown in figure 6.2, and the input and output sampled at 

83Hz (Daley, 1987). From this data and using the technique of instrumental variables (IV), the 

results in table 6.1 were obtained 

No. of No. of 
Ap(Z-I) B/z-1

) Time Ap(Z-I) Bp(Z-I) Akaikc's 
parameters parameters Delay parameters parameters V N FPE 

1 1 1 a1 = -0.0152 bo= 2.5988 0.007059 0.007287 

2 1 1 a] = -0.0356 bo = 2.5391 0.007056 0.007401 

~= -0.0022 

2 2 1 a] = -0.9406 bo = 1.3090 0.007755 0.008263 

a2 = 0.0954 bl = -0.9005 

2 2 2 a l = -4.9461 bo = -8.9773 0.08104 0.08636 

a2 = 2.4478 bl = 5.0231 

3 2 1 a] = 3.3135 bo= 8.7602 0.02635 0.02853 

a2 = 0.1688 bl = 2.8040 

a3 = -0.1001 

Table 6.1 - IV Estimation Results 

The most appropriate model is indicated by the lowest value for the loss function, V Nand 

Akaike's final prediction error (FPE). Note that the loss function is defined as (Soderstrom and 

Stoica, 1989) 

(6.8) 

where N is the number of data points and E(t, 8p ) is the prediction error corresponding to the 

parameter vector 8p ' i.e. 

(6.9) 
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andj(t It -1;9p ) denotes a prediction ofy(t) given the data up to and including time t -1, based 

on the model parameter vector 9p- Akaike's FPE is then defined as (Soderstrom and Stoica, 

1989; PRO-MATLAB, 1990) 

FPE=V I+PIN 
N I-PIN 

where P is the number of parameters in the model. 

The first order model is the best fit, hence the design is based on 

Ap(Z-I) = 1.0-0.0152z-1 

Bp(Z-I) = 2.5988z-1 

(6.10) 

(6.11) 

(6.12) 

Note that the theoretical model (Daley, 1987) is second order. This suggests that in practice 

one of the open-loop poles of the system is significantly more dominant than the other. 

To aid in the design process it is desirable to obtain the model of the system when subject 

to variations in the factors of interest. With the supply pressure at its maximum value of 137 .93e5 

N/m2 (2000 Ibf/in2), the model becomes 

Ap(Z-I) = 1.0 + 0.0026z-1 

B/z-1
) = 4.2164z-1 

and with the maximum load, corresponding to Pp = 44.83e5 N/m2 (650 Ibf/in2) 

Ap{Z-I) = 1.0 - 0.1066z-1 

B
p
(Z-I) = 1.6903z-1 

and lastly when both the supply pressure and the load increase to their maximum values 
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Ap(Z-I) = 1.0 + 0.0094z-1 

Bp(Z-I) = 3.8097z-1 

6. Application to a Hydraulic Rig 

(6.17) 

(6.18) 

Note that when the changes occur, a first order model may not be the most appropriate but 

as the design is to based on a first order model, the above help to give an indication of the typical 

variation in the parameters of the model. 

The simulation of the closed-loop system is also quite straightforward and the corre­

sponding ACSL program is in appendix D. The effect of implementing the controller on a digital 

computer has been taken into account by incorporating the controller polynomials in a discrete 

block. The sample rate for the input and output, from which the control signal is calculated, is 

again 83Hz. 

6.3 Controller Design 

Having established a suitable model of the hydraulic rig, it is possible to move onto the 

design of the control system. Generally the design of fixed term polynomial controllers is based 

on the minimum order solution of the diophantine equation. As such the robust polynomial 

controllers will be compared against the minimum order one and not a PID controller as in Daley 

(1987). However from the work of Daley (1987) it should be possible to draw general conclusions 

about the performance relative to the PID controller. 

On the basis of the results obtained in the previous chapter, the eigenvalue differential cost 

function will be used throughout. The NAG library routine E04JAF is again used to perform the 

numerical optimisation. 

This section is split into two subsections, the first dealing with the design of the minimum 

order controller and the second covering the design of the three robust controllers. 

6.3.1 MinimuI11 Order Polynonlial Controller Design 

As the system does not contain integral action it is necessary to cascade a digital integrator 

with it, hence the design is actually based on 

A (Z-I) = 1.0-1.0152z-1 +0.0152z-2 

p 

B (z -I) = 2.5988z-1 
p 
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and the desired closed-loop pole positions are chosen as 0.65 + jO.3 for a good compromise 

between rise time and overshoot. 

The minimum order controller is then 

F p (Z-I) = 1.0 

Gp (Z-I) =-o.1096+0.1914z-1 

H p (Z-I) = 0.0818 

(6.21) 

(6.22) 

(6.23) 

It is also useful, for the purposes of comparison, to gain an idea of how far the closed-loop 

poles move when changes in the system occur. Using the models from the previous section and 

the minimum order controller derived here, it is possible to deduce that 

Pole Positions Distance Moved 

Max increase in p. only 0.7298 ±jO.5214 0.2353 

Max increase in P p only 0.6459 ± jO.1136 0.1864 

Max increase in P, and P p 0.7041 ±jO.4733 0.1815 

Table 6.2 - Pole Positions for the Perturbed Closed-Loop System with the 
Minimum Order Controller 

6.3.2 Robust Polynomial Controller Design 

This section covers the design of three robust fixed term polynomial controllers. The frrst 

controller is designed assuming that only the supply pressure changes, the second assuming only 

the load changes and the third assuming that both change. 

Again the design is based on the system with a cascaded digital integrator as shown in 

(6.19) and (6.20). The corresponding state space model is then 

(6.24) 

y(k)=[O 11[~1 (6.25) 
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The desired dominant closed-loop pole positions are again chosen as 0.65 ± jO.3. 

The first step is to define the structured model uncertainty for each of the three designs. 

Examining the models derived in section 6.2, the following can be obtained 

Change in Change in Ratio of 
a l bo Change 

Max increase in P, only 0.0178 1.6176 1:90.87 

Max increase in Pp only -0.0914 -0.9085 1:9.94 

Max increase in p. and Pp 0.0246 1.2109 1:49.22 

Table 6.3 - Ratio of the Changes in the Open-Loop Polynomial Coefficients 

This information can help in the selection of PI and QI' which represent the known structural 

information regarding the model uncertainty as outlined in chapter four. 

However before specifying these, consider the choice of p, the order of the controller. It 

was found that for val ues of p beyond 3 the higher order coefficien ts of the con troller pol ynomials 

were very small and so could be ignored. Indeed for the case of p = 3 the z -3 coefficient of F /z -\) 

and G p(Z-I) is often of the order le-lO, hence there is little point in considering values of p 

beyond this case. Of course the idea of increasing p is to introduce more free parameters into 

the design process, thus it is desirable to use as high a value as possible, hence p = 3 is used 

throughout. 

With this value of p it is necessary to specify the desired closed-loop positions of three 

additional poles. For all of the following they are taken as multiples of -0.0001 so as to have no 

real influence on the shape of the closed-loop transient behaviour. 

Considering the design for the case where only the supply pressure is changing, the model 

uncertainty is then defined as 

-1.0 0 0 0 0 

0 0 0 0 0 

Pl= 0 0 0 0 0 (6.26) 

0 0 0 0 0 

1.0 0 0 0 0 
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90.87 0 0 0 
0 0 0 0 

QI= 0 0 0 0 (6.27) 
0 0 0 0 
0 0 0 0 

which clearly shows how to incorporate infonnation about the relative changes in the Ap(Z-I) 

polynomial coefficients and the Bp(Z-I) polynomial coefficients. Note that effectively only one 

£ is being considered (u = 1), which is perfectly acceptable as from table 6.3 it can be seen that 

in each case the coefficients change in the same direction. As in the previous chapter the fonn 

of PI is due to the cascaded integrator. 

As in the previous chapter the starting points are all randomly chosen as there is no 

infonnation regarding a suitable starting point. Also all the weights are initially set to 1, again 

because no additional infonnation is available on a more appropriate choice. 

From the randomly chosen starting point 

XT = [-0.5621 -0.9059 0.3577 0.3586 0.8694 -0.2330 0'(B88 

0.6619 -0.9309 -0.8931 0.0594 0.3423 -0.9846] 

with the weights 

WT = [1.0 1.0 1.0 1.0 1.0] 

the following result was obtained 

lorig = 6.827726e2 loplI = 1.230418e2 

Eigenvalue sensitivities: 

0.65 ijO.3 -0.0001 -0.0002 -0.0003 

Original 18.4766 0.0234 0.0732 0.0099 

Optimal 7.6139 1.2732 l.1924 2.0139 

Table 6.4 - Eigenvalue Sensitivities for the Robust PJ design 

Pole Positions: 
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Pole Positions Distance \10\cd 

Max increase in p. only 0.5504 ± jO.3593 0.l159 
1.2813e-7 1.0013e-4 

Controller designed for this case -0.0002 0.0000 
-0.0412 0.0409 

Max increase in Pp only 0.7027 ±jO.2589 0.0668 
1.5094e-6 1.0151e-4 
-0.0002 0.0000 
0.1104 0.1107 

Max increase in p. and Pp 0.5771 ±jO.3453 0.0858 
4.00lle-7 1.0040e-4 
-0.0002 0.0000 
-0.0456 0.0453 

Table 6.5 - Pole Positions for the Perturbed Closed-Loop System with the 

Robust Ps Controller 

and the corresponding controller polynomials are 

F/z-1
) = 1-0.6412z-1 -1.4714e-4z-2 +2.0230e-l0z-

3 

G/z-1) = 0.1374 -0.0594z-1 +0.0038z-2 + 8.823ge -7z-
3 

H/z-1
) = 0.0818 

(6.28) 

(6.29) 

(6.30) 

Next consider the design for the case where only the load is changing, the model uncertainty 

is then defined as 

-1.0 0 0 0 0 

0 0 0 0 0 

Pl= 0 0 0 0 0 (6.31 ) 

0 0 0 0 0 

1.0 0 0 0 0 

9.94 0 0 0 

0 0 0 0 

Ql= 0 0 0 0 (6.32) 

0 0 0 0 

0 0 0 0 

Using the randomly chosen starting point 

-------_.-.----
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XT = [-0.2332 -0.8663 -{).1650 0.3735 0.1780 0.8609 0.6923 

0.0539 -{).8161 0.3078 -{).1680 0.4024 0.8206] 

and the weights 

WT = [1.0 1.0 0.5 0.5 0.5] 

the following result was obtained 

Jorig = 4.103985 lop/l = 1.828735 

Eigenvalue sensitivities: 

0.65 ±jO.3 -0.01 -0.02 -0.03 

Original l.4324 0.0071 0.0111 0.0248 
Optimal 0.7359 0.5864 0.5451 0.9220 

Table 6.6 - Eigenvalue Sensitivities for the Robust Pp design 

Pole Positions: 

Pole Positions Distance Moved 

Max increase in p. only 0.6077 ± jO.4286 0.1373 
1.9144e-7 1.001ge-4 
-0.0002 0.0000 
-0.0215 0.0212 

Max increase in Pp only 0.6800 ± jO.2190 0.0863 
2.2770e-6 1.0227e-4 

Controller designed for this case -0.0002 0.0000 
0.0804 0.0807 

Max increase in Ps and Pp 0.6174 ±jO.3968 0.1021 
5.9893e-7 1.005ge-4 
-0.0002 0.0000 
-0.0256 0.0253 

Table 6.7 - Pole Positions for Perturbed Closed-Loop System with the 

Robust P p Controller 

and the corresponding controller polynomials for this case are 

F (Z-I) = 1 -0.4256z-1 - 9.7342e - 5z-2 + 2.0230e - 10z-3 

P 

G (Z-I) = 0.0544 -0.0248z-1 + 0.0026z-2 + 5.9111e -7z-J 

p 

Hp(Z-I) = 0.0818 
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6. Application to a Hydraulic Rig 

Lastly consider the design for the case where both the supply pressure and the load are 
changing, the model uncertainty is now defined as 

-1.0 0 0 0 0 
0 0 0 0 0 

P1= 0 0 0 0 0 (6.36) 
0 0 0 0 0 

1.0 0 0 0 0 

49.22 0 0 0 
0 0 0 0 

Q1= 0 0 0 0 (6.37) 
0 0 0 0 
0 0 0 0 

This time starting at the random point 

XT = [0.0344 0.1059 0.0924 -{).2340 0.8859 -{).7027 -{).1067 

0.0618 -{).0646 -{).3432 -{).4841 -{).2061 0.1505] 

with the weights 

WT = [1.0 1.0 1.0 1.0 1.0] 

the following result was obtained 

lori, = 68.924139 lopt 1 = 34.918173 

Eigenvalue sensitivities: 

0.65±jO.3 -0.01 -0.02 -0.03 

Original 5.4419 0.0335 1.6903 2.6149 

Optimal 3.8851 1.0409 0.9747 1.6423 

Table 6.8 - Eigenvalue Sensitivities for the Robust p. and Pp design 

Pole Positions: 

~--------------~~ ~~~- -----~ ~~ --~~~~.----
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Pole Positions Distance Moved 

Max increase in p. only 0.5539 ± jO.3644 0.1156 
1.3088e-7 l.OO13e-4 
-0.0002 0.0000 
-0.0396 0.0393 

Max increase in P p only 0.7012±jO.2566 0.0671 
5.9893e-7 1.OO5ge-4 
-0.0002 0.0000 
-0.0256 0.0253 

Max increase in P, and P p 0.5796 ± jO.3489 0.0857 
4.1664e-7 1.0041e-4 

Controller designed for this case -0.0002 0.0000 
-0.0441 0.0438 

Table 6.9 - Pole Positions for Perturbed Closed-Loop System with the 

Robust P, and P p Controller 

and the corresponding controller polynomials for this case are 

F/z-1
) = 1-0.6274z-1 -1.4397e - 4z-2 + 2.0230e -10z-3 

Gp(Z-1) = 0.1321- 0.0540z-1 + 0.0037z-2 + 8.6386e -7z-3 

H/z-1
) = 0.0818 

6.4 Discussion of the Results and Conclusions 

(6.38) 

(6.39) 

(6.40) 

The response of the closed-loop system with the minimum order controller can be seen in 

figure 6.3. This clearly shows that the transient behaviour is very susceptible to changes in the 

supply pressure and load. 

The response of the closed-loop system with each of the three robust controllers is shown 

in figures 6.4 to 6.6. As would be expected (because the controller polynomials are very similar) 

the response for the robust P, controller is almost identical to the response for the robust P, and 

P, controller. The response for the robust Pp controller is certainly a significant improvement 

over that for the minimum order controller but not as good as for the other two robust controllers. 

This suggests that the best approach to the robust design problem is to assume that the 

B,(Z-l) parameters change significantly more than the Ap(Z-1) parameters, which was the basis 

on which the robust P, and the robust P, and P p controllers were designed. Although, as is 

highlighted by the similarity of the polynomials for the two robust controllers, the actual ratio 

is not critical, which can be seen by comparing the defined P, and Q, in (6.26) and (6.27) with 

(6.36) and (6.37). 
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An interesting point is the typical value of the weights selected in this case as compared 

with the weights for the example in the previous chapter. For that example it was necessary to 

choose the weights to place a heavy bias on the dominant pole sensitivities. Here, ho\\,ever, the 

weights did not need to be significantly changed and were similar for all of the closed-loop poles. 

This suggests that the dominant closed-loop poles for the hydraulic rig are particularly sensiti\'e 

to model uncertainty. 

Examining the distance moved by the poles for each controller (tables 6.3, 6.5, 6.7 and 

6.9) shows that there is a high correlation between how far the poles move and the actual transient 

behaviour of the closed-loop system. 

Again the trade-off between the sensitivities of the additional controller poles and the 

sensitivities of the dominant poles can be clearly seen (tables 6.4, 6.6 and 6.8). This certainly 

seems to be a characteristic of this type of approach to robust design. However, in each case it 

can be seen that the additional poles remain close to the origin for the maximum parameter 

changes and so do not affect the closed-loop response. 

The results show that this approach can lead to a significant improvement in performance 

robustness for practical systems, when compared against the minimum order controller. From 

the work of Daley (1987) it is also apparent that both the minimum order and the robust controllers 

are an improvement over the PID controller. Further, the level of improvement is comparable 

to that obtained via self-tuning control with the added benefit of much reduced on-line 

computation. 
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Figure 6.1 - Schematic of the Hydraulic Circuit of the Rig 
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Figure 6.2 - Response of the Open-Loop System 
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Figure 6.3 - Response of the Oosed-Loop System with the Minimum Order Controller 
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary and General Discussion 

The problem of designing pole-placement controllers for polynomial systems, such that 

the closed-loop system exhibits an improved level of performance robustness has been con­

sidered. It was assumed that the system was subject to structured model uncertainty where only 

the coefficients of the open-loop system polynomials were perturbed. 

The concept of searching a set of controllers for the most robust one is quite natural in 

robust design and can be easily cast in the form of an optimisation problem. Robust methods, 

in general, involve some form of optimisation and with the advent of more powerful computer 

hardware over recent years, it is only natural to consider whether numerical methods could be 

usefully employed to solve such problems. The work presented in this thesis was based on this 

theme. 

The design of pole-placement controllers for polynomial systems involves the solution of 

a polynomial equation, often referred to as a diophantine equation. It has been shown that this 

equation is very important in the design of such controllers, and a thorough discussion of a 

number of the major points regarding the equation and finding a solution to it has been presented. 

The two approaches to solving the equation were reviewed and it can be argued that neither has 

any real advantage over the other. It was noted, however, that the use of matrix techniques in 

finding a solution seems to be the most popular approach. This is probably due to a greater 

general familiarity with matrix theory, the fact that the matrix representation of the equation is 

of a standard form and also because the matrix approach is easier to implement on a computer. 

The conditions for the existence of a solution were established and the violation of these 
\ 

conditions was shown to be dependent on the sample time, hence it was suggested that the sample 

time be chosen with some care. Many techniques have been proposed for dealing with these 

violations but it appears that none are totally satisfactory. 

From a robustness point of view an interesting property of the equation is the large number 

of possible solutions, although generally, the minimum order solution is used. In order to assess 

the merits of other solutions, with regard to performance robustness, a preliminary investigation 

was carried out. The main conclusion of this work was that in the polynomial framework it is 

difficult to relate the design of the controller to performance robustness. In the state space 

framework, however, it is well known that the transient response of a system is dependent on 
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the eigenvalues and eigenvectors. With all of the above points in mind it was decided to tum to 

a state space based approach for the problem of designing polynomial controllers with improved 
performance robustness. 

The transformation of a polynomial system to state space form is quite straightforward 

allowing a state space design to be carried out. It was shown that the resulting output feedback 

matrix can be easily related to the controller polynomials normally obtained from the solution 

to the diophantine equation, thus completing the link between the two representations. 

For the state space design it was decided to use parametric methods which explicitly 

represent a set of possible feedback controllers in terms of arbitrary free parameters, allowing 

the problem to be easily cast in an optimisation framework. Two parametric methods have been 

considered, one a well established approach (Fahmy and O'Reilly, 1988) and the other a newly 

proposed scheme (Daley, 1990). Both methods were briefly reviewed and then applied to a 

number of examples to as sess their relati ve performance. Resul ts showed that the new I y proposed 

scheme did experience a number of difficulties in obtaining a solution for some of the examples 

considered, which suggested that the well established approach would be better suited in this 

case. However when applied to a transformed polynomial system the method of Fahmy and 

O'Reilly (1988) failed to find a solution. Because of this the newly proposed scheme of Daley 

(1990) was used as the basis of the state space design. 

The extra freedom in the design, represented by the free parameters, can be utilised to 

achieve the goal of improved performance robustness. In order to select appropriate values for 

the free parameters, it is necessary to define suitable functions relating the sensitivity of the 

closed-loop system to structured model uncertainty. Having established the importance of the 

eigenvalues and eigenvectors, their sensitivities were used as the basis of these functions. The 

conditioning of the matrix of eigenvectors was also used as the basis for defining a suitable 

function. These functions are often termed cost functions, objective functions or performance 

indices. The aim is then to select the free parameters such that the cost function being used is at 

a minimum. This clearly completes the formulation of the robust design as an optimisation 

problem where numerical techniques can then be used to search for the minimum. 

The parametric method of Daley (1990) entails placing certain restrictions on the free 

parameters which requires performing the optimisation subject to constraints. It was shown 

however that suitable re-arrangement of the problem allowed the issue of constraints to be avoided 

altogether. 

The overall proposed robust polynomial controller design can then be summarised as 

1) Transform the polynomial system to observable canonical state space fonn. 

2) Define the structured model uncertainty. 

3) Calculate a robust output feedback matrix which involves 
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a) Defining a suitable cost function consisting of the eigenvalue/eigenvector 
sensitivities. 

b) Performing a parametric output feedback design. 

c) Carrying out a numerical optimisation to determine the set of free parameters 

that yield a desirable local minimum value for the cost function. 

4) Transform the robust output feedback matrix to controller polynomial fonn. 

This approach to the design of robust polynomial controllers was applied to a relatively 

simple example and a simulation of a hydraulic test rig. The results highlighted a number of 
interesting points. 

When using a cost function consisting of expressions for both the eigenvalue and the 

eigenvector sensitivities, a conflict appears to arise between the two. The results indicate that a 

significant increase in design freedom is necessary to yield any sort of desirable result, but of 

course this will lead to very high order controllers. 

The conditioning based cost function did not prove very effective for the design of robust 

controllers in this case. It is felt that the main reason for this is the general nature of this type of 

cost function, where effectively the sensitivity of all the eigenvalues are equally important. 

Results have indicated that to achieve any significant improvement in robustness it is necessary 

to sacrifice the sensitivity of some eigenvalues in favour of others. Of course the eigenvalues 

whose sensitivities are allowed to increase should be placed such that their influence on the 

transient behaviour is minimal, i.e. close to the origin in the z-plane. 

The most promising results were obtained using a cost function based solely on the 

sensitivities of the closed-loop eigenvalues. The resul ts presented here indicate that a significant 

improvement in performance robustness can be achieved with this type of approach. 

Although a direct comparison with other methods was not carried out it is possible to draw 

some general conclusions. The overall design is centred around the idea of casting the robust 

design into an optimisation framework and using numerical methods to solve this problem. 

Utilising the facilities available through a modern workstation it was found that a solution could 

generally be found in a matter of minutes and indeed, with the rapid advances being made in 

computing technology it is expected that this time could be significantly reduced in the near 

future. Such an approach allows quite complex non-linear cost functions to be used which gives 

greater freedom to define the most appropriate function for the specified design goal. On the 

basis of this it seems reasonable to suggest that this type of approach will be increasingly used 

in the future. 
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Daley (1987) applied self-tuning control to the hydraulic rig used in chapter six. Although 

a direct comparison cannot be made, it is clear that the performance of the fixed term robust 

controller compares favourably with that of the self-tuning controller discussed in Daley (1987). 

Over the range of parameter perturbations for which the robust controller was designed, its 

advantages are clear. The controller polynomials in terms of the backward shift operator are 

extremely easy to implement on a digital computer, requiring only a few simple calculations to 

obtain the control signal. With system identification and controller design being carried out 

on-line, the self-tuning controller has a heavy computational burden which will place a limit on 

the maximum sample rate as these calculations need to be carried out in the sample interval. The 

self-tuning controller has a number of other drawbacks such as tuning transients when abrupt 

parameter changes occur and problems with the identification algorithm during long periods of 
poor excitation. 

There are a number of problems associated with the design of robust polynomial controllers 

and the next section discusses these in greater depth, which is then followed by some brief 

remarks on the most important aspects of the work presented in this thesis. 

7.2 Problems and Future Work 

In the design of pole-placement polynomial controllers, the diophantine equation plays an 

important role. It was shown, however, that some difficulties may be experienced in obtaining 

a solution of this equation. It appears that no complete method for overcoming all of the possible 

problems has been proposed and probably the best way to avoid any difficulties is to by-pass 

the solution of the equation altogether. The state space approach, although not specifically aimed 

at this problem, has the advantageous by-product of not needing to sol ve the diophantine equation. 

The polynomial description also has the disadvantage that it is difficult to relate the design 

of controllers to the effect on performance robustness. This was one of the main reasons for 

turning to a state space approach forrobustcontrollerdesign. However, if a satisfactory robustness 

criteria could be set up in the polynomial framework, then a polynomial based design could be 

used. Kharitonov's theorem (Siljak, 1989) may prove useful for such a purpose as it basically 

relates changes in a polynomial's coefficients to changes in its roots and if applied to the char­

acteristic polynomial may help to establish a suitable measure. 

The state space design also has a number of problems. For the parametric output feedback 

method of Daley (1990) the singularity ofVll is a significant problem which needs to be addressed. 

Vu is dependent on a set of free parameter vectors which are effectively selected from a vector 

space. It has been suggested that a simple way forward would be to define a second vector space 

for the free parameter vectors such that Vll is always non-singular. The intersection of the two 
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spaces would then provide an appropriate space for the selection of the free parameter vectors. 

So far, however, it has not been possible to define this second vector space and so the problem 
remains unsolved. 

The method of Fahmy and O'Reilly (1988) experienced even more severe problems in 

that no solution could be found at all. The reason appears to be related to the structure of the 

open-loop system matrices and it is suggested that overprotection of the right eigenvectors could 

be the cause of the problem. This matter certainly needs to be investigated further hopefully 

leading to a proposal which will allow the method to be used. 

It is worth mentioning at this stage that the problem of output feedback itself remains an 

unresolved one as no method at present can guarantee that a controller can be obtained for all 

systems. As such the problems mentioned above may not necessarily be solvable and so it may 

be useful to conduct a wider search and assessment of possible state space methods. Section 3.5 

in chapter 3 discusses some eigenstructure techniques which could possibly be used but 

unfortunately came to light too late to be incorporated in this work. 

The design centres around the specification of suitable cost functions. The derivation 

presented in chapter four was based entirely on differential calculus. Such an approach is really 

only valid for small variations but does provide an approximation for larger changes. Results 

presented in this thesis would indicate that such an approximation is satisfactory as significant 

improvements in performance robustness can be achieved. The main problem, however, is that 

there is no information on how good this approximation is and as such it would be desirable to 

formulate more appropriate cost functions for large changes in the model parameters. 

The minimisation of these functions also has some limitations which it is desirable to 

overcome. Numerical methods will only find a local minimum, which may prove to be the global 

minimum, but this cannot be guaranteed. Although this does not represent a significant drawback 

as a local minimum may yield the level of improvement sought, it would be desirable to obtain 

the global minimum as then it is known that no better solution exists, for the particular cost 

function being used. Such a task represents a major undertaking and would certainly involve a 

radically different algorithm. One approach which seems interesting is that of genetic optimi­

sation, Goldberg (1989). Here the basic rules of genetics, reproduction, crossover and mutation 

are implemented on a computer and applied to a large population of starting points. The aim is 

to emulate the procedure of natural selection to find the best solution. Fundamentally the 

algorithm is working on patterns in the data and not based on gradient information as with many 

of the traditional schemes. Although this approach can still not guarantee finding the global 

minimum, due to the wide spread of its search the algorithm is likely to find a very good solution 

which could easily be missed by more conventional algorithms. One possible problem could be 

the actual implementation of the algorithm and it is also likely to take considerably longer than 

conventional algorithms to perform the search. 
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7.3 Concluding Remarks 

The work presented in this thesis was motivated by the desire to establish an alternative 

approach to the design of robust polynomial controllers. In the pursuit of this goal a number of 
contributions have been made. 

• The diophantine equation is extremely important in the design of pole-placement con­

trollers for polynomial systems. A thorough discussion of many aspects of this equation 
was presented. 

• A basic investigation into selecting a more robust solution to the diophantine equation has 

been conducted. The conclusion however was that in the polynomial framework it is 

difficult to relate decisions in the design procedure to the effect on performance robustness. 

• An alternative robust design procedure was presented. It utilises state space techniques by 

transforming the system to state space form, performing the design and transforming the 

resulting controller back to polynomial form. Results have shown that a significant 

improvement in performance robustness can be achieved with such an approach. 

• Two state space parametric output feedback methods were reviewed. One is a well 

established approach and the other a newly proposed scheme. It was shown that although 

the well established method performs better on general state space systems, it fails when 

applied to transformed polynomial systems. 

• The design of the robust controller is based on the sensitivities of the eigenvalues and 

eigenvectors. Results have shown that there appears to be a conflict when attempting to 

minimise the sensitivities of both. It was suggested, however, that increasing the design 

freedom could yield more desirable results. 

• The conditioning of the matrix of right eigenvectors was also used as the basis on which 

to design a robust controller. Again results have indicated that only a slight improvement 

in performance robustness can be achieved with such a measure. 

• For this type of approach to robust polynomial controller design it was found that using 

only the sensitivities of the eigenvalues lead to a significant improvement in performance 

robustness. It was noted, however, that decreasing the sensitivities of some eigenvalues 

tends to lead to an increase in the sensitivities of others. 
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APPENDIX A 

ALGORITHMS FOR THE POLYNO:\lIAL 

SOLUTION OF THE DIOPHANTINE EQUATION 

A.I Introduction 

For the polynomial solution of the diophantine equation two algorithms are used: the 

extended Euclidean algorithm and the division of polynomials algorithm. The version of the 

algorithms shown here follows those outlined in Kucera (1979). 

A.2 Division of Polynomials Algorithln 

Definition: Given two polynomials Ap andB p with B p "# 0, this algorithm returns two polynomials 

Up and Vp such that 

(A .1) 

where Up is the quotient and Vp the remainder. 

Algorithm: 

1) Set Up = 0, Vp = Ap 

2) If deg(Vp) < deg(B p), stop 

3) leading coefficient of Vp 

A = leading coefficient of B p 

6) Goto 2 
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A.3 Extended Euclidean Algorithm 

Definition: Given two polynomials Ap and Bp with Ap,Bp :1; 0, this algorithm returns five poly­

nomials gp' Pp, Qp, Rp and Sp which satisfy 

ApPp + BpQp = gp 

ApRp + BpSp = 0 

(A.2) 

(A.3) 

gp is the greatest common divisor (OeD) of Ap and B . P ,Q and R S are pairs of p p p P' P 

coprime polynomials. 

Algorithm: 

2) If only one non-zero polynomial in F goto 6) else say 

3) 

Xp = the lower degree polynomial in F 

Yp = the other polynomial in F 

Noting which columns in F they correspond to 

leading coefficient of Yp 

A = leading coefficient of Xp 

4) Yp = Yp - A(Z-I)"Xp- Perform the same operations on the corresponding column of V 

5) F = [XpYp] or F = [YpXp] depending on which columns Xp and Yp correspond to. 

00t02 

6) If the non-zero polynomial appears in the second column of F , interchange the columns 

of both F and V. Stop 

Then 

F = [gpO] 
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APPENDIX B 

PROGRAMS FOR THE ROBUST POLYNOMIAL CONTROLLER DESIGN 

B.l Pre-Optimisation Programs - PRO-MATLAB 

All the programs presented here are for transfonning the polynomial system, specified in 

the function MODEL, to state space fonn and calculating all preliminary data as outlined in 

chapter 5. The data is saved in a file which is accessed by the FORTRAN 77 optimisation 

programs. 

An example model definition is 

I'wx:tion [a,lOI'ia.int,b,c,n.m.r,q,cigcn,caatej .. model(p) 

Ii dDfiDD I)'IICm polynomiall 

1m- [1-1); 

IIIria • (1 -0.6); 
a • multpoly(inl.aori&>; 
b. [0 11.5); 

c • (1 -0.4); 

Ii DlIIIlO dDrlDD IYStcm parameters 

D .lrmat\lCa) - 1; 
m.1; 

r.1; 

lilp&Cify dDliml pole pDlitiOlll 

j -1CJ(-1); 
oipD. [O.75+0.2-j 0.7S-O.2-j); 

Ii cpIII indicaIDI which polu ue complex COIIiUplCl (1) 

Ii IIId which arc 1101 (0) 

cpIII- [0 1); 

Ii ___ ....... 1Dn of Iystmn chao to p 

D.D+p; 

m.m+p; 

r-r+p; 

q -n-r; 

.. ___ h IIWIIbar of CiacnvalllOl 

fDrl-1:p 
oipD. [oipD -O.OI-i); 

..... ( .. 0); 

and 

The main pre-optimisation program is 

"JRGPl.m 

.. 11111 m-!IIe axwona poIyncmial IYS_ to IIaID IJIMlO ronn 

.. and _ h cllta twqIIinId II)' h ronran apIlmiaaliaD JIIGIIWN .. ........... 
• -1,·10; 

Ii sci up model 

cC = input( 'Enter mllnbcr of coli funclion \0 be IIICd : '''e'); 

p = input( 'Enter value of p : '); 

[a,aoria,inl,b,c:,n.m.r,q,cip,c:aatel- model(p); 

Ii transform to state .paa: form 

[A,B,C! = tranI_n(a,b); 

Ii add P states 

(A,B,C! • add_IIIIC(A,B,C,p,n,m.r); 

Ii Iwitch >tate. 10 that C .. (I 01 

(A,B,C! = Iwitc:lJ(A,B,C,p,n); 

Ii pcrfonn some limple chew and dctennine tha 

Ii number of c:omplc:x poles 

nc '"' precheck(C,cip,ll,r,llll); 

Ii Set up tha alphas in uta 

Cork = I:q 

tempI = I; 

temp2 = tempI; 

Cor i = 2:r 

if caalC(i) = 0 

temp2= I; 

end 

tempI .. (tcmpltcmp2); 

end 

ifk= I 

alpha = temp I ; 

elle 

alpha = (alpha; tempI I; 
end 

end 

Ii Calculate tha vec:lor space in whi=h prnrm JIIIISt liD 

S .. c:a\c:spce(A,B,a\pha,cipn,c:,a.,nc:,n,m.r ,q); 

Ii Calculate LA IIId LAB 

LA - inv(ciactl(1)"yc(n)-A); 

LAB = inv(ciacn(1)"yc(n)-A)·B; 

fori - 2:n 
LA D [LA; inv(ciaaJ(i)·c)'C(D)-A»); 

LAB • (LAB; inv(ci&cnCi)·~n)-A)·Bj; 

end 

Ii Save data 

path. ('~Jllkdw/W"'); 
rile • ('ImIdata' nurn2aIJ(p) cf): 

oval« '.ve ' path mo ' nc D m r q C&* S LA LAB 'J) 
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The associated functions are 

fiuII:&iaa (A,B.CI • traaJl(a,b); 

.. fiuII:&iaa to traafarm II1II ~ poIynamiall to Ilalc SJ*'C 

.. ot..v .... c:GIOIlicU farm - Opla, diacrcte time c:oaIroI. p491 

... Jm&tb(.); 

Ib - Jm&tb(b); 

.. ifb • lower weier than a, IIIIIn pad b wilb zcr .. 
fori-1:1b 

aupb(i) • b(i); 

CIIId 

iflbc" 
forl.1b+1: .. 

aupb(1).0; 

CIIId 

Ib -1a; 

CIIId 

.. nmA MATRIX 

.. -lcadin& 1 in. polynlX'niai 

1IImp& -1(2:1.); 

1 .... -1; 

.. c..... A wi!how lUI c:olwm of. poly c:ocfficicnt. 
A • .,.,o.-l): 
•• _CII(1).-I); 

A-(a; A): 

.. IWltd! ardIII' IUId IIIIpll:o • poly c:ocfficicnt. 

for i .. 1:1. 

lIImp(i) - -1iDInp&(1.+ 1-i); 

tIIId 

.. add.poIy c:ocflil to A malrix 
A. (A 1Dmp'); 

.. nmBMATRIX 

.. calc B e1011101J1a - don't \lie bO IOlb = Ib-I 

Ib.1b-l; 

B SlDrol(lb.l): 

fori -l:lb 

B(I) .1Dmpb(1b+2-i) -l(lb+2-i)-lempb(I); 

CIIId 

.. nmCMATRIX 
C. -..(1).-1); 
C_(C 1); 

IImc:tIoa (Al.Bl.Cl) .1dd... .. ID(A.B.C,p.n,m,r) 

.. ftmction to aupllllllllllllayalllm wilb p exira staleS 

.. 1IDIII1I,m,r haw all bad P Iddcd for eXira stales 

lpIi!aa-O; 

.. nmAMATRIX 

Al • (A -..(n-P.p»): 
AI- (AI; ~,n-p)epailon·e)'a(p»); 

.. nmBMATRIX 

81 - (B _CII(n-p,p»); 

81 - (Bl; ~.m-p) eye(p~on·e~(p»); 

.. nmCMATRIX 

Cl • (C -..(r-p,p»); 

Cl • (Cl i -..(p,n-p) eye(p»); 

6ux:tIaa (AU1.Cl) - Iwitcb(A,B.C,p,Il); 

.. ftaDI:tiaD to IWilch IhD ltallll ludllhDt C 111 allhD tGIID (I 0) 

....... dlat C II in II1II abaDrYabIo CIIICIIIic:aI t_. 1 .. 10 I) 

.. nmAMATRIX 

.. IwItch IOWI. IhDD coI_ 

"IOWI 

AI- (A(.pcD,:); A(I:o-~I.:)J; 
.. coI_ 

AI - (A1(:,II-p:Q) Al(:,1:11-~I)J; 

.. nm I MA11UX 

....... IOWlllllly 
II _18(1a-p:a,:); 8(1:81'"1,:»); 

'10 TIlE C MATRIX 

'10 .wilCb colwms only 

CI = [C(:,n-p:n) C(:.I:n-p-I»); 

function numc:an = prccheck(C,cip,n,r,small) 

.. function to perform some simple c:hc<:b and to 

'10 dclennine the number of c:omplcx pole:. 

.. check lhalthe com:ct number of cigcnvallll:S ha~ bcc:n ipOCiflDd 
if D -= length( cip) 

Drror('lncom:a number of ~irlCd cigcnvallll:S') 

end 

.. check C is of the correct form 

chid = (cyc(r) zcros(r.n-r»); 

cbk2= C - c:hkl; 

if .wn(awn(cbk2 > small» > 0 

Drror('C is 1101 oC the corrcc:l Corm '); 

end 

'10 dclCnnine number or complex CiacnYalllCI 

nlUtlC(JfD = Iwn(imal(cilcn) -= 0); 

'10 check if all cilenyalllCl arc complex 

if numclX'D ... D 

crrar('AlI poles arc complex') 

end 

function lSI • calCSPC;C(A.B,alpha.cip.claU:,nwnclX'n,n,m.r.q); 

.. function to calcula'" zeta Cor real and complex pole. 

'10 will nol work Cor all complex cue 

'10 CAl..clJLA TE ZETA 

counl = I; 
Cori=l:q 

Cork = I:r 

II = (inY(ciac:n(i+r)'cyc(n)-A)-illv(ciacn(k)'cyc(n)-A»"B; 

II = alpha(i,k)'II; 

iCk=1 

a = 11(1:r,:); 

cllC 

a. (al1(l:r.:»); 

end 
dear t1 

end 
iCi=1 

zeta = t2; 

clsc 

zeta = (zeta; 12); 

end 
c:Icar a 

end 

iC nlUtlCom > 0 

.. SOME POLES ARE COMPLEX 

.. calc:u.lllic IICtabr by n:movina ~x conju .... row. mel col • 

.. dcll:onnine which row ..... c:ompIcx COIIju ..... dDJaIdanI GIl 

.. II1II ciacuvalun UJocilu:d wilb P2 (i-O r+l • n) 

liClU = liCtI(l:r.:); 

for i. 2:q 

if cpu:(i+r) .... 0 
.. cilcuvaluc ill nol I CDqIIex conju .. u: 10 _ row block 

IICIU II [lICtal; .tI(l+(i·I)~I+(i·n-r+(r·I).:)I; 

end 
end 

.. dcu:nninc which cola .... c:ompIcx conju ..... dDpcndanl em 

.. \he CiacnvalllCl usoc:iau:d wiIh F1 (iA 1 • r) 

llltab = IICtaI( :.1 :m); 

fori·2:r 

if cplc(i) - 0 
.. cipllval\ID IIIl10ll c:ompIca COIIjllpID 10 _ cal block 

..tab _I_tab .... :.1 +(i-l) .... : 1 +(i-l) .... +(-I))J; 

.ad 

.ad 
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,. calc:Wa1e 7A11abr, tbc _ part of zctab 

7AIIabr - n:al(JJeIab); 

,. 7BTABI AND ZETAGJ HAVE TIlE SAME NUMBER OF ROWS AS ZETAA 

,.lIIIabi 

COII.l:q 

II (cptII(i+r) = 0) 

1IImp1 '"' iDv(0iacn<1)~) - A)-B; 

1IImp1 '"' upmci,l)-limIpl(1:r,:); 

COl It • 2:r 

lI(cpID(k) -0) ok (imq,(oip(k»> 10-12) 

1IImp2 '"' iDv(oipn(k)~) - A)-B; 

...,1. (1Dmp1 upbl(i,k)·tcmp2(l:r,:»); 

...s 
...s 
1I1IIIIJ(.~tabi)) = 0 

.tabi. imlaClllmpl); 

01_ 

zetabi'"' (zolabi; ima,(templ »); 

ODd 

ODd 

ODd 

,. zoIa&i - nnt c:olurm 

tempi .1nv(oipn(l+r)·oyc(n) - A)+B; 

tempi '"' tcmpl(1:r ,:); 

COl i -2:q 
lI(epIID(i+r) .. 0) 

temp2 .. Inv(oipn(i+r)·eyc(n) - A)- B; 

....,1. (!llmpl; temp2(l:r,:»; 

ODd 

ODd ....,1. ima,(lIImpl); 

ZlllaIi .lIImpl; 

for I. 2:r 

II (cpIlD(i) - 0) 

-lali - (zelaai tempi); 

ODd 

end 

,. bDlIIlO zola 

(tl,ll) - .izo(zolall); 

(13,t4) - .iza(atabr); 

(tS,16) - .'-<zetabi); 
zeta _ (zolabl; ~13-tS,I6»: 

zoIa - (_labr _lal: 
zoIa - (_la; zotaal zorOl(ll,t6+t4-t2»; 

.. dIlOlD ..-0 row. IIId c:olurm. frorn zeta 

"row. flHt 

flnlMrorow - 0; 
1-0; 
whilo (rantzcrolOW -0) oft (i < 11 +13) 

'-i+l; 

1I1Il)'{M1I(i:i,:» - 0 

" zero row 
flrsu.crorow = i; 

end 

end 

if flrsu.crorow > 0 

" check 1Cl1l&iDin, roWI an: all zero 

for i = flrltZCrorow+ 1:11 +13 

if lIIy(zcta(i:i,:» = I 

" non zcro row 
crror('mW:d zero rowl in zetl') 

end 

end 

,. delelC roWI from zetl 

ZCtI = zeta( I :flrllZcrorow-l,:); 

end 

" now wlumns 
flrllZOrowl = 0; 

i=O; 

whae (flnlZenx:01 =(0) &: (i < 14+\6) 

i=i+l; 

if lIIy(zctl(:,i:i» = 0 

" :rcro col 
flrltZCrowl = i; 

end 

end 
if flrl\Zerowl > 0 

" check rcrnainin, wI. an: all zcro 

for i = flrllZOrowl+ I :14+16 

if lIIy(zcta(:,i:i» = I 

" non zcro col 
error('mixed zero wI. in zetl') 

end 
end 

" delete wI. from zetl 
zeta = zeta(:,I:fll'lrunx:01-I); 

end 

end 

" CALCULATE TIlE NUU- SPACE OF ZETA 

S = nllll(l.cta); 

(11,121 = .W:(S); 

if 12 < r+(m-q) 

byboud 
errore '1110 mall spaa: of zeta is till: wrona cIiIncnaioo ') 

end 
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AppendUB 

B.2 Optimisation Programs - FORTRAN 77 

All the routines associated with the numerical optimisation itself are written in FORTRAN 

77 to facilitate the use of the Numerical Algorithms Group (NAG) library routines. Because the 

parametric state space design has to be performed during the calculation of the cost function a 

number of additional programs have had to be written, also outlined in chapter 5. 

The main optimisation program and its associated 

routines are in the file J AF.F 

C JAP.P 

C Defme panmDtcn 
C (NN • 110 of variables = r"(m-q)+q) 

inlDprPNN 

cbandcr°IP 
panmDtcr (PNN .. 13. P = '3') 

C Deline panmDtcn 
ioIDpr maxn,nwun,maxr ,maxq,maxsr.maue.nwn 

C (mun,nwun,maxr,maxq - maximum values of panmDtcn of system) 

C (JDalW,maxsc - maximum dimension oC S. r(m-q). r(r-q») 

C (1IWI1- number or errcrs beina considered) 

panmDtcr(maxn =10. maxm =9. maxr = 9. maxq = 3. num = I) 

panmDtcr (muir = 81. maxse = 81) 

C CcImmon ac:a1an 
inlDpr nc:,n,m.r .q." .IC.count.ltore 

double pnc:ision aPC 
dwac:terol Nl 

cbandcr0 30 FNAME4 

C CcImmon arrays 
inlDpr COA'rn(maxn) 
doublo precision S(maxsr.maxsc).WEIGHT(3°maxn) 

double complex P(maxm,maxn).V(maxn,maxn).W(maxn.maxn). 

° LA(maxn,maxn,maxn),LAB(maxn,maxn,maxm). 

° KC(maxm.maxn).dA(num.maxn,maxn). 

° d8(num,maxn,maxrn) 

C CCIIIIIDDII b10da 
common /CONSTII count .. ton:o.nc:,n,m.r.q.sr.sc.NI ,FNAME4 

COIIDIIOIl /CONST'1I CGA TE.dA.dB.WEIGHT.LA,LAB.S. KC 

common /RESULTI p.V .W ,aPe 

C Local ac:a1an 
iDIapr lJ,NN,L1W ,LRW .IBOUND.IFAn. 

cIoubIe precision PC.FO>RIG 

11llic8l OK 

c:baraeIiDr°l ANS,FNUM 
c:baraeIiDr"30 FNAMEI ,FNAME2,PNAME3 

C Local arrays. (1W(>NN+2).X(NN).RW(>120 NN+NN(NN-I)/2») 

..... 1W(100) 
dDubIo preciaian X(PNN).xORIG(PNN),RW(SOOO).BL(PNN).BU(PNN) 

daubIo camp/ll1I VORlG(IIIUII,ID&xn).KCORIG(JIlIlUJI,IIIaxn). 

• PORIG(maxm,maxn) 

C Ded_ ....... 1UlIprapams 

....... PUNcr1 

C SaIec:t COIl flacDioD 
priaI.,' , 
priaI •• 's-COIl fuDI:tian IIIIIIIbar (in .-a>' 
..... NI 

C .... tbt inIIW,.--- hili m. (nppliDd by MaIIab) 

PNAMBla ....... 11.-&· 

PNAMB1(1:1) • P 
PNAMB1(9:f) • Nl 
lID RDATA(PNAMBl.s .. ,ec,LA,LAB.COA~N 

C Check NN is sel to Ihc com:c:t value 

NN=PNN 
if (NN .nc.(r"(m-q)+q» Ihcn 

print·. 'PNN should be acito • ,(rO(m-q)+q) 

Ilop 

end if 

C Load l\art dala 

FNAMEI = 'cosll/llUldatall.maI' 

FNAMEI(S:S) = NI 
FNAMEI(16:16)" P 

FNAMEI(l7:17) .. NI 
call RSTART(FNAMEI.x.dA,dB.WEIGIIT,NN) 

C Selup paramcICn - scalan 

OK=.TRUE. 

lBOUND= I 

counl"O 
IIOIC = 99 

FNAMEI .. 'cosII/JAFlori,1 I.mal· 

FNAME2 = ·COSII/JAFlopI....ll.m.l· 

1'NA. .... E3 = ·JAFImp_orig.maI' 

FNAME4 = ·JAFtmp_opl.mal· 

FNAMEI(S:S) = Nl 

FNAME2(S:S) = NI 

FNAMEI(1S:1S) = P 
FNAME2(lS:IS) = P 

FNAMEI(l6:l6) = NI 

FNAME2(16:l6) = Nl 

C Sel up paramcICn - arr.y dimensions 

LIW= 100 

LRW=SOOO 

C Siore £roe paramcll:n 

dol=I.NN 
XORIG(I) = X(I) 

caddo 

C CalculalC criginal value or costf unclion 
print· •• , 

print·. 'Original values' 
call FUNCTI(NN.xORIG,FCORIG) 

C Siore criginal values or V and P 

do I = l,n 

do J = l.n 
VORIG(I) = V(I) 

end do 

end do 

dol .. 1,111 

doJ = I.n 
PORIG(I) • F(I) 

end do 

end do 

call CALCKC(n,m,P.W.KCORIG) 

C Siore cri&iu\ data in ICl1Iporvy file in cue propam abcnId 
call WORJG(NN,m,n,FCOllIG.XORIG,PORIG.VORIG,KCORIO.PNAMD) 
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dowbie(OK) 

IPAIL-I 

c:a1l B04JAP(NN.IBOUND.BL.BU .x.R:.IW.LIW ,RW.LRW .IFAIL) 

pr"-,' • 
....... 'Ori&iual Value : •• R:ORIG 

....... 'Weipted 0pIimaI Value: '.R: 

........ Ac:IuI 0pIimaI Value : ·.aPe 
prial* ••• 

c:ount-O _-99 
....... 'FmaI values' 

c:a1l PUNCTl(NN.x.Fc) 

OK-.PALSE. 

it (JPAlL.eq.O) tbDn 

....... 'B04JAF bu found a minimwn point. • 

ebeit(IPAIL.cq.l) than 

....... 'Par_outofranF.' 

aile iC (IF A1L..aq.l) tbDn 

... int ... '400"NN fwx:tion evaluatiOlll' 

print·,' • 

... int ... 'Reltart with aid X (yin) 7' 

~d·.ANS 

iC «ANS..aq. ·y·).or.(ANS.eq.'Y·» than 

OK-.TRUE. 

ondiC 

0110 iC(IPAIL.cq.3) than 

... int·. 'The oonditions for a minimwn ha \Ie not all been' 

... im". • .. tilflCd. but a lower point could not be found .• 

0110 if (lFAIL.cqA) than 

... im·. 'OverfIow haloec:urod' 

... im ... • • 

... im". 'Rostart with aid X (yin) 7' 

~".ANS 

Il «ANS..aq. ·y·).or.(ANS.eq. 'Y'» then 

OK-.TRUE. 

ondif 

ondll 
prinl*, •• 

... im". 'Save current parameter values (yin) 7' 

~d·.ANS 

Il«ANS..aq. ·y·).or.(ANS..aq.'Y·» then 

... im". 'Bntar rile nwnbcr (in quotel)' 

_d".FNUM 
PNAMBI(lO:IO) • FNUM 
PNAMB2(IO:IO) .FNUM 
call WORJO(NN,m,n,FCORIG.XORIG,FORIG.VORIG.KCORJG,FNAMEI) 

call WOPT(NN,m,n.PC.x.dA.dD.WEIGI-IT.F.V.KC.FNAME1) 

and If 
... in1 ... ' • 

and do 

IIIbroutino PUNCTI(NN.xC,FC) 

C Subroutine 10 c:aIc:ula. tha value of tha objoctiwe function 

C _lduaIs 

C Den.. panmDlOn 

..... _,aaxm,mur,maxq,maur ,m1llllC,mUCCIIlnt,n1llD 

C (_,aaxm,mur,muq • muilm&m vaI_ 01 parunctcn of system) 

C (_ • JIIIIIIbIIr of III1'OrI belna _idDrod) 

C (_.-.1MIlimwn dirMnaian of S.I(m-q).I(r-q») 
..-_ (_. 10. DalIIII • II. mur • II. muq .3. DIIII .1) 

..-_<_ .11. muac:. II) 

..-_ (mucount. 20) 

CC-..... 
..... sAfl¥,q, .... -t,11Df8 

...... preciIIaD aPe 

........ lNl 

......,.PNAMBC 

C Common urays 

inlcacr CGA TE(1NXJl) 

double precision S(maur,DaXX).WEIGI-ITO.IDUD) 

double comple" F(nwun,mun).V(mun.mun).W(mun,mam), 

• l.A(mun.mun,mam).LA8(IlIaltIl,InaltD), 

• Kqrnurn,mu.n).dA(I1WIl,DWlD,IIWa), 

dD(nwn,mun,mum) 

C Common blocU 

common /CONSTI/ colDll,lkm:.DI:,n,m.r.q.sr.II:.NI,FNAME4 

common JCQNST1I CGATE,dA,dB,WEIGI-IT,~B.s,KC 
conunon /RESULT/ F,V,W,aPe 

C Scalar ugwncnIJ 

integer NN 

double precision PC 

C Array ugwncDlS 

double precision xqNN) 

C Loca1 scalars 

integer I,T 

C Loca1 urays 

double precision V AL(mun),VEC(mun).VECSEN(num.mun) 

double complex V ALSEN(nulD,mun) 

C Declare externsllubproarams 

external DALEY,COSTI,COSTl,COSTI.COST4 

C Calculate OUtpul Cccdbac:k IISing appropriate melhod 

call DAl.EY(NN,xC,S .. r,sc,LAB,CGAlli,DI:,n.m.r,q.F,V.W) 

C Calculate K 

call CALCKqn.m.F,W,KC) 

C Calculate COli function 

if(NI.eq.'I') then 

C Eiaenvaluc diCCercnliaJ coil fuDl:lion 

call COSTI(n,m,V,W,KC,dA,dB,WElmrr,pc,aPe,VALSEN) 

else if (NI.eq.'2') then 

C EigeDllrUclUrc diCCerentiaI COlI function 

call COST2(n.m,F,V, W ,KC,tA) .AB,dA,dB,WElmrr ,FC,aFC, 

V ALSEN,VECSEN) 

elsc if(NI.eq.'3')then 

C Transient leSpanlC dirrcrcnlial COlI function 

call COST3(n,m,F,V,W,KC,tA,LAB,dA,dB,WEIGI-IT,FC,aFC, 

VALSEN,VECSEN) 

clac if (NJ.eq.'4 ') then 

C Cundilionina COlI funclion 

call COST4(n.V,W.WEIGm.rc,a1'C) 

elac 

print-. 'No othor COlI functions )CI' 

slop 

end if 

C Prinl PC .lIer acl number or itcnlions 

counl = COIIDI + I 

if (counl.gema"colIDl) 1hen 

counl=O 

prin'-, PC,' ',aFC 

end if 

C Slore mes aller 100 ilCralions 

slore = slore + I 
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if (1IIR.,e.100) then 

slore = 0 

call WOPT(NN,m,n,PC.xC,dA,dB.WEIGlrr .F.V .KC,FNAME4) 

)X'inl-, • t 

print·. ·S.wed data in IcIl1' mo' 
prina-, • I 

prilll·, PC,' ',aPe 
pin&.- I • , 

iC(NI.nc.'4') then 

... inl", 'Eipnvalue SoIIIitiviticl' 

dol.l.n 

VAL(I).O.O 

doT-I.llllm 

VAL(I). VAL(l) + 
.. aqr(1NI(V ALSEN( 1.1)·canja{V ALSBN(1 ,I)) 

and do 

oncIdo 

p-_ 10,(VAL(I).I. I.n) 

p-_ 10,(WEIGlml)·VAL(I).I-l,n) 

AppendixB 



if «NI.cq. '2').ar.(NI.cq.'3 '» li&n 

pr ... , 'BiFn~ Sen.itivilie.' 

do 1-1,11 

VEC(I)-O.O 

doT-I,DWD 

VEC(I) - VEC(I) + VECSBN(T,I) 

Cllddo 

auddo 

pro. 10, (VEC(I),I = I,n) 

pro. 10, (WEIGIrr(l + 2·n)·WEIGIrr(l+n)·VEC(I),1 = I,n) 

Clldif 

10 lomw(IOOI2A) 

I1&broutinD CALCKC(n.mJ',W,KC) 

C SubroutiDo to calc::lIlatc Ii& alp feedback malrill 

C Define JlUUllDten 

inlDpr _,mum 

JlUUllDIIIr (IIWUI = 10, maxm = 9) 

C Scalar argllllllmll 

_prn,m 

C Anay argumenta 

double c:omplDll F(maxm,maxn),W(maxn,maxn),KC(maxm,rnaxn) 

C Loca1 .cal_ 

integor I,J,K 

C c.1c::ulatc KC, millt F and W 

do I-I,m 

doJ.I,n 

KC(I.J) = dc::mpbt(O.O.O,O) 

do K -I,n 

KC(I,J) - KC(I,J) + F(I,K)·W(K) 

auddo 

and do 

IIDd do 

rctwn 

IIDd 

The parametric state space design is performed by the 
routines in the file DALEY.F. This includes the routines 

for the calculation of an accurate inverse and the null 
space of a matrix via the singular value decomposition 
(SVD) 

I1Ibro1IIinD DALBY(NN .xc,s .. ,Ie:,lJ\B,COA TE,nc::.n.m,r.qJ'.V.W) 

C DIIIy'I _Ibod fIl o/p fDcdbaclc: dc.ian 

C DefiDI JlUllllDIIIn 
inlDpr 1IIUII,mum,mu .. ,max.e: 

cIoubIo pnc:Iaian _0 

C (_,mum -muimwn valllCl oCparanaten oCly.tcm) 

C (-,IIIUIC -muimwn climcnion fIl S.I(m-q).I(r-q» 

JIUIIIID- (mun - 10. mum - 9) 

JIUIIIID'" (_ - 81. maue: • 81) 

JIUIIIID- (_10 - 0,0) 

C War...-
_ .. NN .. ,II:,II,IIl,r.q.nc 

C ,..., ......... 

..... COA113(-a) 

cIoubIa ...... XC(NN).S(mu_'-> 

........ -.Ia. LAB<mun,mun,muIa). 

• P(mum,mun).V(IIIUII,IIIUII),W(mun,lllUll) 

C LoaII ..... 
..... I.J.K.DIM.RANK 

C Loca1 array. 

dollble p-c::c::ision GA.\t\fA(maxsr),spcr,(maxm,llWUll), 

• ~1D&JUD.mum) 

C c.1culalC pmma &1lOJ Ibc nllll ,pace: of zcla 

dol=I, .. 

GAMMA(I) = 0.0 

do J = I,ac: 

GAMMA(I) = GAMMA(!) + XC(J)"S(I) 

cnddo 

end do 

C Exlral:t FI from pmma 

call CALCFl(GAMMA,COA TE,nc::,n,rn,r,q.F) 

C c.1cu1alC Ii& fU"JI r \ICC"'" of V 

dol = I,r 

doJ=I,n 

V(J,I) = LAB(I),I)"F(I,I) 

do K =2,m 

V(J,I) = V(J,I) + LAB(I),K)"F(K,I) 

cnddo 

end do 

end do 

C c.1cu1alC Ii& remaining F \lCctan 

C A.IWIICI that all poICi auoc:iatcd with F'2 _ n:aI 

do l"I,q 

C Cale:ulalC Zi u a real malrill 

c:aJ1 CALCRZ(LAB,F,V,I+r,rn.r,RZ.l 

C Find the nllll space: of RT 

c:aJ1 CALCSVD(RZ,rnaxm,rnaxm,m,m,DIM,RANK,s~) 

if (DIMJt.l) then 

print·, 'Error in DALEY' 

prillt·, 'No 111111 space: ex i .... for ,,' 

'top 
end if 

C IlpdalC F· UlllffiCl all poles UlocialCd with F2 _ n:aI 

doJ = I,m 

F(J,r+!) = dcmplx(XC(r"(m-q)+I)·SPCE(J,I),-o) 

cnddo 

end do 

C CaicwalC the remaining V YCC\(JIS 

dol =1+1,0 

doJ .. I,n 

V(J,I) = LAB(I).I)"F(I,I) 

do K .. 2,m 

V(J,I) = V(J,I) + LAB(I),K)"F(K,I) 

end do 

cnddo 

end do 

C c.1cu1alC W = iov(V) 

call CALCINV(V,W,maxn,n) 

relllm 

end 

Ilibrolitine CALCF! (GAMMA,CGA TE.nc,n.m.r,q.P) 

C Silbrolitinc 10 ClItract the P! \lCc:un Crom pmma for rcaJ or 

C c:omplDlt polol 

C Scalar arglllllCDlll 

integer n,m,r,q.nc 

C Ana" arglllDCllll 

-aer COATE(IO) 

dollble ~It P(9,10) 

dollble prociaian GAMMA(81) 

C LcallQIJus 

inIIIacr I),POSREAL,POSIMAG 
double proc:ilicIIl1ERO 

C LcaI arraY' 
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C Oem. .wtlua poilU 

POSREAL-O 

POSIMAO-O 

do I-I" 

if (OOA "ffi(I).eq.O) then 

POSIMAO - POSIMAO + m 

mdif 
ClDddo 

C Due fA) ordDriua ofpolc let (i.e [~Icx real», we know 
C lbat the rD'. 1IIIIDC~lcx po1ca _ compJcx 

C complex po1ca rn 
do I - 1..,,2 
doJ-1,m 

FQ,I) .. CMPLX(OAMMA(J+POSREAL),GAMMA(J+POSIMAG» 

pu,I+I) -CONJG(P(J,I» 

aaddo 

POSREAL. POSREAL + m 

POSIMAO - POSIMAG + m 

ClDddo 

C Now real po1ca 
lBRO.O.O 

do 1-111:+1,1 

doJ .. 1,m 

pu,I) = DCMPL.X(2.0·0AMMA(J+POSREAL),ZERO) 

IIIJd do 

POSREAL - POSREAL + m 

CIDd do 

IUbroUlinD CALCINV(A,B,MAXN,N) 

C IUbroutinD fA) calculate the inverIC of a complex matrix A 

C UId ltore the !eIIull in B 

C Scalar araumclll8 

_pr N,MAXN 

C Array argwncnll 

doublo compJcx A(MAXN,MAXN),D(MAXN,MAXN) 

C LocaJ lcal_ 

_prl,J,rrS,IPAn..,ID 

double pnciIlm D 1 ,BPS 

C LocaJ uraY' 

cIoublo prociaillll RA(20,20),AA(20,2O),RB(2O,1 0),BB(2O,10), 

• RHS(20,10),I'(2O) 

C Dod_ cxlDmal functions 

cIoublo prociaion X02AAP 

C DIIIrmino BPS 

BPS - X02AAF(O.O) 

C Sot up .-1 matrix RA colllilting of the real and imaginary 

C ,..,.or A 

do 1-1,N 

dol -l,N 

RA(I» - ..J(A(I») 

MCI» - RA(I» 
RA(I,J+N) --dImaa(A(I)) 

MCI)+N) - RA(I)+N) 

RA(I+N» - dimq(A(I») 

MCI+N» - RA(I+N» 

RA(I+N )+N) - ..J(A(I,J» 

MCI+N)+N) - RA(I+N)+N) 
_do 

_do 

C Sol up tho ,... ..... 1idD CXlllliIIlIIa or tbo NxN idamay 
C matrix IDd a .ro Woc:k 

eID 1-1,N 

elDl -1,N 

if (1.eqJ) then 

RHS(I,J) - 1.0 .. 
RHS(I,J) - 0.0 
_If 

RHS(I+N) = 0.0 

cnddo 

cnddo 

C SOLVE RA.RB = RHS 

C Paaoriac: RA inIo upper and lower tnincJulat matric:a 

IFAIL= I 

call FOJAFF(2·N,EPS,AA,2O,D1.ID.P,IFAn.) 

if (IPAR...nc.O) Ibm 

p'int·, 'Error in CALCINV' 

p'int·, 'P03AFP failed to find. soIn, IFAIL = ·,IFAn. 

IIop 

end if 

C Salve equation to rmd invcnc 

IFAIL= I 

AppendixB 

call F04AHF(2·N,N,RA,20M,2O,P,RHS.20,EPS,RB,20.BB,20.rrs, 

• IFAIL) 
if (IFAn..nc:.O) then 

p'int-, 'Error in F04AHF' 

llop 

cndif 

C Extract real and imaginary pans from RB 

dol = I,N 

doJ=I,N 

B(I,J) = QIIp1xCRD(I),RD(I+N)) 

end do 

end do 

rcluMi 

end 

lubrouliD: CALCRZ(LAD,F,V ,II,m.r,RZ) 

C Subroulinc 10 c:alClilatc RZ 

C Auumcs lhalthe poles usoc:iatcd with F2 arc real 

C Define parunctcn 

integer maxn,maxm 

double p'cciaillll zero 

C (malUl,nwtm' maximum value. ofparametcn ol'lY'tcm) 

C (zero. maximum value for a number to be COIlIidared zero) 

parameter (1IWUl .. 10, maxm .. 9) 

paruncter (zero = le·IO) 

C Sc:alat atgwocnll 

inteacr lI,m,r 

C Array argwncnll 

doublo prociaion RZ(maxm,maxm) 

doublo complex LAB(IIWUl,DWID,nwtm), 

F(maxm,DWID),V(maxn,rnaxn) 

C LocaJ aca1an 

intelIII' U,K 

C LocaJ uraY' 

double complex iVII(IIWUl,DWID),2(maxm,IIIIIlUD),n(maxn,maxn) 

C Calc iVII 

call CALCINV(V,iVII,DWID,r) 

C Calculate Fl-iVII, resull in TI 

dol.l,m 

doJ .. 1,1 

n(I,J)-o.o 

do K = I,r 
T1(I,J) .. n(l,J) + F(I,K)-iVII(K) 

cnddo 

cnddo 

end do 

C Mullresull by LAB, !eIIul1 in Z 

dol=l,m 
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doJ.I,m 

1~1)-0.0 

do K -1,1 
~I) - ~I) + Tl(l,K)-LAB(II,K) 

end do 

end do 
onddo 



c Sublnct JaUlt tram _Dtity marrix 10 Jive Z 

."1,111 
.J-l,m 

if (I.eqJ) bn 

7.(1) .. cIcaIplx(l.o,O.O) - 7.(1) 

cbc 

7.(1) = -7.(1) 

and If 

C a-It imI&irary put is zero IDd -ian RZ 
If (dlmaa(Z(I)).&Lzcro) bn 

prial., 'm.,inary put of Z is not zero' 

p'inl· , dimq(7.(I)) 

IIop -RZ(IJ) - JNl(7.(I)) 

and if 
and. 

and. 

nbroutine CALCSVD(A,AM,AN .M,N,DIM,RANK,SIU) 

C Subroutine 10 calculate the null or ranac space oC a marrix 

C lIIma the svd, which is calculated by fll1din& the ei&cnveclon 

C ofA·AtandAt·A 

C Define puamet.en - (maximum dimensions of A) 

iDlDaor maxm,maxn 

pumlD1Dr (mum. 50, maxn .. 50) 

C Scalar arcurnmta 

iDlDaor M,N,AM,AN,DIM,RANK 

C Array arcurnmta 

double p-eciaion A(AM,AN),SPCE(AN,AN) 

C Loc:aI sca1an 

iuII:&er I), K,IP AIL 

double p-eciaion BPS,TOL 

C Loc:aI array. 

double p-ecisiOll AT(maxn,rnaxm),AA(maxn,maxn), 

• V(maxn,maxn),EIG(maxn),WKSPCE(maxn) 

C Set Dp&ilon the smallest number 

BPS -lB-7 

C find IrINpO& DC A 

dol-I,M 

dol-l,N 

AT(J,I) - ACI) 

aad. 
aaddo 

C c.Jc:V,rmclA'·A 

do l-l,N 

.J-l,N 

AA(I)-O.O 

doK -1,M 

AA(I) - AA(I) + AT(I,K)·A(K) 

aaddo 

oneIdo ead. 
C find _rrix ofrlahleipnvec:lcn - V 

FAIL-I 
CIIl F02ABF(AA,mam,N,BIG,V,mull, WKSPCE,IPAIL) 

II (IPAIL.IID.O) dan 

p'1nI., 'Brror in CALCSVO' 

...... , 'Pailed 10 lind thD eipnllnlCllln of AlA' 

IIap 
_II 

C c.J ..... da rut -.... OIIeipnval_ wblc:b _ thD 

C ... of ... "alar YIl_. 1'hlI_1O live bDWlr 

C -aI.1II11 
1'01. - ..x(M,N)·IIpt(EJO(N»·BPS 

RANK-O 
.I-I,N 

1I(B1O(1).,at.BPS) .... 

1I(...,u~I)~11)L)thDn 

RANK = RANK + I 
end if 

end if 

end do 

C Return the null spea: of A 

do I = I,N-RANK 

doJ = I,N 

SPCE(J,I) = V(J,I) 

end do 

end do 

DIM=N -RANK 

~turn 

end 
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The cost functions and all associated routines are in the 
file CFUNC.F 

subroutine COST1(n.m,V.W ,KC,dA,dB, WElmrr ,FC,aFC,V ALSIiN) 

C Subroutine 10 calculate II .. COlt runction balCd on ei&envalua 

C ICnsitivities 

C Define parunclCn 

integer ... axn,mllJlm,nurn 

C (maxn,maxm - maximum val .... of parunct.en olsy.t.em) 

C (num - number DC etTora beina considcrod) 

paruncler (maxn .. 10, mum = 9, Dum -I) 

C Scalar argumenLl 

inrcger Il,m 

double precisian PC,arc 

C ArrayargwncnLl 

double precisian WEIGIIT(3·maxn) 

double complex V(maxn,maxn),W(maxn,maxn),KC(mum,mun), 

• V ALSEN(num,maxn),dA(num,maxn,maxn), 

dB(nwn,maxn,maxm) 

C Local scalan 

inteaer I,T 

double precision TE MI) 

C Calcularc oigenvalua ICnsitivities 

call EIGVALCn.m,V,W,KC,dA,dB,VALSEN) 

C Calcularc ~iduall 

pc .. o,o 
arc .. 0.0 

dol=I,n 

doT= I,Dum 

TEMJ> = ~al(V ALSEN(T,I)·conjg(V ALSEN(T,I») 

PC = PC + WElmrr(l)-TEMJ> 

aPe = aPC + IEMJ> 

end do 

cnddo 

~tum 

end 

subroutine COST2Cn,m,F,V, W ,Kc,LA,LAB,dA,dB,WEIGHT ,PC,IPC, 

• VALSEN,VECSEN) 

C SllbroUlinc to calculall: the c:uIl function buDd 011 eipwaI­

C and oigcnveaor lOIIIitivitiea 

C Denno pararnot.en 

inlcaer 11l&lIII,maxm,num 

C (mam,maxm-maaimwnval_ol .......... ol.,-m) 

C (_ - IlIImbor 01 CI1'OI'I -ina coraidDnldl 

pumlDlIIr (IIIUD • 10, maam - 9, IIIlIII • 1) 

C Scalar araumenu 

inleaer n,m 

double p-eciaiaa PC,afC 
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C AIrrf.,.-
double JRCiaiaa WEIGHT(3'mun),VECSEN(DIUII,IIWUI) 

double c:ompIDx P(mum,mun),V(mun,mun),W(maxn,maxn), 

• 
• 
• 

LA(1IW.1ID m'm,mun),LABCIJIUJI,IIWUl.,R), 

KC(mum,mun),V ALSEN(nwn,maxn), 

dA(nwn,maxn,maxn),dB(nwn,maxn,mum) 

C LocaIIC:aI .. 

_prlJ,T 
double JRCiaiaa PCl ,aPCl,PC2,aPC2, TEMP ,NORMV ,NORMW 

C Local uray. 
double complex VSEN(mun,mun,mun),WSEN(nwn,maxn,maxn) 

C Calc:u1all: cipvaiuc lCIIIitivitiA 

call EIGV AU.nlD,V ,W ,KC,dA,d8,V ALSEN) 

C Calc:u1a11: cipnvcc:t« lCIIIilivilic. 

call EIGVBC(n,m,P,V,W,KC,LA,LAB,dA,dB,VALSEN,VSEN,WSEN) 

C Calc:u1a11: the DOmUI or each acl of lCDIitivily vecton 

dol-l,n 

do T = 1,IDIID 
NORMV=O.O 

NORMW .. O.O 

doJ .. l,n 

NORMV - NORMV + (rcaJ(VSEN(T) ,1))"2.0 + 

• dimaa(VSEN(1' ),1)"2.0) 

NORMW .. NORMW + (reai(WSEN(1',I))"20 + 

• dimal(WSBN(1',I))"2.0) 

cnddo 

VECSEN(T,I) .. cllqrl(NORMV) + diqrl(NORMW) 

IIIUI do 

IllUldo 

C Calc:u1all: function· ei,cnvaiuci 

PCl.O.O 

&PCl .. 0.0 

do I-l,n 

do l' • l,lDIID 
TEMP -11Ia1(V ALSEN(T,I)'conjl(V ALSEN(1',I)) 

PCl • PCl + WEIGHT(I)-TBMP 

&PCl .. &PC1 + TEMP 

tmddo 

cnddo 

C Calc:u1all: function· ci,envcC:lorl 

PCl.O.O 

aPCl.o.O 

do 1-1,n 

do T. 1,_ 
PCl. PCl + WEIGHT(I+n)'VECSEN(1',1) 

aPCl. aPCl + VECSEN(T,I) 

cnddo 

IIIUI do 

pc. PC1 + WEIGKf(2'n+ l)'PCl 

&pc. &PC1 + aPCl 

lIIImIutinl COST3(DID'p,V ,W ,KC,LA,LAB,dA,dB,WEImrr ,PC,&PC, 

• v ALSBN,VECSEN) 

C SulmJulinD ID calc:ulall: tbI COIl fImc:tion bued on lI'UIIiant 
C pDriInnua uainaeipnvaiuc Uldeipnvec:lor lCIIIitivitiA 

C DefIDe,.... ... 
..... __ -XID,JIIlPI 

C (-.a-':: auimwn val_ of JIUUIID'" of 1y.IIIm) 

C (IIIID • IIWIIber of emn "ina COIIIicIDred) 

JIUUIID-(_. 10, _II1II • 9, IIIID • 1) 

C Array U,WDCUs 

double pn:c:iaioo WElmrrO'mun),VECSEN(IIIIIII,IDUII) 

double complex F(1DUIIl,IDUII),V(muO,mun),W(IIWIIl,IDIWI), 

lA(mun,maxn,IDIWI),LA8(mun,rn&U>,IIIUI), 

, KC(mumlDUD) ,V ALSEN(nwn,mun), 
, dA(nwn,maxn,maxn),dB(nwn,mun,m'.m) 

C Loc:aJ scalars 

-Ier I,T .x, Y 
double pn:c:iaiaa Fel .aPCl,FC2,aFC2, TEMP ,NORM 

C Loc:aJ arraY' 
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dollble complex VSEN(nwn,mun,maxn).WSEN(nwn,mam,mun). 

, Tl(maxn,maxn) 

C Calc:u1alic eiacnvaiuc 8CDIitivitics 

c:aJ1 EIOVALCn,m,V,W,KC,dA,d8,VALSEN) 

C Calc:u1a1ic eiacnvCClor acnsitivitiA 

call EIOVEC(n,rn,F,V,W,KC,LA,LAB,dA,dB,VALSEN,VSEN,WSEN) 

C Calc:u1alic !he oonn or the vector lCIIIitivily IDalria 

do 1 = l,n 

doT= l,nwn 

C Calc:u1alic rnalria • dVi " Wi!, ,lore in Tl 

doX .. l,o 

doY=l,o 

TI(X,Y) .. VSEN(1' .x,I)'W(I,y) 

end do 

end do 

C CaicuialC rnalrix • dVi" Wil + Vi x dWil, IlUftI in Tl 

doX .. I,n 

doY=l,n 

TI(X,Y) =Tl(X,Y) + V(X,I)'WSEN(1',I,y) 

cnddo 

cnddo 

C Calc:u1alic oonn • Ellclidcan nonn 

NORM .. 0.0 

doX .. I,n 

do Y= l,n 

NORM = NORM + (rcal(Tl(X,y»"20 + 

, dimaa(1'l(X, Y»"20) 

end do 

cnddo 

VECSEN(1',I) .. dsqrl(NORM) 

cnddo 

end do 

C CaicuialC function· ei,cnval IICI 

Fel =0.0 

aPel .. O.O 

dol=I,n 

doT .. l,nwn 
TEMP .. rcal(V ALSEN(1',i)"conjlev ALSEN(1',I)) 

Fel = Fel + WEIOHT(I)-TEMP 

aPCI = aPel + 'roMP 

end do 

cnddo 

C Calculalic function . ci,cnvcc:tOl'l 

FC2=0.0 

aFC2 .. 0.0 

dol =I,n 

doT= I,nllm 

1'(,'2 = I'C2 + WEIOIIT(I+n)'VECSEN(1',1) 

aFC2 .. aFC2 + VECSEN(1',I) 

end do 

cnddo 

pc .. Fel + WEIGHT(2'n+l)'FC2 

aPe • aPel + aFC2 

I1Il11m 

8IIbrolllina COST4(n, V ,W,WElmIT,PC,aPC) 

C Subroutina ID c:aJcu1a11: IIw COIl Cwx:tion t..d on IIw 

C cxnIilionin, of the malria of eigenVCClorS 
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C DcfiDc parIIIlDtcn 

-pr 1IIUD,IIIUIl 

C (IIIUD - muimam vaI_ of paranztcn of tyRm) 

C (DUD - mamber of orron being COIIIidcrcd) 

panDlDlIIr (mIUIII- 10, DUD = 1) 

C Sc:8II1' II'IWJICIII8 

-Fn 
doable preciaica pc,aFC 

C Azray II'gumenll 

doable pnciaica WBIGHT(3·mun) 

double complex V(mun,maxn),W(mun,maxn) 

C Local acalan 

-FI) 
double preciakm NORMV ,NORMW 

C Local anaya 

cIoubIo c:ompIex TEMPV(maxn,maxn),TEMPW(maxn,maxn) 

ul&llmJ CALCJNV 

NORMV .. O.O 

NORMW.O.O 

do I-l,n 

dol -1,0 

NORMV - NORMV + (real(V(I))··2.0 + imag(V(I))"20) 

NORMW - NORMW + (real(W(I,m··20 + imaa(W(I))"2.0) 

IIDCl do 

IIDCl do 

PC -ICJ&{NORMV + NORMW) 
'pc.pc 

ftltwn 

IIDCl 

IlibrolltioD BIGV AL(n,m,V.W,KC,dA.dB,V ALSEN) 

C SlIbrolltioD to calculate the cigclIYalue lCIIIIiliviticl 

C Doflllll paranztcn 

_lor maxn,maxm,nllm 

C {maxn,maxm. maximllm values ofparuncterl oflyatem} 

C (Dllm - Dllmber oC errors being considered) 

paranztcr (maxn = 10, maxm = 9, nllm = I) 

C ScalII' .... wncn!a 

_prn,m 

C Azray II'lumenII 

dollble complDx V(mlWl,mIWl),W(mlWl,maxn),KC(maxm,maxn), 

• V ALSEN(nwn,maxn),dA(nllm,mIWl,maxn). 

- dB(nllm,maxn,maxm) 

C Local acalan 

_prIJ,K,L,T 

double c:ompIDx TEMP1(maxn,mIWl),TEMP2(maxn) 

doT-l,DIIm 

C Calculate dAl + dBl+KC • Ilore in TEMPI 

doJ -I,n 

doK -I,n 

TBMP1(J ,K) • dA(f) ,K) 

doL-I,m 

TEMPl(J,K) - TEMP1(J,K) + dB(f ),L)·KC(L,K) 

onddo 

IIDCldo 

end do 

do 1-1,11 
C Calcula .. Wi __ ull- lten in TEMPl 

doJ -1,11 
TBMP2(J) - cII:qIIx(O.O,o,o) 
doK-l,D 

TEMP2(J) - TEMP2(J) + W(I,K)-mMP1 (K) 

end do 

end do 
C CalculaID -w1-VI- lten in VALSEN 

V ALSBN(I',I) - dcqIIx(O,O,o.O) 

doJ -1,11 
V ALSBN(I' J) - V ALSEN(f ,I) + TBMP2(J)-V(J,I) 

end do 

cnddo 

end do 

... tum 

end 
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IIlbroutinc ElGVEC(n,m,F.V.W.KC,lA,LAB.dA,dB,VALSEN.VSEN.WSEN) 

C Subroutine to calc:u1a1oC the eigenvalue ..... itivitica 

C ... fen:na: • own derivation and CrouIey and Ptwtu 

C Dcfmc parunclCrl 

integer maxn,maxm,nwn 

C (maxn,maxm • maximum valuca or paruncll:n or ayall:m) 

C Inurn· number or crrora being considered) 

parunclcr (IIWIJI = 10, II\IJUtI = 9. DUm = I) 

C Scalar argWDCllla 

_ger n,m 

C Array argWDCllla 

double complex F(nwun,maxn). V(mllln,maxn),W(maxn,maxn). 

LA(maxn,maxn,mllln).LAB(maxn,mllln,maxm). 

KC(maxm,maxn).VALSEN(num,mun), 

VSEN(num,maxn,maxn). WSEN(nwn,maxn,maxn). 

dA(num,maxn,mLUl).dR(num.maxn,maxm) 

C Local .wan 
inlCgcr I,T,x. Y.Z 

C Local arrays 

double ""mplc" Tl(maxn,maxn).T2(maxn,maxn) 

C Calc:u1alC thc scnsitivity of thc right eigc:nYllClCn 

doT .. I,num 

dol= I,n 

C Cn:alc diagonal malrix of eigenvalue scII.itivitica 

do X = I,n 

doY=I,n 

if (X.cq. Y) Ihell 

Tl (X ,y) = dA(T ,x,Y). VAI.SEN(T,I) 

elsc 

TI(X,y) .. dA(T ,x,Y) 

end if 

c:nddo 

c:nddo 

C Mull LA by TI ..... ult in T2 

doX .I,D 

do Y = I,n 

T2(X,y) =dcmplx(O.O,o.o) 

doZ=I,n 

T2(X,Y) .. T2(X,y) + LA(1,x,Z)-TI(Z, Y) 

c:nddo 

end do 

end do 

C Mult .... wcr. T2 by LAO ..... ult in Tl 

doX = I,D 

doY=l.m 

TI(X.y) = demp1x(O.O.o.o) 

doZ=I,D 

Tl(X,y) .. TI(X,y) + T2(X,z)·LAB(I,z,y) 

cnddo 

cnddo 

cnddo 

C MIIIl LA by dBt and add to TI - .... ull in TI 
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doX al.D 

doY-I,m 

doZ-I,D 

TI(X,y) a TI (X ,y) • LA(I,x.Z)·dB(f,l, Y) 

end do 

end do 

cnddo 



C Malt..wt, T1 by Pi - _1111 in VSEN 

doX-l,11 

V5EN(T )(.1) .. dc~bt(O.o,o.o) 

doY-l,m 

V5BN(T )(.1) '"' VSEN(T )(.1) + TI ex, Y)°P(Y ,I) 

ado 

ado 

ado 

ado 

C HcuIlc c:alc:ulal.e IhD lCmitiVily of IhD left eigcnrows 

c:a11 CWSBNCW,VSEN,WSEN,n) 

IlIbroutiDI CWSEN(W, VSEN,WSEN,n) 

C IlIbroutiDIIO c:alclllaIC WSEN 

C Doh panmclcn 
_ ... 1IIUD,IIIlID 

C (_ - muimwn values oCpal'Ul'letcl'S oCsyatcm) 

C (IIWII- number oC crron being considered) 

panmctcr (mun ,. 10, num = 1) 

C Sc:alar arllUllenla 

_prn 

C Azray arlUlllCDla 

double complex W(lIWIn,lIWIn),VSEN(num,maxn,maxn), 

• WSEN(num,maxn,lIWIn) 

C Loca1 sc:alars 

iDlepi' I,J,K,T 

C Loca1 arraya 

double co~lex T1(mun,maxn) 

doT-l,num 

C MIIII-W x dV,/NullinTl 

dol-l,n 

doJ -l,n 

Tl (I,J) '"' ~(O,O,O,O) 

do K -l,n 

TICI,}) • Tl(1,J) + W(I,K)OVSEN(T,KJ) 

end do 

T1(1,J) - -TICI,J) 

end do 

end do 

C MIIIITlxW,n:sIllIInWSEN 

dol-l,n 

doJ -l,n 

W5BNCT,I,J) '"' de~btCO,O,o.o) 

do K -1,11 

WSENCT,I,J) - WSEN(T,IJ) + Tl(I,K)·WCKJ) 

end do 

ado 

_do 

end do 

The routines required to read PRO-MA TLAB format 

flies are in the file INPUT.F 

III1IIoIatIn. RDATA(lDamc,5.."c,LA.LAB,COATE,nc.n,m.r,q) 

C SubroudnD ID _d IhD clala auppliDd by MA TLAB 

C o.&a...,..1Im 
.... -.-am.--,muac 

c (-,mum - mulmum wI_ 0I..,..1IIn 01 ayaIDIII) 

C faaur,IIIU8C -...m.un .... iaa 01 5) ..--(muD -10. __ - II) 

..-_<--11,---11) 
c ....... _ 

..... -,IC,JIC,IIJDofA 

C Azray argWDCllls 

intcpr CGA TE(mu.n) 

double p-ccisioo S(nww,IIWIX) 

double cnrnnle" l.A(DW.l< ----,. 1l,DWaI,mun),LA8(mnn mun _un) 

tharactcr"30 Cnarnc 

C Loc:a1lc:alars 

inlcgcr hmit,in:c:,row ,col,!) ,K 

C Loc:a1arraya 

double prcc:isim TEMPR( l,nww) 

double comple" TEMPC(DW.l<n"nwm,mu.n) 

C Open file 

lunil= I 

in:c: = I 

opcn(UNIT =Iunit, FILE = Cnarnc, STA11JS = 'old', 

• FOR."" = 'uoConnat!cd', ACCESS = 'din:c:t', REa. -I) 

C Load ac:alars 

c:alI FIinI(nc:JIlDiI,in:c:) 

c:all Flinl(nJunit,in:c:) 

c:all Flinl(mJunit,in:c:) 

c:all Flinl(r Junit,in:c:) 

c:all Ftinl(qJunit,in:c:) 

C Load arraya 

C eGAn; 

c:all Ftma~TEMI'R,1 .maxn,row,c:oljunit,in:c:) 

do I = I ,col 

eGA TE( I) • inl(l100>R(l,I» 

end do 

e S 
c:all Ftma~ S ,max.r ,musc:.., ,x,l unil,in:c:) 

e LA 

c:all gc tmalc:(TEMI'C,maxn "maxn ,maxn,row ,coI,Iunit,irec:) 

do I = I,n 

doJ = I,n 

doK .. I,n 

LA(I),K) = 'rnMPC(J+(i·I)·n,K) 

end do 

cnddo 

end do 

e LAB 

c:all Ftmalc:(TEMPC,nww "maxn ,maxn,row ,coI,lunit,in:c:) 

dol .. I,n 

doJ=I,n 

doK.I,m 

LAB(IJ,K) -TEMPC(J+(I·I)·n.K) 

end do 

end do 

end do 

e OOle me 
c:loscClunit) 

n:1IUn 

end 

lubroutine RSTART(Cnarnc)c.dA,dB,WEIGHT,NN) 

C Subroutine 10 _d IhD clala supplied by MA TLAB 

C DcflllC p!lI'UI'Ielm'l 

intcpr mu,nww,maxm,nwn 

C (max· maximum IIIlJDbcr 01 variablelC> 6°mun») 

p!lI'UI'Ietcr (max • 100, maxn • 10, mum - ,I, liliiii • I) 

C Sc:alar arlumcnla 

_prNN 

C Azra'Y arallll1Cllll 
double proc:iIim X(NN),WEIGIITpomaxn) 

dollble complu dA(DIlIII,naan,maxn),dB(lIIIJD,naan -m) 

dwao:tct"30 Cnarnc 

C Local sc:alars 

_pr hlllit,in:c:,roW,c:oI,IJ,K 

C Loc:a1 arraya 

double proc:iIim TEMPR( I,IOU) 

double llOIIlpCa n.MPQlIIIIDomaxn,maan) 
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c ap..m. 
IlIIIit -I .-1 
as-(UNrr -11IDit, PIlE - rn.m:, STAllJS = 'old', 

• PORM ~ 'UDCormatted·. ACCESS = 'diR:c:t'. REeL. = 1) 

c X 
callptmU(1'BMPR,1 P»A~aw ,col)unit,ircc) 

dol-l,cd 

XCI) - TEMPR(l,I) 

ODd do 

C dA 

callptmatc(TBMPC,nwn~P»An,row ,cd,lllllit,ircc:) 

dolal,Dl1D 

doJ '" l,ruw/Dwn 

do K -I,cd 

dA(I),K) -TEMPC(J+(I-l)·row/nu.m,K) 

GIld do 

ODd do 

end do 

C dB 

c:a1lptmatc:(TEMPC,nwnomaxn,nwm,row,coI,lunit.irce) 

dol-l,nwn 

do J .. l,row/Dwn 

do K -I,cd 

dB(I) ,K) '" TEMPC(l+(l-1 )"row/nu.m,K) 

ODd do 

ODd do 

ODd do 

C WRIGHT 
c:a1l ptmall(TEMPR,l ,max~ow,col,lunit,ircc) 

dol-l,cd 

WBIGHT()) - TEMPR(I,I) 

ODd do 

C a~file 

do.(lunil) 

IUbroIItinD ptmatc(A,ar .. c~w ,col)unil,ircc) 

C Subroutine to load a c:omplox Ola!rix Crom a madab file 

C Dec:lan JlUUllDIon 
_prrcmu 

cIaublo proc:Wan &01'0 

C (n:mu. maximum valuo of row. "col. of A) 

JlUUllDIcr (rc:max '"' 1000, zero = 0.0) 

c Sc:a1u~ 
_pr u,M:,IUw,col)unit,ircc 

C lizrt.'1I1'1\111101l111 
cbabIo coqaIDlI A(u,ac) 

C t.oc.llCllan 

-pr 1J,!JpI,lmaaf,m,n)on,rdflaa 

C t.oc.l am'll 
double pecialoa RA(rcmu),lA(rcmu) 

cb8rKaDr-lO_ 

C LaM _Irla &am rdo 

caU LOADMA'J'(!JpI,ID,II,imaaC,Ioa,namo,RA,lA)IIIIiI,nc.rdflaa) 

If (rdIla ..... O) thin 

prial., 'PaW to load ClClIqIIDII rnalrill Crom rllo' 

IUIp 

llldif 

C a.ck 1f_1ria """"'11 
IfCImqf ..... O>tllau 

..... ' 'WUDiaa : '.-,' "DIll coqaIDa' 
IIIdIf 

C CmIIrua aaual complex malrill 

dol=l.n 

do 1= l.m 

if (ima&C .cq.0) then 

A(I) = dcmpix(RA(I+(J- Wm).llCro) 

dlle 

A(I) = dcmpix(RA(I+(J-I)-m).lA(l+(J.I) .... » 
end if 

cnddo 

cnddo 

row=m 

col=n 

ft:tum 

end 

IUbroutinc Ftmab(A,ar •• e~w.colJunit.irce) 

C Subroutille to 100d a n:al malrill from • mad.b [ale 

C Declare paramc\cn 

integer remIX 

C (remIX' maximum value of rows·col. of A) 

paramclCr (rcmax = 66(0) 

C Scalar argWDCllla 

inlCger ar •• e,row.col) unit.irce 

C Arr.y argwncnll 

double prcciaiOll A(ar •• e) 

C Loc:aI ac:a\ara 

inlCger 1,J.typc,imagf,m,n)ell.rdfl.g 

C Local ur.ya 
double prcciaiOll RA(n:max).IA(n:max) 

c:hanelCr·lO IIIIIIC 

C Load m .... iII from [ale 

call LOADMAT(typc.m,n.ima&f.lcn,nam:.RA.IA)unit.irce~dfl.g) 

if (rdfl.I.ne.O) then 

print·. 'Failed to 100d _I m .... ix from fIIc' 

stop 

OlId if 

C Construct actual ft:11 m .... ix 

if(imaar.nc.O) then 

print". 'Failed to extract malrill U 1101 n:al' 

ltop 

eille 

doJ .. I.n 

dol-1.m 

A(1) = RA(1+(J·1)-m) 

end do 

end do 
end if 

row=m 

col=n 

notum 

end 

subroutine Flint(a,lunit,ircc:) 

C Subroutine to load a n:al rna!rill Crom a rnadab file 

C Declare parunclCrl 

_lor n:max 
C (n:max • maximum value allOW.·coI •• I for a au) 

parunclCr (rcrma • 1) 

C Scalar II'II1111C1U 
_pr a)1IIIit,ircc 

C Local ac:a\ara 

_lor typc.imaaf.m.n)cn~Daa 

C t.oc.l arraya 
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C Lo.d matrix ftam file 

c.ll LOADMAT(typc.m.n,ima&f',ien,rwne,u .. i)lIIlil,~,rdflq) 

if (rdIa .... 'O> Ibn 
"..., 'PaiIDd to load mal KMU' ftom file' 

IfqJ 

cad if 

C Caaw:rt to iIIIIo.­

if (imaaf.IID.O) tbDn 

p' ... , 'Pailod 10 UIud KMU' U not mal' 

IfqJ 

oJ. 

a = iDl(U'(l» 

cndif 

IlIbroutinD LOADMAT(TYPE,M,N,IMAOP,NAMLEN ,NAME, 

• RPART,IPART ,LUNIT,IRBC,RDPLO) 

C Subroutine 10 ftlad madab mea 

C 2D byII: bDadcr 
_.- TYPB,M,N,IMAOP,NAMLEN 

C a-adDr Ilrina for name Oength of name plUI one) 

chanctcr NAME(O)OI 

C Double pec:ilim data mays for example 

double pec:ilim RPART(O),IPART(O) 

C 0u1pUt rile loaic:al unit number _aer
LUNIT 

C RcadO .. 

irlllaar RDPLG 

C D~I.cceu ~ counter 

_aar IREC 

C Loc:allc:alan 

-aer MN 

C Defane functlona 

-aar READC 

C Read bDadcr 
if (READC(LUNIT,IREC,4,TYPE» 998,10,999 

10 if(READC(LUNIT,IREC,4,M» 998,20,999 

20 if(READC(LUNIT,IREC,4,N» 998,30,999 

30 If(READC(LUNIT,IREC,4,IMAOF» 998,40,999 

40 If(READC(LUNIT,IREC,4,NAMLEN» 998,50,999 

50 if(RBADC(LUNIT,IREC,NAMLEN,NAME» 998,60,999 

60 MN-M·N 

if (READC(LUNrr,IREC,80 MN,RPART» 998,70,999 

70 if(IMAGP.oq.I) tbDn 
It (READC(LUNrr,IREC,8oMN ,IPART» 998,80,999 

cadit 

C Sot road 0 .. 10 ok and ftltum 

10 RDPLG..o 

mum 

C Bnar durina road 

998 RDPLG-·l 

mum 

C Bndorm. 
999 RDPLG-l 

mum ... 
..... 1\mI:daa RBADC(LUNIT,IRBc,NC,CARRA Y) 

C AIrq~ 
_ ... LUNIT,NC.IREC 

cMnaIr CARRA YC·)·1 

C Loc.l ___ 

...... ' 

do I=I~"C 

_d(LUNIT .=IREC,crr:998,cnd=999) CARRA YO) 

~"~+I 

end do 

READe =0 

mum 

998 READe =·1 

ftlturn 

999 READe = 1 

ftlrum 

end 

AppendixB 

The routines to write files in PRO-MATLAB format are 
in the file OUTPUT,F 

.ubroUlinc WORlG(NN,ID,n,FC,X,P,V,KC,fllc:name) 

C Subroutine 10 wrill: Ihc oriainal YIIIIIOIIO me 

C NolC dimension of KK iI m by n i.e stall: Ii:cdbKlt 

C Defmc parameters 

inll:,cr maxn,n.xm 

C (maxn,mum· maximllm valllOl oC parameters oll)'lll:ml 

par.mew (maxn .. 10, Ill&lUlI .. 9) 

C Sc:alar ar,wnenlS 

inll:ler NN,ID,n 

double prccisioo PC 

C Array argwnenlS 

double prccilioo X(·) 

double complex F(maxm,maxn). V(maxn)naxn),KC(maxm,rnaxn) 

charactcr"30 mename 

C Loc:al scalara 

inll:,cr len)unil,~ 

C Loc:al arrays 

ch&rICII:r"20 name 

C Opcnme 

lunit= 1 

irec: = 1 

open(UNIT = lunil, FD..E = filename, 

• FORM = 'uoCormatll:d', ACCESS = 'direct', RECl. -I) 

C W rill: sc:alara • PC 

1I&lI1e = 'PCORIO' 

100=7 

c:all pub(PC,narne Jcn.1 unit.irec) 

C Write arrays 

name = 'XORIO' 

len .. 6 
c:all putvea(X.NN,NN)W1lC,lcn)lInit,in:t) 

name" 'PORIO' 

len =6 
c:all pulffilIC(P ,maxm,mun,m,n,nan.,)cn)lInil.irec) 

name. 'VORIO' 

len =6 
c:all pulffiltc(V ,rnaxn,maxn,n,n.rW1lC,Icn)lInit,~) 

nar ..... 'KCORIO' 

len =7 
c:all putmate(KC,n.xm,maxn,m,n,name)cn)IIIIit,ftc) 

C 0010 file 
dOlO(luni\) 

.ubrouIim WOPT(NN,ID,D,PC)c.dA,dB,WElGtrr 'p.Y ,KC,m.-) 

C Subroutine \u wrillD IbD .ilmi val ... 10 rile 
C Noll: dimanlion ol KC • m by n i.e 1\aIII r.cIbKk 
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C DefiDe pum.taa 
_ .. _,mum DJm 

C (_JIll _.m - muimwn value. of JIUlIIDIItaa of Iystan) 

JIUlIIDIIICr (muD '" 10. mum = 9. own = 1) 

C Sca1arIll'I_ 

ld.opr NN,m,n 

cIoubI. JII1Icl-ian PC 

C Array III'IIUDaIII 

double JII1Icl-ian X(O).WEIGIIT(3-mun) 

cIoabIe compIcx F(IIWIID,mun).V(maxn,maxn).KC(mum,maxn), 

" dACJ!um.mnn,maxn),dB(num,maxn,maxm) 
~"30 filCIWIID 

C LocaJ lCaIan 

ld.opl' IcIIJJlUlit,ircc,I),K 

C LocaJ ura,. 

doublo CCIIIIpIeIl TEMPC(munormxn,maxn) 

~*20_ 

C Opcnfilc 
limit .. 1 

in:c: = 1 
opcm(UNIT -lunit. Fn..E = mcmune, 

* FORM - 'lIIIfonnattcd'.ACCESS = 'direct', REeL = I) 

C Wrilll lCaIan • PC 

name- 'PC' 

1cIIJ-3 
call p&1I(~,nazne)en,lunil,irce) 

C Wrilll ana,. 

DIJIIC. 'X' 

1cIIJ-2 
call p&tWlCI(X.NN,NN,nazne,len)unit,irce) 

D&IIID = 'cIA' 

lan-] 

do I-I,num 

doJ = 1,n 

doK-1,n 

TEMPC(J+(I·1)"n,K) = dA(I),K) 

end do 

cnddo 

end do 

call p&IIrIatc:(rnMPC,numomaxn,maxn,num*n,n,nune)cn,lunit,in:c:) 

_.'dB' 

1cIIJ.3 

dol-1.1IIIIIl 

doJ-1.n 

doK.1,m 

TEMPC(J+(I-l)"n,K) '" dB(I).K) 

_do 

_do 

_do 

call p&IIrIatc:(rnMPC,numomaxn,maxn,num*n,n,namc)en,lunit.in:e) 

_.·WEIOHT' 

.... 7 

call p&tWla(WEIOHT ,3'"mun,3*n,nIIIIIflJen)unit,in:e) 

_.'F' 
.... 2 
call p&1maIC(F,mum,mun,m,n,nune)en)unit,irce) 

_.OV' 
•• 2 
call p&anale(\' ,mun,mam,n,n,nune,lonJunit.inIc;) 

_.·KC' 

1an.3 
call p&tma&c(KC,mum,rmxn,m,n,llUDll)enJlUlil,in:e) 

C Cc.m. 
c\c.(IlUIit) 

AbrauliIII palalllrl(A.-,K,rOW ,cai.a-..... hlnil,ftc) 

C ...... 11» .... aap.ll_1'ia lit m. 

C DcclIll'C paraDZ1Cn 

iDlcgcr ranax 

C (ranu • maximwu value of rows·cob oi AI 

parwnc1cr (ranax = 100) 

C Scalar argWIICDIS 

inlcgcr ar .ae,row ,c:oI )enJ unit,irce 

C Array III'gWIICDIS 

double complex A(ar oK) 

c:harac:t.c:r°20 name 

C LoeaJ leal .. 

inlcgcr 1.J,type,imagf,m,n,wtJla, 

C LoeaJ arrays 

double precision RA(n:max),IA(ranax) 

C Chccl: that row°c:ol docs not Clla:cd rem ... 

if (row·cd.gLrernaa) Ihcn 

prim·, 'RCMAX Clleccdcd in p&tmate' 

.top 

end if 

C Sct up parar~1Cn 

type .. 1000 

m=row 

n .. col 

imagf= I 

C Copy data to RA Uld IA 

do J = I,cd 

do I = I.row 

RA(J+(J·I)"row) .. rcal(A(I.J» 

1A(I+(J·I)·row) .. dimag(A(I)) 

end do 

cmddo 

C WriIC rnal1ix from file 

call SA VEMA T(typc,llI,n,imagfJen,narnc,RA,IA)llIIit,irce.wtOq) 

if (wll1agJlC.O) Ihcn 

print·, 'Failed 10 wriIC complex matrix 10 me' 

stop 

end if 

return 

end 

subroutine putvccr(A,ac,col,namcJenJunit,in:c) 

C Subroutine to wriIC a n:aJ \'Caw 10 file 

C Dcdlll'C paraDZICn 

inlcgcr c:maa 

C (anax· maximum value of cola of \'Caw AI 

pararncICr (anax = 100) 

C ScalIII' III'gumcntJ 

inlcger ac,col)en)unil,in:c 

C Array III'gumc:ntJ 

double precision A(ac) 
dllII'KICr·20 _ 

C Local lCaIan 

inlalpI'l,typc,imagf,m,n,wtOag 

C Local arraY' 

double precision RA(cmax),IA(cmax) 

C Check that row·c:oI docs 1101 cxa:cd n:max 

if (COI-lLAIWt) tb:n 

priolo, 'CMAX Cllcccdcd in PUI~c:r' 

stop 

cndir 
C Sct up pararnc1Cn 

type = 1000 

mal 

D • col 

imqr.o 

C Copy data 10 RA 

do 1-I,caI 

RA(I) - 1.(1) 

onddo 
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C Wrile malrm 10 file 

c.Il SA VEMA T(type.m.n,imagC,lcD.JW1lC,RA,IA)WIiI,irec:, wtfIq) 

if (WIfba.ue.D) Ibcn 
prinl., 'Failod 10 write 1II&i YOc:Ia' 10 file' 

stop 

cad if 

aubroulinc p!l1r(a,namr:,Icn)WIiI,ircc) 

C Subroutine 10 write a roal acaIar to me 

C Declare puamcoten 

integer rcmax 
C (_ • muimwn value of row.ocoll = I Cor a acaIar) 

puamcoter <r- .. 1) 

C Scalar arg1llllllllla 
_prlcm)IIIlit,irec: 

double pnciaim a 

dIarac::Im''"20 DaIDD 

C Loc:aI acaIara 

integer type,ima&f,m,n. wlflag 

C Loc:aI arrays 

double precision ar(rc:mu),ai(rc:max) 

C 5GI up puamcoten 

typo .. 1000 
m .. l 

n-l 

Imaaf.O 

C Copy data 10 ar 

ar(l). a 

C Load malrm !tem file 
c:all SA VEMA T(type.m.n,ima&f,len,namD,ar,ai,lunit,irec, willa&> 

if (wttla,.nc,O) Ibcn 

print", 'Pailed 10 write l'Oal .c:alar to me' 

.top 

end if 

.1Ibro1ltine SAVBMA T(TYPB,M,N,IMAGP ,NAMLEN,NAME, 

• RPART,IPART,LUNrr,lRBc,wrFLG) 

C Subroutine 10 NVO mOl in .mal format 

C 70 byte bDadDr -aor TYPB,M,N,IMAGP,NAMLBN 

C o.araClCl atring for name (length of name pillS anc) 
c:harac:tcr NA.\fE(O)OI 

C Dollblc precisiOll data unys Cor cumplc 

double prccisioo RPART(O), IPART(0) 

C Oulput fIlc logical unitllWDbcr 

imcger LUNrr 

C Write Oag 

imcgcr wrPLG 

C Direct aa:cu me n:cad counter 

imcger IREC 

C Local sc:alan 

integer M.1II 

MN=MON 

C W rile header 

c:all WRITBC(LUNrr,lREC,4,TYPE) 

c:all WRITECCLUNrr,IRBc,4,M) 

c:aIJ WRlTBC(LUNrr,lRBC,4,N) 

c:all WRI"ffiCCLUNrr,IRBc,4,IMAGp) 

c:all WRITEC(LUNrr,IRBC,4,NAMlEN) 

c:all WRI"ffiC(LUNrr.lRBC,NAMLEN-I,NAME) 

c:all WRI"ffiC(LUN rr,lRBC, I ,0) 

c:all WRl1cC(LUNrr,lRBc,8°MN,RPART) 

if(lMAGF.cq.l) c:all wRrruC(UJNrr,IRBC,SoMN,IPART) 

C Good wrile 
WI1'lO.O 

C Error durin, write 

999 wrPLG .. -1 

rotum 

end 

Illbrollt" WRI"ffiC(LUNrr,IREC,NC,STRJNO) 

C Array arguments 

imc,er LUNIT,IRBC,NC 

chancter STRING(·)OI 

C Local acaIan 

inlegcr I 
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do 1= I,NC 
write(LUNrr ,roc:oolREC) STRING(I) 

IREC = IREC + I 

cnddo 

rotum 

end 
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Appendix 8 

B.3 Post-Optimisation Programs - PRO-MATLAB 

After the optimisation a set of programs are needed to convert the state space controller 

to polynomial form and hence complete the robust polynomial controller design. 

The main post-optimisation program is 

"poRJpLm 

.. tbiI m-fiIc calla .n ocher routines to c:alculate original 

.. aacI robult polynamial controllen 

cJar 

.. IIDt up puuDDlIIn 

smII1 = le·IO; 

.. set IIImp .. 1 if want 10 uac tcmpoarary me data 

1mDp .. 0; 

.. ENTERINFO 

.. Bratcr details of colli fulll: and method 

opt _ iDpuI( 'lAP (1), pop (2) : '); 

cr- q,uu:'BralDrnwnber or c:oIII fulll:lion uacd: ','s'); 

iflllmp-= I 
fnwn - illput( 'Bratcr me number : ','s '); 

ODd 
P _ q,ut('BnIDr vllUII of p: '); 

.. SET UP PILE INFO 

path - I'!u-'/ecpllccpakdw/wll/'); 

ifopt-l 
opttypc • 'lAP'; 

eIlair opt - 1 
opttype. 'POP'; 

end 

.. SET UP MODEL 

[I,aori&,int,b.c:,n,m,r ,q,cip,c:gatc) = model(p); 

pl8 num2.ltr(p); 

.. LOADDATA 

"load _dab data 
ovll«('I«*I' path 'matdata' PI c:f) 

"load Conran data 

if1lDmp -I 
oriaf'"1Ic 8 [opuype 'tmp_oria'); 
aptfiIc _ (opttypo 'Imp_opt'); 

ella 

arlafiJD - ('COIl' cr'r opttype fnwn 'oria' pe ef); 

optf'lIe -('COIl' cr ',. opttype fnwn '01''-' pe c:f); 

end 

"11«('1«*1 • path ariaf'"IIe»; 
"11(['1«*1 • path optC'llc)); 

.. OIBCK (MAO PART OF KC IS NEAR ZERO 
If nm(nm(imq(KCORIO) > smIIl» > 0 

imq(KCORIO) 

enar('KCORIO iI _-,,1IDIy .... ) 
IIId 

KCORlO - mal(KCORJO); 
If nm(nm(imq(KC) > smIIl» > 0 

1aa<KC) 
enar('KC II _-,,1IDIy .... ) 

IIId 

KC - mal(KC): 

.. --' ..... IDocIbKIr. to o/p faDdbIdt 
If IIIIII(IIIIII(KCORJO(:,r+ I:JI) > smIIl» > 0 

KCOIUO(:,r+ 1:11) 
enar('s-.d put vl KCORJO II DOl ~') 

IIId 
KCORJO _ KCORIO(:,I :r); 

IfMll(MII(KC(:,r+I:II) >..u» > 0 

KC(:,r+ 1:11) 

cnar('Scc:ond pan of KC is 001 zero') 

end 

KC = KC(:.l or); 

.. ORIGINAL COI'ITROUER 

[F,O,H) = calcsse<mtrol(KCORlG.c.p); 

.. UW: COIlIlOllcr polynomial. 

ariafllc = (oriame 'FGB'); 

eval«(·.ve· peth ariafllc • FG H'I) 

.. ROBUST COI'ITROUER 

[F.G.II) = c:alcsse<mtrol(KC.c.p); 

.. UW: controller polynomial. 

optflle = (optralc 'FGH'); 

evalU'.ve' peth oplme' FG 11'» 

.. CONTROIJ.ER DERIVED FROM DIOPHANTINE EQN - MIN ORDBR 

IF,G,H(- c:alc:polY"""'trol(a,b,c.n,p,ci.,:n); 

iftcmp =z 1 

c1eme .. (opttypc 'trnp_clcqnFGH'); 

else 
c1eme = ('COSI' cf 'r opllypc fnwn 'dcqn' .. cf 'FGH'); 

end 

eval(!'.ve' path de me , F G JI'!) 

The associated functions are 

111IIC:lion IF,G,H) = c:alcssccntrol(K,c,p) 

.. c:alc:ulatc controller polynomials Cram feedback mall'ia 

(F,G] = trans_poly(K,p); 

.. c:alculatc H 

pwn",O; 

ror i = 1 :lenglh(G) 

pum = pum + G(i); 

end 

iflcn&lh(c) > 0 

c:swn "'0; 

ror i = 1 :lenJlh(c) 
c:swn = c:sum + c(i); 

end 

ror i = 1 :length(c) 

H(i) '" c(i)"gsum/cswn; 

end 

else 

Hel) = pum; 

end 

function [P,GI- tranI-JIOIy(Ky,p); 

.. fulll:tion 10 transform b fDcclbadt mall' Ur. 10 poIyaamiaI rorm 

.. uaumin, oriainllly in obserVable c:anooic:al rorm 

.. cbDcIr.lhal Ky is b conec:t dimcnlion 

[II ,a) - IiJ.c(Ky); 

Ifll-- a 
onor('Ky is not,.-'); 

CDCI 

ifll -. p+1 
crrar('Ky is alb wrona dimcnlion'); 

aod 

Ifp>O 
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.. puti&iaa K)' 

KIl- Ky(I:I.I:I); 

Kll- Ky(I:I,2:p+-l); 

Dis Ky(2:p+l.l:I); 

K22= Ky(l:p+l.2-p+1); 

.. calc:ulalc poI)'IIOIDial Conn 

ID1IIIl,dcn) .. If2d(K22.K21.K I 2,0.1); 

.. P CXIIIIIOl1er poIynoIIlW 

P-dm; 

.. 0 CXIIIIIOllor polynolllW 

-.upl .. KII·dan; 

0- -1·Iddpaly(nlllD.tcmpl); .. 
KIl .. K)'; 
pal; 

O=-KIl; 

.ad 

function IP.G.HJ .. calcpol),cootrol(a.b.c,n.p,cip) 

.. function to calculate thD lClIution to thD diophantine equation 

.. 1IIiD& matrix methoda 

.. SBT UP ORDERS (specify number oC coelTs) 

na - ilm&thCa); 
Db • ilm&thCb); 

ut-Db -I; 

III- na - l ; 

.. SBTUPT 

T .. [1 -ci,cn(I»); 

Cor i -2:n-p 

1Dmp. [1 -ciaen(i»); 

T - multpoly(T.tcmp); 

end 

.. SBTUPTIm SYLVESTER MATRIX 

dimA .. max(na+nC-I ,nb+n,-I); 

.. ltenl • coeffic.icnts in A 

for l-l:nf ..,-a; 
for j -111+ l:dimA 

..,. IlDmp.O); 

end 

111-1 
A • ....,·: ... 
A • IA • ...,·); 

.ad 

111.111+1: 

.-(0 .. ); 
.ad 

'A; .Iores b coefficients in A 

for i = I:n& 

II:mp = b; 

for j = nb+ I :dirnA 

II:mp = (II:mp,O); 

end 

A = (A.tcmp·); 

Db =Db+I; 

b=(O,b); 

end 

'It ASSIGN RHS 

.. calculate thD RHS 

iflength(c) = 0 

rhs =T'; 

clsc 

rh. = muitpoly(c.T)·; 

end 

.. CALCPANDG 

.. mu.1 CJlIW1: RHS is 01 thD _. or smaller, dimenlicm u A 

lrha .. length(rha); 

(11.12) '" .izc(A); 

iftl -,. 12 

crror('A matrix nol "'I ....... ) 

end 
Iflrh. > II 
error('RHS lar&er than A') 

end 

iflrha < II 
for i -lrh .. I:11 

rha .. (rbi' 0)'; 

end 

end 

'It wc .. I,1I: II .. controller coefficients 

x = A\rh.; 

P = x(1:nf.:)·; 

G ,.x(nf+l:nf+n&.:)'; 

.. H .. sum of thD G coefficicnta divided by lum of C cocfrlCionta 

.. mWliplicd by C 

pum=O; 

for i .. I:n& 

&lum" &I .. m + O(i); 

end 
iflcn,dl(c:) =0 

1-1(1) .. &I .. m; 

dsc 
csum,. 0; 

for I .. 1 :Iength(c:) 

csum .. csum + c:(1); 

end 
for i .. I :Iength(c) 

H(I),. c:(1)",sum!cs .. m; 

end 

end 
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APPENDIXC 

DETAILS OF THE NAG LIBRARY ROUTINES 

C.l Accurate Inverse of a Real Matrix 

As previously mentioned in chapter 5, the inverse of a real matrix, A, can be accurately 

obtained by solving the equation 

AX=I (C.1) 

where I is the identity matrix and X the inverse of A . 

This type of equation can be solved by a number of methods and in this case two NAG 

library routines are used. The first F03AFF computes an LU factorisation of the matrix with 

partial pivoting and the second, F04AHF, uses the result and iterative refinement to obtain the 

solution. 

This section gives some brief details of the two routines, further information can be found 

in NAG (1990) 

F03AFF 

Specification 

SUBROUTINE F03AFF(N,EPS,A,lA,DJ ,lD,P JFAIL) 

INTEGER 

DOUBLE PRECISION 

Parameters 

N 

EPS 

Input 

Input 

N,lA,lD,lFAIL 

EPS,A (IA ,N),DJ ,peN) 

On entry, N specifies the order of the matrix A. 

On entry, EPS must be set to the value of machine precision. 

This value is implementation dependant. 
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A(IA,N) 

IA 

Dl 

ID 

peN) 

IFAIL 

AppendixC 

Input/Output On entry, the N by N matrix A. 

On exit, A is overwritten by the lower triangular matrix L and 
the off-diagonal elements of the upper triangular matrix U. 
The unit diagonal elements of U are not stored. 

Input On entry, fA specifies the first dimension of the array A as 
declared in the (sub) program from which F03AFF is called. 

fA ~N 

Output On exit, D 1 can be used to calculate the detenninant of A. 

Output On exit, fD is also used to calculate the detenninant of A. 

Output On exit, P(i) gives the row index of the i'th pivot. 

Input/Output On entry, it is recommended that IFAIL be set to O. Further 
infonnation can be found in NAG (1990). 
On exit, 

IFAIL = 0: successful tennination 

IFAIL = 1: A is singular, possibly due to rounding errors 

To avoid overflow or underflow, the detenninant can be calculated using 

det(A) = D 1 (2.oiD (C.2) 

F04AHF 

Specification 

SUBROUTINE F04AHF(NJR,AJA,AAJAA,P,B,IB,EPS,xJX,BB,IBB,KJFAlL) 

INTEGER 

DOUBLE PRECISION 

Parameters 

N 

IR 

A(IA,N) 

Input 

Input 

Input 

NJR ,IAJ AA,IB,IX,I BB ,K,IF AIL 
A (IA ,N),AA (IAA ,N),P(N),B(lB ,IR),EPS,x(/X ,IR), 

BB(lBB,IR) 

On entry, N specifies the order of the matrix A. 

On entry, I R specifies the number of right hand sides. For the 

calculation of the inverse IR = N. 

On entry, the N by N matrix A. 
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IA Input On entry, IA specifies the first dimension of the array A as 
declared in the (sub) program from which F04AHF is called. 

IA ~N 

AA(IAA,N) Input On entry, AA contains details of the LU factorisation as 

returned by F03AFF. 

IAA Input On entry, I AA specifies the first dimension of the array AA as 
declared in the (sub) program from which F04AHF is called. 

lAA ~N 

P(N) Input On entry, P (N) contains details of the row interchanges as 

returned by F03AFF. 

B(IB,IR) Input On entry, the N by IR right hand side matrix B. For the 

calculation of the inverse this will be set to the N by N identity 
matrix. 

IB Input On entry, IB specifies the first dimension of the array B as 
declared in the (sub) program from which F04AHF is called. 

IB ~N 

EPS Input On entry, EPS must be set to the value of machine precision. 
This value is implementation dependant. 

X(IX,lR) Output On exit, the N by IR solution matrix X. 

IX Input On entry, IX specifies the first dimension of the array X as 
declared in the (sub) program from which F04AHF is called. 
IX~N 

BB(IBB,lR) Output On exit, the N by I R residual matrix R = B - AX . 

IBB Input On entry, IBB specifies the first dimension of the array BB as 
declared in the (sub) program from which F04AHF is called. 

IBB ~N 

K Output On exit, K specifies the number of iterations needed in the 

refinement process. 
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Input/Output On entry, it is recommended that IFAIL be set to O. Funher 
information can be found in NAG (1990). 
On exit, 

IFAIL = 0: successful termination 

IFAIL = 1: The matrix A is too ill-conditioned to produce 

a correctly rounded solution. 

C.2 Calculation of the Null Space of a Matrix 

It was shown in chapter 5 that the null space of a matrix can be found using the singular 

value decomposition (SVD) and that it is necessary to obtain the eigenvectors of a matrix to 

carry out this decomposition. The NAG library routine F02ABF can be used to obtain the 

eigenvalues and eigenvectors of a matrix and hence allow the null space to be found. Again 

further information can be found in NAG (1990). 

Specification 

SUBROUTINE F02ABF(A,IA,N,R,V'V,EJFAIL) 

INTEGER 

DOUBLE PRECISION 

Parameters 

A(IA,N) 

fA 

N 

R(N) 

V(IV,N) 

IV 

E(N) 

Input 

Input 

Input 

Output 

Output 

Input 

IA,N,N JFAIL 

A CIA ,N),RCN),V(IV ,N),£(N) 

On entry, the lower triangle of the N by N matrix A. The 

elements of the matrix above the diagonal need not be set. 

On entry, IA specifies the first dimension of the array A as 
declared in the (sub) program from which F02ABF is called. 

IA ?N 

On entry, N specifies the order of the matrix A. 

On exit, the eigenvalues in ascending order. 

On exit, the normalised eigenvectors, stored by columns. 

On entry, IV specifies the first dimension of the array V as 
declared in the (sub) program from which F02ABF is called. 

IV?N 

Used as workspace. 
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IFAIL Input/Output On entry, it is recommended that IFAIL be set to O. Further 
information can be found in NAG (1990). 

e.3 Non-linear Optimisation 

On exit, 

IFAIL = 0: successful termination 

IFAIL = 1: More than 30 xN iterations are required to 

isolate all the eigenvalues. 

There are a number of NAG optimisation routines for various types of problem. The most 

suitable routine in this case is E04JAF. It is a quasi-Newton algorithm for finding the minimum 

of a function without explicit first or second order derivative information. It provides the facility 

for specifying bounds which will not be used in this case. Further information on this routine 

and other optimisation algorithms can be found in NAG (1990). 

Specification 

SUBROUTINE E04JAF(N,lB0 UND ,BL,BU,X,F,lW,UW, W,LW,l FAIL) 

INTEGER 

DOUBLE PRECISION 

Parameters 

N 

IBOUND 

BL,BU 

X(N) 

F 

JW(UW) 

UW 

W(/W) 

Input 

Input 

Input/Output 

Output 

Input 

N,lBOUN D ,lW( LIW) ,LIW,LW,l F AI L 

BL (N),B U (N),x (N ),F, W (LW) 

On entry, N specifies the number of independent variables. 

On entry, To specify no bounds IBOUND = 2. 

Not used. 

On entry, X specifies the starting point. 

On successful exit, it contains the position of the minimum. 

On exit, F contains the value of the function at the minimum 

U sed as workspace 

On entry, LJW specifies the first dimension of the array JW as 
declared in the (sub) program from which E04JAF is called. 

LIW~N+2 

U sed as workspace 
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Input On entry, LW specifies the first dimension of the array Was 
declared in the (sub) program from which E04JAF is called. 

LW ~ max«N(N -1)/2) + 12N, 13) 

Input/Output On entry, it is recommended that IF AI L be set to -1. Further 
information can be found in NAG (1990). 
On exit, 

IF AIL = 0: successful termination 

IF AIL = 1: specified parameter not in required range. 

IFAIL = 2: there have been 400 xN function evaluations 

yet the algorithm does not seem to be con­

verging. 

IFAIL = 3: theconditionsforaminimumhavenotallbeen 

satisfied but no lower point could be found. 

IFAIL = 4: an overflow has occurred. 

IFAIL = 5 : 

IFAIL = 6: 

IFAIL = 7: 
IFAIL = 8: there is some doubt about whether the point 

found is a minimum. The degree of confidence 

decreases as IF AIL increases. 

IFAIL = 9: The modulus of one of the variables has 

become very large. 
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The routine needs an associated user specified routine to calculate the value of the cost 

function at any given point. The routine must be declared as EXTERNAL in the calling (sub) 

program and have the following format. 

Specification 

SUBROUTINE FUNCfl(NXC,FC) 

INTEGER 

DOUBLE PRECISION 

Parameters 

N 

XC(N) 

FC 

NAG (1990) 

Input 

Input 

Output 

'Fortran Library Manual Mk 14' 

N 

XC (N),FC 

On entry, N specifies the number of independent variables. 

On entry, XC specifies the point at which the cost function is 

to be evaluated. 

On exit, FC contains the value of the cost function. 

REFERENCES 

Numerical Algorithms Group Ltd, Oxford, U.K. 
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APPENDIX D 

ACSL SIMULATION PROGRAMS 

D.I Open-Loop Simulation 

This program simulated the open-loop hydraulic rig with nominal parameter values, Whilst 

in the interactive ACSL environment these parameters can be easily altered using the SET 

command to allow simulations of the perturbed system. The OUTPUT command is used to 

effectively perform sampling as the displayed data is sent to a data file every NCIOUT*CINT 

iterations, where CINT is the time interval at which the DYNAMIC section is executed, An 

appropriate choice of NCIOUT selects the sampling rate. The simulation is based on the fourth 

order Runge-Kutta integration algorithm. 

PROGRAM OLRIG 

"._.OPEN LOOP SIMULATION OF THE HYDRAULIC RIG······ 

REAL TSTOP.AMP,OPPSBT,TZ,PBRlOD,WID1~ 
REAL PS,B,KTI-lETA,KS,CR,BT AM,BT AP,l,D,VT,Kl,KT,PP,TP ,J>MIC,THDIC 

"._-SBT DEMAND SIGNAL PARAMEmRS AND STOP TIMB······ 

CONSTANI'TSTOp..I.5,~.16.0PPSBT~.72 

CONSTANI' TZ-O.l, PBRIOD=03333, WIDTH=O.16666 

··-··SBT HYDRAULIC RIG PARAMETERS······ 

CONSTANI' PS..QI.96ES 

CONSTANI' PPa22.98BS 

CONSTANI' B .. 7000BS 
CONSTANI' KTI-lETA .. 2.4B-6 

CONSTANI' KS..o.0625 
CONSTANI' CRoo9.56B· 7 

CONSTANI'BTAM-l 
CONSTANTBTAPal 

CONSTANT l-l.Q8B.4 

CONSTANT D-5.!I4B-4 

CONSTANI'VT0a3.51B·5 
CONSTANI' Kla2.12E·13 

CONSTANI' KT-S.OB·3 

INITIAL 

".-SBT UP CINT AND THE NUMBER 01' INTBGRATION STEPs .... •• 

CIN11\RV AL ClNTooO.OO12 

NSTBPS NS11!Poo10 

• .... ·CALalLAm ANY DEPENDANT EQNS AND SBT INITIAL CONDmONS-·-' 
TP = ppoCR°(1/ETAp) 

PMIC=O.O 
TIIDIC=O.O 

END S'OF INrrlAL' 

DYNAMIC 

DERIVATIVE 

··-.. SBT UP DEMAND SIGNAL .. • .. ' 
VI:zAMJHPULSE(TZ.PERIOD,WIDnI) + OFFSET 

• ..... CALaJLAm PLOW RAm TIIROUGH VALVE-.. • 
QV=KTHETAoKS·VloSQRT(ps·PMB) 
• ..... CALaJLA TE THE PRESSURE DIFFERENTIAL ACROSS THE MOTOR·_·· 

PM=INTEO«(QV·CR"THD·KloPMB)02°BlVTl,PMIC) 

• ..... PM CANNOT EXCEED TIlE SUPPLY PRESSURE--· 

PMB=80UND(·PS,PS,PM) 

• ..... CALalLATE THE MOTOR TORQUE .... •• 

TM=PMOCR °ETAM 
• ..... CALalLATETIIE VELOCITY .... •• 
TIID=II'ffEO«TM·D"1·HD·TP)II,TII DIC) 
•• _.HENCE TIiE 01JTPlIT VOLTAGE .... ·' 

VO=KTOUID 
• ..... CHECK WI-lETIIER STOP TIME EXCE.EDEJ).·_· 

TERMT(T.GE.TSTOp) 

END S'OP DERIVATIVE· 

END S·Op DYNAMIC" 

END S'OP PROGRAM' 
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D.2 Closed-Loop Simulation 

This section contains the program used to perform the closed-loop simulation of the 

hydraulic rig. The DYNAMIC section which simulates the actual rig is the same as for the 

open-loop simulation. The controller is contained in the DISCRETE section which simulates its 

implementation on a computer. The interval at which this section is executed is determined by 

DTSAMP. 

All four controllers are defined and whilst in the ACSL environment the SET command 

can be used to change the value of TYPE and hence select which controller is to be used. The 

appropriate values are 

1 - The minimum order controller 

2 - The robust Ps controller 

3 - The robust P p controller 

4 - The robust Ps and P p controller 

The output of the integrator has been rate limited and bounds set on its output as in Daley 

(1987). 

PROGRAM CLRIG 

·.-a.OSBD LOOP SIMULATION OF TIm HYDRAULIC RIG······ 

RBAL TSTOP,AMP,OFFSET,TZ,PERlOD,WIDTH 
RBAL PS,B,K1lIBTA,KS,CR.ET AM.ET AP,I,D,VT,KI,KT,PP,TP ,PMIC,THDIC 

INTBGBR UI(4),LO(4),LF(4),x,TYPE,LENCTrn 

RBAL VC,UDOT,H(I,4),0(4,4),F(4,4),Y(1O),U(10),U1(10),W(l0) 

RBAL RA 11iL,RA 'Ilill,MAOL,MAOU 

·.-SELBcr CONTROlLER······ 
CONSTANI'TYPB-I 

·.-SET ORMAND SIGNAL PARAMETERS AND STOP TlMB·····­

CONSTANI' TSTOM.O, AMP=O.8, OFFSET-2.6 
CONSTANI' TZ-O.1, PBRIOD=O.66666, WIDTH=O.3333 

·.-SET HYDRAULIC RIO PARAMETERS·_··­

CONSTANI' pso61.9685 

CONSTANI' PPw2l.98ES 
CONSTANI' B-7000.085 
CONSTANI' K1lIBTA-2.4B-6 
CONSTANI' KS.o.0625 

CONSTANI' CR-9.56E-7 

CONSTANI'ETAM-I 

CONSTANI' ETAP-I 
CONSTANI' .. 1.0118-4 

CONSTANI' o-.s.ME-4 

CONSTANI'VT.J.51B-.5 

CONSTANI' Kl0412B·lS 
CONSTANI' KT".OB·S 

INITIAL 

0-sBT UPCINT AND nIB NUMBBR OP DmKJRATION S1VS·-· 

CIN18IlV AL CINT.o.005 
NS'I1IPS N~lO 

• ..... CALCULATE ANY DEPENDANT EQNS AND SET INITIAL CONDmONS--' 

TP. PP·CR·(1JETAP) 
PMIC=O.O 
THDIC=O.O 

• ••••• DEPINE MINIMUM ORDER CONTROLLER·_··· 

UI(1)-1 

LG(1)-2 
LF(I)-I 

H(1,1 }=O.a1l8 

0( 1,1)00-0.1 096 

0(2,1 )=0.1914 

0(3,1)=0.0 

0(4,I}=O.0 

F(1,I)=1.0 
F(2,1)=O.0 

F(3,I).o.O 
F(4,1)=O.0 

• ••••• DEPINE ROBUST PS CONTROLLER·_·· 

Ul(2)a1 

LO(2)c4 

LF(2)"" 

11(1,2)=0.11118 

0(1,2)=0.1374 

0(2,2)c-O.OS94 
0(3,2)=0.0038 

0(4,2)008.8239E·7 

F(I,2)-1.0 

f(2,2)..o.6412 

P{3,2)--IA714E-4 

p{4,2)-1.023E·10 

-lOB-

'.-0EFINIi ROBUST PP CONTRou..ER· ... •• 

Ul(3)-1 

1.0(3)004 

LF(3)-' 

11(1,3)000.1111' 

0(I,3).().0S6I 



0(2,3)000.0248 

G(3,3)=O.oo26 

0(4,3)-;5.9111 B-7 

p(1,3)-1.0 

P(2,3>-OA2S6 

1'(3,3)-9.7342.8-S 

p(4,3)-2.0230B-I0 

··-DEFINE ROBUST PS AND PP CONTROL1.BR·_·· 

lJf(4)ool 

LO(4,... 

LP(4,... 

H(1,4)ooO-'-18 

0(1,4)=0.1321 

0(2,4>-O.0S4 

0(3,4)=0.0037 

0(4,4)=8.6386B·7 

P(1,4)=1 

p(2,4)...o.6274 

P(3,4)--1A397B-4 

P(4,4).2.023B-I0 

··-INrTlALISB SiGNALS····· 

DOLl X '" 1,10 

Y(X).O.O 

U(X).O.O 

U1(X).O.O 

W(X).O.O 

Ll .. CONTINUB 

VC.O.O 

···-SET INTEGRATOR OUTPUT BOUNDS······ 

RATBL=·O.5 

RATBU.O.S 

MAGL.·2.0 

MAGU=2.0 

BND S·OP INITIAL· 

DYNAMIC 

DBRIVATIVB 

VlaAMP"PULSB(TZ,PBRIOD,WIDrn) + OFFSET 

QV.KTIiETA "KS"VC"SQRT(PS·PMB) 

PM.lNTBO((QV·CR "THD·K 1 "PMB)"2" B/VT),PMIC) 

PMB=BOUND(·PS,PS,PM) 

TM-PMOCR"ETAM 

nIDaINTBG«TM·D"THD·TP)II,mDlC) 

vOaKT"11ID 

TBRMT(T.GB.TSTOP) 

E."U S·OP DERIVATIVE· 

DISCREll! 

NJ"ERVAL DTSA.\fP=O.012 

PR<Xr.DURAL (VC=VO,V I) 

• .... ·MAINTAIN ARRAYS OP LAST TEN SA.'APUS-.· 

DOL2X = 1,9 

VeX) = Y(X+I) 

W(X)=W(X+I) 

U(X)=U(X+I) 

UI(X) = UI(X+I) 

L2 .. CONTINUE 

• .... ·SA.\1PLE INPUT AND OlJl'PlIT ...... 

Y(10) =VO 

W(10)=VI 

•• .... CALCUlATB CONTROL SIGNAL-.. • 

U(10) = 0.0 

LENGTI-I = U-I(TYPE) 

DO L3 X = I.LENGTH 

U(10) = U(10) + 1I(X,TYPE)·W(1I·X) 

L3 .. CONTINUE 

LENGTII = I.O(TYPE) 

DO L4 X = I ,LENGTH 

U(lO) = U(lO)· G(X,1'YPE)·Y(lI·X) 

L4 .. CONTINUE 

LENGTII = IF(TYPE) 

DO L5 X • 2,LENGTI1 

U(10) .. U(lO)· F<X,TYPl,>"U(lI·X) 

LS .. CONTlNUE 

• .... ·CALaJlATB INTEGRAn;o CONTROL SIGNAL UI·_·· 

UI( 10) = U(10) + UI(9) 

• .... ·RA·rn LlMrr CONTROL SiGNAL .... •• 

UD01' .. U1(10)· UI(9) 

IF(UDOT .LT.RATEL) UI(lO) = UI(9)+RATEL 

IF (UDOT.GT.RATEU) UI(lO) = UI(9)+RATEU 

•• .... MAGNl1lJDE BOlJJl.'OS ON CONTROL SiGNAL .... •• 

IF (UI(lO).I.1' .MAGI.) UI(lO) = MAGI. 

IF (UI(I O).GT.MAGU) UI(lO) .. MAGU 

VC= UI(lO) 

END S·OP PROCEDURAL· 

EI\'O S·OP DISCRETE· 

END S·OP DYNA.\tIC" 

EI\'O S·OI' PROGRAM· 

·209 . 

Ap~D 



GENERAL 

RHS 

w.r.t 
Z-1 

a(t) 

a(t-n) 

E[a~t)] 

Ap(Z-I) 

III 

diag[·] 

I·D 

I'D, 

g'R p 

1C(A) 

[A]. 

A, 

A, 

M 

dA 

NOMENCLATURE AND SYMBOLS 

Right hand side. 
With respect to. 

Backward shift operator. 

Discrete time signal. 

Value of a(t) at the n'th previous sample. 

Variance of a(t). 

Pol ynomial in terms of the backward shift operator. Note that in chapter 2 polynomials are expressed 

as Ap to make the notation more easy to follow. 

Coefficients of the polynomial Aiz-I). 

Estimate of Ap(Z-I). 

Steady state value of Ap(Z-I). 

Identity matrix of dimension n x n. 

Zero matrix of dimension i x j . 

Diagonal matrix. 

Column vector. 

Row vector. 

General vector or matrix norm. 

Frobenius norm. 

P or Holder norm, where p = 1,2 or 00. 

Condition number of the matrix A, defined as 

1C{A) = IIAIIIIA -III 
The frrst x rows of the matrix A. 

The frrst y columns of the matrix A. 

Used in context to represent the sub-block of the matrix A. 

Incremental change in A . 

Differential of A . 

Complex conjugate of A. 

Real vector space of real n-dimensional vectors. 
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Nomenclalure and Symbols 

POLYNOMIAL SYSTEMS 

wet) 

u(t) 

yet) 

e(t) 

a! 
d(t) 

A,,(Z-l), 

B,,{Z-l) 

ttl 

F,,(Z-l), 

G,,{Z-l) 

10th, ... 

n~n, 

nIl 

nIl' 

Demand signal. 

Control input. 

System output 

White noise sequence. 

Variance of e(/) 

Disturbance term. 

Open-loop system polynomials. 

Coefficients of A,,(Z-l). 

Coefficients of Bp(Z-l). 

Orders of Ap(Z-l) and Bp(Z-l) respectively. 

Colouring polynomial for the white noise sequence e(t). 

Coefficients of Cp(Z-l). 

Order of Cp{Z-l). 

Time delay. 

Controller polynomials. 

Coefficients of Fp(Z-l). 

Coefficients of G,(Z-l). 

Orders of Fp(Z-l) and Gp(Z-l) respectively. 

Precompensator polynomial. 

Coefficients of Hp(Z-l). 

Order of H,,(Z-l). 

Precompensator term selected for zero steady state error. 

Order of H/{Z-l). 

Polynomial used to specify the desired closed-loop pole positions. 

Coefficients of T,,(Z-l). 

Order of T,,(Z-l). 
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Nomenclalure and Symbols 

Solution of the Diophantine Equation by Polynomial Methods 

GCD 

coro 

Greatest common divisor. 

QeD of Ap(z-l) and Bp(Z-l). 

Solution to the diophantine equation. 

Arbitrary polynomial in general solution. 

Result of dividing Cp(z-l)Tp(Z-l) by gp and must be polynomial for a solution to exist. 

Pair of coprime polynomials which satisfy A P + B Q = g p p p p po 

Pair of coprime polynomials which satisfy A R + B S = 0 p p p p . 

Quotient polynomial. 

Remainder polynomial. 

Solution of the Diophantine Equation by Matrix Methods 

N, 

Sylvester matrix. 

Vector of the coefficients of Fp(Z-I) and Gp(Z-I). 

Vector of the coefficients of Cp{z-I)Tp(z-I). 

Upper bound on the relative perturbation, II L1!1I III ~n . 
Number of columns of A6 • 

Number of rows of A6 • 

Number of unknowns (the number of Fiz-1) and Gp{Z-I) coefficients). 

Number of equations represented by A~ = /2... 

STATE SPACE SYSTEMS 

n 

m 

r 

k 

u(k) 

y(k) 

!.(k) 

l.(k) 

:!'<k) 

A,BtC 

p 

Number of states. 

Number of inputs. 

Number of outputs. 

Discrete time sequence. 

Input signal equivalent to the input for the polynomial system. 

Output signal equivalent to the output for the polynomial system. 

Multivariable input signal (with augmented dynamic compensator). 

Multivariable output signal (with augmented dynamic compensator). 

Slate vector. 

Open-loop system matrices 

Closed-loop system matrix. 

Order of the dynamic compensator. 
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K, 

v 
L 
F 

w 

G 

Output feedback controller gain matrix. 

State feedback controller gain matrix. 

The i'th closed-loop eigenvalue. 

Set of closed-loop eigenvalues. 

The i'th right eigenvector. 

Matrix of right eigenvectors. 

The associated i'th right free parameter vector. 

Matrix of right free parameter vectors. 

The i'th left eigenrow. 

Matrix of left eigenrows. 

The associated i'th left free parameter vector. 

Matrix of left free parameter vectors. 

Nomenclature and Symbols 

The Parametric Method of Fahmy and O'Reilly 

s 

B 

C 

K 

Defines the split for the multistage design. 

Input reduction matrix. 

Output reduction matrix. 

General Output feedback controller gain matrix obtained by either the first or second stage. 

Controller gain matrix obtained by the first stage. 

Controller gain matrix obtained by the second stage. 

Output feedback controller gain matrix obtained after the application of either an input or 

output reduction matrix. 

The Parametric Method of Daley 

r 

=n-r. 

The first r columns of the matrix F. 

The r + 1 to n columns of the matrix F. 

Sub-blocks of the matrix V. 

i'th column of Vn' 

Vector consisting of all the vectors in Fl' 

r must lie in the null space of this matrix. 

For i = r + 1 -+ n, specifies the set of matrices whose null spaces the F 2 vectors must lie in. 
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COST FUNCTIONS 

u 

P, 

Q, 

1i1 

Number of error terms. 

Structural information on the errors in A. 

Structural information on the errors in B. 

Unknown magnitude of the t'th error term. 

Eigenvalue differential cost function. 

Eigenstructure differential cost function. 

Transient response differential cost function. 

Conditioning cost function. 

Weights used in the eigenvalue differential cost function. 

Weights used in the eigenstructure differential cost function. 

Weights used in the transient response differential cost function. 

Weight used when combining terms in a cost function. 

IMPLEMENTATION AND APPLICATION OF THE METHOD 

SVD Singular value decomposition. 

A, Real matrix or real part of a complex matrix. 

Ai Imaginary part of a complex matrix. 

AI: Used in context to denote a complex matrix. 

Nt Number of free parameters. 

N,. Number of residuals. 

XT Vector specifying the initial values for the free parameters. 

WT Vector specifying the values of the weights 

J",iI Original value of the cost function. 

J., Final value of the cost function. 

HYDRAULIC RIG 

Qv Flow rate through the spool valve. 

X, Spool valve displacement. 

P, Supply pressure. 

PIA Pressure differential across the motor. 

K. Valve flow coefficient 

e Shaft position. 

er 
Motor displacement. 
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v, 

T". 

1l". 

1 

D 

K. 

K, 

u 

y 

VN 

FPE 

N 

p 

8, 

£(1,8,) 

Total trapped volume. 

Oil bulk modulus. 

Leakage coefficient 

Motor torque. 

Efficiency of the motor. 

Total inertia. 

Viscous friction coefficient. 

Pressure differential across the pump. 

Efficiency of the pump. 

Pure gain term for the servo and torque motor. 

Tachometer constant. 

Input voltage. 

Output voltage. 

Loss function. 

Akaike's final prediction error. 

Number of data points. 

Number of parameters in the model. 

Parameter vector. 

Prediction error. 

Nomenclalure and Symbols 
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