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ABSTRACT

The work presented in this thesis was motivated by the desire to establish an alternative
approach to the design of robust polynomial controllers. The procedure of pole-placement forms
the basis of the design and for polynomial systems this generally involves the solution of a
diophantine equation. This equation has many possible solutions which leads directly to the idea

of determining the most appropriate solution for improved performance robustness.

A thorough review of many of the aspects of the diophantine equation is presented, which
helps to gain an understanding of this extremely important equation. A basic investigation into
selecting a more robust solution is carried out but it is shown that, in the polynomial framework,
it is difficult to relate decisions in the design procedure to the effect on performance robustness.
This leads to the approach of using a state space based design and transforming the resulting
output feedback controller to polynomial form.

The state space design is centred around parametric output feedback which explicitly
represents a set of possible feedback controllers in terms of arbitrary free parameters. The aim
is then to select these free parameters such that the closed-loop system has improved performance
robustness. Two parametric methods are considered and compared, one being well established
and the otherarecently proposed scheme. Although the well established method performs slightly
better for general systems it is shown to fail when applied to this type of problem.

For performance robustness, the shape of the transient response in the presence of model
uncertainty is of interest. It is well known that the eigenvalues and eigenvectors play an important
role in determining the transient behaviour and as such the sensitivities of these factors to model
uncertainty forms the basis on which the free parameters are selected. Numerical optimisation
is used to select the free parameters such that the sensitivities are at a minimum.

It is shown both in a simple example and in a more realistic application that a significant
improvement in the transient behaviour in the presence of model uncertainty can be achieved

using the proposed design procedure.
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CHAPTER 1

INTRODUCTION

1.1 Historical Background

The problem of designing accurate control systems in the presence of significant plant
uncertainties is classical, Dorato (1987). This problem has been dealt with as far back as the
1920°s when Black (1927) proposed using feedback with large loop gains to overcome the
problem of significant variations in vacuum tube characteristics in the design of a vacuum tube
amplifier. Dorato (1987) details the development of robust control theory from this early proposal
and the classical work of Nyquist (1932) and Bode (1945) through to the late 1980’s.

In the 1960’°s and 1970’s much attention was focused on the state variable approach and
in particular the linear quadratic Gaussian (LQG) method for optimal control. Kalman (1964)
and Safonov and Athans (1977) showed that the optimal LQG state feedback control laws had
some very strong robustness properties with infinite gain margins and 60-deg phase margins.
However, in practice it is often necessary to employ Kalman filter theory to obtain an optimal
estimate of the state vector which is then taken as an exact measurement in the LQG design.
Doyle (1978) showed that when an estimate of the state vector is used, the design can exhibit

arbitrarily poor stability margins and the robustness properties vanish.

LQG/LTR (linear quadratic Guassian/loop transfer recovery), Doyle and Stein (1979,
1981), provides a means of overcoming these problems by designing the Kalman filter such that
the full state feedback properties are 'recovered’. One drawback is the inability of the method
to deal with non-minimum phase systems as the procedure involves cancelling some of the filter

poles with plant zeros.

Of particular importance to the shaping of robust methods today are three major discoveries
in the late 1970’s and early 1980’s (Morari and Zafiriou, 1989). Youla et al (1976) showed that
it is possible to parameterise all stabilising controllers for a particular system in a very effective
manner, which guarantees that the resulting feedback controller automatically yields a closed-
loop stable system. This effectively gives rise to a set of possible controllers which greatly
simplifies the search for a more robust one. Zames (1981) postulated that measuring performance
in terms of the eo-norm rather than the traditional 2-norm might be closer to practical needs. This
helped to establish the H.. optimal control approach to robust controller design. The work of
Doyle in a number of papers in the early 1980’s (Doyle and Stein, 1981; Doyle and Wall, 1982:
Doyle, 1982) is quite important in the development of robust control theory. He argued that
model uncertainty is often described very effectively in terms of norm-bounded perturbations.

-12-



1. Introduction

He developed the structured singular value approach for testing 'robust stability’ (i.e., stability
in the presence of model uncertainty) and robust performance’ (ie., performance in the presence

of model uncertainty), and is probably the primary motivation for the modern es-norm objective.

Other techniques for robust design include representing the model uncertainty stochasti-
cally as in Wonham (1967) and the game theoretic or minimax approach which basically
represents the uncertainty as a factor that maximises a performance measure which is being
minimised by the control variable (for example Ragade and Sarma, 1967; Bertsekas and Rhode S,
1973). The minimax approach can, however, become quite complicated for relatively simple
design problems. It is also worth mentioning quantitative feedback theory (Horowitz, 1979,
1982; Horowitz and Sidi, 1980) which is based on loop gain shaping and the use of templates
to represent the model uncertainty, each of which contains the set of possible plant transfer
function values at a particular frequency. Other authors (for example Gourishankar and Ramar,
1976; Owens and O’Reilly, 1989) have suggested that the design be based on the sensitivities
of the eigenvalues and eigenvectors. The conditioning of the matrix of eigenvectors has also
been suggested as a good basis on which to design robust controllers (Kautsky et al, 1985; Byers
and Nash, 1989). Further information on these methods and other alternative approaches to the
robust control problem can be found in Dorato (1987), Maciejowski (1989) and Morari and
Zafiriou (1989).

A discussion of a number of preliminary points regarding some basic definitions in the
general robust control problem is presented next, followed by more specific information on the
type of system being considered and the problem of interest. This naturally leads to a discussion
of the objectives of this work and an outline of the thesis.

1.2 Preliminaries

Robust design attempts to take account of uncertainty in the model and disturbances on
the system. Model uncertainty arises due to the difference between the real plant and the model
being used for the design of the controller. When modelling a system it is often necessary to
make certain assumptions such that the problem can be simply defined and a model easily
obtained. Examples of such assumptions are linearity, the order of the model, the time delay,
noise characteristics and the time invariance of parameters. The errors introduced by such

assumptions can give rise to model uncertainty.

Model uncertainty can generally be split into two categories, unstructured and structured.
To help understand the difference between the two, consider the typical feedback control system
shown in figure 1.1 where P is the plant, C is the controller, w(t) is the demand signal, e(t) is

the error, u(¢) is the input and y(¢) the output.

.13 -



1. Introduction

Wiy [ o o p R

Figure 1.1 - Block Diagram of a Typical Feedback Control System

P can be expressed as

P=M+AM (1.1)

where M represents the derived model of the plant and AM the modelling error or uncertainty

due to the violation of certain assumptions as outlined above.

An unstructured description of the model uncertainty essentially bounds the magnitude of
possible perturbations, i.e.

I AM|| < < +oo (1.2)

but does not trace the origins of the perturbations to specific elements of the plant. A structured

description can be represented as

AM =K¢ (1.3)

and attempts to specify some information, using K, regarding which elements of the plant are

subject to perturbations. € represents the unknown magnitude of the perturbations.

Clearly the unstructured approach may lead to controller designs which are unnecessarily
conservative as it can include perturbations which do not actually occur in the plant. A structured
approach on the other hand has the drawback that it does not deal with perturbations that affect
the order of the plant (Maciejowski, 1989).

- 14 -



1. Introduction

The robustness problem itself can primarily be split into two types, robust stability and
robust performance. The stability problem is concemned with ensuring that the closed-loop system
remains stable in the face of model uncertainty, whereas robust performance is concerned with
how the closed-loop system behaves subject to model uncertainty.

1.3 Definition of the Problem

This work is concerned with discrete single-input single-output (SISO) systems in
input-output (or polynomial) form. The open-loop system is as shown in figure 1.2

e(t)

R R o
A

u(t) B + y()
L

+

Figure 1.2 - Block Diagram of the Open-Loop System

which can be expressed as

A,y () =B, @)+ C,(z () (1.4)
where

A =1+az" +az7+ - +a,2 (1.5)

B,z =bytbz ™ +byz -+ bz (1.6)

C, ) =1+cz ez 44,2 (1.7)

and z' can be interpreted as the backward shift operator. The signals y(¢), u(t) and e(¢) are the

sampled system output, the control input and a white noise sequence respectively. C,(z") isa
colouring polynomial for the signal e(t), used to characterise the disturbance more accurately.

-15-



1. Introduction

For this type of system, the problem considered is that of performance robustness. To
ensure that the problem remains tractable it is assumed that the orders of the system polynomials
A ,,(z"‘) and B,,(z“) are fairly accurate and that information is available on which coefficients are
perturbed, thus the problem is one of structured model uncertainty. For the general polynomial
system this can be expressed as

Az =1+(@+Aa)2" + (g, + Mgz +- - +(a, +4a, )z (1.8)
B,(27) = (by+ Abg)+ (b, + Ab)z ™+ -+ (b, +Ab, )z (1.9)
where a,, -+, a, , by, - -+, b,, are the known nominal values of the coefficients and Aq,, - - -, Aa, ,

Ab,, - - -, Ab,,b are the unknown errors or variations in the coefficients, some of which may be
Zero.

The concept of pole-placement for controller design has its roots in classical control theory
and the idea of placing poles in certain locations to achieve a desired closed-loop behaviour is
intuitively appealing. The methods for performing such a design are generally quite straight-
forward and all of these points help to explain why pole-placement has become very popular in
industry for controller design. On the basis of this the approach of pole-placement is adopted as
the design procedure for this work.

Before continuing with details of the objectives of this thesis and an outline of the various

chapters, it is useful to review the pole-placement design procedure for polynomial systems.

1.4 Pole-Placement Design for Polynomial Systems

Following Wellstead and Sanoff (1981), servo and regulatory control can be applied to
the system in (1.4) using the control law:

F,u(@)=H,w@)=G,)y@) (1.10)

where
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1. Introduction

F,Y=fi+fz ' +fz7+- -

G,z =g, +g,27 +g,27 +--

H,z)=hy+hz" +hz 7+

and w(z) is the demand signal.

(1.11)

(1.12)

(1.13)

Note that the pole-placement design assumes the time delay, ¢, is incorporated in B,z ™),

hence n, = A, + 1, where 7, is the true order of Bp(z"). This will lead to some of the leading

coefficients of B,(z™') being zero. Also, due to sampling, the time delay will always be at least

one, so b, will be equal to zero.

This gives rise to the closed-loop system as shown in figure 1.3

w(t)

55 + _Z(t)

e(t) C
A
l_ u(t)
F
G

which can be expressed as

y@)=

BP(Z_')HP(Z_')

A, YF,EY+B,27)G,(z7™")

w(t)

Figure 1.3 - Block Diagram of the Closed-Loop System

F,z)C,(z™)

+Ap(z")Fp(z") +B,(z7)G,(z™)

-17-
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1. Introduction

T, (z")=1+n2"+8627"'+ - +1,2 " specifies the desired closed-loop pole positions then

F,(z") and G,(z™") are obtained from the solution to the diophantine equation
A, F,EY+B,(27)G,z)=C, T,z (1.15)

where C,(z™") is included on the right hand side (RHS) of the equation to minimise the variance

of the disturbance. To explain, consider the disturbance term
d(t)=C,(z7)e () (1.16)
The variance of d(t), E[d*(t)] can be expressed as

E[dz(t)] =E[e2(t)+c12e2(t - l)+c22e2(t 2+
cetce(te(t-1)+ce(t)e(t—2)+- -

cetece(-1e@-2)+--] (1.17)

But as e(¢) is an uncorrelated sequence

E[e(t-a)e(t-P)=0 for a#p (1.18)
Therefore
E[d* )] =E[1+c2+ci+--]0; (1.19)

where o2 is the variance of e(?).

ClearlyifC,(z ~1) can be removed from the disturbance term, the variance will be minimised.

This can be achieved by forcing the denominator of the closed-loop system to contain C,(z™")
as a factor, hence the form of the diophantine equation (1.15).

This gives the closed-loop system as

-18-



1. Introduction

B,z hH,(z™) F,(z™
w(t)+

Y= C,(z T,z ™) T,z

e(t) (1.20)

where the denominator of the demand signal term still contains C p(z") which can be removed

using the precompensator, H,(z™'), by incorporating it as a factor, i.e.
H,z)=H/CC, ™" (1.21)

Essentially the precompensator term, H P’(z“') is used to ensure that the output y(z) tracks

the command input w(z) in the steady state. Considering the response of the closed-loop system
to a step input, for zero steady state error

B,(DH,'(1)C,(1)
A,(DF,(1)+B,(1)G,(1)

(1.22)

The form of H,’(1) which ensures that this equation is satisfied is not unique. If Ap(z“) is

forced to contain a factor of (1 —z™') by cascading a digital integrator with the open-loop system,
then A,(1) = 0 and hence H,’(1) can be obtained from

G,(1)

A =c

(1.23)

and as this represents a scalar value, n,- = 0. Therefore H P(z") =H p’(l)Cp(z“) and n, = n_.

However in practice the model parameters A p(z"), Bp(z") and C p(z"‘) are generally not

accurately known and estimates are used. Hence F p(z") and Gp(z'l) are obtained from

A F,@)+B,@)G,@™)=C,eTE™ (1.24)

where A,(z7), B,(z™") and C,(z™) are estimates of the model parameters. H,(z”") is then

calculated as above using the estimates of the model parameters.

-19-



1. Introduction

1.5 Objective of the Thesis

From a robustness point of view the diophantine equation is extremely interesting due to
the large number of possible solutions, all of which lead to a stabilising controller that places
the closed-loop poles in the desired locations. Particular solutions may however yield a
closed-loop system with improved robustness properties.

The robust design problem can now be stated as the determination of suitable F A‘,(z") and

G, (z”") polynomials which satisfy the diophantine equation (1.15) and which minimise the effect
of Aa,, - -+, Aa, , Ab, - - -, Ab, on the transient response of the closed-loop system.

Uncertainty in the Cp(z'l) polynomial is not considered as it does not affect the transient

behaviour of the closed-loop system. It is incorporated, however, in the precompensator H P(z“)
which is selected to achieve zero steady state error. The presence of uncertainty does not represent
a problem for steady state tracking if the procedure for selecting the precompensator outlined in
the previous section is used. Considering the expression for the precompensator, in the steady
state

C,(1)G,(1)

Hp(1)= Cp(l)

=G,(1) (1.27)

and it is clear that good steady state tracking will always be maintained as H,(1) is independent
of any uncertainty in C,(z™).
Now consider how to solve this problem and obtain the robust F ,(z") and Gp(z") poly-

nomials. Section 1.1 gave an indication of various approaches to the solution of the robust control
problem and it was noted that a major development was the Youla parameterisation which
effectively gives rise to a set of possible controllers, allowing the most robust one to be found.
Obtaining a solution to the diophantine equation represents a similar situation where there are
a set of controllers and the problem becomes one of searching for the most robust controller.

The concept of searching for a robust controller is quite natural in robust design and is
easily formulated in terms of an optimisation problem. Indeed many robust techniques involve
some form of optimisation in the design of a suitable controller. The rapid development in
computing technology over recent years opens up the possibility of solving the optimisation

problem numerically, Maciejowski (1989).
This thesis presents an alternative approach to the solution of the robust design problem

as outlined above, based on the theme of utilising modern computing technology to conduct the
search for a robust controller, in the form of a numerical optimisation problem.

-20-



1. Introduction

1.6 Outline of the Thesis

Chapter 2: The diophantine equation is clearly extremely important in the design of a
controller for systems in input-output form. This chapter discusses a number of the aspects of
this equation to help gain a better understanding of the robust controller design problem. There
are two main approaches to solving the equation and they are both reviewed, followed by a
discussion of various problems that may be encountered when attempting to find a solution. A
simple approach to finding a more robust controller is then developed but it is shown that the
method has a number of shortcomings, which leads directly to the idea of a state space design.

Chapter 3: The link between polynomial and state space systems is established showing
that, as would be expected, an output feedback state space design must be used. As the aim is
to use optimisation techniques to select a more robust controller, a parametric design is used
which effectively specifies a set of possible controllers. Two of the main parametric output
feedback methods are reviewed and a comparison made of their performance on some test
examples. The method which performs better is however not used as the structure of the type of
problem being considered here causes it some difficulty. This is discussed more fully when the
overall design is applied to an example in chapter 5.

Chapter 4: After determining the set of possible controllers using parametric design, the
problem becomes one of how to select the free parameters such that the resulting controller yields
a closed-loop system with improved performance robustness. This issue is addressed in this
chapter, which first introduces how to quantify mathematically the effect of errors in the model.
A mathematical description of the output is then obtained using modal decomposition and from
this a number of possible cost functions are derived for use with numerical optimisation algo-

rithms. A general introduction into such algorithms is then given.

Chapter 5: The previous chapters develop the overall robust design technique, this chapter
applies the method to an example. With the application of the method arises questions and
problems associated with its implementation on a computer and a small discussion of some of
the most important points is given. It is then shown why one of the parametric design methods
cannot be used on the this type of problem. A comprehensive set of results is then obtained which
helps to illustrate the relative benefits of each of the proposed cost functions and the typical

improvement that can be achieved with this robust design approach.

Chapter 6: The application of the method to a more realistic problem is considered in this
chapter. Daley (1987) considered the application of self-tuning control to a hydraulic rig to help
overcome problems associated with varying supply pressure and load. From the basic physical
equations of the plant a nonlinear continuous time simulation of the rig is set up and a robust
controller designed from a model obtained using system identification techniques. It is shown
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that the robust controller performs well compared to the controller obtained from the minimum
order solution to the diophantine equation. Also the performance compares favourably with that
of the self-tuning controller of Daley (1987).

Chapter 7: The conclusions drawn from the preceding chapters are presented here. The
chapter brings together and highlights both the advantages and the disadvantages of this type of
approach to designing robust controllers. There are still a number of problems with the method
and a discussion of these follows, leading onto some suggestions for future work.
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CHAPTER 2

THE DIOPHANTINE EQUATION

2.1 Introduction

Section 1.4 detailed the pole-placement design procedure for polynomial systems. From
this it is clear that the diophantine equation

AF, +B,G, =C,T, @2.1)

is extremely important, as the whole design centres around obtaining its solution, which of course
gives the F, and G, controller polynomials. Once a solution has been found the third controller
polynomial, the precompensator H, is easily obtained. As the solution of this equation is such
an important part of the design stage it 1s useful to gain an understanding of the conditions under
which solutions exist, the range of possible solutions and the approaches that can be used to
obtain a solution.

There are basically two approaches to the solution of the equation and these are discussed
more fully in the following two sections. Various problems associated with finding a solution
are then discussed, followed by details on some work carried out on obtaining more robust
solutions to the diophantine equation. However, before proceeding with these topics it is useful
to present two theorems (Kucera, 1979) which clarify the conditions for the existence of solutions

and the range of possible solutions.

THEOREM 2.1:
The equation (2.1) has a solution if and only if the greatest common divisor of A, and B,
is a factor of the right hand side (RHS), C,T,.

PROOF:
STEP 1 - Let F, and G, be a solution to the diophantine equation and the greatest common

divisor of A, and B, be g,.

Then
A, = g, (2.2)
BP = ngO (2.3)
and
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8,(AF o+ B,Gy)=C,T, (2.4)
Hence g, is a factor of C,T,.
STEP 2 - Assume C,T, = g,C,T,
It is well known that two polynomials, P, and Q,, always exist such that

AP, +B0, =g, (2.5)
Multiplying by C,T, gives

A[P,CT,)+B,[0,C,T,] =C,T (2.6)

p

Hence the solution of (2.1)
[]

This theorem basically outlines the conditions for a solution to exist to the diophantine
equation. Its importance will become clear later when the problems associated with this equation
are discussed.

THEOREM 2.2:

Let F, and G, be a solution to equation (2.1). The general form of the solution is

F,=F,-ByX, (2.7)

G,=Gy+AKX, (2.8)

where A, and B, are as defined in theorem 2.1 and X, is some polynomial.

PROOF:
Clearly
APF0+BPGO= Cpr 2.9
and
Apr+BpGp=Cpr (2.10)
therefore
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AF,+B,G,=AF,+B,G, (2.11)

-A,(F,~Fy)=B,(G,-G,) 2.12)

From theorem 2.1, A, =g, A, and B, = 8,B,. The polynomials A, and B, are coprime and
satisfy A, B, = B,A,, so B, must be a divisor of —(F » —Fo) and A, a divisor of (G, — Gy), i.e.

(F,~F)=-BX, 2.13)
G, -G =AX, 2.14)

for some polynomial X, hence the general form for the solution to (2.1).
0

Theorem 2.2 highlights the fact that there are infinitely many solutions to the diophantine
equation (2.1).

The equation can be solved by either matrix methods or by polynomial methods (Kucera,
1979; Clarke, 1982; Mohtadi, 1988; Astrom and Wittenmark, 1989). A review of each approach
is given, followed by a discussion of problems associated with the equation and various suggested
methods to help overcome these problems. The chapter finishes with a novel investigation aimed
at obtaining a more robust solution to the diophantine equation.

2.2 Solution via Polynomial Methods

The polynomial solution outlined here follows that of Kucera (1979), although many
authors have presented similar derivations.

From theorem 2.2, the general form of the solution is

F,=Fy-BJX, (2.15)
G, =G, +AX, (2.16)

where X, is some polynomial.

There are many ways to calculate this solution, one of which is to use an extended Euclidean
algorithm which calculates a greatest common divisor (GCD), g, of A, and B,, along with two
pairs of coprime polynomials P,, O, and R, S, satisfying




2. The Diophaniine Equation

APPP+BPQp=gp (2.17)
AR, +B,S, =0 (2.18)
Also
CT
Coly=—"= (2.19)
&p

Hence the general solution is

F,=P CT,+RX, (2.20)

G,=0,CTo+5,X, (2:21)

Note that C,T,, must be a finite polynomial, which forms a useful check on the existence

of a solution.

A special solution is the minimum degree solution with respect to (w.r.t) F, or G,. It is

calculated using the polynomial division algorithm to find (in the case of the minimum degree
solution w.r.t F,)

Fo=Bgu,+v, (2.22)

where u, is the quotient and v, the remainder. Then

F,=v,-ByX, - u, (2.23)

and the minimum degree solution is obtained by putting X, = u,,, therefore

F=v, (2.24)

G, =G+ A, (2.25)

This is a unique solution and may not necessarily be the same as the minimum degree

solution w.r.t G,.

.29.
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Appendix A contains details of the extended Euclidean algorithm and the polynomial
division algorithm.

2.3 Solution via Matrix Methods

The equation (2.1) can be transformed to a matrix equation of the form A,x = b and matrix

methods used to obtain a solution.

Expanding (2.1) gives

~n, + uj)

AF,=fi+@fy+f) +(@fy+af,+ )7+ - +a,f,2 (2.26)
B,G, =bygy+ (b8, + bog))z™ + (b8 + b8y +beg)z - -
R A ¥ )
CT,=1+(c+ 1)z + (e Hh)z  + + C,,ctn'z_("‘ o (2.28)
Assuming
n,+n,=n,+n, (2.29)

which can always be achieved by padding with zero terms if necessary, the diophantine equation
can be represented as

U, +bogo aufy+fi+begi+bi8 @fotafi+f+bogy+big+bagy
n +n T
an “,+bu.gn.] . [Zo z—l 2-2 .. Z-( a I)] =

n +a)|T
[1 ¢+t c+efy+y - c,‘t,,']-[z" R ‘)] (2.30)

If n_+n, < n, + n, then the equation can be expressed as
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1 0 O 0O b, 0 O 01r £
e 1 0 b, b 0 R
1 1 0 f
1 ¢, +1,
a, 4q 1 bz bl bo f2
Q4 2
a, 1 bz bo .
a, - a b, - - bi(| f|=| - (2.31)
0 a, a, bn,, b, || & Caln
0 o0 a, 0 O b,,b & 0
0O 0 O a, 0 0 0 b, |L&%] L 0 |

which clearly is of the form A.x = b where 4, is a sylvester matrix of the coefficients of A, and

B,, x is a vector of unknown controller polynomial coefficients and b is a vector containing the
coefficients of C,T,,.

If nsis setto n, — 1 and n, to n, — 1 then this will give rise to the minimum order solution

and A, will be square. The set of equations can then easily be solved by inverting A, or preferably,
from a numerical point of view, by one of a number of algorithms to solve a set of linear equations
such as Crouts factorisation method, NAG (1990). If n, or n, are set to higher values then A, will
no longer be square and it is necessary to arbitraily set some of the unknowns to find a solution.
Section 2.5.3 discusses this aspect in greater depth later on.

2.4 Problems Associated with Finding a Solution

Theorem 2.1 gives a good indication of when problems will arise with finding a solution
to the diophantine equation. If A, and B, have an exact common factor which is not a factor of
the RHS, then no solution exists.

In practice, however it is more likely that a near common factor will be encountered. There
are two principle ways that such a factor can arise (Mohtadi, 1988).

1) As the sample rate increases the poles and zeros of a discrete system tend to map to a
region close to the (1,0) point in the z-plane (Astrom et al, 1984), obviously leading
to common factors.

2) Itis possible to overparameterise real systems during identification if slow sample rates
are used in conjunction with high order models resulting in a possible common factor.
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Although a solution can generally be obtained in the presence of a near common factor, it
tends to be a poor one in terms of numerical robustness. To help understand the problems that
can arise with such a factor, consider a simple example.

Example 2.4.1:
A,=(1+d4z7)(1+227) (2.32)
B,=(1+z")(3z7) (2.33)
C,T,=1+z"+2z7"+7" (2.34)

where 4 is selected as 0.9999 and 1.0001. The following solutions were obtained using
Pro-Matlab version 3.5e.

Matrix solution:
d4=09999 F,=1+10001edz” (2.35)
G, =-3.3343e3 - 6.6663¢3z" (2.36)
d=10001 F,=1-9.9993z" (2.37)
G, =3.3323e3+6.667¢3z™ (2.38)
Polynomial solution:

The general solution is used with the arbitrary polynomial set to 1.
4=09999 F,=1-49999" - 1.0008e4z 7% - 1.0009e4z ™ -
2.0011e4z7* - 1.0004e4z>  (2.39)
G, =1+0.334edz +1.0008edz™ + 1.3343edz™ +

1.6674e42z™ +0.666%¢4z=>  (2.40)

4=1.0001 F,=1-5.0001z"+09992e4z”+0.9991e4z™ +
1.9989¢4z™* +0.9996e4z”>  (2.41)
G, =1-0.3327edz' ~0.9992e42 - 1.3324e42™ -

1.6659e4z~* —0.6665¢4z~°  (2.42)
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Clearly the presence of a near common factor causes the value of some coefficients to be
quite large which is undesirable. Of more si gnificance though is the dramatic chan gein the values
with a small change in 4 around the nominal value of 1 (for an exact common factor).

A second problem with finding a solution occurs when the coefficients of B, become small.

The reason for this in the case of the matrix approach is that columns of A, are close to zero and
the matrix becomes ill-conditioned. For the polynomial approach large multipliers appear in the
extended Euclidean algorithmresulting in large values for some of the coefficients of the resulting

polynomials. This is an important problem as the magnitude of the coefficients of B » isdependent
on the sample rate (Mohtadi, 1988).

Intuitively, for the polynomial solution, a simple approach to overcoming the problem of
a common factor is to force the RHS to contain it as a factor and find a solution to

AF,+B,G,=gC,T, (2.43)

and then g, can be dealt with in the same way as C, in the precompensator. For example consider

the closed-loop system

}’(‘)= B,H, - B,H,
u(tt) AF,+B,G, g,C,T,

(2.44)

To eliminate g, and C, from the denominator, H, must contain g,C, as a factor, i.e.
H,=g, CH,/ (2.45)

and H,’ can be calculated as before for zero steady state error.

Clearly this has the disadvantage of increasing the order of the precompensator polynomial
but has the advantage of being extremely easy to implement. When calculating C,T,, if a
remainder is left then g, is not a factor of C,T, and the above procedure must be carried out
giving C,T, = C,T, and hence a solution.

The procedure does assume that the common factor is exact which will generally not be
the case. In example 2.4.1 with a near common factor the extended Euclidean algorithm retumed
g, = 1 and hence failed to detect its presence. Clearly the above procedure is worthless in such

a casc.
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For the matrix approach the only complete solution is to isolate the offending common
factor in A, and B, and remove it from the polynomials before constructing the simultaneous
equations (Tuffs, 1984). Again this relies on having an exact common factor so is not appropriate
for practical problems.

It is possible to formulate a recursive solution to (2.1) by introducing an arbitrary signal
&(z) to produce a regression model (Edmunds, 1976; Alix et al, 1982)

ct(t)y=F,a(t)+ G,b(t-1t) (2.46)

where cz(t) = C,T,&(t), a(t) =AE(t) and b(r) = BE(r).

This can then be used as the basis of a recursive estimator with a parameter vector [F » G,l,

a measurement ct(¢) and a data vector
[a¢t)) a(¢-1) --- b@-t) b@-t,-1) --- ] (2.47)

The problem of a common factor is also present in this framework and appears as linear
dependence in the data vector. Theorem 2.1 showed that no solution exists unless the common
factor is also a factor of the RHS so it is reasonable to expect the estimator to experience some
difficulty in converging to a solution as in fact none exists.

Another approach (Lawson and Hanson, 1974; Tuffs, 1984) is to examine the ’pseudo-
rank’! of the A, matrix and if a rank deficiency is detected, calculate a ’minimum-norm’ solution,
X which minimises the Euclidean length of é =b —AX. Such a solution is numerically very
robust. The major drawback here is that it has not been proved that the closed-loop system is
stable under all conditions.

Berger (1988) suggests splitting the desired closed-loop poles into two parts J, and X,

The first part, J, is chosen to satisfy the desired design criteria whilst K, the second part, is
initially set to zero but can be adjusted to improve the conditioning of the set of linear equations.
It is necessary to specify bounds for the coefficients of K,.

For the problem of small B, coefficients due to rapid sampling (which can also give rise

to a common factor), Middleton and Goodwin (1986) have proposed a method which involves
replacing the z™ operator with the  operator which is defined as

1 Lawson and Hanson (1974) define the pseudo-rank of a matrix A 1o be the rank of a matrix A that replaces A as
a result of a specific computational algorithm.
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d= ) (2.48)

where @ is the sampling interval. It is claimed that the use of this operator gives rise to a number

of benefits including improved finite word length characteristics and an improvement in the
conditioning of the sylvester matrix. Of course the implementation of control strategies in the &
operator are more complex than those in the more common shift operator.

There are many other discussions of the diophantine equation and its properties in the
literature together with a number of proposed methods for overcoming the problems associated
with finding a solution. Such a proliferation of methods indicates that no one approach can deal
with all the shortcomings of this equation and that the calculation of its solution should be carried
out with some care.

2.5 Obtaining a More Robust Solution

Putting aside the problems associated with the equation, another interesting aspect is the
number of possible solutions as highlighted by theorem 2.2. As a first step towards the goal of
designing polynomial controllers with improved performance robustness, it would be interesting

to investigate the robustness properties of various solutions to the diophantine equation.

The matrix approach appears to be the more popular method of solving the equation. This
is probably due to a greater general familiarity with the theory of matrices, the fact that the matrix
representation of the equation is of a standard form and lastly because the matrix method is more
easily implemented on a computer. Thus it seems appropriate to base the investigation on this
approach. It is assumed that there are no problems with common factors or small coefficients

and so standard matrix analysis is used to solve the equation.

Based on this method for solving the equation, the effect of errors (or perturbations) in the
model parameters is considered which helps to establish a suitable robustness criteria. It will be
seen that vector and matrix norms play an important role in the evaluation of this criteria and so
a brief discussion and definition of them is included, followed by some comments on how to
select alternative solutions. A set of results using the proposed robustness criteria are presented
for a number of examples and conclusions drawn about the suitability of such an approach for

improving performance robustness.
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2.5.1 The Effect of Parameter Perturbations

If the parameters are subject to perturbations then the matrix equation (2.31) can be
represented as

(A, +4A) (x +Ax) = (b + Ab) (2.49)

where A, x and b represent the true values and AA,, Ax and Ab the errors.

Itis necessary to establish some sort of measure to gauge the robustness of various solutions.
The matrix form of the diophantine equation is of a standard form on which much work has been

carried out. Perturbation theory for linear systems can be used to help establish the appropriate
criteria.

A suitable measure of robustness could be obtained by computing an upper bound for the
relative perturbation || Ax|| /|| x|l . There are a number of such bounds, the following is taken from

a derivation in Lancaster and Tismenetsky (1985).

Subtracting Ax = b from (2.49) gives

(A, + AA)AX + AA x = Ab (2.50)
or

A +ATAA)Ax = Ab —AAx (2.51)

Lancaster and Tismenetsky (1985) show that the existence of (/ + A, ’AA:)'1 is implied if

p=lAI1AA) <1 (2.52)
where the particular norm used must satisfy
i =1 (2.53)

Also
| (¢ +A7AA) ] <(1-p)” (2.54)
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Thus

Ax=(I+AAAY A]'Ab - (1 +A]0A) A7 M
and if ||-||, is any vector norm compatible with || -],

147 p
T 1481+,

lAx], <

Ax = b implies that | b||, < | A,|l | x]|, hence

1 _lAl
I, hal,

Thus

Iaxt, 1ANUATY 1460, | p
Ixl, = 1-p Tal, 1-p

(2.55)

(2.56)

(2.57)

(2.58)

Define x(A,) = || A,|l | A;|| to be the condition number of A, and note that

K(A,) | AA,|
=AY | AA | = ——m
Thus
Il Axll, x(4,) [II Ab|, IIAA,IIJ_
< + =U,
Ixll, 1=-x@)IAANMANL NI, Al

(2.59)

(2.60)

It would seem reasonable to suggest that the solution which minimises the upper bound,
U, is the most robust solution as this minimises the maximum possible variation in x.
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However, these results are really only valid for small perturbations in A, and b. As the

relative perturbation of A, increases, there will come a point when the evaluation of U, will return

a negative value, due to k(A4,) | AA,||/| Al becoming > 1. The relative perturbation of x should
always be positive, thus the value of U, will be invalid.

At this point it is worth noting that the essential difference between sensitivity and
robustness analysis is that sensitivity based results are concerned with small perturbations,
whereas more significant parameter variations are considered with robust design techniques.
The above perturbation theory gives rise to a sensitivity result, hence the upper bound becoming
invalid for larger changes. However, sensitivity analysis can provide a useful insight into
appropriate robustness measures.

Upon closer examination of the expression for U, it can be seen that the condition number

of A, has a large influence on the upper bound of the relative perturbation of x. Based on this
observation and the knowledge of the benefits of achieving well conditioned matrices, it would
seemreasonable to suggest that the conditioning of the sylvester matrix would be a useful measure

of robustness for systems with not necessarily small parameter perturbations.

2.5.2 Matrix and Vector Norms

The upper bound, U, of the relative perturbation and the condition number depend on

vector and matrix norms, of which there are many. The most commonly used matrix norms are

P or Holder norms and the Frobenius or Euclidean norm.

The P norm is defined as

IAx|,
Al ,=su — (2.61)
1A, = S92 T,
for any x, where [ x|, = (lx,|” +-- -+ Ix,,l”)"" and p is generally taken as p = 1,2 or eo.
The Frobenius norm is defined as
m a 112 )
IIAIIF=[4 l‘Ella,,lz] (2.62)
= j=
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However because of the assumption in (2.53) that | /]| =1 the Frobenius norm cannot be

used as || /|| = n'™. Essentially the aim here is to find the minimum condition number and it is
well known (Golub and Van Loan, 1983; Horn and Johnson, 1985) that if a point is a minimum
withrespect to one normit will also be a minimum with respect to another norm. This equivalence

of norms means that any one of the p norms could be used to calculate the condition number and
select the most robust solution.

2.5.3 Selecting the Order of the Controller Polynomials

A common approach to solving equation (2.31) is to use the minimum order solution
(Kucera, 1979; Wellstead and Sanoff, 1981; Clarke, 1982) where

n,=n,—1 (2.63)
n,=n,-1 (2.64)

although a number of other authors have proposed using alternative solutions (for example
Astrom and Wittenmark, 1980; McDermott and Mellichamp, 1984; Warwick et al, 1985). The
choice of which solution is ’best’ is still an area of on-going research and of course will depend
on the design objectives.

To select other solutions the orders of F, and G, will have to be changed. For the matrix

equation this will mean changing the dimension of the matrix and vectors. Thus it is necessary
to understand the conditions under which n, and n, can be selected.

In equation (2.31), the number of columns containing A, coefficients = the number of F,

coefficients = n,+ 1, and the number of columns containing B, coefficients = the number of G,
coefficients = n, + 1.

ie. N, =N,=n+n,+2 (2.65)

where N, = the number of columns and N, = the number of unknowns.

The number of A, coefficients = n, + 1, and B, coefficients = n, + 1. Again examining

equation (2.31) it is clear that the coefficients are moved down by one row for each successive
column, therefore the number of extra rows created is n, for the A, coefficients and n, for the

B, coefficients.
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ie. N,=N,=max{n,+n,+1,n,+n, +1} (2.66)

where N, = the number of rows and N, = the number of equations.

From equation (2.29) it is clear that the two values in the brackets will be equal, so either
can be used.

As the number of rows and columns are affected there are three possible situations that
could arise, assuming that A, is of full rank:

i) The number of rows = the number of columns

na+n+1l=n+n,+2 ny+n,+1=n+n, +2
and
n,=n,—1 n=n,—1

and a solution can be easily obtained. This case only occurs for the minimum order
solution.

ii) The number of rows < the number of columns

This corresponds to the case where the number of unknowns > the number of
equations, thus by setting some of the unknowns arbitrarily it is possible to easily
obtain a solution.

ili) The number of rows > the number of columns

In this case there are more equations than unknowns, which can lead to problems
of inconsistency where a set of values for the unknowns is obtained which do not
satisfy all of the equations. To guarantee that such problems do not arise it is
necessary to investigate the conditions under which this case will never occur.

Limits for ne and n, such that the number of rows < the number of columns are

n,+n+1<n+n,+2 n+n,+1<n+n,+2
and
n,2n,—1 n2n,—1

Asn,=n, -1 and n;=n, — 1 are the minimum order solution, these conditions will
always be fulfilled and case iii) can never occur.

Suitable choices for n, and n, can be deduced from the conditions mentioned above. To

summarise, all of the following constraints must be satisfied :
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a) na+n=n,+n,
b) n,2n,—1
C) nIan—l

d) if N, > N, then some of the unknowns must be arbitrarily assigned

The first constraint means that if the order of F, is increased then the order of G, must be

increased by the same amount.

2.5.4 Simulation Results

Three examples are considered

1) A non-minimum phase system (taken from Wellstead and Sanoff, 1981)

2)

3)

(1-1.627"+0.622y(t) = (27" + 1.527u(r) + (1 - 0.4z Me(r) (2.67)

and it is desired to have a closed loop pole at 0.8

It is assumed that the A,, B, and C, polynomial coefficients are subject to uniformly

distributed random perturbations of 2%, 5% and then 15%.

A system proposed by Berger (1984)

(1-2z2"+z9y@) =" +0.127u@) (2.68)

and the desired closed loop poles are all assumed to be zero.

The A,, B, polynomial coefficients are now assumed to be subject to normally dis-

tributed random perturbations with variances of firstly 0.01% and 0.02% respectively
and then 5% and 10% respectively.

A hydraulic rig (taken from Daley, 1987)

(1-0.54666z"")y(1) = (1.28621z)u(r) (2.69)
and the desired closed loop pole positions are 0.75 + 0.2

The A,, B, polynomial coefficients are time-varying with respect to the supply

pressure. The relative size of the variations are 10% and 125% respectively.
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A digital integrator is cascaded with each system to achieve the desired steady state

performance as outlined in section 1.2, hence two closed loop poles being specified for example
3 which is a first order system.

The minimum order solution is unique, however when nyand n, are increased beyond their

minimum order values, a set of solutions is obtained. The size of the set increases as n; and n,
increase. Consider the case where n; and n, are increased by one from their minimum order
values. This particular set of solutions will be referred to as the minimum order + 1 solutions.
Section 2.5.3 outlined how the size of equation (2.31) was affected by changes in n;and n,. From
this work, in particular equations (2.65) and (2.66), it is clear that the number of unknowns in
equation (2.31) increases by two whereas the number of individual equations (or rows of the
matrix A,) only increases by one. In order to solve equation (2.31) for a particular solution it is
necessary to arbitrarily set one of the unknowns. The mathematics involved can be greatly
simplified if the unknown is set to zero as this is equivalent to deleting one of the columns from
the sylvester matrix A,. It is important to ensure that the resulting square sylvester matrix is of
full rank, else the solution will suffer from numerical problems as outlined in section 2.4.

If nyand n, are increased by two from their minimum order values then the minimum order

+ 2 set of solutions is obtained. In this case it is necessary to arbitrarily set two of the unknowns,
and if zero is again used this translates to deleting two columns from the sylvester matrix.

It is possible to continue increasing n, and n, resulting in even larger sets of solutions.

However, for the purposes of this investigation only solutions up to and including the minimum
order + 2 set will be used, as this should give a sufficient indication of the performance of the
robustness measures and the suitability of this approach.

The levels of perturbation specified for examples 1 and 3 define the approximate level of
random perturbation required, and for example 2 the actual variance of the perturbation is given.
On the basis of this, four sets of random perturbations are generated for each example to allow
a better investigation into the correlation between the measures of robustness (condition number
and upper bound) and the true relative perturbation. This results in four plots appearing in each
figure corresponding to the four sets of random perturbations.

For the minimum order + 1 solutions the x-axis on the graphs corresponds to which column
was deleted from the sylvester matrix. However, as f; is fixed at 1, column 1 was not actually
deleted and in its place are the results for the minimum order solution. For the minimum order
+ 2 solutions the x-axis can no longer be used to indicate which columns are deleted as it is now
necessary to remove two. Instead all possible solutions are shown in no particular order except
that the minimum order solution is still first. The 2-norm was used for calculating the condition
number and upper bound throughout. The graphs are located at the end of the chapter.
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The 2% perturbation results for example 1 are shown in figures 2.1 and 2.2. The upper
bound and the condition number agree quite well with the lowest minima indicating the best
solutions. From the graph of the true relative perturbation it appears that the measures are
generally selecting good solutions as regards robustness. Figures 2.3 and 2.4 show the 5%
perturbation results. The upper bound is only valid for the minimum order + 1 solutions where
there is good agreement with the condition number on which solutions are better. The upper
bound for the minimum order + 2 solutions demonstrates the effect of higher levels of pertur-
bation, highlighting its inadequacy as a robustness measure. Comparing the condition number
and the true relative perturbation, it can again be seen that generally the condition number selects
the better solutions. When the level of perturbation is increased still further to 15% (figures 2.5
and 2.6) the upper bound becomes totally invalid for all solutions. Again the results show a good
correlation between the condition number and the true relative perturbation.

Moving on to the second example, the results for a low level of perturbation are shown in
figures 2.7 and 2.8. Even at this level of perturbation the upper bound is not valid for all solutions
and so should be ignored. Comparing the condition number and the true relative perturbation it
can be seen that the correlation between the two is not as good as for the first example. Figures
2.9 and 2.10 show the results with a higher level of perturbation and again the same conclusions

can be drawn when comparing the condition number and the true relative perturbation.

Lastly in figures 2.11 and 2.12 the results for the third example are given. As would be
expected, due to the high level of perturbation for this example, the upper bound is again invalid.
There is a slightly better correlation between the condition number and the true relative per-
turbation than for example 2, but still not as good as for example 1.

2.6 Conclusions

Having established that the diophantine equation is important in the calculaton of a
pole-placement controller, this chapter has outlined some important points regarding the equation
and obtaining a solution to it. Such an understanding is useful when considering the problem of

robustness.

There are two approaches to solving the equation, polynomial methods and matrix methods.
Neither appears to have any distinct advantages although the matrix approach seems to be more
popular, possibly due to the greater general familiarity with matrix theory, the fact that the matrix
representation of the equation is of a standard form and also because the matrix approach is

easier to implement on a computer.

.43 -



2. The Diophantine Equation

A solution to the equation only exists if A, and B, are coprime or if the right hand side

contains their common factor. The consequence of this statement only becomes apparent when
itis understood how common factors can arise for discrete time systems. Itis clear that the sample
time plays an important role in the occurrence of such factors and so should be chosen carefully.

With exact common factors it is possible to easily detect and overcome their presence,
however it is more likely that near common factors will be present which show themselves as
ill-conditioning of the matrix equation. Many techniques have been proposed for the case of near
common factors but no one method appears to have totally overcome the range of possible
problems that could be encountered.

The occurrence of small B, polynomial coefficients also causes problems when trying to

solve the equation, which is important as the magnitude of the B » coefficients is also a function
of sample time. Obtaining a solution clearly suffers from a number of problems but putting them
aside, another interesting aspect is the number of possible solutions to the equation.

Any solution will meet the design objective by placing the poles in their desired locations,
butdifferent solutions may have interesting properties from the point of view of additional desi gn
goals. The goal in this case is to find controllers where the closed-loop transient response is
robust to changes in the open-loop model parameters.

From the derivation of an upper bound on the relative perturbation of the solution to the
matrix form of the equation, it can be seen that the conditioning of the sylvester matrix is
important. An investigation into obtaining better conditioned matrices by changing the order of
F, and G, is then presented. Although the correlation between the conditioning and the true
relative perturbation was not perfect, it is clear that the commonly used minimum order solution
is not necessarily the best in this sense.

However this is really only addressing the problem of numerical robustness in the sense
that the controller polynomial coefficients will be less affected by changes in the model poly-
nomial coefficients. This is certainly a desirable property to achieve but its effect on the stated
goal is difficult to assess. The transient response is dependent on a number of factors, one of
which is the poles of the system, i.e. the roots of the characteristic polynomial. Minimising the
change in the characteristic polynomial’s coefficients does not necessarily minimise the change
in the roots (or pole positions). The reason for this is that the relationship between the roots of
a polynomial and its coefficients is not a simple one.

It is clear that an alternative approach is needed which can investigate the effect of model
parameter perturbations on the factors that directly effect the transient response. There is a
growing interest in parameter space methods (Siljak, 1989) which, in the algebraic framework,
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relates the changes in the coefficients of a polynomial to changes in the roots. However the
transient response is not solely dependent on the pole positions so this approach would not enable
a full investigation into transient response robustness.
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Figure 2.1 - Min Order + 1 Solutions for Example 1 (2% Perturbation)
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Figure 2.2 - Min Order + 2 Solutions for Example 1 (2% Perturbation)
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Figure 2.3 - Min Order + 1 Solutions for Example 1 (5% Perturbation)
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Figure 2.4 - Min Order + 2 Solutions for Example 1 (5% Perturbation)
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Figure 2.5 - Min Order + 1 Solutions for Example 1 (15% Perturbation)
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Figure 2.6 - Min Order + 2 Solutions for Example 1 (15% Perturbation)
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Figure 2.7 - Min Order + 1 Solutions for Example 2 (0.01% & 0.02% Perturbation)
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Figure 2.10 - Min Order + 2 Solutions for Example 2 (5% & 10% Perturbation)
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CHAPTER 3

STATE SPACE DESIGN FOR POLYNOMIAL SYSTEMS

3.1 Introduction

The previous chapter presented an initial investigation into obtaining controllers with
improved performance robustness by utilising alternative solutions to the diophantine equation.
The major conclusion was that although extra design freedom exists and it is easy to select
alternative controllers, the specification of a suitable robustness measure, on which to base the
choice of controller, was quite difficult. The main reason for this is that in the polynomial
framework there is no simple approach to assessing the effect of model uncertainty on the
response of the closed-loop system.

In a state space framework it is well known that the transient behaviour of a system is
governed by the eigenvalues and eigenvectors. Further, this description readily allows access to
these factors and hence provides a good basis for an investigation into improving performance
robustness. All of these points highlight the main reasons for turning to a state space based
approach for the design of robust polynomial controllers. Of course the polynomial description
of a system only provides a relationship between the input and output, so if state space methods
are to be used to design the controller polynomials it will be necessary to use an output feedback
approach.

The state space design needs to provide extra degrees of freedom which can then be utilised
as in the polynomial design outlined in the previous chapter to improve performance robustness.
There are a number of options and it is worth noting that any robust state space design method
could be used to illustrate the overall robust polynomial controller design procedure. Due to the
close link between the eigenstructure (eigenvalues and eigenvectors) and the transient response
it is natural to consider the techniques of eigenstructure assignment and parametric methods for

the state space design.

Of course it is necessary to define a suitable robustness measure on which to base the
selection of the extra design freedom. There are a number of possibilities for such a measure,
but as already mentioned the eigenvalues and eigenvectors are very important in determining
the shape of the transient response and so it is reasonable to expect that they will play an important
role in the definition of a suitable measure. A complete discussion of this issue is presented in

the following chapter.
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In this chapter a more detailed explanation of the relationship between the eigenva-
lues/eigenvectors and the transient response is given using modal decomposition, hence
emphasising the reasons for turning to a state space based design. A discussion of the overall
design with the transformation of the polynomial system to state space form and of the controller
back to polynomial form is then presented. An introduction to eigenstructure techniques is then
given, leading onto a discussion of parametric methods and in particular a review and comparison

of two specific parametric output feedback methods, followed by some conclusions on their
suitability.

3.2 Modal Decomposition

To understand the factors that effect the transient response, consider the modal decom-
position of the discrete linear state space system (Kailath, 1980 and Ogata, 1987)

x(k+1)=Ax(k)+Bulk) (3.1)
y(k)=Cx(k)+Du(k) (3.2)

Assuming the initial state is x(0) and the initial input is 4(0), from equation (3.1)

x(1)=Ax(0)+Bu(0) (3.3)
x(2)=Ax(1)+Bu(1)

=A% (0)+ABu(0)+Bu(l) (3.4)
x(3)=Ax(2)+Bu(2)

=A%%(0)+A*Bu(0)+ABu(1)+Bu(2) (3.5)

x(k) =A*LO)+ 3 A*/Bu() (36)

It is well known that

Av:. = )".L (37)
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where A, are the eigenvalues and y; the right eigenvectors of the matrix A, so clearly
AV =VA (3.8)
where V =[v,---v,] and A =diag[A, - - - A,]. Therefore
A=VTAV (3.9
Clearly A* can be expressed by

At =VVAVY VT (3.10)

and substituting (3.9) gives

Ak=VAkV-l (3.11)
and as
[ w |
Vi=W= (3.12)
| wa)

A 0 07[ wi’
0 0 A,] ij

Thus
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A'= 3 vwih (3.14)
Clearly equation (3.6) becomes

x(k)= ,il z.-m’(lfz(o) + kj.: A ""‘Bg(n)

(3.15)
and the output can be expressed as
n k-1 ,
yk)=C% mf(xfz(on 3 xf""Bg(n)+Dg<k> (3.16)
i= Jj=0

Clearly the eigenvalues and eigenvectors are extremely important in determining the shape
of the transient response. The eigenvalues affect the rate of decay and the eigenvectors the gain
associated with each mode.

Having shown the importance of the eigenvalues and eigenvectors, it is necessary to
establish the link between the two representations which will then allow a state space approach
to be used in the design of the controller polynomials.

3.3 The Link between Polynomial and State Space Representations

The single-input single-output (SISO) polynomial system defined in equation (1.4) can be
expressed in observable canonical form, Ogata (1987), as

[ X, ] 0 O 0 0 -a,[x,1 [ b.—ab, ]
X, 1 0 0 0 -a,.,| x, b,_,—a,_1b,
S | + u(k)
Xa-1 00 1 0 -a || X, b, - ab,
| X e 00 01 =-gq |[x] b, -a,b,

(3.17)
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y&)=[0 0 - - - 0 1]| |+buk) (3.18)

where there are n states, m(= 1) inputs and r (= 1) outputs. Note that it is assumed thatn, = n, = n

which can always be achieved by padding with zero terms if necessary. Also the time delay, #,
will always be 2 1 due to sampling and assuming the system is strictly proper, b, will always be
0 as the time delay is included in B ,,(z"). Hence in the analysis it is unnecessary to consider a
D matrix in the state space description.

It is well known that the poles of a closed-loop system may be arbitrarily placed by using
state feedback if and only if the system is controllable (Friedland, 1986). For output feedback
however it is also required that r + m > n, which can be achieved by adding a dynamic com-
pensator of suitable order. Following Brasch and Pearson (1970), for convenience the com-
pensator dynamics will be taken to be a number of integrators. It is also assumed that every state
in the compensator is observable and controllable. Therefore the new system with dynamic
compensator of order p can be represented as

R R 19
X2 {441 0pxn 0y, || X2, 0,0 1, [l42],

_)’1- _ Q,T lep][ll] (3'20)
_Z2_k OP"N IP £2Iz

where the dimension of x, is (n X 1), X, is (p X 1), 4 and y, are (p X 1). y, and u, are scalars. 0;
indicates a zero block of dimension i X j and I, indicates a p X p identity block.

Output feedback can then be applied via the control law
uk)=K yk) (3.21)

In state space form, the problem is then to determine the controller gain matrix K, which

places the closed-loop eigenvalues in the desired locations, and yields a closed-loop system
where the transient response is robust to changes in the elements of the A and B matrices.
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Once K, has been obtained via a suitable state space design method it is necessary to

interpret it in a polynomial framework. Note that the original input and output are u, and y, and

that the relationship between u, and y, is
Y (k) = uy(k —1)

The control law can also be partitioned in a similar way

| [Kn Klz] bg!
Us i, K, Ky Y2,

where the sub blocks of K, are of appropriate dimension. Rewriting gives

uy (k) =Ky, (k) + Ky ,(k)

Ua(k) = Ky, () + Ky (k)
From (3.22) and (3.25) -
Y, (k)= U =Kz ™) Kz ™'y (k)
Hence (3.24) becomes
() = (K oy + Kol ~Koz™Y Koz Jr(8)
Which gives

nk) 1 __FE
uk) Ky+Kn@ -Kx)'Ks  G,(27)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Thus giving the expressions for F,(z™') and G,(z™). The precompensator polynomial,

H p(z") is calculated as before for zero steady state error.

3.4 State Space Design

Having shownin the previous sections how closely related the eigenvalues and eigenvectors
are to the transient response, and how state space methods can be used in the design of polynomial
controllers, the next step is to consider the actual state space design to be used.

The eigenvalues and eigenvectors are clearly very important as regards the transient
response, hence it is desirable to consider the placement of not only the eigenvalues but the
eigenvectors as well. Such a design procedure is more commonly known as eigenstructure
assignment (Burrows, 1990).

Consider the linear time invariant state space representation of a system

i =Ax +Bu (3.29)

where there are n states, m inputs, r outputs and A, B, C are matrices of appropriate dimensions.
The D matrix will be zero due to the nature of the transformation from polynomial to state space
form and the time delay of the system, as outlined in section 3.3. Output feedback can be applied
to the system via the control law

u=Ky (331)

Eigenstructure assignment can then be described as the assignment of the closed-loop
eigenvalues and eigenvectors (either left or right) using the control law (3.31).

Srinathkumar (1978) discusses eigenstructure assignment using output feedback and
concludes that min(n,m +r — 1) eigenvalues may be arbitraily placed as well as (r — 1) eigen-
vectors partially assigned with m entries in each vector arbitraily chosen. Clearly for all n
eigenvalues to be arbitraily assigned using output feedback, 7 +m > n. This result was originally

obtained by Kimura (1975).
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Whilst the choice of a closed-loop eigenvalue may be arbitrary, under certain assumptions,
the corresponding closed-loop eigenvector is constrained to lie in a subspace of the full state
space. This subspace is termed the allowable eigenvector subspace and Burrows (1990) discusses
in detail various approaches to determining it and the corresponding controller gain matrix.

Of course having a technique for assigning the whole eigenstructure does open up the
question of what is the most suitable position for the ei genvalues and eigenvectors? The concept
of placing the eigenvalues (or poles) of a system is extremely well known and the effect on the
characteristics of a system for various eigenvalue locations is clearly understood. By selecting
appropriate eigenvectors it is hoped to achieve a system with better robustness properties.
However, rather than concentrating on the specific values for the ei genvectors it is conceptually
more appealing to consider the actual design goal as is the case in parametric methods.

The design procedure is the same as the eigenstructure assignment techniques but the
objectives are slightly different. With parametric methods the actual position of the eigenvectors
is not of direct concern as the aim is to satisfy additional design objectives, which of course is
exactly the situation in this case and as such parametric methods will be investigated further as
the basis of the state space design.

There are a number of approaches to the problem of parametric output feedback design.
Kalsi (1990) compared the approaches of Roppenecker and O’Reilly (1989) with that of Fahmy
and O’Reilly (1988a). Roppenecker and O’Reilly (1989) select the free parameters to ensure
that the closed-loop right eigenvectors are orthogonal. They express the controller gain matrix,
K, in terms of r free parameter vectors, where r is the number of outputs, and show that the
choice of the first » — 1 vectors is arbitrary as regards the orthogonality condition. They then
propose a method for calculating the remaining free parameter vector such that the orthogonality
condition holds. However, it may not always be possible to obtain a value for this vector which
then requires adjustments to be made to the initial choice of the first r — 1 vectors and the pro-
cedurerepeated until a solution is found. The method of Fahmy and O’Reilly (1988a) is essentially
amulti-stage design where part of the eigenstructure is assigned with successive feedback loops.
Such a procedure requires the previously assigned eigenstructure to be protected against further
feedback loops. Fahmy and O’Reilly (1988a) propose four procedures to implement the design:
partial eigenvalue/right eigenvector assignment, partial eigenvalue/left eigenvector assignment
and two procedures to protect the eigenvalues and eigenvectors (the choice of which procedure
depends on whether it is required to protect the left or right eigenvectors).

Kalsi (1991) applied each method to a number of test examples and compared how
accurately the closed-loop eigenstructure was assigned. It was concluded that the method of
Roppenecker and O’Reilly (1989) had quite poor numerical properties whereas the method of
Fahmy and O’Reilly (1988a) assigned the desired eigenstructure quite accurately. The problem
of multiple eigenvalues was considered in a third method, Fahmy and O’Reilly (1988b).
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Although the method of Fahmy and O’Reilly (1988a) accurately assigns the eigenstructure,
the protection part of the design can sometimes cause difficulties. The protection may not be

exact or may be extended to include additional eigenvalues that have not yet been correctly
assigned.

Daley (1990) has proposed a new scheme which restricts the free parameters of a state
feedback approach to yield the output feedback controller. This involves placing constraints on
the free parameters which could make their choice quite difficult. However, Daley (1990) has
shown that the constraints will be satisfied if the free parameters are selected from the null spaces
of various matrices which are relatively simple to generate.

To assess the numerical behaviour of this new method a similar procedure to that of Kalsi

(1990) can be adopted and a comparison made with the method of Fahmy and O’Reilly (1988a),
which is known to perform well.

This section first reviews the two methods highlightin g the major points of each. They are
then applied to a number of test examples to see how accurately the closed-loop eigenvalues are
placed and whether any problems are experienced in the design of a suitable controller.

3.4.1 The Parametric Output Feedback Method of Fahmy and O’Reilly

Consider a discrete linear time-invariant multivariable system described by

=Ax, +Bu, (332)

0

X, (3.33)

S

where x € R®, u € R™ and y € R’, n is the number of states, m the number of inputs and r the

number of outputs, with r +m > n. A, B and C are matrices of appropriate dimensions.

Fahmy and O’Reilly (1988a) propose a multi-stage approach to the problem of parametric
output feedback design, where successive output feedback loops are applied to assign the whole
of the eigenstructure. It is necessary to protect previously assigned eigenvalues and eigenvectors
from the effect of subsequent output feedback loops.

The eigenstructure is assigned using two procedures, partial eigenvalue-right eigenvector
assignment and partial eigenvalue-left eigenvector assignment. The procedures are used in
sequence, hence the multi-stage nature of this design approach. After the first stage the partially
assigned eigenstructure should be protected using either an input reduction matrix or an output

reduction matrix.
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First consider the two cases of partial eigenstructure assignment. In each case the appli-

cation of output feedback in the form u (¢) = Ky(¢) is considered to assign a part of the closed-loop
system eigenstructure.

i) Partial eigenvalue - right eigenvector assignment

Consider a subset A, = {A,,- - -, A, }, where s <r of the closed-loop eigenvalue set A,. Note

that the specified closed-loop eigenvalues should all be different from the open-loop
eigenvalues. The matrices K and C are partitioned as

¢
K=K, K, C =[ C} (3.34)
2

where K, is an m x s matrix and C, a s X n matrix. Fahmy and O’Reilly (1988a) obtain

the equation

KCV . =F, (3.35)
where V, is the matrix of the first s right eigenvectors defined as

v; =adj[Al - A)Bf; (3.36)
and F, is defined as

F, =[fy £ (3.37)

where £ = |\ —A|f; and f; are the free parameter vectors.

Equation (3.35) can be solved for K,,, giving

K,=[F,-K GVl [CIV:]-1 (3.38)
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where K, is arbitrary, and it is suggested that it is taken as a zero matrix as its role is

cancelled out when considering the whole eigenstructure. If s = r then
K, =F][C,V,]" (3.39)

The free parameter vectors f; are chosen under the following conditions

i@ |GV, =0
(ii) f: € R for areal eigenvalue A,
(i) f;=f € R orf;=f; e C foracomplex conjugate pair of eigenvalues A;. A; = A

[
ii) Partial eigenvalue - left eigenvector assignment
Take s <m. The matrices K and B are partitioned as
K
K =[ “}, B=[B, B, (3.40)
K12
where K, is an s X r matrix and B, a n X s matrix. This gives the equation
W.BK =G, (3.41)
where W, is the matrix of the first s left eigenrows defined as
w] =g Cadjl\J - A) (3.42)

and G, is defined as
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1M -AlgT]

G, = ' (3.43)

AT -AlgT

with g7 being the free parameter vectors.

Setting the K, to a zero matrix, equation (3.41) can be solved for K 11> giving

K, =[W,B,]"G, (3.44)

and the free parameter vectors g, T can be chosen under similar conditions as those for L

[

Using either i) or ii) K can be determined to partially assign the eigenstructure. The system is
then

.1=(A+BKC)x, +Bu, (3.45)
=Cx, (3.46)

< I

on which subsequent calculations are performed.

As previously mentioned it is necessary to protect parts of the eigenstructure which have already
been assigned when considering the application of another feedback loop. This can be achieved

in one of two ways.

iii) Protection of the assigned eigenstructure using an input reduction matrix

Consider the system in (3.32) and (3.33), an eigenvalue A; can be made uncontrollable by

choosing an input reduction matrix B such that
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The system then becomes

.1 =Ax,+BBu, (3.48)

0

< K

X, (3.49)

and the eigenvalue will be invariant under output feedback. It is then shown, in Fahmy

and O’Reilly (1988a), that the left eigenrow associated with this eigenvalue will also be
invariant under output feedback.

If an output feedback matrix K is then determined for this system, the true K will be given
by

K =BK (3.50)

iv) Protection of the assigned eigenstructure using an output reduction matrix

Consider the system in (3.32) and (3.33), an eigenvalue A; can be made unobservable by

choosing an output reduction matrix C such that
CCv,;=0 (3.51)
The system then becomes

W =Ax, +Bu, (3.52)
=€Cx, (3.53)

< &

and the eigenvalue and associated righteigenvector will be invariant under output feedback.

If an output feedback matrix K is then determined for this system, the true K will be given
by

K=KC (3.54)
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[l

The approach for a two stage design is then as follows.

1. Divide the self-conjugate set of eigenvalues A, into two sets of self-conjugate sets of
eigenvalues, A, and A,. The upper bound on s is dependent on whether the right or left
eigenvectors are to be assigned first, see 1) and 1i) above.

2. Use either method i) or ii) to determine an output feedback matrix K, that partially assigns

the first s eigenvalues and eigenvectors.

3. If the left {right} eigenvectors were assigned then the eigenstructure must be protected as
outlined in iii) {iv)}.

4. Ifmethodi) {ii)} was used to assign the first part of the eigenstructure then use the approach

of ii) {i)} to determine K, which will assign the remaining eigenstructure.

5. The overall controller gain matrix K is then obtained as

K,=K, +K, (3.55)

3.4.2 The Parametric Output Feedback Method of Daley

Considering the system in (3.32) and (3.33), Daley (1990) shows that the application of
output feedback, u, =K, y,, can be achieved using state feedback, u, = K, x,, by ensuring that
K,=[K, : 0], where K, isanm xn matrix and K, am xr matrix. Note that C must be of the
formC =[I : 0], wherelisar xr identity matrix. This does notrepresent a severe restriction,
as the required form for C can be easily achieved by a state transformation. In this case due to
the structure of C in the observable canonical form, a simple re-ordering of the states of the

system and augmented dynamic compensator will achieve the desired form for C.

The general form for the state space system is then
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[ x, ] [ -2, O 00 O I x 7 [b O O w, ]
x, 0 0 0 0 0 0ff x 0 1 0]} u
| 0o o 0 0 0 0 0 0 1
| -a, 0 00 00 b 0 0
a,_, 0 0 1 0 0 b,., O 0
arsisr [ m@% 0 o 00 . 1 0f{x.,), | B, O .. Of[u..),
(3.56)
n ] 1 .. 00 0] x|
Y2 01 ... 00 ... 0l|] x
A I o A (3.57)
Yyt LOO o 10 0fx,,,],

State feedback can be applied via the control law

u(k)=Kx(k) (3.58)

and the controller gain matrix, K, can be parameterised as

K.=lfi L - LI Yo - VI =FV? (3.59)

where F is a m X n matrix of free parameters and V is a n xn matrix of closed-loop right

eigenvectors.
K, will assign a specified set of distinct closed-loop eigenvalues, A = {A,, ....,A, }, provided

that the closed-loop eigenvectors satisfy

v;=(\I -A)"'Bf, (3.60)
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and the pair [{A, B] is fully controllable. The inverse in (3.60) exists provided that the closed-loop

eigenvalues are all different from the open-loop eigenvalues. If
F=[F, : F)] (3.61)

where the dimensions of F, and F, are m Xr and m X (n —r) respectively and

V., V.,]! W, W
V-1 — 11 12] — W =|: 11 12] (362)
|:V21 sz Wzn sz

where W is the matrix of closed-loop left eigenrows and the dimensions of V,,, Wy, are r Xr;

Vip Wy ate r X (n —r); Vi, Wy are (n —r) xr and Vy,, Wy, are (n —r) X (n —r), then in order
for

K.=[K, : 0] (3.63)
F, and F, must be constrained such that
F\W,+F,W,=0 (3.64)

It is then shown in Daley (1990) that the constraint in (3.64) will always be satisfied if the
free parameter vectors in F, satisfy

[1-Fv; 10 -4 y'B1]f,=0 (3.65)

where j=r+1-—on and [-], denotes the first 7 rows of the matrix. For there to be non-trivial

solutions to equation (3.65) the dimension of the null-space of [1 -F, Vil —A)"B],] must
be non-zero, which will be the case if

r=0 (3.66)
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where
[ 0,AS), aAS, o, AS, [ fi]
0AS,,  0AS, ... 0,,AS, L
C=| - : .|, r=l. (3.67)
| 0iASy 0AS, L o, AS, £

O3, Oy, - * -, O, are arbitrary scalar parameters, ¢ =n —r and

AS, =[((\, ] ~A)" = (I -AY)B], (3.68)

Thus selecting the free parameters using (3.65) and (3.66) allows an output feedback
controller gain matrix K, to be determined using (3.59) and (3.60).

3.4.3 Examples used for the Comparison of the Methods

In Kalsi (1991) three examples are considered.

Example 1 - Topaloglu and Seborg (1975)

-3.0 20 0 0 1.0
10 0 O
A=| 40 -50 10} B={10 O | C=[ 0 ] (3.69)
0 100
0 0 -3.0 0 1.0

n =3, m =2 and r = 2. The desired closed-loop eigenvalues are {-10,-9,-8}.

Example 2 - Owens (1988)

05 0 0 0 O 740 1.0 20]
0 -800 0 O 30 40 0
A=l 0 o o0 0o o B=0 20 10}
0o 0 010 0 10 1.0 10
0 0 0 0 20 20 1.0 3.0
40 0 0 0 O
c={0 10 0 20 0 (3.70)
(0 0 10 0 10
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n=5,m=3and r = 3. The desired closed-loop eigenvalues are {-1,-2,-3,-5%5}.

Example 3 - Sobel and Shapiro (1985)

T =20 0 0 0 0 0 0
0 -25 0 0 0 0 0
0 0 0 0 1.0 0 0
A=| -0744 -0.032 0 -0.154 -0.0042 154 0 |,
0337 -1.12 0 0.249 -1.0 -52 0
0.02 0 0.0386 -0996 -0.0003 -0.117 0
0 0 0 0.5 0 0 ~0.5]
20 07
g ? 0 0 0 1.0 0 0 -1]
00 0 0 10 0 O
B = g g’ C'o 0O 0 0 0 10 O (3-71)
1.
0 0o 0010 0 0 0 O]
0 0]

n=7 m=2 and r=4. The desired closed-loop eigenvalues are
{-15%j1.5,-2+j,-17,-22,-0.7}.

For the purposes of this comparison a fourth example is also considered here

Example 4 - Fahmy and O’Reilly (1988a)

1.0 0 10 1.0] r1(.)0 100‘ 0 10 0 10
a=| 0 100 0, Lo} €=[0 0 10 0 (3.72)

0 0 10 0 10 1. 0 0 10 o

(0 0 10 10] 0 10

n =4, m =2 and r = 3. The desired closed-loop eigenvalues are {-1 £ 0.5,-3,-4}.

The approaches of sections 3.5.1 and 3.5.2 are used to design an output feedback matrix,
K, for each of the four examples. Although a direct comparison cannot really be made as Fahmy
and O’Reilly (1988a) is a multi-stage design, it is possible to compare how accurately the
closed-loop eigenvalues are placed. This will then give an indication of the numerical properties
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of each method. It was found in Kalsi (1991) that the approach of Roppenecker and O’Reilly
(1987) sometimes placed eigenvalues quite inaccurately and so it was concluded that the method
may exhibit poor numerical properties.

For example 3, the condition of r +m > n (required by both methods) is not satisfied so

it is necessary to augment the system with a dynamical compensator of suitable order. In this
case a 2nd order compensator will satisfy the condition, hence the system is now

- 20 0 0 0 0 0 0 0 0
0 _25 0 0 0 0 0 0 0
0 0 0 0 1.0 0 0 0 0
_0744 -0032 0  -0154 -00042 154 0 0 0
A=| 0337 -112 0 0249 ~1.0 52 0 0 ol
0.02 0 0038 —0996 -0000295 -0117 0 0 0
0 0 0 0.5 0 0 -05 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
20 0 0 07
g 205 g 8 00 0 10 0 0 -1 0 07
o o o o 00 0 0 10 0 0 0 0
00 0 0 0 10 0 0 0
B = g g g 8 . =0 010 0 0 0 o o o &M
C o o o 00 0 0 0 0 0 10 0
O 0 0 0 10
0 0 10 0 00 0 0 -
0 0 0 10]

The additional closed-loop eigenvalues will be placed at {-30, -35}. Such a choice should
ensure that the augmented eigenvalues have a minimal effect on the transient behaviour of the

closed-loop system.
For examples 2,3 and 4, C is not in the required form for the method of Daley (1990).

Hence it is necessary to apply a state transformation to each system.

In the case of example 2, the state transformation matrix was found to be

2

o 02 0 -09 O

7=l 0 0 05 0 -07 (3.74)
0o 04 0 045 O

o 0 05 0 07
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hence
0.5 0 0 0 0]
0 -0.8 0 8.1 0
A'=T'AT=| 0 0 1.0 0 14|
0 1.6 0 -62 0
| 0 0 0.7143 0 1.0
[ 16.0 4.0 80 7
5.0 6.0 2.0
B'=T'B=| 20 3.0 40 |,
—-2.2222 -3.1111 04444
| 1.4286 -0.7143 1.4286 |
10 0 0 0 0O
C'=CT={0 10 0 0 0
0 0O 10 0 0
For example 3
[0 0 0 0 0 0 07 0 07]
0 0 0 0 0 0 0 10 0
0 0 0O 10 0 0 0 O 0
0.5 0 0 O 0 O 05 0 -05
T=] 0 10 O 0 0 0 0O 0 0
0 0 1.0 O O 0 0 O 0
-05 0 O 0 0O 0 05 0 -05
0 0O O 0O 1.0 0 0 O 0
0 0 0 0 0 10 0 0 0 |
giving
[ -0.577 -0.0042 1.54 0 00
0.1245 -1.0 -5.2 0 00
-0.498 -0.0003 -0.117 0038 0 0
0 1.0 0 0 00
A'=T'AT = 0 0 0 0 00
0 0 0 0O 00
02115 -0.0021 0.77 0 00
0 0 0 0 00
| -02115 00021 -077 0 00

-0.5978

0.3604
-0.484
0
0
0

-10.2989

0

-9.7011

-0.032
-1.12
0
0
0
0
-0.016
-25.0
0.016

(3.75)

(3.76)

~0.4438 ]
0.1114
0.512
0
0o |
0
~10.2219
0
~9.7781 |
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C 0 0 0 0
0 0 0 o0
0 0 0 0
0 0 0 0
B'=T'B=| 0 0 10 0/
0 0 0 10
142857 0 0 0
0 250 0 0
(142857 0 0 0|
10 0 0 0 0 0 0 0 O
0 1.0 0 0 0 0 0 0 0
, 0 0 10 0 0 0 00 0
C=CT=l% 0 0 10 0 0 0 0 0 3.77)
0 0 0 0 10 0 0 0 0
(0 0 0 0 0 1000 0

and for example 4

0 -10 1.0 0 7

10 1.0 -10 -10
=l 3.78
=y 10 o 0 (3.78)

0 0 0 1.0

- -

which gives

1.0 20 0 1.0 1.0 2.0]
0 10 0 O " 1.0 1.0
'=TAT = '=T'B = ,
A=T AT 0 10 10 1.0/ B'=T 20 1.0
|0 1.0 0 1.0] | 0 1.0]
10 0 0 O
C’'=CT={0 10 0 0 (3.79)
0 0 10 0

3.4.4 Results for the Method of Fahmy and O’Reilly

In each example the free parameters f; in eqn (3.37) were chosen randomly
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Example 1

The output feedback matrix

(3.80)

x _[-623913 890
> -1050 159.0

was obtained which placed the closed-loop eigenvalues at

-9.99999999997717
-9.00000000003750
-7.99999999998551

Example 2

The output feedback matrix

7.0749  -3.2769 -23.9639
K, = 75643 -3.5401 -25.5432 (3.81)
-1.9588  1.5799 5.1844

was obtained which placed the closed-loop eigenvalues at

—5.00000000000000 * j4.99999999999994

-3.00000000000041
-1.99999999999951
-1.00000000000016

Example 3

The output feedback matrix

" 31412 -0.5958  0.8563 0.2503 57946  -0.7882]
05197 -02009 242762  7.4052 312904 —-4.6199
K,=| 66958 99175 1439334 —147714 -1439688 18.0386
323750 460288 -698.4580 —63.5818 —-693.0210 79.0398 |

(3.82)

was obtained which placed the closed-loop eigenvalues at
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—1.49999999999999 + j1.49999999999999

—2.00000000000000 % j0.99999999999998
-16.99999999999997
-21.99999999999998

-0.70000000000001

-29.99999999999999
-35.00000000000068

Example 4

The output feedback matrix

(3.83)

Y

[ -30.5551  -66.3419  81.4301
| -529081 -116.9301 143.7831

was obtained which placed the closed-loop eigenvalues at

—1.00000000000235 £ j0.49999999999770

-4.00000000001050
-2.99999999998448

3.4.5 Results for the Method of Daley

Again the free parameters were chosen randomly for each example

Example 1

With the o’s in {, which are arbitrary, set to 1, the following output feedback matrix was

obtained

(3.84)

y

_[-109141  88.9999
Tl -105.0 1560.3744

which placed the closed-loop eigenvalues at

-10.00000000506724
-8.99999998539417
-8.00000000995767
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and with the o’s chosen randomly as

[0y, a,,] =[0.0500 0.7615] (3.85)

the output feedback matrix was

K =

y

(3.86)

79.2752 89.0
-105.0 -111.6407

giving the closed-loop eigenvalues at

-9.99999999983979
-9.00000000027615
-7.99999999988574

Example 2

Withthe a’ssetto 1, V}, was singular and so it was not possible to obtain a solution. However,

selecting them randomly as

3.87
0y O, o, | 101253 0.1253 0.0159 (3.87)

[ 0y Oy %} _ [0.7702 0.7702 0.8278]
gave a non-singular V;, and thus a solution. Note that the second column is the same as the

first, this is due to the second column of { being the complex conjugate of the first. Also it
appears that any set of randomly chosen o’s gave rise to a solution.

The output feedback matrix

06111 -1.2109 1.3832
K, =| 2.8451 -3.5558 0.9548 (3.88)
-0.3818 -0.1552 -1.6337

was obtained which placed the closed-loop eigenvalues at
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-5.00000000000115 + j4.99999999999876

-2.99999999999987
-2.00000000000008
-0.99999999999996

Example 3

For this example it was not possible to find a set of o’s which gave a non-singular V,, hence

no solution was found.

Example 4

With the o’s set to 1, the following output feedback matrix was obtained

-33.9803 56.6120 -63.2181
K 'l: 418266 ~-73.1659 803171 ] (3:89)
which placed the closed-loop eigenvalues at
—-1.00000000000107 £ j0.499999999999438
-4.00000000000489
-2.99999999999250
and with the o’s chosen randomly as
[0, o, o) =[0.8459 0.8459 0.4121) (3.90)
the output feedback matrix was
K = -17.5717 45.6026 - 58.4437] (3.91)
7| 278993 -77.5729 97.6308

placing the closed-loop eigenvalues at

~1.00000000000074 £ j0.49999999999965

-4.00000000000432
-2.99999999999422
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3.4.6 Discussion of the Results

Clearly the results show that the numerical properties of both methods are quite good with
the closed-loop eigenvalues being placed extremely accurately.

The method of Fahmy and O’Reilly (1988a) was able to find a solution which gave a
non-singular matrix of right eigenvectors for all the examples. However the method of Daley
(1990) has some difficulty in obtaining a non-singular sub-block of the matrix of right eigen-
vectors in all cases. The rather unsatisfactory step of randomly selecting arbitrary scalars has to

be done in example 2 in order for a solution to be obtained. For example 3 no solution was
obtained at all.

The main problem with the method of Daley (1990) is clearly that of ensuring the
invertibility of V.

This could be overcome by defining a vector sub-space that I' must lie in such that V,, is

invertible. I could then be selected from the intersection of this space and the null space of {,
which is a requirement for non-trivial solutions to equation (3.65).

For V;} to exist, its columns must be linearly independent, i.e
@;' +- -+ @, #0 (3.92)

for all w; where at least one is non-zero. Note that ;' denotes the i’th column vector of V.

Writing this equation in vector form

vi'e w0 #0 (3.93)
From equation (3.60)
vi' =\ -A) "Bl f; (3.94)
Therefore
(£, SL10, - @) 0 (3.95)
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where S; =[(AJ -A)'B 1,- This can be expressed in a more compact form

{0 (3.96)
where

T

C’=[Sl"'sr] and I_"=[(D]ff"'(0,f,r] (3.97)

Equation (3.96) is clearly of the standard form Ax = b. For the case when b =0 it is well
known that the set of solutions will form a basis of a vector subspace, generally known as the
null space of A. However, the case of b # 0 is of interest here and all that can now be stated is
that the set of solutions will lie in some vector subspace but that they may not necessarily form
a basis of that space.

For equation (3.96) this makes it difficult to define the set of possible E’ vectors. It is

possible to investigate this subspace further which may possibly lead to a way of defining the
set of solution vectors to equation (3.96). However, a more significant problem remains, namely
that of the arbitrary scalar weights. Recalling that equation (3.92) must be valid for all w;
(i =1 —> r), where at least one is non-zero, it is clear that even if the set of E’ vectors could be
found it would be extremely difficult to deduce the set of F, vectors using the form of I in
equation (3.97). No solution to this problem was found and so the idea of obtaining a set of F,
vectors such that V;, is non-singular was not pursued further. It should be noted, however, that
the problem of a singular V), only caused problems occasionally and did not prevent the appli-
cation of the method in most cases.

A second possible problem is in the determination of a space for the F, vectors such that

there are non-trivial solutions to equation (3.65). The linear independence identity is used to
ensure the dependence of a set of vectors, the columns of [1 —-F\Vi (A —A)"B],]. The only
condition for dependence is that at least one set of scalar weightings (one or more non-zero)
exists such that the weighted sum of the vectors is zero. This can be achieved by selecting a set
and forcing the sum to be zero, hence the reason that the F, vectors must lie in a null space.
Clearly this is actually selecting a subspace of the total space that the F, vectors may be in. This
subspace may not necessarily include a set of F, vectors that yield a non-singular V.
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3.5 Summary

This chapter has outlined the transformation of the polynomial system to state space form
and detailed the interpretation of the output feedback matrix in terms of controller polynomials.
Due to the importance of the eigenvalues and eigenvectors in determining the shape of the

transient response it has been suggested that parametric methods be used to design the state space
controller.

Two approaches to the problem of parametric output feedback design have been investi-
gated and their performance assessed when applied to a number of design examples.

The method of Fahmy and O’Reilly (1988a) is a multi-stage design where successive
output feedback loops are applied until the whole eigenstructure is assigned. It can be argued
that this gives the method greater flexibility and a wider set of possible feedback matrices.
However, it is difficult to know how to split the set of desired closed-loop eigenvalues. Good
solutions were obtained for all the examples considered.

The second method, Daley (1990), can be thought of as a parametric state feedback design
where the free parameters are constrained to effectively give output feedback. Problems arise
when dealing with these constraints. It is necessary to ensure the invertibility of a sub-block of
the matrix of right eigenvectors, which appears to be quite difficult for examples 2 and 3. By
randomly selecting some arbitrary scalars in the design process it was possible to obtain a solution
for example 2. However, this is an unsatisfactory way of approaching the problem as potentially
many random choices may have to be made in order to find a solution.

The results of the comparison show that both methods appear to have good numerical
properties, but the method of Daley (1990) did experience a number of difficulties. Although
this does not stop the method being used it does suggest that the method of Fahmy and O’Reilly
(1988a) would be more suitable. However when applied to a transformed polynomial system
the method of Fahmy and O’Reilly (1988a) failed to find a solution at all. The reasons for this
failure appear to be linked to the structure of the open-loop system matrices and a more detailed
discussion is included in chapter five where the robust design is applied to an example.

As mentioned in the introduction there are a number of options when considering the state
space design. In the area of eigenstructure assignment techniques a number of interesting methods
have recently been proposed, unfortunately too late for consideration in this work.

Burrows and Patton (1988, 1989a, 1989b, 1990a, 1990b) have carried out much work in
the area of robust eigenstructure assignment, utilising numerical minimisation methods to select
appropriate sets of eigenvectors from prespecified regions of the complex plane on the basis of
a number of robustness measures, including low norm control law and maximally orthogonal
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eigenvectors. White (1991) has proposed a scheme which appears to be as numerically stable as

Fahmy and O’Reilly (1988a) but which overcomes the problem of protection by assigning the
desired eigenstructure in just one stage.

It would certainly be interesting to investigate these methods further and assess their impact
on the robustness of the polynomial system. However, it is worth reiterating at this stage that
any effective robust state space design procedure could be used as the aim is to illustrate and
prove the concept of designing a polynomial controller via the state space domain.

The overall conclusion of this chapter is that the method of Daley (1990) is to be used as
the basis of the state space design, which is assumed in all of the following chapters.
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CHAPTER 4

SELECTING A ROBUST CONTROLLER

4.1 Introduction

The robust design procedure basically consists of transforming the polynomial system to
state space form, carrying out a state space design and transforming the resulting controller back
to polynomial form. The previous chapter outlined this procedure and presented details of the
state space design, which is based on methods that explicitly represent a set of possible feedback
controllers in terms of arbitrary free parameters, and as such are called parametric methods. The
problem of how to select a controller from this set, such that the closed-loop system is more
robust, is addressed in this chapter. Different controllers are effectively selected by changing
the values of the free parameters and so the robust design reduces to the problem of selecting
appropriate values for these parameters.

One of the reasons for turning to a state space based design was the ease with which the
factors that effect the transient response can be investigated as highlighted by the discussion in
section 3.2 on modal decomposition. However, it is necessary to have some way of mathemat-
ically quantifying the effect of model uncertainty on these factors.

Consider the graph in figure 4.1 which shows the value of a function f(x) plotted against

the variable x.

f(x)

f(a+h)

f(a)

a a+h X

Figure 4.1 - Plot of a Function f(x) against x

At x = a the function value is f(a) and when x is changed to a +h the function value

becomes f(a + h). The gradient at x =a is given by f'(a) where
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_| dfx)
f'(a)—[ /0 ] @.1)

f(a +h) - f(a) is called the increment (of f(x) fromx =a tox =a +h) and is denoted by

Af
Af =fla+h)-f(a) 4.2)
f(a)h is called the differential (at x = a with increment h) and is denoted by df

df =f(a)h 4.3)

The differential is also sometimes referred to as the sensitivity, denotin g that the expression
evaluates how sensitive the function is to changes in the variables.

The increment is the actual change in the function due to a change in the variable whereas
the differential is an estimate of the change in the function. The differential hence forms the
basic mathematical tool needed to estimate the change in the factors that affect the transient
response due to a change in the model parameters. Further information on differential calculus
can be found in Salas and Hille (1990).

It is now possible to define a function consisting of expressions for the differentials of the
factors of interest. This function is often referred to as a cost function, an objective function or
a performance index. As it effectively represents the sensitivity to model uncertainty, it is
desirable to obtain the lowest possible value for the function, which has clearly reduced the
robust design to an optimisation problem as desired.

With complicated functions, as is the case here, there may be many local minima, at which
the function has the lowest value with respect to the neighbourhood of possible points. The lowest
local minimum is called the global minimum and clearly the ultimate goal of any optimisation
procedure is to find this point. For complicated functions this represents an extremely difficult
task and a more realistic target would simply be to aim for a good local minimum point which

yields the desired level of improvement.

Having established how to quantify the effect of model uncertainty, the next section
considers the problem of defining appropriate cost functions. Following this is a more detailed
discussion of numerical optimisation which helps to classify the problem being considered
allowing the selection of the most suitable optimisation algorithm.
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4.2 Cost Functions

The previous chapter illustrated, through modal decomposition, how important the
eigenvalues and eigenvectors are in determining the shape of the transient response. The way
these factors are affected by structured model uncertainty will directly determine how the
transient response is affected. This opens up a number of possibilities for evaluating performance
robustness. Gourishankar and Ramar (1976), Owens (1988) and Owens and O’Reilly (1989) use
eigenvalue sensitivity as the basis on which to select robust controllers. The sensitivity of the
whole eigenstructure (eigenvalues and eigenvectors) is the approach used by Crossley and Porter
(1969), Ling and Wang (1988). Other authors have investigated alternative approaches such as
the conditioning of the matrix of righteigenvectors, V, which isclaimed to improve the sensitivity
of the transient response (Kautsky, Nichols and Van Dooren, 1985; Byers and Nash, 1989;
Owens, 1991b). The cost function in this case should describe the change in the output of the

system due to a change in some or all of the model parameters.

Before considering the details of some alternative cost functions it is necessary to quantify
the error in the state space model. Chapter 3 described how the polynomial system is transformed
to a state space system. From this it is clearly unnecessary to consider errors in the C matrix, as

all its elements will be constant, hence the model uncertainty can be represented as

A =A0+AA (44)

B =B, +AB 45)

where AA and AB are the increments of A and B defined as

2
il
M=
~
m

(4.6)

4.7)

&
"
M:
>
Ry

..
i}
—

P, and Q, represent the known information about the structure of the errors and €, the

unknown magnitude of the errors. The increments can be approximated by the differentials

A ~ M (4.8)
4B ~ AB (4.9)
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where

&
]
M=
E

t=1 aﬁ, Asl (4'10)
¢ 0B
dB = 2 -4, 4.11)

and Ag, is the change (or increment) in €. Clearly the partial derivatives are

0A
5’8" =5 4.12)
oB
55 =Q, 4.13)

assuming the €,’s are independent.

4.2.1 Eigenvalue Differential Cost Function

A number of authors have derived expressions for eigenvalue sensitivity, for example
Crossley and Porter (1969), Ling and Wang (1988), Skelton (1988). In general all such
expressions are derived from the equation

4.14)

where A, denotes the closed-loop system matrix, A; and y; its associated eigenvalues and right

eigenvectors respectively. Similarly for the left eigenvectors, w;

ATw. = hw. (4.15)

Following Porter and Crossley (1972), partially differentiating (4.14) with respect to g,

gives
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Pre-multiplying by w/

O€,

From (4.15)

_ T
=w;

T
—i‘%c

Which means that

For normalised eigenvectors w; v, = 1, hence

N 104,
ael =W; ael Y,

Alsoas A, =A + BKC

-95.

(4.16)

(4.17)

(4.18)

4.19)

(4.20)

4.21)
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0A. d(A+BKC) 3A 0B

e, %, o og ¢
=P +OKC (4.22)
Hence
o\,
3¢ W (P, +QKC)y, (4.23)

and the eigenvalue differential can then be expressed as
d\, =w/(P,+ QKC)v,Ae, (4.24)

where dA;, denotes the differential of the i’th eigenvalue to the ¢’th error. As already stated the

aim is to determine the value of the free parameters which yield the lowest value for this function.
However the function is comprised of two parts, the known d\;/0g, and the unknown Ag,. As
there is no control over the value of Ag,, the cost function should only consist of the known partial
derivative part, giving the eigenvalue differential cost function as

J=J=

u
1=

1

n or V
g Bil( - ) (425)

1 | o€,

The partial derivative is squared to ensure that the cost function remains positive. B;, are

positive weights used to place importance on each of the eigenvalues.

4.2.2 Eigenstructure Differential Cost Function

The previous section evaluated an expression for the eigenvalue differential, however from
the modal decomposition it is clear that the differential of the whole eigenstructure (eigenvalues
and eigenvectors) should be considered. This has also been dealt with by a number of authors,
for example Crossley and Porter (1969), Porter and Crossley (1972), Ling and Wang (1988) and
again are generally derived fromequations (4.14) and (4.15). However, for the parametric method

the right eigenvectors are expressed as
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v;=(MJ-A)'Bf, (4.26)

which can be used to evaluate an expression for the eigenvector differential. Partially differ-
entiating (4.26) gives

dv; oI -A)"
ds,  O0g

Bﬁ+(k,-1-—A)"g—fL

= —(XI —A)-IM

5 I —AY'Bf+ (L -AY'Qf,

A oA
=—(\J—AY' —=;_94
A\ -A) (a& I %

J(x,.l —-AY'Bf.+(\ I -A)'Q/f, 4.27)

Substituting dA,/de, from (4.23) gives
ov; -1, T -1 -1
== =~(d ~AY WI(P,+ QKCII ~P) (LI -AY'BE+ A -AY'Qf,  (428)

As W =V, where W is the matrix of left eigenrows and V is the matrix of right eigen-

vectors, it is relatively simple to find an expression for the partial derivative of the left eigenrows.

ow/ de/V™")

_ etV 1%
O€, OE,

V'ie—elW—W (4.29)
O€,

v
O€,

where ¢; is the i’th column of the unit matrix.

The right eigenvector differential can then be expressed as

dv; = (-(\J -A)" W] (P,+ QKC)v,] -P)(\I -AY'Bf; + (NI - A) Q[ )Ae,
(4.30)

where dy,, denotes the differential of the i’th right eigenvector to the ¢’th error. Similarly the left

eigenrow differential is
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oV
dw! = —eTw 2L
w, gwkﬁma (4.31)

The differentials are vector values and as with the eigenvalue differential consist of a
known and unknown part. Using only the known partial derivative part and ensuring that the
cost function is a positive scalar value gives the eigenstructure differential cost function as

T
dw;

J, = =
2 O€,

u n

ji'ﬂn

li=1

ov;
‘ %, | * M (4.32)

where || -|| denotes any vector norm, and 1;, are positive weights. As itis necessary to also consider

the eigenvalue differential to ensure the eigenvalue sensitivities do not become too large, the
overall cost function will be

J=J,+0oJ, (4.33)

where G is also a positive weight.

4.2.3 Transient Response Differential Cost Function

The previous cost functions merely consisted of expressions for the eigenvalue and
eigenvector sensitivities, as it is known that they are important in determining the sensitivity of
the transient response. However, as an expression for the transient response was actually derived
in chapter 3, it would be interesting to directly determine its differential and hopefully define a
transient response differential cost function. It should be noted that other authors have also looked
at this problem, for example Skelton (1988) defines an expression for output sensitivity by
differentiating the state equations.

The differential of the transient response is given by

k
dy(k)= %::—2&, (4.34)

and from chapter 3

-98-



4. Selecting a Robust Controller

yk)=C _):l Lﬂ{(m(m + kz: A T'Bu (,')) (4.35)
j=

hence the partial derivative is

dy (k) “ T kol -1
= 2 (a0 A u)
a(kfg(O)ﬁi:M""‘Bu(i))
T J=
tyw! a& (4.36)
which gives
2O _ ¢ § 2 100+ Lo
de, i1 O¢ 2(0) 4o J*

m(kk“ x(0)+ z((k -j- 1)?»?""%350)%*" -198 o)D

(4.37)

This is quite a complicated expression, the evaluation of which is dependent on particular
values of k, the discrete time sequence. It is clearly not very useful as regards defining a cost
function, however upon closer examination it can be seen that the eigenvectors of the system
always appear in the form of v,w!. This does suggest that a more suitable representation of the

eigenvector differential would be obtained by considering the term vw!.

Partially differentiating this term gives

oviw] O T ow/

=—w; +V; 438
%, Wi Vi (4.38)
and the transient response differential cost function can be defined as
J=J,+0J, (4.39)

where
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u ov. aWT
J,= =iy =
3 :§1 ig'ly" ae,ﬂ‘ Ty, g, (4.40)

and now || -| denotes any matrix norm and o, v,, are positive weights.

4.2.4 Conditioning Cost Function

Wilkinson (1965) showed that the conditioning of the matrix of eigenvectors is related to
the sensitivity of the eigenvalues. This can be seen from the Bauer-Fike theorem, Golub and
Van Loan (1983), which states that if i is an eigenvalue of A + E and V''AV =D =diag(A,---A,)
then

min |A - | S (V)| El (4.41)
Ae MA)

where ||| - denotes the Frobenius norm and (V) = | V||| V|| .

The theorem basically states that the eigenvalues of a matrix move at a rate no greater than
Kr(V) (the Frobenius norm condition number of the matrix of right eigenvectors) per unit change
in || E| (the error in the matrix).

Kautsky er al (1985) propose a number of different measures of robustness based on the
conditioning of the matrix of eigenvectors.

i) r=lcl.=max{c}
J

it) r,=x,(V)

.ee -172 -1
iii) r,=n""IV |f

. 172
iv) r,= n“”(? sin’ 9,-)

where || - | . denotes the infinity norm, | - ||  the Frobenius norm and (V) the 2-norm condition

number of the matrix V

V)=V IV'l, (4.42)
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¢ =[¢y,- - -c,]is the vector of condition numbers, which assuming that the right eigenvectors are

normalised such that || v,| , =1, are defined as

a=Iwil, (4.43)

and lastly 0, are the angles between the eigenvectors v; and certain corresponding orthonormal

vectors L

All these measures attain their minimum simultaneously when the assigned eigenvalues
are as insensitive as possible. Kautsky et al (1985) go on to propose two further weighted measures

2 2\12
ipv-y, (34¢)

v) n(D)= Dl (2 df)m

| (3psive))"
vi) r,D)= (? djz)m)

A suitable set of weights is given by dj" = (1-|A;|) for the discrete time case. Using these

weights has the effect of minimising an upper bound on the stability margin of the closed-loop

system.

Byers and Nash (1989) also propose a number of measures of robustness

vii) rs=xi[V]

-1
viil) 1, =—r—
s

. 2 12
ix) rp=IVI+IV |

-1
X) Iy =77-

xi) r,=loglr;)
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and state that although no cost function is uniformly better than the others, functions r; and r,

generally perform well. r, is recommended for general use, particularly if ill-conditioned

problems are to be encountered. However, a recent paper, Owens (1991a) suggests that ry may
not be effective in certain cases.

From the literature it is certainly very difficult to judge the suitability of any particular
conditioning based cost function. Owens (1991b) does discuss a number of the possible functions
and gives some insight into their relative benefits. From this and remembering the Bauer-Fike
theorem, a good initial choice would seem to be

J=1,=x;(V)= VI VI, (4.44)

Owens (1991b) also reports that considering (k7(V))’ resulted in a faster convergence to

the solution for the example considered.

4.3 Optimisation Techniques

The Numerical Algorithms Group (NAG) library of FORTRAN 77 routines contains a
number of quite sophisticated optimisation algorithms. It was felt that using the routines in this
library would greatly simplify the implementation of the robust design method and further details
of the reasons for this decision can be found in the following chapter.

The aim of this section is to introduce the concepts behind numerical optimisation and
some of the terminology used. This will then allow the problem being considered to be classified
which will aid in the selection of an appropriate optimisation routine. The section finishes with
a brief introduction to some of the main types of algorithms. Because the NAG routines are to
be used the following is biased to their approach and is largely taken from NAG (1990).

4.3.1 Introduction and Terminology

The solution of optimisation problems by a single, all-purpose, method can be cumbersome
and inefficient. For this reason such problems are classified into particular categories for which
various algorithms are best suited. The problem can be characterised by the properties of the
cost function and the constraint functions, for example
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Properties of cost Function
Nonlinear

Sums of squares of nonlinear functions
Quadratic

Sums of squares of linear functions
Linear

Properties of Constraints
Nonlinear
Sparse linear
Linear
Bounds
None

It is necessary to express these types of problems mathematically for numerical optimi-
sation. Firstly, consider unconstrained problems where there are no restrictions on the value of
the variables. Mathematically the problem can be stated as

minimise F(x) (4.45)

where x € R” are the variables and F (x) the function.

The NAG library makes special provision for problems which can be expressed as the sum
of squared functions, often referred to as a least squares problem. The mathematical statement

of this problem is

minimise { ff= _é f Q)} (4.46)

where the i’th element of the m-vector f is the function f;(x), which is often referred to as a
residual.

Now consider the problem subject to constraints of some kind. As indicated above there
are a number of categories of constraints, probably the most straightforward of which are bounds
on the variables. For the problem of (4.45) the variables can be bounded by

L Sx Sy, (4.47)
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where x; are the respective elements of the vector x and /; the lower bounds and y; the upper

bounds on the value of x;. This does assume that bounds exist on all the variables, but by allowing
u; = oo and [, = —oo all the variables need not be restricted.

Next consider linear constraints, which are defined as linear functions in more than one
of the variables, e.g. 3x, +2x, > 4. Mathematically such constraints can be described by

Equality constraints alx =b, i=1,2,--,m,
Inequality constraints alx > b, i=m+1,--my
T .
alx <b, =, m,
. T .
Range constraints s, Sa;x <t i=my+1,---m,
J=L e smy—my
Bound constraints I <x; <y i=12,--,n

where each g; is a vector of length n and b;, 5; and ¢; are constant scalars. Also note that any of

the categories above may be null.

If F (x) is alinear function, the linearly constrained problem s termed a linear programming

problem and if F(x) is a quadratic function, the problem is termed a quadratic programming
problem.

Lastly, in the discussion of the characterisation of the problem, consider the case of (4.45)
subject to nonlinear constraints, e.g. x? + x; = 0. The above mathematical description of the linear
constraints still applies but now the following constraints must also be considered

Equality constraints c;x)=0 i=12,---,ms
Inequality constraints c,x)20 i=mg+1, - mg
Range constraints v, Sc@) sw; i=mg+1,--m,

j= 1,2,---,m,—m6

where each c; is a nonlinear function and v;, w; are constant scalars. Again any category may be

null.
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The problem facing the optimisation algorithms is to find a minimum of the given function
F (x) subject to constraints of one of the above types. It is worth mentioning here that the function
is likely to have many minima, each called a local minimum because the function has the lowest
value at that point with respect to the neighbourhood of possible points. The lowest of these local
minima is termed the global minimum for obvious reasons. In the face of this, all that can be
expected of the algorithms is that they find a local minimum point, and by starting the algorithm
in a number of places it is hoped to find a local minimum that yields a desirable result.

For an algorithm to find a minimum point (either local or global) it must have some way
of determining whether or not a particular point is a minimum. Also it must have a method of
determining the direction to move, such that a minimum point can be found. The next part of
this discussion attempts to address this point by first reviewing some of the required mathematics
and defining conditions for a minimum.

The vector of first partial derivatives of F(x) is called the gradient vector and is denoted
by g(x), i.e.

T
OF (x) OF (x) _’aF (&)} (4.48)

g@_)=[ ox;, = 0Ox, T ox,

The gradient vector is of importance in optimisation because it must be zero at an

unconstrained minimum of any function with continuous first derivatives.

The matrix of second partial derivatives of the function is termed its Hessian matrix and

is denoted by G (x). Its (i,/)’th element is given by

0°F (x)
ox i ox g

(4.49)

If F (x) has continuous second partial derivatives then G (x) must be positive semi-definite

at any unconstrained minimum of the function.

In nonlinear least squares problems, the matrix of first derivatives of the vector valued

function f is termed the Jacobian matrix.
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4.3.2 Classification of the Problem

At this stage it is possible to determine which category the problem of interest lies in. To
do this it is necessary to first of all examine the cost functions being considered. The variables

are obviously the free parameter vectors used to determine the eigenvectors and hence the output
feedback matrix.

Consider the relationship between the variables which are the free parameter vectors f;,

introduced by the parametric design approach, and the value of the function, which is made up
of terms dependent on the closed-loop eigenvalues and ei genvectors. The relationship is clearly
a very complicated one and it is not a straightforward task to determine the character of it. The
closed-loop system matrix is given by

A, =A+BK, (4.50)
for state feedback. Consider the expression for the state feedback matrix

K,=FVv"' (4.51)
and the expression for the right eigenvectors

v, =\ -A)'Bf, (4.52)

where the definition of the terms involved can be found in chapter 3, which discusses the
parametric design methods in detail. Note that it was concluded in that chapter that the method
of Daley (1990) will form the basis of the state space design.

Because of the dependency of the right eigenvectors v; on the free parameter vectors f; ,

nonlinear terms will be present in the evaluation of K,. Hence the problem is of a nonlinear

nature.

Because the parametric design approach of Daley (1990) is forcing the state feedback
matrix to be in the form [X, : 0], such that output feedback can be used, the free parameter vectors
[; are subject to constraints which from chapter 3 were shown to be

Flle + F2W22 - O (4.53)
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Again because of the dependency of the eigenvectors on the free parameter vectors, this

equation is of a nonlinear nature. However Daley (1990) did reduce this constraint equation to
two further equations

[I-FVid-AY'B1)f=0,  i=r+1-n (4.54)
(r=0 (4.55)

This has not removed the non-linearity, but does give an indication of how the actual
constraints can effectively be removed. I contains all the free parameter vectors associated with
F, which can be chosen freely provided that I lies in the null space of the matrix {. Once F, is
determined, the remaining free parameter vectors can be selected subject to equation (4.54). This
also requires the vectors to be selected from a null space. All the null spaces involved will have
a set of basis vectors, and any vector that lies in these null spaces will simply be a linear
combination of the basis vectors. For example consider a null space described by the set of basis
VeCctors

{x, X, x3 x4, Xs} (4.56)

To select a vector y which lies in this null space, it must satisfy

Y = 04X, + 00X, + 00Xy + OX + OlsX s (4.57)

where the scalar values, o; are completely arbitrary.

This clearly demonstrates that to effectively remove the constraints from the problem, the
scalar multipliers of the basis vectors of the null spaces should be used as the free parameters.

If this approach is taken the robust design can then be classified as an unconstrained
nonlinear optimisation problem. Examining the eigenvalue differential cost function, J, it is
easily seen that it consists of the sum of a number of squared terms. This clearly fits into the
description of the least squares type of problem. However to gain any real benefit from the least
squares formulation in the NAG library itis necessary to ensure that the number of squared terms
is greater than the number of variables. The cost functions J, and J, consist of a number of terms
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which are norms of vectors or matrices. Itis possible to force these into a least squares framework
by squaring the norms, but such a step would only really be necessary if computational efficiency
(the major advantage of the least squares framework) becomes critical.

4.3.3 Common Optimisation Methods

All the algorithms in the NAG library generate an iterative sequence x (k) that converges

to the solution x " in the limit. The sequence is usually constructed by satisfying
x(k+1)=x(k)+o(k)p (k) (4.58)

where the vector p (k) is termed the direction of search and ou(k) is the step length.

The step length is chosen such that F(x(k + 1)) < F(x(k)) and is computed by performing

a one-dimensional optimisation. The NAG library uses two techniques for one-dimensional
optimisation, one fits a quadratic polynomial using only function evaluations and the other uses
additional information about the gradient to fit a cubic polynomial.

The major differences between the various methods arise due to the need to use varying
levels of information about the derivatives of F (x) in defining the search direction, further details
can be found in Gill and Murray (1981). Four common algorithms for unconstrained minimisation
are

i) Newton-Type Methods (Modified Newton Methods)

Newton-type methods use the Hessian matrix G(x(k)), or a finite difference
approximation to G (x(k)), to define the search direction. Newton-type methods are
the most powerful methods available for general problems and will find the minimum
of a quadratic function in one iteration.

ii) Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian G (x (k)) by a matrix B (x(k)) which
is modified at each iteration to include information obtained about the curvature of
F(x) along the latest search direction. Although not as robust as Newton-type
methods, quasi-Newton methods can be more efficient because G(x(k)) is not
computed, or approximated by finite differences. Quasi-Newton methods minimise
a quadratic function in n iterations.

iii) Conjugate-Gradient Methods
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Unlike Newton-type and quasi-Newton methods, conjugate gradient methods do not
require storage of an n by n matrix and so are ideally suited to solve large problems.
Conjugate-gradient type methods are not usually as reliable or efficient as
Newton-type, or quasi-Newton methods.

iv) Downbhill Simplex Method

This method is due to Nelder and Mead (1965) and is a completely self-contained
approach that does not use one-dimensional minimisation, unlike the previous
methods. It requires only function evaluations, so no derivative information is
needed. The method is not very efficient in terms of the number of function evalu-
ations that it requires but is numerically quite robust.

4.4 Summary

The previous chapter discussed the state space design where it was decided to use para-
metric methods which explicitly represent a set of possible feedback controllers in terms of
arbitrary free parameters. This chapter has been concerned with the problem of selecting the free
parameters such that the resulting controller yields a closed-loop system with improved per-
formance robustness.

To achieve this a suitable function relating the sensitivity of the closed-loop system to
structured model uncertainty can be defined, and the free parameters selected such that this
function is minimised. This has clearly reduced the robust design to an optimisation problem as
desired, which can then be solved using numerical methods. Of course it can only be expected
that a local minimum point is found and by starting the optimisation procedure from a number
of points it is hoped to find a local minimum which yields the desired level of robustness.

For performance robustness the effect of model uncertainty on the shape of the transient
response is of interest. Through modal decomposition it was shown that the sensitivity of the
transient response is strongly related to the sensitivity of the eigenvalues and eigenvectors,
leading to the definition of a number of cost functions. One further cost function was alsoincluded
which is based on the conditioning of the matrix of right eigenvectors.

Having established suitable cost functions, the fundamentals of numerical optimisation
were discussed in more detail, showing how problems can be categorised to help in the selection
of an appropriate optimisation algorithm. The problem being considered can be classified as an
unconstrained nonlinear problem, although for the design method of Daley (1990), some
re-arrangement of the problem had to be carried out. This involved re-defining the free parameters
to be scalar multipliers of the basis vectors of the null space of a matrix.
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CHAPTER 5

IMPLEMENTATION AND APPLICATION OF THE
ROBUST DESIGN PROCEDURE

5.1 Introduction

The problem being considered is that of designing a polynomial controller for a system in
input-output form, such that the closed-loop system is robust to changes in the parameters of the
plantbeing controlled. The preceding chapters have defined this problem and proposed a possible
approach to solving it, involving transforming to state space form and performing a parametric
output feedback design. The extra degrees of freedom in the design are then chosen to satisfy
some robustness criteria using the techniques of numerical optimisation.

There are still a number of unanswered questions though, involving the choice of cost
function and optimisation technique. General answers are not easily provided as to a certain
extent they are dependent on the actual plant being considered. To help illustrate how to make
suitable choices, the application of the proposed design method to an example is considered in
this chapter.

At this stage a secondary set of problems comes to light, namely those related to the
implementation of the method. This is an important aspect, as the way the method is implemented
will have a significant effect on its performance mainly in terms of speed. A discussion of the
major points regarding the implementation is presented which highlights the computational
requirements of the method as well as detailing some of the main problems encountered and

how they were overcome.

As previously mentioned in chapter three the state space parametric method of Fahmy and
O’Reilly (1988) experienced some difficulties when applied to transformed polynomial systems.
The problems encountered with this approach when applied to the example being considered
are also discussed in this chapter leading to the conclusion that the state space design should be
based on the parametric method of Daley (1990).

A comprehensive set of results is presented for each of the cost functions which aims at
highlighting how the weights are chosen and the typical improvement that can be achieved with
this approach. The chapter finishes with a discussion of these results and conclusions about the

performance of the proposed cost functions.
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3.2 Implementation of the Robust Design Procedure

Pro-Matlab v3.5 is a very flexible interactive package that allows easy development of
ideas and designs. It contains a large number of quite complex inbuilt functions largely relating
to matrix operations, such as inversion, singular value decomposition and factorisations. A
number of other functions for particular tasks are available through optional toolboxes, for
example in the areas of control system design and system identification. The package is installed
on a Sun 3/60 workstation running under the UNIX operating system in a windows environment.

To help illustrate the programs being used a number of flowcharts have been included
which can be found at the end of the chapter. Appendix B contains listings of the actual programs
for more detailed information.

Figure 5.1 outlines the overall design from specifying a polynomial system to obtaining
the robust controller polynomials. The loop is indicative of the optimisation procedure where a
local minimum value of the cost function is sought. Figure 5.2 expands on the parametric design
stage and as can be seen a significant level of computation is required for this part, which suggests
that it will largely determine the time taken to perform one iteration of the optimisation phase.

Such a design is very easy to implement in Pro-Matlab due to the number of inbuilt
functions. However Pro-Matlab only has the downhill simplex method of optimisation available'
which, although numerically robust, does not perform well on complex problems.

The Numerical Algorithms Group (NAG) library contains a number of routines for
numerical optimisation based on various algorithms, as outlined in chapter 4. The library routines
are however written in Fortran 77.

This suggests a number of possible options; 1) Perform the whole design in Pro-Matlab;
2) Attempt to link Pro-Matlab and Fortran 77 and lastly 3) Perform the design entirely in Fortran
77.

Considering each of these options in turn, firstly 1). This would involve writing all of the
required optimisation routines, which although possible has a number of drawbacks. For
numerical optimisation, speed is certainly an extremely important factor, which will be effected
by the design of the algorithm (i.e how quickly it converges) and the actual implementation on
the computer. This is really heading into the realms of mathematicians and computer scientists
and it is felt that the development of satisfactory algorithms would have become a research topic
in its own right, and so is outside the scope of this work. Also for speed considerations it should
be remembered that as Pro-Matlab is an interactive package all commands are interpreted and
it is well known that interpreted computer languages are considerably slower than compiled

1 The Mathworks Inc, suppliers of Pro-Matlab, have recently introduced an "optimisation toolbox’ which contains
a number of more complex numerical optimisation algorithms.
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languages, such as Fortran 77. Pro-Matlab itself is written in the language C and as such provides
an easy interface to routines written in this language. Hence the optimisation routines could be
written in C, thus increasing the speed with which they run.

This leads to the conclusion that if a compiled language and Pro-Matlab are to be interfaced,
why not use Fortran 77 (option 2) and gain access to the NAG library routines. This avoids
having to write the optimisation routines but presents another problem. Because Fortran 77 and
C (the language Pro-Matlab is written in) are very different in the way they store and reference
data, an interface between Fortran 77 and Pro-Matlab is not a simple proposition. Pro-Matlab
does provide facilities for setting up such an interface but it was found to be quite limited and
not particularly useful for this type of application.

Of course, option 2 could be tackled by not providing such a rigid link between the two.
A more flexible link could be established by simply writing the required data to a file. This does
require Pro-Matlab and Fortran 77 to be set up to read the same type of file format, which presents
another difficulty as Pro-Matlab has its own special format (needed because the basic data
structure is a matrix). This approach also suffers from speed problems as writing to a file is
extremely time consuming in relation to processor time.

The third option is really quite similar to the first except that now the optimisation routines
are available (from the NAG library) but many of the necessary matrix functions are not. Some
of the algorithms to perform these functions can be almost as complicated to implement as the
numerical optimisation algorithms. Certainly speed considerations would not be as much of a
problem but accuracy would be. Pro-Matlab is significantly more accurate than Fortran 77, which
can be verified by some simple tests, such as inverting a matrix. This is quite logical as the
version of Fortran 77 on the sun workstation only works up to double precision whereas Pro-
Matlab works to a much higher level of precision.

Clearly the best approach is to try and establish a link between Pro-Matlab and Fortran 77
in order that the maximum benefit can be gained from the facilities available in both.

5.2.1 The Link Between Pro-Matlab and Fortran 77

From the introductory discussion on the implementation it is clear that the best way to
proceed is to establish a link via data files. However, because file access is slow, all calculations
associated with the optimisation should be performed entirely in Fortran 77. This will entail
developing some routines to perform functions which are available in Pro-Matlab, but will lead
to a much faster implementation of the design. The basic scheme is then to perform as much of
the pre-optimisation work as possible in Pro-Matlab, transfer all required data via a file to the
Fortran 77 routine and after a sub-optimal solution is found transfer the results back to Pro-Matlab

for all post-optimisation work.
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Obviously a common data file format is required and as Pro-Matlab provides a set of
Fortran 77 routines to read and write Pro-Matlab format files, the simplest way to proceed would
be to use the Pro-Matlab file format. The two routines are called LOADMAT and SAVEMAT
and the argument list for both routines is the same and consists of

type - Matrix type flag; considering the type flag as a decimal integer, the ones
decimal place is used to indicate numeric or textual interpretation of the
matrix data (O for numeric and 1 for textual); the 1000’s decimal place is
used to indicate the machine format for the matrix data (O for Intel 8086
based machines, 1 for Motorola 68000 based machines and a 2 for Vax d
format). A flag of 1000 indicates numeric data in a 68000 machine format
and a flag of 1001 indicates textual interpretation of the 68000 machine

format data.

mrows - Number of rows in the matrix.

ncols - Number of columns in the matrix.

imagf - Imaginary flag; O for no imaginary part or 1 for an imaginary part.

namlen - Number of characters in the matrix name plus 1 (for zero byte string
terminator).

name - Character array holding the matrix name.

rpart - Real part of the matrix (mrows x ncols double precision elements stored
column wise).

ipart - Imaginary part of the matrix (only used if imagf = 1).

lunit - Logical Fortran 77 unit.

irec - Direct access record counter (set to 1 to start at the beginning of the file).

flag - Read/Write status flag; 0 - good read/write, 1 - end of file, 0 - error during

read/write.

LOADMAT reads a double precision matrix from a Pro-Matlab format file and successive
calls to the routine will allow all matrices to be read until the end of the file has been reached.
Before calling the routine only the logical unit number, lunit, must be specified. A logical unit
number is assigned using the OPEN statement in Fortran 77. When opening the file it must be
specified as unformatted and direct access. More information on file handling in Fortran 77 can
be obtained from Edgar (1989). All the remaining arguments are returned by the routine.
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SAVEMAT is used for the reverse process where successive calls will write a double
precision matrix to the specified file (denoted by the logical unit number). However, before
calling this routine it is necessary to specify a number of the arguments, namely:- type, mrows,
ncols, imagf, namlen, name, rpart, ipart, lunit, irec. The only argument returned by the routine
is flag, to indicate the success of the write operation.

Now consider what data will actually be passed using the data files. To answer this it is
necessary to take a closer look at the parametric design method. The flowchart in figure 5.2 will
help here. The first step is to calculate I', which is dependent on the null space of {. This null
space does not depend on the free parameters, which are the scalar multipliers of the null space
vectors. Hence the null space can be calculated in Pro-Matlab and passed to the Fortran 77
optimisation routine using the file. The next step which requires additional data is the calculation
of the right eigenvectors v;. Recall that

v;=(\I -A)"'Bf, (5.1)

If \,f —A)™'B is calculated in Pro-Matlab for all i and stored in the file, then the calculation

of the eigenvectors during optimisation will only involve one multiplication of a matrix and a
vector.

From the flowchart it is apparent that this is all the data that can be calculated prior to
optimisation as all other values are dependent on the free parameters. However, itis also necessary
to consider the calculation of the cost functions to determine what additional data is required.

Consider the eigenvalue differential cost function

a)\.' T
Ohi _ . 52
%, w;(P,+QKC)y; (5.2)

for this expression, w!, v; and K will all be calculated as a result of performing the parametric

design at each iteration. The only information missing is C, but as it will always be in the form
[/ : 0] there is no need to store it in the data file.

Now consider the eigenstructure differential cost function

%‘ - O -AY WP, +QKCYI -PYNI ~AY'BE+ (N -AY'QL,  (53)
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This requires (\,/ — A)™ to be calculated in Pro-Matlab for all i and stored in the file. Of

course it is possible to store just (\,/ —A)™ and B separately and explicitly calculate (\,J —A)™B
in Fortran 77 when it is needed. However, as speed is of much greater concern than storage in
this case, both (\,/ —A)™ and (\,/ —A)™B will be calculated and stored for all i.

The remaining cost functions require no further data, however to assist in the construction
of the Fortran 77 routines a number of other variables are stored in the file which give information
on the dimensions of the matrices involved and which eigenvalues are complex conjugates.

It was also decided to store all the necessary weights and initial values for the free para-
meters in another file so as to allow changes to be easily made.

Once the optimisation has been performed in Fortran 77, the only data required to continue
with the conversion of the controller back to polynomial form is the value of K,. A number of
other variables, however, are also returned to aid in the analysis of the solution.

Todetermine what routines need to be written in Fortran 77, it is again necessary to consider
the parametric design and the cost functions. To evaluate the functions is relatively simple once
the parametric design has been carried out. The design relies on routines being available to
calculate the null space of a matrix, in order to determine the vectors in F,, and to calculate the
inverse of real and complex matrices. Although Pro-Matlab has such functions, they are not
directly available in the NAG library and the following sections discuss how to implement the
required routines.

5.2.2 Calculation of the Null Space of a Matrix in Fortran 77

The parametric design method requires the calculation of null spaces of matrices. Pro-
Matlab has a function to perform this task but as the design is carried out during optimisation,
it is necessary to write a Fortran 77 routine to calculate the null space of a matrix. The algorithm
is based on the singular value decomposition (SVD).

Consider the SVD of a m X n matrix A, wherem 2 n
A=UDU; (5.4)

where D is a m x n matrix, U, and U; are orthonormal matrices of dimension m xm and n xn

respectively. If rank{A} =7 <n then D is defined as
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Voo
D=[0 0] (5.5)

where V is a r X r diagonal matrix of the singular values of A.

LetU,;=[U;; UplandU,=[U, U, where the dimension of the sub-blocks are U,; -

mxr,Ulz"mX(m_r),U21'nxr,U22‘nX(n—r).Then

Uy, 1s a basis for the null space of A.
U,, is a basis for the null space of A”.
U,, is a basis for the range space of A.
U,, is a basis for the range space of A”.

Of course the next problem is to calculate the SVD of the matrix A. This can be achieved

by finding the matrix of right eigenvectors of the matrix AA” which will be equal to U, and the
matrix of right eigenvectors of the matrix ATA which will be equal to U,. The NAG library
routine FO2ABF can be used to calculate the eigenvectors of a matrix. Details of the routine can
be found in appendix C.

5.2.3 Calculation of an Accurate Inverse of a Matrix in Fortran 77

It was found in practice that in the calculation of the F, vectors from the null space of
I-F\Vi[A;,J-A)'B], (5.6)

(where j =1 — n —r) the calculation of the inverse of V;; was extremely important. In Pro-

Matlab, which has greater precision, there were no problems in calculating an accurate inverse,
but in Fortran 77, with only double precision, this was not the case. It is recommended in NAG
(1990) that when finding the inverse of a real matrix A,, the equation

AX, =1 (5.7)

be solved for X,, which is the inverse. / is the identity matrix of the same order as A,. The

algorithms for solving such a set of real linear equations are faster in execution and numerically
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more stable and accurate. Hence for real matrices this equation is simply solved using two NAG
routines. FO3AFF factorises the matrix A, into upper and lower triangular form and FO4AHF

uses this form to solve the set of equations using backward substitution with correction. Details
of these routines are in appendix C.

For complex matrices, such as V,,, the following procedure is used to ensure an accurate

inverse is found. Consider the complex equation
AX, =1 (5.8)

where A, is the complex matrix and X, its unknown inverse.

If the equation is transformed to a real equation of the same form, then NAG routines for
solving a set of real equations can be used to find the inverse. Consider equation (5.8) in terms
of its real and imaginary parts

A, +jA)X, +jX) =1 (5.9)

where I is the same dimension as the original complex A,. Combining real and imaginary parts

the equation can be written as
AX —-AX)+jAX +AX)=1 (5.10)
which gives rise to two real equations

AX —-AX =1 (5.11)
AX,+AX; =0 (5.12)

or, alternatively, in vector form
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X,
(A, —A,»J{X]ﬂ (5.13)

X"
[A; A,][XJ =0 (5.14)

which can be combined into one real matrix equation

Ar _Ai Xr _ [
A, A,][X,}_[o] (5.20)

This equation is clearly of the correct form and can be solved for the real and imaginary
parts of X..

5.3 Application of the Robust Design Procedure

Having established how the method is implemented on a computer, it is possible to proceed
withan application to a simple example. The definition of this example is presented first including
the calculation of a controller from the minimum order solution of the diophantine equation,
which can be used to assess the performance of the robust control schemes. With the definition
of the model it is also natural to consider the transformation to state space form and the definition

of the model uncertainty.

A slight detour is then taken to consider the details of the problems experienced with the
parametric method of Fahmy and O’Reilly (1988) when applied to this example. The conclusion
of this work is that the method of Daley (1990) should be used as the basis of the state space
design. This is followed by a discussion of the design in the state space framework to assess the
number of free parameters, which naturally leads to the selection of an appropriate optimisation
routine. As there are a large number of results, they are presented in a rather compact form and

an explanation of this layout is given before the results themselves are presented for each cost

function.

5.3.1 Definition of the System and Preliminary Work

The following non-minimum phase system is to be considered (taken from Wellstead and

Sanoff, 1981)
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(1-1.627"+0.627)y k) = ™ + 1.5z u (k) + (1 - 0.4z e (k) (5.16)

Theopen-loop poles are locatedatz = 1 and z = 0.6, and itis desired to place the closed-loop
poles at 2 =0.75 % j0.2.

As outlined in chapter 1, for zero steady state error it is necessary to ensure that the system
has integral action. In this case it is easily verified that the A ,(z™") polynomial is of the form

A )=(1-2")(1-06z7 (5.17)

and so the system already has integral action. It is worth noting that the integral action should
be invariant under parameter variation else the steady state error would vary with coefficient
changes. Hence if a system exhibits integral action which is not structural then an integrator
should still be cascaded with the system. For this example it is assumed that only the (1 -0.6z7")
part of A p(z'l) is time varying, hence there is no need to cascade an integrator in this case.

It is also assumed that the A P(z") and B,,(z“) coefficients vary by the same amount and
that the variation will be of the order of +50% of their nominal magnitude.

For the purposes of a comparison the controller obtained from the minimum order solution
of the diophantine equation can be calculated. The minimum order controller polynomials are

F,(z™)=1.0-0.3466z" (5.18)
G,(z™') =0.0466 — 0.0220z ™ (5.19)
H,(z™)=0.0410-0.0164z"" (5.20)

and the corresponding pole positions for the nominal and perturbed closed-loop system are

Original Perturbed Distance Moved
0.75% 0.2 0.8967 £ j0.3727 0.1467 1+ j0.1727
04 0.3834 -0.0166

Table 5.1 - Pole Positions for the Perturbed Closed-Loop System with the
Minimum Order Controller
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Figure 5.3 shows the transient response of the nominal and perturbed closed-loop system
which is clearly significantly affected by parameter variations.

Now consider the robust design and hence the transformation of the system to state space
form. Following the procedure outlined in chapter 3

16 ... 1.0] 1.0 . ... 0]
: 1.0
A= , B= .t
. . , 1.0
| -06 ... 0 15 . ... 0
1.0 . 0 0 0]
C: . 1.0 . . . (5.21)
|0 1.0 0 0|

where the actual dimensions are dependent on the value of p. Notice that the system states have

been re-arranged such that C is in the correct form for the parametric design procedure of Daley
(1990).

It is then possible to easily define the structured model uncertainty as

L .

M= e, (5.22)
L p2 O_
. 0

AB=| e, (5.23)
| 92 O..

and as the variation in the coefficients will be of the same order it is only necessary to set the
p’sand ¢'s to 1. Note that u, the number of error terms, is equal to 1. The form of AA with —p,
and +p, is due to the integral action in A,(z™).
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5.3.2 Problems Associated with the Parametric Method of Fahmy and O’Reilly

The parametric design method of Fahmy and O’ Reilly (1988) has consistently had problems
calculating an output feedback controller for transformed polynomial systems. The problem
appears to be linked with the structure of the open-loop system matrices and the following outlines

how the method fails.

Considering the given example, but not transformed such that C =[I : 0] (which is

unnecessary for this method), with p =3 the system matrices are

and the desired closed-loop eigenvalues are [0.75% 0.2 -0.01

First stage - right eigenvector assignment

©C O©C O = O

-0.6

1.6
0
0
0

O O OO

o)
|

cCCc o OO

S O O O
>
]

0 0 0

0 00

1 0 0

010

0 0 1]
0 1 0 0 0]
00100

C‘00010 (5-24)

0 000 1
-0.02 -0.03].

Choose s = 3, hence require three free parameter vectors which are chosen randomly as

F

L)

[fl fz Ls] =

0.0329
0.8892
-10.7023
0.7486

00329  —0.2530]
0.8892  5.2730
~10.7023 —-6.1485
07486  9.6141

The first three right eigenvectors are then calculated as

L

- 0.71-j0.31

~091+,0.15
1.11-0.30

~13.32+/3.55
0.93-0.25

0.71 +0.31
-0.91-,0.15
1.11+,0.30
-13.32-3.55
0.93 +0.25

(5.25)
124 7
-0.61
~527.30 (5.26)
614.85
-961.41 |
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giving

T -0.0946  0.0059  0.0045 T
~2.5596  0.1329  0.1200
30.8060 —1.7202 -—1.4541

| -2.1547 01010  0.1001 |

(5.27)

Intermediate stage - eigenvalue/eigenvector protection

To protect the eigenvalues placed in the first stage it is necessary to calculate an output
reduction matrix C which satisfies

CCV,=0 (5.28)

Transposing this equation gives

(CV,)Y'C"=0 (5.29)

and C can be obtained from the null space of (CV,)".

~091-0.15 1114030 -1332-j3.55 093+ j0.25
€V =| -091+/0.15 1.11-j030 -1332+j3.55 093-025| (5.30)
~0.61 =527.30 614.85 ~961.41

giving

C =[-6.4858¢ —15 -0.8870 -0.0415 0.4599] (5.31)

Note that the first element of this vector is close to zero, which appeared to be the case for
all other examples considered. This suggests that something about the structure of A, B and C

causes this to happen.

Now
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"0 -07418 0.0088  0.0068 O
1.0 15054 00059 00045 O
A=A+BK,C=| 0 -25596 01329 0.1200 0 (5.32)
0 308060 -17702 -14546 0
| 0 -2.1547 01010 0.1001 O
C,=CC=[0 -6.4858—15 -0.8870 -0.0415 0.4599] (5.33)

and the second stage design is based on A,, B and C,. The leading zeros in C, are a result of the

combination of the zero in C and the structure of the first two columns of C.
Second stage - left eigenvector assignment

This stage assigns the remaining two eigenvalues and their associated left eigenvectors.
The two free parameters, which are scalars, are chosen as

3.4949
_[ 3 5.34
G [—12.5092] (5.34)

giving the eigenvectors as

T —0.3523¢ - 13  0.2266e — 13
0.7041¢ -15 -0.6715¢ —-15

Wi=[w, wi=| 1549955 —369.8497 (5.35)
7.2569 ~17.3164
—80.3684 191.7748

The effect of the leading zeros in C, can clearly be seen. Recall that

K'zl = [Wth]—lG: (5.36)

and the matrix W,B, is
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(5.37)

B =[—O.5213e —13  154.9955
1 03332¢ -13  -369.8497

which is certainly close to singular and is the cause of the failure of the method.

The problem does appear to be closely related to the structure of C, particularly the first

two columns. To eliminate the zeros in these columns a state transformation could be used.

Selecting

109103 0.3282 0.2470 0.0727 0.7665]]
0.7622 0.6326 09826 0.6316 0.4777
T =|0.2625 0.7564 0.7227 0.8847 0.2378 (5.38)
0.0475 09910 0.1534 0.2727 0.2749

| 0.7361  0.3653 0.6515 0.4364 0.3593]

the transformed system 1is

[ -12.0329 -7.5397 -10.2049 -6.0669 —8.6642]
-12.8911 -8.1191 -11.0231 -6.5661 —9.2630
A’=T'AT =| 118317 7.5256 10.2769 6.1440 8.4681 | (5.39)
0.8081 0.4876 0.6447 0.3776 0.5905
| 15.3245 9.4643 12.6977 7.5067  11.0975 |

[ —6.2748  0.0613 0.9066 7.6603 ]
-5.9431 0.8272 2.0939 5.7442
B’=T'B=| 40784 -1.7437 -0.3933 -3.8486 (5.40)
0.7715 1.8398 -1.2741 -1.3003
| 10.5666 —0.0395 -1.7258 - 10.1938 |

707622 0.6326 0.9826 0.6316 0.4777]
02625 0.7564 0.7227 0.8847 0.2378
0.0475 09910 0.7534 0.2727 0.2749

07361 0.3653 0.6515 0.4364 0.3593 ]

C’'=CT (5.41)

Performing the design using the same free parameters, itis found that K, for the first stage

is the same as previously. Also (CV,)" is the same leading to

¢ =[-6.4858¢ —15 -0.8870 -0.0415 0.4599] (5.42)
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as before and

C,=[0.1038 -0.5441 -0.3726 -0.5953 -0.0571]

In the second stage

[—18.1343
95.0704
W =| 65.1146
104.0310
| 9.9754

which appears to have removed the problem of leading zeros. However

43279
—226.8566
- 155.3763
~248.2383
~23.8032 |

WB, = 0.1335¢ — 11 154.9955
1| —=0.3024e - 11 -369.8497

(5.43)

(5.44)

(5.45)

and again the problem of singularity stops a solution being obtained.

The fact that the problem is related to the structure of C can be verified by changing some

of its elements. It was found that only two elements needed to be changed in order for a solution
to be obtained, and as would be expected these are in the first two columns. For example with

0 1 0 0 O
0219 0047 1 0 O
- 5.46
¢ 0 0 010 (5.46)
|0 0 0 0 1]
a solution is obtained where
T—10.4063 309594 24719 -15.3845]
K = -2.6056 0.1382 0.1248 0.0002 (5.47)
4 314037 -1.7946 -1.5172 0
| —2.1898  0.1054 0.1038 0 ]
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Itshould be pointed out that a number of different strate gies for overcoming the encountered
problems were tried. These included specifying different desired closed-loop eigenvalues,
assigning the left eigenvectors first and changing the split between the two stages. However no
approach managed to ensure that a solution could be obtained. Another possibility is to use a
different canonical form in the transformation from polynomial to state space representations.
This however does not alleviate the problem as a similar structure for the C matrix is obtained
when the dynamic compensator is augmented with the system.

The most probable reason for the failure of the method is overprotection. To explain,
consider the equation

CCV,=0 (5.48)

where V, represents the matrix of the first s right eigenvectors assigned in the first stage. Recall

from chapter three that C must be chosen such that this equation is satisfied for the first s right
eigenvectors to be protected from subsequent feedback loops. This equation can also be inter-
preted as requiring V, to lie in the null space of CC. If the dimension of this null space is greater
than s then other right eigenvectors may be protected leading to overprotection and the method
would fail in the second stage, as is the case here.

A complete analysis of this problem and an investigation into ways of overcoming it is
really outside the scope of this work, hence the parametric method of Daley (1990) will be used
as the basis of the state space design.

5.3.3 Determining the Number of Free Parameters

Chapter four outlined how to avoid subjecting the optimisation procedure to constraints
by effectively re-defining the free parameters as the scalar multipliers of the basis vectors of
various null spaces. Hence to determine the number of free parameters it is necessary to obtain
the dimensions of the null spaces involved and this section outlines how this is achieved.

Consider the system as outlined in section 5.3.1. There will be p +2 states, p + 1 inputs

and p + 1 outputs, hence

n=p +2 (5.49)
rep+l (5.50)
m=p+ 1 (5.51)
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Clearly
GEnor=pt2-p-l=l (5.52)
SO
Fi=lf--£] (5.53)
F,=[f,) (5.54)
Recall that the whole of F| is selected from the null space of {, where
[ 0,AS; .o 0y AS,]
e= | (5.55)
_ocqlASq1 ozq,ASq,d
and
AS, = [\, I —AY =\ -A))B], (3.56)

In this case the o’s are all chosen as 1 and the dimension of { is clearly (r xrm)as g =1

and the dimension of AS;; is (r xm).

Section 5.2 discussed details of the implementation which included a section on how to
calculate the null space of a matrix using its singular value decomposition. From this the
dimension of the null space of { can be deduced as (rm x (rm —r)), assuming full rank. Thus the
number of free parameters used in the calculation of F, is r(m —1).

The remaining vectors in F, are each obtained by calculating the null space of Z,

(i =r +1 — n). In this case there is only one F, vector and it lies in the null space of

Z, =1-F,V;[A\I-A)"B], (5.57)
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The dimension of Z, is obviously (r xr), so the existence of the null space is dependent

on the rank of the matrix. Daley (1990) has shown that this null space will exist and that the rank
of Z, will be deficient by at least 1. Hence the dimension of the null space will be (r x 1) and
only one free parameter is needed for the calculation of the F, vector.

This brings the total number of free parameters, N, to

N,=r(m-1)+1 (5.58)

5.3.4 Selecting the Optimisation Routine

This section considers the choice of the optimisation algorithm. For simplicity and to allow
a quick assessment of the robust design approach it was decided to use algorithms that require
no derivative information. It is recognised that derivative information will generally improve
the efficiency of optimisation in all areas, and algorithms that utilise such information could be
used if unsatisfactory results are obtained from the function value only algorithms.

Most routines of this type in the NAG library are based on the quasi-Newton method,
which really only leaves the question of whether the problem is of a least squares type. The only
cost function which easily fits this description is the eigenvalue differential cost function, J;.
Note that for this example u =1 so there are only » residual terms in the function. For any real
benefit to be gained by describing the problem in a least squares manner, the number of residuals,
N,, should be greater than the number of variables (or free parameters), N, i.e.

N,>N, or r(m-1)+1>n (5.59)

Forp =1,N;=3andN,, =3 and as p increases Nyincreases ata higher rate than N,,. Thus

there is no justification in expressing the problem in a least squares framework, hence it was
decided to use NAG routine EO4JAF to perform the optimisation. Further details of this routine

can be found in appendix C.

5.3.5 Layout of the Results

All the results will be laid out in the following format

x)  Initial comments
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X' =[]
Wi=[]
jorigzu' Joplyz'”
Eigenvalue/Eigenvector Sensitivities:
0.75+;0.2 -0.01 -0.02
orig
opt
orig
opt
Pole Positions:
Original Perturbed Distance Moved
Controller Polynomials:
—1 — s s e
F,(z)=
_1 o s e
G,(z7)=
—1 o s e e
H,(z")=
Final comments
Where
x specifies a reference number for the particular set of results. Hence when discussing

results only this number need be quoted.

Initial comments

These comments briefly introduce the set of results explaining what they represent.

X' is a vector that specifies the initial values for the free parameters, where the firstr(m — 1)
elements are used in the calculation of F}, and the remaining element in the calculation
of F,.

wT is a vector that specifies the value of the weights used. Clearly the interpretation is

dependent on the cost function being used.
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W1 - n) - specifies the n eigenvalue sensitivity weights P

Win+1-2n) - for the eigenstructure differential cost function, specifies the

weights 1;, and for the transient response differential cost
function specifies the weights 7;

W'2n +1) - specifies the weight ¢

For the conditioning cost function no weights need to be specified.

o specifies the value of the cost function at the starting point.

Joy  Specifies the value of the cost function at the final point. The value of yis used to indicate

the conditions under which the routine terminated.

y=1 - indicates that a minimum point was found.

y=2 - indicates that not all the conditions for a minimum were satisfied but

that no lower point could be found.
Eigenvalue/Eigenvector Sensitivities:

The eigenvalue sensitivities are given in the first two rows followed by the eigenvector
sensitivities. For each entry there are two numbers. The upper entry corresponds to the
sensitivity at the starting point and the lower one to the sensitivity at the final point. For
the eigenvalue differential cost function results there will clearly not be entries for the
eigenvector sensitivities and for the conditioning cost function results this table will not
be given.

Pole Positions:

The first column of this table corresponds to the closed-loop pole positions for the
nominal system, the second column to the closed-loop pole positions for the perturbed
system and the third to how far the poles have actually moved. This table is only given
for relatively good results and always for the conditioning cost function results.

Controller Polynomials:
The three controller polynomials are only specified for particularly good sets of results.

Final comments

These contain any conclusions that can be drawn and outline the reasons behind the
decisions for the next set of results, e.g. how the weights should be changed.
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5.3.6 Results for the Eigenvalue Differential Cost Function

The following results were obtained for the systemdescribed in (5.16), using the eigenvalue
differential cost function. The desired closed-loop pole positions are 0.75  j0.2 and the maxi-
mum level of perturbation was assumed to be +50% of the nominal values of the A,(z~ ') and
B,(z" h polynomial coefficients. The value of p represents the order of the controller.

r=1

1) The starting point is randomly selected and as no information is available on suitable
weights they are all set to 1.

=[0.3586 0.8694 -0.2330]

Wi=[1.0 1.0 1.0]

Jorig = 1.792632 Jopi1=1.792632
Eigenvalue Sensitivities:
0.75% 0.2 -0.01
orig 0.9463 0.4071e-1
opt 0.9463 0.4071e-1

No improvement in the sensitivities so try a different starting point.

2)  Again the starting point is randomly selected and the weights are all set to 1.

XT=[3.8833 66.1931 -93.0856)

Wi=[10 10 1.0

Jorig = 1.792632 Jopr1 = 1.792632
Eigenvalue Sensitivities:
0.75+£;0.2 -0.01
orig 0.9463 0.4071e-1
opt 0.9463 0.4071e-1

Again no improvement at all and note that the sensitivities are the same as in 1). A number
of other starting points were tried with the same result and the weights were also changed
but did not effect the outcome. It appears that with p = 1 no significant improvement in

robustness can be achieved, so try increasing p.
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p=2

3)

4)

3)

As with the previous results the starting point is randomly chosen and the weights all set
to 1.

X"=[-0.0101 -0.0392 0.0012 0.0011 —0.0226 -0.0129 -0.0351]

Wi=[10 10 10 1.0]

Jorig = 8.021354 Jopi2=1.789106
Eigenvalue Sensitivities:
0.75%;0.2 -0.01 -0.02
orig 0.9824 1.7910 1.6980
opt 0.9452 0.6246¢e-1 0.4555¢e-1

Clearly with the p =2 case there is scope for improvement, however it is necessary to

adjust the weights to concentrate more on the dominant eigenvalue sensitivities. A different
starting point is also used to see if a lower initial function value can be obtained.

The starting point is again randomly selected and the weights adjusted to place more
emphasis on the dominant eigenvalues.

X"=[0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027]

wW'=[10 10 0.1 0.1]

J.. = 1783400 J o2 = 1782130

8

Eigenvalue Sensitivities:

0.75%,0.2 -0.01 -0.02
orig 0.9437 0.8548e-1 0.1224
opt 0.9428 0.1304 0.1660

Note that the initial function value is lower than the final function value of 3). Other starting
points were tried but no lower initial value was obtained, hence the values used here
represent a good starting point. Examining the sensitivities it is again clear that the weights
need to be adjusted to concentrate even more on the dominant eigenvalue sensitivities.

Using the same starting pointas 4), the weights were continually adjusted through a number
of iterations leading to the result presented here.
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6)

X"=[0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027]

Wi'=[1.0 1.0 0.0001 0.0001]
Jorig =1.781173 Jopi2 =0.527665
Eigenvalue Sensitivities:
0.75+ 0.2 -0.01 -0.02
orig 0.9437 0.8548e-1 0.1224
opt 0.4023 32.39 3147

A significant improvement in the dominant eigenvalue sensitivities has been achieved but
at the expense of the sensitivities of the other poles. At this stage it is useful to determine

the pole positions for the perturbed closed-loop system to assess how good this result is.

Pole Positions:

Original Perturbed Distance Moved

0.75£0.2 0.6981 £ j0.3395 —0.0519+,0.1395
-0.01 0.2315 0.2415
-0.02 0.0013 0.0213

One of the controller poles has become quite significant and so this solution is not

particularly good even though the dominant pole movement has been very much reduced.

By adjusting the weights it should be possible to overcome this problem.

For the same starting point as 4), the results presented here are the best compromise that

could be achieved between reducing the dominant eigenvalue sensitivity and increasing

the sensitivities of the other poles.

XT=[0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027]

wT=[1.0 1.0 0.0005 0.0005]
Jorig = 1781181 Jopi2 = 1.023105
Eigenvalue Sensitivities:
0.75% 0.2 -0.01 -0.02
orig 0.9437 0.8548¢-1 0.1224
opt 0.5692 19.64 19.10

Pole Positions:
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Original Perturbed Distance Moved
0.75+,0.2 0.7869%0.3611 0.0369+;0.1611

-0.0099 0.0967 0.1066

-0.0201 0.0025 0.0226

Controller Polynomials:

F,(z™')=1.0-0.0640z"" - 0.20272
G,(z7)=0.1940-0.2329z7" +0.08122 2
H,(z™")=0.0704 - 0.0282z"'

The transient response of the closed-loop system with this controller is shown in figure
5.4 which is clearly a significant improvement over the response for the minimum order
controller shown in figure 5.3. Of course it is natural to consider what level of improvement

can be achieved by increasing p further.

Repeating the same procedure as above a good starting point was found and the weights

adjusted to achieve a satisfactory compromise but with a significant level of improvement.

X'=[-0.0724 -0.6805 -1.8138 -29852 -4.5878 -2.7362 -1.7356
-3.1889 0.8057 3.4629 0.8311 -1.8653 —0.8210]

Wi'=[1.0 1.0 0.0 0.0005 0.0005)

Jorig = 1.583238 Jopr1 = 1.163915
Eigenvalue Sensitivities:
0.75+ ;0.2 -0.01 -0.02 -0.03
orig 0.8877 0.3603c-1 2.6900 2.6830
opt 0.6385 2.298 19.98 17.26

Pole Positions:

Original Pcriurbed Distance Moved
0.75%,0.2 0.8094 + j0.3646 0.0594 + j0.1646
-0.0098 -0.0079 0.0019
-0.0201 0.0222 +;0.0193 0.0423 £ j0.0193
-0.0301 0.0523 = j0.0193
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8)

This is quite a good result but comparing it with 6), the best result for the p =2 case, it

can be seen that the dominant pole sensitivities are not as good here. However it was
expected that with p =3 a better result would be obtained. Try a different starting point.

A number of alternative starting points were tried and the procedure for adjusting the
weights carried out in each case. The best result obtained is presented here.

X"=[0.5634 -0.2503 1.0725 -1.8525 -1.8031 -3.0674 2.3256
-1.4839 -09125 -4.3826 -6.6312 -0.6958 —6.5606]

W'=[1.0 1.0 0002 0.0001 0.002]

J g = 1798684 J,..,=1017731

optl —

Eigenvalue Sensitivities:

0.75+ 0.2 -0.01 -0.02 -0.03
orig 0.9483 0.1555 0.4801 0.2811
opt 0.5661 9.5444 0.8613 9.8610
Pole Positions:
Original Perturbed Distance Moved
0.75+ 0.2 0.7861 + j0.3603 0.0361 + j0.1603
-0.01 -0.0195 -0.0095
-0.02 0.0044 0.0244
-0.03 0.0846 0.1146
Controller Polynomials:

F,(z™")=1.0-0.0366z" -0.2071z"" - 0.0040z"
G,(z™")=0.1966-0.2326:"" +0.0779z +0.00162"°
H,(z™)=0.0725-0.0290z""

Note that a better result was obtained from what would be classed as a worse starting point
as the initial function value is higher than for 7). This illustrates the fact that these functions
probably have many local minima and it is extremely important to try a number of alter-
native starting points. The transient response for the closed-loop system with this controller
is shown in figure 5.5. Clearly this result is only a slight improvement over the p = 2 case
which suggests that this type of result represents the best level of improvement that can
be obtained. To verify consider increasing p again.
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p=4

9)

After trying a number of randomly chosen starting points and suitable adjustment of the
weights, this result was the best obtained.

X'=[-13462 -3.7481 -3.6908 —0.6515 -1.0806 -3.9009 -3.4066

34978 -3.1640 -1.5535 -1.6996 -0.0319 0.2454 -1.4202
-1.6027 0.3568 -1.4492 -0.0576 -2.1061 -0.7171 -1.1195]

W'=[10 1.0 0.003 0002 0.002 0.003]
T i = 2.694211 J o1 = 0.808537

Eigenvalue Sensitivities:

0.75+ 0.2 -0.01 -0.02 -0.03 -0.04
orig 1.1430 0.9609 2.7600 1.1640 4.5700
opt 04816 7.0310 3.8370 3.1740 6.9960
Pole Positions:
Original Perturbed Distance Moved
0.75+;0.2 0.7530+£0.3517 0.0030%0.1517
-0.0099 0.1210 0.1309
-0.0199 -0.0173 0.0026
-0.03 -0.0322 -0.0022
-0.0401 0.0046 0.0447
Controller Polynomials:

F,(z")=1.0-0.0359z"-0.2681z7-0.01312"° - 0.1481e - 32"
G,(z7)=0.2359 - 0.2870z" +0.0913z " +0.00512~° +0.5933¢ - 42™
H,(z™)=0.0754-0.0302

On initial inspection this appears to be significantly better than both the p =2 and the p =3
cases. However one of the controller poles has moved considerably but even at 0.1210 it
could be argued that it would still not significantly influence the shape of the response.
The transient response associated with this controller is shown in figure 5.6 and clearly it
is better than has been obtained previously, but only just. It certainly suggests that the
benefits of considering controllers beyond third or fourth order is questionable.
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5.3.7 Results for the Eigenstructure Differential Cost Function

This cost function contains the eigenvector differential and to help determine if this term
leads to better solutions, the same starting points for the best results for the eigenvalue differential

cost function are used. Also from the previous set of results it is clear that the case of p = 1 need
not be considered.

p=2

10) Using the same starting point as 6) and refining the weights lead to two sets of results
presented here and in 11).

X"=[0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027]

Wi=[10 1.0 50e-4 50e-4 10 1.0 1.0 10e-2 1.0e-4]

Jorig = 1.921558 Jopi2 = 1.789696
Eigenvalue/Eigenvector Sensitivities:
0.75+j0.2 -0.01 -0.02
orig 0.9437 0.8548e-1 0.1224
opt 0.9455 0.2709¢-3 0.3976¢e-1
orig 2.6830e2 4.1390e2 4.5320e4
opt 7.7010 2.1200 1.7510e2

11) Second result

X"=[0.0022 -0.0242 -0.0356 -0.0037 -0.0170 0.0089 0.0027]

Wi=[10 10 50e-4 50e-4 1.0 10 10 1.0e-2 1.0e-6]

Jorig = 1.782585 Jopr2 = 1.317259
Eigenvalue/Eigenvector Sensitivities:
0.75+ 0.2 -0.01 -0.02
orig 0.9437 0.8548¢-1 0.1224
opt 0.7054 12.07 11.75
orig 2.6830e2 4.1390e2 4.5320e4
opt 2.542004 1.2840e5 9.4000e4
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12)

Examining the results in 10) and 11) it can be seen that there appears to be a conflict
between the dominant eigenvalue sensitivities and their associated eigenvector sensiti-
vities. When the dominant eigenvalue sensitivities are decreased the eigenvector sensiti-
vities increase and vice versa. A number of alternative starting points were tried but all
were subject to this conflict and no satisfactory result could be obtained.

A value of p =3 was used with the same starting point as 8) to determine if this problem

could be overcome by introducing more design freedom. However the conflict was still
present and it is felt that increasing p further would not help in this situation.

Perhaps a better approach to the application of this cost function would be to start at the
sub-optimal points found using the eigenvalue differential cost function. The aim would
then be to try and reduce the eigenvector sensitivities without adversely affecting the
eigenvalue sensitivities.

Using the sub-optimal point found in 6) as the starting point and again refining the weights
as before.

X" =[0.0086 -0.0173 -0.0420 0.0032 -0.0234 0.0063 -0.0018]

WI=[10 10 50e-4 50e-4 10 10 1.0e-4 10e-7 5.0e-10]

Jorig = 1.116970 Jop2 = 1.098190
Eigenvalue/Eigenvector Sensitivities:
0.75%,0.2 -0.01 -0.02
orig 0.5692 19.64 19.10
opt 0.6052 17.55 17.06
orig 9.3860¢7 1.4490¢8 1.0570e10
opt 6.6140e7 1.0200¢c8 7.4690c9

This result is quite encouraging as some improvement has been made. However by
examining the transient response of the closed-loop system with the controller for this
result, figure 5.7, it can be seen that the level of improvement in the eigenvector sensitivities
really needs to be much greater to have any significant effect on performance robustness.

A higher value of p could achieve this.
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13) This time the sub-optimal point found in 8) is used as the starting point and appropriate
weights selected.

X"=[133.8 -256 3951 -365.1 121 -12140 1736
-2540 -235 -622.4 -1672.8 -2053 -929.4]
Wi=[12 12 20e-3 10e-4 20e-3 10 1.0
1.0e-6 10e-6 10e—-6 1.0e—-4]

Joig = 1639185 J o = 1.320894

Eigenvalue/Eigenvector Sensitivities:

0.75%0.2 -0.01 -0.02 -0.03
orig 0.5661 9.5440 0.8613 9.8610
opt 0.5726 9.4594 0.6515 9.5769
orig 2.4360e3 4.5300e7 5.1630c6 1.0150¢e7
opt 8.3265¢2 3.3762¢7 3.1700c6 1.4671¢7

This is a slightly better improvement than in 12) but by comparing the transient response
shown in figure 5.8 with that in figure 5.5 (the result from the eigenvalue differential cost
function), it can be seen that no real improvement has been achieved. Assuming this is the
typical improvement that can be expected when p is increased, it would suggest that a very
high order controller is needed to gain any real advantage over the controllers obtained

using the eigenvalue differential cost function.

5.3.8 Results for the Transient Response Differential Cost Function

From the modal decomposition it was seen that for performance robustness a slightly
different form for the eigenvector differential was more appropriate and was included in the
transient response differential cost function. From the previous results it would seem reasonable
to start from the sub-optimal points found using the eigenvalue differential cost function and

only the case of p =3 is considered.

14) Using the sub-optimal point found in 8) and after refinement of the weights the following

result was obtained.

XT=[133.8 -25.6 3951 -365.1 12.1 -12140 1736
-254.0 -23.5 -622.4 -1672.8 -2053 -929.4]
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Wi=[10 10 20e-3 10e-4 20e-3 10 1.0
1.0e-4 10e-4 1.0e-4 1.0e-7]
Jorig = 1.639185 Jop2 = 1.320894
Eigenvalue/Eigenvector Sensitivities:
0.75+;0.2 -0.01 -0.02 -0.03

orig 0.5661 9.5440 0.8613 9.8610

opt 0.5722 9.6320 0.3183 9.4160

orig 1.5640e6 4.7530e7 1.2000e8 1.1190¢8

opt 8.9320e4 1.5950e7 3.0490e7 1.5060¢7

This is very similar to the result in 13) and by examining the transient response 1in figure
5.9 it can be seen that no real improvement over that shown in figure 5.5 has been achieved.
Again it is expected that a very high order controller would be required to make any
significant improvement in the eigenvector sensitivities.

5.3.9 Results for the Conditioning Cost Function

This cost function is quite different to the others as it is not directly concerned with

sensitivities. No weights are needed so the problem of iteratively refining them does not exist.

On the basis of the previous results it was decided to restrict the investigation to the cases of

p=2andp =3.

p=2

15) A number of randomly selected starting points were tried and this was the best result

obtained.

X" =[-0.0243 -0.0113 -0.0083 -0.1591 -0.0685 -0.2518 0.0159]

J,. =58.251362 J oy = 14.445608

rig

Pole Positions:

Original Perturbed Distance Moved

0.75+ 0.2 0.8854 +0.3750 0.1354 + j0.1750
-0.01 -0.0098 0.0002
-0.02 -0.0200 0.0000
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This is clearly not as good as the result obtained using the eigenvalue differential cost
function for the p =2 case, which can be verified by comparing the transient response in
figure 5.10 with that in figure 5.4. Indeed the response is only slightly better than that for

the minimum order controller shown in figure 5.3. A higher value of p may yield a more
desirable result.

p=3

16) Again a number of randomly selected starting points were tried and this represents the best
result obtained.

X"=[-05621 —0.9059 0.3577 0.3586 0.8694 -0.2330 0.0388
0.6619 -0.9309 -0.8931 0.0594 0.3423 -0.9846]

Joig = 1.847105¢3 J iz = 25.646076
Pole Positions:
Original Perturbed Distance Moved
0.75+ 0.2 0.8872+j0.3751 0.1372+j0.1751
-0.01 -0.0082 0.0018
-0.02 -0.0239 -0.0039
-0.03 -0.0300 0.0000

This result is very similar to that in 15) and again the transient response shown in figure
5.11 is significantly worse than that in figure 5.5 (the best result from the eigenvalue
differential cost function).

5.4 Summary and Discussion of the Results

This chapter has considered the application of the proposed robust design method to a
simple polynomial system to help illustrate the design procedure and give an indication of the
improvement that can be achieved.

With the application of the method a number of issues regarding its implementation arise.
These aspects are important as they can have a significant effect on the performance of the design
procedure. From the results it is clear that it is necessary to perform the optimisation, which
involves carrying out the state space design, many times to help in the selection of appropriate
weights. Because of this, it is desirable to implement the method such that the optimisation can
be performed reasonably quickly without sacrificing accuracy. For these reasons a joint Pro-

Matlab / Fortran 77 implementation is adopted.
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The first step of the design is to transform the system to state space form which then allows
the model uncertainty to be defined. In this case the uncertain parameters are of the same
magnitude and vary by the same amount leading to a simple definition of the uncertainty.

The problems with the parametric method of Fahmy and O’Reilly (1988) were then dis-
cussed in depth for this example and it was concluded that the method of Daley (1990) should
be used for the state space design. It was then possible to show how to determine the number of
free parameters in the design and hence decide on an appropriate optimisation routine.

The results for each cost function were then presented for values of p (the order of the

controller) in the range of 1 to 4. Note that the lowest value of p must be chosen such that
r+m >n, which is a requirement of the parametric state space design, and that it may not
necessarily always be 1.

There are a few interesting points to note about the results. Firstly, the refinement of the
weights is relatively easy with typically up to 4-5 iterations needed to find a good solution. Their
choice is quite straightforward if based on the associated sensitivities and if a model of the
perturbed system is available such that the perturbed closed-loop pole positions can be examined.

Secondly, the cost functions which utilise eigenvector differential information, do not
appear to produce results which are significantly better than those obtained using the eigenvalue
differential cost function. Of course it is expected that the eigenvalue sensitivities will be the
most important as they affect the rate of rise and decay of the transient response. However the
eigenvector sensitivity information should have helped produce better solutions. Examining the
results shows that a conflict between the eigenvalue and eigenvector sensitivities appears to
arise. This conflict prevents good solutions from being obtained. The most probable reason for
this is that the method does not have the freedom necessary to reduce all the sensitivities. This
was verified by the results which showed that for higher values of p, where there is greater design
freedom, there was a slightly better improvement. The problem, however, is that to yield sig-
nificantly better results it is expected that a very high order controller would be required.

Lastly considering the transient responses of the various controllers it is clear that a sig-
nificant improvement can be achieved using the eigenvalue differential cost function but the
conditioning cost function only produced a slight improvement over the minimum order
controller. This is almost certainly due to the fact that conditioning is quite a general criteria
which, among other factors, minimises an upper bound on the sensitivities of all the eigenvalues.
The results for the eigenvalue differential cost function with all the eigenvalues weighted evenly
showed that very little improvement in their sensitivities could be achieved, which explains what
is effectively happening with the conditioning cost function.
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This highlights the fact that it is often necessary to sacrifice the sensitivity of certain poles
such that the sensitivity of other poles can be improved. In this case the controller or added poles
are placed close to zero and as such have little effect on the transient response compared with
the two dominant poles. The sensitivity of the dominant poles can then be decreased by allowing
the sensitivities of the added poles to become large, which is verified by examining the results.
This trade off is quite important as it requires the choice of the weights to be made with some
care so as not to allow the added poles to have a significant effect on the transient response when
the system s subject to model uncertainty. Itisreally necessary to have some idea of the maximum
level of parameter variations in order that the movement of the added poles subject to this
maximum change can be checked to ensure that they do not become dominant. In this case the
aim was to keep the added poles within the z = 0.1 circle for the maximum variation of 50%.

Figure 5.6 illustrates the best transient response behaviour when the system is subject to
parameter variations. As the order of the controller, p is increased there are more free parameters
in the design process, so it is expected that higher order controllers would yield better results
which is verified here as the corresponding controller for figure 5.6 is fourth order.
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Specify Polynomial System

'

Transform to State Space Form

:

P is the order of the controller Adjoin P States
To obtain the correct form for C State Transformation

'

Select Initial Free Parameters
)|

v

Perform Parametric Design

'

Adjust i
Evaluate Cost Function
Free Parameters
T N AtMin?
Y
Generate F and G from K
Calculate H

Figure 5.1 - Flowchart of the Robust Polynomial Controller Design Procedure

Note: F,G and H are controller polynomials in terms of the backward shift operator, z™.

K is the state space output feedback matrix.
The parametric design stage is expanded in figure 5.2.
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Figure 5.2 - Flowchart of the Parametric State Space Design Procedure
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CHAPTER 6

APPLICATION TO A HYDRAULIC RIG

6.1 Introduction

Hydraulic systems include some of the most powerful and fast-moving devices in engin-
eering and are widely used in many industrial plants. The design of controllers for such systems
can be quite difficult due to a number of factors including non-linearities (such as the relation
between flowrate and pressure), variations in oil viscosity resulting from changing temperature
and load dependent gain (Daley, 1990). Applying the proposed robust design procedure to a
realistic industrial system of this type would provide useful information on the general applic-
ability of the method. The hydraulic testrig considered in Daley (1987) would be a good system

to consider as it was designed and built to be representative of real industrial plants.

The rig consists of a stiff shaft which is driven by a hydraulic motor and loaded with a
hydraulic pump. The oil flow to the motor is controlled by an electrohydraulic servo-valve and
the pressure differential across the pump can be changed to increase or decrease the loading on

the shaft. A schematic of the hydraulic circuit of the rig is shown in figure 6.1.

Daley (1987) considered the application of self-tuning control to this system and assessed
the performance of the closed-loop system when subjected to varying supply pressure and load.
The results were compared to a more traditional proportional plus integral plus derivative (PID)

controller and shown to be significantly better.

The aim here is to design a fixed term controller for the system which is robust to varying
supply pressure and load, such that the performance is better than the PID controller and hopefully
comparable to that of the self-tuning controller. Of course the self-tuning controller will in general
be more flexible to variations in the plant parameters and perform well over a wide range of
possible parameter values. However over a specified range, for which the robust fixed term
controller is designed, it is hoped that the relative performance of the two controllers will be
similar. Also, in this range the fixed term controller may even perform slightly better as there

will be no tuning transients as with the self-tuning controller.

As it is not possible to perform tests on the real rig, itis necessary to construct an accurate
simulation of the system. To do this, use can be made of commercially available simulation

languages which contain the basic integration algorithms necessary to performa continuous time
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simulation, as well as an environment in which quite complex system equations can be specified.
In this case the Advanced Continuous Simulation Language (ACSL) package is used and further
details on the simulation can be found in the following section.

Using the simulation it is possible to show how the proposed method can be applied to a
real plant, from system identification to controller design and implementation. Three robust fixed
term controllers are developed, the first considering only variations in the supply pressure, the
second only variations in the load and the third variations in both.

6.2 Nonlinear Simulation and Model Identification

A model of the rig can be developed by considering the equations for each part of the
system. Figure 6.1 shows a schematic of the hydraulic circuit of the rig.

The flowrate, Q,, through the valve can be approximated by the square root relationship

of an orifice
Q, =KX, P,-P,)"’ (6.1)

where X, is the spool valve displacement, P, is the supply pressure, P, is the pressure differential

across the motor and Kj is the valve flow coefficient. For continuity of flow
Q,=C0+ Ve e +K,P,, (6.2)
v r ZB m

where 0 is the shaft position, C, is the motor displacement, V, is the total trapped volume, B is

the oil bulk modulus and K| is a leakage coefficient. The motor torque is

Tm = Pmcrnm (6'3)
where 1,, is the efficiency of the motor. Neglecting static and coulomb friction

T.=18+DO+T, (64)
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where [ is the total inertia of the pump, motor and shaft, D is the viscous friction coefficient and
T,=P,Cn,' (6.5)

where P, is the pressure differential across the pump and m » 18 the efficiency of the pump.

If it is assumed that the dynamics of the servo-valve are much faster than the dynamics of
the load, the servo and torque motor can be approximated by a pure gain term, i.e.

X, ~Ku (6.6)

where u is the input voltage to the torque motor. The output voltage is given by
y =K@ 6.7)

where K, is the tachometer constant.

These equations are very simple to simulate in ACSL and the program for the open-loop
system can be found in appendix D. One problem however is the choice of suitable values for
the many constants in the above equations. From the data supplied by the manufactures of some
of the components of the rig, tests on the actual rig, Dholiwar (1991), and a process of trial and
error, the following values were obtained

B =7000.0e5 N/m? I = 1.08e-4 Kg m*rad
Ky=2.4e-6 D =5.94¢-4 Kg m’/rad s
K, =0.0625 m/V V,=351le-5m’

C, = 9.56e-7 m*/rad K, =2.12e-13 m's/Kg
M= 1.0 K,=8.0e-3V s/rad
n,=10

The nominal value of the supply pressure, P, is taken as 68.96e5 N/m? (1000 1bffin?), and

it is assumed that it could increase up to a maximum value of 137.93e5 N/m? (2000 Ibf/in?). The
loading can be varied by changing the value of the pressure differential across the pump, P,. Its
nominal value is 22.98¢5 N/m?* (333 Ibf/fin?) and the maximum load is assumed to correspond to
a pressure differential of 44.83¢5 N/m? (650 Ibf/in’).
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Clearly from the above it would be possible to derive a model theoretically but as the aim
is to show how the proposed method would be applied to a real plant, system identification
techniques will be used. For the purposes of identifying a model of the open-loop system, a
1.5Hz square wave input is applied as shown in figure 6.2, and the input and output sampled at
83Hz (Daley, 1987). From this data and using the technique of instrumental variables (IV), the
results in table 6.1 were obtained

No. of No. of
Az B,(z™") Time Az B,(z7™") Akaike’s
parameters | parameters | Delay parameters parameters Vy FPE
1 1 1 a,=-0.0152 by=2.5988 0.007059 0.007287
2 1 1 a, = -0.0356 by =2.5391 0.007056 0.007401
a, = -0.0022
2 2 1 a, = -0.9406 b, = 1.3090 0.007755 0.008263
a,=0.0954 b, = -0.9005
2 2 2 a, = -4.9461 be=-8.9773 0.08104 0.08636
a,=2.4478 b, = 5.0231
3 2 1 a,=3.3135 b, = 8.7602 0.02635 0.02853
a,=0.1688 b, = 2.8040
a;=-0.1001

Table 6.1 - IV Estimation Results

The most appropriate model is indicated by the lowest value for the loss function, Vyand

Akaike’s final prediction error (FPE). Note that the loss function is defined as (Soderstrom and
Stoica, 1989)

1y £%t,8,) (6.8)

V. =
NTONSD

where N is the number of data points and €(z,6,) is the prediction error corresponding to the

parameter vector 6,, i.e.

£(,0,)=y(@O) -y lt- 1,8,) (6.9)
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and ¥(¢ | ¢ - 1,0,) denotes a prediction of y(¢) given the data up to and including time 7 — 1, based

on the model parameter vector 0,. Akaike’s FPE is then defined as (Soderstrom and Stoica,
1989, PRO-MATLAB, 1990)

1+P/N

FPE=V,——
N1-PIN (6.10)

where P is the number of parameters in the model.
The first order model is the best fit, hence the design is based on
-1y _ -1

A, (z7)=1.0-0.0152z (6.11)
B,(z7')=2.5988z"' (6.12)

Note that the theoretical model (Daley, 1987) is second order. This suggests that in practice
one of the open-loop poles of the system is significantly more dominant than the other.

To aid in the design process it is desirable to obtain the model of the system when subject
to variations in the factors of interest. With the supply pressure at its maximum value of 137.93e5
N/m? (2000 1bf/in?), the model becomes

A,(z7)=1.0+0.0026z"" (6.13)

B,(z7")=42164z" (6.14)
and with the maximum load, corresponding to P, = 44.83e5 N/m? (650 Ibf/in?)

A,(z)=1.0-0.1066z" (6.15)
B,(z™")=1.6903z"" (6.16)

and lastly when both the supply pressure and the load increase to their maximum values
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A,(z7)=1.0+0.0094;"" (6.17)
B,(z™')=3.8097z" (6.18)

Note that when the changes occur, a first order model may not be the most appropriate but

as the design is to based on a first order model, the above help to give an indication of the typical
variation in the parameters of the model.

The simulation of the closed-loop system is also quite straightforward and the corre-
sponding ACSL program is in appendix D. The effect of implementing the controller on a digital
computer has been taken into account by incorporating the controller polynomials in a discrete

block. The sample rate for the input and output, from which the control signal is calculated, is
again 83Hz.

6.3 Controller Design

Having established a suitable model of the hydraulic rig, it is possible to move onto the
design of the control system. Generally the design of fixed term polynomial controllers is based
on the minimum order solution of the diophantine equation. As such the robust polynomial
controllers will be compared against the minimum order one and not a PID controller as in Daley
(1987). However from the work of Daley (1987) it should be possible to draw general conclusions
about the performance relative to the PID controller.

On the basis of the results obtained in the previous chapter, the eigenvalue differential cost
function will be used throughout. The NAG library routine EO4JAF is again used to perform the

numerical optimisation.

This section is split into two subsections, the first dealing with the design of the minimum

order controller and the second covering the design of the three robust controllers.

6.3.1 Minimum Order Polynomial Controller Design

As the system does not contain integral action it is necessary to cascade a digital integrator

with it, hence the design is actually based on

A(z)=10- 1.0152z7" +0.0152272 (6.19)

B,(z7")=2.5988z"" (6.20)
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and the desired closed-loop pole positions are chosen as 0.65 + J0.3 for a good compromise
between rise time and overshoot.

The minimum order controller is then

F(z)=10 (6.21)
G,(z™)=-0.1096+0.1914z™ (6.22)
H,(z™")=0.0818 (6.23)

Itis also useful, for the purposes of comparison, to gain an idea of how far the closed-loop
poles move when changes in the system occur. Using the models from the previous section and
the minimum order controller derived here, it is possible to deduce that

Pole Positions Distance Moved
Max increase in P, only 0.7298 £ j0.5214 0.2353
Max increase in P, only 0.6459+ j0.1136 0.1864
Max increase in P, and P, 0.7041 £ j0.4733 0.1815

Table 6.2 - Pole Positions for the Perturbed Closed-Loop System with the
Minimum Order Controller

6.3.2 Robust Polynomial Controller Design

This section covers the design of three robust fixed term polynomial controllers. The first
controller is designed assuming that only the supply pressure changes, the second assuming only
the load changes and the third assuming that both change.

Again the design is based on the system with a cascaded digital integrator as shown in
(6.19) and (6.20). The corresponding state space model is then

x| [0 -00152}} X 0 <2a

[xz]m-[l 1.0152 ][xz],+[2.5988]“(") (6.24)
X

=01 (6.25)
yk)=[0 ][xz],
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The desired dominant closed-loop pole positions are again chosen as 0.65 * j0.3.

The first step is to define the structured model uncertainty for each of the three designs.
Examining the models derived in section 6.2, the following can be obtained

Change in Change in Ratio of

a, bo Change

Max increase in P, only 0.0178 1.6176 1:90.87
Max increase in P, only -0.0914 -0.9085 1:9.94
Max increase in P, and P, 0.0246 1.2109 1:49.22

Table 6.3 - Ratio of the Changes in the Open-Loop Polynomial Cocfficients

This information can help in the selection of P, and Q,, which represent the known structural

information regarding the model uncertainty as outlined in chapter four.

However before specifying these, consider the choice of p, the order of the controller. It
was found that for values of p beyond 3 the higher order coefficients of the controller polynomials
were very small and so could be ignored. Indeed for the case of p = 3 the 2~ coefficient of F ,,(z")
and Gp(z'l) is often of the order le-10, hence there is little point in considering values of p
beyond this case. Of course the idea of increasing p is to introduce more free parameters into
the design process, thus it is desirable to use as high a value as possible, hence p =3 is used

throughout.

With this value of p it is necessary to specify the desired closed-loop positions of three

additional poles. For all of the following they are taken as multiples of -0.0001 so as to have no

real influence on the shape of the closed-loop transient behaviour.

Considering the design for the case where only the supply pressure is changing, the model

uncertainty is then defined as

10 0 0 0 0]
0 00 00
P=l 0 0000 (6.26)
0 0000
(10 0 0 0 0
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(9087 0 0 0
0 00 0
= 0 000 (6.27)
0 00 0
| 0 0 0 0]

which clearly shows how to incorporate information about the relative changes in the A,(z™")

polynomial coefficients and the B,(z™') polynomial coefficients. Note that effectively only one
€ is being considered (« = 1), which is perfectly acceptable as from table 6.3 it can be seen that
in each case the coefficients change in the same direction. As in the previous chapter the form
of P, is due to the cascaded integrator.

As in the previous chapter the starting points are all randomly chosen as there is no
information regarding a suitable starting point. Also all the weights are initially set to 1, again

because no additional information is available on a more appropriate choice.

From the randomly chosen starting point

X" =[-0.5621 -0.9059 0.3577 0.3586 0.8694 —0.2330 0.0388
0.6619 —-0.9309 -0.8931 0.0594 0.3423 -0.9846]

with the weights
Wr'=[1.0 10 1.0 1.0 1.0]

the following result was obtained

Joig = 6.827726¢2 Jopy = 1.230418¢2

Eigenvalue sensitivities:

0.65%,0.3 -0.0001 -0.0002 -0.0003
Original 18.4766 0.0234 0.0732 0.0099
Optimal 7.6139 1.2732 1.1924 2.0139

Table 6.4 - Eigenvalue Sensitivities for the Robust P, design

Pole Positions:
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Pole Positions Distance Moved

Max increase in P, only 0.5504 + j0.3593 0.1159
. 1.2813¢-7 1.0013e-4

Controller designed for this case -0.0002 0.0000

-0.0412 0.0409

Max increase in P, only 0.7027 £ j0.2589 0.0668
1.5094¢-6 1.0151c-4

-0.0002 0.0000

0.1104 0.1107

Max increase in P, and P, 0.5771+0.3453 0.0858
4.0011e-7 1.0040¢-4

-0.0002 0.0000

-0.0456 0.0453

Table 6.5 - Pole Positions for the Perturbed Closed-Loop System with the
Robust P, Controller

and the corresponding controller polynomials are

F,(z7)=1-0.64122"" - 1.4714e — 427 +2.0230e - 1027 (6.28)
G,(z"")=0.1374-0.0594z"' +0.00382 ™" + 8.8239%¢ 72" (6.29)
H,(z™)=0.0818 (6.30)

Next consider the design for the case where only the load is changing, the model uncertainty
is then defined as

10 0 0 0 0]
0O 0000
P=l 0 00 00 (6.31)
0 00 00
10 0 0 0 O
7994 0 0 O]
0 00 0
0,=| 0 000 (632)
0 00 0
0 000
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T
X' =[-0.2332 -0.8663 -0.1650 0.3735 0.1780 0.8609 0.6923

and the weights

wr=[1.0

0.0539 -0.8161

1.0 05 05 0.5]

the following result was obtained

J g =4.103985

Eigenvalue sensitivities:

Jopi1 = 1.828735

0.65%,0.3 -0.01 -0.02 -0.03
Original 1.4324 0.0071 0.0111 0.0248
Optimal 0.7359 0.5864 0.5451 0.9220

Table 6.6 - Eigenvaluc Sensitivities for the Robust P, design

Pole Positions:

Pole Positions

Distance Moved

Max increase in P, only 0.6077 £ j0.4286 0.1373
1.9144c¢-7 1.0019¢-4

-0.0002 0.0000

-0.0215 0.0212

Max increase in P, only 0.6800 £ ;0.2190 0.0863
2.2770c-6 1.0227¢-4

Controller designed for this case -0.0002 0.0000

0.0804 0.0807

Max increase in P, and P, 0.6174 £ j0.3968 0.1021
5.9893e-7 1.0059¢-4

-0.0002 0.0000

-0.0256 0.0253

Table 6.7 - Pole Positions for Perturbed Closed-Loop Systcm with the

Robust P, Controller

and the corresponding controller polynomials for this case are

F (z")=1-04256z" —9.7342e - 527 +2.0230¢ - 10z
G,(z™)=0.0544-0.024827" +0.00262 " + 591 11e = 72"

H,(z™')=0.0818
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Lastly consider the design for the case where both the supply pressure and the load are
changing, the model uncertainty is now defined as

10 0 0 0 0
0 0000
P=l 0 00 0 0
0 0000
1.0 0 0 0 O
74922 0 0 0]
0 00 0
Q,=l 0 0 0 0
0 000
L 0 0 0 0

This time starting at the random point

X"=[0.0344 0.1059 0.0924 -0.2340 0.8859 -0.7027 -0.1067

with the weights

Wi=[10 10

0.0618 -0.0646 -0.3432 -0.4841

1.0 1.0 1.0]

the following result was obtained

Jorig = 68.924139 Jopt1 = 34918173
Eigenvalue sensitivities:
0.65+,0.3 -0.01 -0.02 -0.03
Original 54419 0.0335 1.6903 2.6149
Optimal 3.8851 1.0409 0.9747 1.6423
Table 6.8 - Eigenvalue Sensitivities for the Robust P, and P, design
Pole Positions:

(6.36)

(6.37)

—0.2061 0.1505]
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Pole Positions Distance Moved

Max increase in P, only 0.5539+j0.3644 0.1156
1.3088e-7 1.0013e4

-0.0002 0.0000

-0.0396 0.0393

Max increase in P, only 0.7012+ j0.2566 0.0671
5.9893e-7 1.0059¢-4

-0.0002 0.0000

-0.0256 0.0253

Max increase in P, and P, 0.5796 + j0.3489 0.0857
4.1664e-7 1.0041e-4

Controller designed for this case -0.0002 0.000%

-0.0441 0.0438

Table 6.9 - Pole Positions for Perturbed Closed-Loop System with the
Robust P, and P, Controller

and the corresponding controller polynomials for this case are

F,(z")=1-0.6274z" - 1.4397e — 4z +2.0230¢ - 10z” (6.38)
G,(z™")=0.1321 - 0.0540z" +0.00372* + 8.6386¢ — 7z~ (6.39)
H,(z")=0.0818 (6.40)

6.4 Discussion of the Results and Conclusions

The response of the closed-loop system with the minimum order controller can be seen in
figure 6.3. This clearly shows that the transient behaviour is very susceptible to changes in the
supply pressure and load.

The response of the closed-loop system with each of the three robust controllers is shown
in figures 6.4 to 6.6. As would be expected (because the controller polynomials are very similar)
the response for the robust P, controller is almost identical to the response for the robust P, and
P, controller. The response for the robust P, controller is certamly a significant improvement
over that for the minimum order controller but not as good as for the other two robust controllers.

This suggests that the best approach to the robust design problem is to assume that the

B,(z -1y parameters change significantly more than the A (z") parameters, which was the basis
on which the robust P, and the robust P, and P, controllers were designed. Although, as is
highlighted by the similarity of the polynomials for the two robust controllers, the actual ratio
is not critical, which can be seen by comparing the defined P, and Q, in (6.26) and (6.27) with

(6.36) and (6.37).
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An interesting point is the typical value of the weights selected in this case as compared
with the weights for the example in the previous chapter. For that example it was necessary to
choose the weights to place a heavy bias on the dominant pole sensitivities. Here, however, the
weights did not need to be significantly changed and were similar for all of the closed-loop poles.

This suggests that the dominant closed-loop poles for the hydraulic rig are particularly sensitive
to model uncertainty.

Examining the distance moved by the poles for each controller (tables 6.3, 6.5, 6.7 and
6.9) shows that there is a high correlation between how far the poles move and the actual transient
behaviour of the closed-loop system.

Again the trade-off between the sensitivities of the additional controller poles and the
sensitivities of the dominant poles can be clearly seen (tables 6.4, 6.6 and 6.8). This certainly
seems to be a characteristic of this type of approach to robust design. However, in each case it
can be seen that the additional poles remain close to the origin for the maximum parameter
changes and so do not affect the closed-loop response.

The results show that this approach can lead to a significant improvement in performance
robustness for practical systems, when compared against the minimum order controller. From
the work of Daley (1987) itis also apparent that both the minimum order and the robust controllers
are an improvement over the PID controller. Further, the level of improvement is comparable
to that obtained via self-tuning control with the added benefit of much reduced on-line
computation.
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Figure 6.1 - Schematic of the Hydraulic Circuit of the Rig
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Figure 6.3 - Response of the Closed-Loop System with the Minimum Order Controller
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CHAPTER 7

CONCLUSIONS

7.1 Summary and General Discussion

The problem of designing pole-placement controllers for polynomial systems, such that
the closed-loop system exhibits an improved level of performance robustness has been con-
sidered. It was assumed that the system was subject to structured model uncertainty where only
the coefficients of the open-loop system polynomials were perturbed.

The concept of searching a set of controllers for the most robust one is quite natural in
robust design and can be easily cast in the form of an optimisation problem. Robust methods,
in general, involve some form of optimisation and with the advent of more powerful computer
hardware over recent years, it is only natural to consider whether numerical methods could be
usefully employed to solve such problems. The work presented in this thesis was based on this
theme.

The design of pole-placement controllers for polynomial systems involves the solution of
a polynomial equation, often referred to as a diophantine equation. It has been shown that this
equation is very important in the design of such controllers, and a thorough discussion of a
number of the major points regarding the equation and finding a solution to it has been presented.
The two approaches to solving the equation were reviewed and it can be argued that neither has
any real advantage over the other. It was noted, however, that the use of matrix techniques in
finding a solution seems to be the most popular approach. This is probably due to a greater
general familiarity with matrix theory, the fact that the matrix representation of the equation is
of a standard form and also because the matrix approach is easier to implement on a computer.

The conditions for the existence of a solution were established and the violation of these
conditions was shown to be dependent on the sample time, hence it was suggested that the sample
time be chosen with some care. Many techniques have been proposed for dealing with these
violations but it appears that none are totally satisfactory.

From a robustness point of view an interesting property of the equation is the large number
of possible solutions, although generally, the minimum order solution is used. In order to assess
the merits of other solutions, with regard to performance robustness, a preliminary investigation
was carried out. The main conclusion of this work was that in the polynomial framework it is
difficult to relate the design of the controller to performance robustness. In the state space
framework, however, it is well known that the transient response of a system is dependent on
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the eigenvalues and eigenvectors. With all of the above points in mind it was decided to turn to

a state space based approach for the problem of designing polynomial controllers with improved
performance robustness.

The transformation of a polynomial system to state space form is quite straightforward
allowing a state space design to be carried out. It was shown that the resulting output feedback
matrix can be easily related to the controller polynomials normally obtained from the solution
to the diophantine equation, thus completing the link between the two representations.

For the state space design it was decided to use parametric methods which explicitly
represent a set of possible feedback controllers in terms of arbitrary free parameters, allowing
the problem to be easily cast in an optimisation framework. Two parametric methods have been
considered, one a well established approach (Fahmy and O’Reilly, 1988) and the other a newly
proposed scheme (Daley, 1990). Both methods were briefly reviewed and then applied to a
number of examples to assess their relative performance. Results showed that the newly proposed
scheme did experience a number of difficulties in obtaining a solution for some of the examples
considered, which suggested that the well established approach would be better suited in this
case. However when applied to a transformed polynomial system the method of Fahmy and
O’Reilly (1988) failed to find a solution. Because of this the newly proposed scheme of Daley
(1990) was used as the basis of the state space design.

The extra freedom in the design, represented by the free parameters, can be utilised to
achieve the goal of improved performance robustness. In order to select appropriate values for
the free parameters, it is necessary to define suitable functions relating the sensitivity of the
closed-loop system to structured model uncertainty. Having established the importance of the
eigenvalues and eigenvectors, their sensitivities were used as the basis of these functions. The
conditioning of the matrix of eigenvectors was also used as the basis for defining a suitable
function. These functions are often termed cost functions, objective functions or performance
indices. The aim is then to select the free parameters such that the cost function being used is at
a minimum. This clearly completes the formulation of the robust design as an optimisation
problem where numerical techniques can then be used to search for the minimum.

The parametric method of Daley (1990) entails placing certain restrictions on the free
parameters which requires performing the optimisation subject to constraints. It was shown
however that suitable re-arrangement of the problem allowed the issue of constraints to be avoided

altogether.
The overall proposed robust polynomial controller design can then be summarised as
1) Transform the polynomial system to observable canonical state space form.
2) Define the structured model uncertainty.

3) Calculate a robust output feedback matrix which involves
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a) Defining a suitable cost function consisting of the eigenvalue/eigenvector
sensitivities.

b) Performing a parametric output feedback design.

c) Carrying out a numerical optimisation to determine the set of free parameters
that yield a desirable local minimum value for the cost function.

4) Transform the robust output feedback matrix to controller polynomial form.

This approach to the design of robust polynomial controllers was applied to a relatively
simple example and a simulation of a hydraulic test rig. The results highlighted a number of
interesting points.

When using a cost function consisting of expressions for both the eigenvalue and the
eigenvector sensitivities, a conflict appears to arise between the two. The results indicate that a
significant increase in design freedom is necessary to yield any sort of desirable result, but of
course this will lead to very high order controllers.

The conditioning based cost function did not prove very effective for the design of robust
controllers in this case. It is felt that the main reason for this is the general nature of this type of
cost function, where effectively the sensitivity of all the eigenvalues are equally important.
Results have indicated that to achieve any significant improvement in robustness it is necessary
to sacrifice the sensitivity of some eigenvalues in favour of others. Of course the eigenvalues
whose sensitivities are allowed to increase should be placed such that their influence on the
transient behaviour is minimal, i.e. close to the origin in the z-plane.

The most promising results were obtained using a cost function based solely on the
sensitivities of the closed-loop eigenvalues. The results presented here indicate that a significant
improvement in performance robustness can be achieved with this type of approach.

Although a direct comparison with other methods was not carried out it is possible to draw
some general conclusions. The overall design is centred around the idea of casting the robust
design into an optimisation framework and using numerical methods to solve this problem.
Utilising the facilities available through a modern workstation it was found that a solution could
generally be found in a matter of minutes and indeed, with the rapid advances being made in
computing technology it is expected that this time could be significantly reduced in the near
future. Such an approach allows quite complex non-linear cost functions to be used which gives
greater freedom to define the most appropriate function for the specified design goal. On the
basis of this it seems reasonable to suggest that this type of approach will be increasingly used

in the future.
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Daley (1987) applied self-tuning control to the hydraulic rig used in chapter six. Although
a direct comparison cannot be made, it is clear that the performance of the fixed term robust
controller compares favourably with that of the self-tuning controller discussed in Daley (1987).
Over the range of parameter perturbations for which the robust controller was designed, its
advantages are clear. The controller polynomials in terms of the backward shift operator are
extremely easy to implement on a digital computer, requiring only a few simple calculations to
obtain the control signal. With system identification and controller design being carried out
on-line, the self-tuning controller has a heavy computational burden which will place a limit on
the maximum sample rate as these calculations need to be carried out in the sample interval. The
self-tuning controller has a number of other drawbacks such as tuning transients when abrupt

parameter changes occur and problems with the identification algorithm during long periods of
poor excitation.

There are a number of problems associated with the design of robust polynomial controllers
and the next section discusses these in greater depth, which is then followed by some brief
remarks on the most important aspects of the work presented in this thesis.

7.2 Problems and Future Work

In the design of pole-placement polynomial controllers, the diophantine equation plays an
important role. It was shown, however, that some difficulties may be experienced in obtaining
a solution of this equation. It appears that no complete method for overcoming all of the possible
problems has been proposed and probably the best way to avoid any difficulties is to by-pass
the solution of the equation altogether. The state space approach, although not specifically aimed
atthis problem, has the advantageous by-product of not needing to solve the diophantine equation.

The polynomial description also has the disadvantage that it is difficult to relate the design
of controllers to the effect on performance robustness. This was one of the main reasons for
turning to a state space approach forrobust controller design. However, if a satisfactory robustness
criteria could be set up in the polynomial framework, then a polynomial based design could be
used. Kharitonov’s theorem (Siljak, 1989) may prove useful for such a purpose as it basically
relates changes in a polynomial’s coefficients to changes in its roots and if applied to the char-
acteristic polynomial may help to establish a suitable measure.

The state space design also has a number of problems. For the parametric output feedback
method of Daley (1990) the singularity of V,, isa significant problem which needs to be addressed.
Vy, is dependent on a set of free parameter vectors which are effectively selected from a vector
space. It has been suggested that a simple way forward would be to define a second vector space
for the free parameter vectors such that V,, is always non-singular. The intersection of the two
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spaces would then provide an appropriate space for the selection of the free parameter vectors.

So far, however, it has not been possible to define this second vector space and so the problem
remains unsolved.

The method of Fahmy and O’Reilly (1988) experienced even more severe problems in
that no solution could be found at all. The reason appears to be related to the structure of the
open-loop system matrices and it is suggested that overprotection of the right eigenvectors could
be the cause of the problem. This matter certainly needs to be investigated further hopefully
leading to a proposal which will allow the method to be used.

It is worth mentioning at this stage that the problem of output feedback itself remains an
unresolved one as no method at present can guarantee that a controller can be obtained for all
systems. As such the problems mentioned above may not necessarily be solvable and so it may
be useful to conduct a wider search and assessment of possible state space methods. Section 3.5
in chapter 3 discusses some eigenstructure techniques which could possibly be used but
unfortunately came to light too late to be incorporated in this work.

The design centres around the specification of suitable cost functions. The derivation
presented in chapter four was based entirely on differential calculus. Such an approach is really
only valid for small variations but does provide an approximation for larger changes. Results
presented in this thesis would indicate that such an approximation is satisfactory as significant
improvements in performance robustness can be achieved. The main problem, however, is that
there is no information on how good this approximation is and as such it would be desirable to
formulate more appropriate cost functions for large changes in the model parameters.

The minimisation of these functions also has some limitations which it is desirable to
overcome. Numerical methods will only find a local minimum, which may prove to be the global
minimum, but this cannot be guaranteed. Although this does not represent a significant drawback
as a local minimum may yield the level of improvement sought, it would be desirable to obtain
the global minimum as then it is known that no better solution exists, for the particular cost
function being used. Such a task represents a major undertaking and would certainly involve a
radically different algorithm. One approach which seems interesting is that of genetic optimi-
sation, Goldberg (1989). Here the basic rules of genetics, reproduction, crossover and mutation
are implemented on a computer and applied to a large population of starting points. The aim is
to emulate the procedure of natural selection to find the best solution. Fundamentally the
algorithm is working on patterns in the data and not based on gradient information as with many
of the traditional schemes. Although this approach can still not guarantee finding the global
minimum, due to the wide spread of its search the algorithm is likely to find a very good solution
which could easily be missed by more conventional algorithms. One possible problem could be
the actual implementation of the algorithm and it is also likely to take considerably longer than
conventional algorithms to perform the search.
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7.3 Concluding Remarks

The work presented in this thesis was motivated by the desire to establish an alternative

approach to the design of robust polynomial controllers. In the pursuit of this goal a number of
contributions have been made.

* The diophantine equation is extremely important in the design of pole-placement con-

trollers for polynomial systems. A thorough discussion of many aspects of this equation
was presented.

* A basic investigation into selecting a more robust solution to the diophantine equation has
been conducted. The conclusion however was that in the polynomial framework it is
difficult to relate decisions in the design procedure to the effect on performance robustness.

* An alternative robust design procedure was presented. It utilises state space techniques by
transforming the system to state space form, performing the design and transforming the
resulting controller back to polynomial form. Results have shown that a significant
improvement in performance robustness can be achieved with such an approach.

« Two state space parametric output feedback methods were reviewed. One is a well
established approach and the other a newly proposed scheme. It was shown that although
the well established method performs better on general state space systems, it fails when
applied to transformed polynomial systems.

» The design of the robust controller is based on the sensitivities of the eigenvalues and
eigenvectors. Results have shown that there appears to be a conflict when attempting to
minimise the sensitivities of both. It was suggested, however, that increasing the design
freedom could yield more desirable results.

 The conditioning of the matrix of right eigenvectors was also used as the basis on which
to design a robust controller. Again results have indicated that only a slight improvement
in performance robustness can be achieved with such a measure.

« For this type of approach to robust polynomial controller design it was found that using
only the sensitivities of the eigenvalues lead to a significant improvement in performance
robustness. It was noted, however, that decreasing the sensitivities of some eigenvalues
tends to lead to an increase in the sensitivities of others.
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APPENDIX A

ALGORITHMS FOR THE POLYNOMIAL
SOLUTION OF THE DIOPHANTINE EQUATION

A.l Introduction

For the polynomial solution of the diophantine equation two algorithms are used: the
extended Euclidean algorithm and the division of polynomials algorithm. The version of the
algorithms shown here follows those outlined in Kucera (1979).

A.2 Division of Polynomials Algorithm

Definition: Given two polynomials A, and B, with B, # 0, this algorithm returns two polynomials

U, and 'V, such that

A,=BU,+V, (A.1)

where U, is the quotient and V,, the remainder.

Algorithm:

1)SetlU,=0,V, =4,
2) If deg(V,) < deg(B,), stop

3)  leading coefficient of V,

- leading coefficient of B,

n =deg(V,) —deg(8,)
4HV,=V,-Az")'B,
55U, =U,+Mz™)

6) Goto 2
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A.3 Extended Euclidean Algorithm

Definition: Given two polynomials A, and B, with A p»B, #0, this algorithm returns five poly-
nomials g,, P,, Q,, R, and S, which satisfy

AP, +B,0, = 8» (A.2)
AR, +B,5,=0 (A.3)

g, is the greatest common divisor (GCD) of A,and B,. P,, O, and R, S, are pairs of

coprime polynomials.

Algorithm:
1) SetV=1I,F=[A,B,]

2) If only one non-zero polynomial in F goto 6) else say

X, = the lower degree polynomial in F
Y, = the other polynomial in F

Noting which columns in F they correspond to

3) _ leading coefficient of ¥,
~ leading coefficient of X,

n =deg(Y,)—deg(X,)
4 Y,=Y,- AzNY'X »- Perform the same operations on the corresponding column of V

5) F=[X,Y,]or F =[Y,X,] depending on which columns X, and Y, correspond to.
Goto 2

6) If the non-zero polynomial appears in the second column of F', interchange the columns

of both F and V. Stop

Then

d V= o R,

P
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APPENDIX B

PROGRAMS FOR THE ROBUST POLYNOMIAL CONTROLLER DESIGN

B.1 Pre-Optimisation Programs - PRO-MATLAB

All the programs presented here are for transforming the polynomial system, specified in
the function MODEL, to state space form and calculating all preliminary data as outlined in
chapter 5. The data is saved in a file which is accessed by the FORTRAN 77 optimisation

programs.

An example model definition is

function [a,aarig,.int,b,c,n,myr,q,sigen,cgate] = model(p)

% define system polynomials
im={1-1)

sorig=[1 -0.6};

s = multpoly(int sorig);

b= [011.5);

c=(1-04];

% henco define system parameters
n=longth(s) - 1;

m=];

=]

% specify dosired pole positions
j=sqr(-1);
cigen = [0.75+0.2% 0.75-0.2*j;

% cgats indicates which poles are complex conjugates (1)
% and which are not (0)
cgate = (0 1];

% incroass parameters of system duo to p
nmep;

m e mep;

IR+,

qer

% increase the number of eigenvalucs
fori=1p

sigen = [eigen -0.01%i);
cgat = [cgate 0);

end

The main pre-optimisation program is

% proopt.m

Smnﬂhmpnlyncnid-ylmmmmfum
% and saves the data required by the fortran optimisation programs

clear

% st up paramoien
s = lo-10;

% scl up modcl

f = input('Enter number of cost function to be used : ','s");
p = inpul"Enter value of p: ')}

{a,aorig,int,b,c,n m,r,q.eigen,cgate] = model(p);

% transform to state space form

[A,B,C] = trans_ss(a,b);

% add p states
[A,B,C} = add_state{A,B,Cpnm 1),

% switch states so that C = [10]
[A,B,C] = switcl(A,B,C,pn);

% perfonn same simple checks and deterinine the
% number of complex poles
nc = precheck(C eigen.nrsm);
% Sct up the alphas in zta
fork=1:q
templ =1;
emp2 = templ;
fori=2r
if cgate(i) == 0
temp2 =1;
end
empl = [temp] temp2];
end
ifk==1
alpha = 1empl;
clsc
alpha = {alpha; 1empl|;
end
end

% Calculate the veciar space in which gamma must lie
S= cdcspce(A.B.llplu,eipn.cgnepc,n,w.q);

% Calculate LA and LAB
LA = inv(cigen(1)*eye(n)-A);
LAB = inv(cigen(1)®eye(n)-A)*B;
fori=2n

LA = [LA,; inv(cigen(i)*eye(n)-A)}:

LAB = [LAB; inv(eiget(i)'oye(n)—A)’B];
end
% Savc data
psthe= [ fuseriocpg/eepgkdw/we/');
file = ['matdata® num2su(p) cf);
eval(["save * path file ' ncnmr qegae SLALAB')
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The associated functions are

fanction [A,B,C) = trans_ss(a,b);

% function to transform the system polynomials to state space
iobowvubleamiultam-Oyu,dhmdmmol,pﬂl

ls = length(s);
1b = length(b);
% if b is lower order than a, then pad b with zeros
fori=1:1b

toenpb(i) = bi);
end
iflb<la

fori=1b+1:la

tempi(i) = 0;

end

Ib=la;
ond
% THE A MATRIX
% remove leading 1 in a polynomial
tompa = a(2:1a);
lasla-1;
% Create A without last colurnn of a poly coefficients
A seoye(le-1);
z waeros(] la-1);
A=[z A)
% switch arder and negate a poly coefficients
fori=1:la

tormp(i) = -tompa(la+1-i);
end
% add a poly cocfls to A matrix
A=[A wmp');
% THE B MATRIX
% calc B eloments - don’t use b0 s01b =1b-1
lb=ib-1;
B = zeros(lb,1);
fori=1:lb

B(i) = tempb(1b+2-i) - a(lb+2-i)*tempb(1);
end
% THE C MATRIX
C = acros(1 Ja-1);
Cs=[C1];

function {A1,B1,C1) = add_state(A,B,C p,nm,)

% function to augment the systom with p extra states
% note n,m,r have all had p added for extra states

epsilon = (;

% THB A MATRIX

Al = [A 2eros(n-p,p));

Al = [Al; acros(p.n-p) epsilon®eye(p)];

% THB B MATRIX

B1 = [B soros(n-p,p)];

Bl » [B1; seros(p.m-p) eye(p)-cpsilan*eye(p)];
% THE C MATRIX

C1 = (C soros(r-p,p));

€1 = [Cl; zeros(p,n-p) oyo(p)l:

function [A1,B1,C1) = switch(A,B,C.pn)

% fnction to switch the states such that C is of the form [} 0}
% assutnos that C is in the obsarvable cananical foem, ie [0 1]

% THE A MATRIX

% switch rows and then columns
% rows

Al = [Alp-pen,:); AL:oep-1,00):
% columne

Al = [Al(: np) Al G 12-p-1)k
% THB B MATRIX

% switch rows anly

Bl = [B(n-p:); Bl ap-1.08

% THE C MATRIX
% switch colurnns only
C1 = [C(:,0-pm) C(:,1 m-p-1));

function numcom = precheck(C eigen n,rsmall)

% function 10 perform some simple checks and to
% determine the number of complex poles

% check that the correct mamber of cigenvalues have been specifiod
if n ~= length(cigen)

emor(’ Incorrect number of specificd cigenvalues')
end

% check C is of the correct form

chkl = [eye(r) zeros(r,n-1)];

chk2 = C - chkl;

if sum(sum(chk2 > small)) > 0
error("C is not of the comect form');

end

% determine number of complex eigenvalucs
nurncam = sum(imag(eigen) ~= 0);

% check if all cigenvalues arc complex
if numcom ==n

ervor('All poles are complex')
end

function [S) = calcspee(A B alpha,cigen,cgate numcamn n,mr.q);

% function to calculate zeta for real and compiex poles
% will not work for all complex case

% CALCULATE ZETA
count= 1;
fori=1:q
fork = 1
tl = (inv(cigen(i+r)*eye(n)-A)-inv(cigen(k) *cye(n)-A))*B;
1l = alpha(i k)*tl;
ifk==1
2=tl(lr,:);
clse
2 =[1211(l:r3));
end
clesartl
end
fi=el
zcla =12;
clse
cla = [zew; 12];
end
clear 12
end

if numcom >0
% SOME POLES ARE COMPLEX

% calculate zetabr by removing complex conjugaie rows and cols
% determine which rows arc complex conjugaies - dopendant on
% the cigenvalues associated with F2 (i.er+l -n)
zctan = zew(l:r,2);
fori=2q
if cgate(i+r) == 0
% cigenvalue is not a complex conjugate 30 use row block
zctan = [zetan; zota( 1 4(i-1)*r:1 #(i-1)*r+(r-1),: )}
end
end

& detennine which cols are complex conjugaies - dependant on
% the cigenvalues associated with F1 (el - 1)
zctab = zctaa(:,1:m);
fori=2r
if cgate(i) == 0
% cigenvalue is not & complex conjugate 30 use col block
aotab = [sotab zotan(:, ) +(i-1)*m: 1 +(i-1)*m+(m-1))k
end
end
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% calculsic zetabr, the real part of zetab
2ctabr = reakzetab);

% ZETABI AND ZETAGI HAVE THE SAME NUMBER OF ROWS AS ZETAA
% zetabi
fori=l:q
if (cgmte(i+r) == 0)
wap! = invicigen(1)%eye(n) - A)*B;
tomp] = alpha(i,1)*temp1(1:r,:);
fork = 2r
if (cgare(k) == 0) & (imag(cigen(k)) > le-12)
womp2 = inv(cigen(k)*eye(n) - A)*B;
emp! = [temp} alpha(i k)*1emp(1:r,:)};
end
end
if sum(size{zetabi)) =0
sotabi = imag(templ),
else
zetabi = {zetabi; imag(templ));
end
end
end

% zotagi - firs column
temp] = inv(cigen(1+r)*cye(n) - A)*B;
templ = templ(lir;);
fori=2q
if (cgate(i+r) == 0)
temp2 = inv(eigen(i+r)*eye(n) - A)*B;
templ = [templ; temp2(1:r,)];
end
end
wemp] = imag(templ);
2otagi = templ;
forim2r
if (cgate(i) == 0)
aetagi = [zetagi templ);
ond
ond

% honce zota

{t1,12) = sizo(zetagi);

[t3,t4] = sizo(astabr);

[t5,06] = size(zotabi);

zota = [zetabi; zeros(t3-t5,16)];

20ta = [zotabr 20ta];

2ota = [a0ta; actagi zeros(t] t6+14-t2)];

% delets 2ero rows and colunns fram zeta

% rows first

firstasrorow = 0;

inQ

while (firstzerorow =0) & (i <t1+13)
imisl;
if any(zeta(i:i,:)) == 0

% zcro row
firszerarow = i;
end
end
if firstzcrorow > 0
% check remaining rows arc all zero
for i = firstzerarow+1:11+83
if any(zeta(i:i,;))) == 1
% non zero row
crror('mixed zero rows in zeta’)
end
end
% delete rows fram zeta
zeta = zeta( ) :firstzerorow-1.2);
end

% now colurnns
firsizerocol = 0;
i=0
while (firstzerocol ==0) & (i < 14+16)
i=itl;
if any(zeta(:,i:i)) == 0
% zero col
firszerocol = i;
end
end
if firstzerocol > 0
% check remaining cols are all zero
for i = firstzcrocol+1:14+416
if any(zeta(: iti)) == 1
% non zero col
error(‘mixed zcro cols in zela')
end
end
% delete cols from zea
zeta = zew(:,1:firszerocol-1);
end

end

% CALCULATE THE NULL SPACE OF ZETA
S = null(zcta);
[11,12} = size(S);
if12 <r*(m-q)
keyboard
errar("The null space of zcta is the wrong dimension")
end
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B.2 Optimisation Programs - FORTRAN 77

All the routines associated with the numerical optimisation itself are writtenin FORTRAN
77 to facilitate the use of the Numerical Algorithms Group (NAG) library routines. Because the
parametric state space design has to be performed during the calculation of the cost function a

number of additional programs have had to be written, also outlined in chapter 5.

The main optimisation program and its associated
routines are in the file JAF.F

C Check NN is set to the correct value
NN = PNN
if (NN.ne.(r*(m-q)+q)) then
print*, 'PNN should be set to * (r*(m-Q)+q)

C JAFF siop

C Define parameters end if

C (NN - no of variables = r*(m-q)+q) C Load stan daw
integer PNN FNAME] = 'costl/stantdatall .mat’
charscter*l P

paramoter (PNN =13, P ='3")

Define parameters
intoger maxn maxm,maxr,maxq,maxss,maxsc,num

FNAME1(5:5) = N1

FNAME1(16:16) =P

FNAME1(17:17) = N1

call RSTART(FNAME1 X dA dB WEIGHT NN)

C  (maxnmaxm,maxr,maxq - maximum valucs of parameters of system} C  Set up parametcrs - scalars

C  (maxsr,maxsc - maximum dimension of S, (m-g), 1(r-q)} OK = .TRUE.

C  {rum - number of errars being considered} IBOUND =1
p-nmﬂcr(mm=lO.mnxm=9.mnr=9.mnxq=3,num=l) count =0
plnnu(mlm=81.nnxsc=81) store =99

FNAME] = ‘costl/JAFlorigl 1.mat’

C Common scalars
. FNAME?2 = ‘costl/JAFlopt_11.mat’
integer nc,n,mys,q,%,5¢,count store NAMES = ') ) ,
double precision aFC ?NAM,-A : .JAF\mp_ong.m.t
character*1 N1 o ; sAl‘unpN] _opt.mat
character*30 FNAMEA FNAMEL(S:3) =

FNAME2(S:5) =N1

C Common arrays FNAMEI(15:15) =P

integer CGATE(maxn) FNAMEX(15:15) =P

double precision S(maxsr,maxsc) JWEIGHT(3*maxn)
double complex P(maxm,maxn),V(maxn,maxn),W(maxn,maxn),

FNAME1(16:16) = N1
FNAME2(16:16) = N1

* WMWM)LAB(MM“MM)' C  Sct up parametcrs - array dimensions
. KC(maxm,maxn)dA(num,maxn,maxn), LIW = 100
. dB(nusm,maxn,maxm) LRW = 5000

C Common blocks

common /CONST1/ count,store,nc,n,m,r,g,31,5c,N1 JFNAME4

C Store free panmeiers

dol=1NN
common /CONST2/ CGATE.dA,dB.WEIGHT.LA,LAB,S.KC XORIG() = X(1)
common /RESULT/F.V W aFC end do
¢ scalars C Calculaic ariginal valuc of cosifunction
integer IJ,NN.LIW,LRW.IBOUND,IFAH. print®, "’
double procision FC.FCORIG i, Original valuee
logical OK call FUNCT1(NN XORIG,FCORIG)

character*]l ANS ,FNUM
character*30 FNAME] FNAME2,FNAME3

C  Storc ariginal valucs of V and F

C  Local arrays, {IW(>NN+2),.X(NN),RW(>12*NN+NN(NN-1)/2)} d:‘: ; :'lnn
intager IW(100) VORIG(1)) = V(1))
double procisian X(PNN) XORIG(PNN),RW(5000), BL{PNN),BU(PNN) end do
double complex VORIG(maxn,maxn),KCORIG(maxm,maxn), end do
hd PORIG(maxm,maxn) dol=lm
C  Declare extamal subprograms doJ=1n
extermal FUNCT1 FORIG(1)) = F(1J)
. end do
C ::l:.aoon fucntion i
price*, “Boser cos function numbe (in quoten)’ call CALCKC(nmF,W KCORIG)
read®, N1 o) Slmaiﬁnﬂhuhmwnqmem“pwuw -
C  Rasd the initial paramotors Som flo (suppliod by Mailab) call WORIG(NN m.n,FCORIG,XORIG,FORIG,VORIG KCORIGFN )
FNAME] = ‘matdatal 1.mat’ prim®,
FNAME(8:8) =P prim®,**
PNAMEL(9:9) » N1 print®, ‘Finished set up’
call RDATA(FNAMEL,S ar.sc LA LAB,COATE oc.am.5.9) M—
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do while(OK)
FALL =1
call EO4JAF(NN, IBOUND BL,BU X,FC,IW LIW RW,LRW,IFALL)
print®,*’
print®, 'Original Value  : * RCORIG

print®, "Weighted Optimal Value : * FC
print®, 'Actual Optimal Value : ‘aFC
print®, *’
count =0
store = 99
peint®, ‘Final values’
call FUNCTI(NN X FC)
OK = FALSE.
if (IFAIL.q.0) then
print*, "EO4JAF has found a minimum point.*
olse if (IFAlL.eq.1) then
print®, "Parameter out of range.’
else if (IFAIL.0q.2) then
peint®, *400*NN function evaluations’
print®, " *
peint®, ‘Restart with old X (ym) 7°
read®, ANS
if ((ANS.2q.'y").or.(ANS.eq.'Y")) then
OK = TRUE.
end if
else if (IFAIL £q.3) then
peint®, "The conditions for a minimum have not all been’
peint®, "satisficd, but a lower point could not be found.'
olso if (IFALL.2q4) then
print®, ‘Overflow has occured’
pint®, * !
print®, "Restart with old X (y/n) 7'
read®, ANS
if ((ANS.2q.'y").or.(ANS.cq.'Y")) then
OK = TRUE.
ond if
end if
peint®,”’
print*, ‘Save current paramecter values (y/n) ?°
road®, ANS
if ((ANS.0q.'y").or.(ANS.0q.'Y")) then
peint®, ‘Enter file number (in quotes)’
read*, FNUM
PNAMBEI(10:10) = FNUM
FNAME2(10:10) = FNUM

call WORIG(NN,m,n FCORIG,XORIG,FORIG,VORIG,KCORIG ,FNAME!)
call WOPT(NN,mn,FCX dA,dB,WEIGHT F,V,KC,FNAME2)

end if
Fkn.u e
end do

stop
ond

subroutine FUNCT1(NN XC FC)

C  Subroutine to calculate the value of the objective function
C  rosiduals

C  Define parameters
Entoger maXn MaX M, MAXT MAXG MAXST INAXSC,MAXCOUNL,num

C (maxnmaxm maxrmaxq - maximum values of paramciers of system)

C  {oum - number of errors boing considered)
C  (maxsr,maxsc - maximum dimension of S, (m-q), r(r-q))

paramstor (maxn = 10, maxm = 9, maxr = 9, maxq =3, mum = 1)

paramoior (maxsr = 81, maxsc = 81)
parameter (maxcount = 20)

C Common scalars
insoger nc A mng.Q, 5 56,c0UNL StOrG
double precisian aPC
character®] N1
character®30 PNAMBA

Common anays

imeger CGATE(maxn)

double precision S(mun,xmxx),WElGHTG‘lmm)

double complex F(mnnnw),V(m:xnm),W(mmmm)_

. LA(maxn,maxn maxn),L.AB(maxn,maxn maxm),
KC(maxm maxn),dA(num maxn,maxn),
dB(num,maxn,maxm)

Common blocks

common /CONST1/ count,swre,nc,nmr,q,sr,3c, N1 FNAME4

common /CONSTY CGATE,dA dB WEIGHT,LA.LAB.S KC

common /RESULT/ F,V,W aFC

Scalar arguments
integer NN
double precision FC
Array arguments
double precision XC(NN)
Local scalars
integer [T
Local arrays
double precision VAL(maxn), VEC(maxn),VECSEN(num,maxn)
double complex VALSEN(num,maxn)
Declare extemal subprograms
external DALEY,COST1,008T2,COST3,COST4

Calculate output fecdback using appropriate method
call DALEY(NN XC,S sr,5¢c,LAB CGATE nc,nms,gFV W)
Calculate K

call CALCKC(n,m F,W KC)

Calculate com function
if (N1.q.'1') then
Eigenvalue differcntial cost function
call COST1(n,m,V,W KC,dA dB,WEIGHT FCaFC VALSEN)
cise if (N1.eq.'2") then
Eigenstructure differcntial cost function
call COST2(n,m,FV,W KCLA]ABJA 4B WEIGHT FCaFC,
. VALSEN,VECSEN)
clse if (N1.eq.'3") then
Transient response differential cost function
call COST3(n,m F,V,W KCLALAB,dA 4B WEIGHT FCaFC,
. VALSEN,VECSEN)
clse if (N1.6q.'4’) then
Conditioning cost function
call COST4(n,V W ,WEIGHT FC aFC)
else
print*, "No other cost functions yet'
stop
end il
Print FC afier sct number of iterstions

count = count + 1

if (count.gemaxcount) then
count= 0
peim®, FC,* *,aFC

end if

Store files after 100 iterations
store = store + 1
if (stare.ge.100) then
storc = 0
call WOPT(NN,m,n FC XC,dA dB WEIGHT F.V KC FNAME4)
prim®, **
print®, ‘Saved data in 1emp file’
print®, "’
primt®, FC,* *,aFC
peim®, "’
if (N1.ne.'4") then
print®, 'Eigenvalue Sersitivitics’
dol=ln
VAL())= 0.0
doT=1mm
VAL(D = VALLD) «
. sqri{roal(VALSEN(1 J)*canjg(VALSEN(1,D))
end do
end do
print 10(VAL(),l = 1,n)
print 10(WEIGHT()*VAL(),l = 1,n0)
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if ((N1£q.'2").0r{N1 £q."3") then
print®, ‘Eigenvector Sensitivities’
dol=1n
VEC(I) = 0.0
doT =}, pum
VEC(I) = VEC(I) + VECSEN(T,))
end do
end do
peint 10, (VEQ(),I = 1,n)
preint 10, (WEIGHT(142*n)*WEIGHT(l+n)*VEC() | = 1,n)
end if
10 formay(10G124)
pris®,*’
end if
end if
retum
end

subroutine CALCKO(n;m,F,W KC)
C  Subroutine to calculate the ofp feedback matrix

C Define paramoters
integer maxn,maxm
parameter (maxn = 10, maxm = 9)
C  Scalar arguments
imeger n,m
C  Amay arguments
double complox F(maxm,maxn),W(maxn,maxn),KC(maxm,maxn)
C Local scalars
integer 1.J,K

C  Calculate KC, mult Fand W
dol=s1lm
doJ=1n
KC(1,J) = demplx(0.0,0.0)
doK=1n
KC(LJ) = KC(L,)) + F(LK)*W(K )
end do
end do
ond do

retum
ond

The parametric state space design is performed by the
routines in the file DALEY.F. This includes the routines
for the calculation of an accurate inverse and the null
space of a matrix via the singular value decomposition
(SVD)

subroutine DALEY(NN XC,S sr,sc LAB, CGATE, nc,nm,r,q,F,V,W)
C  Daley's method of ofp fecdback design
C  Defino parameters

intoger maxn maxm, maxsr maxsc

double precision aero
C (maxnmaxm - maximum values of parameters of sysiem)

{maxsrmaxsc - maximum dimension of S, {m-~q), 1(r-q)}

paramsior (maxn = 10, maxm = 9)
paramster (maxsr = 81, maxsc = 81)
parameter (soro = 0.0)

C  Scalar arguments
{emger NN ar,0c,nm 1. qnc

C Armsy arguments
integor CGATE(maxn)
double precision XC(NN),S(maxsr,maxsc)
double complox LA B(maxn,maxn maxm),
. Amaxm maxn),V(maxnmaxn),W(maxn,mamn)

€ Local scalars
inmger 1J,K,DIM,RANK

[¢]

Local arrays
double precision GAMMA(nnxu).SPCE(mm,xmun),
. RZ{(maxm maxm)

Calculate gamma fram the null space of zela
dol=]lm

GAMMA() = 0.0

doJ=13c

GAMMA(I) = GAMMA(]) + XC(J)*S(1J)

end do

end do

Extract F1 from gamma
call CALCFI(GAMMA CGATE nc,0,m 1,9, F)

Calculate the first r vectors of V
dol=1yr
doJ=1n
V(.1 =LAB(J,1)*FQ1.D
do K =2m
Va.h=vd,)+ LAB(IJ K)*FKK,])
end do
end do
end do

Calculate the remaining F vectars
Assumcs that all poles associated with F2 are real

dol=1gq

Calculate Zi as a real matrix
call CALCRZ(LAB F.V, l+1,m 1 RZ)

Find the null space of RT
call CALCSVD(RZ,maxm,maxm,m,m DIM ,RANK SPCE)
if(DIM.L1) then

primt*, Error in DALEY®

print*, 'No null space exisis for 2’

siop
end if

update F - assumes all poles associaicd with F2 are real
doJ=1m

F() r+1) = demplx(XC(r*(m-q)+1)*SPCE().,1),20r0)
end do

end do

Calculaic the remaining V veclors
dol=reln
doJ=1n
V.1 = LAB®J,1)*F(1.1)
doK=2m
VLD = V{1 + LAB(LJ K)*F(K,])
end do
end do
end do

Calculate W = inv(V)
call CALCINV(V,W,maxnn)

retum
end

subroutine CALCF1(GAMMA ,CGATE nc,nms.qF)

Subroutine 10 extract the F1 vectars from gamma for real or
complex poles

Scalar arguments
integer n,m,r g,nc

Armay uguments
imeger CGATE(10)
double complex 1X9,10)
double procision GAMMA(81)

Local scalars
imeger 1J,POSREAL POSIMAG
double procisian ZERO

Local amays
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C

0

C
C

Define starting points

POSREAL =0

POSIMAG =0

dolslyg

if (CGATE(l).0q.0) then
POSIMAG = POSIMAG +m
end if

end do

Due 1o ordering of pole set (i.e [complex real)), we know
that the first rumcamplex poles arc complex

complex poles first
dol=]nc2

doJ=)m

P,1) = CMPLX(GAMMA() +POSREAL),GAMMA(J+POSIMAG))

F(J 1+1) = CONJG(F(J.I))
end do

POSREAL = POSREAL + m
POSIMAG = POSIMAG + m
ond do

Now real poles
ZERO = 0.0
dol=ncelr

dolJ=1lm

F(J,I) = DCMPLX(2.0* GAMMA(J+POSREAL),ZERO)

end do

POSREAL = POSREAL +m
ond do

retum
ond

subroutine CALCINV(A,B,MAXN,N)
subroutine to calculate the inverse of a complex mawix A
and store the result in B
Scalar arguments

integer NMAXN
Armrsy arguments

double complex A(MMAXN MAXN),B(MAXN,MAXN)
Local scalars

integer 1,J,ITS IFALL,ID

double precision D1 EPS

Local arrays

double precision RA(20,20),AA(20,20),RB(20,10),BB(20,10),

hd RHS(20,10),P(20)

Declare extornal functions
double precision X02AAF
Detormino EPS
EPS = X02AAF(0.0)
Set up roal matrix RA consisting of the real and imaginary
parsof A
dol=]N
doJ=1N
RA(L)) = reak A(LD))
AA(LJ) = RA(LD)
RA(LJ+N) = -dimag(A(1J))
AA(1J+N) = RA(LJ+N)
RA(I+N J) = dimag(A(L}))
AA(I1+NJ) = RA(I+N J)
RA(I+N J+N) = real( A(LJ))
AA(I+NJ+N) = RA(I+N J+N)
ond do
ond do

Set up the right hand sido consisting of the NxN identity
matrix and a sero block
dol=]N
do)m1IN
if (1.aq.J) then
RHS(1))= 1.0
olss
RHS(L))= 0.0
ond if

(o]

RHS(I+N J) = 0.0
end do
end do

SOLVE RARB =RHS
Factorise RA into upper and lower tinglular matrices
IFAIL =
call FB3AFF(2°N EPS AA 20,D1.ID,P,[FAIL)
if (IFAIL.nc.0) then
print*, ‘Ervor in CALCINV'
prim*®, "FO3AFF failed to find a sain, [FAIL = *,[FAIL
stop
end if
Salve equation to find inverse
[FAIL=1
call FO4AHF(2*N,N RA 20 AA,20,P RHS,20,EPS RB,20,BB,20,ITS,
4 IFAIL)
if (IFALL ne.0) then
print®, "Error in FAAHF'
stop
end if
Extract real and imaginary pants from RB
dol=1N
doJ=1N
B(LJ) = cmplx(RB(1)),RB(I+N J))
end do
end do

relum

end

subroutine CALCRZ(LAB F.V {l,ms RZ)

Subroutine to calculate RZ
Assumcs that the poles associated with F2 are real

Define parancters
integer maxn,maxm
double precision zero
{maxnmaxm - maximum values of paramcters of system)
{zcro - maximum valuc for a number to be considered zero)
parameter (maxn = 10, maxm = 9)
parameter (zero = le-10)

Scalar argunents
ineger 1l m,s

Array arguments
double precision RZ(maxm,maxm)
double complex LAB(maxn,maxn,maxm),
* F(maxm maxn),V(maxn,maxn)

Local scalars
integer 1,J,K

Local arays
double complex iV11(maxn,maxn),Z(maxm,maxm),T1(maxn,maxn)

Calc iVl
call CALCINV(V,iV11 maxn,r)

Calculaie F1°%iV1], resultin T}
dol=1lm
doJ=1r
T1(1J) = 0.0
doK=1r
Ti(LD) = ALY + F(LK)*iV11(K)J)
end do
cnd do
end do

Mult result by LAB, resultinZ
dol=1m
dojmlm
2(1))=00
doK=]r
Z0)) = 1)) + TI(LK)*LAB(IK))
end do
end do
ond do
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C  Subtract result from identity matrix to give Z
dol=1m
doJ=1m
if (1eqJ) then
(1)) = demplx(1.0,0.0) - (1))
clse
A1)y =-Z(1))
end if
C Check imaginary part is zero and assign RZ
if (dimag(Z(1))).gt.2e10) then
print®, ‘Imaginary pant of Z is not zero’
print®, dimag(Z(1))
stop
clso
RZ(1)) = real(Z(1,)))
end if

end do
oend do
retum
end

subroutine CALCSVD(A,AM AN M,N,DIM RANK,SPCE)

of A*Atand At*A

0o 000N

Define parameters - {maximum dimensions of A}
intoger maxm,maxn
parameter (maxm = 50, maxn = 50)
C  Scalar arguments
integer MN,AM,AN,DIM,RANK
C  Armay arguments
double precision A(AM,AN),SPCE(AN,AN)
C Local scalars
integer 1J K, IFAIL
double precision BPS,TOL

C Local amays

double precision AT(maxn,maxm),AA(maxn,maxn),
. V{maxn,maxn),EIG(maxn),W KSPCE(maxn)

C  Sot opsilon the smallest number
EPS = 1B-7

C Pind transpose of A
dol=1M
doJ=1N
ATU.D = A(L))
ond do
end do

Calc V, find A'*A
dol=]IN
doJ=1N
AA(1))= 0.0
doK=1M
AA(LJ)) = AA(LJ) + ATULK)*A(K )
ond do
end do
end do

C Pind matrix of rigix eigenvectors = V
IFAIL =1

(o]

call F02ABRAA maxn N EIG,V, maxn,WKSPCE,IFAIL)

if (IPALL n0.0) then
print®, ‘Brror in CALCSVD'
print®, 'Pailed 10 find the eigenstructure of AtA*

stop
ond if

€ Calculam the rank - bassd on oigenvalues which am the
C  squares of the singular values. This scems to give boter

C mumorical resuls
TOL = max(M ,N)*sqr(EIG(N))*EPS
RANK =0
dol=1N
if (BIO(I). gt EPS) twa
if (sqr(BIG(N).gL.TOL) thon

Subroutine to calculate the null or range space of a matrix
using the svd, which is calculated by finding the eigenvectors

RANK =RANK +1
end if
end if
end do
Retumn the null space of A
do 1 =} N-RANK
doJ=1N
SPCE(J,)=V(.1)
end do
end do
DIM =N -RANK
retum
end

The cost functions and all associated routines are in the
file CFUNC.F

subroutine COST1(nm,V, W KC,dA,dB,WEIGHT FC aFC,VALSEN)

Subroutine to calculate e coR funclion based on cigenvalue
sensitivitics

Define parancicrs

inleger maxn, maxm,num
{maxn,maxm - maximum values of parameters of sysiem)
{num - number of errors being considered)

parameter (maxn = 10, maxm =9, num = 1)

Scalar argwnents
integer n,m
double precision FC.aPC

Array arguments
double precision WEIGHT(3*maxn)
double complex V(maxnmaxn),W(maxn,maxn),KC(maxm,maxn),
. VALSEN(num,maxn),dA(num,maxn tnaxn),

. dB(num,maxn maxm)

Local scalars
integer 1T
double precision TEMP

Calculaie eigenvaluc sensitivitics
call EIGVAL(n,m,V W KC,dA,dB,VALSEN)

Calculaw residuals
FC=0.0
aFC =0.0
dol=1n
doT = 1,num
TEMP = real(VALSEN(T,1)*conjg(VALSEN(T,I)))
FC = FC + WEIGHT(I)*TEMP
aFC = alFC + TEMP
end do
end do

retum
end

subroutine COSTXnm F,V,W KCLA LAB,dA dB WEIGHT,PCaFC,
. VALSEN,VECSEN)

Subroutine to calculaie the cost function besed on cigenvalus
and cigenvecior sensitivitics
Define parameicrs

integer maxn, maxm,num
{maxn maxm - maximum values of parameiers of system}
{rum - number of errars being considored)

parumster (naxn = 10,mexm = 9, mum = 1)

Scalar arguments
integer nm
double procision FCAFC
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C  Asmay arguments
double precision WEIGHT (3*maxn), VECSEN(num,maxn)
double complex F(maxm, maxn),V(maxn,maxn),W(maxn maxn),
. LA(maxn,maxn maxn),LAB(maxn,maxn, maxm),
. KC(maxm maxn),VALSEN (num,maxn),
i dA(num,maxn,maxn),dB(nmum,maxn,maxm)

C Local scalars
imeger 11T
double precision PC1,aFC1,FC2 aFC2, TEMP NORMY NORMW

C Local amays
double complex VSEN(mm,maxn,maxn),WSEN(num,maxn,maxn)

C Calculate cigenvalue sensitivitics
call EIGVAL(n,m,V,W KC,dA,dB,VALSEN)

C Calculate eigenvector sensitivitics
call EIGVEC(n,m/F,V,W KC,LA LAB,dA dB,VALSEN,VSEN,WSEN)

C Calculate the norms of cach sct of sensitivity vectors
dol=1n
doT=1mm
NORMY =0.0
NORMW =0.0
dol=1n
NORMY = NORMY + (real(VSEN(TJ 1))**2.0 +
¢ dimag(VSEN(T J.)**2.0)
NORMW = NORMW + (real(WSEN(T,11))**2.0 +
d dimag(WSEN(T,1,J))**2.0)
end do
VECSEN(T,]) = dsqri{ NORMYV) + dsqrt(NORMW)
end do
end do

C Calculate function - cigenvalucs
FCl =0.0
aFC1 = 0.0
dol=1n
do T =],mum
TEMP = real( VALSEN(T,I)*conjg(VALSEN(T,)))
FC1 = FC1 + WEIGHT())*TEMP
aFC1 = aFC1 + TEMP
ond do
ond do

C  Calculate function - eigenvectors
PC2=0.0
aPC2=0.0
dolaln
do T = ],oum
FC2 = PC2 + WEIGHT (I+n)*VECSEN(T,)
aFC2 = aFC2 + VECSEN(T,D)
end do
end do

PC = FC] + WEIGHT(2*n+1)*FC2
aPFC = aFC1 +oFC2

rotum
ond

subroutine COSTXn.m.F,V,W,KC LA LAB,dA dB,WEIGHT FCaPC,
. VALSEN,VECSEN)

Subroutine to calculate the cost function based on transient
performance using eigenvaluc and eigenvector scmwitivitics

(o ]

C Define paramstors

integer maxn maxm,mum
C {maxnmaxm - maximum values of parameters of system}
€ (oum - number of errors being considored)

paramstor (maxn = 10, maxm =9, um = 1)

C  Scaler arguments

double precisian PC.aFC

C  Amay srguments
double precision WEIGHT(3*maxn), VECSEN(num maxn)
double compicx F{imaxm maxn),V(maxn,maxn),W(maxn maxn),
. LA(maxn,maxn maxn),LAB(maxn maxnmaxm),
. KC(maxm,maxn),VALSEN (num,maxn),
. dA (num,maxnmaxn),dB(nusm, maxn,maxm)
C  Local scalars
meger LT XY
double precision FC1,aFC1, FC2 aFC2, TEMP NORM
C  Local amays
double complex VSEN(num maxn maxn), W SEN(num maxn,maxn),
d T1(maxn,maxn)
C  Calculate eigenvalue sensitivitics
call EIGVAL(n,m,V,W KC.dA ,dB ,VALSEN)
C Calculawe cigenvector sensitivitics
call EIGVEC(n,mF,V,W ,KC LA LAB,dA dB VALSEN,VSEN WSEN)
C Calculate the norm of the vectar sensitivity matrix
dol=1n
do T = 1,num
C Calculate matrix - dVi x Wit, stare in T1
doX=1n
doY=1n
TI(X,Y) = VSEN(T X, 1)*W(L,Y)
end do
end do
C Calculate matrix - dVix Wit + Vix dWit, store in T
doX=1n
do¥Y=1n
TIX,Y) =TI(X,Y) + VX, D*WSEN(TLY)
end do
end do
C Calculate norm - Euclidean norm
NORM = 0.0
doX=1n
doY=1ln
NORM = NORM + (real(T1(X,Y))**2.0 +
. dimag(T1(X,Y))**2.0)
end do
end do
VECSEN(T,) = dsqr{ NORM)
end do
end do

C Calculaie function - eigenvalucs
FCl1 =0.0
aFC1 =0.0
dol=1n
do T =1,num
TEMP = real(VALSEN(T,1)*conjg(VALSEN(T,)))
FC1 = FC1 + WEIGHT(D*TEMP
aFCl = aFC1 + TEMP
end do
end do

C Calculate function - eigenvectors
FC2=0.0
aFC2=0.0
dol=1ln
do T = 1,num
FC2 = FC2 + WEIGHT (l+n)* VECSEN(T.I)
aFC2 = aFC2 + VECSEN(T )
end do
end do

PC = FC1 + WEIGHT(2°n+1)*FC2
aFC = aFC1 + aFC2

retum

‘end

subroutine COST4(n,V W, WEIGHT FC aPC)

€ Subroutine to calculste the cont funclion based an the
C conditioning of the matrix of cigenvectars
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Define parameters
intoger maxn num
{maxn - maximum values of parameters of system)
{oum - mmber of errors being considered)
panmeter (maxn = 10, pum = 1)
Scalar arguments
imeger n
double precision FCAFC
Asray arguments
double precision WEIGHT(3*maxn)
double complex V(maxn,maxn), W (maxn,maxn)
Local scalans
insoger 1)
double precision NORMV NORMW
Local arrays
double complex TEMPYV (maxn,maxn), TEMPW (maxn,maxn)
extemal CALCINV

NORMY = 0.0
NORMW =0.0
dol=1n
doJ=1n
NORMYV = NORMV + (real(V(1J))**2.0 + imag(V(1}))**2.0)
NORMW = NORMW + (real(W(1,1))**2.0 + imag(W(1,)))**2.0)
end do
end do
PC = log(NORMY + NORMW)
aFC = FC

retum
end

subroutine EIGVAL(n,m,V,W KC dA,dB ,VALSEN)
Subroutine to calculate the eigenvalue sensitivities

Define parameters
ineger maxn maxm,num
{maxn,maxm - maximum values of paramciers of system)
{num - number of errors being considered)
parameter (maxn = 10, maxm =9, num = 1)
Scalar arguments
integer n,m
Array arguments
double complex V(maxn,maxn), W (maxn,maxn),KC(maxm,maxn),
. VALSEN(num,maxn),dA(num,maxn,maxn),
. dB(num,maxn,maxm)
Local scalars
imteger IJKLT
double complex TEMP1(maxn,maxn), TEMP2(maxn)

do T = 1,num

C  Calculate dAt + dBt*KC - store in TEMP1

Cc

doJeln
doK=iln
TEMPI(J K) = dA(T J K)
doL=1lm
TEMP1(J K) = TEMP1(J K) + dB(T J ,L)*KC(L,K)
end do
end do
ond do
dol=]n
Calculate Wi®result - store in TEMP2
doJ=ln
TEMPXJ) = demplix(0.0,0.0)
doKeln
TEMPXJ) = TEMP2(J) + W(1,K)*TEMPI(KJ)
ond do
and do
Calculato result*Vi - stare in VALSEN
VALSBN(T,I) = dcmpix(0.0,0.0)
doJmin
VALSEN(T.I) = VALSEN(T 1) « TEMPJ)*V({l,))

C

end do
end do
end do

retum

subroutinc EIGVEC(n,m,F,V,W,KC,LA LLAB,dA dB,VALSEN VSEN,WSEN)

Subroutine 1o calculate the cigenvalue sensitivitics
reference - own derivation and Crossley and Porter

Definc parameicrs

integer maxn,maxm,num
{maxn,maxm - maximum valucs of perameters of system)
{num - number of errars being considered)

parameter (maxn = 10, maxm =9, num = 1)

Scalar arguments
integer nm

Array arguments
double complex F(maxm maxn),V(maxn, maxn),W(maxn,maxn),
* LA(maxn,maxn maxn),L.AB(maxnmaxn,maxm),
. KC(maxm,maxn),VALSEN(num,maxn),
. VSEN(numymaxn,maxn), WSEN(num maxn maxn),
* dA(num,maxn,maxn),d B(num,maxn,maxm)

Local scalars
integer L TX.Y.Z

Local arrays
double complex T1(maxn,maxn), T2(maxn,maxn)

Calculate the sensitivity of the right eigenvectars
do T = ],num
dol=1n

Creaie diagonal mavix of cigenvalue sensitivities
doX=1n
doY=1n
if (X.eq.Y) then
TUX,Y) = dA(T X,Y) - VALSEN(T,)
clse
TI(X,Y) = dA(T X,Y)
end il
end do
end do

MultLAby T] - result in T2
doX=1n
doY=1n
T2AX,Y) = demplx(0.0,0.0)
doZ=1n
TAX,Y) = TAX,Y) + LA(LX,D*TIUZY)
end do
end do
end do

Mult answer, T2 by LAB - result in T1
doX=1ln
doY=1lm
TI(X,Y) = demplix(0.0,0.0)
doZ=1n
TI(X,Y) = THX,Y) + TUX Z)*LAB(I.Z,Y)
end do
end do
end do

Mult LA by dBt and add to T1 - result in T1
doX=1n
doYs=slm
doZ=1ln
TIX,Y) = THX.Y) « LA(LX,Z)*dB(T.Z.Y)
end do
end do
end do
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C  Multresult, T1 by Fi- result in VSEN
doX=1n
VSEN(TX,J) = demplx(0.0,0.0)
doY=1m
VSEN(TX.I) = VSEN(TX,I) + TI(X,Y)*F(Y,)

C  Hence calculste the semsitivity of the lefi eigerrows
call CWSEN(W,VSEN,WSEN n)

retum
end

subroutine CWSEN(W, VSEN,WSENn)
C  subroutine to calculate WSEN

C  Define parameters
integer maxn,mum
C  (maxn - maximum valucs of parameters of sysiem)
C  {mum - number of errors being considered)
parameter (maxn = 10, num = 1)

C  Scalar arguments
integer n

C  Amay arguments
double complex W(maxn,maxn),VSEN(num,maxn,maxn),
. WSEN(num,maxn,maxn)

C Local scalars
integer 1.J,K,T

C Local amays
double complex T1(maxn,maxn)

do T = 1 num

C Mult-WxdV,resultinTl
dol=1n
doJ=1n
T1(1,J) = demplx(0.0,0.0)
doK=1n
TI(LN =TI(L)) + W(LK)*VSEN(T K J)
end do
Ti(LJ) = -TI(1))
end do
end do

C  Mult Tl x W, result in WSEN
dol=1n
doJ=1n
WSEN(T,1)) = dcmplx(0.0,0.0)
doK=1n
WSEN(T,1J) = WSEN(T,1J) + TI{(1 K)*W(KJ)
ond do
end do
end do

ond do

return
end

The routines required to read PRO-MATLAB format
files are in the file INPUT.F

subroutine RDATA(fname,S ar,5c,LA LAB,CGATE nc,nmyr.q)
C  Subroutine to read the data supplied by MATLAB

C Define pararmoters
intsger maxn,maxm,maxs maxsc

C {mexnmaxm - maximum values of parameters of syseom)

C  (maxsrmaxsc - maximum dimension of S}
parameter (maxn = 10, maxm =9)
paramsioe (maxse = 81, maxsc » 81)

C  Scaler srguments
intager srscpcnmirq

C  Amay argumemts
imeger CGATE(maxn)
double precision S(maxsr,maxsc)
double complex LA(maxn,maxn,maxn),LA B(maxn,maxn maxm)
character®30 fame
C  Local scalars
imeger lunit,irec row col,1J K

C  Local amrays

double precision TEMPR(1,maxn)
double complex TEMPQUmaxn®maxn,maxn)

C  Open file
lunit=1
irec = 1
open(UNIT = lunit, FILE = fname, STATUS = 'old’,
* FORM = 'unformanted’, ACCESS = ‘direct’, RECL = 1)

C  Load scalars
call getint(nc Junit,irec)
call getint(n Junit,irec)
call getint(m Junit,irec)
call getint(r Junit,irec)
call getiny(q Junit irec)
Load wrays
CGATE
call getmat(TEMPR,} maxn row col Junit,irec)
dol=1,ca
CGATE(I) = im(TEMPR(1 )
end do
C S
call getmatr(S,maxsr,maxsc sr,5¢ lunit,irec)

C LA
call getmatc(TEMPC, maxn *maxn maxn,row cal,lunit, irec)
dol=1n
doJ=1,n
doK=1n
LA(1J.K) = TEMPCQUJ+(1-1)*n,K)
end do
end do
end do

C LAB
cal] geunatc(TEMPC,maxn *maxn,maxn,row cal,lunit, irec)
dol=1ln
doJ=11
doK=lm
LAB(I) K) = TEMPC(J+(]-1)*n,K)
end do
end do
cnd do

C  Closc file
close(lunit)

retum
end

subroutine RSTART(fname X .dA ,dB,WEIGHT NN)
Subroutine to read the data supplicd by MATLAB

C Definc perameters
integer Max,maxn,naxm,num

C  {max - maximum number of variables (> 6*maxn)}
parameter (inax = 100, maxn = 10, maxm = 9, oum = 1)

C  Scalar argumcnts
integer NN
C  Aray argumcnts
double precisian X(NN),WEIGHT(3*maxn)
double complex dA(num, maxn,naxn),dB(num, maxnmaxm)
character*30 fname
C Local scalars
integer hunit,irec sow col,1J K
C  Local amys
double precisian TEMPR(] max)
double compicx TEMPQ(num® maxn.maxn)
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C Open file
Junit =1
mcsl
oper(UNIT = lunit, FILE = fname, STATUS = ‘old’,
* PORM ="unformatted’, ACCESS = 'dirct’, RECL = 1)

Load arrays

X
call getmats(TEMPR, 1 max row,col Junit,irec)
dolmlca

X(I) = TEMPR(L,])
end do

C dA
call getmatc(TEMPC num *maxn,maxn,row,col,Junit, irec)
do = 1,oum
do J = 1, row/mum
do K =1,cal
dA(1J K) = TEMPC(J+(I-1)*row/num,K)
end do
end do
end do

C dB
call getmatc(TEMPC num *maxn,maxn,row,col Junit, irec)
do | = 1,mum
do J =1, row/mum
doK =1,cal
dB(1,}) K) = TEMPC(J+(1-1)*row/num,K)
end do
ond do
end do

C WEIGHT
call gotmat{TEMPR,1 max row,cal lunit,irec)
do I =],cal
WEIGHT(I) = TEMPR(1,])
end do

C Close file
close(lunit)

retum
ond

subroutine gotmatc(A ar,ac,row,col lunit,irec)
Subroutine to load a complex matrix from a matab file

Declaro parameters
integer remax
double precision zero
C  {rcmax - maximum value of rows*cols of A}
parameter (ramax = 1000, zero = 0.0)

C  Scalar arguments
intoger ar,acrow col lunit,irec

C Amay srguments
double complox A(arac)

C Local scalans
inmmgor 1J,type imagfm n jen,rdflag

C  Local amays
double precision RA(rcmax),JA(rcmax)
character*20 mame

C Load mavix from file
call LOADMAT(type,m.n,imagf,lenname RA IA Junit,irocsdflag)
if (rdfiag.ne.0) then
print®, ‘Failed to load complex mavix from file*
stop
ond if

C  Chwck if mawix is complox
if (imagf 2q.0) then
priss®, "Waming : ";name,” is not complex’
endif

C  Caonstruct actual complex matrix
doJ=1n
doli=1m
if (imagf£q.0) then
A(l)) = demplx(RA(14(J-1)*m),zcr0)
¢clsc
A1) = demplx(RA(1+(J-1)*m), IA(I +(J-1)*m))
end if
end do
end do

row =1
col=n

retum
end

subroutinc getmatr(A ar,ac.row col Junit,irec)
Subroutine to losd a real matrix from a matab file

Declare parameicrs

inleger ramax

C  {rcmax - maximum value of rows*cols of A}

parameicr (remax = 6600)

C  Scalar argumenis

integer ar,ac row col lunit,ircc

C  Amay arguments

double precision A(ar,ac)

C  Local scalars
integer 1) type imagf,m n len,rdflag

C  Local amays
double precision RA(rcznax), IA(ramax)
character*20 mme

C  Load mawix from file
call LOADMAT(type, m,n,imagf len,name RA 1A lunit,irec rdflag)
if (rdfiag.ne.0) then
peint*, 'Failed to load real mavix from file’
slop
end if
C Construct actual rea! mawix
if (imagf.ne.0) then
print®, ‘Failed 10 extract matrix as not real’
stop
else
doJ=1n
dol=1m
A(1)) =RA(I+(J-1)*m)
end do
end do
end if

row =m

col =n

retum
end

subroutine getint(s,lunit,irec)
C  Subroutine to load & real matrix fron a matad file
C  Declare paameters
integer ramax
C  {rcmax - maximum valuc of rows®cols = | for a scalwr}
parameter (romax = 1)
C  Scalar arguments
imeger alunit,irec
C  Local scalans
integer type,imagf,m,njensd0ag
C  Local amrays
doublo procision ar(rcrnax) ai(rcmax)
characer *20 name
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C Losd matrix from file
call LOADMAT(type,m,n,imagf,lenname ar ai Junit ircc,rdflag)
if (rdfiag.ne.0) then
print®, "Failed to load real scalar from file'
sop
end if
C Canvert 1o intcger
if (imagf.ne.0) then
print®, ‘Failed 10 extract scalar as not real’
stop
else
a = int(ar(1))
end if
retum
end

subroutine LOADMAT(T YPEM,N,IMAGF,NAMLEN NAME,
i RPART,IPART LUNIT,IREC,RDFLG)

C Subroutine to read matab files

C 20 byte hoader
integer TYPE,M,N,IMAGF,NAMLEN

C Character string for name (length of name plus one)
character NAME(*)*1
C Double precision data arrays for example
double precision RPART(*),IPART(*)
C  Output file logical unit number
integer LUNIT
C Readflag
ineger RDFLG
C Direct access record counter
integer IREC
C Local scalars
imoger MN
C Define functions
integer READC
C Read header
if READC(LUNIT,IREC 4,TYPE)) 998,10,999
if (READC(LUNIT,IREC 4,M)) 998,20,999
if (READC(LUNIT,IREC 4,N)) 998,30,999
if (READC(LUNIT,IREC,4,IMAGF)) 998,40,999
if (READC(LUNIT,IREC 4 NAMLEN)) 998,50,999
if (RRADC(LUNIT,IREC NAMLEN,NAME)) 998,60,999
MN = M*N
if (READC(LUNIT,IREC 8*MN RPART)) 998,70,999
70 if (IMAGF.q.1) then
it (READC(LUNIT,IREC 8*MN,IPART)) 998,80,999
end if
C  Set read flag to ok and return

80 RDFLG=0
roturn

C  Brror during read
998 RDFLG =-1
retumn

C Endoffile
999 RDFLG =]
retum
ond

8 £888:

integer function READC(LUNIT,IRECNC.CARRAY)

C  Amy asrgumonts
inssger LUNITNC,IREC
charactor CARRAY(*)*1

C Local scalars
megor |

O n

do I=1 NXC

read(LUNIT rec=IREC crr=998 cnd=999) CARRA Y(1)
irec=irec + 1

end do

READC =0

retum

998 READC =-]

retum

999 READC =1

retum

end

The routines to write files in PRO-MATLAB format are
in the file OUTPUT.F

subroutine WORIG(NN,mn FC X F.V KC filename)

Subroutine to write the original valucs to file
Noe dimension of KK is m by n i« state feedback

Define paramecters
integer maxn fnaxm
{maxn maxm - maximum valucs of parameters of system}
paraneter (maxn = 10, maxm = 9)
Scalar arguments
integer NNm,n
double precision FC
Array arguments
double precision X(*)
double complex F(maxm,maxn),V(maxnnaxn), KC{maxm, maxn)
characier*30 filename

Local scalars
integer len Junit,irec
Local arrays
character *20 name
Open file
lunit=1
irec =1
open(UNIT = lunit, FILE = filename,
¢  [ORM = ‘unformatied’, ACCESS = 'direct’, RECL. = 1)
Writc scalars - FC
name = "FCORIG’
len=17
call put(FC.name Jen,lunit ircc)
Wrikc arrays
name = "XORIG'
len=6
call pulvec:(X.NN,NN,mmc,lcn,lunil,imc)
name = 'FORIG'
len =6
call pumlc(Pmnnmn.m.nnancn,lunil,inc)
name = ‘"VORIG'
len=6
call putnatc(V maxn maxn,n,nname,lenunit,irec)
name = 'KCORIG'
len=7
call wunnlc(KC,nuxm.nunm,nnm.lm.lmil.ine)
Close file
close(lunit)
retum
end

subrouline WOPTINN ;n.n.PC)(,dA.dB.WBIOHTJ’.V.KC.M)

C  Subroutine to write the optimal valucs o file
C Nok dimension of KC is m by n ic staic foedback
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C  Definc parameters
imeger maxn maxm,num
C  (mexnmaxm - maximum valucs of parameiers of system}
parameter (maxn = 10, maxm =9, num = 1)
C  Scalar arguments
integer NN;m n
double precision FC
C Armay arguments
double precision X(*),WEIGHT(3 *maxn)
double complex F(maxm maxn),V(maxnmaxn),KC(maxm,maxn),
* dA(mum,maxn,maxn),dB(num,maxn,maxm)
character®*30 filename
C Local scalars
integer lon Junit,irec,1J K
C Local arrays
double complex TEMPO(num® maxn,maxn)
character*20 name
C Openfie
lunit = 1
irec =1
open(UNIT = lunit, FILE = filename,
* PORM = 'unformaticd’, ACCESS = 'direct’, RECL = 1)
C  Write scalars - FC
name = 'PC’
len=3
call putr(PC,name Jen,lunit, irec)
C  Write arrays
mame = ‘X’
len=2
call putvecr(X,NN NN, name len junit,irec)
name = ‘dA’
len=3
do [ =1 num
doJ=1n
doK=1n
TEMPCU+(I-1)*n,K) = dA(1J K)
end do
end do
ond do
calt putmatc(TEMPC num *maxn,maxn,num*n,n,name,len, lunit,irec)
name = 'dB’
len=3
dol=]1nmum
doJa=ln
doK=lm
TEMPC(J+(I-1)*n,K) = dB(1 J K)
ond do
ond do
end do
call putmatc(TEMPC num*maxn,maxn,num®*n,nname,len,lunit irec)
rame = 'WEIGHT"*
lenw?
call putvecr(WEIGHT 3*maxn 3*n,name Jen Junit,irec)
tame = ‘P
len=2
call putrnatc(F,maxm,maxn,m,n,name len,lunit,irec)
mmes 'V’
ln=2
call putmatc(V maxn,maxn,n,nname,lentunit,irec)
mame = ‘KC'
len=3
call putmatc(KC,maxm,maxn,m,n,name len Junit,irec)
C  Close file
closs(lunit)
mtam
ond

subroutine putmatc(A ar sc.row col name len Junit,irec)
C  Subroutine 1o write s complex mawix to file

Declare paramciers
imeger remax

{rcmax - maximum value of rows®cols of A}
parameter (ramax = 100)

Scalar arguments
integer ar,ac row,col Jen Junit,irec

Array arguments
double complex A(ar ac)
character®20 mme

Local scalars
integer 1),type,imagf,mn wiflag
Local arrays
double precision RA(remax),IA(remax)

Check that row®col does not exceed remax
if (row*col.gt.rcmax) then
print®, '/RCMAX exceeded in putmatc’
stop
end if
Set up paranciers
type = 1000
m = row
n = col
imagf=1
Copy data to RA and A
doJ =1,col
dol=1row
RA(I+(J-1)*row) = real(A(1,J))
IA(1+(J-1)*row) = dimag(A(1 J))
end do
end do

Write mavix from file
call SAVEMAT(type m,n,imagf Jen,nane, RA, 1A Junit irec, wiflag)
if (wiflag.ne.0) then
peint*, 'Failed 1o write complex mavix to file'
stop
end if
retum
end

subroutine putvecr(A,ac,col name len lunit,irec)
Subroutine to wrile a real vector o file

Declare paramncters
imeger amax

{cmax - maximum value of cols of vecior A}
perameter (cmax = 100)

Scalar argumnents
integer ac,cal Jen Junit,irec

Array arguments
double precision A(ac)
character*20 name
Local scalars
integer Itype imagfm,n,wiflag
Local arrays
double precision RA(cmax),IA(cmax)
Check that row®col does not exceed remax
if (col.gt.crnax) then
print®, "CMAX excecded in putvecr’
stop
end if
Sct up paramcicrs
type = 1000
m=1
n =col
imagf =0
Copy data to RA
dol=l,ca
RA() = A(D)
end do
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C  Write matrix to file

call SAVEMAT(type,m n,imagflenname,RA, IA lunit irec,wiflag)
if (wiflag ne.0) then
print®, ‘Failed to write real vector to file'
stop
end if
retum
end

subroutine putr(aname Jen Junit,irec)
Subroutine to write a real scalar to file

Declare parametcrs
integer remax
{rcmax - maximum value of rows*cols = 1 for a scalar)
paramoter (romax = 1)
Scalar arguments
itegor lon Junit,irec
double precision a
charscter*20 pame
Local scalars
integer type,imagf.m,n,wiflag

Local arrays
double precision ar(rcmax),ai(remax)

Seot up paramctcrs
type = 1000
m=]
n=1
imagf =0
Copy data to ar
ar(l) =a
Load marrix from file
call SAVEMAT(type,m n,imagf lenname, ar ai lunit ircc,wiflag)
if (wiflag.ne.0) then
print*, "Failed to write real scalar to file’
stop
end if
return
end

subroutine SAVEMAT(TYPE M,N,IMAGF,NAMLEN NAME,
. RPART,[PART LUNIT, IREC,WTFLG)

Subroutine to save files in .mat format

20 byte hoader
integer TYPE.MN,IMAGF.NAMLEN

C

Characier string for name (length of name plus ane)
character NAME(*)*1

Double precision data arrays for cxample
double precision RPART(®), IPART(*)

Output file logical unit number
imeger LUNIT

Write flag
integer WTFLG

Direct access file record counter
imeger IREC

Local scalars
imeger MN

MN =M*N

Write header
call WRITEC(LUNIT,IREC,4,TYPE)
call WRITEC(LUNIT IREC,4 M)
call WRITEC(LUNIT IREC 4,N)
call WRITEC(LUNIT IREC,4,IMAGF)
call WRITEC(LUNTT IREC 4 NAMLEN)
call WRITEC(LUNIT IREC,NAMLEN-1,NAME)
call WRITEC(LUNIT,IREC,1,0)
call WRITEC(LUNIT,IREC,8*MN RPART)

if (IMAGFeq.1) call WRITEC(LUNIT,IREC,8*MN,[PART)

Good write
WTFLG =0

retum

Error during write

999 WTFLG = -1

retum
end

subroutine WRITEC(LUNIT,IREC,NC,STRING)

Array arguments
integer LUNIT,IRECNC
character STRING(*)*1

Local scalars
ineger |

doi=1NC
write{(LUNIT rec=IREC) STRING(I)
IREC=IREC+1

end do

retum
end
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B.3 Post-Optimisation Programs - PRO-MATLAB

After the optimisation a set of programs are needed to convert the state space controller

to polynomial form and hence complete the robust polynomial controller design.

The main post-optimisation program is

% postopt.m
G, this m-file calls all other routines to calculate original
% and robust polynomial controlicrs

clear

% sot up parameters
small = le-10;
% set temp = 1 if want to use tempoarary filc data
temp =0;
% ENTER INFO
9 Enter details of cost func and method
opt = input{"JAF (1), FDE(2):');
¢f = input("Bnter number of cost function used : °,'s");
if temp ~= 1
fnum = input(‘Bater file number : *,s’);
end
p = input("Enter valuc of p: *);
% SET UP FILE INFO
path = ['fuser/oepg/ecpgkdw/wy/'];
ifoptm=1
opttype = 'JAF";
clseif opt w= 2
opttype = 'FDF";
ond
% SET UP MODEL
(a,a0rig,int,b,c,nn.1.q.cigen cgate] = model(p);
ps = num2str(p);
% LOAD DATA
% load madab data
oval(['load * path ‘matdata’ ps cf])
% load fortran data
if tomp == 1
crigfile = [opttype 'tmp_orig'l:
optfile = {opitypo ‘unp_opt’};
else
origfils = ['cost’ cf '/’ opttype fnum ‘orig’ ps cf];
optfile = ['cost’ ¢f /' opttype faum ‘opt_’" ps cfl;
end
sval({'load * path arigfile]);
eval(['load * path opifile]);
% CHECK IMAG PART OF KC IS NEAR ZERO
if sum(sum(irag(KCORIG) > small)) > 0
imag(KCORIG)
error(’KCORIG is not complotely real’)
ond
KCORIG = real( KCORIG);
if sum(sum(imag(KC) > small)) >0
imag(KC)
omar('KC is not completoly roal')
ond
KC = roal{ KC);

% couvert state foodback to o/p foedback
if sum(sumn(KCORIG(: r+1:n) > small)) > 0
KCORIG(: s+1:m)
errar('Socond part of KCORIG is not aero’)
od
KCORIG = KCORIO(:,1:1);
if sun{oum(KC{: s+1:1) > small)) >0
KO 2+1m)

errar(’Second pant of KC is not zero’)
end
KC = KC(:,1:x);

% ORIGINAL CONTROLLER
{F,G H) = calcsscantrol(KCORIG,c.p);
% save controller polynomials

arigfile = [origfile "FGH'];
eval({'savc * path origfile ' FG H'])

% ROBUST CONTROLLER
[F.G H] = calcsscontrol (KC c,p):
% save controller polynomials
aptfile = foptfik "FGH');
eval(['save ' path optfile ‘ FGH'}])

& CONTROLLER DERIVED FROM DIOPHANTINE EQN - MIN ORDER
[F.G H) = calcpolycontrol(s,b,c.,n p cigen);
ifemp ==}
defile = {opttype ‘unp_deqnFGH’};
clsc
defile = ['cost’ cf */* opitype fnum ‘degn’ ps of "FGH');
end
eval({'save ' path defile ' F G H'))

The associated functions are

function [F,G,H) = calcsscontrol(K c.p)

% calculate controller polynomials fram focdback mawix
|F.G] = trans_paly(K.p):

% calculatc H
pum=0;
for i = 1:length{G)
gsum = gsum + G(i);
end
if length(c) >0
csum =0;
for i = L:length(c)
csum = csum + (i)
end
for i = L:length(c)
H(i) = (i) *gsum/csum;
end
clse
H(1) = gsum;
end

function [F,G) = trans_paly(Ky.p):

% function 10 transform the focdback matrix 10 polynomial form
% assuming originally in obscrvable canunical form

@ chock that Ky is the correct dimension
{11 12] = size(Ky):
ifu-~=2

enor('Ky is not square');
end
ift] ~=pel

ervar(*Ky is of the wrong dimension');
end

ifp>0
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% panition Ky % storcs b coefTicients in A
K11 = Ky(1:1,1:1); fori=1:ng
K12= Ky(1:1,2:p+1); omp = b;
K21 = Ky(2:p+1,1:1); for j = nb+1:dimA
K22 = Ky(2:p+1,2:p+1); wemp = femp,0);
% calculate polynomial form end
[oum,den) = ss2t{K22,K21,K12,0,1); A={Amp');
% F controller polynomial :":'l::"'
F=den; .ol
end
::m:l-w % ASSIGN RHS
G=-1 ‘ldlbdy(n;m rempl); % calculate the RHS
’ ' iflength{c) =0
clse ths =T";
K11 =Ky; clse
Fel; rhs = multpoly(c,T)";
G=Kil; cnd
oud % CALCFAND G
% must ensure RHS is of the same, ar smalicr, dimension as A
Irhs = length(rhs);
[t1,12] = size(A);
function [F,G H] = calcpolycontrol(a,b,c,n,p cigen) iftl ~=12
\ . error('A matrix not square’)
% function to calculste the solution to the diophantine equation end
% using matrix methods iflrhs > 11
% SET UP ORDERS (specify number of coeffs) error(’RHS larger than A°®)
na = length(a); end
nb = length(b); iflrhs <1l
nf=nb-1; for i =lrhs+ 1)
ng=mna-1; rhs = [rhs’ 0}";
% SETUPT end
T=(1 <igen(D; end
for i = 2:n-p % calculate e controller coefTicients
temp = {1 -eigen(i)}; x = A\hs;
T = multpoly(T temp); F=x(1:nf;)";
end G =x(nf+1:nf+ng,:)";
% SET UP THE SYLVESTER MATRIX % H = sum of the G coefficients divided by sum of C cocflicients
% maltiplied by C
dimA = max(na+nf-1,nb+ng-1); pum=0;
% stores a coefficionts in A foriw ling
fori=1mf gsum = gsum + G(i);
tomp = §; end
for j = na+1:dimA if lengtiic) =0
tomp = [mp,0]; H(1) = gsum;
end clse
ifimm]l csum = (;
A = tomp’; for i = 1:length(c)
else csum = csum + c(i);
A= [Ammp']; cnd
end for i = l:length(c)
ne wma+tl; H(i) = c(i) *gsunvesum;
a=[0a); end
ond end
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DETAILS OF THE NAG LIBRARY ROUTINES

C.1 Accurate Inverse of a Real Matrix

As previously mentioned in chapter 5, the inverse of a real matrix, A, can be accurately
obtained by solving the equation

AX =1 (C.1)

where I is the identity matrix and X the inverse of A.

This type of equation can be solved by a number of methods and in this case two NAG
library routines are used. The first FO3AFF computes an LU factorisation of the matrix with
partial pivoting and the second, FO4AHF, uses the result and iterative refinement to obtain the
solution.

This section gives some brief details of the two routines, further information can be found
in NAG (1990)

FO3AFF

Specification

SUBROUTINE FO3AFF(NV,EPS,A,IA,D1,ID,P IFAIL)

INTEGER N,IAID,IFAIL
DOUBLE PRECISION EPS,A(IA,N)D1,P(N)

Parameters
N Input On entry, N specifies the order of the matrix A.
EPS Input On entry, EPS must be set to the value of machine precision.

This value is implementation dependant.
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A(A,N) Inpu/Output  On entry, the N by N matrix A.

On exit, A is overwritten by the lower triangular matrix L and
the off-diagonal elements of the upper triangular matrix U.
The unit diagonal elements of U are not stored.

IA Input On entry, IA specifies the first dimension of the array A as
declared in the (sub) program from which FO3AFF is called.
IA2N
DI Output On exit, DI can be used to calculate the determinant of A.
ID Output On exit, ID is also used to calculate the determinant of A.
P(N) Output On exit, P (i) gives the row index of the i’th pivot.
IFAIL Inpu/Output  On entry, it is recommended that /FAIL be set to 0. Further
information can be found in NAG (1990).
On exit,

IFAIL =0 : successful termination
IFAIL = 1: Ais singular, possibly due to rounding errors

To avoid overflow or underflow, the determinant can be calculated using

det(A)=DI1(2.0)" (C2)

F04AHF

Specification

SUBROUTINE FO4AHF(NV,IR,AIA,AAIAAP.B,IB ,EPS X ,IX,BB,IBB,K IFAIL)

INTEGER N.IR,JA,JAAIB.IX,IBB K IFAIL
DOUBLE PRECISION A(IA,N)AA(IAA,N),P(N)B(B,IR ),EPSX(IX,IR),
BB(IBB,IR)
Parameters
N Input On entry, N specifies the order of the matrix A.
IR Input On entry, IR specifies the number of right hand sides. For the

calculation of the inverse IR =N.

A(A,N) Input On entry, the Nby N matrix A.
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IA

AA(IAA,N)

TIAA

P(N)

B(IB,IR)

IB

EPS
X(X,IR)

IX

BB(IBB,IR)
IBB

Input

Input

Input

Input

Input

Input

Input

Output

Input

Output

Input

Output

On entry, A specifies the first dimension of the array A as

declared in the (sub) program from which FO4AHF is called.
IA2N

On entry, AA contains details of the LU factorisation as
returned by FO3AFF.

On entry, JAA specifies the first dimension of the array AA as

declared in the (sub) program from which FO4AHF is called.
IAA 2N

On entry, P(N) contains details of the row interchanges as
returned by FO3AFF.

On entry, the N by IR right hand side matrix B. For the
calculation of the inverse this will be set to the N by N identity
matrix.

On entry, IB specifies the first dimension of the array B as
declared in the (sub) program from which FO4AHF is called.
IB2N

On entry, EPS must be set to the value of machine precision.
This value is implementation dependant.

On exit, the N by /R solution matrix X.

On entry, IX specifies the first dimension of the array X as
declared in the (sub) program from which FO4AHF is called.
IX2N

On exit, the N by IR residual matrix R =B - AX.

On entry, IBB specifies the first dimension of the array BB as
declared in the (sub) program from which FO4AHF is called.
IBB 2N

On exit, K specifies the number of iterations needed in the
refinement process.
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IFAIL

Input/Output

On entry, it is recommended that /FAIL be set to 0. Further
information can be found in NAG (1990).
On exit,
IFAIL =0 : successful termination
IFAIL = 1 : The matrix A is too ill-conditioned to produce
a correctly rounded solution.

C.2 Calculation of the Null Space of a Matrix

It was shown in chapter 5 that the null space of a matrix can be found using the singular
value decomposition (SVD) and that it is necessary to obtain the eigenvectors of a matrix to
carry out this decomposition. The NAG library routine FO2ABF can be used to obtain the
eigenvalues and eigenvectors of a matrix and hence allow the null space to be found. Again
further information can be found in NAG (1990).

Specification

SUBROUTINE F02ABF(A,/AN,R,V,IV.E IFAIL)

INTEGER

DOUBLE PRECISION
Parameters

A(/A,N) Input

IA Input

N Input

R(N) Output

V({IV,N) Output

v Input

E(N) -

IAN,IV IFAIL
A(JA,N),R(N),VUV,N),E(N)

On entry, the lower triangle of the N by N matrix A. The
elements of the matrix above the diagonal need not be set.

On entry, A specifies the first dimension of the array A as
declared in the (sub) program from which FO2ABEF is called.

IA2N
On entry, N specifies the order of the matrix A.

On exit, the eigenvalues in ascending order.

On exit, the normalised eigenvectors, stored by columns.

On entry, IV specifies the first dimension of the array V as
declared in the (sub) program from which FO2ABF is called.

IV2N

Used as workspace.
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IFAIL Input/Output  On entry, it is recommended that /FAIL be set to 0. Further
information can be found in NAG (1990).
On exit,
IFAIL =0 : successful termination
IFAIL =1: More than 30 xN iterations are required to
isolate all the eigenvalues.

C.3 Non-linear Optimisation

There are a number of NAG optimisation routines for various types of problem. The most
suitable routine in this case is EO4JAF. It is a quasi-Newton algorithm for finding the minimum
of a function without explicit first or second order derivative information. It provides the facility
for specifying bounds which will not be used in this case. Further information on this routine
and other optimisation algorithms can be found in NAG (1990).

Specification

SUBROUTINE E04JAF(N,/BOUND,BL,BU X ,F,IW,LIW,W,LW IFAIL)

INTEGER N,IBOUND JW(LIW),LIW LW ,IFAIL
DOUBLE PRECISION BL(N),BUN)X(N),F,W({LW)

Parameters
N Input On entry, N specifies the number of independent variables.
IBOUND Input On entry, To specify no bounds /BOUND =2.
BL,BU - Not used.
X(N) Inpuy/Output  On entry, X specifies the starting point.
On successful exit, it contains the position of the minimum.
F Output On exit, F contains the value of the function at the minimum.
IW(LIW) - Used as workspace
LIW Input On entry, LIW specifies the first dimension of the array /W as
declared in the (sub) program from which EO4JAF is called.
LIW 2N +2
W(iIwW) - Used as workspace
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Appendix C

LW

IFAIL

Input

Input/Output

On entry, LW specifies the first dimension of the array W as

declared in the (sub) program from which EQ4JAF is called.
LW 2 max((N(N - 1)/2)+ 12N, 13)

On entry, it is recommended that /FAIL be set to -1. Further
information can be found in NAG (1990).

On exit,
IFAIL =0 :
IFAIL=1:
IFAIL =2 :
IFAIL =3 :
IFAIL =4 :
IFAIL =5
IFAIL =6
IFAIL =17 :
IFAIL =8 :
IFAIL =9 :

successful termination
specified parameter not in required range.

there have been 400 x N function evaluations
yet the algorithm does not seem to be con-

verging.

the conditions fora minimum have notall been
satisfied but no lower point could be found.

an overflow has occurred.

there is some doubt about whether the point
found is aminimum. The degree of confidence
decreases as /FAIL increases.

The modulus of one of the variables has
become very large.
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The routine needs an associated user specified routine to calculate the value of the cost

function at any given point. The routine must be declared as EXTERNAL in the calling (sub)
program and have the following format.

Specification
SUBROUTINE FUNCT1(N XC,FC)

INTEGER N
DOUBLE PRECISION XC(N),FC

Parameters
N Input On entry, N specifies the number of independent variables.
XC(N) Input On entry, XC specifies the point at which the cost function is
to be evaluated.
FC Output On exit, FC contains the value of the cost function.
REFERENCES
NAG (1990)

*Fortran Library Manual Mk 14’
Numerical Algorithms Group Lid, Oxford, UK.
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APPENDIX D

ACSL SIMULATION PROGRAMS

D.1 Open-Loop Simulation

This program simulated the open-loop hydraulic rig with nominal parameter values. Whilst
in the interactive ACSL environment these parameters can be easily altered using the SET
command to allow simulations of the perturbed system. The OUTPUT command is used to
effectively perform sampling as the displayed data is sent to a data file every NCIOUT*CINT
iterations, where CINT is the time interval at which the DYNAMIC section is executed. An
appropriate choice of NCIOUT selects the sampling rate. The simulation is based on the fourth
order Runge-Kutta integration algorithm.

PROGRAM OLRIG *.....CALCULATE ANY DEPENDANT EQNS AND SET INITIAL CONDITIONS----*
TP = PP*CR*(1/ETAP)

»..OPEN LOOP SIMULATION OF THE HYDRAULIC RIG-----* PMIC=0.0
REAL TSTOP,AMP,OFFSET,TZ,PERIOD,WIDTH THDIC=0.0
REAL PS,B,KTHETA KS,CR ETAM,ETAP LD, VT K1 KT, PP,TP,PMIC,THDIC END $"OF INITIAL®

".....SBT DEMAND SIGNAL PARAMETERS AND STOP TIME-----*
CONSTANT TSTOP=1.5, AMP=0.16, OFFSET=0.72 DYNAMIC

CONSTANT TZs0.1, PERIOD=0.3333, WIDTH=0.16666 DERIVATIVE

*.....SET HYDRAULIC RIG PARAMETERS-----* *..SET UP DEMAND SIGNAL—--*
CONSTANT P5=68.96ES Vi=AMP*PULSE(TZ,PERIOD,WIDTH) + OFFSET
CONSTANT PP=22.98ES »....CALCULATE FLOW RATE THROUGH VALVE-----*
CONSTANT B=7000ES QV=KTHETA*KS*VI*SQRT(PS-PMB)
CONSTANT KTHETA=2.4E-6 s.....CALCULATE THE PRESSURE DIFFERENTIAL ACROSS THE MOTOR-—-*
CONSTANT KS=0.0625 PM=INTEG(((QV-CR *THD-K1 *PMB)*2*B/VT) PMIC)
CONSTANT CRw=9.56E-7 *.....PM CANNOT EXCEED THE SUPPLY PRESSURE-—-"
CONSTANT ETAM=l] PMB=BOUND(-PS PS,PM)
CONSTANT ETAP=1 »...-.CALCULATE THE MOTOR TORQUE----"
CONSTANT I=108E-4 TM=PM*CR*ETAM
CONSTANT D=S.4E4 *.....CALCULATE THE VELOCITY----*
CONSTANT VT=3.51E-S THD=INTEG((TM-D*THD-TP)A,THDIC)
CONSTANT K122.128-13 *.....HENCE THE OUTPUT VOLTAGE-----*
CONSTANT KTu=8.0E-3 VO=KT*TiHD

».....CHECK WHETHER STOP TIME EXCEEDED--—*
TERMT(T.GE.TSTOP)
INITIAL
END $“OF DERIVATIVE"

*..SET UP CINT AND THE NUMBER OF INTEGRATION STEPS-----* .

CINTERVAL CINT=0.0012 END $°OF DYNAMIC"

NSTEPS NSTEP=10 END $-OF PROGRAM*
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D.2 Closed-Loop Simulation

This section contains the program used to perform the closed-loop simulation of the
hydraulic rig. The DYNAMIC section which simulates the actual rig is the same as for the
open-loop simulation. The controller is contained in the DISCRETE section which simulates its

implementation on a computer. The interval at which this section is executed is determined by
DTSAMP.

All four controllers are defined and whilst in the ACSL environment the SET command

can be used to change the value of TYPE and hence select which controller is to be used. The
appropriate values are

1 - The minimum order controller
2 - The robust P, controller

3 - The robust P, controller

4 - The robust P, and P, controller

The output of the integrator has been rate limited and bounds set on its output as in Daley
(1987).

PROGRAM CLRIG *.....CALCULATE ANY DEPENDANT EQNS AND SET INITIAL CONDITIONS-~*
TP = PP*CR*(1/ETAP)
*.~-.CLOSED LOOP SIMULATION OF THE HYDRAULIC RIG----* PMIC=0.0
THDIC=0.0
REAL TSTOP,AMP,OFFSET,TZ PERIOD WIDTH ......DEFINE MINIMUM ORDER CONTROLLER-~-"
REAL PS,B KTHETA KS,CR,ETAMETAP,1D,VTK1,KT,PP,TPPMICTHDIC LH1)m
INTEGER LH(4),LG(4)LF(4) X,TYPE LENGTH LG(1)=2
REAL VC,UDOT,H(1 4),G(44).F(4,4),Y(10),U(10),UI10),W(10) LF(1)=1
REAL RATEL RATEUMAGLMAGU H(L1)=0.0818
G(1,1)=-0.1096
*.—SELECT CONTROLLER----" G2 Lw01914
CONSTANT TYPB=1 O3 1300
*.SET DEMAND SIGNAL PARAMETERS AND STOP TIME-----* Gl )f"';’
CONSTANT TSTOP=3.0, AMP=0.8, OFFSET=2.6 ;t;i;:)o
CONSTANT TZ=0.1, PERIOD=0.66666, WIDTH=0.3333 om0
*.—SET HYDRAULIC RIG PARAMETERS-~-* F(4,1)=0.0
CONSTANT PS=68.96BS e.....DEFINE ROBUST PS CONTROLLER-—-*
CONSTANT PP=22 98ES LH(2)=1
CONSTANT Ba7000.0BS LO(2)=4
CONSTANT KTHETA=24E-6 LR(2)=4
CONSTANT K$=0.0625 1) ,2)=0.0818
CONSTANT CR=9.56E-7 G(1.2)=0.1374
CONSTANT ETAMal G(2,2)=-0059
CONSTANT ETAP=1 G(3,2)=0.0038
CONSTANT In1 08B-4 G(4,2)=8 8239E-7
CONSTANT DaS4E4 P 2)=1.0
CONSTANT VT=3 S1E-5 R22)=-0.6412
CONSTANT K1=2.128-13 P(3,2)=-1 A714E-4
CONSTANT KT=8.08-3 P(4,2)n2.023E-10
«......DEFINE ROBUST PP CONTROLLER-—-*
NITAL LH(3)=1
LG(3)=d
*..—SET UP CINT AND THE NUMBER OF INTEGRATION STEPS-—-* LF(3)=t
CINTERVAL CINT=0.005 1K1,3)0.0818
NSTEPS NSTEP=10 G(1,3)=0.0544
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G(2,3)=0.0248
G(3,3)=0.0026
G(43)=5.9111E-7
F(13)=1.0
F(23)=-04256
F(33)=-9.7342E-5
F(4,3)=2.0230E-10

*.---DEFINE ROBUST PS AND PP CONTROLLER-~---*

LE(#)=1
LG(4)=4

LP4)=4

H(1 4)=0.0818
G(14)=0.1321
G(24)2-0.054
G(3.4)=0.0037
G(4 4)=8.6386E-7
P(1 4)=1
F(24)=-0.6274
F(3,4)=14397E-4
F(4 4)=2.023E-10

*---INITIALISE SIGNALS----"
DOL1 X =1,10
Y(X) = 0.0
UX) =0.0
UKX) = 0.0
W(X)=0.0
L1..CONTINUE
VC=0.0

*.----SET INTEGRATOR OUTPUT BOUNDS-----"
RATEL =-0.5

RATEU =0.5

MAGL =-2.0

MAGU =2.0

END $"OF INITIAL"

DYNAMIC
DERIVATIVE

VI=sAMP*PULSE(TZ,PERIOD,WIDTH) + OFFSET
QV=KTHETA*KS*VC*SQRT(PS-PMB)
PM=INTEG(((QV-CR*THD-K1 *PMB)*2*B/VT),PMIC)
PMB=BOUNDX(-PS PS ,PM)

TM=PM*CR*ETAM
THD=INTEG((TM-D*THD-TP)/;, THDIC)
VO=KT*THD

TERMT(T.GE.TSTOP)

END $°OF DERIVATIVE®

DISCRETE
INTERVAL DTSAMP=0.012

PROCEDURAL (VC=VO V)

DOL2X =19

Y(X) = Y(X+1)

W(X) = W(X+1)

UX) = U(X+1)

UKX) = UKX+1)
L2..CONTINUE
*----SAMPLE INPUT AND OUTPUT-----"
Y(10) = VO
W(10) = VI
*-—--CALCULATE CONTROL SIGNAL-—-~*
U(10) = 0.0
LENGTH = LH(TYPE)
DO L3 X =1,LENGTH

U(10) = U(10) + H(X, TYPE)*W(11-X)
L3..CONTINUE
LENGTH = LG(TYPE)
DO 4 X = 1,LENGTH

U(10) = U(10) - GX. TYPE)* Y(11-X)
L4..CONTINUE
LENGTH = LF(TYPE)
DOLS X = 2LENGTH

U(10) = U(10) - FX, TYPE)*U(11-X)
L5.CONTINUE

*«----CALCULATE INTEGRATED CONTROL SIGNAL Ul-~.*

UK10) = U(10) + UKY)

*.---RATE LIMIT CONTROL SIGNAL-----"
UDOT = Ui(10) - UK(9)

IF (UDOT.LT RATEL) UI(10) = UK9)+RATEL
IF (UDOT.GT.RATEU) UI(10) = UK9)+RATEU

*..---MAGNITUDE BOUNDS ON CONTROL SIGNAL-----

IF (U1(10).LTMAGL) UI(10) = MAGL
IF (U1(10).GT.MAGU) UI(10) = MAGU
VC = UK10)

END $"OF PROCEDURAL*

END $"OF DISCRETE"

END $“OF DYNAMIC*

END $"Of' PROGRAM*®

----- MAINTAIN ARRAYS OF LAST TEN SAMPLES—-*
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NOMENCLATURE AND SYMBOLS

GENERAL

RHS Right hand side.

w.r.t With respect to.

z? Backward shift operator.

a(t) Discrete time signal.

a(t—n) Value of a(t) at the n’th previous sample.

Ela%)] Variance of a(¢).

A,(z") Polynomial in terms of the backward shift operator. Note thatin chapter 2 polynomials are expressed
as A, to make the notation more easy to follow.

A0 By, Coefficients of the polynomial A,(z™).

Az Estimate of A,(z™").

A1) Steady state value of A,(z™).

I, Identity matrix of dimension n x n.

0; Zero matrix of dimension i X j.

diag['] Diagonal matrix.

a Column vector.

a’ Row vector.

il General vector or matrix norm.

P Frobenius norm.

i, P or Holder norm, where p = 1,2 or .

K(A) Condition number of the matrix A, defined as

x(A)=lAI1A7Y
[A), The first x rows of the matrix A.
y The first y columns of the matrix A.
y Used in context to represent the sub-block of the matrix A.

Incremental change in A.

dA Differential of A.

A Complex conjugate of A.

Real vector space of real n-dimensional vectors.
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Nomenclature and Symbols

POLYNOMIAL SYSTEMS

w(t) Demand signal.

u(t) Control input.

y(® System output.

e(t) White noise sequence.

o’ Variance of e(r)

d(t) Disturbance term.

Az, Open-loop system polynomials.

B,(z™)

3,8 " Coefficients of A,(z™").

be by, Coefficients of B,(z™").

Ry, My Orders of A,(z™') and B,(z™) respectively.

C,(z 1 Colouring polynomial for the white noise sequence e(¢).
C1yCp " Coefficients of C,(z™).

n, Order of C,(z™").

Iy Time delay.

F,(z™), Controller polynomials.

G,z

Jofi Coefficients of F,(z™).

8081 Coefficients of G,(z™).

1, Orders of F,(z™) and G,(z™") respectively.

Hy(z™) Precompensator polynomial.

ho, by, -+ Coefficients of H,(z™).

n, Order of H,(z™).

H,'(z™") Precompensator term selected for zero steady state error.
ny Order of H P'(z").

T, Polynomial used to specify the desired closed-loop pole positions.
bty Coefficients of T,(z™).

n, Order of T,(z™").

-211-



Nomenclature and Symbols

Solution of the Diophantine Equation by Polynomial Methods

GCD
&

F 0 Go
X

4

Colo
Py, Q,
R,,S

PP

Greatest common divisor.

GCD of A,(z™") and B, (z™").

Solution to the diophantine equation.

Arbitrary polynomial in general solution.

Result of dividing C,(z™)T,(z™) by 8, and must be polynomial for a solution to exist.
Pair of coprime polynomials which satisfy AP, +B,Q,=g,.

Pair of coprime polynomials which satisfy AR, +B,S,=0.

Quotient polynomial.

Remainder polynomial.

Solution of the Diophantine Equation by Matrix Methods

A, Sylvester matrix.
X Vector of the coefficients of F,(z™") and G,(z™).
b Vector of the coefficients of C,(z™)T,(z™).
U, Upper bound on the relative perturbation, || Ax{j/|| x| .
N, Number of columns of A,.
N, Number of rows of A,.
N, Number of unknowns (the number of F,(z™') and G,(z™") coefficients).
N, Number of equations represented by Ax = b.
STATE SPACE SYSTEMS
n Number of states.
m Number of inputs.
r Number of outputs.
k Discrete time sequence.
u(k) Input signal equivalent to the input for the polynomial system.
y(k) Output signal equivalent to the output for the polynomial system.
u(k) Multivariable input signal (with augmented dynamic compensator).
y(k) Multivariable output signal (with augmented dynamic compensator).
x(k) State vector.
AB,C Open-loop system matrices
A, Closed-loop system matrix.
P Order of the dynamic compensator.
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Nomenclature and Symbols

hk &N

-

Ng|__§q'!1t~<b.=

Q I

The Parametric Method of Fahmy and O’Reilly

Output feedback controller gain matrix.
State feedback controller gain matrix.
The i’th closed-loop eigenvalue.

Set of closed-loop eigenvalues.

The i’th right eigenvector.

Matrix of right eigenvectors.

The associated i’th right free parameter vector.

Matrix of right free parameter vectors.

The i’th left eigenrow.

Matrix of left eigenrows.

The associated i’th left free parameter vector.

Matrix of left free parameter vectors.

s Defines the split for the multistage design.

B Input reduction matrix.

¢ Output reduction matrix.

K General Output feedback controller gain matrix obtained by either the first or second stage.
K, Controller gain matrix obtained by the first stage.

K, Controller gain matrix obtained by the second stage.

K Output feedback controller gain matrix obtained after the application of either an input or

output reduction matrix.

The Parametric Method of Daley

q =n-r.
F, The first r columns of the matrix F.

F, The r + 1 to n columns of the matrix F.

Vin Via, Sub-blocks of the matrix V.

Va, Va

v i'th column of V;;.

r Vector consisting of all the vectors in F,.

¢ I" must lie in the null space of this matrix.

Z Fori =r +1 — n, specifies the set of matrices whose null spaces the F, vectors must lie in.
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Nomenclature and Symbols

COST FUNCTIONS

u Number of error terms.

P, Structural information on the errors in A.

0, Structural information on the errors in B.

g, Unknown magnitude of the 1’th error term.

J, Eigenvalue differential cost function.

J, Eigenstructure differential cost function.

Jy Transient response differential cost function.

J, Conditioning cost function.

B Weights used in the eigenvalue differential cost function.

N, Weights used in the eigenstructure differential cost function.
Y Weights used in the transient response differential cost function.
c Weight used when combining terms in a cost function.

IMPLEMENTATION AND APPLICATION OF THE METHOD

SVD Singular value decomposition.
A, Real matrix or real part of a complex matrix.
A; Imaginary part of a complex matrix.
A, Used in context to denote a complex matrix.
N, Number of free parameters.
N, Number of residuals.
xT Vector specifying the initial values for the free parameters.
wr Vector specifying the values of the weights
Joi Original value of the cost function.
J ot Final value of the cost function.
HYDRAULIC RIG
0, Flow rate through the spool valve.

y Spool valve displacement.

g Supply pressure.

. Pressure differential across the motor.
K, Valve flow coefficient.
0 Shaft position.

Motor displacement.
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Nomenclature and Symbols

Total trapped volume.

Oil bulk modulus.
Leakage coefficient.

Motor torque.
Efficiency of the motor.

Total inertia.
Viscous friction coefficient.

Pressure differential across the pump.

Efficiency of the pump.

Pure gain term for the servo and torque motor.

Tachometer constant.

Input voltage.

Output voltage.

Loss function.

Akaike’s final prediction error.
Number of data points.

Number of parameters in the model.

Parameter vector.

Prediction error.
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