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Abstract 

Helicopters are inherently unstable, very non-linear and highly cross-coupled, and therefore must be 

augmented with feedback control to reduce the pilot workload to an acceptable level. Single-input 

single-output loop-at-a-time techniques form the orthodox approach to control law design. However, 

with increasing demands on the control law and the advent of helicopter fly-by-wire, these techniques 

are seen to be inadequate. While multivariable techniques form the natural successor, practitioners 

have been slow to embrace them. Discouraged by their abstract nature and perceived inadequacies 

such as lack of visibility and limited influence on the control law structure. 

This thesis develops an output feedback eigenstructure assignment technique with the purpose of 

meeting the needs of practising engineers. It begins by reviewing some basic helicopter flight dy­

namics and pays particular attention to producing a linearisation of the non-linear dynamics. The ap­

plicable handling qualities specifications are examined and a visible link between the British specific­

ation (Def-Stan 00-970) and a desired eigenstructure is developed. A new approach to eigenstructure 

assignment theory is presented and applied to a derive two stage assignment technique. Several ex­

tensions to the two stage technique are developed, these include multi stage assignment, retro assign­

ment and a novel projection technique that better enables the designer to meet the assignment goals. 

A technique that allows a trade-off between eigenvalue and eigenvector design goals is also presented 

and shown to have an analytical solution for the case of real eigenvalues. 

Eigenstructure assignment has no inherent mechanism for ensuring robustness. Therefore a post­

assignment robustness improvement algorithm is developed. The algorithm attempts to preserve per­

formance while improving either a time domain or singular value robustness measure. The complete 

design methodology is applied to the development of an attitude command control law for the hover 

case and good results are shown. While helicopter control laws are the motivating application, both 

the eigenstructure assignment and robustness improvement techniques are generic. 
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error associated with state space B-matrix 
error associated with state space C-matrix 
error associated with state space D-matrix 
Dirac impulse 
the Kronecker delta 
absolute error tolerance 
proportional error tolerance 
unit of imaginary numbers (v'=I) 
a vector operator that differentiates with respect to the elements of TJ 
a diagonal matrix of system eigenvalues 
a matrix of desired eigenvalue locations 
a matrix of desired eigenvalue locations for stage one 
a matrix of desired eigenvalue locations for stage two 
the ith eigenvalue 
set of allowed values for the ith eigenvalue 
the ith desired eigenvalue location 
optimum value for the ith eigenvalue 
the ith singular value 
maximum singular value 
minimum singular value 

Page xiv 



Nomenclature 

p{X) 
JL{X) 
cp 
8 
80 
8t 

VJ 
n 
W 

Wr 

Tp , 
A 
A 
A 
ACL 

Al 
als 
B 
13 
13 
BI 
hi 
bIs 

C 
en 
enxm 

c 
C 
C 
<t(s) 
Ci 

D 
i> 
d 
det(-) 
diag(·) 
er 
F 
Fz 
Fg 
Fz 
fi 
fOi 
G 
G(s) 
Go{s) 
g(s) 
gi 

spectral radius or maximum eigenvalue of X 
the structured singular value of X 
roll angle in the body axis set 
pitch angle in the body axis set 
main rotor collective pitch angle 
tail rotor collective pitch angle 
yaw angle in the body axis set or blade azimuth angle 
angular velocity of rotor blades 
frequency in radians 
flapping resonant frequency 
phase delay 
damping factor 
state space A-matrix 
state space A-matrix for a system with protected eigenvalues 
state space A-matrix for an augmented system 
state space A-matrix of the closed loop system 
lateral cyclic coefficient 
rotor lateral cyclic state 
state space B-matrix 
state space B-matrix for a system with protected eigenvalues 
state space B-matrix for an augmented system 
longitudinal cyclic coefficient 
a single state space input vector corresponding to the ith. input 
rotor longitudinal cyclic state 
the set of all complex numbers 
an n dimensional vector of complex numbers 
an n x m matrix of complex numbers 
state space C-matrix 
state space C-matrix for a system with protected eigenvalues 
state space C-matrix for an augmented system 
mode controllability subspace for the eigenvalue location s 
a single state space output row vector corresponding to the ith output 
state space D-matrix or diagonal scaling matrix 
state space D-matrix for an augmented system 
an optimisation descent direction 
determinant of a matrix 
a diagonal matrix 
approximation error 
a block diagonal matrix of right design vectors 
total force along x-axis 
total force along y-axis 
total force along z-axis 
the ith. right design vector 
optimum ith. right design vector 
a block diagonal matrix of left design vectors 
MIMO transfer function matrix 
a nominal open loop system 
a SISO transfer function 
the ith. left design vector 
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Nomenclature 

H 
Hc 
h 
h 
h 
hi 

h(t) 
Im(x) 
I 
1r 
1xz 

1zy 

Iyy 

Iz;z; 
Je 
Ju 
ker(X) 
K 
K(8) 
Lj 
Lc 
L 
Lp 
Lq 
Lu 
Lv 
£(s) 
M(s) 
Mj 

M 
Mp 
Mq 
Mu 
m 
in 
N 
Nr 

Np 
Nu 
D(8) 
Pi 
P(s) 

Px 
P 
Qi 
Q(S) 

a Hessian matrix 
a matrix of concatenated Hessian vectors (h) 
Hessain matrix expanded as a vector by stacking its columns 
height 
rate of change of height 
flapping hinge offset 
Heaviside or unit step function 
the imaginary part of x 
the identity matrix 
moment of inertia of rotor blade 
moment of inertia of body about x axis 
product of inertia in the plane xy 
moment of inertia of body about y axis 
moment of inertia of body about z axis 
cost function for a constrained optimisation 
cost function for an unconstrained optimisation 
the null space of X 
matrix of static feedback gains 
feedback controller 
range(Lj) spans the allowed left eigenvector subspace 
range(LcT ) spans the allowed mode controllability subspace 
roll moment in body axis set 
change in roll moment due to a change in roll rate 
change in roll moment due to a change in pitch rate 
change in roll moment due to a change in forward speed 
change in roll moment due to a change in sideslip velocity 
the allowed left eigenvector subspace for the eigenvalue location s 
Single loop transfer function matrix 
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range(Mj) spans the output space associated with the allowed left eigenvector 
subspace 
pitch moment in body axis set 
change in pitch moment due to a change in roll rate 
change in pitch moment due to a change in pitch rate 
change in pitch moment due to a change in forward speed 
number of outputs or vehicle mass 
number of outputs for a reduced system 
yaw moment in body axis set 
change in yaw moment due to a change in yaw rate 
change in yaw moment due to a change in roll rate 
change in yaw moment due to a change in forward speed 
mode observability subspace for the eigenvalue location s 
range(P i) spans the input space associated with allowed right eigenvector subspace 
a polynomial matrix where range(P(s)) spans the input space associated with 
allowed right eigenvector subspace for the eigenvalue location s 
a projector on to the space range(X) 
roll rate in the body axis set 
range(Qi) spans the allowed right eigenvector subspace 
a polynomial matrix where range(Q(s)) spans the allowed right eigenvector 
subspace for eigenvalue location 8 



Nomenclature 

Qo 
q 
R 
R 
Re(x) 
9\(s) 
r 
f 
rj 

rank(X) 
range(X) 
Si 
sup(o) 
S 
51 
8(s) 
T 
T2 
T 
TOl 

T02 

Tu 

trace(o) 
U 
U 
u 
u 
u(t) 
V 
VI 
VD 
VDl 
VOl 

VI 
Vi 

V 

vec(X) 
W 
W2 

WD 

WD2 

WC2 

Wj 

W 

range(Qo) spans the allowed mode observability subspace 
pitch rate in the body axis set 
positive definite weighting matrix 
total length of a rotor blade 
the real part of x 
the allowed right eigenvector subspace for the eigenvalue location 8 

number of inputs or yaw rate in the body axis set or distance along a blade 
number of inputs for a reduced system 
the ith residue 
size of the largest non-singular minor of X 
the space spanned by the columns of the matrix X 
number of eigenvalues assigned in stage i 
supremum 
a matrix with columns equal to an assigned set of input vectors 
a matrix with columns equal to a subset of the input vectors 
feedback system sensitivity function 
a matrix with rows equal to an assigned set of output vectors 
a matrix with columns equal to a subset of the output vectors 
total lift generated by a blade 
time of the first zero crossing as specified by the Def-Stan 00-970 
time of the second zero crossing as specified by the Def-Stan 00-970 
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time taken for the response to decay to 10 percent of its peak value as specified by 
the Def-Stan 00-970 
time taken for the response to decay to 30 percent of its peak value as specified by 
the Def-Stan 00-970 
maximum time permitted to reach the specified steady state error as specified by 
the Def-Stan 00-970 
the trace matrix norm 
a unitary matrix 
speed normal to a blade 
state space input vector 
forward velocity in the body axis set 
time domain system input 
a matrix of right eigenvectors 
a matrix with columns equal to a subset of the right eigenvectors 
a matrix with columns equal to the desired right eigenvectors 
a matrix with columns equal to a subset of the desired right eigenvectors 
a matrix with columns equal to a set of assigned mode observability vectors 
total velocity 
the ith right eigenvector 
side velocity in the body axis set 
a vector produced by stacking the colmns of X 
a matrix with rows equal to the left eigenvectors 
a matrix with rows equal to a subset of the left eigenvectors 
a matrix with rows equal to the desired left eigenvectors 
a matrix with rows equal to a subset of the desired left eigenvectors 
a matrix with rows equal to a set of assigned mode controllability vectors 
the jth left eigenvector 
vertical velocity in the body axis set 



Nomenclature Page xviii 

XN state normalisation transform 
X(J change forward force due to a change in pitch attitude 
XF permitted steady state error as specified by the Oef-Stan 00-970 
x state space, state vector 
:ic derivative of the state vector 
xh cross-product state vector 
Xl maximum value of the first overshoot as specified by the Oef-Stan 00-970 
X2 maximum value of the second overshoot as specified by the Oef-Stan 00-970 
YN input normalisation transform 
YI/> change side force due to a change in roll attitude 
y state space output vector 
ye truncation error 
Yl response build-up after O.5s as specified by the Oef-Stan 00-970 
y(t) system output 
Zw change in vertical force due to a change in vertical velocity 



Abbreviations 

ACAH 
ACT 
ADMU 
ADOCS 
ADS 
AFCS 
ASE 
ATIHeS 
BIBO 
BW 
CAA 
CACSD 
CPU 
CSAS 
DFP 
DH 
FAA 
FBL 
FBW 
FCC 
FFf 
FPCC 
GA 
GM 
HH 
HLH 
LHP 
LOES 
LQG 
LQR 
LMI 
LTR 
MFD 
MIMO 
MTE 
OPE 
PlO 
PM 

Attitude Command Attitude Hold 
Active Control Technology. 
Actuator Drive and Monitor Units. 
Advanced Digital/Optical Control System. 
Aeronautical Design Standard. 
Automatic Flight Control System. 
Automatic Stabilisation Equipment 
Advanced Technology Testing Helicopter System. 
Bounded Input Bounded Output 
Bandwidth 
Civil Aviation Authority 
Computer Aided Control System Design. 
Central Processing Unit. 
Control and Stability Augmentation System. 
Davidon Fletcher Powell 
Direction Hold 
Federal Aviation Authority 
Fly-by-Light. 
Fly-by-Wire. 
Flight Control Computer. 
Fast Fourier Transform. 
Flight Propulsion Control Coupling 
Genetic Algorithm 
Gain Margin 
Height Hold 
Heavy Lift Helicopter. 
Left Half Plane; referring to the complex s-plane. 
Low Order Equivalent System 
Linear Quadratic Gaussian. 
Linear Quadratic Regulator. 
Linear Matrix Inequalities 
Loop Transfer Recovery. 
Matrix Fraction Discription 
Multiple Input Multiple Output. 
Mission Task Element 
Operation Flight Envelope 
Pilot Induced Oscillation 
Phase Margin 
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Abbreviations 

QFT 
RC 
RHP 
SAS 
SISO 
SRM 
SSV 
SVD 
TAGS 
TBA 
TRC 
TPP 
UCE 

Quantitative Feedback Theory 
Rate Command 
Right Half Plane; referring to the complex s-plane. 
Stability Augmentation System 
Single Input Single Output. 
Step Response Model 
Structured Singular Value 
Singular Value Decomposition 
Tactical Aircraft Guidance System. 
To Be Advised 
Translational Rate Command 
Tip Path Plane 
Usable Cue Environment 
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All high performance aircraft employ feedback control to achieve the desired level of performance, 

handling and stability [BDG94). Helicopters are inherently unstable, highly cross-coupled and very 

non-linear [Pad96, Pr090). Hence feedback control is particularly important. Conventional feed­

back control implementations consist of three main components: sensors to measure body rates and 

attitudes, analogue or digital hardware to realise the control law and limited authority actuators to 

apply the control output. To the best of author's knowledge all the control laws currently flying on 

commercial helicopters have been designed using a single-input-single-output (SIS0) loop-at-a-time 

technique [Tay97J. This technique involves pairing the inputs and outputs, then applying classical 

frequency domain or root locus ideas to design an independent control law for each loop. While SISO 

loop-at-a-time techniques are established and proven in practice, they do have some drawbacks. For 

instance: 

• Despite the independent control laws cross-coupling in the helicopter will cause the feedback 

loops to interact, often to the extent that closing one loop forces a re-design of other loops. This 

leads to a labour-intensive, and thus costly, design process . 

• Using the gain and phase margins of the individual feedback loops to estimate the robustness . 

of the system as a whole has been shown to be dangerously misleading [DS81). 

From a control theory perspective, the use of S1S0 techniques is ill-suited to what is clearly a multi­

input multi-output (MIMO) problem. 
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Multivariable techniques promise to overcome many of the problems of their SISO counterparts. In­

creasing demands for cost efficient design and improved performance are forcing an examination of 

these techniques. Perhaps the single most important factor driving the move towards multi variable 

techniques is the advent of full authority fly-by-wire (FBW) systems. 

1.1 Development of Helicopter Fly-by-Wire 

Fly-by-wire describes aircraft in which the mechanical links between the pilot controls and the control 

surfaces have been replaced by electrical connections l
• The two major benefits of FBW are weight 

reduction, due to omission of the mechanical control runs, and the ability to use a full authority Auto­

matic Flight Control System (AFCS). By inserting a computational component between the pilot and 

the airframe a full authority AFCS opens up a number of opportunities [Ba194, BDG94, LDDK94]: 

• Reduced pilot workload through improved handling qualities. 

• Increased airframe design freedom, due to gust and manoeuvre load reduction, greater toler­

ance of airframe instabilities and an enhanced ability to accommodate body flexure modes. 

• Command limiting and improved handling will enable an extended operational flight envelope 

with a more consistent response throughout the envelope. 

• Greater subsystem integration, leading to; more complex autopilot modes, better fuel economy 

and less vibration [RN94]. 

• Improved decoupling, by moving mechanical decoupling and mixing components into the con­

trol system. 

• The ability to use side-stick configurations for further weight and space saving. 

• The ability to define alternative interpretations of pilot commands. 

• Improved gust and turbulence rejection for a more stable hover platform and better ride quality. 

With the increased authority of the control law comes increased responsibility, both in terms of safety 

and handling. For instance, since the pilot will apply all control commands through the AFCS, its 

performance will, now more than ever, determine the vehicle handling. The design engineer will 

need a precise understanding of the piloting requirements in order to avoid inadvertently introducing 

new handling problems. 

Fully exploiting the opportunities of FBW presents some significant engineering challenges, espe­

cially in the areas of fault tolerance, control law design and handling qualities. Despite the engineer­

ing challenge, the lure of such an array of benefits has prompted helicopter manufacturers to invest­

igate fly-by-wire. Boeing undertook the first research programme in the late '60s with the Tactical 

lOptical connections may also be employed this is sometimes called F1y-by-Light (FBL). 
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Aircraft Guidance System (TAGS) [LDDK94]. This incorporated a full authority controller and a 

side-stick inceptor. Between '71 and '74 Boeing continued development of FBW systems with the 

Boeing 347 Heavy Lift Helicopter (HLH) demonstrator. This was a twin rotor helicopter and its full 

authority APCS demonstrated Level 1 handling qualities plus an impressive precision hover. In the 

early 80s Boeing initiated the Advanced Digital/Optical Control System (ADOCS) programme. This 

involved modifying a Black Hawk UH60 with FBW and side-stick controls. It was used for an ex­

tensive investigation into handling qualities and control law design issues [TFMT89, Tis87]. In 1991 

Boeing's research into FBW culminated in the US military choosing a Boeing-Sikorsky partnership 

to develop a new scout/attack helicopter, the Comanche RAH-66. The Comanche is based on res­

ults of the ADOCS programme and incorporates a full authority FBW AFCS, an optical data bus, 

a side-stick inceptor and integrated full authority engine management [LDDK94, Har96]. In Janu­

ary 1996 the Comanche made its maiden flight [Har96], although the Congressional Budget Office 

(CBO) have cast doubts on the future of the Comanche [McD96]. As well as Boeing, McDonnell 

Douglas/Bell have also developed a FBW system, called the Advanced Digital Flight Control Sys­

tem (ADFCS). This has been implemented on a AH-64 Apache AV05 and has demonstrated good 

handling qualities [Pad96]. 

In Europe, progress has been slower. Two important milestones are the GKN Westland Helicopter's 

EHI0l and the EurocopterNH90. The EHI01 is notFBW, but it is the first European helicopter with 

a wholly digital APCS and the first helicopter in the world to attain simultaneous flight certification 

from the Federal Aviation Authority (FAA) and Civil Aviation Authority (CAA) in Britain and Italy 

[Har96]. A fully digital APCS and civil certification of safety critical software is an important step 

towards FBW. The NH90 [Fla96] will have FBW control. A prototype2 made its maiden flight in 

December 95. The DLR Institute flir Flugmeckanik installed FBW controls on a BOlOS. The heli­

copter was known as the Advanced Technology Testing Helicopter System (ATTHeS) and used as a 

variable stability platform for the investigation of handling qualities. It was not intended as a basis 

for the development ofFBW technology. For instance, due to very limited fault tolerance it relied on 

a second pilot for safety. 

The progression of the helicopter industry towards FBW has far reaching implications for control law 

design, some of which are highlighted below: 

• Improved handling qualities with command interpretation will require more sophisticated con­

trollaws. 

• Integration with subsystems and the need for more sensor data to implement load reduction 

and suppression of flexure modes will increase the number inputs and outputs. This will lead 

to larger control laws. 

• The combination of composite materials and bearing-less rotor heads will produce lower fre­

quency, more excitable, flexure and rotor modes. It is likely these modes will couple with the 

2The NH90 prototypes are believed to have mechanical backup [Elp96]. 
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rigid body dynamics, especially when high bandwidth control laws are used. Mode coupling 

will make control law design more difficult. 

• The increased dependence upon the control law to meet performance goals and the growing 

impact of the airframe and rotor designs on the control law solution, will require the control 

law design to be initiated earlier as a parallel task that forms an integral part of the vehicle 

design. 

• Multi-mode AFCSs will be needed for mission tailored handling qualities this will require more 

control laws. Furthermore, gain scheduling will be needed to maintain performance across the 

flight envelope and extend it into non-linear regions. Each schedule implies an additional con­

trollaw. Thus an increased number of control laws will be needed. 

• The complete AFCS will use switching logic and scheduling algorithms to combine all the con­

trollaws. Efficient integration will place constraints on the control law structure. For instance, 

scheduling a large number of gains or changing structure between schedules introduces imple­

mentation complexity and consumes processing resources. Hence, a possible constraint may 

be to prescribe the controller structure and number of gains. 

• For both good robustness and improved response decoupling a cross-coupled controllaw3 will 

be required. This has implications, not only for the control law structure, but also for the fault 

tolerant approach [Elp96]. Conventionally, decoupled control laws are implemented in chan­

nels and, in case offailure, replicated as lanes. Cross-coupled control laws are not readily com­

patible with such an approach and, faced with this problem, some developers have adopted al­

ternative architectures. For instance, the Boeing Comanche and NASA X29 [CBBB94] both 

employ a hierarchical approach where failure causes reversion to simpler control laws and, for 

the extremely unstable X29, the final backup is implemented in analogue hardware. 

• The need for greater agility will require higher bandwidth control laws with special attention 

paid to the response poise and sensitivity. This willforther complicate the control design pro­

cess. 

• The lack of a mechanical backup ensures that the full authority AFCS and its control laws will 

be subject to very close scrutiny during the certification process. Since exhaustive testing is 

not possible, it will be incumbent upon the manufacturers to demonstrate that their control law 

design approach produces control laws that are absolutely safe. Constructing a convincing ar­

gument will, to some extent, depend on the concepts on which the design approach is based 

and the visibility of the design process as a whole. Robustness will also have an important role 

to play in demonstrating safety. The magnitude of this problem should not be underestimated 

and it is pertinent to point out that none of the rotorcraft FBW developments to-date have been 

for the civil market. 

3The Comanche AFCS uses a fully populated decoupling matrix that is scheduled with forward speed [LDDK94]. 
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• A multi-objective approach to control law design will be needed to achieve the array of benefits 

that a full authority APCS can bring. Inevitably, objectives will have to be traded-off and the 

design process should make the trade-offs evident and facilitate Jast design iterations. 

Consideration of the above points, in particular robustness, fast design iterations, increased complex­

ity, difficulty and size, indicates that SISO loop-at-a-time techniques will be inadequate for the next 

generation of helicopters. Large sophisticated, cross-coupled control laws are needed to exploit the 

opportunities of FBW. Only multivariable techniques can deliver this. 

Development of a civil FBW aircraft is a tremendous engineering challenge and to mitigate the risk, 

manufacturers may wish to develop intermediate aircraft, as a stepping stone. One approach may be 

to use MIMO techniques to develop control laws for the existing limited authority, decoupled SISO 

architectures. Unfortunately, other than a shorter development time, this approach is unlikely to offer 

much performance improvement over its well refined SISO predecessors. An alternative intermediate 

step would be a limited authority, cross-coupled control law. This would offer some performance 

improvement and the opportunity to develop and certify a fault tolerant harness suitable for FBW 

whilst having the reassurance oflimited authority. 

Helicopters have a relatively long product life. For instance, aircraft designed in the sixties, such 

as the Lynx and Sea-King, are still popular today. This factor may force manufacturers to reject an 

intermediate step and move directly to fly-by-wire. FBW does not preclude the possibility of a core 

or backup analogue control system and this may prove necessary to ease certification and reduce the 

risk associated with a FBW design. 

While offering many benefits, MIMO techniques do introduce their own problems; some of which 

have lead to a practice-theory gap. 

1.2 The Practice-Theory Gap 

Although, MIMO techniques offer many benefits their popularity among practitioners does not reflect 

this. For instance, Blight et al [BDG94] state: 

'It is well-known that post-1960 developments in control theory have seen relatively little 

application in production aircraft designs. ' 

There are a number reasons why practitioners have not embraced multivariable techniques, Blight et 

al [BDG94] highlight four key deficiencies as issues: 

1. Control problems that actually require modem multivariable methods for their 

solution. 

2. Easy-to-use software to perform modem methods. 

3. Education in the benefits and use oJ new methods. 
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4. Research to close the practice-theory gap. 

Issue one will, without question, be satisfied by future rotorcraft AFCS requirements and atten­

tion is focused on issue four. It is the author's belief that, while there are perceived inadequacies 

with multi variable methods the motivation to develop software tools and educate engineers will be 

severely abated. Perhaps the two perceived inadequacies that have contributed most significantly to 

the practice-theory gap are visibility and controller structure. 

1.2.1 Design Visibility 

With existing SISO loop-at-a-time techniques the design engineer starts with an initial design, eval­

uates its performance then adjusts gain values or adds compensator elements until the desired per­

formance is achieved. A positive side effect of this, labour-intensive, approach is that the engineer 

will understand the function of each compensator element and the effect of varying gain values. 

The design parameters used by multivariable techniques are no longer the gains themselves, but al­

ternative quantities such as positive definite weighting matrices or transfer functions for shaping fre­

quency responses. The controller is synthesised from the design parameters using a complex math­

ematical process that obscures the link between the design parameters and the individual gain values. 

The final controller generally resists meaningful interpretation in terms of familiar SISO elements and 

the effect of changing gain values is difficult to reason. 

The loss of functional visibility has practical implications beyond the reluctance of engineers to re­

linquish their low level understanding. For instance, control law design is normally based on linear 

models, but is ultimately applied to a non-linear plant. In order to maintain the desired performance 

the controller will invariably require adjustment or tuning [MMS88]. Conventionally, gain value 

adjustments are made based on experience and the engineer's low level understanding. The same 

approach is difficult to apply with controllers designed using multi variable techniques since the ef­

fect of gain value changes is poorly understood and the number of gains is often much larger. Loss of 

visibility also has implications for certification [HGS95] where manufactures will have to demon­

strate that their control laws are completely safe. While they can argue that their multi variable design 

technique is established and based on sound theory, ultimately, the manufacturer is left with a large 

complex control law, that resists a deeper explanation of how it works. 

There is an inherent conflict between visibility and multi variable techniques. For instance, it is un­

likely that any technique will offer the speed and convenience of a synthesised controller and also 

offer a full SISO interpretation without going through at least some of the rigour of a SISO design. 

Synthesised controllers are ill suited to gain based visibility but are better suited and more able to 

offer visibility in terms of their natural design parameters. Visibility of this form implies the design 

parameters should have a clear link with both the design objectives and the final performance. Man­

ness and Murray-Smith [MMS92] state: 
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Even when the system is well understood, the use 0/ multivariable control methods is 

fraught with difficulties due to the complexity of the dynamics and the complicated/orm 

0/ the design objective to be met, and the interaction 0/ these aspects of the controller 

design. 
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From this statement it is clear that if the design parameters have no visible link to the dynamics or the 

objectives then they will introduce an abstraction that will hinder an already difficult design process. 

It will be important to know how the design parameters relate to competing objectives if design trade­

offs are to be evident and an effective compromise found. 

Meaningful design parameters should allow tuning to be conducted by reworking the initial design, 

which is preferable to adjusting gain values directly. Since once the controller gain values are altered, 

continued development using the original synthesis technique is unlikley to be possible4
• For tuning 

by reworking the initial design to be effective the design approach must support fast design iterations. 

Computationally exorbitant optimisations5 are best avoided. 

While meaningful design parameters will not significantly help certification they do go along way to 

increasing design visibility. 

1.2.2 Controller Structure 

Using conventional SISO loop-at-a-time techniques the controller is built up block by block. The 

engineer has complete control over the controller structure and can trade-off performance against 

configuration. 

On the other hand, synthesis based multivariable techniques generally only offer a fixed-gain state 

feedback solution or an observer based output feedback solution [DGKF89]. In practice, state feed­

back can rarely be used and an observer must be implemented. The observer generally has a pre­

scribed structure and dynamic order equal to the plant model. The engineer is thus faced with imple­

menting a high order dynamic controller while having minimal influence over its structure. Model 

reduction techniques [Mo08!, AL89] can be used to simplify the controller but their effectiveness 

depends on the application and they offer no assistance in manipulating the controller structure. 

Fixed structure high order control laws have practical drawbacks. For instance, the control law must 

be combined with switching logic to be incorporated into the APCS. The inability to manipulate the 

control law structure will hamper integration and is likely to result in switching entire control laws 

which is computationally expensive and thus undesirable. Gain scheduling presents a similar problem 

where an increased number of gains will have to be updated. 

Generally, large control laws are undesirable since they require more computational resources, are 

cumbersome to integrate and are less visible. For instance, an appropriate SISO interpretation is more 

4Very few design approaches support the reverse mapping of gain values back to design parameters. 
S Parallel processing can be used execute computationally exorbitant optimisations in practical time scales [Dav94, 

Law94]. 
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likely to be found for a low order control law. 

1.2.3 Control Theory 

Gain scheduling and control law switching are widely accepted techniques. However, there is very 

little theoretical foundation for these techniques and issues such as maintained stability and bumpless 

transfer must be addressed using non-linear simulation and ad hoc solutions. While multi variable 

techniques do not particularly introduce new problems they do compound existing ones, since their 

emphasis on design through synthesis with a single set of design parameters accentuates the need for 

a more complete theoretical framework [HG93, Hyd95]. 

1.3 Multivariable Techniques 

Before deciding to apply eigenstructure assignment, several techniques were investigated and con­

sidered [Gri94, MGMS90]. An important factor in guiding the decision was the nature of the design 

objectives to be met. The current British military specification for handling qualities is the Def-Stan 

00-970 [Pit89]. This has received much less attention than its new US counterpart, the ADS 33 

[AVS89]. However, it remains the focus of British manufacturers, such as GKNWestland Helicopters 

Ltd [Tay94] and has consequently been adopted for this work. The Def-Stan uses time domain para­

meters to define the criteria most pertinent to control law design. Thus a key consideration has been 

how visibly the design parameters related to both the design objectives and time domain perform­

ance. Table 1.3.1 provides a very terse comparison of 11. co [Kwa93], the Linear Quadratic Gaussian 

(LQG) with Loop Transfer Recovery (LTR) [SA87], eigenstructure assignment, Quantitative Feed­

back Theory (QFf) [Hor82] and quasi-classical techniques such as the Characteristic Locus and the 

Inverse Nyquist Array [Mac89]. 

~ <i' ~ ~:~ <yru.~ "c <,; ~ .~ru 

11.00 X - - X 
LQRlLTR X - - X 

. Eigenstructure - X X X 
assicrnment 
QFf X - X -
QuasI-ClassIcal - - X -Techniques 

Table 1.3.1: A comparison of different multi variable techniques 

Eigenstructure assignment is the only technique that addresses the two issues important to narrowing 

the practice-theory gap: design parameter visibility and controller structure. The eigenstructure can 
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not only be related to the design objectives but, through its clear links with the time domain response 

[ASC83], it can also be related to the final performance. Working with the eigenstructure has fur­

ther benefits. It is a natural representation for the system dynamics, and its analysis is an established 

branch of aeronautical engineering [Pr090]. Thus the eigenstructure facilitates a free flow of inform­

ation between analysis and design, by allowing both control engineers and aerodynamicists to work 

with familiar concepts. This should aid an integrated approach to vehicle design. 

Eigenstructure assignment does not inherently encompass dynamic compensation but simple exten­

sions have been developed [Kim75] that give complete control over the dynamic compensator order 

and some ability to determine its structure through the choice of input/output variables. The facility 

to design low order compensators, that are more amenable to a SISO interpretation, should go some 

way to addressing functional visibility. 

Eigenstructure assignment is a very flexible and visible technique that offers great potential in meet­

ing the demands of helicopter control law design. It provides access to all the available design free­

dom and a range of add-ons have been developed [SSA94] to exploit this. These include techniques 

to prescribe the structure of the control law, deal with time delays and reduce gain magnitudes. The 

drawback of eigenstructure assignment is that it has no inherent mechanism for ensuring robustness 

and can assign a robust solution as easily as a catastrophically unrobust one. Robustness must be 

addressed using a post-assignment optimisation which will usually involve a trade-off with perform­

ance. Other researchers [GL90, HMMS90, Fav94] have also decided the benefits of eigenstructure 

assignment outweigh the robustness drawback and have achieved considerable success with the ap­

proach. 

The choice of multi variable technique does not have a single correct answer: diverse techniques can 

yield similar performing controllers. In fact, manufacturers may well adopt different approaches 

since factors such as in-house expertise, availability and cost of software, compatibility with existing 

design approaches and the target market (civiVmilitary) will also be important. 

It is the author's thesis that eigenstructure assignment harnessed in a suitable design methodology 

is an appropriate and effective means of developing helicopter control laws. The remainder of this 

thesis attempts to develop such a methodology. 

1.4 Thesis Overview 

To produce a more accessible document an effort has been made to write self-contained chapters. As 

a result each chapter has its own introduction, summary, suggestions for further work, references, and 

places the work in context as it is described. A brief outline of the chapters follows. 

Chapter 2 is an overview of the helicopter, since an understanding of its dynamics is essential back­

ground for any serious attempt at control law design. It includes a simple description of the system 

dynamics and flight mechanics, an outline of how to produce a computer simulation and trim it, de­

velopment of a novellinearisation approach and higher order approximations, modal analysis for the 
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hover case and an overview of a conventional AFCS and its implementation. 

In order to meet the design objectives the handling qualities requirements must be understood. 

Chapter 3 introduces handling qualities in general then describes the two currently most important 

handling qualities specifications. Criteria from the British specification (Def-Stan 00-970) are the 

used to develop an ideal eigenstructure. 

Chapter 4 details the eigenstructure assignment approach. It begins with the state feedback case and 

develops an extension that allows eigenvalue and eigenvector design objectives to be traded-off. The 

output feedback problem is then introduced. Previous approaches are described along with support­

ing theory, and fundamental limits are established. From this theoretical basis a two stage assignment 

technique is derived. This forms the core technique for a host of extensions which include, retro as­

signment, multistage assignment, sympathetic projection, iterative projection and others. The exten­

sions represent a set of tools that will enable the engineer to make best use of the available design free­

dom. It is then argued that assignment of eigenvectors in the state space is only of value when state 

space is aligned with the output space i.e. the states have physical significance. A general technique 

for assignment in the input/output spaces is developed. This involves assigning the modal coupling 

matrices. Dynamics compensation using an augmented system or an observer approach is then de­

scribed. Finally, some topics for further work are discussed. 

Any credible control law design approach must consider robustness. Chapter 5 presents two tech­

niques for post-assignment robustness improvement. The techniques use broadly the same algorithm 

but are based on different robustness measures; a time domain measure and a singular value based 

measure. The focus of both techniques is to improve robustness with minimal degradation in per­

formance. The chapter concludes with a summary and suggestions for further work. 

Chapter 6 presents a helicopter control law design example. An attitude command controller is de­

signed for the hover case. Different design approaches are explored and some design trade-offs are 

highlighted. The overall results are very promising and certainly indicate the potential of this tech­

nique. 

Chapter 7 draws together the results from the previous chapters and suggests how they might be com­

bined into a single practical and complete design methodology. This chapter also lists the significant 

contributions of this work and highlights a few of the most important topics for further work. 
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Any worthwhile attempt at helicopter control law design must be based on a sound understanding of 

the system dynamics. Hence this chapter gives a rudimentary overview of the helicopter dynamics. 

In practice, engineers employ computer simulations, trim algorithms and linearisations. This chapter 

describes the fundamentals of these tools and develops a novel approach to linearisation. A useful 

insight into the system dynamics can be gained from modal analysis of linearisations. Such an ana­

lysis is presented for the hover case. In an effort to learn from previous experience a conventional 

flight control law is examined. 

2.1 Flight Mechanics 

In its most primitive analysis, helicopter flight is merely a demonstration of Newton's third law. That 

is, accelerating a large mass of air downwards must produce an equal and opposing force that lifts 

the helicopter. The simplicity of this fundamental principle disguises the many problems that engin­

eers have had to overcome in making the helicopter a viable vehicle. First, it was necessary to stop 

the fuselage from spinning by adding a tail rotor or, for tandem configurations, ensuring the second 

rotor spins in the opposite direction. Then the problems of directing the vehicle around the sky must 

be solved. Intuitively, one might control the vertical acceleration by varying the main rotor speed, 

Page 13 
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however, this is not feasible. Since the large angular momentum of the rotor would require an im­

mense torque to induce a respectable rate of change in angular velocity. Instead the pilot uses the main 

rotor collective to vary the collective pitch (90) of the rotor blades and thus the amount of thrust de­

veloped. The blade pitching motion is often called feathering and is accomplished through of pitch 

bearing or feathering hinge. 

A similarly, elegant solution is employed to provide directional control. By using the lateral and 

longitudinal cyclic controls, the pilot can vary the angle of incidence of the rotor blades as a function 

of their angular position. This provides control over the distribution of lift across the rotor disk and 

effectively enables the main rotor thrust to be directed. Angular position or azimuth of the blades ('l/J) 

is defined according to Figure 2.1.1. The blade pitch (8) is described by: 

8 = 80 - Al cos'l/J - El sin'l/J (2.1.1) 

Where 80 is the collective pitch, 'l/J is the blade azimuth, Al is the lateral cyclic coefficient and El is 
the longitudinal cyclic coefficient. 

Equation (2.1.1) shows that the blade pitch is composed of both a fixed and a harmonic component. 

The cyclic rotor controls are represented by the longitudinal and lateral cyclic coefficients and exam­

ination of Equation (2.1.1) shows that rotor controls are phased by 90°. That is, the lateral coefficient 

determines the differential thrust in the longitudinal axis and conversely for longitudinal coefficient. 

The reason for this will be explained in Section 2.1.1. 
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In the cockpit, the pilot has a collective lever and cyclic stick. These are generally connected to a 

swash-plate assembly. This transfers the body-fixed controls to the rotating rotor system. It consists 

of both a fixed and a rotating plate. The rotating plate is connected to the blades and determines their 

pitch. The swash-plate is moved vertically to provide collective control and tilted to provide cyclic 

control. A typical arrangement is shown in Figure 2.1.2. 

The pilot also has two foot pedals to control the tail rotor collective (et). Depressing the left or right 

pedal decreases or increases the tail rotor thrust and is used to balance the main rotor torque reaction 

or control heading and side slip at low speeds. 

2.1.1 The Main Rotor 

The main rotor dominates the helicopter behaviour and dynamics, since it provides the lift, propul­

sion and the majority of the directional control. The specification of the main rotor will determine 

important performance limits for the vehicle as a whole; for instance, the maximum forward velocity. 

During forward flight, the air velocity normal to the rotor blade varies as function of the blade angular 

position. The forward airspeed (V,) combines the motion of the advancing blade to give an increased 

net air flow (U). Equally, the retreating blade suffers a reduced net air flow. A simple analysis shows 

that the air speed normal to the blade (U) is: 
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u = 11r + VJ sin t/J (2.1.2) 

Where 11 is the angular velocity of the rotor blades and r is the radial position along the blade. 

The reduced air flow over the retreating blade gives rise a region where there is no net forward air 

flow, this is known as the region of reverse flow. At the boundary of the reverse flow region the air 

speed normal to the blade will equal zero. Thus: 

0= 11r + VI sin(t/J) 

= 11r2(sin(t/J)2 + COS(t/J)2) + rVJ sin(t/J) 

Hence: 

(~~) 2 = (rsin(t/J) + ~~) 2 + (rcos(t/J))2 

(2.1.3) 

(2.1.4) 

(2.1.5) 

Examination of Equation (2.1.5) shows that the reverse flow region describes a circle whose radius 

(~) grows with increasing forward velocity (VI)' At high forward velocities the majority of the 

retreating blade lift is generated near the tip of the blade, which must adopt a high angle of incidence 

to generate enough lift. Eventually the forward velocity is limited by the point at which the retreating 

blade stalls i.e. the angle incidence becomes so large that the blade experiences very high drag and a 

rapid loss of lift. Modern helicopters use advanced rotor tip designs that delay the onset of stall and 

thus increase the helicopter's maximum forward velocityl. 

If the blades were to rotate with fixed incidence, the cyclic variation in air velocity would cause a 

corresponding variation in lift. As a consequence the roots of the blades would suffer excessive os­

cillatory stresses and a large portwards rolling moment would develop. One method of removing 

these undesirable effects, which has been widely adopted since first employed by Juan de la Cierva 

in 1923, is to allow the blades to flap up and down on hinges mounted near the rotor head. Clearly, 

the flap hinge relieves stresses at the root of the blade. However, it also significantly reduces the port­

wards rolling moment. This is because the advancing blade experiences a greater air speed causing it 

rise; thereby reducing the air incident angle (or angle of attack), thus generating less lift. The result 

is a more symmetric distribution of lift across the rotor disk at the expense of a reduction in average 

lift. 

The periodic flapping changes the radial position of the blade elements, which by the conservation of 

angular momentum, must experience an in-plane acceleration, know as a Coriolis force. A second, 

1 Using an advanced tip design [Sed90] fitted to a Lynx. GKN Westlands Helicopters Ltd. set the helicopter world speed 
record (249 mph) in 1986. 
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tag hinge is generally added to accommodate in-plane motion resulting from the Coriolis force. The 

lag hinge is mounted outside and perpendicular to the flap hinge. Rotor heads employing flap and lag 

hinges are called articulated heads. The flapping motion is aerodynamically well damped, leading to 

small flapping angles « 10°). The same is not true for the lead-Iag motion. This often requires 

a mechanical damper which, through its actions, limits the oscillation amplitude. Whilst flapping 

contributes significantly to the performance of the rotor, the lead-Iag motion has little effect. It is 

therefore instructive to perform a simple analysis of the flapping motion as follows. 

Consider the blade element of spanwise length dv depicted in Figure 2.1.3. The forces on the ele­

ment, normal to the blade, can be expressed as a sum of blade inertia (riJ m dr), centrifugal force 

(sin(,B) rn2 m dr), blade weight (cos(,B)gm dr) and thrust (dT). The resulting moment about the 

flap hinge is: 

dT = r2 iJ m dr + sin (,B) r2n2 m dr + r cos(,B)gm dr (2.1.6) 

Where m dr is the mass of the blade element, ,B is the flapping angle, and 9 is acceleration due to 

gravity. 

Using the small angle approximation and integrating over the blade span gives: 

R lR R R r dT dr = i3 mr2 dr + 0 2,B r mr2 dr + f!.1 mr2 dr 
10 0 10 r 0 

(2.1.7) 
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Substituting for the blade moment of inertia is Ir = Jo
R 

mr2 dr and assuming the blade mass per unit 

length is constant: 

.. 2 3g 
T = {3Ir + 0 {3Ir + 2RIr (2.1.8) 

Where R is the blade length and T is the total Lift generated by the blade. 

Typically, the blade length is R ~ 5m, the moment of inertia is (Ir ~ 104 Kgm2 ), the angular 

velocity of the blades is (0 ~ 30radj s) and the blade flapping is «3 < 10°). The term due to gravity 

(~ ~ 3) is negligible in comparison to 0 2 and jj and will therefore be ignored. The residual second 

order homogeneous differential equation is: 

.. 2 o = ,BIr + n ,BIr (2.1.9) 

This equation describes a system with a resonant frequency of O. Since the lift (T) varies periodically 

with the blade azimuth ('l/J), the flapping motion is driven at its resonant frequency and the rotor is 

therefore a system in resonance. The cyclic pitch also drives the rotor at near its resonant frequency 

and is therefore effective and efficient. As is characteristic of all resonant systems, there is a 90° phase 

shift between the input and output. This means that, although the maximum lift occur at 'l/J = 90°, the 

maximum displacement occurs at 'l/J = 1800
• This has implications when applying cyclic control to 

the rotor. For instance, to tilt the rotor disk laterally, the swash plate must be tilted longitudinally, and 

vise versa. The rotor lag will also introduce a significant delay into any stabilising feedback loop and 

must therefore be included during the design. In reality the rotor lag is not exactly 90° but generally 

slightly lower (~ 80°). This is because Equation (2.1.8) is a vastly over-simplified description of the 

flapping dynamics, which is exemplified by the lack of a damping term. A more detailed analysis 

should consider the following additional effects: 

1. The variation in lift (T) due to: flapping angle (,B), flapping angular rate (~), cyclic control 

(Al' Bb OD), blade azimuth ('l/J) and other variables. In fact, it is the ~ term that provides the 

aerodynamic damping. 

2. Aerodynamic drag. The rotor blade aerofoil shape will generate drag as well as lift. 

3. Inflow dynamics. The lift is also dependent on the motion of air through the rotor disk. 

4. Flexibility of rotor blade. A rotor blade will flex along its length, supporting high frequency 

standing waves and twist. 

5. The lagging motion and its mechanical damping. 

6. The coupling of the body motions into the blade motion. 
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7. Variations in the rotor angular velocity. This requires calculation of the main rotor torque and 

modelling of the power plant and governor systems. 

More detailed analysis [Pad96, p. 34] shows that the rotor dynamics will generally reach steady 

state in one revolution (:::: 20rad/ s). Due to the large mass of the vehicle, the rotor dynamics are 

considerably quicker than the body dynamics which are limited to oscillatory motions of:::: 4rad/ s. 

Since the steady state flapping is periodic it can be described as a Fourier series: 

00 00 

f3 = ao - L an cos(mp) - L bn sin(mp) (2.1.10) 
n=l n=l 

This is generally truncated to a first order approximation which is known as the tip path plane (TPP) 

representation or a disk model, due to the direct physical interpretation of the Fourier coefficients. 

For instance al, bl are the longitudinal and lateral flapping angles and ao is the residual blade angle 

due to the weight of the helicopter, or coning angle. 

Often mechanical and performance constraints make it necessary to offset the flapping hinges a small 

distance (~ ~ 3% - 4%) from the centre of rotation. Equation (2.1.11) shows that the hinge offset 

increases the resonant frequency and hence causes a slight reduction in phase lag. 

( 3h')! 
Wr = 1 + 2R n (2.1.11) 

Where h' is the flapping hinge offset distance and Wr the nominal resonant frequency. 

Some modern helicopter designs employ hingeless rotors that replace the flapping and lag hinges 

with flexible elements made of advanced composite materials. The primary motive behind hingeless 

rotors is the production of a more compact rotor head that reduces parasitic drag. However, hingeless 

rotors bring a collection of desirable and objectionable side effects. For instance, a hingeless rotor 

can exert a larger direct moment and thus increases control power2. On the other hand they have a 

tendency to cause instability at high speeds. The flapping behaviour of hingeless rotors does not differ 

significantly from articulated rotors. Often the coning angle and flapping angles are very similar. In 

fact, for analysis purposes, hingeless rotors are often approximated as articulated rotors with a large 

offset distance (~ :::: 10% - 15%). This approximation and Equation (2.1.11) reveal that hingeless 

rotors have a resonant frequency higher than n and thus a phase lag less 90°. 

2 Control p~wer is a measure of the pilots ability to induce moments on the airframe. 
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2.1.2 Equations of Motion 

The contribution of the fuselage and empennage to the helicopter dynamics can be analysed using 

conventional fixed wing techniques. That is, the fuselage motion is dictated by the equations of mo­

tion and aerodynamic forces. Using the body-fixed axis set, illustrated in Figure 2.1.4, the equations 

of motion can be stated as follows: 

L = 

M = 

N = 

Fx = m(u + qw - TV) 

Fy = m(v - pw + TU) 

Fz. = m(w +pv - qu) 

pIxx - TIu + qr(Izz - Iyy) - pqIzz 

tjIyy + pr (Ix x - Izz ) - r2 In + p2IX% 

rIz:; - PIxz. + pq(Iyy - Ixx) + qrIzz. 

(2.1.12) 

(2.1.13) 

(2.1.14) 

(2.1.15) 

(2.1.16) 

(2.1.17) 

Where F"" Fy and F% are the external linear forces defined according to Figure 2.1.4 and are due to 

gravity, propulsion and aerodynamics. The terms u, v and w denote the linear velocities; L, M and 

N denote the external angular moments; and p, q and r denote the angular velocities and the sense 

of all the terms is defined according to Figure 2.1.4. In, Iyy and Iz:; are moments of inertia about 

the indicated axes. Finally, Ixz. is the product of inertia in the xz plane. Iyz. and Ixy are assumed to 

equal zero due to the symmetry of the fuselage. 

The equations of motion reveal a coupling between roll and yaw due to the product of inertia In. 

Such cross-coupling is typical of all helicopters and is not confined to just the roll and yaw axes. 

The main rotor is, in principle, a large gyroscope and will precess in an orthogonal direction to an 

applied torque. Hence roll and pitch motions are also coupled. This effect is more noticeable if the 

rotor is able exert a large direct moment on the fuselage, due to a considerable flap hinge offset or 

a hingeless rotor. It is also typical for the controls to induce moments in more than one axis. For 

instance, a change in tail rotor thrust will principally induce a moment in yaw, but since the tail rotor 

is not centred on the x axis, a roll moment and side slip velocity will also arise. 

The aerodynamic forces exerted by the fuselage are characterised by the total velocity, angle of attack 

and side slip angle. However, the conventional definition of the sideslip and attack angles must be 

modified to include the main rotor down wash. This is most accurately incorporated using wind tun­

nel data, since the interaction between the main rotor downwash and the fuselage is too complicated 

to be reliably predicted mathematically. Wind tunnel data is required to calculate the fuselage and 

empennage lift, drag and pitch moments at a given angle of attack, as well as the yaw moment, roll 

moment and side force due to a specified side slip angle. 
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For a more detailed analysis of helicopter dynamics, the reader is referred to Bramwell [Bra76], 

Johnson [JohSO], Prouty [Pr090] and Padfield [Pad96]. 

2.1.3 Static Stability 

Static stability [McI90] refers to the ability of a vehicle initially to generate restoring forces when 

perturbed from an equilibrium. The term static stability is peculiar to the field of aeronautical engin­

eering. A static ally stable vehicle may still produce divergent oscillations and thus be dynamically 

unstable. 

To perform an analysis of a vehicle's static stability it generally suffices to apply simple physical 

arguments. This simple analysis accentuates the dominant features of the .vehicles dynamic behaviour 

and is thus worthwhile. A cursory analysis of the helicopter response to some key perturbations is 

described below: 

Stability in angle of attack A vertical gust will cause a uniform increase in the angle of attack of 

the main rotor, which will increase the main rotor thrust and flapping motion. The increased 

flapping induces a nose-up pitching moment that is destabilising, since it further increases the 

angle of attack. 

Stability in forward speed An incremental perturbation in forward speed will again increase flap­

ping and thus induce a nose pitching moment. This moment is stabilising since it tilts the main 

rotor thrust rearwards, thus opposing the increase in forward speed. It is interesting to note 

that in hover, the restoring moment usually leads to dynamic instability which is damped dur­

ing forward flight by the tail plane. 

Stability in roll and pitch A disturbance in roll or pitch will cause the main rotor to precess in an 

orthogonal direction. The precession excites the flapping dynamics which due to the 90° phase 

lag tilts the rotor tip path plane (TIP) in a direction that opposes the original disturbance. The 

main rotor therefore possesses static stability in roll and pitch. However, in forward flight the 

asymmetric distribution of lift leads to considerable coupling between roll and pitch axes. 

Stability due to side slip A disturbance in side slip rotates the direction of maximum flapping and 

thus tilts the TIP in the direction that opposes the original disturbance generating a stabilising 

roll moment. 

Stability in Yaw The tail rotor and, during forward flight, the vertical fin give the helicopter a degree 

of weather cock stability. A portwards disturbance in yaw will increase the tail rotor incidence 

and therefore the tail rotor thrust. The additional thrust is static ally stabilising as it opposes the 

original disturbance. 

This crude analysis gives a flavour of the stability of the helicopter. However, further analysis re­

quires additional tools such as computer simulation and linearisation. 
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2.2 Computer Simulation and Trim 

For a thorough assessment of helicopter stability. one should solve the non-linear differential equa­

tions describing the vehicle dynamics. then apply stability criteria. such as bounded input bounded 

output (BIBO) analysis. However. even a simple mathematical description of the helicopter will in­

volve non-linear differential equations with time-varying coefficients that draw on a substantial pool 

of numerical data. Deriving explicit solutions for these equations is an impossible task. The widely 

accepted alternative is to use a combination of computer simulation and linearisation. 

2.2.1 Computer Simulation 

Computer simulation is an immensely important tool in the field of aeronautical engineering. and 

finds wide application beyond stability analysis. Typical applications include vehicle design. predic­

tion of operational limits. vibration analysis. flight controller design. piloted simulation for training. 

handling qualities assessment and as a source of linearisations. Padfield [Pad96. p. 90] suggests 

that a simulation should offer no more fidelity than is required and identifies three discrete levels of 

helicopter model complexity as shown in Table 2.2.1. 

I Level I Description Application 

One A quasi-static rotor head. with ana- Low bandwidth control. parametric 
lytically integrated loads and aero- trends for performance and flying 
dynamics based on momentum the- qualities studies near trim. 
ory and linear inflow assumptions. 

Two A rotor with flapping DoFs numer- Medium bandwidth control. para-
ically integrated loads. non-linear metric trends for performance and 
inflow dynamics and modelling of flying qualities studies up to the 
other aerodynamic artifacts. OFE. 

Three A rotor with flapping and struc- Rotor design. prediction of rotor 
tual DoFs. numerically integrated limits and vibration analysis. 
loads and a full 3D non-linear wake 
analysis. 

Table 2.2.1: Levels of rotorcaft modelling fidelity. 

The mathematical description of a helicopter can ultimately be expressed in the following generic 

form: 

x = f(x, u, t) (2.2.18) 

Where f(x, u, t) is a vector offunctions thus [h (x, u, t), ... , f n (x, u, t) ] T, x is the state vector. u 

is the input vector and t denotes time. Typical definitions of the state and input vectors, for a simple 
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model, are: 

Figure 2.2.5: A typical simulation structure. 

xT A [u,v,w,p,q,r,</>,O,.,p,ah,bh ] 

uT A [A1,B1,OO,Ot] 

(2.2.19) 

(2.2.20) 

Where u, v, w, p, q, r, 00 , Ot, Al , Blare as defined in Section 2.1 , </>, 0,1/1 are the roll attitude, pitch 

attitude and heading respectively3 and ala, blB are longitudinal and lateral flapping angles. 

The established approach to computer simulation is forward numerical integration of Equa­

tion (2.2.18). 

The helicopter is a complex arrangement of interacting subsystems. Thus, in practice, it serves to 

decompose the simulation into its physical subsystems. This approach leads to a more visible and 

maintainable simulation. It also allows the physical concurrency to be mapped on to parallel hardware 

for high fidelity real time simulation [Law94]. Figure 2.2.5 depicts a typical simulation structure. An 

outline functional description of the individual subsystems is given as follows: 

The Flight Control System implements the feedback control system. It receives state information 

3The body attitudes tP, 8,..p are also known as the Euler angles. 
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from which it derives sensor outputs. The sensor outputs are processed by the controller to 

produce incremental adjustments to the vehicle controls. If a dynamic controller is implement 

then the subsystem will also produce state derivatives that must be integrated. 

The Main Rotor is the most complex subsystem. Its inputs are the system state and the cyclic and 

collective controls. With these it calculates the main rotor inflow, the forces and moments de­

veloped by the rotor and the resulting wake. It will generally output state derivatives associated 

with its own degrees of freedom. Various levels of complexity may be implemented from a full 

blade element model with 3D wake and inflow analysis, to a static disk model. 

The Fuselage and Empennage subsystem receives state and wake information and generally uses 

wind tunnel data to calculate the forces and moments developed. To provide a continuous 

estimate the wind tunnel data must be interpolated. Linear interpolation is often employed. 

However, this can introduce discontinuities. In practice best results are obtain using a smooth 

interpolation method such as cubic spline [PTVF92]. 

The Tail Rotor is fed the system state, tail rotor collective and wake information. Using similar, but 

generally simpler, techniques to the main rotor it calculates the moments and forces developed. 

It may also output state derivatives. 

Equations of Motions. At this point the forces and moments are summed and the equation of motion 

are solved for the linear and angular accelerations. 

Integration. A numerical technique is used to integrate the state derivatives to produce the new sys­

tem state. The numerical technique should be chosen to suit the characteristics of the system 

[PTVF92]. 

A simulation with the structure outlined above was employed in this work [Coo92]. For expedience 

the simulation was incorporated in Matlab [Mat92] as a Mex file [Mat94]. 

Repeated integration using the simulation structure described above will produce time history data, 

however, the simulation must be started with a sensible set of initial control inputs and state values. 

Generally, a simulation model will be released from a trim condition. 

2.2.2 Trim 

A pilot's principal task while flying is to maintain a desired flight condition by holding the forces and 

moments about the three airframe axes at eqUilibrium. When equilibrium is achieved the helicopter 

is said to be trimmed. Common trim conditions are: 

Hover All resultant forces, moments and translational velocities are zero. To hold this trim condition 

the helicopter will have to adopt starboard roll attitude to balance the tail rotor thrust and often 

UNIVERSITY 
OF YORK 
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a nose-up pitch attitude to accommodate the main rotor shaft tilt4 and an aft centre of gravity. 

Straight and level flight again all angular and linear accelerations are zero and the forward velocity 

is constant. At low speeds the pilot will trim for zero side slip and accept a small roll attitude. 

However, as speed increases (VI> 50knots) the pilot will adopt a 'wings level' attitude and 

endure a small side slip angle. 

Co-ordinated turn The helicopter turns with a fixed bank angle while holding all linear accelera­

tions and pitch rate at zero. Roll and yaw rate are adjusted via the tail rotor thrust such that the 

fuselage side force is zero. This ensures passengers and pilot are not swept from side to side 

as the helicopter turns. 

Steady climb the helicopter is trimmed to a fixed climb angle and rate. 

Mathematically, a trim condition is a set of constraints that, when applied to the equations of motion 

and flapping equations, enables the control angles (00 , (it, AI, Bl ) and other parameters to be determ­

ined. For a unique solution to a given trim condition the number of constraints must equal the number 

of variables. 

Using the state (x) and input (u) definitions given above, the constraints for the hover conditions are: 

r=o p=O u=O p=O a16 = 0 

Hover v=O q=O v=O q=O bls = 0 (2.2.21) 

w=O r=O w=O r=O 

Note there are fourteen constraints and fourteen variables5• Thus the trim condition may be 

uniquely defined. The first six constraints are trivially met by setting the appropriate state vari­

able to zero. The remaining constraints can be met using any non-linear equation solver. However, 

in practice, Newton-Raphson has proved effective. This involves calculating the Jacobian6 of 

[u,v,W,p,q,r,als,blS ] with respect to the unconstrained variables [</>,IJ,ah,blsIJo,Ot,Al,Bl] 

and then iterating [Arf85]. 

The trim constraints for straight and level flight at an air speed of VI are: 

{ 
'U = VVI- v2 cos(O) p=O u=O p=O al s = 0 

Level Flight q=O </>=0 v=O q=O bh =0 

W = VV1- v2 sin(8) r=O w=O r=O (2.2.22) 

4The main rotor is usually tilted so that the cabin floor will be level at cruise velocity (Rj80 knots). This does have the draw 
back that the main rotor torque reaction couples into roll. 

5Heading (..p) is ignored since it affects no other state. 
6The Euler angle derivatives are not considered since if p, q, r are zero these are necessarily zero. 
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The algorithm outlined above was employed, in Matlab, to trim the non-linear simulation model. 

It typically trimmed the model in six iterations and reduced the state derivatives to within machine 

precision (10-10
) ofzero. 

The facility to trim a model is not just important for initialising simulations. A trim condition is also 

a vital pre-requisite for generating a linearisation of a non-linear model. 

2.3 Linearisation 

A linearisation is a first order Taylor approximation of a non-linear analytic function. This is a locally 

valid representation for non-linear differential equations providing, the linearisation is made around 

an equilibrium state (x = 0) or trim condition. The locality for which a linearisation is an accept­

able approximation depends on the characteristics of the system. Strong non-linearities, such as the 

fuselage force and moment functions, quickly degrade the approximation. Thus, linearisations of 

helicopters are only representative for small perturbations from the equilibrium state. 

Let Xo and Uo denote an equilibrium state (0 = fi(XO, uo) and x and u denote perturbations from 

the equilibrium then the full Taylor series [Arf85] is: 

00 1 
!i(xo+x,Uo+u) = E,(x·Y'x+u·Y'ut !i(xo,uo) 

n=O n. 
(2.3.23) 

The first order approximation is: 

(2.3.24) 

Applying the steady state assumption gives: 

(2.3.25) 

If eT = [Cl, ... ,en] then 'Ve is the vector differential operator defined thus Y' e = [8~1' ... , 8~ .. ] . 
Using the function of vectors f(x, u) Equation (2.3.25) can be written in the standard state space 

form: 

(2.3.26) 

By convention: 
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[~ ~l aXt : Anxn ~ 'V xf(xo, Uo) = : (2.3.27) 

!llA 
aXt (JX n 

[~ ~l aUt : Bnxr ~ 'V uf(xo, Uo) = : (2.3.28) 

!tin.. 
aUt (Ju .. 

Hence: 

::ic=Ax+Bu (2.3.29) 

The usefulness of linearisations in stability analysis is a result of Liaphonov s linearisation theorem 

[Vid93], which states that, under certain conditions, it is valid to draw conclusions about the non­

linear system stability from the behaviour of a linearisation. The sufficient conditions are that the sys­

tem be in steady-state, that f(x, u) be continuously differentiable and the elements of A are bounded. 

Linearisations have many benefits beyond stability analysis. They provide access to the wealth of 

linear systems theory and are thus a vital tool in control law design. Analysis of linearised dynam­

ics and examination of the individual derivatives can offer an intuitive and tractable insight into the 

functioning of a complex non-linear system. For small perturbations linearisations offer a computa­

tionally light method of simulating the system behaviour. Furthermore, the steady state assumption 

is likely to be valid for the majority of the helicopter flight path since the pilot will strive to hold the 

helicopter in trim. 

However, for any comprehensive analysis of helicopter dynamics, it is vital that linearisation is 

backed-up with a full non-linear computer simulation which has been validated against actual flight 

data. Simulation is the only sure way of assessing behaviour to large perturbations and stability away 

from trim. The importance of an accurate computer simulation is accentuated when reduced order lin­

ear models are used. Since these often ignore the potentially destabilising dynamics associated with 

sensors and actuators [Th093]. 

2.3.1 Numerical Methods 

In theory, a linearisation can be calculated analytically by evaluating the partial derivatives indicated 

in Equation (2.3.27) and Equation (2.3.28). However, in practice, the system equations often do not 

lend themselves to differentiation. It may also occur that the analytical solution does not yield the 

best results in terms of model fidelity. 



2.3 Linearisation Page 29 

The widely accepted solution is to apply numerical techniques. Two distinct approaches are often 

employed [Pad96]; identification and perturbation methods. 

Identification methods [SCM96] generally attempt to find a linear system that best approximates a 

given set of time history input-output data. This approach has the advantage that it may be applied to 

measurement data from real systems and that it inherently attempts to accommodate non-linearities. 

However, it is clearly impossible for a linear system of any order to portray hard non-linearities such 

as saturation and hysteresis, which can often overwhelm an identification algorithm. Multivariable 

identification techniques are very complex and are, in themselves, a considerable topic of research. 

Therefore they were not applied in this work. 

Perturbation methods are based on the definition of the partial derivative: 

8f(xo) = Hm f(xo + 8) - f(xo) 
8x 6-+0 8 

(2.3.30) 

From the above it is clear that a good approximation to the partial derivative can be calculated using 

a suitably small perturbation (8) and a difference equation as follows: 

(2.3.31) 

Thus a straightforward approach to calculating a linearisation is to perturb each state and input inde­

pendently and perform a difference calculation as illustrated below: 

Where ei is an all zero vector of equal length to Xo except the ith element is unity. 

However, there is a dearth of theory [Wig92] supporting numerical perturbation. Selection of per­

turbation size and estimates of the linearisation accuracy are often based on heuristics [Sug94, Rah93, 

TA93]. Taylor and Antoniotti [TA93] suggest that the perturbation size should be selected as a com­

promise between round off error and truncation error. As the perturbation size is reduced errors will 

eventually begin to increase due to finite precision arithmetic or round off error. Equally, as the per­

turbation size is increased non-linearities will cause the errors to increase. This increase can be at­

tributed to truncation of the Taylor series. While the technique of Taylor and Antoniotti will find a 

good approximation to the partial derivative, it may still produce a poor approximation of the system, 

since the perturbation size used to calculate the partial derivatives may be vastly different from that 

used in subsequent simulation and controller synthesis. 

The quality of the linearisation has direct implications for the controller synthesis, since a poor 
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match at this stage will yield a controller that is unlikely to perfonn adequately on the real plant. 

Even an ideal linearisation process must throwaway considerable infonnation about the system non­

linearities: infonnation that is often needed later to fonn an uncertainty model so that the controller 

may function on the real plant. To address these issues a new linearisation algorithm was developed. 

Its aim were: 

• To produce to a representative linearisation. 

• To estimate the valid region of the linearisation. 

• To produce an uncertainty model associated with the linearisation. 

The basic principle behind the algorithm is to calculate the maximum deviation from the trim point 

such that the function displays acceptably linear behaviour. To have confidence that the function is 

displaying linear behaviour. it is necessary to consider several points within the deviation. The most 

non-linear point is recorded and returned as uncertainty infonnation. The details of the algorithm are 

described below. For brevity the scalar case is considered. 

1. Initialise the perturbation size (8) and counter (i = 1). 

2. Evaluate the non-linear function for positive and negative excursions of the current deviation 

(i8): 

yp(i) = f(xo + i8, uo) 

Yn(i) = f(xo - i8, uo) 

(2.3.33) 

(2.3.34) 

3. Update the minimum and maximum gradient values of the chord between the function output 

and the origin. 

gmaz 
= max {g Yp(i) Yn(i)} 

maz, i8 ' -ic5 (2.3.35) 

gm in 
. { Yp(i) Yn(i)} = mm gmin, -. ~-, --=T 

~u -tu 
(2.3.36) 

4. Calculate the current best fit linear approximation (ae ): 

i 

Lyp(k)(kc5) + Yn(k)( -kc5) 
~k=~l ________________ __ 

a e = i (2.3.37) 

L(kc5? + (-k8? 
k=l 
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I State I Trim Value I Valid Range I Unit 

'U 0 5.5 feetls 
v 0 2.75 feetls 
w 0 8.0 feetls 

p 0 0.1719 radls 
q 0 0.1406 radls 
r 0 0.4688 radls 
8 -0.0572 0.0020 rad 

4> 0.0596 0.0020 rad 

1/1 0 33.0 rad 
ah 0.0114 33.0 rad 
bh -0.0050 33.0 rad 

Table 2.3.2: Trim point and validity estimate for a linearisation at hover. 

5. Check that minimum (gmin) and maximum (gmaz) gradients are acceptably close to the current 

estimate (ae ): 

gmaz < ae(l + fp) + fa 

gmin > a e (l - fp) - fa 

(2.3.38) 

(2.3.39) 

Where fp and fa are user supplied proportional and absolute error tolerances. If the gradients 

are acceptable increase the counter (i = i + 1) if the gradients are unacceptable reset the counter 

(i = 1) and decrease the perturbation size <5 = !. 
6. If the counter is equal to the maximum counter value (imaz ) then stop else go to step two. 

To generalise the algorithm to the multivariable case it is only necessary to repeat the process for each 

partial derivative. A Matlab implementation of the above algorithm was used to linearise the non­

linear simulation model. Typical values for fp, fa and imaz are fp = 0.01, fa = 0.01 and i maz = 10. 

While it is difficult to offer a formal justification for the algorithm, in practice it has proved a useful 

tool. Appendix A.l contains a linearisation of a non-linear helicopter model in hover. It also presents 

the associated uncertainty information, which was calculated as follows: 

(2.3.40) 

The valid perturbation sizes and trim point information are shown in Table 2.3.2. 

The validity estimates for the heading (1/1) and the flapping angles (als, bls ) are unrealistic1y large. 

This is because heading does not effect any other state and is often ignored in the dynamic analysis 
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Vertical velocity response (w) to lO feet/s perturbation in forward velocity (u) 
0.4 r-----r--.-----r--,.---.,.---,----,c-----.---~-~ 

'" ~ 0.3 
~ 

==-'0 0.2 
o 

"0 
~ 0.1 
.g 

-- Non-linear 
. _ . - Linear 

-.-

~ O~-----------------------------------------­---0.1 L-_~ __ ....l..__----I.. __ ...l..-_---L __ ....I-__ L...-_......l... __ ...I.__ _ ___.l 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time in seconds 

Vertical velocity response (w) to 1 feet/s perturbation in forward velocity (u) 
0.04 .------r--.-----r--,.---.,.---,-----,;-----,---..-----. 

~ 
J:! 0 .03 

==-'g 
"00.02 
> 

B 
'50.01 
>-

0.1 

-- Non-linear 
. _ . - Linear 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Time in seconds 

Figure 2.3.6: Vertical velocity response of a linear (Jacobian only) and non-linear helicopter model 
at hover for a 1 and 10 feetls perturbation in forward velocity. 

of helicopters. During the hover the retreating and advancing blades experience the same air speed. 

Thus the flapping dynamics are not excited and the response to changes in flapping angle is linear. 

While the model's portrayal of this situation is accurate, the situation itself is artificial, since it implies 

that the flapping angles can be adjusted independently and that the body dynamics remain in the hover 

state during the flapping angle excursion. 

The validity estimates for the other states do provide a useful indicator for the maximum deviation in 

the state variable for which the linearised model is representative. For instance, Figure 2.3.6 shows 

the response in vertical velocity (w) to perturbations in forward speed of 1 and 10 feetls. These rep­

resent perturbations beyond and within the valid range indicated in Table 2.3.2. 

From Figure 2.3.6 we see that the linearisation shows good fidelity for the I feetls perturbation but al­

most immediate divergence for the 10 feetls perturbation. The first column of (j.A in Appendix A.I is 

the uncertainty associated with perturbations in forward velocity. It shows that the maximum uncer­

tainty (0.0110) is associated with the vertical velocity derivative (~A3 , 1) and indeed vertical velocity 

does show the worst response. 
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Figure 2.3.7: Plots of the change in various state derivatives against roll rate (p) for a non-linear heli­

copter model at hover. 

Comparison of the uncertainty matrix (AA) with the linearised system matrix (A) shows that it some­

times occurs that a zero element in the system matrix has considerable uncertainty associated with it. 

For instance, consider the change in vertical acceleration (w) due to roll rate (P), element (3, 4), we 

note that: 

A3,4 = 0.0 

AA3,4 = 0.0110 

(2.3.41) 

(2.3.42) 

Figure 2.3.7 shows the variation in w as function of roll rate (P). The function is clearly even and 

thus can not be approximated by an odd function such as a linear expression. Thus the linearisation 

algorithm has correctly indicated a non-linearity. 
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Even functions are not uncommon at equilibrium points as illustrated by the graph of u against p 

in Figure 2.3.7 and the inability of a linearisation to portray the even component of functions is a 

fundamental limitation. 

2.3.2 Higher Order Approximations 

A potential method for improving the fidelity of an equilibrium point representation is to use a higher 

order Taylor approximation. A drawback of a higher order representation is that the number of coef­

ficients required by the representation increases rapidly. For instance, a first order representation re­

quires n 2 coefficients while a second order representation requires n 3 , although the symmetry of the 

solution allows this figure to be reduced to n3 tn2. 

A second order approximation can faithfully represent even functions. It uses second order derivative 

information, often expressed as a Hessian: 

(2.3.43) 

If the rows of A are denoted AT = [af, ... , a~] then a second order system approximation is: 

(2.3.44) 

The Hessian can be calculated directly using numerical perturbation. However, this involves evalu­

ating the difference between two gradients that are themselves numerical estimates and thus may be 

prone to round off errors. One alternative is to use a polynomial interpolation based approach [GL96, 

p. 184]. Let hk(i,j) denote the ijth element ofHk for i f= j and i;th element of ~ for i = j then 

Equation (2.3.44) may re-expressed as: 

n n 

:h ~ ak X + L L hk(i,i)x;xj k = 1 ... n 
;=1 j=i 

Using the following definitions: 

(2.3.45) 
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XbT = [Xl [Xl, ... ,Xn] ,X2 [X2, ... ,Xn], ... ,Xn [Xn]] (2.3.46) 

hA: = [[hA:(I,I), ... ,hd1,n)], [hA: (2, 2), ... ,hk (2,n)], ... , [hk(n,n)]] 

Equation (2.3.45) may be written more compactly as: 

(2.3.47) 

A further definition: 

(2.3.48) 

enables the second order representation to be expressed in a multi variable format: 

:i;::::: Ax+Hexb (2.3.49) 

Estimation of the combined Hessian (He) can be reduced to a standard least squares problem as fol­

lows: 

:i;::::: Ax+Hexh 

f(xo + x, Uo) - Ax;::::: Hexb 

Letting ye = f(xo + x, 110) - Ax denote the truncation error. Then: 

ye ~ Hexb 

(2.3.50) 

(2.3.51) 

(2.3.52) 

Thus we wish to find the combined Hessian (He) that best approximates the truncation error (ye). 

A good estimate of the combined Hessian (He) will require a set of truncation errors that have been 

systematically produced. The algorithm employed in this work is outlined as follows: 

I. Initialise the counter (i = 1), declare the empty matrices XH, YE and set initial perturbation 

size (8). 

2. positively perturb the state Xi alone. Form x, Xh and calculate ye = f(xo + x, uo) - Ax. 



2.3 Linearisation 

Append Xh to XH and ye to YE thUS: 

XH = [XH Xh] 

YE = [YE ye] 

Page 36 

(2.3.53) 

(2.3.54) 

3. Positively perturb Xi and also perturb xi j = i + 1 ... n both positively and negatively. For 

each perturbation form x, Xh, ye and update XH and YE. 

4. Repeat steps two and three, continuing to update XH and YE, but perturb Xi negatively. 

5. If i = n go to step six else increment i and go to step two. 

6. Calculate the combined Hessian (He) as follows: 

He =YE(XH)t (2.3.55) 

7. Check the approximation error (er): 

er = YE-HeXH (2.3.56) 

if the error is larger than the user input tolerance decrease the perturbation size (8), reset XH , 

YE, i = 1 and go to step two, else end. 

The basic algorithm outlined above may be extended to maximise the perturbation size of each state 

individually. Figure 2.3.8 depicts a second order estimate of the state derivatives as a function of roll 

rate. Comparison with Figure 2.3.7 shows the Hessian system to produce a good approximation of 

the non-linear response. 

Figure 2.3.9 displays the linear, Hessian and nonlinear system response for a one feet/s and ten feet/s 

perturbation in forward velocity. It shows that for the small perturbation both the linear and Hessian 

systems show good fidelity. For the large perturbation the Hessian system is a better approximation 

than the linear system but still diverges from the non-linear response. 

Generally, for deviations near the equilibrium point the Hessian system does show improved or equal 

fidelity to the linear response. However, if the response diverges significantly from the trim point then 

the quadratic contribution from the Hessian matrix increases disproportionately, and the response rap­

idly loses fidelity. The Hessian system is relatively straightforward to generate and although non­

linear itself, it is more amenable to non-linear control theory, such as non-linear inverse dynamics 

[SC94], than the full non-linear model. 
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Figure 2.3.8: Plots of the change in various state derivatives against roll rate (p) for a second order 
model (Jacobian + Hessian) of a helicopter at hover. 
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Vertical velocity response (w) to 10 feetls perturbation in forward velocity (u) 
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Figure 2.3.9: Vertical velocity response of a linear (Jacobian only), Hessian (Jacobian + Hessian) and 
non-linear helicopter model at hover for s 1 and 10 feetls perturbation in forward velocity. 
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Open loop pole locations agianst forward speed 
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Figure 2.4.10: The root locus of a Lynx model over the speed range 0-160 knots (The lower plot 
depicts the origin of the upper plot). 

2.4 Modal Analysis 

Stability analysis oflinearised models has contributed greatly to the understanding of aircraft dynam­

ics. The eigenvalues of the linearised system matrix indicate the stability at a given trim point. To 

assess stability over a range of trim conditions. a Iinearisation is calculated at each trim point and its 

stability examined. This technique is most commonly used to examine the stability variation with 

forward speed. 

Figure 2.4.1 0 depicts the system pole locations over a speed range 7 of 0 to 160 knots. It shows that the 

pole locations vary significantly with speed. This is because the character of the helicopter dynamics 

change with speed. In the hover. flapping dynamics are not excited and tail plane and fin contribute 

little to the system dynamics. As speed increases the empennage contribution increases and flapping 

is excited. leading to a more asymmetric response. Table 2.4.3 displays the pole locations at three 

7The helicopter is trimmed to zero side slip over the entire speed range. 
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Forward Speed 
Hover I 60 knots 120 knots 

0 0 0 
-6.9716 ± JlO.0016 -7.1315 ± J9.6800 -7.4916 ± J9.5114 
-12.1124 -11.9220 -11.4039 
-2.0680 -2.4044 -3.0631 
0.2797 ± )0.3497 0.0929 ± JO.3615 0.0347 ± JO.2844 
-0.2509 ± )0.5005 -0.3961 ± )1.1615 -0.3023 ± )1.5390 
-0.2972 -0.5257 -0.7909 
-0.3367 0.0150 -0.0280 

Table 2.4.3: Open loop pole locations taken from linearisations of a non-linear Lynx model at forward 
speeds of 0, 60 and 120 knots. 

different forward speeds. From it we see that the poles do tend towards the stable left half plane as 

speed increases. This is because the damping moment from the tail plane is increasing and stabilising 

the main rotor pitch dynamics. To maintain, focus this work concentrates on the near-hover case. 

As well as indicating stability, the eigenvalues provide useful information about the natural frequen­

cies and damping of the system response. Further information, about the distribution of the modes 

among the outputs, can be inferred from the eigenvectors. However, a meaningful analysis of the 

eigenvectors requires normalisation. 

2.4.1 Normalisation 

Examination of the right eigenvectors can reveal which modes will be predominately observed in each 

state. If the states have physical significance, the mode distribution can give insightful information 

about the underlying dynamics. If the states do not have physical significance, the mode observab­

ility matrix (CV) should be used instead. Note that V = [VI t ••• t V n] denotes a matrix of right 

eigenvectors (Vk)· 

For a fair evaluation of mode dominance the states must be normalised [GLP89a, Web92]. This 

normalisation is has no formal mathematical basis but is a subjective process that allows states with 

different physical units to be compared. Different engineering approaches can be taken: 

• Use the maximum value indicated in the Handling Qualities specification. 

• Use values found in normal operating conditions. Note that the values should be deviations 

from trim. 

Ultimately, normalisation depends on the pilot perception: would a 1.0 feetls oscillation in forward 

velocity be more or less noticeable than a 0.02 radls oscillation in roll rate? Table 2.4.4 shows the 

normalisation values used in this work. 
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State Value State I Value I Input I Value 

u 5 ftls () 0.1 rad ()o 0.02 rad 
v 5 ftls 4> 0.1 rad ()t 0.035 rad 
w 5 ftls t/J 0.1 rad Ai 0.02 rad 
p 0.1 rad/s ah 0.025 rad Bl 0.035 rad 
q 0.1 rad/s bh 0.025 rad 
r 0.1 rad/s 

Table 2.4.4: State and input nonnalisation values. 

Nonnalisation is applied by re-defining the state and input vectors. Let us define two normalisation 

transfonns. 

XN = diag (5, 5, 5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.025, 0.025) 

YN = diag (0.02, 0.035, 0.02, 0.035) 

The transfonned states and inputs are: 

x = XNXn 

U = YNUn 

Thus the state space representation is transformed as follows: 

x = AXN Xn + BYNUn 

XNXn = AXN Xn + BYNUn 

,cn = XN -1 AXNXn + XN -lBYNUn 

(2.4.57) 

(2.4.58) 

(2.4.59) 

(2.4.60) 

(2.4.61) 

(2.4.62) 

(2.4.63) 

The open loop right eigenvectors are shown in Table 2.4.5. From them, it can be seen that the ei­

genvalue at the origin is associated solely with the heading and is known as the heading integration 

mode. We also see that the two first order modes at -12.11 and -2.07 are predominately associated 

with roll and pitch respectively. They are subsidence modes and are manifest as follows. An angular 

rate in one axis will cause the rotor to precess in the orthogonal axis this excites the flapping dynamics 

which causes the disk to tilt opposing the original angular rate. The two remaining first order modes 

(-0.30, -0.34) are definitely liinked with the yaw dynamics and further analysis will show that they 

are predomintately associated with the heave and yaw subsidence modes. The fast complex mode 
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Output Open Loop Right Eigenvectors 
Modes 0 -6.97 ± J1O.00 -12.11 -2.07 

'U 0.00 0.00 ± JO.OO -0.01 0.15 
v 0.00 0.00 ± JO.OO 0.00 -0.04 
w 0.00 0.00 ±JO.OO 0.00 0.01 
p 0.00 -0.13 ± JO.89 -0.45 -0.16 
q 0.00 -0.10 ± JO.02 0.26 -0.80 
r 0.00 -0.02 ± JO.16 -0.08 0.00 
fjJ 0.00 0.07 ± J - 0.03 0.04 0.08 
() 0.00 0.01 ± JO.01 -0.02 0.39 
'IjJ 1.00 0.01 ± J - 0.01 0.01 -0.02 

ala 0.00 0.08 ± J - 0.05 -0.84 0.34 
bls 0.00 -0.26 ±] - 0.27 0.13 0.20 

I Modes I 0.28 ± JO.35 I -0.25 ± JO.50 I -0.30 I -0.34 I 
'U -0.15 ± JO.12 0.14 ± J - 0.04 -0.04 0.05 
v 0.15 ± JO.44 0.07 ± JOAO -0.06 0.07 
w -0.01 ± ]0.03 0.00 ± JO.02 0.01 0.06 
p -0.16 ± JO.01 0.11 ± J - 0.14 -0.02 0.03 
q 0.02 ±JO.05 0.03 ±JO.04 -0.01 0.01 
r 0.25 ± JO.20 0.38 ± J - 0.11 0.28 -0.32 
fjJ -0.17 ± JO.29 -0.34 ± ] - 0.09 0.02 -0.03 
() 0.14±JO.03 0.02 ± J - 0.12 -0.02 0.02 
'IjJ 0.68 ±] - 0.15 -0.47 ± J - 0.51 -0.96 0.94 

ala -0.04 ± JO.01 0.02 ± J - 0.03 0.00 0.01 

bIB -0.01 ± J - 0.01 -0.01 ± J - 0.01 0.00 0.00 

Table 2.4.5: Open loop eigenvectors for a Lynx linearisation at hover. 

(-6.97 ± J10.00) is the regressive flapping mode. It is well damped «( = 0.57) but is coupled into 

the roll dynamics. 

Examination of the right eigenvector which, in this case, is the same as the mode observability matrix, 

gives half of the available information, that is how, the modes couple into the states. The reciprocal 

information of how the modes are excited by the inputs can be found by examining the mode control­

lability matrix (WB). Note, that WT = [wT, ... , w~] denotes a matrix ofteft eigenvectors (Wk). 

The two pieces of information can be combined. This leads to residue analysis. Suppose that the 

system transfer function matrix is G(s) and the ijth element is denoted 9ij (8). The transfer function 

matrix may be expressed in dyadic form as follows: 

(2.4.64) 
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Mode 11 Bo t-t w 
0.00 0.00 0.00 
-6.97 ± J10.00 0.00 ±JO.OO -0.03 ± JO.02 
-12.11 0.00 -0.00 
-2.07 0.00 -0.00 
0.28 ± JO.35 0.01 ±JO.OO -0.11 ± JO.10 
-0.25 ± JO.50 0.00 ±]0.01 -0.26 ± JO.02 
-0.30 -0.17 -1.57 
-0.34 -1.06 -0.45 

Table 2.4.6: Transfer function residues for main rotor collective to vertical velocity and tail rotor 
collective to yaw rate. 

Let the input (B) and output CC) matrices be decomposed as follows: 

B = [hI," . , b r ] 

C = [er. ... ,e~] 

The individual transfer functions may be expressed as: 

where rk is a residue and is equal to: 

(2.4.65) 

(2.4.66) 

(2.4.67) 

(2.4.68) 

Examination of the residues can reveal which mode is dominant in a particular transfer functions. For 

instance, consider main rotor collective (00 ) to vertical velocity (w) and tail rotor collective COt) to 

yaw rate (r). Then, Table 2.4.6 clearly shows that 0.34 is the dominant heave mode and 0.30 is the 

dominant yaw mode. This infonnation could not be easily deduced from the eigenvectors alone. 

While much infonnation can be gained from the modal structure, for greater engineering insight it is 

useful to develop a model that just expresses the quintessential dynamics. 
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2.4.2 Model Reduction 

The heading state affects no other modes and can thus be simply truncated from the model. If we 

assume that the flapping dynamics are much faster than the body dynamics, we may residualise the 

flapping dynamics. Suppose the state space system is partitioned as follows: 

[::] = (2.4.69) 

y = (2.4.70) 

If the flapping angles (als, bls ) are associated with X2 then steady state flapping implies X2 = o. 
Thus: 

o = A21Xl + A22X2 + B2u 

X2 = -A"2l A12Xl - A"2lB2U 

Substituting X2 back into the system matrices gives: 

Xl = (All - A12A"2l A 12) Xl + (Bl - A12A"221B2) u 

Y = (Cl - C2A"2l A12) Xl - (C2A"2lB2) U 

Finally, to summarise the reduced order system is: 

A = All - A12A"22l A12 

13 = Bl - A12A"22l B2 

C = Cl - C2A"2l A12 

D = C2A"221B2 

(2.4.71) 

(2.4.72) 

(2.4.73) 

(2.4.74) 

(2.4.75) 

(2.4.76) 

(2.4.77) 

(2.4.78) 

After truncation and residualisation the system is eighth order. Whilst the order is only reduced by 

three, the number of system matrix coefficients is almost halved, offering considerable simplification. 

Appendix A.2 contains the state space matrices for the reduced order system. 

Table 2.4.7 compares the eigenvalues of the reduced order system with the original eleventh order 

system. 
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System Eigenvalues 
Eleventh Order Eighth Order 

0 
-6.9716 ± J10.0016 
-12.1124 -9.2980 
-2.0680 -1.9464 
0.2797 ± JO.3497 0.2749 ± JO.3505 
-0.2509 ± JO.5005 -0.2574 ± JO.5037 
-0.2972 -0.2982 
-0.3367 -0.3376 

Table 2.4.7: Pole locations for the full and reduced order helicopter models at hover. 

The correspondence between the eigenvalues is very good except for the roll subsidence mode 

(-9.298). This is to be expected since the roll mode is coupled into flapping dynamics. Once the 

system has been reduced to a more manageable size, it is instructive to relate the system matrix coef­

ficients to the system modes. One approach [Pad96, p. 329] [Pro90] is to apply simplifying assump­

tions, such as decoupled longitudinal and lateral dynamics, to produce simple subsystems, where the 

relationship between the modes and coefficients is easily derived. This approach does offer consider­

able physical insight but often breaks down for helicopters because the cross-coupling effects are too 

strong to neglect. For instance, Table 2.4.8 compares the eigenvalues for the longitudinal (u, w, q, 0) 

and lateral (v,p, r, </l) subsystems. Some modes, such as the roll subsidence and heave modes, are 

still recognisable but, generally, the decoupled approximation is poor. 

System Eigenvalues 
Full Model Longs. Lats. 

-9.2980 -9.7509 
-1.9464 -1.7226 
0.2749 ± JO.3505 0.0836 ± JO.5345 
-0.2574 ± 10.5037 -0.0364 ± 10.4153 
-0.2982 -0.1424 
-0.3376 -0.3234 

Table 2.4.8: A comparison of the full system and decoupled subsystem poles. 

An alternative approach is use a sensitivity analysis to simplify the model. Coefficients that do not 

have a significant effect on the eigenstructure are eliminated and the resulting structure is analysed. 

The basic algorithm is outlined as follows: 

1. Initialise the counter k = 1 and l = 1. 

2. Calculate the sensitivity of each element (aij) of the system matrix (A) with respect to the 

eigenvalue Ak and multiply it by the respective element of A. 
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(2.4.79) 

3. Reset the counter 1 = 1. 

4. Select the 1 largest values of Sij and fonn an system matrix (Ak) with only the corresponding 

elements aij· 

5. If no eigenvalue of Ak is acceptably close to Ak then increment 1 and go to step four. 

6. If k is not equal to n increment k and go to step two else fonn a simplified system matrix that 

is the union of all Ak. 

The simplified system matrix is shown below, it is not recommended to use this system matrix for 

simulation or design but only as an analysis tool. 

0 0 0 0 0 0 0 -32.1 

0 0 0 0 0 0 32.1 0 

0 0 -0.32 0 0 0 0 0 

0.17 -0.056 0 -9.71 4.51 0 0 0 
As = 

0 0 0 
(2.4.80) 

0.016 -0.79 -1.52 0 0 

0.030 0 0 -1.71 0 -0.22 0 0 

0 0 0 1.00 0 0 0 0 

0 0 0 0 1.00 0 0 0 

Table 2.4.9 compares the eigenvalues with the full system matrix. While there is certainly some mis-

match, this very simple model does capture the essentials of the system dynamics. 

System Eigenvalues 
Reduced Model Simple Model 

-9.2980 -9.2759 
-1.9464 -1.9541 
0.2749 ± }0.3505 0.2494 ± }0.3648 
-0.2574 ± }0.5037 -0.2508 ± }0.4432 
-0.2982 -0.2208 
-0.3376 -0.3230 

Table 2.4.9: System poles for a reduced order and then simplified helicopter model at hover. 

Figure 2.4.11 illustrates the simplified system and allows some key stability derivative to be identi­

fied, as follows: 
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Figure 2.4.11: Simplified helicopter dynamics in hover (see Equation (2.4.80». 
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• The damping derivatives Lp (-9.7) and Mq (-1.5) are dominant in determining the roll and 

pitch subsidence modes. 

• The cross-coupling derivatives, Lq (4.5) and Mp (-0.79) are fundamental to the helicopter 

dynamics. They are pre-dominantly due to the response phasing of the flapping dynamics not 

being exactly equal to 90°. In this case the modelled helicopter has a hingeless rotor with a 

large effective hinge offset. This leads to a response phase of approximately 76°. Thus the 

flapping dynamics will not just oppose the pitch and roll motion but also induce a moment 

in the orthogonal axis. The ratio of the derivatives is in proportion to the relative moments of 

interia for the roll and pitch axes, about 1 to 6. The low moment of interia in the roll axis makes 

this axis susceptible to main rotor and other cross-couplings. 

• The damping derivative Zw (-0.32) dominates the heave dynamics. This is because change 

in vertical velocity alters the main rotor inflow which causes the main rotor thrust to oppose 

and thus damp the vertical motion. 

• The damping Nr (-0.22) is important in damping the yaw dynamics. At hover this is mainly 

manifest as the yaw rate changing the tail rotor inflow and thus the tail rotor thrust damping 

the yaw motion. However, as forward speed increases, the fin will become more effective and 

conventional weather cock stability will begin to prevail. 

• The force derivatives X9 (-32.1) and Y,p (32.1) are due to changes in the body attitudes causing 

the main rotor thrust vector to be tilted. 

• The derivatives Mu(O.79) and Lv (-2.8) are due to changes in velocity exciting the flapping 

dynamics, which causesftapback and thus a body moment. These derivatives are very import­

ant to dynamic stability in hover. 

• The cross-coupling derivatives Lu , Np and Nu stem from different physical sources. Lu is due 

to the main rotor coning causing differential changes in incidence for a perturbation in forward 

velocity. Nu is due to changes in main rotor torque generating yaw moments and Np is due to 

the product of inertia Iu· 

2.4.3 The System Zeros 

A complete modal analysis of the open loop helicopter should also examine the system zeros [MK76, 

SK76, Mac72, Ros70]. The invariant zeros are the values of s for which the matrix: 

(2.4.81) 
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loses rank. They can be computed using numerically stable algorithms [END82]. For a fully 

controllable-observable system these are also the transmission zeros. Using an output matrix equal 

to C = Is the reduced order system of Appendix A.2 is found to have no transmission zeros. 

It is also insightful to consider transmission zeros with respect to subsets of the inputs and outputs. 

The simplified system of Figure 2.4.11 illustrates that the states u, e, q and v, rp, p are predominantly 

related by simple integration. This can be expected to introduce some near-origin zeros in the appro­

priate outputs. For instance, suppose that the relationship between forward speed (u) and longitudinal 

cyclic (Bl ) is: 

u(s) n(s) 
Bl = d(s) 

(2.4.82) 

then for the simplified system the relationship to pitch attitude «()) and rate (q) is: 

e(s) sn(s) 
Bl = d(s) 

(2.4.83) 

A dual argument applies to the lateral channel. The transmission zeros of the reduced order system 

with respect to all outputs, except the linear velocities (u, v), are shown in Table 2.4.10. It can be seen 

that two near-origin zeros are present due to the phase relationship between the linear velocities and 

the body attitudes. Table 2.4.10 also shows that additionally removing the system attitudes introduces 

two further near-origin zeros due to the phase relationship between the attitudes and rates. 

I Outputs 

p, q, r, e, rp, W 

p,q,r,w 

Table 2.4.10: System zeros for different output combinations taken from the reduced order helicopter 
model at hover (not simplified). 

The zero directions (xz) are defined as: 

(2.4.84) 

where z is a system zero. They give information about the orientation of the state and input vec­

tors when a transmission zero blocks all output. Table 2.4.11 shows that the zero directions for the 

helicopter system zeros. 
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I StatelInput I Zeros 

I Zero I -0.0039 I -0.0020 I 0 0000 00000 
u 0.0000 -0.7101 0.3341 -0.8832 
v 0.9818 -0.6709 -0.9072 -0.3768 
w 0.0000 0.0000 0.0000 0.0000 
p 0.0000 0.0000 0.0000 0.0000 
q 0.0000 0.0000 0.0000 0.0000 
r 0.0000 0.0000 0.0000 0.0000 

<P 0.0000 0.0000 -0.0064 0.0002 
() 0.0000 0.0000 -0.0011 0.0028 

Al 0.1099 0.1598 -0.2121 0.2500 
El 0.0002 -0.0789 0.0369 -0.0980 
()o 0.0000 -0.0177 0.0082 -0.0221 
()t 0.1546 -0.1168 -0.1378 -0.0733 

Table 2.4.11: System zero directions for the reduced order helicopter model at hover (see 

Table 2.4.10). 

The zero directions clearly show that -0.0039 is the lateral channel zero and -0.0020 is the lon­

gitudinal channel zero which is seen to be strongly coupled in the lateral channel, this is due to the 

derivative Lu. Less information can be discerned from the zeros at 0.0000 since they are repeated 

and the zero directions span a two dimensional subspace. 

From the preceding modal analysis we can see that the helicopter is highly cross-coupled and has an 

unstable raw airframe. It is thus a very difficult vehicle to fly and, in practice, a flight control system 

is required to aid the pilot. 

2.5 Flight Control 

Flying a helicopter without the assistance of a stability augmentation system (SAS) or automatic flight 

control system (AFCS) is a taxing task for any pilot, since the pilot must apply his own agency to 

stabilise the airframe. As the basic flying task demands a high pilot workload, this limits the other 

mission-related tasks that the pilot can reasonably be expected to accomplish. Fortunately, even a 

very simple SAS structure [Mcl90] can stabilise the airframe and bring the pilot workload down to 

a comfortable level. However, it should be appreciated that the purpose of the SAS is not merely to 

stabilise but rather to make the helicopter fly in a way that most assists the pilot. For instance, the 

SAS may even introduce a slow unstable mode because the pilot finds this characteristic desirable. 

The properties of a good SAS are defined by Handling Qualities Specifications. Handling Qualities 

are concerned with the pilot's perception of how the helicopter flies and Chapter 3 wi11look at them 

in some detail. 

The AFCS is complicated and challenging system to develop since it must resolve a wide range of 
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implementation and control problems. Some of the requirements on a modern APeS are listed below: 

• Alleviation of disturbances such as gusts and turbulence while not impeding pilot commands. 

Also to provide good ride comfort and fuel economy. 

• Be fully integrated with the navigation system, mission management computer, engine man­

agement system and sensor units. 

• Must be fault tolerant, incorporating self verification, multiple redundant systems and limited 

authority. 

• Should provide a range of autopilot functions from simple heading, height and speed hold to 

more complicated functions such as auto-land and course following. All transitions between 

autopilot functions should be smooth and all possible contentions must be fail-safe, innocu­

ously resolved and easily overridden by the pilot. 

• Finally the system must implement control laws that attain the required flying qualities 

throughout the flight envelope. This may require scheduling of several control laws. 

This work focuses on control law design. The requirements above show that this is only one element 

of the complete APes. The minimal control law that will stabilise a helicopter requires both attitude 

and rate feedback [Pad96, Hoh88] as illustrated below: 

Ala = kpp + k</>(ifJ - ifJr} 

Els = kqq + k(J(O - Or} 

(h = krT 

(2.5.85) 

(2.5.86) 

(2.5.87) 

Where kp, k</>, kq, ko and kr are the feedback gains, ifJr and Or are offset values that the pilot adjusts 

to establish a new trim datum. 

An alternative control law that does not require offset inputs is shown in Figure 2.5.12. 

This control law uses only rate feedback, but generates attitude feedback by integrating the rate signal. 

A leaky integration is employed, so that persistent attitude errors will decay to zero and thereby allow 

the pilot to establish a new trim datum. 

Modem control laws are generally more complicated than those outlined above and require a range 

of equipment to be implemented as part of a modem APes. 

2.5.1 Auto-Stabilisation Equipment 

Figure 2.5.13 is a schematic illustration of some typical auto-stabilisation equipment found in the lat­

eral and longitudinal channels of a modern helicopter. The key components are described as follows: 
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The stick is used by the pilot to command cyclic pitch. It is directly connected to the power servos 

via the control runs. 

The series actuators are inserted in the control runs and change length to operate the power servos. 

They are generally fast acting electrical actuators with a typical bandwidth of 30Hz. For safety 

they have limited authority, usually ±10%. They are operated by the SAS and provide the small 

control adjustments required to maintain trim and stability. 

The parallel actuator is an electrical servo with a very slow response. It is connected to the stick 

via a spring and thus determines current stick datum. The actuator is operated in at least three 

ways: 

1. by the autopilot to execute turn commands by moving the stick. 
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2. by the pilot directly using the beep button to fix a new stick datum after a change in trim 

condition. 

3. by the SAS to centre the series actuators so that they can exploit their full travel. 

The parallel actuator has full authority but its slow motion and spring connection ensure that 

it is easily overridden. Thus the parallel actuator systems driving it are not safety critical. 

The mixer is effectively the orientation of power servos on the swash plate. An angle is chosen that 

minimises the cross-coupling between longitudinal and lateral pilot commands. 

The spring centres the stick and forms part of the artificial stick feel system by exerting a force 

for the pilot to oppose. In theory the spring should be tightened as forward speed increases. 

However, in practice, the small speed range of the helicopter makes this an unnecessary em­

bellishment. 

The power servos are hydraulic jacks that move the swash plate. They exhibit a much slower dy. 

namic response than the series actuator and are often modelled as a dominant first order lag. 

The damper may be included as part of the artificial stick feel system to resist rapid stick move­

ment and ensure the stick centres without overshoot. The tactile cues provided by the stick 

feel system are important for handling qualities. 

The force sense switch is open when the pilot makes large stick movements. It is used to disengage 

the attitude feedback so that pilot commands are not opposed by the SAS and also to enable 

the pilot to demand a rate response. 

As well as the equipment outlined above, mechanical interlinks are generally employed to provide 

some decoupling of the pilot commands. For instance, adjustment of the collective lever may also 

move the longitudinal cyclic and tail rotor collective control runs. This mitigates the coupling of main 

rotor collective into yaw and pitch, due to the torque reaction and increased flapping. 

The Westland Helicopters EH101 actuation system is shown in Figure 2.5.14, with the aircraft body 

removed. This diagram clearly shows the dual pilot controls, the parallel and series actuators, the 

main rotor power servos and the mechanical control runs, which pass under the pilot seats and behind 

their backs. 

2.5.2 A Conventional Control Law 

A control law suitable for the ASE described above is shown in Figure 2.5.15. The control law uses a 

gyro to measure attitude which is passed through a band limited differentiator (Tb Ta ~ O.05sec) to 

provide attitude and rate feedback. The attitude and rate feedback gains are denoted K9, K~b K~2 

and KiJ' K;p respectively. For large pilot commands the force sense logic disengages the attitude 

feedback giving the pilot rate command. But the roll axis still requires some attitude feedback to 
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Figure 2.5.15: A control law structure suitable for standard auto-stabilisation equipment. 
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maintain stability thus a wash-out filter (T2 ~ 2.0sec) is employed to feedback some roll attitude. 

The wash-out filter ensures the fed back roll attitude does not oppose the pilot commands. 

Feeding the stick position (111s,111c) into the control law may seem unnecessary since it already has a 

direct actuation path via the control runs. However, the stick input ensures that small stick movements 

are not opposed by the control law and provides attitude command. In some implementations, pre­

compensation is applied to the stick input this is, generally, to stop pilot induced oscillations (PlO). 

It is interesting to note that, regardless of the attitude attained by a large stick input, centring the stick 

will return the helicopter to the original datum set by the attitude offset values (Btrim , <Ptrim). This 

behaviour is quite different from the conventional fixed wing system where centring the stick will 

cause the attained attitude to be held. The integrator connected to the parallel actuators has a long 

time constant and will act to centre the series actuators by adjusting the stick datum. 

The heave and yaw channels are much simpler employing only rate feedback. However, a filter net­

work (FIt H) may be employed to provide some lead-Iag compensation or low pass filtering. 

Development of the AFCS typically requires lOO's of man years to achieve flight certification since 

each step must be conducted in accordance with a strict quality regime. Development of an exclus­

ively digital system is a particularly arduous task as large amounts of expensive safety critical soft­

ware must be written. The SAS control law may be implemented in either software or hardware 8. 

It has therefore been suggested [Tay97] that a more cost effective approach is to provide the basic 

safety critical stabilisation in analogue hardware and the remaining autopilot functions in software. 

2.6 Summary 

This chapter introduces helicopter dynamics and some common analysis tools such as computer sim­

ulation, trim, modal decomposition and linearisation. Linearisations form the basis of control law 

design and a poor linearisation is likely to propagate through the design process to yield a poor con­

troller. Therefore a novel algorithm is developed that produces a representative linearisation and use­

ful error data. Higher order approximations are also briefly considered and shown to offer potential. 

Modal analysis is an important part of flight dynamics and especially relevant to control law design 

using eigenstructure assignment. A detailed analysis of the hover case is conducted. the results of 

which are later used to guide the construction of an ideal eigenstructure. 

Some of the work covered in this chapter presents interesting topics for further work. For instance 

a theoretical basis for the linearisation algorithm could be developed, higher order approximations 

could be further investigated and the modal analysis could be repeated for different forward speeds. 

8Establishing the reliability and fail safe operation of hardware is much simpler and cheaper than for software [Elp96]. 
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The overriding purpose of any AFCS control law design is to improve handling qualities. Thus a 

good understanding of the handling qualities requirements is vital for control law design. This chapter 

presents an overview of the relevant handling qualities requirements and considers them in the context 

of eigenstructure assignment. 

3.1 Introduction 

It is no great engineering challenge to produce a machine that can propel itself through the air, but 

to produce a machine with characteristics such that a pilot can control the speed and position in six 

degrees of freedom, is a tremendous challenge. The major difference between a flying machine and 

a useful vehicle is handling. Handling qualities have been defined by Cooper and Harper [HC86] as 

the following: 

'Those qualities or characteristics of an aircraft that govern the ease and precision with 

which a pilot is able to perform the tasks required in support of an aircraft role. ' 

Handling qualities encompass all aspects of the man machine interface. This includes the cockpit 

ergonomics, the choice of inceptor and display, for digital systems the presentation and update rate of 

Page 58 
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Figure 3.1.1: A conceptual model of the pilot as a controller. 

the display. the feel or force feedback from the stick. the field of view. the available autopilot functions 

and response types and the vehicle response to small. moderate and large amplitude inputs. Anyone 

of these factors can ruin otherwise excellent handling qualities. Good handling qualities are not just 

a system embellishment, in a critical situation bad handling qualities can culminate in pilot error with 

disastrous consequences. 

Advances in handling qualities have been and still are necessary to increase mission productivity and 

enable more complex and diverse missions to be undertaken. However. producing a set of criteria that 

an engineer can apply in order to ensure good handling qualities is a difficult and protracted problem 

for the following reasons: 

• Handling Qualities are subjective. Their ultimate evaluation is based on pilot opinion and one 

of their aims is to reduce a notional quantity. namely pilot workload. 

• Analysis of the unpiloted dynamics is not sufficient to guarantee good handling qualities. The 

pilot can be considered as a highly intricate adaptive controller that augments the dynamics of 

the helicopter. Thus, only the pilot sees the complete augmented system. As shown in Fig­

ure 3.1.1, the pilot can close a variety of loops around the vehicle and AFCS. For instance, 

adjusting the stick feel system may cause a pilot induced oscillation (PlO) even though the dy­

namics of the vehicle remain unaltered and could, hypothetically, display a dead beat response. 

Handling qualities specifications are therefore the result of protracted studies requiring a large data­

base of information, from ground simulations, test flights and airborne simulations. This is exem­

plified by the US military standard for helicopter bandling qualities MIL-H-8501A which was under 

revision for some fifteen years. This work has recently culminated in the new ADS 33 specification 

[AYS89]. All handling qualities specifications measure performance on a 3 level scale as shown in 

Table 3.1.1 
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Level Pilot rating Definition 

I 1-3.5 Clearly adequate. 

2 3.5-6.5 Adequate with increased workload or loss of mission effectiveness. 

3 6.5-9 Controllable with excessive workload. 

Table 3.1.1: Handling qualities levels of compliance . 

. The handling qualities specifications widely applied in industry are the Ministry of Defence Def-Stan 

00-970 Vol. 2 Part 6 [Pit89, Pad96], the MIL-H-8501A [Mcl90, Pad96] and the Air Design Stand­

ard (ADS) 33 [AVS89, HMA +85, Key88, Hoh88, Pad96]. The following two sections will present 

a brief overview of the ADS 33 and Def-Stan 00-970 specifications. Particular attention is paid to the 

small amplitude dynamic criteria. This is of most relevance for SAS design, not least because of the 

limited authority of the series actuators. An effort will be made to compare and contrast the specifica­

tions because, although different in approach and terminology, fundamentally they show considerable 

agreement. 

3.2 The ADS 33 

The handling qualities criteria are dependent on an array of parameters. The first section of both spe­

cifications is dedicated to categorising the parameters in manner that maintains an intelligent com­

promise between simplicity and accuracy. The ADS 33 achieves this as follows: 

Mission Task Element (MTE) are defined as the manoeuvres that form essential ingredients of 

most missions. MTEs are divided into groups for hover, low-speed « 45 knots) and forward 

flight (>45 knots). There is no classification of rotorcraft by role or size. This is embodied by 

the required MTEs. For instance, the target acquisition MTE would not be required for a cargo 

helicopter. 

Usable Cue Environment (UCE) defines the quality of the pilot's external view and is measured in 

3 levels; 1 is the best and 3 the worst. 

Pilot attention is defined in two levels fully attended and partially attended. Partially attended im­

plies the pilot undertakes tasks in addition to flight path management (flying). 

Speed range different criteria apply for speeds above and below 45 knots since the pilot's desired 

response characteristics will change. For instance, the pilot will not attempt a precision man­

oeuvre during high speed forward flight. 

Response size is divided into three categories small, medium and large. This is because the aspects 

of the response that are important to the pilot depend on the size of the response. For instance, 
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for small amplitude responses, characteristics such as bandwidth are important whereas, for 

large amplitude responses, the maximum control power is more relevant. 

The specification is applied by considering the speed, UCE, MTE and pilot attention level of interest. 

For low speeds, where precise manoeuvres are normally conducted and thus the dynamic response 

is more important, a response type, bandwidth and phase delay are specified. The response type will 

be one of the following: 

Rate Command (RC) a fixed stick position commands an appropriate constant rate that diverges for 

more than four seconds. Rate command may incorporate heading (DH) or height hold (HH). 

Attitude Command Attitude Hold (ACAH). a fixed stick position commands an appropriate con­

stant body attitude. This is obviously used in conjunction with attitude hold. 

Translational rate command (TRC) a fixed stick position commands a steady translational rate. 

Although rate command is sufficient to achieve level 1 handling qualities for virtually all MTEs in 

UCE= 1. For UCE=2 and divided attention tasks, the additional stability offered by ACAH and other 

response types is required to compensate for the increased pilot workload. It is important to note 

that the limited authority of the series actuator dictates that non-rate response types can only be real­

ised for small stick movements. Generally, the situations that require non-rate response types also 

demand small precise stick movements. However, the advent of full authority, fly-by-wire systems 

does present the opportunity for novel response types over the full stick range and thus the potential 

for further, significant reductions in pilot workload. 

The bandwidth criteria are not specified in terms of the conventional 3 dB point, but defined with 

respect to the gain and phase margin in the rate or attitude channel of interest, see Figure 3.2.2. 

• Gain bandwidth is the frequency at which there is 6dBs of gain margin. 

• Phase bandwidth is the frequency at which there is 45° of phase margin i.e. the phase equals 

_135°. 

For first order systems where the phase is always less than 135° Garrad and Low [GL90. LG93] 

propose using the pole location as the bandwidth measure. For second order systems: 

(3.2.1) 

the bandwidth is equal to: 
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Figure 3.2.2: Gain and phase bandwidth definitions. 

-135° ( 2(wnw ) (3.2.2) = arctan 2 2 
wn-w 

-1 2(wnw 
(3.2.3) = w~ -w2 

(w - (Wn)2 - (2w~ = w2 
n (3.2.4) 

w = Wn ( , + vi (2 + 1) (3.2.5) 

The rationale behind the bandwidth (BW) definitions is based on the Crossover Model [McR91] of 

pilot behaviour and measures how 'tight' a pure gain pilot can close the attitude loop without threat­

ening stability. The specification requires the lower of the two bandwidth values be used except for 
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Figure 3.2.3: Bandwidth criteria for target acquisition and tracking (pitch and roll). 

ACAH, where only the phase bandwidth applies. The bandwidth values are specified as a function of 

a second parameter, called phase delay. Phase delay is a two point approximation to the phase curve 

gradient at 1800 and is calculated using Equation (3.2.6). 

(3.2.6) 

Where Tp is the phase delay, W1S0 is frequency at 1800 phase, 2W1S0 is twice this frequency and 

A <P2
W

180 is the phase change between these frequencies. 

Pilot studies have shown that large values of phase delay increase the tendency for pilot induced os­

cillation (PlO). The specification mitigates this effect by requiring a greater bandwidth value, as il­

lustrated by Figure 3.2.3, which is the requirement for the most demanding MTE, target acquisition. 

Recent work [BP94] has cast some doubt on the validity of compensating for phase delay with ad-

ditional bandwidth. 

The bandwidth criteria does not directly deal with the system stability. This is specified in terms of 

damping factor and natural frequency for the mid-term response, which is the frequency range just 

above steady state to just below the bandwidth. The stated criteria are depicted in Figure 3.2.4, which 

interestingly reveals that extra stability is required in the low frequency response for divided attention 

tasks. 

Medium amplitude responses for roll and pitch are specified in terms of the ratio between the peak rate 

and attitude traversed i.e. ~ ~. The parameter transforms from being dominated by the channel 

bandwidth for small changes in attitude to being dominated by the maximum rate for large attitude 

changes. 

Large amplitude manoeuvres are specified as a required minimum angular rate for RC and angular 

displacements for ACAH. 
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Figure 3.2.4: Handling Qualities criteria for the Mid-term response. 
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The criteria outlined above apply to the roll, pitch and yaw channels. An alternative approach, based 

on a Low Order Equivalent System (LOES) is used for the heave channel. A step is applied in heave 

and the vehicle response (it) is recorded. Then a nonlinear least squares algorithm is applied to the 

response data in order to estimate the parameters of the following LOES: 

(3.2.7) 

The transfer function is a first order response with time delay. The maximum values for level one and 

two are shown in Table 3.2.2. 

Level Th (sec) Th (sec) 

1 5.0 0.20 
2 00 0.30 

Table 3.2.2: Maximum value for LOES in heave. 

Inter-axis coupling is covered by the global statement: 

'Inputs to achieve a response in one axis should not result in objectionable responses in 

other axes . • 



3.3 The Def-Stan 00-970 Vol. 2 Part 6 Page 65 

As well as this statement, quantitative criteria are stipulated for yaw due to collective, roll due to pitch 

and pitch due to roll. The guidelines on gust rejection are only pertinent to rotorcraft seeking level 

1 compliance and state that the control bandwidth must equal the disturbance rejection bandwidth. 

This effectively places a severe limitations on the use of a control input pre-filter. 

The specification goes on to consider failure states, flight envelopes, visual aids, the behaviour and 

feel of the primary flying controls, rate of climb, torque response, thrust margin, critical load cases 

and so on. However, the criteria described above represent those most relevant to SAS design. 

3.3 The Def-Stan 00-970 Vol. 2 Part 6 

At a first glance the Def-Stan appears to resemble the ADS 33 specification. It begins by defining 

flight envelopes, rotorcraft states and levels of compliance in much the same manner as the ADS 33. 

However, the description of the terminology below shows that the approaches quickly diverge. 

A mission is considered to consist of a continuous set of operational phases. These are divided into 

non-flight and in-flight phases, the in-flight phases are categorised according to the division of pilot 

attention and degree of stability verses manoeuvrability required. As described below: 

The active flight phase implies high pilot involvement in flying, an emphasis on short term dynam­

ics and manoeuvrability. Within this flight phase manoeuvres are delineated as follows: 

i. Up and away manoeuvring; flying in open space with pilot commands classified as ag­

gressive or moderate. 

ii. Low level, low speed manoeuvring; precision manoeuvring close to the ground, ship 

deck, platform, etc. 

iii. Low level, moderate/high speed manoeuvring; essentially nap of the earth flying. 

iv. Low level, low visibility manoeuvring; pilot involvement in flying is high due to poor 

visibility including the use of visual aids. 

The attentive flight phase implies moderate pilot involvement in flying and an emphasis on the 

short and long term response. This flight phase includes the following manoeuvres. 

i. Up and away manoeuvring; with gentle pilot commands. 

ii. Low level manoeuvring; using autopilot hover modes where pilot invol vement is essen­

tially a preparedness to intervene. 

The passive flight phase implies low pilot involvement in flying with an emphasis on autopilot con­

trol and long term stability. This flight phase is associated with long periods of hands o.f{flying. 

The definitions above can be considered as the Def-Stan interpretation of MTEs and pilot attention 

level. The Def-Stan treats response types as follows (Leaflet 600n para 2.2): 
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i. For active flight phases involving aggressive manoeuvres rate command is preferred. 

ii. For active phases involving precise manoeuvring and most of the attentive flight phase the extra 

stability offered by attitude command makes this preferable. 

iii. For active phases involving specialised ground reference manoeuvres translational velocity 

command or even position command may be most suitable. 

iv. For all phases under degraded visual cuing conditions the additional stability of response types 

other than rate command is likely to be required. 

The criteria above show strong coherence with the approach taken by the ADS 33. Both specifica­

tions generally require rate command. but compensate for poor visual cuing environments or divided 

attention tasks by stipulating attitude command. Both specifications also agree that high precision 

flying and some specialised manoeuvres will need response types other than rate command. 

The short-term stability criteria (Leaflet 600n para 6.2) are specified in terms of parameters gathered 

from time history data and cover much the same ground as the ADS 33 small amplitude criteria. Of 

particular importance is the time history of the transient response to an input pulse of 10% full travel 

applied for 1 second. A typical output induced by a pulse input is shown in Figure 3.3.5. 

cv 
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Figure 3.3.5: A typical transient response in roll. pitch or yaw to a pulse input. 
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The short-term stability parameters are defined with, time referenced from the point at which the peak 

response occurs and magnitude is measured relative to the peak response. All the parameters includ­

ing the peak response are defined and justified below, also see Figure 3.3.5: 

1. The peak response is the maximum value reached by the time response or if the peak occurs 

before the end of the input pulse it is the value that coincides with the end of the pulse. The peak 

response is a measure of control responsiveness that must be greater than a minimum value for 

adequate responsiveness and less than some maximum to avoid over· sensitivity. 

ii. The initial delay is the value of the response (Yl) at a specified time (Tl = 0.5 sec)l from the 

initiation of the control input and it must be greater than a lower limit (30%). This parameter 

prevents the control response from exhibiting excessive sluggishness due to delays and lags. 

iii. To avoid over·sensitivity the value of Yl must be less than an upper limit2, which is to be ad· 

vised (TBA). Furthermore the response build up should possess no obtrusive hesitation. 

iv. To achieve the desired stability the transient response must decay rapidly. This is verified using 

the following parameters: 

(a) The time taken (T30) to decay to less the 30% of the peak value must be less than an upper 

limit (1 sec for level 1). 

(b) The minimum value of the first trough (Xl) must be less than an upper limit (15% forlevel 

1). The limit is expressed as a percentage of the peak value. 

(c) The maximum value of the second peak (X2) must be less than an upper limit (10% for 

level 1). 

v. The accuracy with which the helicopter returns to the original datum after the pulse input, is 

specified as a percentage of the peak value (XF) and must be achieved before TF seconds. 

vi. Experience has shown that pilots find a small amount of overshoot desirable. For level 1 hand· 

ling qualities it is therefore necessary to pass through the original datum. This point (To I ) must 

fall between an upper and lower bound, and the second crossing point (To2 ) must be greater 

than a lower limit. For level 2 compliance this overshoot criterion is replaced with a simpler 

one. This states that the time (Tn) at which the response reaches 10% of the peak value must 

lie between an upper and lower limit. To ensure the overshoot is discernible, the parameter Xl 

requires a lower bound in addition to the upper bound. A value of ~ 1 % was used in practice. 

The criteria for the time history parameters are specified with respect to the flight phase, level of com­

pliance and for the active phase the severity of the manoeuvre. The bias of criteria towards the active 

phase and lack of criteria for the passive phase reflects the significance of the short term dynamics in 

1 This is a provisional value. 
2ln discussions with Barry Pitkin, author of the Def-Stan 00-970, he indicated a value of 70% - 80% was appropriate. 
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these phases. The reason for no level 3 criteria for aggressive manoeuvres in the active phase is that 

a pilot is simply unable to embark on such a manoeuvre with severely degraded handling qualities. 

The criteria for the longitudinal short term dynamics (Leaflet 60111 section 4) are summarised in 

Table 3.3.3. The criteria for the lateral channel (Leaflet 60211 section 4) are identical except for a 

slight increase in the required responsiveness. Table 3.3.3 shows that level 2 compliance permits a 

greater sensitivity, a larger overshoot and a longer settling time. It also reveals that during, the active 

flight phase, level 1 compliance can not be achieved with an attitude response type. Table 3.3.3 dis­

plays no direct consideration of the visual conditions and uses a classification based on pilot attention 

level and manoeuvre type. The reason for this is that the visual conditions affect the pilot attention 

level and the types of manoeuvre that are appropriate are indirectly considered. For instance, under 

degraded visual conditions the pilot will only attempt gentle manoeuvres and is thus deemed to be in 

the attentive flight phase which stipulates the desired attitude command. Using similar reasoning it 

can be argued that small stick movements i.e. gentle manoeuvres, should invoke attitude command 

whereas large stick movements (aggressive manoeuvres) should invoke rate command. 

Phase Active Attentive 

Man. Class Aggressive Moderate All 

Level 1 2 1 2 1 2 
Response Pitch Pitch Pitch Pitch Pitch Pitch 
type rate rate rate att. att. att. 

Peak 10-15 7-20 5-10 50 _ 10° 4° - 8° 40 -120 
response o /sec o /sec o /sec 
T 1(sec) 0.5 0.5 0.5 0.5 0.5 0.5 

Yl% 30-TBA 30-TBA 30-TBA 30-TBA 30-TBA 30-TBA 

T30(sec) <1 <1 <1 < 1.5 <1 < 1.5 

Xl% 15 20 15 25 10 15 

X2% 10 15 10 15 N/A N/A 
TF(sec) 3 5 3 5 3 5 
XF% 10 10 10 10 10 10 
T01(sec) 1-2 N/A 1-2 N/A 1-2 N/A 
T02(sec) >2 >2 >2 > 2.5 N/A N/A 
Tll(sec) N/A 1-2 N/A 1.5 - 3 N/A 1.5 - 3 

Table 3.3.3: The Def-Stan 00-970 longitudinal short-term stability handling qualities criteria as 
defined in Leaflet 60111 section 4. 

The time domain criteria outlined above are applied to the short term dynamics in the roll, pitch and 

yaw channels. An alternative approach is applied to the heave channel (Leaflet 607/1). The criteria 

are based around a first order response and specify the minimum time (TI) that a final value (XI) 

should be reached and a window in which the maximum acceleration should occur. Unfortunately, 

no quantitative data is given but since ADS 33 also uses a time domain approach based on a first order 

response, quantitative data can be inferred from this specification. 

The specification also considers the long term stability of attitude hold functions (Leaflet 60212 sec-
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tion 3 and Leaflet 60112 section 3) and requires that the trimmed attitude remains within a fixed tol­

erance for a minimum stipulated time. Requirements in terms of minimum time constants are stated 

for inherently slow functions such as air speed control (Leaflet 60112) and translational velocity con­

trol (Leaflets 60113 and 60213). It is interesting to note that no quantitative criteria are given that 

might be considered equivalent to the ADS 33 moderate amplitude specification. However, roughly 

the same ground is covered with the following qualitative statement (Chapter 600 para 10.1.8): 

'Rotorcraft response to control inputs in all channels shall be continuous, progressive 

and predictable' 

Control margins serve to ensure there is sufficient control power. They are specified as minimum 

angular rates and attitudes that the pilot can invoke in each channel in a given time and are directly 

equivalent to the ADS 33 large amplitude requirements. 

Interaxis coupling is covered by a global statement (Chapter 600 para 10.1.7) very similar to that 

stated by the ADS 33: 

'Control inputs in a particular channel or axis shall not result in objectionable rotor­

craft responses being generated in other channels or axes, that cannot be contained by 

relatively small (instinctive) corrections through the appropriate control channel (Leaf­

let 600/1 para 4). ' 

There are no quantitative requirements for coupling between angular rates and attitudes, however, 

criteria are given for coupling between translational velocities. 

3.4 Discussion 

The ADS 33 is a detailed and stringent specification that contains a myriad of parameters that must be 

evaluated in order to show compliance. To ease this task and save unnecessary over-design, a more 

objective approach to the specification will be needed by the manufacture and procurer. For instance, 

traditionally level one handling qualities are sought in all aspects of the specification. However, it 

may be more practical through consideration of the vehicle role only to require level 2 for seldom­

executed MTEs. With this approach it is likely that some AFCS functions will not be required and 

thus save considerable expense and development time. A possible candidate for exclusion is TRC. 

The most significant difference between the ADS 33 and Def-Stan is their approach to the small amp­

litude dynamic response. The ADS 33 favours a frequency domain approach based on bandwidth, 

damping ratio and natural frequency whereas the Def-Stan uses a time domain approach based on 

the response to small input pulses. The frequency domain criteria lend themselves more readily to 

many modern design techniques. For instance, the criteria can be used directly in a 11.00 based syn­

thesis [YP90], can be converted into ideal simplified transfer functions for 7-£00 based model match-
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ing techniques [SC94] and eigenstructure assignment [GL90]. Furthennore, the use of phase and 

gain margins affords some measure of the degree of stability. This can be important in avoiding PlO. 

A drawback of the frequency domain approach is the difficulty in showing compliance. Often non­

linearities obscure the mid-tenn response and identification using pilot applied or automatic fre­

quency sweeps is potentially destructive [Pad96, p. 371] and may be inconclusive. Furthennore, 

much of the justification for the ADS 33 mid-tenn response criteria is based on the dutch roll re­

sponse of fixed wing aircraft [HMA +85]. The validity of this is questionable since, for helicopters, 

such a response is often indiscernible, especially at low speeds. It is because of these drawbacks that 

the Def-Stan has adopted a time domain approach which it justifies as follows (leaflet 600n para 6.1): 

'The response of a particular flight parameter to any disturbance is the summation of 

a number of periodic and aperiodic modes embracing a range frequency and damping 

characteristics. The number of such modes is invariably increased with the incorpor­

ation of sophisticated stability and control augmentation systems. This mixing of often 

well damped periodic and aperiodic modes makes it diffiCUlt to observe individual modes 

and meaningfully apply classical frequency and damping factor criteria in stability ana­

lyses. Consequently the approach described above has been adopted. ' 

Previous time domain criteria have been criticised for using unnatural pilot commands such as step 

inputs. Pulse inputs fonn a common element of pilot technique and are often applied in pairs, as 

control doublets. Another criticism of the time domain approach is that a large number of parameters 

is needed to assess compliance compared to the single bandwidth parameter required by the ADS 

33. While several parameters are required, they are all far simpler to detennine than the channel 

bandwidth. Furthennore, many facets of the vehicle response can lead to objectionable handling so 

it is perhaps not unnatural that several parameters are required. However, the time domain approach 

does have its limitations and the Def-Stan concedes that (leaflet 600n para 3.4.4): 

• Further criteria, probably based on bandwidth concepts remain to be established to give 

guidance on avoiding pilot induced oscillations, especially in the case of high control 

power, highly augmented rotorcraft and in high gain piloting tasks .• 

But equally, initial versions of ADS 33 [HMA +85] specification provided time domain criteria for 

preliminary evaluation. The ADS 33 contains many innovations and a great deal of substantiated 

quantitative data that is invaluable for design. 

In summary, the two specifications display differences in tenninology, approach and character. The 

ADS 33 is a more explicit specification where the procurer will be inclined to relax some require­

ments. The Def-Stan is a more qualitative specification, providing guidelines that provokes the pro­

curer and manufacturer to agree upon additional perfonnance criteria relevant to the helicopter and its 

operational role. Finally. it should be appreciated that level one compliance with either specification 

is not sufficient to demonstrate level one handling qualities, ultimately subjective test pilot evaluation 

must also be undertaken. 
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3.5 Handling Qualities and Control Law Design 

Almost all AFCS control law design begins by determining the design goals from the relevant hand­

ling qualities specification. Handling qualities requirements are conceived from the aspect of demon­

strating compliance and thus must invariably be converted into an alternative format appropriate for 

the controIIer synthesis technique. Poor judgement or a mistake in interpreting the handling qualities 

requirements the will undermine the subsequent design effort. Thus design techniques that facilitate 

a strong visible link between the interpreted design goals and the original handling qualities require­

ments, are more likely to succeed and promote confidence in the synthesis technique. Helicopter 

control law design goals have been formulated in several ways: 

1. Direct conversion into frequency domain weighting functions [Tak93b, Gri93, YP90, YP88, 

WP90, Tak93a]. Both 1£00 and 11.2 can be used to shape aspects of the closed loop frequency 

response. Generally the minimum singular value of key transfers functions such as sensitivity 

and complementary sensitivity are manipulated using weighting functions [Mac89]. The de­

sired responses are often guided by the ADS 33 bandwidth and damping factor requirements, 

although, some trial and error is often also necessary. 

2. Direct conversion into time domain weighting functions [IS 90, Nar69]. The Linear Quadratic 

Regulator (LQR) uses two positive definite weighting matrices in an integral time domain cost 

function [AM89], adjusting the matrices alters the system response. Optimal solutions gener­

aIIy have a well damped response, however, trial and error is again often needed to get precisely 

the desired response. 

3. Generation of ideal transfer functions. This is probably the most popular approach and has 

proved effective. The ideal transfer functions are usually first or second order systems that 

meet the ADS 33 bandwidth and damping factor criteria. The ideal transfer functions may be 

used in various controIIer synthesis techniques, for instance: 

(i) Model following [OC92, MG94, Hin87]. This technique feeds the error, between the 

ideal transfer functions and measured vehicle response, into a controller. 

(ii) Model matching [IC94, WP96, MG93, Y193, SC94]. A controller is designed so that 

closed loop system will approximate the ideal transfer functions. Minimisation of the 

approximation error is often formulated as a 1£00 control problem. Interestingly, the ideal 

model may be chosen for its time domain properties, for instance the step response models 

(SRMs) used by Walker and PostIethwaite [WP96], but the model matching problem is 

formulated in the frequency domain. 

4. Generation of an ideal eigenstructure [MMS92, PMS85, GL90, GLP89a, LG93, CP72, SR75]. 

This is closely related to the ideal transfer function approach and these representations are 

sometimes used interchangeably [GL90, GLP89a]. 
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The eigenstructure and ideal transfer approaches both use very simple fully de coupled models that are 

sometimes called conceptual models [Pad96]. In practice no control law will make a real helicopter 

achieve the conceptual model. But the conceptual model is not intended to be a realistic design goal. 

Its purpose is to visibly and unambiguously indicate an aim that will improve the handling qualities. 

Many researchers have converted the ADS 33 requirements into controller synthesis design goals. 

However, the Def-Stan does not share the same popularity and, to the author's knowledge, there is 

no instance in the literature of the Def-Stan requirements being applied to controller synthesis. The 

design goals used in this work are formulated as an ideal eigenstructure. 

3.5.1 An Ideal Eigenstructure 

Section 2.4 showed that examination of the system eigenstructure is a powerful analysis tool and a 

well established branch of flight dynamics. A benefit of an ideal eigenstructure is that knowledge 

and experience from analysis can be directly applied in design. This is particularly useful in ensur­

ing the ideal eigenstructure is plausible. While it may be idealistic, it should not contain any inherent 

conflicts with the system physics. For instance, an ideal eigenstructure that attempts to decouple an­

gular rate from body attitude is likely to fail due to the kinematic relationship between these variables. 

Equally, decoupling the linear velocities from the body attitudes or significantly moving the main ro­

tor flapping modes3 is also fraught with problems. 

The ideal eigenstructure has a strong link with the system time response. This is particularly helpful 

in meeting time domain design goals. Consider the following state space system: 

x = Ax+Bu 

y = Cx 

Where the input and output matrices are partitioned as follows: 

B = [bI, ... , b r ] 

C = [er, ... ,e~] 

Then the time domain solution is [DH95]: 

(3.5.8) 

(3.5.9) 

(3.5.10) 

(3.5.11) 

3The flapping modes may not be influenced since there is no measurement of flapping angle or its derivatives and only first 
harmonic control of the aerodynamic moment. 
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n r n t 

Yi(t) = 2: CiVkeA~twkxO + 2: 2: (CiVk)(Wkbj) 1 eAIorUj(t - r) dr 
k=l j=l k=l 0 

(3.5.12) 

Where Wk and Vk are the left and right eigenvectors associated with Ak and Xo is the initial state vec­

tor. Equation (3.5.12) shows that the eigenvalue Ak determines the decay rate and natural frequency 

of the mode eAIo t and terms CiVk, Wk h j and W kXO are scalars that determine the magnitude and phase 

of the response. For instance, suppose an impulse is applied to one input (j = 1) and the initial state 

vector (xo) is zero. Then the output reduces to: 

n 

Yi = 2: (CiVk)(Wkbl) eAIot 

k=l 

(3.5.13) 

The contribution of rea! modes to the output is a simple exponential decay scaled by (CiVk)(Wk hd· 
The following definitions are helpful in understanding the effect of complex modes: 

ak + Jbk = (CiVk)(Wkbd 

(Tk + JWk = Ak 

The contribution of a complex mode and its conjugate is: 

(3.5.14) 

(3.5.15) 

(ak + Jbk)e(a.,.+JwIo)t + (ak - Jbk)e(ITIo-JWlolt = eITIot [ak (eJWIot + e-JWIot ) - bk (eJwIot - e-JWIot )] 

= 2Va2 + b2 eITlot 
cos (Wkt + arctan (!:) ) 

It can be seen that the modulus and argument of ak + Jbk determine the magnitude and phase of 

complex modes. The values of ak and bk depend on the input (B), output (C) matrices and the ei­

genvectors. By manipulating the eigenvectors (Vk, Wk) or, more directly, the modal coupling vectors 

(Cv k, W kB) the phase and magnitude and of complex modes can be altered. The phasing of complex 

modes will determine whether near-frequency modes combine constructively or destructively. Poor 

phasing can lead to obtrusive peaks or lulls in the response. Hence the argument of complex entries 

in the eigenvectors or modal coupling matrices should be used to adjust the mode phasing. Equa­

tion (3.5.13) shows that the outputs may contain a contribution from all the system modes. Hence 

an almost universal requirement is to simplify or decouple the response by forcing only one or two 

modes to appear in each output. This is achieved by manipulating the magnitude of entries in the ei­

genvectors or modal coupling matrices such that they have a predominantly block diagonal structure. 
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In addition to decoupling, forcing only one or two modes to appear in each output means fewer eigen­

value parameters will detennine the response in each output. This leads to a more visible relationship 

between the eigenvalues and system response and greatly simplifies selection of ideal eigenvalue loc-

ations. 

The eigenstructure has a strong link with system transfer function in its partial fraction expanded 

fonn. Equation (3.5.16) shows the transfer function in dyadic or partial fraction expanded fonn. 

(3.5.16) 

There is a clear link between the eigenvectors or modal coupling matrices and the residue of each 

mode. Fixing the relative size of different residues may be used to guide the construction of an ideal 

eigenstructure. 

An aim of this work is to produce an ideal eigenstructure that meets the Def-Stan 00-970 short term 

stability criteria. 

3.5.2 Ideal Roll and Pitch Eigenvalue Locations 

It was decided to characterise the set of second order systems that meet the Def-Stan time domain 

criteria. A second order system was chosen for the following reasons: 

• This is simplest system that will meet the Def-Stan time domain criteria. 

• Low order systems have a smooth predictable response which is consistent with the general 

handling qualities requirements [MMS92]. 

• Two states are associated with the pitch (q, 0) and roll (p, ifJ) channels thus for a static feedback 

solution it is appropriate to consider a second order system. 

• Previous work using conceptual model based approaches has shown that low order systems are 

effective [SC94, GL90, WP90]. 

Defining an ideal eigenvalue region rather than a single location avoids introducing unnecessary con­

straints at this early stage in the design. Consider the following second order system: 

(3.5.17) 

Let us define a pulse of width T: 
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pet) = het) - het - T) (3.5.18) 

Where het) is the Heaviside step function. Then the system response to a pulse input (P(t)) is: 

e-(w"t [ e-(w .. (t-T) 1 
yet) = 1 - 11--:=2 sin (Wdt + a) - 1 - 11--:=2 sin (Wd(t - T) + a) het - T) 

yl-(2 yl-(2 
(3.5.19) 

Where: 

Wd = Wn y'1-(2 (3.5.20) 

a = arccos(() = arctan ( ~) (3.5.21) 

Assuming an input pulse width (T) of one second the Def-Stan indicates that ideaUy4 the first peak 

should occur after the input pulse. For t < T the derivative of the output is: 

k . 1· 0 8y(t) th . a pea Imp les = at us. 

o = (wn sin (Wdt + a) - Wd cos (Wdt + a) 

= Jw~ + ((Wn )2 sin (Wdt + a - arctan (,:d
n
)) 

= Wn sin (Wdt) 

Hence the following constraint applies: 

(3.5.22) 

(3.5.23) 

(3.5.24) 

(3.5.25) 

(3.5.26) 

41n fact The Def-Stan 00-970 (Leaflet 600n para. 3.4.2) will tolerate a very small peak (Y2) before the end of the input 

pulse. 
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The Def-Stan references time with respect to the first peak. Hence an initial task is to find the location 

of this peak. Assuming the peak occurs after T seconds, the derivative of the output response is: 

Where: 

( 
e(w,.T sin (WdT ) ) 

{3 = arctan 
1 - e(wnT cos (WdT) 

M = (1- e(wnT cos (WdT))2 + (e(w"T sin (WdT»2 

Thus the initial peak occurs at: 

7r-{3 
tpk =-­

Wd 

(3.5.27) 

(3.5.28) 

(3.5.29) 

(3.5.30) 

(3.5.31) 

(3.5.32) 

Comparing Equation (3.5.28) with Equation (3.5.19) we see that for t > T the response to a pulse 

(P(t» may be rewritten as: 

e-(wnt 
yet) = yT=(2 [e,wnT sin (Wd(t - T) + 0:) - sin (Wdt + 0:)] 

1- (2 
e-(wnt 

= yT=(2M sin (Wdt + 0: + (3) 
1- (2 

It is clear from Equation (3.5.34) that the first zero crossing occurs at: 

_27r_-_0:_--,--{3 
tz = 

Wd 

(3.5.33) 

(3.5.34) 

(3.5.35) 

The Def-Stan (Leaflet 60111 para 4.2 and Leaflet 60211 para 4.2) requires the first zero crossing (t z ) 

occurs between one and two seconds after the initial peak (tpk) thus 1 < (tz - tpk) < 2 or equival-

ently: 
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(3.5.36) 

The Def-Stan also stipulates that the second zero crossing (T02 ) should happen two seconds or more 

after the initial peak thus: 

(3.5.37) 

In fact, for this simple second order case, if Equation (3.5.36) is satisfied then Equation (3.5.37) must 

also be satisfied. 

1I'-a 
1<-­

Wd 

From Equation (3.5.21) we see a is always positive thus: 

211' - 20: 211' - 0: 2< <--
Wd Wd 

(3.5.38) 

(3.5.39) 

The ratio between the initial peak and first trough must be less than Xl = 0.15 (see Table 3.3.3) and 

ideally greater than Xl = 0.01, from Equation (3.5.29) the first trough occurs at: 

Thus the ratio is: 

since - sin(8) = sin(1I' + 8) 

211' - f3 
ttr = --­

Wd 

-~11' = - e v"i"=Z2 

(3.5.40) 

(3.5.41) 

(3.5.42) 

(3.5.43) 
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Hence the overshoot constraint reduces to a bound in the damping factor «(). 

(3.5.44) 

The Def-Stan constraint on the second peak (X2) may be equally expressed as: 

(3.5.45) 

The Def-Stan specifies that TF = 3 seconds after the first peak. The steady state error should be less 

XF = 0.10 of the initial peak. This can be interpreted as a constraint on the exponential envelope of 

the pulse response. From Equation (3.5.42) we see: 

(3.5.46) 

The Def-Stan further specifies that the response should decay to less 30% of the peak value within 

T30 = 1 seconds. Starting with Equation (3.5.41) some manipulation yields the following implicit 

constraint: 

(3.5.47) 

To avoid over-sensitivity or sluggishness the Def-Stan specifies the initial build up, that is Tl = 0.5 

seconds from the inception of the pilot command, should lie between 0.30 and 0.75 of the peak re­

sponse. This constraint is hard to simplify mathematically since it straddles a discrete change in the 

pilot command. However, some manipulation of Equation (3.5.19) and Equation (3.5.34) gives the 

following implicit constraint: 

(3.5.48) 

The second order system has two degrees of freedom in the complex plane so each constraint can be 

used to define a line that is a boundary of the allowed region. Most of the constraints can be separated 

and plotted explicitly. However, both Equation (3.5.47) and Equation (3.5.48) require an implicit 
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An s-plane interpretation of the Def-Stan short tenn stability criteria 
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Figure 3.5.6: An s-plane interpretation of the Def-Stan short tenn stability criteria. 

equation solver to be plotted. 

The analytical constraints derived above were verified by constructing a second order system for each 

of many points in the complex plane, simulating the responses to a pulse input and evaluating the 

handling qualities of these responses. Figure 3.5.6 shows there is a clear correspondence between the 

analytical constraints and tests points with level one handling qualities. The criteria used to construct 

Figure 3.5.6 are for the active flight phase (see Table 3.3.3). The region defined by the attentive phase 

differs in only one respect, the line Xl = 0.15 swings down to Xl = 0.10. 

The Def-Stan criteria map to a well defined region in the complex plane, although some constraints 

are seen to be subsumed by others. This is because second order systems produce a simple linear 

response that does not exercise all the constraints. The response from a real helicopter would require 

the additional constraints to be adequately classified. However, in this case, the dominant criteria are 

easily identified as the first zero crossing T01 • the overshoot criterion Xl and the thirty percent decay 

criterion T3o. 
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While identifying an allowed eigenvalue region maintains flexibility it is also useful to define an ideal 

location. This can be done from a frequency or time domain perspective. The frequency domain 

approach simply requires placing a centre point in the allow region. A hand estimated location is: 

).., = -1.8±)1.75 (3.5.49) 

The time domain approach requires identifying a location where the response comfortably meets all 

the time domain criteria. Any two of the time domain constraints can be used to define a point. 

However, it is appropriate to use the dominant constraints identified above. Suppose the ideal re­

sponse achieves a 7.5% overshoot (Xl) and a zero crossing (TOl ) one and half seconds after the initial 

peak. Then from Equation (3.5.44) and Equation (3.5.36): 

Some rearrangement gives: 

0.075 = e-~7r 
1.5 = 7r - Cl( 

Wd 

7r ....: tan (In(o.~75)) 
Wd = 1.5 

r -In (0.075) 
.. Wn = Wd 

7r 

which evaluates to the following ideal point: 

)..tl = -1.24 ± )1.51 

(3.5.50) 

(3.5.51) 

(3.5.52) 

(3.5.53) 

(3.5.54) 

An simpler approach that yields a good engineering approximation is to suppose that the first over­

shoot (or first trough) occurs two seconds after the initial peak (ttr - tpk = 2). This ensures that both 

the zero crossing criteria are comfortably met and as before a 7.5% overshoot is specified. From 

Equation (3.5.32), Equation (3.5.40) and Equation (3.5.42): 
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11' 
Wd=--­

ttr - tpk 

-In (0.075) 
(wn = ---'------'-

ttr - tpk 
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(3.5.55) 

(3.5.56) 

(3.5.57) 

We see that the real and imaginary components are determined by very simple independent equations 

and evaluation gives: 

At2 = -1.30 ± 31.57 (3.5.58) 

This simple approach can be used to generate an ideal point for the attentive phase criteria. In this 

phase the criteria are generally the same except the first over shoot must be less than ten percent. 

Choosing an ideal overshoot of five percent gives the following ideal point: 

.At3 = -1.50 ± 31.57 (3.5.59) 

The effect of zeros on the real axis was briefly investigated. 

(3.5.60) 

Zeros less than -20 from the imaginary axis have no discernible effect on the region defined by the 

Def-Stan on the complex plane. As the zero moves closer to the imaginary axis the allowed region 

is progressively cropped from left, each time reducing the maximum response decay rate «(wn ). For 

instance, with a zero at -7 the region extends no further left than -2 and with a zero at -3 the allowed 

region ceases to exist. The effect of a zero on the time response is to accentuate the changes in the 

pilot command. Responses generally failed the Def-Stan criteria due to an excessive overshoot as the 

pilot command was removed. This can be explained as follows, the zero can be conceptually moved 

to the pilot input: 

W~ (8 + z) 
Y(8) = 82 + 2(Wn 8 + w~ u(s) (3.5.61) 

w2 

y(s) = 2 + 2( n + 2 [(8 + z) u(s)] 
S WnS Wn 

(3.5.62) 
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An s-plane interpretation of the Def-Stan short term stability criteria 
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Figure 3.5.7: An s-plane interpretation of the Def-Stan short tenn stability criteria plus the ADS 33 
bandwidth and damping ratio loci and the ideal point At2. 

The pilot input is now the sum of the original pulse and its derivative, a positive and negative impulse 

at the pulse transitions. As the zero moves closer to the imaginary axis the relative contribution from 

the derivative component increases causing a larger overshoot. Systems with a slower response are 

less effected by this 'derivative kick' hence the allowed region progressively encompasses only the 

slower systems. 

It is worthwhile comparing these results with the ADS 33 criteria. Figure 3.5.7 shows both cri­

teria. The dot-dash lines running from the real axis are the ADS 33 bandwidth criteria (see Equa­

tion (3.2.5». The mid tenn response damping ratio criterion (DR = 0.35) is also indicated as a 

dot-dash line and the asterix denotes the approximate ideal point At2. Second order systems achiev­

ing Def-Stan level one will generally have a bandwidth greater than 3 rad/s. This will meet the ADS 

33 level one bandwidth criterions for all MTEs except target acquisition. The Def-Stan pennits a 

5 Assuming a phase delay (T p) less 0.25 seconds. 
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minimum damping ratio of 0.52. This is a stricter requirement than the ADS 33 mid term response 

criterion, which stipulates a minimum of 0.35. The ideal point has a bandwidth of 3.7Hz and a damp­

ing ratio of 0.64. This would meet the ADS 33 bandwidth criterion for the most demanding MTE, 

target acquisition6 • Despite being specified in different domains, for this case the ADS 33 and Def­

Stan show good consistency. While this result, for second order systems, offers some evidence that 

the specifications are globally consistent, such an extrapolation would be unwise. 

3.5.3 Ideal Heave and Yaw Eigenvalue Locations 

The Def-Stan (Leaflet 603/1 para 4.2) yaw channel requirements are specified using the usual time 

domain parameters and, except for the peak response, the criteria are equal to those for the roll and 

pitch channels. However, it is initially planned to use only a static feedback controller and apply 

rate damping in the yaw channel. Thus only the single real pole associated with the damped yaw 

response will be assigned. The Def-Stan does offer some guidance for systems exhibiting a first order 

response in yaw, although it assigns them level two handling qualities. From Table 3.3.3 the response 

should comply with the sensitivity requirements (Yl, Tl ) and the 10% decay requirement (Tl1 = 
1 - 2). These requirements are straightforward to convert into an ideal range for the yaw pole (Ay), 

for instance the 10% decay requirement becomes: 

In (0.1) < A < In (0.1) 
- y - 2 (3.5.63) 

which evaluates as: 

1-2.3 $ Ay $ -1.21 (3.5.64) 

The sensitivity requirement (Yb Tl ) is: 

1 - eAvT 

0.3 < A T < 0.75 1- e v 1 
(3.5.65) 

Where T is the input pulse width and will coincide with the peak response. This equation reduces to 

a quadratic, the solution of which reveals: 

(3.5.66) 

6 Assuming a phase bandwidth less than 0.22 seconds. 
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The ADS 33 specifies the small amplitude yaw response using bandwidth criteria. Garrad and Low 

[GL90, LG93] suggest that, for first order systems, the bandwidths may be directly interpreted as pole 

locations. For all MTEs except target acquisition and for phase delays less 0.2 seconds, a bandwidth 

of > 2 rad/s will achieve level one handling qualities and> 0.5 will achieve level two. Thus for 

level two compliance the ADS 33 implies the following bound on the yaw pole: 

-2 < Ay < -0.5 (3.5.67) 

This shows good agreement with the Def-Stan Criteria. Studies have shown [Pad96, p. 410] that 

a yaw pole location between -2.2 and -4.1 will meet the ADS 33 level one criteria for the most de-

manding MTE. 

Due to the lack of quantitative guidance in the Def-Stan (Leaflet 60711 para 4.2) for the desired heave 

response, criteria will be drawn from the ADS 33. Both specifications assume a single dominant pole 

(Aw) and the ADS 33 requirements (see Table 3.2.2) almost directly specify: 

(3.5.68) 

The limited authority of the series actuators and strong physical influence of the inflow dynamics 

mean that the heave pole can not be greatly effected by feedback. Despite this, some researchers 

[GL90] have attempted to assign some ambitious heave pole locations (Aw = -4). 

For attitude and rate command response types the poles associated with the linear velocities (u, v) 

may not be significantly influenced by feedback and should instead remain at the location dictated by 

the system physics. For instance, suppose a helicopter has attitude command. Then the body attitude 

orientates the thrust vector which, predominantly determines the build-up of the linear velocities. 

Any attempt to significantly modify the build up oflinear velocities will require a change in attitude, 

which is inconsistent with attitude command. 

For translation rate command both specifications require the linear velocities to have a dominant first 

order response. The ADS 33 requires a time constant of between 2.5 and 5 seconds and the Def-Stan 

(Leaflet 60213 para 2.4) requires a settling time of less five seconds. 

The two previous sections have demonstrated a clear link between the handling qualities require­

ments and the ideal system modes. Even for complex requirements with multiple constraints a clear 

and simple link to the ideal pole location has been established (see Equation (3.5.55) and Equa­

tion (3.5.56)). An attempt has been made to produce ideal modes that are consistent with both the 

Def-Stan and ADS 33 requirements. Specifying the system modes alone is not sufficient to guaran­

tee a good response. One must also consider how they are distributed. 
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3.5.4 Ideal Eigenvectors 

Two aims drove the derivation of the ideal eigenvectors: 

1. Decoupling the modes into the appropriate outputs. 

2. Ensuring the eigenvectors were consistent with the physical relationships between the state 

variables. 

The states were initially divided into four groups; longitudinal (u, q, f), lateral (v, p, 4», yaw (r) 

and heave (w). Each group is fully decoupled from the others and, for the longitudinal and lateral 

groupS, a transfer function approach was used to preserve integral relationship between the states. 

Consider a longitudinal or lateral third order subsystem. Two poles will be assigned to the system, 

one complex pole pair (A1 I ),1) to determine the attitude and rate responses and one real pole (A2) 

associated with the linear velocity response. The attitude (f), 4» is approximately the integral of the 

rate (q, p) and the linear velocity mode (A2) should not be visible in both rate and attitude outputs. All 

modes will be visible in the linear velocity outputs (u , v) since they are related to body attitudes via 

the linear velocity modes. The preceding description leads to the following ideal transfer functions, 

which illustrate the longitudinal case: 

'U 1 
= 

(s + Ad(s + ),t}(s + A2) El 
(3.5.69) 

q s 
= 

El (s + Ad(s + AI) 
(3.5.70) 

f) 1 
-= 

(s + Ad(s +),d El 
(3.5.71) 

Suppose the third order subsystem has an input matrix Bs = [0 1 0] T, output matrix Cs = 13 , 

left and right eigenvector matrices denoted Ws and Vs and eigenvalue matrix denoted As. Then 

the subsystem transfer function matrix (Gs (s» may be expressed as: 

Gs (s) = Cs Vs (sI - As )-1 Ws Bs 

For the longitudinal case, the above is expanded as follows: 

o 
1 

(S+Al) 

o 

(3.5.72) 

(3.5.73) 
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The zeros in Cs Vs arise because the mode >'2 should not be visible in q and e. Equation (3.5.73) 

can be evaluated to give: 

U f1f1 T1t1 T4t2 

B1 = (s + >'d + (8 + Ad + (8 + >'2) 
(3.5.74) 

q 7'2t1 T2t1 = +~~-:-
B1 (8+>'d (8+Ad 

(3.5.75) 

() f3t1 T3 t1 

B1 = (8+A1) + (8+Ad 
(3.5.76) 

By equating coefficients with the numerators of the ideal transfer functions, the eigenvector elements 

T1, ••• , T 4 and t1, t2 can be calculated, as shown below: 

Sl : 0 = 7'lt1A2 + T1t1A2 + fd1A1 + Tlt1>'1 + T4t2AI + T4t2A1 

o - - -s : 0 # f1tlA1A2 + Tlt1AIA2 + T4 t 2 A I>'1 

(3.5.77) 

(3.5.78) 

(3.5.79) 

(3.5.80) 

(3.5.81) 

(3.5.82) 

(3.5.83) 

However, not all the elements can be arbitrarily assigned since the left and right eigenvectors must 

satisfy: 

13 = WsVs (3.5.84) 

Which can be converted into the following constraints on T1, .,. , T 4 and t 1 , t2: 
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[0 1 Or = CsVsWsBs (3.5.85) n [ ~l:l + r,t,+ r,t, 

1 
1 = T2tl + T2tl (3.5.86) 

o T3tl + T3tl 

Examination of Equation (3.5.86) shows that the constraints (3.5.77), (3.5.80) and (3.5.82) will be 

inherently satisfied. If Equation (3.5.80) is satisfied then it clear that: 

(3.5.87) 

will satisfy Equation (3.5.81). It only remains to solve Equation (3.5.78), eliminating T4t2 by substi­

tuting Equation (3.5.77), some rearrangement and comparison with Equation (3.5.82) yields: 

(3.5.88) 

Eigenvectors are unique up to scaling therefore, for convenience, let us assume that both T, and T3 

are equal to unity. The desired closed loop eigenvectors are: 

[~ Vs = ..L 
AI 

1 

(A2~Atl oolJ 
Xi' 
1 

(3.5.89) 

We see that the linear velocity mode ()'2) will be un observable in the attitude (0, ~) and rate (p, q) 

outputs, which is consistent with the original requirements. In practice, assigning the desired eigen­

vectors may not ensure that the linear velocity mode is completely unobservable, but this can be 

achieved by assigning the pole and eigenvector to be coincident with the open loop zero and zero dir­

ection (see Section 2.4.3). In fact, the open loop zero directions are encouragingly consistent with the 

ideal eigenvectors. The use of the open loop zeros has also been proposed by Manness and Murray­

Smith [MMS92]. Their motivation was quite different and based on simplifying the system dynam-

ics. 

The complete set of ideal eigenvectors may be constructed from the four decoupled blocks as shown 

below: 
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1 1 1 0 0 0 0 0 u (A,,-Aq) (>'" -Aq) 
1 1 0 0 0 0 0 0 q Aq >.q 

() 1 1 0 0 0 0 0 0 

V 0 0 0 1 1 1 0 0 
= (>'v-Ap) (A"-Xp) (3.5.90) 

0 0 0 1 1 0 0 0 P Ap Ap 

<P 0 0 0 1 1 0 0 0 
w 0 0 0 0 0 0 1 0 
r 0 0 0 0 0 0 0 1 

Using a different approach Garrad et al [GLP89a] present a set of ideal vectors which are broadly 

consistent with those presented above. 

It is important to point out that a key assumption in deriving the desired eigenvectors was the ideal 

nature of Cs and Bs. While we can be sure that Cs = 13 , it is unlikely that Bs = [0 1 0] T 

will be satisfied exactly. For example, the normalised input matrix for the longitudinal and lateral 

subsystems is: 

[

0.26 ] 
Blon = -6.88 Bl 

0.00 
[
0.15] 

B 1at = 26.7 Al 

0.00 

(3.5.91) 

Matters will be improved by the interlinks which can be considered as a static gain network that de­

couples the inputs. 

The preceding ideal eigenvectors are for small pilot commands, that is pilot stick motions before the 

force break out point, since they will give attitude command. A natural topic for further work is to 

derive ideal eigenvectors for rate command. Much of the work required to do this can be draw from 

this chapter. For instance, the ideal pole locations for the roll, pitch and yaw rate response will be the 

same as those derived for the attitude response in Section 3.5.2. However, the pole will be associated 

purely the with angular rate and an additional compensator pole will be needed to form the complex 

pair. The need for a compensator is consistent with the conventional approach where washed out 

attitude is often fed back. The attitude response will have a single pole associated with it. This should 

be determined by the kinematic relationship with the angular rate, since moving this pole by feeding 

back body attitude will introduce attitude command. The same argument applies to the feed back of 

the linear velocities which will introduce translation rate command. Since both the attitude and linear 

velocity modes should not be seen in the rate response, their associated eigenvector and eigenvalues 

may be placed using the open loop zeros. The heave and yaw eigenvectors and eigenvalues may be 

assigned as before. 
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Another interesting topic for further work would be to replace the algebraic technique above with an 

automated numerical technique. The motivation for this is that the approach above reduces to solving 

several linear equations. which can be efficiently computed numerically. Ideally. the numerical tech­

nique would accept values for the ideal pole locations. the actual system input and output matrices 

and the desired zero polynomials for key transfer functions. It would produce a set of eigenvectors 

that. if achieved. would realise the desired zero polynomials. Such a technique would form a use­

ful addition to the eigenstructure assignment technique. allowing ideal eigenvectors to be formulated 

from a mixture of time domain considerations and zero placement. 

3.6 Summary 

This chapter described the two currently most important rotorcraft handling qualities specifications 

(the ADS 33 and Def-Stan 00-970) and. in particular, compared and contrasted their approach to the 

small amplitude dynamic response. The Def-Stan criteria were employed to develop an ideal eigen­

structure. This was achieved and a visible link between the requirements and final eigenstructure 

was demonstrated. It was further shown that the ideal eigenstructure is consistent with the ADS 33 

requirements. Some topics for further work have been mentioned these include; construction of a rate 

command ideal eigenstructure and development of a method for generating eigenvectors that realise 

a specified zero structure. 
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This chapter gives an exposition of the current eigenstructure assignment theory and develops some 

extensions that are generically relevant to practical engineering problems. Although, the impetus 

for the extensions was to develop tools that support helicopter control law design. The work in this 

chapter concentrates on achieving performance design goals, robustness is addressed in the follow­

ing chapter. Initially, the state feedback case is considered which is obviously inappropriate for the 

helicopter problem, but is theoretically fundamental. From this basis an algorithm is developed that 

enables a trade-off between eigenvalue and eigenvector design goals. Attention then focuses on the 

more realistic output feedback case, where a practical and versatile algorithm is developed. Several, 

enhancements to the basic algorithm are derived; the theme of which is to provide the engineer with 

the tools to maximally exploit the available design freedom. It is argued that direct assignment of the 

modal coupling matrices is more appropriate for the output feedback case and a technique that com­

plements the eigenstructure assignment algorithm is developed. Finally, the approach is extended to 

include to dynamic compensation. 

Page 91 
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4.2 The State Feedback Problem 

The state feedback problem can be stated as follows: 

Given a state space system (A, B) find a real gain matrix (K) that assigns a desired set 

of self-conjugate eigenvalues {Adi} and right eigenvectors {Vdi}. 

Most of the interest in this problem was initiated after Wonham [Won67] showed that controllability 

of the pair (A. B) was a necessary and sufficient condition to assign a set of arbitrary eigenvalues 

using state feedback. Early techniques used transformation to controllable canonical form or block 

Jordan form [Pcn. AL67]. These techniques often ignored the freedom offered by multiple input 

systems or used dyadic controllers [FaIn] to reduce them to equivalent single input systems. The 

modern topic of eigenstructure assignment began in earnest when Moore [Mo076] illustrated how 

the extra freedom offered by multiple input systems could be used to place the poles arbitrarily and 

manipulate the closed loop eigenvectors. A summary of this important result is given as follows: 

Consider the following state feedback system: 

:ic = Ax+Bu 

u = Kx 

(4.2.1) 

(4.2.2) 

where A E IRnxn. BE IRnxr. K E IRrxn and rank (B) = r. The closed loop system matrix is: 

ACL =A+BK (4.2.3) 

Let (Ai. Vi) be a closed loop eigenvalue and eigenvector pair. Then from the definition of the closed 

eigenvectors we see: 

ACLVi = Aivi (4.2.4) 

0 = (A - Ail)vi + BKvi (4.2.5) 

0 = [A - Ail B] [:~J (4.2.6) 

Thus a subspace may be calculated in which the closed loop eigenvector and gain-eigenvectorproduct 

must reside: 
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(4.2.7) 

Where ker (X) is the null space of X. It follows that for some fi E er xl: 

(4.2.S) 

Equation (4.2.S) demonstrates the necessity for a closed loop eigenvector associated with the eigen­

value Ai to be a member ofrange (Q). Moore [Mo076] shows that eigenvectors may be arbitrarily 

selected from range (Q) providing conditions Cl to C3 below, are met: 

Cl Selected Vi are linearly independent. 

C2 Vi = conj (Vk) whenever Ai = Ak. 

C3 The eigenvalues Ai should be distinctl
• 

Where the operator conj (X) produces the matrix X with each element complex conjugated. 

Moore also illustrates the practical relevance of being able to select the closed loop eigenvectors 

through their direct influence on the system time response. Many researchers developed this approach 

further, often using least squares projection [ASCS3, SCSI, SS85a, SSS5b. SSA94] to achieve eigen­

vectors as close as possible to a desired set {v dj}. This approach has proved particularly applicable 

to aerospace pr~blems [FarS9. GLP89a, SS91. SC92]. Other researchers used the extra design free­

dom to reduce the sensitivity of the closed loop eigenvalues to perturbation in the closed loop system 

matrix. It was shown by [Wil65. GilS4] that eigenvalue sensitivity is at a minimum when the eigen-

vectors are orthogonal. That is 

VV*=I (4.2.9) 

Where V is the closed loop modal matrix and defined as V = [Vl' ... , V n] . 
Algorithms for assigning near-orthogonal eigenvectors were developed by [KNDS5. 00S9. 

BNS9. BP91. Bur90]. These algorithms also form the basis for numerically stable pole placement 

[GLLT92]. 

lThis condition was introduced by Moore [Moo76] to simplify the exposition and later removed by Porter and D'Azzo 
[PD78] who show how to assign genernl block Jordan fonns. 
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Solutions for the gain matrix that express the eigenvector design freedom as a set of independent 

free parameters (parametric solutions) were developed by [F082, F083]. Initial solutions required 

that the open loop and closed loop eigenvalues should not coincide, this was later overcome [FT84]. 

O'Reilly and Fahmy [OF85] also explored the amount of design freedom available and showed it to 

depend on the exact Jordan form that is assigned. Minimal parametric solutions form the basis for 

many optimisation approaches: [Rop83, Dua92a]. The approaches of Fahmy and O'Reilly [F083] 

and Moore [Mo076] were unified in the work of Duan [Dua93, Dua94, Dua92b]. Duan showed both 

solutions to be a special case of a more general approach. Some basic properties of state feedback 

are listed below: 

• If a system is controllable then state feedback may arbitrarily assign the closed loop poles 

[Won67]. 

• The right eigenvectors of uncontrollable modes may be manipulated by state feedback 

[Mo076], but not the left. 

• If rank (B) = T the right eigenvectors may be selected from a subspace of dimension at least 

T. 

• State feedback may alter the observability [SK76] of a system but not the controllability 

[Br09!, p. 446]. 

• The invariant and transmission zeros are unaffected by state feedback [MK76, SK76]. 

In the remainder of this chapter A, B, C will denote a state space triple. Where A E IRnxn , 

B E jRnxr and C E jRmxn. It is assumed the matrices Band C are full rank. The rank assumption 

eliminates consideration of redundant inputs and outputs. If B or C is rank deficient then an input 

or output may be constructed from other inputs or outputs. Although, this may have practical im­

plications from a theoretical point of view a redundant input exerts no new influence over the plant 

and may be ignored. Equally, a redundant output provides no new feedback information and is also 

ignored. 

Chapter 3 demonstrated that eigenvector assignment will form an important part of any flight control 

law design using eigenstructure assignment, since orthogonalisation alone will be insufficient to meet 

the design goals. This statement is further supported by the fact that all the notable applications of 

eigenstructure assignment to flight control law design have used projection-based techniques [GL90, 

MMS92]. With this in mind it is worthwhile trying to maxim ally exploit the design freedom with 

which one is able to assign eigenvectors. 
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4.3 Projection With Eigenvalue Trade-off 

4.3.1 Introduction 

Most eigenstructure assignment algorithms to-date do not permit the designer to trade-off the desired 

eigenvalues and eigenvectors [SSA94, DH88]. It is clear from Equation (4.2.7) that the eigenvalue 

location determines the allowed eigenvector subspace (range (Q)) and thus affects how well the de­

sired eigenvector can be approximated. 

It is also true that most aircraft specifications do not require exact pole placement, but will be satisfied 

by a value within a desired region [Dav94, Dep80]. In Section 3.5.2 it was demonstrated that the 

Def-Stan 00-970 effectively specifies a well defined region in the complex plane and thus eigenvalue 

trade-off is appropriate for helicopter control law design. 

Other researchers [WCY91, LH92, PMS85] have developed techniques that enable eigenvalue trade­

off. However, in these cases the trade-off is part of a large optimisation that manipulate weighting 

matrices or the gain matrix directly. The approach taken here is to consider the trade-off between 

the eigenvalue location and the associated eigenvector. To perform the trade-off one firsts needs a 

relative figure of merit for a given eigenvalue location and allowed eigenvector subspace. The merit 

of an allowed eigenvector subspace is measured by how closely a vector within the subspace can 

approximate a desired eigenvector, in a least squares sense. Two approaches are used to measure the 

merit of an eigenvalue location. The first costs the distance from an ideal point and the second defines 

an allowed region for the eigenvalue. The eigenvalue figures of merit lead to an unconstrained and a 

constrained optimisation respectively. In both cases only the eigenvalue location is optimised. This 

technique forms a logical extension to the popular projection method [ASC83, SC81, SS85a, SS85b, 

SSA94, Far89]. A more rigorous statement of the problem is given below: 

4.3.2 The Problem 

Consider the state feedback system of Equation (4.2.1). By definition the closed loop eigenvector 

(V) and eigenvalue (A) matrices satisfy: 

V-I (A + BK) V = A (4.3.10) 

Where the columns of V are the closed loop eigenvectors (Vi): 

(4.3.11) 

and principal diagonal of the matrix A contains the closed loop eigenvalues (Ai): 
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(4.3.12) 

For the unconstrained optimisation problem the objective is to find the feedback gain K which min­

imises the cost function below: 

Ju = IIVD - VII} + IIAD - All} (4.3.13) 

Where VD is a matrix of the desired eigenvectors (Vdi): 

(4.3.14) 

the matrix AD has a principal diagonal equal to the desired eigenvalues (Adi): 

(4.3.15) 

11 • IIF is the matrix Frobeinus Norm. The constrained optimisation problem is formulated as: 

Jc = IIVD - VII} subject to A E AA (4.3.16) 

Where AA is the set of all allowed eigenvalue locations. The following assumptions are made: 

Al VD, AD must form a self-conjugate set. 

A2 The spectrum of AD must be distinct. 

A3 The pair (A, B) must be controllable. 

A4 The matrix V must satisfy det(V) i:- o. 

Assumption A3 may be ignored if one only considers a controllable subsystem. Assumption A2 has 

been introduced to simplify this exposition. It may also be removed, but this will result in a more com­

plicated technique. Assumption A4 ensures that the assigned eigenvectors are linearly independent. 
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4.3.3 The Solution 

The cost functions of Equation (4.3.13) can be broken down into n independent optimisation prob­

lems by considering each column independently. The unconstrained problem becomes: 

(4.3.17) 

(4.3.18) 

Where 11·112 is the vector 2-norm or Euclidean norm and 1·1 is the modulus operator. The constrained 

problem becomes: 

(4.3.19) 

(4.3.20) 

Where -Xai is the set of allowed eigenvalue locations for Ai. 

The next step is to remove the dependence of the cost function on the vector Vi. This is achieved by 

describing the allowed eigenvector subspace from which viis selected as a function of the eigenvalue 

location (s). A basis for the subspace is formed whereby each element of the matrix is a polynomial 

function of the eigenvalue location. 

Consider the polynomial matrix N (s) of maximum and full rank that satisfies: 

0= [A - sI B] N(s) 

N(s) can be compatibly partitioned with respect to Equation (4.3.21), as follows: 

N(s) = [Q (S)] 
pes) 

(4.3.21) 

(4.3.22) 

Where Q (s) is a polynomial matrix with columns that spans the closed loop eigenvector subspace 
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for a given eigenvalue location (s). Methods for calculating N( 8) are discussed in Appendix C.l. By 

introducing a design vector fi, that selects a specific eigenvector from the allowed subspace, the cost 

function JUi may now be expressed as follows: 

(4.3.23) 

and similarly for the constrained case: 

(4.3.24) 

Examination of the cost function shows that the minimisation may be performed in two stages. First, 

solve for the optimum design vector (fi ) as a function of the eigenvalue location (8), then find the 

optimum eigenvalue location. Mathematically, the unconstrained problem becomes 

JUi = T~~ [IIVdi - Q (s) fill~ + I>\di - S12] (4.3.25) 

= m}n [1I}~n(llvdi-Q(S)filln +1'\di-sI2] (4.3.26) 

and the constrained problem becomes: 

JCi = min [min (IIVdi - Q (8) fill~)] 
BEAai fi 

(4.3.27) 

The first optimisation is a standard least squares problem [Bro91, p. 222] and has an analytical solu­

tion. The solution produces a function for the optimum design vector, denoted fo i , as a function of 

eigenvalue location (s). 

(4.3.28) 

Where (-)t is the pseudo inverse and 0$ is the conjugate transpose. If Q (8) is full rank2 then the 

solution can be expressed as follows: 

2 Q (s) will be full rank if B is full rank. 
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(4.3.29) 

The optimum design vector (foi) can be substituted into Equation (4.3.23) to calculate the minimum 

value of the cost function as follows: 

(4.3.30) 

and equally for the constrained case: 

(4.3.31) 

A second optimisation is conducted over the eigenvalue location. For the case of assigning real eigen­

values both the unconstrained and the constrained optimisation problems can be solved analytically. 

Since, in both cases, the cost function evaluates to a rational polynomial in s. The set of all stationary 

points eAu, .xc) can be found by differentiation and solution of the resulting numerator polynomial. 

The set of stationary points for the unconstrained problem is defined as: 

{ alU.} .xu = s: 0 = as' (4.3.32) 

and equally for the constrained case: 

{
ale. } .xc = s: 0 = as' (4.3.33) 

To solve the unconstrained problem one must evaluate all the extrema and select the global minimum 

(Aoi). 

(4.3.34) 

For the constrained problem one must only evaluate the extrema within the allowed region and the 

values at the boundaries of the allowed region, the global minimum is selected from this set. 
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(4.3.35) 

Unfortunately, for the complex case an analytic solution has not yet been found and numerical tech­

niques must be applied. The fundamental difficulty is that the complex case is a problem in two vari­

ables, the real and imaginary parts of s. The extrema occur when the partial derivatives with respect 

to both the real and imaginary part are zero. This requires the simultaneous solution of two non-linear 

equations in two unknowns which, unlike the single variable case, does not have a general solution. 

The drawback of numerical optimisation is that it is not guaranteed to find the global minimum. 

However, generally for both the unconstrained and constrained problems, numerical techniques do 

converge on the global minimum. For the unconstrained case this is because costing the distance 

from an ideal point forces the global minimum to be near the ideal point, which thus forms a natural 

starting point for the optimisation. The constrained problem usually converges to a solution on the 

region boundary for, generally, there is no minimum within the region. Thus the chances of there 

being two minima and the algorithm converging to the wrong one are slim. 

To set up the unconstrained optimisation problem for an algorithm such as Nelder Mead [WaI75, 

Gra95] it is only required to represent s as two real variables rather than one complex variable. The 

constrained optimisation requires a little more setting up, as the allowed regions must be described 

by a set of inequalities. In most cases it suffices to describe the allowed region as a circle or rectangle, 

both of which are simple to express as inequality constraints. 

Once the optimal eigenvalue locations ().0i) have been found one proceeds to calculate the gain mat­

rix. Using the optimal eigenvalue locations ().oi) the corresponding design vectors fO i are calculated 

(see Equation (4.3.28». These are used to form the matrices S and V as shown below: 

V = [Q().ol)fo1, ••• ,Q().on)fon] 

S = [P('\odfol, ... ,P(Aon)fon] 

The gain matrix is given by the formula below: 

K =SV-1 

(4.3.36) 

(4.3.37) 

(4.3.38) 

Equation (4.3.38) reveals the necessity for assumption A4. The closed loop system matrix is: 

ACL = A + BK = V A V-I (4.3.39) 
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Example 4.3.1 
The following example uses the linearised lateral dynamics of the Flight Propulsion Control Coup-

ling (FPCC) fixed-wing aircraft [SSA94, SL89] to demonstrate the benefit of eigenvalue trade-off 

over basic projection. It should be noted that a helicopter model has not been employed because the 

large size of the model would produce a cumbersome example that obscures the demonstration. Fur­

thermore, state feedback is not appropriate to the helicopter problem and thus, later, this technique 

will be extended to the output feedback case. 

Xl -0.340 0.0517 0.001 -0.997 0 Xl 0.0755 0 

X2 0 0 1 0 0 X2 0 0 

[~:l X3 = -2.69 0 -1.15 0.738 0 X3 + 4.48 5.22 

X4 5.91 0 0.138 -0.506 0 X4 -5.03 0.0998 

Xs -0.34 0.0517 0.001 0.0031 0 Xs 0.0755 0 

Where Xl is side slip angle (deg), X2 is bank angle (deg), X3 is roll rate (deg/s), X4 is yaw rate 

(deg / s), Xs is flight-path angle (deg), 8r is rudder (deg) and 8a is aileron deflection (deg). The de-

sired eigenvectors and eigenvalues are: 

Adl,2 = -2 ±)2 Ad3,4 = -3 ± )2 Ads = -0.5 

* 1 0 0 * 
0 0 * 1 0 

Vdl,2 = 0 ±) 0 Vd3,4 = 1 ±) * Vds = 0 

1 * 0 0 0 

0 0 0 0 1 

Where * denotes 'do not care'. The above system and desired eigenstructure were used to perform 

simple projection. To measure the success of the projection, the norm of the projection error (ei) was 

calculated. 

(4.3.40) 

The same problem was reformulated with allowed eigenvalue regions rather than locations. The re­

gions were defined as circles around the original desired eigenvalue locations with a radius of 20% 

of the eigenvalue modulus. Again the projection error was calculated and the results are compared 

in Table 4.3.1. 

The results show that a significant reduction in projection error was achieved for all eigenvalues. It 

is worth noting that for all the eigenvalues the optimum eigenvalue location occurred on the region 
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Method , 

Basic Projection 
Eigenvalue -2.000 + )2.000 I -3.000 + )2.000 I -0.500 
Proj. Error 0.1202 I 0.0249 I 0.4420 

T.off Projection 
Eigenvalue -2.482 + J1.704 I -3.720 + J2.037 I -0.400 
Proj. Error 0.0890 I 0.0188 -1 0.2285 

I Error red.(%) 11 25.99 I 24.44 I 48.30 I 

Table 4.3.1: Comparison of the least squares eigenvector assignment errors for assignment using 
simple projection with and without eigenvalue trade-off. 

boundary. The projection method with eigenvalue trade-off is more computationally intensive but 

not excessively. For the example above. the standard approach took 0.05s to execute on a Pentium 

133 with Matlab 4.2c and the trade-off approach took 0.39s on the same system. 

4.4 Practical Implementation 

This section considers some of the practical issues of using the eigenvalue trade-off approach. One 

of the first issues is the decision between a constrained or unconstrained optimisation. If there are 

hard limits for the eigenvalue locations in the design specification then a constrained optimisation 

is the obvious choice. However. the situation is often not so clear cut and one must consider the 

relative merits of the approaches. The constrained approach is more visible which the introduction 

identified as a key issue in the design of helicopter control laws. The designer knows within bounds 

where the eigenvalues will be and can directly influence their location. But the fixed boundaries of 

the constrained approach can mask a potentially desirable trade-off. For instance. a small relaxation 

of the boundaries may offer a big improvement in the solution. The unconstrained approach would 

make this potential improvement more evident. But has the drawback that the designer does not have 

direct control over the eigenvalue locations and may even obtain an unstable solution. In general 

the designer will have to adjust the weighting of eigenvalue cost term to reach the most desirable 

compromise. If instability is unacceptable then it is a simple matter to add a stability constraint to an 

otherwise unconstrained problem. In fact the optimisation is easily augmented such that stability is 

guaranteed. 

As illustrated above the facility to weight different parts of the cost function will form an import­

ant part of any practical implementation. The example further shows that weighting individual ei­

genvector elements is desirable. This can be achieved by transforming the problem and presents no 

increase in mathematical difficulty. Consider the unweighted least squares problem: 
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(4.4.41) 

the addition of a positive definite matrix R produces the weighted problem: 

IIvdi - Q (s) filii = (Vdi - Q (s) fi)* R(Vdi - Q (s) fi) (4.4.42) 

A positive definite matrix may be factorised as R = R! (R!)· thus the weighted problem can be 

expressed as the original problem transformed. 

(4.4.43) 

Generally, R is a diagonal matrix that weights individual residuals and may contain zeros if certain 

elements are to be ignored (see example above). 

For the case of assigning real eigenvalues evaluation of the analytic solution will involve the manip­

ulation of of polynomial matrices. The first step is to solve for N (s): 

(4.4.44) 

Appendix C.l gives a detailed description of different approaches to solving this equation. Once a 

solution to Equation (4.4.44) has been found, the next step is to calculate the eigenvector cost func-

tion: 

JVi = vdi [I - Q (s) (Q (st Q (s)fl Q (st] Vdi (4.4.45) 

Appendix C.2 describes methods of evaluating the above expression some of which obviate the need 

to solve Equation (4.4.44). Appendix C.2 also details some interesting properties of expressions with 

the structure above. 

Symbolic evaluation of Equation (4.4.45) is not trivial but need only be performed once for a given 

open loop system. Subsequent optimisation can make repeated use of the result. 

For the case of assigning complex eigenvalues the techniques described make use of complex arith-
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metic. However, conversion to all real arithmetic is easily accomplished3 and the optimisation need 

only be performed for one eigenvalue of each conjugate pair4. 

4.4.1 Trivial Extension to Output Feedback 

Unfortunately, for most systems state feedback is impractical, since it assumes that all the states are 

measurable. This further implies that all the states have physical significance. The dual scenario of 

'output injection' is equally impractical for this assumes that each state may be affected by a separ­

ate input. Early practitioners [ASC83, Br091] sought simple extensions to the more general output 

feedback case. Porter [Por77] derives conditions when a state feedback solution may be factorised 

into an output feedback one. That is: 

(4.4.46) 

Where K is the state feedback gain and Kg is the output feedback gain resulting from the factorisa­

tion. 

Other researchers [ASC83, Bro91] augmented the state feedback approach with an output matrix 

C E IRffixn. This provides a simple but limited extension to output feedback, the allowed subspace 

equation becomes: 

By analogy with state feedback case we can calculate the gain matrix as follows: 

v = [Qlfl , ... , Qpfp] 

S = [Plfl , ... , Ppfp] 

K = S(CV)t 

(4.4.47) 

(4.4.48) 

(4.4.49) 

(4.4.50) 

However, to recover the gain matrix from S it is necessary that p ~ m. Thus clearly this technique 

only permits a maximum of m eigenvalues to be assigned. The remaining eigenvalues will adopt 

arbitrary values and may be unstable. The eigenvectors are selected from a space of minimum di­

mension r. This is confirmed in the following lemma of Srinathkumar: 

3Lemma 4.5.4 indicates how to achieve an all rcaI arithmetic. 
4The other eigenvalue must be the conjugate. 



4.5 The Output Feedback Problem Page 105 

Lemma 4.4.1 Srinathkumar [Sri78] 

For the system (A, B, C) max(m, r) eigenvalues can be assigned. In addition, max(m, r) left or 

right eigenvectors can be partially assigned with min( m, r) entries in each vector arbitrarily chosen. 

00 
This Lemma is easily misconstrued and one may falsely believe that no more than max(m, r) eigen­

values can be assigned. In fact, it is often possible to assign more eigenvalues but the corresponding 

eigenvectors are subject to more constraints than simply lying in the allowed subspace. 

4.5 The Output Feedback Problem 

The output feedback problem may be stated as follows: 

Given the state space system (A, B, C) defined earlier find a real gain matrix (K) that 

assigns a desired set of self-conjugate eigenvalues {Adi} and eigenvectors {Vdi}. 

Although, the problem is a very simple extension to the state feedback case, the solution is not. Early 

investigations of the problem concentrated on finding conditions for complete pole assignment. An 

important result was independently presented by both Kimura [Kim75] and Davison et al [DW75]. 

Theorem 4.5.1 Kimura [Kim7S] Theorem 3 
If the system (A, B, C) is both controllable and observable and satisfies m + r > n then it is pole­

assignable, i. e.,for any given {Adi} there exist K such that A(A + BKC) is in arbitrary neighbour-

hood of {Adi}. 00 
The fundamental nature of the condition m + r > n will become apparent throughout this chapter. 

Theorem 4.5.1 indicates that exact pole assignment is not always possible, Pletcher and Magni 

[FM87, Ple87, Mag87] derive the precise conditions for when assignment fails. The conditions are 

highly pathological and thus of little practical consequence. Some other fundamental properties of 

output feedback are listed below: 

• Controllability and observability are invariant under output feedback [Bro91]. 

• The invariant and transmission zeros can not be altered by output feedback [MK76]. 

• The right eigenvectors associated with uncontrollable and the left eigenvectors associated with 

unobservable modes may be manipulated by output feedback. 

• As the output feedback gains are increased the closed loop poles tend to the system transmission 

zeros [Mac72]. 
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4.5.1 The Protection Method 

The first approach to complete pole assignment used protection methods [Sri78,DW75]. The under­

lining principle is initially to assign a subset of the poles and protect these poles by augmenting the 

system so that the assigned poles are either uncontrollable or unobservable, then assign the remaining 

poles by calculating an output feedback gain for the augmented system. The initial poles are protec­

ted since uncontrollable and un observable modes are invariant under output feedback. Lemma 4.5.2 

is fundamental to this approach. 

Lemma 4.5.2 
Given A E jRnxn and {Vi, Ai} that satisfy AVi = AVi. lfX E jRnxn is such thatXvj = 0 where 

j C {I ... n} then {v j, Aj} are eigenvalues and vectors of A + X. <><> 

A brief outline of the resulting protection method is described as follows. For simplicity it is assumed, 

without loss of generality, that a limiting case of m + r = n + 1 applies and that m = max(m, r), 

m = rank (C), r = rank (B). 

1. First, find Kl such that m-I eigenvalues are assigned. This is always possible for a control­

lable observable triple (A, B, C) since Davison and Chauerjee [DC7l] show that max(m, r) 

poles may be assigned. 

2. Calculate a matrix X such that XC[Vl' ... , Vm-l] = 0 where Vi are the right eigenvectors 

associated with the eigenvalues assigned in the previous step. Form a reduced system as fol-

lows 

c = XC 

A = A+BK1C 

(4.5.51) 

(4.5.52) 

The reduced system will have one output and m-I un observable modes corresponding to 

those assigned in the previous step . 

3. Find a gain matrix K2 that assigns the remaining n -m+ 1 poles of the reduced system. This is 

always possible since re-invoking the result of Davison and Chatterjee [DC71] indicates that 

max(l, r) poles may be assigned and in this case r = n - m + 1. 

4. The final gain matrix is equal to Kl + K2X. 

A generalisation to systems with more inputs than outputs and thus protection of left eigenvectors is 

straightforward. Fahmy and O'Reilly [F08Sa] present a more detailed treatment of the protection 

method and consider when the method fails. This method illustrates the importance of the condition 

m + r > n. We note stage one assigns max(m, r) - 1 poles, stage two can assign a maximum of 

min(m, r) thus complete assignment requires that: 
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max(m, r) - 1 + min(m, r) ~ n (4.5.53) 

or equivalently: 

m+r>n (4.5.54) 

4.5.2 Parametric Methods 

In the state feedback case all possible solutions were conveniently parameterised by the allowed right 

eigenvector subspace. However, the extension to output feedback in Section 4.4.1 demonstrates that, 

in the output feedback case, only a subset of the allowed right eigenvector subspace is available to 

assign a given set of poles. To parameterise this subset, it is necessary to consider the dual left eigen­

vector subspace, as defined below: 

(4.5.55) 

or 

(4.5.56) 

A complementary definition of the right eigenspace is: 

9\(s) = {v E cn x1 
: (A - sl)v E range(B)} (4.5.57) 

or from Equation (4.2.7) 

!n( s) ~ range (Q) wh"'e Q satisfies [A - d, B J[ ~] ~ 0 (4.5.58) 

Some fundamental properties of the allowed eigenvector subspaces are listed below: 

• If (A, B) is a controllable pair then dim (9t( s)) = r for all s. 
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• If (A, C) are an observable pair then dim (£{s)) = m for all s. 

• The null space of the individual subspaces are: 

o = £{s){A - sI)B1. 

o = ~(s)T(A - sI)Tker (C) 
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(4.5.59) 

(4.5.60) 

Where dim is the dimension of the subspace and B1. is a matrix of maximum and full rank that 

satifies BTB1. = o. 

The importance of the allowed eigenvector subspaces to the output feedback problem is illustrated by 

the following pole assignment Theorem 4.5.2 of Kimura [Kim77] which parameterises all possible 

closed loop eigenvector combinations that will assign a complete set of poles for an arbitrary system. 

Theorem 4.5.2 Kimura [Kim77] 

A self-conjugate set {Adi} is pole assignable ifandonly if there exists Vi E 9t{Adi) andwj E £(Adj) 

such that: 

Cl (Vi. i = 1 ... n) are linearly independent and Adi = ).dk implies Vi = Vk. 

C2 (Wj,j = 1 .. . n) are linearly independent and Adj = ).dk implies Wj = Wk. 

The first two conditions ensure the gain matrix is real and are equivalent to those for the state feedback 

case. The third condition is often called the orthogonality condition, it introduces some clear contrasts 

with the state feedback case. 

1. Parameterisation of the allowed eigenvectors is no longer just dependent on the associated ei­

genvalue and open loop system. 

2. The parameterisation is non-linear and can not be expressed by independent subspaces. 

The additional complexity described in the two points above has impeded the application of projec­

tion methods to the output feedback problem. 

From the definition of left and right eigenvectors the necessity of condition C3 is clear. However, it 

is not intuitive that this condition should be the principal part of a necessary and sufficient condition 

for the existence of a gain matrix. A new and simple proof is given as follows: 

Proof 
Let Vi E 9l(Adi) and V = [Vi •••• , vn ], where Vi satisfy condition Cl of Theorem 4.5.2. By the 

definition of 9t(Ai) there exists some S E cr xn such that: 
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[(A - AdlI)VI, ... , (A - AdnI)vnl = B [Zl, ... , znl 

AV-VAn = BS 

A - VAn V-I = BSV-l 
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(4.5.61) 

(4.5.62) 

(4.5.63) 

where An = diag [Adl , ... , Adn] is a diagonal matrix of the desired eigenvalue set, Zi E er x 1 is 

column vector that selects a vector from the column space of Band S = [Zl, ... , zn] is the concat­

enation of these vectors. 

The tenn VAn V-I is the closed loop system matrix (A CL ). Examination of Equation (4.5.63) 

shows that for a gain matrix (K) to exist it is necessary that BSV-l can be factorised into BKC. 

Let W j E ..c(Adj) and WT = [wi, ... , w~] where W j satisfy condition C2 of Theorem 4.5.2. 

Equally, by the definition of ..c(Adj) there exists some T E cnxm such that: 

[(A - AdlI)Twf, ... , (A - AdnI)T w~] = [zT, ... ,z~] (4.5.64) 

WA-AoW = TC (4.5.65) 

A-W-1AoW = W-1TC (4.5.66) 

Where An is as defined above but in this instance Zi E Cl x m is row vector that selects a vector from 

the row space of C and TT = [zT, ... , z~]. 
The tenn W-l Ao W is also the closed loop system matrix (AcL). Again, examination Equa­

tion (4.5.66) shows that for a gain matrix (K) to exist it is necessary that W-ITC can be factorised 

into BKC. 

It is therefore required that Equation (4.5.63) and Equation (4.5.66) can be consistently factorised, a 

sufficient condition for which is that they are equal: 

(4.5.67) 

In which case either tenn may be factorised into BKC and the closed loop rightlleft eigenvectors of 

A + BKC are the columns of V and the rows W respectively. 

Substituting Equation (4.5.63) and Equation (4.5.66) into Equation (4.5.67) and rearranging gives: 

W-1AoW = VAoV-l 

Ao (WV) = (WV)Ao 

(4.5.68) 

(4.5.69) 
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Finally, there exists a non-zero solution for an arbitrary choice of An if and only if WV is diagonal 

or equivalently 

WjVi = 0 for all i '" j (4.5.70) 

The original proof of Kimura [Kim77] required that the desired eigenvalue set {Adi} should not 

have elements coincident with either the open loop eigenvalues or other elements in the set. Fletcher 

[FleSO] points out these requirements are superfluous and indeed the proof given above does not re­

quire them. However, it is worth noting that Theorem 4.5.2 precludes assignment of generalised ei­

genvectors since these are not generally within the sets .c('x) and ~('x). Assignment of general Jordan 

structures is tackled by Fahmy and O'Reilly [F088b]. Some researchers [BFP78, FleSO] developed 

assignment algorithms based on explicitly meeting the conditions of Theorem 4.5.2. This primarily 

involves meeting the orthogonality condition. 

Once a set of eigenvectors that comply with Theorem 4.5.2 are found, the relevant gain matrix can 

be calculated by factorising S or T of Equation (4.5.62) and Equation (4.5.65) the solution is: 

(4.5.71) 

If the eigenvectors alone are available the gain matrix may be calculated from the closed loop system 

matrix (A CL ) as follows: 

(4.5.72) 

Where closed loop system matrix is given by Act = W-i An W or ACL = VAn V-i. 

Equation (4.5.72) is also presented by Fletcher et al [FKKNS5], but the pseudo inverse is expressed as 

a singular value decomposition. Fletcher et al [FKKNS5] go on to show that the gain matrix may be 

calculated using using a subset of the left and right eigenvectors, the importance of which is illustrated 

in the next section. 

Condition C3 of Theorem 4.5.2 may be expressed as a single matrix equation. This representation 

is more compact and useful when attempting to meet Condition C3 using optimisation approaches. 

Recall that the allowed subspaces are spanned by the range of the matrices Q and L. Thus the closed 

loop eigenvectors selected from the allowed subspaces may be expressed as follows: 
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Vi = Qifi 

Wj = gjLj 
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(4.5.73) 

(4.5.74) 

Where fi E er x 1 is a column vector of right design parameters and gi E Cl x m is a row vector of 

left design parameters. 

It is clear that the left and right modal matrices are given by: 

v = [ Q1 f1, ... , Qnfn] 

WT = [Lfgf, ... ,L;g;] 

To express Condition C3 as a single matrix equation the following definitions are required: 

f1 0 0 

F 
0 f2 

= 

0 fn 

QT = [Q1, Q2, ... ,Qn] 

and 

gl 0 0 

G 
0 g2 

= 

0 gn 

LTT = [Lf, Lr, ... , L;] 

Applying the definitions above it can be seen that: 

v = QTF 

W = GLT 

(4.5.75) 

(4.5.76) 

(4.5.77) 

(4.5.78) 

(4.5.79) 

(4.5.80) 

(4.5.81) 

(4.5.82) 
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Thus Condition C3 may be expressed as: 

(4.5.83) 

In fact the condition above differs slightly from that of Theorem 4.5.2 since eigenvectors products 

must be scaled to equal one. However, it is clear that any set of eigenvectors that meet Theorem 4.5.2 

condition C3 can be transformed to meet the condition above. An interesting property of Equa­

tion (4.5.83) is that: 

(FG)LT QT (FG) = FG (4.5.84) 

which implies that the product FG is a generalised inverse of the product LT QT [BIG74]. 

Reduced Orthogonality Conditions 

The orthogonality condition of Theorem 4.5.2 requires that 2n eigenvectors are specified to assign n 

poles. This is excessive since the protection method shows that assigning n eigenvectors is sufficient 

to place n poles. This observation motivates the following reduced orthogonality condition. 

Theorem 4.5.3 
The set {Add is pole assignable if there exists Wi E £(Adi) and v j E ~(Adj) such that: 

Cl rank (C [VlI ••• I Vp]) = pand Adi = ).dk implies Vi = Vk 

C2 rank (BT [WJ+lI ... I w;]) = n - p and Adj = Adk implies Wj = Wk 

C3WjVi=O forall i=1. .. p;j=(p+l) ... n 

Proof 
The main part of the proof closely follows that of Theorem 4.5.2 and seeks conditions for a consistent 

factorisation of two matrices. The following Lemma forms an essential part of the proof. 

Lemma 4.5.3 (See Appendix B.t for the proof.) 

LetK E C"xm, X E cmxz , Sl E C"xz, YE oxr andT2 E oxm, where m ~ x andr ~ y. 

Then the matrix equations: 

KX = Sl 

YK = T2 

(4.5.85) 

(4.5.86) 
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have a consistent solution for K if all the following conditions hold. 

Cl rank (X) = x 

C2 rank (Y) = y 

C3 T2X =YS1 

The general solution for K is then: 

or equivalently: 
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(4.5.87) 

(4.5.88) 

where Z E Ox:/: is a free parameter matrix that characterises the complete set of solutions. 

Let Vi E 9t(Adi) and V1 = [VI, ... , v p ], where Vi satisfies condition Cl of Theorem 4.5.3. By the 

definition Of9t(Adj) there exists some S1 E e xp such that: 

[CA - AdlI)vl. ... , (A - AdpI)vp] = B [Zl' ... , zp] 

AV1 - VIADl = BSI 

(4.5.89) 

(4.5.90) 

Where AD1 = diag (Adl, ... , Adp) is a diagonal matrix and the values along the main diagonal 

form a self-conjugate subset of the desired eigenvalues. The vector Zi E e xl is a column vector 

that selects a vector from the column space of B and SI = [Zl, ... , zp] is the concatenation of these 

vectors. 

To assign V1 as right eigenvectors we require that S1 can be factorised into KCV1. 

Let Wj E £(Adj) and W2 T = [WJ+I' ... ' w;]. Equally, Wj satisfies condition C2 of The­

orem 4.5.3. By the definition of £().dj) there exists some T2 E c(n-p) xm such that: 

[CA - Adp+lI)Twf, ... , (A - AdnI)T w;] 
W2A-AD2W2 

= [ZJ+l' ... ,Z;] 
= T2C 

( 4.5.91) 

(4.5.92) 
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Where A02 = diag ().dp+l, •.. , ).dn ) is a diagonal matrix and the values along the main diagonal 

are the remaining unassigned desired eigenvalues. The vector Zi E Cl xm is a row vector that selects 

a vector from the row space of C and T2 T = [z?:_p, ... , z?:] . 

To assign W2 as left eigenvectors we require that T2 can be factorised into W2 ilK. 

Thus to assign both VI and W2 we require a consistent solution to matrix Equation (4.5.93) and 

Equation (4.5.94). 

K(CVI) = SI 

(W2B)K = T2 

Applying conditions Cl and C2 of Lemma 4.5.3 to the above equations dictates that: 

rank (CVI) = p 

rank (W2B) = n - p 

(4.5.93) 

(4.5.94) 

(4.5.95) 

(4.5.96) 

Equation (4.5.95) and Equation (4.5.96) are tantamount to restating conditions Cl and C2 of The­

orem 4.5.3 and are thus guaranteed to be satisfied. 

Finally, condition C3 of Lemma 4.5.3 requires that: 

T2CVI = W2BSI (4.5.97) 

post-multiplying Equation (4.5.92) with V I and pre-multiplying Equation (4.5.90) with W 2 allows 

Equation (4.5.97) to be expressed as follows: 

W2T2CVI = W2BSIVl 

W2AVI -A02W2VI = W2AVI -W2VIAoI 

A02W2VI = W2VIAoI 

(4.5.98) 

(4.5.99) 

(4.5.100) 

Thus W 2 V I must be found that satisfies Equation (4.5.100), for general Am , A02. A little de­

liberation reveals the only solution is the trivial case W 2 V I = 0 or equivalently: 

WjVi=O foralI i=l ... p;j=(p+l) ... n (4.5.101) 
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Condition C3 of Theorem 4.5.3 involves the orthogonality of only n eigenvectors and is thus consid­

erably simpler than Theorem 4.5.2. It is worth discussing the implications of conditions Cl and C2. 

The rank constraint of condition Cl has two implications. First, it ensures that the assigned modes 

are observable and thus embodies the fundamental fact that observability can not be altered by output 

feedback. The rank condition also dictates that a maximum of m right eigenvectors may be assigned. 

The rank constraint of condition C2 has complementary implications, that is, ensuring controllability 

and dictating that no more than r left eigenvectors may be assigned. At first inspection Theorem 4.5.3 

would seem to imply that r left and m right eigenvectors may be assigned simultaneously. Thus for 

complete pole assignment it appears that it is only necessary to satisfy m + r ~ n. However, the fol­

lowing argument will reveal that while this is technically possible it is computationally very difficult 

to achieve. 

Suppose condition Cl is satisfied and max(m, r) = m. For complete pole assignment a minimum 

of n - r right eigenvectors (Vi) are selected. Condition C3 indicates that W j must lie in the left null 

space of Vi. That is: 

Wj [Vb ••. ,Vn - r ] = O. (4.5.102) 

Assignable Wj must also belong to .£().dj). Thus to satisfy both requirements the vectors must lie in 

the following intersection 

(4.5.103) 

An intersection space is only guaranteed if the combined dimension of the subspaces is greater than 

that of their resident vector space. In this case the dimensions are: 

dim(ker([Vl, ... ,Vn-rr)) = r 

dim (.c(Adj?) = m 

(4.5.104) 

(4.5.105) 

Thus complete pole assignment generally requires m + r > n. However, one may attempt to choose 

V i such that Equation (4.5.103) is satisfied. This is by no means trivial. 

Theorem 4.5.3 can be generalised to accommodate more general cases than even n = m + r, again, 

computing eigenvectors that satisfy these conditions is not trival. This generalisation is achieved 

by applying a more general version of Lemma 4.5.3 at the appropriate point in the proof of The­

orem 4.5.3. For instance, if p is chosen to equal m and Lemma B.l.l of Appendix B.l is applied. 
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Then the following extension to Theorem 4.5.3 is readily derived. 

Theorem 4.5.4 
The set {Adi} is poLe assignabLe if there exists Wi E 'c().di) and Vj E !)l().dj) such that: 

Cl rank ( C [Vb ••• , V m ]) = m and Adi = Adk implies Vi = Vk 

C2 rank ([w~+1' .. " w~]) = n - m and )..dj = Adk implieswj = Wk 

C3 WjVi = 0 foraLL i = 1. .. m; j = (m + 1) . .. n 
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Note the lack of an input matrix (B) in condition C2 means the number of left eigenvectors that may 

be assigned is independent of the number of inputs (r). 

In similar manner to Theorem 4.5.2, condition C3 of Theorem 4.5.3 and Theorem 4.5.4 may be ex­

pressed as a single matrix equation. The following definitions are required: 

f1 0 0 

Fl 
0 f2 

= (4.5.106) 

0 fp 

QTl = [Qr. Q2 •... ,Qp] (4.5.107) 

and 

o o 

(4.5.108) 

(4.5.109) 

Thus condition C3 may be expressed as: 

(4.5.110) 

Solving Equation (4.5.110) subject to conditions Cl and C2 of Theorem 4.5.4 is fundamental to the 

output feedback problem and may be formulated as a set of coupled bilinear equations [AP96]. If 
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one considers the case p = m then from the dimensions of F 1 and G 2 it is straightforward to show 

that there are m(r - 1) + (n - m)(m - 1) free parameters. Equally, the dimensions of the final 

product G2LT2QT1F1 show that there are m(n - m) equations. Thus a necessary condition for a 

general solution is: 

m(r - 1) + (n - m)(m - 1) ~ m(n - m) 

mr > n 

(4.5.111) 

(4.5.112) 

Clearly, this necessary condition is more general than m + r > n and considerable research has 

been conducted to find sufficient conditions that approach this necessary condition. Early, efforts 

[BP70, RH78] often resulted in conditions that were expressed in terms of controllability and observ­

ability indices [KaiSO, KouSl]. The proofs were generally constructive, thus allowing a controller 

to be calculated. However, the calculations were often ad hoc and the results only applied to the pole 

placement case. In a slightly reformulated problem it was shown [BB81] that, for the case of com­

plex gain matrices, mr ~ n is a sufficient condition for complete pole assignment. However, for the 

practical case of real gain matrices is has been shown [WH7S] that mr ~ n is not a sufficient con­

dition. More recently, it has been shown [Wan92, RSW95] that mr > n is a sufficient condition for 

complete pole assignment. Although, these results show that assignment is possible, they offer very 

little indication how a desired assignment may be achieved. Considerable further research will be 

needed to develop solutions to the more relaxed mr > n condition, especially if the solutions are to 

offer a parametric format that allows complete pole assignment and partial eigenvector assignment. 

It is important to note that the reason we consider the case m + r > n is not because of a fundamental 

limit. But because it allows us to meet condition C3 of Theorem 4.5.3 using linear techniques or 

equivalently to reduce Equation (4.5.110) to a set of linear equation. For example, consider the case 

p = m and suppose that values for gj j = m + 1 ... n are arbitrarily chosen, it then remains to 

solve: 

(4.5.113) 

Since the dimensions ofG2LT2Qi are (n-m) x r, it follows that Equation (4.5.113) may be solved 

using standard linear techniques if n - m < r or equivalently m + r > n. 

The eigenstructure assignment techniques described in the remainder of this chapter all operate by 

requiring m + r > n, assigning some of the design vectors (f, g) and then using linear techniques 

to calculate the remaining design vectors (g, 0· In the example above two stages were employed; 

first assigning gj then calculating f i . However, more than two stages may be employed. This leads 

to multi-stage techniques which can have practical advantage. It is possible to generate a solution 

to Equation (4.5.110) and still have some design freedom available in which case a retro-assignment 
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technique may be employed. 

Other researchers [Kim75. Kim77. R087. R089. FKKN85. AP96] have presented similar reduced 

orthogonality conditions. The first can be traced back to the seminal paper of Kimura [Kim75]. This 

result required that p = m and that the desired eigenvalue set be m-decomposable. that is contain 

a subset of m self-conjugate values. The technique Kimura [Kim77] presents for generating vec­

tors that meet the conditions is some what convoluted. This situation is improved by Roppenecker 

and O'Reilly [R087. R089]. who present a simpler technique by expressing the condition directly 

in terms of eigenvectors selected from the allowed subspaces. But they add the restriction that the 

desired eigenvalues must not coincide with the open loop set, and a further restriction that one eigen­

value of the m-decomposable set must be real. Fletcher et al [FKKN85] present the result in a new 

format. It is not obvious how to use this format and they do not consider how to generate vectors that 

comply with their conditions. 

In the following section Theorem 4.5.3 and Lemma 4.5.3 are almost directly utilised to form an ei­

genstructure assignment technique. 

4.5.3 Two Stage Assignment 

The two stage assignment technique is based on Theorem 4.5.3 and Lemma 4.5.3. Before proceeding 

with the details of the technique. it is worth outlining the procedure. 

The first stage begins by selecting a set of 81 left or right eigenvectors from the allowed subspace. 

The eigenvectors are chosen to meet the relevant condition of Theorem 4.5.3 (either Cl or C2). It is 

always possible to select a set of such eigenvectors. 

The second stage entails selecting a set of 82 dual eigenvectors. These eigenvectors are subject to 

more restrictions than those of the first stage. for they must reside in the appropriate allowed sub­

space. and in order to meet condition C3 Theorem 4.5.3. must be orthogonal to the first stage eigen­

vector set The subspace of eigenvectors that comply with both restrictions is calculated and from 

this subspace the eigenvectors are selected. These vectors must also meet the appropriate condition 

of Theorem 4.5.3 (Cl or C2). 

Finally. the gain matrix is calculated using the result of Lemma 4.5.3. For complete pole assignment 

n eigenvectors must be assigned and consequently it is necessary that: 

(4.5.114) 

The two stage technique will now be considered in detail. It will be assumed that m + r > n and 

thus complete pole assignment using linear techniques is generally possible. 
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Design procedure 

First, decide whether to assign left or right eigenvectors in stage one. This decision is dominated 

by two factors: the number of eigenvectors than can be assigned and the distribution of the design 

freedom. Table 4.5.2 shows how the number of eigenvectors that can be assigned depends on whether 

left or right eigenvectors are assigned first 

Right first Left first 

m-I > SI:::: n -r r-I > SI> n-m 
r > 82> n-m+ 1 m > 82 > n -r + 1 

Table 4.5.2: The number of eigenvectors assignable in stages one and two of the two stage assignment 

technique. 

Conditions can arise that force the decision to assign left or right eigenvectors in stage one. Consider 

the following situation: 

Cl All eigenvalues in the desired set are complex. 

C2 The system dimensions satisfy n = m + r - 1. 

In this case only one column of Table 4.5.2 will be available. This is because, in both stages, one and 

two a self-conjugate set of eigenvalues must be assigned. Thus to assign all complex eigenvalues 

both 81 and 82 must be even numbers. But if n = m + r - 1 then the ranges in Table 4.5.2 reduce 

to single values and for only one column of Table 4.5.2 will both 81 and 82 be even numbers. It is 

guaranteed that, even under these circumstances, one column will always be available. This can be 

seen by noting the diagonal entries of Table 4.5.2 differ by one. This situation does not arise very 

often in practice and thus these conditions are not overly restrictive. 

Generally, more design freedom is available in stage one. This is because stage two is subject to the 

additional restrictions imposed by the orthogonality condition. It is, naturally, recommended that the 

engineer exploits the additional design freedom available in stage one. For instance, if it is important 

that a closed loop eigenvector has a specific structure or is orthogonal to some specified vectors for 

disturbance decoupling [ZSA90). Then this eigenvector should be assigned in stage one, where the 

additional design freedom means that the desired structure is most likely to be achieved. In situations 

with competing design goals it may pay to experiment with assigning left or right eigenvectors in 

stage one. Table 4.5.3 shows the design freedom available in stages one and two, when assigning left 

or right eigenvectors first. 'Design freedom' may be interpreted as either the number of eigenvector 

elements that may be arbitrarily chosen or the dimension of the subspace minus one, from which the 

eigenvectors are chosen. 

Table 4.5.3 and Table 4.5.2 show that the design freedom and the freedom to choose the number of 

eigenvalues assigned in each stage are almost entirely prescribed by the relative number of states to 
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I Design Freedom 11 Right first I Left first 

I Stage 1 11 r - 1 1 m-I 
Stage 2 m-I - si r - 1- S1 

Table 4.5.3: Design freedom in stages one and two of the two stage assignment technique. 

inputs and outputs. 

To avoid verbosity in the remainder of this section it will be assumed that right eigenvectors are as­

signed in stage one. 

Stage One 

Let the subset of desired eigenvalues to be assigned in stage one be denoted by: 

(4.5.115) 

Calculate the allowed right eigenvector subspace associated with each eigenvalue. This can be 

achieved using numerically stable code such as SVD and QR [GL83] to calculate the null space 

indicated in Equation (4.5.116): 

(4.5.116) 

Select the closed loop right eigenvectors Vi from range (Qi). this may be accomplished using a 

design vector fi E er x 1 as follows: 

Form the following matrices 

VI = [Q1fb ... , QSlfsl] 

SI = [Plfb ... ,P.lfsl] 

(4.5.117) 

(4.5.118) 

(4.5.119) 

Selected Vi must comply with condition Cl of Theorem 4.5.3. In practice the condition Cl is no 
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more than a technical detail and rarely causes a problem. Furthennore. it is guaranteed that a vector 

meeting the condition exists [Sri78]. The rank part of condition Cl may be equivalently stated as: 

range (VI) n ker (C) = 0 (4.5.120) 

Where 0 is the empty sets. When condition Cl fails calculating the intersection space of Equa­

tion (4.5.120) reveals the offending direction. If left eigenvectors are assigned in stage one then the 

allowed left eigenvector subspaces are calculated as follows: 

for all i = 1. .. S1 (4.5.121) 

and the closed loop left eigenvectors (w i) may be selected from the row space of Li using a design 

vector(gi E C1xm
): 

The following concatenated vectors should also be fonned: 

Wl T = [L[gf, ... ,L~g~] 

TI T = [M[gT, ... ,M;1g~] 

(4.5.122) 

(4.5.123) 

(4.5.124) 

Condition C2 of Theorem 4.5.3 may also be equivalently expressed as an intersection condition: 

range (WI T) n ker (BT) = 0 (4.5.125) 

Having selected S1 right eigenvectors proceed to stage two, as follows. 

Stage Two 

Let the subset of desired eigenvalues to be assigned in stage two be denoted by: 

flThis is slight abuse of notation; 0 may include the null vector. 
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(4.5.126) 

The left eigenvectors (Wj) must both reside in the allowed subspace .c(Adj) and be orthogonal to 

the stage one right eigenvectors (Vl). Mathematically. this is express by the following intersection 

condition: 

(4.5.127) 

The intersection subspace can be calculated by augmenting Equation (4.5.121) as follows: 

_ [. .] [V 1 A - Adj I] 
0- L J M J 0 C foraIl j = (SI + 1) ... n (4.5.128) 

The complementary augmented matrix for assigning right eigenvectors in stage two is shown below: 

0-- [A - AdjI B] [Qi] 
Wl 0 Pi 

for all j = (SI + 1) ... n (4.5.129) 

Select S2 = n - S1 left eigenvectors Wj from the row space of L j • this can again be accomplished 

using a design vector gj E Cl x (m-.l) as follows: 

Form the following matrices 

W3 T = [L;:+lg~+l' ... ,L~g~] 
T3 T = [M;: +1 g;: +1' ... , M~ g~ ] 

(4.5.130) 

(4.5.131) 

(4.5.132) 

The selected W j must meet condition C2 of Theorem 4.5.3 which may be expressed as follows: 
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range (W2 T) n ker (BT) = 0 (4.5.133) 

[ker (W2) U range (B)] 1. = 0 (4.5.134) 

[range CV 1) U range CB)] l. = 0 (4.5.135) 

Thus if [VI B] is full rank then the left eigenvectors (W 2) will comply with condition C2 of The­

orem 4.5.3. Interestingly, Equation (4.5.135) allows the stage two eigenvectorto be checked against 

condition C2 before they are even selected. In fact, the check can be made at the end of stage one 

when the stage one eigenvectors themselves are checked against condition Cl. 

Equation (4.5 .128) expresses the orthogonality condition and allowed subspace in a lucid way. 

However, it is not the most efficient means of calculating the intersection of two null spaces [GL83, 

p.583]. 

Gain Matrix Calculation 

Finally, calculate the gain matrix using the formula below: 

(4.5.136) 

This completes the two stage assignment procedure. 

The gain matrix equation is taken directly from Lemma 4.5.3 with the free parameter matrix (Z) set 

to zero. To the author's knowledge the only instance of a similar gain equation was presented in a 

proof by F1etcher et al [FKKN85]. Their derivation is quite different and independent from that of 

Lemma 4.5.3. F1etcher et al [FKKN85] do not combine the equation with an assignment technique 

or consider how to use the free parameter. 

Although, the terms of Equation (4.5.136) may be complex, conditions Cl and C2 of Theorem 4.5.3 

ensure the gain matrix is always real. The proof supporting this statement may be found in Ap-

pendix B.2. 

Two stage assignment can be conducted using all real arithmetic. The following simple Lemma il­

lustrates how this may be achieved: 

Lemma 4.5.4 
Let X and Y be two complex matrices conformable for multiplication, the product XY satisfies: 
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[
Re (XY) 1 = [Re (X) -Im (X) 1 [Re (Y) 1 
Im (XY) Im (X) Re (X) Im (Y) 

(4.5.137) 

00 
The preceding lemma should be applied to Equations (4.5.116), (4.5.121), (4.5.128) and (4.5.129). 

The gain matrix may also be calculated using only real arithmetic. A technique for doing this is easily 

inferred from the proof in Appendix B.2. However, most modem numerical software packages are 

capable of complex arithmetic [Eat94, Mat92]. 

Example 4.5.2 
The following is a numerical example to illustrate the two stage approach. Arbitrary matrices have 

been employed since a helicopter based example would be cumbersome to present and obscure the 

iIlustration. Consider the following unstable controllable-observable system: 

x~ [~ 
2 -3 

~}+[~ 
0 

~l u 

3 -1 3 

8 1 -2 

6 3 2 

(4.5.138) 

F[~ 
3 0 

~l -1 0 

3 1 

(4.5.139) 

We note that with four states (n = 4), three inputs (r = 3) and three outputs (m = 3) that complete 

assignment is possible. Let us assign two right eigenvectors in stage one (SI = 2) with locations of 

(-1, -2) and two left eigenvectors in stage two (S2 = 2) with locations of (-3, -4). 

Using Equation (4.5.116) the allowed right eigenvector subspaces are calculated as follows: 

[-0.7869 0 

-0.~1001 [ 00051 0 

-0.~0391 0.2676 -0.0991 Q = -0.2202 -0.1259 

Ql = -0.2613 -0.2731 0.0068 2 0.3822 -0.2746 0.0131 

0.0850 -0.0360 0.0608 -0.1173 -0.0483 0.0154 

Applying the following simple design vectors: 
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the selected right eigenvectors are: 

VI = 0.2676 
-0.2613 

[

-0.7869 

0.0850 

and the corresponding input vectors are: 

-0'~259] 
-0.2746 

-0.0483 

[ 

0.3039 0.3725 ] 
SI = -0.2919 0.8026 

-0.2369 -0.3514 
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(4.5.140) 

(4.5.141) 

(4.5.142) 

The left eigenvector subspaces are calculated using Equation (4.5.128). However. since there are 

two right eigenvectors and only three outputs the subspace has one dimension and thus there are no 

degrees of freedom with which to select the left eigenvectors. The left eigenvectors subspaces are: 

L3 = [0.0060 0.0782 -0.0015 -0.1952] 

L4 = [0.0080 0.0762 -0.0037 -0.1773] 

and again the corresponding output vectors are: 

T2 = [-0.2365 0.6529 0.6881] 
-0.2376 0.6949 0.6507 

Evaluating Equation (4.5.136) gives the following gain matrix: 

[

0.4221 

K = -0.0290 

-0.4864 

-1.4721 

1.2579 

1.6741 

-0.9173] 
-0.9231 

0.9507 

(4.5.143) 

(4.5.144) 

(4.5.145) 

(4.5.146) 
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Below. the closed loop system (ACL = A + BKC) is expressed in modal form. that is ACL = 
VA W. to verify the assignment. 

[ 0.7869 0.0000 421.7761 
29500931 

-0.2676 0.1259 -114.4853 -143.5863 
V= 

0.2613 0.2746 590.3653 430.0502 

-0.0850 0.0483 -42.5622 -51.7691 

(4.5.147) 

[_1.00 
0 0 

JJ A= 0 -2.00 0 

0 0 -3.00 

0 0 0 

(4.5.148) 

[ 10367 
-13.3751 -0.5831 38.1620 I 

-1.4299 -36.2028 1.6270 105.7775 
W= 

0.0060 0.0782 -0.0015 -0.1952 

-0.0080 -0.0762 0.0037 0.1773 

(4.5.149) 

From the modal form the assigned eigenvalues and eigenvectors are easily recognised. 

Degrees of Freedom 

This section considers how much design freedom two stage assignment offers and how it is distributed 

between the two stages. The contents of Table 4.5.2 and Table 4.5.3 are also derived. Consider stage 

one assignment of right eigenvectors. Condition Cl of Theorem 4.5.3 implicitly dictates that 81 ::; m. 

Howeve~. this condition is superseded by one imposed in stage two. Consider the augmented matrix 

in Equation (4.5.128). Inspection of its dimensions (n + m) x (n + 81) shows that a solution to 

Equation (4.5.128) will only generally exist if: 

(4.5.150) 

Condition C2 of Theorem 4.5.3 dictates: 

(4.5.151) 
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and complete assignment requires that: 

(4.5.152) 

Combining these inequalities indicates how many eigenvectors may be assigned in stage one when 

assigning right eigenvectors first: 

m -1 ~ 81 ~ n-r (4.5.153) 

Substituting 81 = n - 82 into the previous inequality indicates how many eigenvectors may be as­

signed in stage two: 

r ~ 82 ~ n- m+ 1 (4.5.154) 

The two inequalities represent the first column of Table 4.5.2 and a dual argument for the case of 

assigning left eigenvectors first generates the second column of Table 4.5.2. 

The entries of Table 4.5.3 are derived by considering the dimension of the null spaces from which 

the eigenvectors are selected. For the case of stage one assignment of right eigenvectors. Equa­

tion (4.5.116) shows the stage one null space to have a column dimension of r. Equally, Equa­

tion (4.5.128) shows that the stage two null space will, in general. have a row dimension of m - 81. 

Again. a dual argument holds for stage one assignment of left eigenvectors which generates the 

second column of Table 4.5.3. 

When considering the degrees of freedom (DoF), unity is subtracted from the relevant dimension 

of the null spaces. Since a one dimensional subspace is a direction. which uniquely describes an 

eigenvector and thus represents no design freedom. In fact. it is straightforward to verify that the gain 

equation Equation (4.5.136) will produce the same gain matrix irrespective of eigenvector scaling. 

From the first column of Table 4.5.3 (assignment of right eigenvectors first) it can be seen that the 

total degrees of freedom available for assignment of the eigenvectors is: 

(r - 1)81 + (m - 81 - 1)82 = Fr (4.5.155) 

Which may be alternatively expressed as: 
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mr - n - (m - 81)(r - 82) = Fr 

mr = Fr + n + (m - 81)(r - 82) 

The terms in Equation (4.5.157) have the following significance: 
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(4.5.156) 

(4.5.157) 

• mr is equal to the number gain elements and thus is fundamentally number of free parameters 

available. 

• n is the number of parameters required to assign n eigenvalues [R089]. 

• Fr is the number of degrees of freedom used to assign the eigenvectors. 

• (m - 81) (r - 82) is a number of, so far unused, free parameters available to assign the eigen­

vectors. 

From the second column of Table 4.5.3 the dual case for assignment ofleft eigenvectors first, is easily 

derived: 

(4.5.158) 

We see that the number of free parameters is the same but the distribution is different. It is interesting 

to note that if r+m exceeds n by two then the term (r-8d (m-82) may not evaluate to zero. In which 

case not all the available degrees of freedom have been used. However, a technique to recover these 

degrees of freedom in a final and independent assignment stage has been developed. The technique 

is known as Retro Assignment. 

4.5.4 Retro Assignment 

Retro assignment can only be performed if the previous assignment stage has not made full use of 

the available design freedom. The previous assignment technique may be a two stage, multi-stage 

(which is discussed later) or generic technique. 

In this section it will be shown that unused design freedom is equivalent to a non-unique gain matrix 

and that the remaining design freedom is expressed by the free parameter in the gain matrix equation. 

Retro Assignment involves constructing a reduced system that protects the assigned eigenvectors and 

expresses the remaining design freedom as a feedback gain. A value for the feedback gain may be 

calculated using any controller design technique, however, emphasis will be given to eigenstructure 

assignment. 
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Equation (4.5.87) of Lemma 4.5.3 shows that the full gain matrix equation can be expressed as fol­

lows: 

K = (W2B)t T2 + Sl (CVl)t - (W2B)t T2 CVl (CVl)t 

+ (I - (W2B)t (W2 B)) Z (I - (CVl) (CVl )t) (4.5.159) 

Where Z E ]Rr x m is the free parameter matrix. 

Examination of Equation (4.5.159) shows that the free parameter term will only evaluate to a non­

zero matrix if the following conditions hold: 

Cl rank (W2 B) < rand 

C2 rank (CVl) < m 

In which case the free parameter matrix (Z) characterises all gain matrix solutions. However, Equa­

tion (4.5.159) is not a minimal characterisation6 and solutions will be repeated. The following ob­

servations are key to generating a minimal characterisation: 

range (I - (W2B)t(W2B)) 

range (I - (CVl )(CVl )t) 

= ker(W2B) 

= ker (Vl TCT ) 

(4.5.160) 

(4.5.161) 

Inspection of the above equations shows that a minimal characterisation can be constructed by re­

placing the matrices adjacent to the free parameter matrix (Z) with matrices whose columns form a 

minimal basis for the indicated null spaces. Let us define: 

range (NWB) = ker (W2 B) 

range (N cv T) = ker (V 1 T CT ) 

(4.5.162) 

(4.5.163) 

Where the columns ofNwB E cr x (r-s2) form a minimal basis for ker (W2B) and the columns 

of Ncv T E cm x (m-81) are a minimal basis for ker (Vl TCT). Note that for the generalisation to 

multi stage techniques 81 and 82 should be interpreted as the total number of right and left eigenvectors 

assigned in the previous stages. Then a minimal characterisation [BIG74, p. 77] is given as follows: 

6Technically, the mapping of Z to K through Equation (4.5.159) is not bijective. 
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K = (W2B)tT2 + Sl(CVl)t - (W2B)tT2CVl (CVl)t + NWBZ2Ncv 
(4.5.164) 

Where Z2 E IR(r-s2)x(m-s!l is a minimal free parameter matrix. The dimensions of Z2 indicate 

that a non-unique gain matrix will only exist if: 

(4.5.165) 

Recalling Equation (4.5.157) we see that this is the exact condition under which unused design free­

dom exists. Furthermore, the dimensions of Z2 show that all the unused degrees of freedom are avail­

able. Examination of exactly how the unused free parameters are manifest reveals how best to utilise 

them. In this case the gain matrix consists of a fixed part, denoted by KF : 

and a variable part denoted by Kz : 

Kz = NWBZ2Ncv 

Thus the closed loop matrix (AcL ) has the form: 

ACL =A+BKC 

= (A+BKFC) +BKzC 

= CA +BKFC) + BNwBZ2NcvC 

Inspection of the above shows a reduced system can be constructed as follows: 

A=A+BKFC 

B=BNwB 

C=NcvC 

K=Z2 

(4.5.166) 

(4.5.167) 

(4.5.168) 

(4.5.169) 

(4.5.170) 

(4.5.171) 

(4.5.172) 

(4.5.173) 

(4.5.174) 
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The reduced system has less inputs and outputs than the original system. Let r denote the number of 

inputs and m denote the number of outputs. Then: 

Recalling Lemma 4.5.2. we note that if: 

r = r - S2 

m = m-s1 

irKCVl = 0 

(4.5.175) 

(4.5.176) 

(4.5.177) 

then the right eigenvectors assigned by K are protected for any Kz. The definition of N cv given 

in Equation (4.5.163) dictates that: 

BKNcvCVl =0 (4.5.178) 

Thus the right eigenvectors (V 1) are protected. Equally. the definition of NWB given in Equa­

tion (4.5.162) dictates that: 

W2BNwBKC=0 (4.5.179) 

Thus the left eigenvectors (W2) are also protected. Eigenvector protection has a direct effect on the 

controllability and observability properties of the reduced system. Consider the product of the closed 

loop modal matrix and reduced system output matrix: 

(4.5.180) 

Qearly. the pair (A, C) will have S1 unobservable modes associated with the right eigenvectors V 1 . 

Equally. the input matrix and modal matrix product reveals that: 

(4.5.181) 
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the pair (A, B) will have S2 uncontrollable modes associated with the left eigenvectors W2. 

Eigenstructure Assignment in the Retro-Stage 

Principally, eigenstructure assignment in the retro-stage is the same as eigenstructure structure as­

signment of the original open loop system. However, it is unlikely that the original open loop system 

would have the controllability and observability properties of the reduced system and these introduce 

some interesting quirks. 

Since all the poles have now been assigned and are protected, all the remaining design freedom can 

only be used for the manipulation of eigenvectors. However, half of the eigenvectors are now pro­

tected. Hence assignment must focus on the complementary eigenvectors. For instance, if the initial 

design assigned (Vi, Ad,) then in the retro-stage it is only possible to assign Wi. 

Another side effect of the reduced system controllability and observability properties is that the al­

lowed subspaces are inflated. Consider calculating the right eigenvector allowed subspace Qj. From 

a well known definition of controllability [OeC89] we can see that the uncontrollable modes Adj as­

sociated with the eigenvectors W j. will satisfy: 

Wj [A - ,\djI, B] = 0 for all j = (Si + 1) ... n (4.5.182) 

Which implies the following rank equality: 

rank ([A - AdjI, B]) = n-1 (4.5.183) 

It is well known [RS70, p. 71] that the size of a the null space is equal to the column dimension, in 

this case n + rn, minus the rank of the matrix (n - 1). Thus the allowed subspace range(Qj) will 

satisfy: 

(4.5.184) 

where Qj E cn X (riH l) and P j E cm x (m+l) • Technically, the rank deficiency of the mat­

rix [A - Ad; I, B] will depend on the geometric multiplicity of the eigenvalue Adj. Thus Equa­

tion (4.5.183) should read: 

(4.5.185) 
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Where gj is the geometric multiplicity of Adj and thus number of dimensions by which the allowed 

subspace will swell. An identical argument applies to calculating the left eigenvector allowed sub­

space (Lj). Assuming that all the closed loop eigenvalues are distinct or 9j = I, Table 4.5.4 summar­

ises the number of eigenvectors that may be assigned and the degrees of freedom (DoF) available. 

I Right first Left first 

I No. Assignable DoF No. Assignable DoF 

I Stage 1 SI < rh r SI < r rh 
I Stage 2 S2 < r rh - SI 82 < rh r - SI 

Table 4.5.4: Degrees of freedom available using retro assignment. 

Table 4.5.4 is very similar to Table 4.5.2 and Table 4.5.3 and the entries are derived in an almost 

identical manner. Note that a maximum of rh + r - 1 eigenvectors may be partially assigned. 

However, it is not necessary to partially assign the maximum number of eigenvectors and one may 

choose to assign less. For instance, suppose that ih = 2 and r = 2 then the assignment options are: 

1. Assign two eigenvectors assigned with two DoF. 

2. Assign one eigenvector with two DoF and two eigenvectors with one DoF. 

An assignment with one DoF offers limited choice and it may prove preferable to assign two eigen­

vector with more design freedom. 

The gain matrix (K) is calculated using the equation below, this is identical to Equation (4.5.136): 

(4.5.186) 

In theory this equation could be augmented with a free parameter term and a further stage of retro 

assignment undertaken. The final closed loop form is given by: 

ACL = A+BKC 

ACL = A+B (KF + NWBKNcv ) c 

Discussion 

(4.5.187) 

(4.5.188) 

Examination of the retro-assignment technique indicates that, perhaps, a more general approach is 

possible. In the current method the assigned eigenvectors are all protected. However, it is possible 

to construct a reduced system that protects an alternative set of eigenvectors. It is only required that 
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those eigenvectors are selected to protect all eigenvalues. For instance, suppose that the columns of 

Vx are the right eigenvectors to be protected and the rows ofWx are the left eigenvectors associated 

with remaining unprotected modes. Then any N WB and N cv that satisfy: 

range (NWB) = ker (Wx B) 

range (N cv T) = ker (Vx T eT) 

may be used to construct a reduced system as follow: 

B = BNWB 

C = NcvC 

However, if eigenstructure assignment is applied in the retro-stage then for any: 

range (Vx) et. range (V 1 ) 

(4.5.189) 

(4.5.190) 

(4.5.191) 

(4.5.192) 

(4.5.193) 

this approach implies re-assigning the eigenvectors from the previous assignment stage, which could 

be desirable, if extra or alternative design freedom is available in retro-stage. However, in Ap­

pendix B.3 it is demonstrated that re-assigning eigenvectors in the retro-stage is futile as it offers 

no extra DoF. 

If the two stage assignment technique is used prior to the retro-stage and it is intended to use eigen­

structure assignment in the retro-stage then it is possible to proceed without producing a reduced sys­

tem. Instead the retro-stage is conducted before calculating the gain matrix of the initial two stage 

assignment. The method is cursorily described below: 

Once stages one and two of the initial design are complete the remaining design freedom can be ex­

pressed as allowed subspaces for the unassigned eigenvectors. Consider assignment of right eigen­

vectors ( vi) in the retro-stage, a maximum of m-81 eigenvectors may be selected from the following 

subspace: 

(4.5.194) 

Where the eigenvectors must form a self-conjugate set. Equally, if there is still design freedom re­

maining then left eigenvectors may be selected from: 
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(4.5.195) 

Where vi' represents all the right vectors assigned in the previous retro stage. Both intersection 

spaces can be expressed as augmented matrices almost identical to those of Equation (4.5.129) and 

Equation (4.5.128). The eigenvectors are subject to the same rank constraints as those of stages one 

and two. One may assign left then right eigenvectors in the retro-stage which, naturally, implies the 

dual subspaces must be used. The number of eigenvectors that may be assigned can be easily in­

ferred for Table 4.5.4. The gain matrix is calculated using Equation (4.5.136) where (Vi, Si) and 

(W 2 , T2) are appropriately augmented with the assignments from retro-stage. Fletcher [Fle80] 

presented a similar four stage approach for calculating the closed loop eigenvectors. 

It has been tacitly assumed that the design freedom available in the retro-stage would be used to fur­

ther the design goals of the initial design. However, it may be desirable to use the freedom to further 

alternative design goals. For instance, recalling that: 

K = KF + NWBKNcv (4.5.196) 

then K could be manipulated to reduce the values in K or, if possible, to impose a specific structure 

by zeroing elements of K. 

Summary 

Summarising the procedures defined thus far, stage one selects and assigns SI right(left) eigenvectors 

associated with the ~ subset of the desired spectrum. Stage two then assigns S2 = (n-sl) left(right) 

eigenvectors to complete the spectral assignment. At this point unused design freedom may exist. It 

can be exploited in the retro-stage. Here, a subset of the right(left) eigenvectors not assigned in stage 

one are assigned, similarly for the unassigned left(right) eigenvectors. 

Example 4.5.3 
Returning to Example 4.5.2 we note that, with three inputs and outputs and two eigenvectors assigned 

in each stage, the condition for retro assignment is satisfied: 

(4.5.197) 

It is worth considering how the degrees of freedom were distributed in Example 4.5.2. The nine gain 

elements determine the available degrees of freedom, four of which were claimed for pole assignment 

and another four were used to assign the right eigenvectors. The left eigenvectors were prescribed 
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and used no degrees of freedom. Thus eight of the nine DoF were used and one remains for retro 

assignment. 

The reduced system is constructed below: 

x = [~~~:::2 -~·:.~~~4 ~~~~~~8 ~~34:5\ I x + [~::~~!I u 
3.5858 15.8264 -4.4585 -27.2666 2.5679 

-0.6589 -3.4200 0.3704 4.8064 0.2901 
(4.5.198) 

Y = [0.2940 0.9172 -0.2540 -0.9466] x (4.5.199) 

The mode observability (WB) and controllability (CV) matrices verify the characteristic control­

lability and observability properties of the reduced system. Employing the modal matrices from Ex­

ample 4.5.2 we obtain: 

CV = [0.00 0.00 -90.66 -105.17] 

(WB)T = [1.24 8.78 0.00 0.00] 

(4.5.200) 

(4.5.201) 

We note that modes -1, -2 are unobservable and modes -3, -4 are uncontrollable. Continuing 

with the retro assignment we note from Table 4.5.4 that one complementary eigenvector can be as­

signed with one DoE Let us assign the left eigenvector associated with the -1 mode. The allowed 

left eigenvector subspace is calculated using Equation (4.5.121) and is given below: 

:E = [-1.0184 11.0600 0.4200 -31.2032] 
1 2.0522 -0.4883 0.7562 -3.0243 

(4.5.202) 

Using a simple design vector (gl = [1 0] ) the top row is selected as the assigned left eigenvector. 

The corresponding output vector, which for this single output case is a scalar, as given below: 

1\1:1 = 0.0795 (4.5.203) 

The feedback gain is calculated using Equation (4.5.136), although for this simple scalar case the 

formula reduces to: 
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- M1 
K =-=--=-

W 1B 
(4.5.204) 

= -2.1372 (4.5.205) 

Modal decomposition of the closed loop system (A + Di( C) verifies the assignment, as shown below: 

[-0.7869 0.00 -327.5 222.21 
0.2676 -0.1259 281.9 -234.5 v= 

-0.2613 -0.2746 -124.1 153.5 

0.0850 -0.0483 108.9 -88.30 

(4.5.206) 

[_1.0 0 0 

j.J A= 0 -2.0 0 

0 0 -3.0 

0 0 0 

(4.5.207) 

[_1.0184 11.060 0.4200 _31.203] 
W = -0.7759 -17.7641 -2.6456 40.6215 

-0.0060 -0.0782 0.0015 0.1952 

-0.0080 -0.0762 0.0037 0.1773 

(4.5.208) 

Since a retro-stage is not generally available the remainder of this chapter will focus on extensions 

that enable the engineer to better achieve the design goals in the initial design. 

4.5.5 Multistage Assignment 

It is not necessary to have only two stages in the initial design. We now describe a multi-stage ap­

proach that may proceed to the retro-stage if there is residual design freedom. 

Any number of stages may be applied providing they result in eigenvectors that meet the conditions 

of Theorem 4.5.3. When the distribution of design freedom is taken into consideration then it may 

well be desirable to introduce additional assignment stages. 

To illustrate the multistage procedure, let us augment the two stage technique with one additional 

stage. 

In stage one 81 right eigenvectors are assigned, in stage two 82 left eigenvectors are assigned and in 
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stage three a further S3 right eigenvectors are assigned. In each stage a self-conjugate set of eigenval­

ues must be placed. Thus a total of (81 + 83) right eigenvector are assigned and 82 left eigenvectors. 

Naturally, for complete pole assignment it is required that: 

(4.5.209) 

The first two stages proceed exactly as described in Section 4.5.3. But stage two now enjoys more 

design freedom since the selected eigenvectors must be orthogonal to fewer (8d stage one right ei­

genvectors. A maximum of r - 1 left eigenvectors may be assigned in stage two. Each is selected 

with m - 81 - 1 degrees of freedom. This may be computed using the usual partitioned matrix of 

Equation (4.5.128). 

A third stage is now required to assign the remaining (83) right eigenvectors which must be orthogonal 

to the stage two left eigenvectors. The following partitioned matrix may be used: 

O = [
A - AdkI B] [Qk] 

W2 0 Plc 
forall k = (sI + S2 + 1) ... n (4.5.210) 

In contrast with stage one, where the right eigenvectors were selected with r - 1 degrees of freedom, 

the stage three right eigenvectors can only be selected with r - s2 - 1 degrees of freedom. 

Finally, the left and right eigenvectors should be gathered to form single matrices, so that the gain 

matrix may be calculated using Equation (4.5.136). Table 4.5.5 compares the distribution of design 

freedom of the three stage and two stage techniques. 

Three stage Two stage 
No. Assigned D.o.F No. Assigned D.o.F 

Stage 1 81 r-l SI + 83 r-l 
Stage 2 82 m - 81-1 82 m - SI - s3-1 
Stage 3 83 r - 82 -1 - -

Table 4.5.5: Comparison of the two and three stage design procedures in terms of degrees of freedom 
and the number of assignable eigenvectors per stage. 

Table 4.5.5 shows the addition of an extra stage increases design freedom in stage two at the ex­

pense of reduction in stage three. The total eigenvector design freedom (Fr 3) is easily inferred from 

Table 4.5.5 and comparison with Equation (4.5.158) readily shows the total design freedom is same 

but has been redistributed: 
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81(r-l)+S2(m- Sl- 1)+S3(r-l-S2) = Fr3 

mr - n - (m - 81 - 83)(r - 82) = Fr 3 

Examination of Equation (4.5.211) shows that retro-assignment may be performed if: 
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(4.5.211) 

(4.5.212) 

(4.5.213) 

In general, there may be any number of stages providing that, in all stages prior to the last stage, the 

total number of left and right eigenvectors assigned is less than r, m respectively. In the last stage 

the total number of assigned left or right eigenvectors may be increased to equal r, m respectively. 

A retro-stage may then be conducted if the total number of assigned right eigenvectors is less than m 

and the total number of assigned left eigenvectors is also less than r. 

Increasing the number of stages allows the engineer to distribute the design freedom in a manner that 

reflects the relative importance of the desired closed loop eigenvectors. For instance, the two stage 

procedure described earlier will often assign right eigenvectors with much more freedom than left. 

However, it may be required that some left eigenvectors should be assigned with more freedom and 

that not all the right eigenvectors require so much freedom. In which case a three stage procedure is 

preferable. In practice it may pay to experiment with the distribution of the design freedom. 

Adding more stages can increase numerical inaccuracy, since inaccuracies introduced in one stage 

will propagate through to later stages. However, in practice, numerical errors are often subsumed by 

model uncertainty. Fahmy and O'Reilly [FOSSa] present a similar multi-stage technique but use a 

protection method. 

Example 4.5.4 
Let us re-work Example 4.5.2 using a three stage procedure. In stage one we will assign a single right 

eigenvector, with exactly the direction and eigenvalue (-1) chosen in Example 4.5.2. In stage two 

we will assign two left eigenvectors with eigenvalue locations of -3 and -4. Finally, in stage three, 

a right eigenvector will be assigned to a location of -4. 

From Example 4.5.2 the first right eigenvector is: 

vf = [-0.7869 0.2676 -0.2613 0.0850] (4.5.214) 

The allowed left eigenvector subspaces are calculated using Equation (4.5.128), which is employed 

exactly as it was in Example 4.5.2. The subspaces are: 
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L3 = [-0.~163 -0.1925 -0.1495 -0.0043] 
0.0074 -0.0613 -0.2119 

(4.5.215) 

[-0.0203 -0.1938 -0.1350 0.0066 ] 
L4 = 

0.0000 -0.0617 
(4.5.216) 

0 -0.1900 

Compared to Example 4.5.2 the allowed subspaces have an additional dimension this is because the 

subspaces must only be orthogonal to a single right eigenvector. Let us suppose that the design vec­

tors were employed to select the top and bottom row of L3 and L4 respectively. Thus the selected 

left eigenvectors are: 

[
-0.0163 -0.1925 -0.1495 -0.0043] 

W2 = o 0.0000 -0.0617 -0.1900 

The corresponding output vectors are: 

T2 = [ 0.1382 -0.8857 0.3697] 
-0.2071 0.3811 0.8786 

(4.5.217) 

(4.5.218) 

The stage three right eigenvector must be orthogonal to the stage two left eigenvectors (W 2) and 

thus are calculated using Equation (4.5.210), which is repeated below: 

(4.5.219) 

The allowed right eigenvector subspace (Q2) will be one dimensional and prescribe the eigenvector, 

as shown below: 

Qr = [0.6558 -0.3319 0.3593 -0.1168] (4.5.220) 

The corresponding input vector is: 

pr = [-0.2504 0.4020 0.3045] (4.5.221) 



4.5 Tbe Output Feedback Problem Page 141 

To calculate the gain matrix the right eigenvectors and input vectors, from stages one and three must 

be concatenated, as follows: 

VI T = [-0.7869 0.2676 -0.2613 0.0850 ] 
0.6558 -0.3319 0.3593 -0.1168 

(4.5.222) 

T [ 0.3039 -0.2919 -0.2369] 
SI = (4.5.223) 

-0.2504 0.4020 0.3045 

Equation (4.5.136) can then be applied as usual and for this case the resulting gain matrix is: 

[

0.4611 

K = 0.1870 
-0.6513 

-1.5324 -1.0544] 
0.1555 -0.8198 

2.2959 1.1187 

Modal decomposition of the closed loop form confirms the assignment: 

[ 0.7869 -0.6558 -108.04 
111.12 ] 

-0.2676 0.3319 77.86 -100.93 
V= 

0.2613 -0.3593 -82.57 118.81 

-0.0850 0.1168 26.84 -33.35 

[_1.00 
0 0 

JJ A= 0 -2.00 0 

0 0 -3.00 

0 0 0 

[ 09896 
-26.4892 -5.4100 64.1804] 

-3.0161 -63.5129 -20.6710 108.5072 
W= 

0.0163 0.1925 0.1495 0.0043 

0.00 0.00 0.0617 0.1900 

(4.5.224) 

(4.5.225) 

(4.5.226) 

(4.5.227) 

This example shows how multistage assignment redistributes the design freedom. In Example 4.5.2 

the left eigenvectors were prescribed but in the three stage procedure they were selected with one 

degree of freedom. The penalty for this is that one right eigenvector was prescribed whereas in Ex­

ample 4.5.2 this was chosen with two OoFs. 

So far, attention has focused on the calculation of allowed subspaces and the poie placement prob-
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lem. However, an essential step in all the preceding techniques is the selection or calculation of the 

design vectors. These determine the closed loop eigenvectors and are thus crucial to performance. 

The following section concentrates on the selection design vectors and the techniques described are 

relevant to all the preceding approaches. 

4.5.6 Assignment with Simple Projection 

All the techniques described so far calculate an allowed subs pace from which the closed loop eigen­

vectors must be selected. Least squares projection has proven an expedient means of selecting the 

closed loop eigenvectors. However, unlike the state feedback case, for the output feedback case, the 

allowed eigenvector subspaces are no longer independent, but are related by the orthogonality con­

dition. It is wise to take this into consideration. 

Consider two stage assignment with initial assignment of right eigenvectors. An allowed subspace 

Qi is calculated using Equation (4.5.116). A design vector (fi ) selects the closed loop eigenvector. 

A weighted least squares problem can be formulated by calculating the difference between the selec­

ted closed loop eigenvector and a desired eigenvector (Vd;), then minimising the magnitude of this 

residual or error vector. This is mathematically expressed as follows: 

Ji = IIvd; - Qif; 11 it 
= (Vdi - Qifi)·R(Vdi - Qifi) 

(4.5.228) 

(4.5.229) 

Where R is a positive definite n x n matrix which is usually diagonal. If it is desired to weight 

some residues to zero then the appropriate rows should be removed from Qi and Vdi such that the 

resultant weighting matrix (R) is positive definite. Assume, without loss of generality, that Qi is 

a minimal basis for the allowed subspace and therefore has full rank. The weighted least squares 

solution [BIG74, p. 103] is: 

fo; = (R!Qi)tvdi 

= (Q:RQi)-lQ;Rvdi 

(4.5.230) 

(4.5.231) 

Where R = R! (R!)* and fo; is the design vector that selects the least squares optimal eigenvector. 

As well as finding the optimal direction the least squares solution also scales the eigenvector in order 

to minimise the cost function. The scaling property of the solution causes all the OoF's in the design 

vector to be used. However, since the eigenvector may adopt any scaling, one OoF is in fact redund­

ant. For complex eigenvalues calculation of the least squares problem, as described above, will re­

quire complex arithmetic. However, Lemma 4.5.4 may be applied to formulate an all real problem. 

This has benefits beyond avoiding complex arithmetic. If it is desired to independently weight the 
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real and imaginary residuals then an all real problem will facilitate this by separating the real and 

imaginary parts. For instance an all real version of Equation (4.5.228) is: 

-Im (Qi) 1 [Re (fi ) l) 112 (4.5.232) 
Re (Qi) lm (fi ) 

Where RI is a positive definite matrix that weights the real residuals and similarly, Rl weights the 

imaginary residuals. Naturally, a dual least squares problem may be formulated to select the left ei­

genvectors in either stage one or stage two. Consider the stage two scenario: 

Jj = IIWdj - gjLjlli 

= (Wdj -gjLj)R(Wdj -gjLj )" 

(4.5.233) 

(4.5.234) 

Where R is a positive definite weighting matrix, gj E Clx(m-st} is a left design vector, Wdj E 

C1xn is a desired left eigenvector and L j E c(m-.d xn spans the intersection space indicated in 

Equation (4.5.128) and recalled below: 

(4.5.235) 

Assuming Lj is full rank the solution to the least squares problem is: 

(4.5.236) 

Where gOj selects the optimal left eigenvector. 

The orthogonality condition imposed in Equation (4.5 .235) can be formulated as part of the least 

squares problem. In which case the constrained problem is expressed in terms of the allowed left 

eigenvector subspace (£(Adj» and assigned right eigenvector matrix (VI). Let us redefine Lj to 

span the allowed left eigenvector subspace (range (L3) = £(Adj f), then mathematically: 

(4.5.237) 

The solution7 [Mi187, p. 18] to the constrained optimisation problem is: 

7 An alternative solution is given in Equation (5.5.159) 
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* ( *)-1 gOj =wdjRLj LjRLj -

wdjRL; (LjRL;)-1 LjVl [Vl *L; (LjRL;)-1 LjVl] -1 Vl *L; (LjRLi)-1 

(4.5.238) 

Where, as before, range (LT) = 'c(Adj)T and the columns ofVl are right eigenvectors assigned in 

stage one. 

4.5.7 Assignment with Sympathetic Projection 

The eigenvectors assigned in stage one ultimately determine what can be achieved in stage two. This 

is because the stage two eigenvectors must reside in the left null space of those assigned in stage one. 

To ensure that stage two is not too heavily influenced by stage one, an additional term may be added 

to the optimisation. Let us define W02 as follows: 

(4.5.239) 

Then the augmented problem is: 

i = 1 ... 81 (4.5.240) 

Where w/ weights the left eigenvector term. The purpose of this term is to force the assigned right ei­

genvectors to be more orthogonal to the desired left eigenvectors. Thus in stage two it is now possible 

to meet the orthogonality condition and assign directions closer to those of the desired eigenvectors. 

The success of the assignment may now predominantly depend on the extent to which the allowed 

subspaces contain the desired directions. The value of w/ reflects the relative importance of achiev­

ing the desired left or right eigenvectors. The weighting matrices Rl and R2 are positive definite. 

R2 can be used to encourage orthogonality with respect to specific eigenvectors. The solution to the 

augmented optimisation [BIG74, p. Ill] is: 

(4.5.241) 

The dual problem for assignment of left eigenvectors in stage one is: 
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i = 1 ... 81 (4.5.242) 

Where VD2 = [VdS1 +1, ... , Vdn ] is the desired right eigenvector matrix, Li is the allowed left 

eigenvector subspace defined according to Equation (4.5.121) and Wr is the dual weighting factor. 

The solution is: 

(4.5.243) 

In both cases, stage two assignment should use the simple projection of Equation (4.5.230) or its 

dual. Selection of a suitable compromise value for w/ or Wr may require some experimentation, it is 

recommended that all the eigenvectors Wd,; and Vd,; are normalised thus: 

(4.5.244) 

Examination of the behaviour of Equation (4.5 .241) for large w/ indicates an alternative problem for­

mulation is possible. If w/ is large then the latter term of Equation (4.5.240) will dominate. As de­

picted below: 

(4.5.245) 

This term has two solutions: 

1. Trivial case fi = O. 

2. Subspace solution fi E ker (WD2 Qi). 

We therefore see that solutions for medium values of W/ represents a compromise in direction and 

scaling. Since eigenvectors are defined by direction alone it is desirable to reformulate the problem 

as a compromise in direction only. To this end let NVdi E c(n-l)xn be full rank and satisfy: 

(4.5.246) 

Then an alternative problem formulation is: 
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(4.5.247) 

In the preceding problem the length of an eigenvector is arbitrarily fixed at unity and the direction 

is a compromise between the ideal eigenvector direction and orthogonality to the desired left eigen­

vectors. The solution is a generalised eigenvalue problem: 

(4.5.248) 

Proof 
The preceding solution is derived using a straightforward application of matrix calculus. The cost 

and constraint function expressed with a Lagrange multiplier (0:) is: 

The derivative is: 

aJi = 2Qi (NvdiiRlNvdi i + WIWD2 °R2WD2) Qif, - 20:QiQif, (4.5.250) af, 

Setting the derivative equal to zero gives: 

(4.5.251) 

Pre-multiplying Equation (4.5.250) by fO i shows that 0: is equal to the minimum value of the cost 

function (Jo,). 00 
Equation (4.5.248) may be readily solved by applying the QZ Method [GL96, p. 375] where the 

solution is the eigenvector associated with the smallest positive eigenvalue. However, if Qi is full 

rank then the inverse of the product (QiQi) exists and Equation (4.5.248) may be expressed as stand­

ard eigenvalue problem by pre-multiplying with (Qi Qi) -1. Since the solution is an eigenvector we 

see scaling plays no part in the optimisation. 

While the preceding optimisation does have the advantage of concentrating solely on the direction of 

the eigenvector, it does suffer some drawbacks. For instance, the weighting matrix Rl loses some 

visibility, for it now determines the degree to which the solution vector is orthogonal to the row dir-
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ections of Nvdi. In practice RI was set to the identity matrix and NVdi i was calculated as an or­

thogonal basis. 

Both types of sympathetic projection may be applied to multistage assignment. at each stage before 

the last, the additional term should be present (see Equation (4.5.245». The term should only con­

tain the remaining unassigned left or right desired eigenvectors. The last stage should use simple 

projection. 

4.5.8 Assignment with Iterative Projection 

Iterative projection is a natural extension to the sympathetic projection method described above. It 

aims to distribute design freedom evenly between left and right eigenvectors. 

In both the multi stage and two stage methods the design freedom is distributed among the stages in 

discrete amounts. However. sympathetic projection has illustrated that a stage may sacrifice some of 

its design freedom to the following stage. by choosing a sub-optimal solution. 

The idea behind iterative assignment is that two stages progressively concede design freedom to each 

other until there is convergence on a set of assignable eigenvectors. The procedure is described as 

follows: 

1. Initially. simple projection is performed on both left and right eigenvectors using the uncon­

strained allowed subspaces. At this point it is extremely unlikely the assigned vectors will meet 

the orthogonality condition. 

2. The orthogonality of the le~t and right eigenvectors is checked. If they are acceptably close 

to orthogonal the procedure stops. Otherwise the orthogonality weightings Wz and Wr are in­

creased and the procedure continues to step three. 

3. Using either of the sympathetic assignment methods. re-assign the right eigenvectors to a dir­

ection that is nearer to orthogonal with the current left eigenvectors. For example, the cost 

function for the sympathetic approach with scaling would be: 

i = 1 ... 81 (4.5.252) 

4. Again, using either of the sympathetic assignment methods. re-assign the left eigenvectors to 

be closer to orthogonal with the current right eigenvectors. The complementary cost function 

is: 

j = (Si + 1) ... n (4.5.253) 
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5. Return to step two. 

The simplest method for checking the eigenvector orthogonality is to form the product W l V 1 and 

decide if the values are sufficiently small. Ultimately. poor orthogonality will cause the poles and 

eigenvectors to be inaccurately assigned. Thus a more rigorous approach is to calculate the closed 

loop system matrix and decide if the pole locations are acceptable. However. this approach is com­

putationally more intensive. After each assignment it is important to scale the eigenvectors to a fixed 

length. The asymptotic convergence properties necessitate an appropriate increase of the weight­

ings. To achieve convergence within practical time scales. the orthogonality weightings should be 

increased geometrically. For example: 

Wl = 0 + x + xy + xy2 + xy3 + ... (4.5.254) 

Where x and y control the growth of the weighting term. typical values that may form a good starting 

point. from practical experience are x = 0.01 and y = 1.03. 

Improved results can be achieved by maintaining a separate orthogonality weighting for each eigen­

vector. When a particular eigenvector has reached acceptable orthogonality its weighting is no longer 

increased and thus it suffers no further degradation in performances. 

An important property of this approach is that it will always converge to orthogonal eigenvectors. To 

demonstrate this we require the following well known matrix inversion lemma [GL96]. 

Lemma 4.5.5 
If A. B. C and D have suitable dimensions and (A, C) are non-singular then the following identity 

holds: 

(4.5.255) 

Applying Lemma 4.5.5 to the sympathetic assignment solution (Equation (4.5.241) gives: 

8The eigenvector may still suffer some change in performance since other eigenvectors will continue to change affecting 

its re-assignment. 
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fo. = [Qr (Rl + W, W02 *R2 WD2) Qirl QiRl Vd. (4.5.256) 

= (QiRl Qi)-l QiRl Vd.-

(Q;Rl Qd-l Q*WD2 * (W02 Qi (QiRl Qd-1 Q:W02 * + ~, R2 _1)-1 
(4.5.257) 

Comparison of Equation (4.5.238) with Equation (4.5.257) shows that as w/ tends to infinity the solu­

tion becomes a constrained projection and is thereby guaranteed to produce orthogonal eigenvectors. 

Example 4.5.5 
This example compares the performance of the different projection techniques using the system given 

in Example 4.5.2. For convenience, the desired left (Wo) and right (Vo) eigenvector matrices 

equal the identity matrix. Performance is measured in terms of the assignment error (ei): 

ei = IIVdi - vill2 

ej = IIWdj - Wj 112 

(4.5.258) 

(4.5.259) 

Where Wdj' Vdi are the desired left and right eigenvectors and W j' Vi are the assigned left and right 

eigenvectors after projection. 

Method First (V1) Second (V2) First (W3) Second (W4) 

R-vector R-vector L-vector L-vector 

Simple Projection 

Right first 0.1842 0.0174 1.0000 0.3969 

Left first 0.7550 0.5899 0.7000 0.2402 

Three stage 0.1842 0.9158 0.7696 0.2569 
Sympathetic Projection 

Right first 0.6833 0.0569 0.9317 0.3762 
Iterative Projection 

NA 0.3265 0.0370 0.9487 0.3216 

Table 4.5.6: The least squares eigenvector assignment errors for two and three stage simple projec­
tion. sympathetic projection and iterative projection. 

With simple projection the assignment error is very much determined by the degrees of freedom avail­

able for selecting the eigenvector. When the right eigenvectors (Vl' V2) are assigned first they are 

selected with the maximum amount of design freedom (2 DoFs each) and thus achieve their lowest 

assignment error. Equally, when the left eigenvectors (W3, W 4) are assigned first they achieve their 
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lowest assignment error. Three stage assignment represents a compromise. The first eigenvector (VI) 

is assigned with maximum design freedom (2 DoF) and thus achieves a correspondingly low assign­

ment error. The two left eigenvectors (W3, W4) are assigned with one DoF and achieve intermediate 

assignment errors. The final right eigenvector is prescribed by the previous assignments and has a 

large assignment error. 

Using sympathetic projection the right eigenvectors shun the optimum direction in favour of one that 

will assist the next stage. Thus their assignment error increases compared to assignment of right ei­

genvectors first. However, the left eigenvectors can now adopt directions closer to the optimum and 

their assignment error decreases. For this example a weighting factor of 100 was applied. Interest­

ingly, it can occur that the left eigenvectors suffer an increase in assignment error. 

Iterative projection begins with both left and right eigenvectors adopting the optimum solution and 

then progressively updating their solutions until they are orthogonal. This generalIy achieves a com­

promise in the assignment errors. The choice of initial value for the weighting elements can be used 

to steer the optirnisation. A lower value gives less priority to orthogalisation and the eigenvector will 

remain closer to the optimum direction. However, it is generally not possible to achieve a prescribed 

set of assignment errors and trade-offs are inevitable, some of which can be quite discrete in their 

nature. 

4.5.9 Assignment with Projection and Eigenvalue Trade-off 

Section 4.3 presented a new algorithm for state feedback eigenstructure assignment that allows trade­

off between the eigenvector and eigenvalue approximations. All of the projection methods described 

above may be coupled with eigenvalue trade-off. 

The solution to the projection method is an eigenvector direction that minimises the problem cost 

function. The cost function is also dependent on the eigenvalue location. Thus the initial minim­

isation may be nested in a second optimisation which uses the eigenvalue location to further reduce 

the cost function. The second optimisation may be formulated as either of the constrained or uncon­

strained problems described in Section 4.3. 

While a nested optirnisation may appear computationally intensive, for the projection methods de­

scribed above, the inner optimisation has an analytical solution that can be directly and efficiently 

calculated. Generally, a numerical method is employed for the outer optimisation. However, under 

limited circumstances an analytical solution can be calculated. The basic procedure is outlined as 

follows: 

1. Construct a function (Ji (s)) that calculates then minimum value of the eigenvector cost func­

tion as a function of the eigenvalue location. This will, generally, involve calculating the al­

lowed subspace Qi or Li for the new pole location and then evaluating Equation (4.5.230) or 

Equation (4.5.241) and using the result to evaluate the cost function. 

2. Formulate a constrained optimisation problem: 
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(4.5.260) 

or an unconstrained optimisation problem: 

(4.5.261) 

Where w" is a weighting term to reflect the relative importance of the eigenvalue/eigenvector 

requirements and 'xai is the set of allowed eigenvalue locations. Then solve the minimisation 

using a numerical approach such as the quasi-newton method [Gra95]. 

3. Continue the projection method as before. 

If real eigenvalues are being assigned with simple projection then steps one and two may be replaced 

with the analytic procedure described in Section 4.3. In all other cases a numerical optimisation must 

be used. In the case of iterative projection, steps three and four of the iterative procedure should 

be replaced with procedure described above. However, since each iteration now solves two nested 

optimisations the approach may become cumbersome. 

Although, this algorithm bears close resemblance to the state feedback case, its does not share the 

same optimality. That is, it does not find the global minimum of Equation (4.5.262): 

J=IIVDl-VIIIF+IIWD2 -W2I1F+IIAD -AIIF (4.5.262) 

Where VDI E cn XB1 , WD2 E (;8~ xn and AD E cn xn are the desired right eigenvectors, left 

eigenvectors and eigenvalues respectively. VI E cn XB1
, W2 E (;B2 xn and A E cn xn are the 

achieved right eigenvectors, left eigenvectors and eigenvalues respectively. 

Further development of this approach is possible. For instance, analytic gradient expressions to aid 

the optimisation could be derived and analytic solutions for the nested optimisation could also be 

sought. 

Example 4.5.6 
In this example the projection techniques described in Example 4.5.5 are re-worked with eigenvalue 

trade-off and the assignment errors are compared. All the eigenvaIues were confined to a disk centred 

on their ideal location, the radius was equal to twenty percent of the eigenvalue modulus. 

Comparing Table 4.5.7 with Table 4.5.6 reveals that generally eigenvalue trade-off reduces the as­

signment error. There is only a single exception in the above example, which has been highlighted. 

Table 4.5.8 shows the final eigenvalue locations and reveals that, in most cases, the solution occurs 
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Method First (Vl) Second (V2) First (W3) Second (W4) 
R-vector R-vector L-vector L-vector 

Simple Projection 
Right first 0.1643 0.0000 1.0000 0.3772 
Left first 0.7474 0.5390 0.6713 0.2244 
Three stage 0.1643 0.8848 0.7484 0.2436 

Sympathetic Projection 
Right first 0.6453 0.0000 0.9388 0.3518 

Iterative Projection 
NA 0.2702 0.0285 0.9482 0.3204 

Table 4.5.7: The least squares eigenvector assignment errors for eigenvalue trade-off applied incon­
junction with: two and three stage simple projection. sympathetic projection and iterative projection. 

I Method 
Simple Projection 

Right first -0.8000 -2.3043 -3.0000 -3.2000 
Left first -0.8000 -2.4000 -2.4000 -3.2000 
Three stage -0.8000 -2.4000 -2.4000 -3.2000 

Sympathetic Projection 
Right first -0.8000 -2.3043 -3.6000 -3.2000 

Iterative Projection 
NA -0.8000 -1.6000 -3.6000 -3.2000 

Table 4.5.8: The resulting eigenvalue locations for the assignments described in Table 4.5.7. 

on the boundary of the allowed region. 

4.5.10 Eigenstructure Assignment and Similarity Transforms 

It is interesting to consider the affect of similarity transforms on the eigenstructure assignment solu­

tion. Suppose a nominal system is transformed by non-singular X as follows: 

A H X-lAX 

B H X-IB 

e H ex 

Calculation of the right eigenvector allowed subspace becomes: 

(4.5.263) 

(4.5.264) 

(4.5.265) 
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o = [X-lAX - Ail, X-1B] [~:l (4.5.266) 

= X-I [AX-AiX, B] [~;l (4.5.267) 

(4.5.268) 

Thus the similarity transfonn causes the allowed subspaces to suffer the following mappings: 

(4.5.269) 

(4.5.270) 

Assuming fixed left (gj) and right (fi ) design vectors, the assigned left and right eigenvector are trans­

fonned as follows: 

(4.5.271) 

thus as to be expected: 

(4.5.272) 

Equally, for the left eigenvectors we note: 

(4.5.273) 

Consider calculation of the gain matrix using Equation (4.5.136). We note that Vl and W2 always 

appear in the products CV land W 2 B. Thus they suffer the following mapping: 

CVl t--+ CXX-1Vl 

W2B t-+ W2XX-1B 

(4.5.274) 

(4.5.275) 

Since this mapping has no effect and the matrices Sl and T2 are also unaffected by the similarity 

transfonn, the gain will be unaltered by the similarity transfonn. 
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However, the assumption of fixed design vector is not entirely realistic and it is more usual that the 

design vectors are calculated using a projection approach. Let us assume that simple projection is 

applied. Recalling: 

(4.5.276) 

then the design vector fa, will undergo the following mapping: 

(QiRQi)-IQiRvdi t-t ((X-1Qi)- R (X-IQ.)) -1 (X-1Qi)- RX-1vdi 

(4.5.277) 

This mapping will generally affect fa,. Thus all the design vectors will change as the result of a 

similarity transform. Most eigenstructure assignment methods use projection to calculate the design 

vectors, and will therefore produce different solutions depending on the system representation. This 

is undesirable since it begs the question 'what is the most appropriate representation ?'. An approach 

that obviates this problem is direct assignment of the modal coupling matrices. 

4.5.11 Gain Suppression 

Eigenstructure assignment will generally utilise all the available gains. However, some gains may 

be eliminated (set to zero) with minimal degradation in performance. This may be attractive, just to 

obtain a simpler solution or, implementation issues may require eliminating gains to meet a specific 

controller structure. For instance, helicopters often employ a channel structure, where the feedback 

to each input must come exclusively from one or two selected outputs. This precludes the use of 

cross-feed gains and forces the feedback matrix to have a block diagonal structure. 

In this section we consider eliminating gains by calculating their sensitivity with respect to the as­

signed eigenvalues. Other researchers [Rop83, SYL90, SS87, CR86] have presented similar ap­

proaches. Consider the closed loop system matrix: 

ACL =A+BKC (4.5.278) 

Lemma 5.5.1 [Gi184, PCn] shows that the eigenvalue sensitivity satisfies: 

(4.5.279) 

Where viand w, are the closed loop eigenvectors associated with A, and a is an independent variable. 
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Application of Lemma 5.5.4 [Gra81] shows that: 

8AcL = BE .. C 
8K·· ., ., (4.5.280) 

Where Kij is the ilh element of K and Eij is an all zero matrix of equal dimensions to K except 

the ilh element is unity. 

Combing these results gives: 

8>'k _ wkBEijCVk 
8Kij - WkVk 

Let the columns of B and the rows of C be denoted: 

B = [bl. ... , b r ] 

C T = [cr, ... , c~ ] 

The solution may be re-expressed as follows: 

8>'k WkbiCjVk 
= 8Kij WkVk 

= CjVkWkbi 

WkVk 

The solution for the complete gain matrix may therefore be succinctly expressed as: 

8>'k (CVkWkB)T 

8K = WkVk 

(4.5.281) 

(4.5.282) 

(4.5.283) 

(4.5.284) 

(4.5.285) 

(4.5.286) 

With the gradient information to hand one can decide which gain values to zero. Calvo-Ramon 

[CR86] and Sobel et at [SYL90] suggest calculating the average eigenvalue shift: 

(4.5.287) 
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and using this as the basis for a decision. Sobel et al [SYL90] extends the approach to include the 

sensitivity with respect eigenvectors as well. If the number of gains elements (rm) is greater than the 

number of states (n) the following nullspace approach may be applied. 

Suppose the matrix K is to be perturbed by a matrix AK 

K'=K+AK (4.5.288) 

then a first order estimate of the deviation in the kth eigenvalue is: 

(
8)' )T 

8>'i = vec 8~ vec (AK) (4.5.289) 

Where the vecO operator constructs a vector from a matrix by stacking the columns. To consider the 

effect on all the eigenvalues simultaneously the following matrix is constructed: 

(4.5.290) 

Then a vector of eigenvalue deviations is calculated as follows: 

(4.5.291) 

The matrix DK has dimensions n x rm and will have a null space of dimension at least rm - n. The 

existence of this null space implies that the gain matrix may be perturbed in a manner that does not 

effect the pole locations. This immediately implies an alternative approach, whereby the gain matrix 

is incrementally adjusted using perturbation matrices that do not effect the eigenvalues. 

However, although the perturbation matrices have little effect on the eigenvalues they will alter the 

eigenvectors and thus the system performance. Further work could consider the effect of gain per­

turbations on the eigenvectors and even the eigenvector assignment errors. The tools for deriv­

ing sensitivity functions with respect to the eigenvectors and assignment errors may be found in 

[GraS!, pen, SYL90]. 
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4.6 Direct Assignment of the Modal Coupling Matrices 

One of the main attractions of eigenstructure assignment, over pole placement, is the ability to influ­

ence how the modes couple into the states. This is particularly useful when the states have a physical 

meaning, as is often the case when models are derived by physical argument. For example, most air­

craft models fall into this category. Eigenstructure assignment has been successfully used to decouple 

flight control problems by separating the modes in to the appropriate physical axes [ASC83, GC86]. 

However, in many models the states do not have physical meaning, but contribute to form outputs 

that do have physical significance. This is especially true when the model is generated by identifica­

tion [SCM96], since identification, is only aware of and thus, can only approximate the input-output 

relationship. In this case, one is more interested in how the modes couple into the outputs and would 

wish to assign this property directly. This involves assigning the output mode coupling matrix (CV) 

[Smi91] where C is the output matrix and V is the matrix of right eigenvectors. 

There is also a more fundamental argument why one should want to assign the input and output mode 

coupling matrices directly. Assigning a right eigenvector is tantamount to altering the relative observ­

ability of the associated mode in chosen states. If the design objective is to alter observability then it 

is more appropriate to assign the mode-observability matrix (CV) [PC72] directly. 

In the state feedback case (C = I) or when the output matrix can be transformed to the following 

structure by row ordering and scaling only: 

(4.6.292) 

It is clear that assigning the right eigenvectors V is equivalent to assigning the mode-observability 

matrix. An output matrix with the structure described above occurs when the states are measurable, 

which naturally implies they have some physical significance. Thus is in many applications where 

eigenstructure assignment has proved particularly useful [ASC83, GC86, Far89, GLP89b], by equi­

valence, the mode-observability matrix has been assigned. 

Consideration of input mode coupling can be used to construct a dual argument, that it is more ap­

propriate to assign the mode-controllability matrix or input modal coupling matrix (WB) than the 

left eigenvectors. The mode-controllability matrix determines the degree to which a mode is excited 

by an input. If one consider the dyadic representation of the closed loop transfer function: 

(4.6.293) 

then we can see that the prevalence of a mode in a particularly input output pair is dependent on the 

product of the appropriate elements of the mode controllability and observability matrices. 
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In Section 4.5.10 it was demonstrated that the results of projection based eigenstructure assignment 

will depend on the system representation. A benefit of assigning the modal coupling matrices is that 

this dependency disappears. 

Other researchers [MMS92, ZSA90, Smi9l, Whi91] have both tacitly and explicitly assigned the 

controllability and observability matrices. For instance, the approach of Manness and Murray-Smith 

[MMS92] uses the output space which is tantamount to assigning the mode observability matrix. 

Equally the method of Zhang et al [ZSA90] for suppression of unwanted inputs is equivalent to as­

signing the mode controllability matrix. Smith [Smi91] and White [Whi91] explicitly advocate use 

of the mode controllability and observability matrices. White [Whi9l] suggests that performance 

may be evaluated with a different set of outputs to those used for feedback control. This is a useful 

approach if an output is important to performance but can not be measured. 

The remainder of this section describes a technique for directly assigning the modal coupling 

matrices. The technique forms a natural extension to the eigenstructure assignment techniques 

presented in Section 4.5.2. The rows or columns of the modal coupling matrices are selected from 

allowed subspaces. Consider, the closed system: 

ACL =A+BKC (4.6.294) 

where (Ai, v i) form a closed loop eigenvalue, eigenvector pair. A basis for the allowed mode observ­

ability subspace may be derived from the definition of the closed loop right eigenvectors: 

(A+BKC)Vi = Ai Vi (4.6.295) 

(Ail - A)Vi = BK(CVi) (4.6.296) 

CVi = C(Ail - A)-lBK(CVi) (4.6.297) 

0 = [Iml C(A - ~;I)-l B 1 [ Cv; 1 (4.6.298) 
KCVi 

Equation (4.6.298) shows CVi must be in the range ofC(A-Ail)-l B. LetD(A) denote the allowed 

mode observability subspace, then it may be defined as: 

D(A) = {Xi: Xi E range (C(A - AiI)-lB)} (4.6.299) 

Although, this definition is the most intuitive, it is undefined if Ai is coincident with an open loop 

eigenvalue of A. However, Equation (4.6.296) can be used to formulate an alternative definition: 
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.0(..\) = {Xi: Xi = range (CVi) I(A - ..\iI)Vi E range (B)} (4.6.300) 

This definition is principally the right eigenspace multiplied by C. Dual arguments lead to the fol­

lowing definitions of the allowed mode controllability subspace: 

(4.6.301) 

and more generally: 

(4.6.302) 

The subspaces can be calculated by using the SVD or QR algorithms to generate a minimal basis for 

range (LiB) or range (CQi) as appropriate. The above results allow the selection of desired mode 

coupling vectors, but to assign these vectors a means of calculating a gain matrix must be developed. 

Let: 

(4.6.303) 

where QOi E cm xr denotes the allowed mode observability subspace associated with the eigen­

value ..\di and Pi has its usual meaning. A design vector fi E (;Xl may be used to select a mode 

observability vector from the allowed subspace: 

VOl = [QOlf1, ... ,QOpfp] 

SI = [Plfl , ... ,Ppfp] 

(4.6.304) 

(4.6.305) 

Where VOl and SI are matrices of the selected vectors and for a real gain matrix it is required that 

if ..\d, = Xdle then fi = fie. Comparison ofEquation (4.6.303) with Equation (4.6.298) shows the gain 

matrix K must satisfy: 

KVOl = SI (4.6.306) 
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Equally, let: 

(4.6.307) 

where Lc; E I(;'lxr denotes the allowed mode controllability subspace associated with the eigen­

value Ad; and Mj has its usual meaning. A design vector gj E C1xm may be used to select a mode 

controllability row vector from the allowed row subspace: 

WC2
T = [LC;+lgr+ll ... ,Lc~g~] 

T2 T = [Mr+lgr+ll ... ,M~g~] 

(4.6.308) 

(4.6.309) 

Where W C2 and T2 denote matrices of the selected vectors and to ensure a real gain matrix., 

whenever Ad; = ).dk then gj = gk. Thus, by a dual argument the gain matrix. must also satisfy: 

WC2K=T2 

Recalling, Lemma 4.5.3 reveals the following conditions for a gain matrix. solution: 

Cl rank {VOl ) = p 

C2 rank (W C2) = n - p 

C3 WC2S1 = T2VOl 

If all the conditions are met, the gain matrix. is calculated from the following expression: 

K = WC2 tT2 + SI VOl t - WC2 tWC2S1 VOl t 

(4.6.310) 

(4.6.311) 

Which may be augmented with a free parameter term. An assignment technique requires a means of 

selecting vectors such that they meet condition C3 . This may be achieved by rewriting condition C3 

as follows: 

(4.6.312) 
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It may now be appended to either of the allowed subspace equations as shown below: 

(4.6.313) 

and 

(4.6.314) 

This immediately leads to a two stage assignment technique that is very similar to the eigenvector 

case described earlier. The stages of the technique are outlined below: 

1. Select 81 < r mode controllability vectors from the allowed subspace <!:(Adi}. Or 81 < m 

mode observability vectors from the allowed subspace.o (Adi). The selected vectors must form 

conjugate pairs in accordance with their associated eigenvalues. Then construct (VOl , 81 ) or 

(W C2 , T2 ) as appropriate. 

2. Select 82 ~ m mode observability vectors from the augmented subspace Equation (4.6.314). 

Or select 82 ~ r from the augmented subspace Equation (4.6.313). Again, the selected vectors 

must form conjugate pairs in accordance with their associated eigenvalues. Then construct the 

complementary (WC2, T2) or (V01, 81) as appropriate. 

Finally, calculate the gain matrix from Equation (4.6.311). Some points to note about this approach 

are: 

• Complete assignment still requires m + r > n. The number of vectors that may be assigned 

and the design freedom available may be read from Table 4.5.2 and Table 4.5.3. However, 

the 'right' should be replaced with mode-observability and 'left' with mode-controllability. 

Although the subspaces are the same dimension for both eigenvector and mode coupling as­

signment. the vectors being assigned are generally smaller (max(m, r) < n). Therefore the 

chances of acceptably approximating the desired vector from within the subspace are higher. 

• Unused design freedom may exist after the two stage technique and the free parameter of Equa­

tion (4.6.311) can be used to construct a reduced system for a retro stage. 

• Multistage assignment is also possible. It is only required that conditions Cl to C3 are met 

after all the assignment stages. Thus design freedom can be distributed in the same manner as 

the eigenvector assignment case. 
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• This technique does not require a state space representation. Providing, the assigned poles 

are not coincident with the open loop poles, only the transfer function matrix is needed. Con­

sequently, the assignment is independent of similarity transforms applied to the representation. 

If the transfer function matrix is used then the following simplification is also possible. Let 

G(s) = C(sI - A)-lB then 

(4.6.315) 

Examination of Equation (4.6.303) and Equation (4.6.307) shows that the above may be used 

for calculation of the allowed subspaces. 

The design vectors may be determined using simple projection. The minimisation is formulated as 

follows: 

(4.6.316) 

Where R is a positive definite weighting matrix and Vodi is the desired form for a column of the 

mode observability matrix. It describes in which outputs the mode Ai should prevail. The solution is 

readily given by Equation (4.5.230). Naturally, a dual formulation for simple projection of the mode 

controllability matrix may also be formulated. 

In the same way that the orthogonality condition, necessary for stage two, may be formulated as a 

projection constraint, it is also possible to incorporate the constraints imposed by Equation (4.6.312) 

into the optimisation. The constrained problem is: 

(4.6.317) 

Where wodi is the desired mode controllability row vector and 81, V01 are results of stage one 

assignment. Again, a dual problem for stage two assignment of mode observability vectors is readily 

formulated. 

Unfortunately, the direct assignment technique does not lend itself to sympathetic projection. The 

purpose of sympathetic projection is to mitigate the effect on stage two of the additional constraints 

imposed by Equation (4.6.312). This is accomplished by forcing stage one to adopt a solution that is 

compatible with the ideal solution to stage two. However, this would imply a term of the form: 
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(4.6.318) 

While Woo is simply constructed from the row vectors wodi' Equation (4.6.298) shows that con­

structing Po would require prior knowledge of the gain matrix. Hence the difficulty of applying 

sympathetic projection to direct assignment. 

Direct assignment may be used in conjunction with iterative projection. The technique follows the 

procedure outlined in Section 4.5.8, but the projection problem is reformulated as follows: 

The dual problem is: 

i = l",s l (4.6.319) 

j = (Si + l) ... n 

(4.6.320) 

Other techniques such as gain suppression are readily applied to the direct assignment case. 

4.7 Dynamic Compensation 

In this section two methods of implementing dynamic compensation are presented. Dynamic com­

pensation increases the available design freedom and can therefore achieve design goals that are not 

possible using static feedback alone. For instance, dynamic compensation can be used to achieve 

complete pole assignment with systems that do not satisfy m + r > n. 

4.7.1 The Augmented System Method 

Since first proposed by Johnson and Athans [JA 70] the the Augmented System Method has proved an 

expedient and popular [Kim75, SS87. H087, Han89, Dua93a, SSA94] method of achieving dynamic 

compensation. The salient features of this method are listed as follows: 

• This method generalises static feedback results to dynamic compensation without requiring 

any new theory. 
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• The technique is versatile as an arbitrary dynamic feedback compensator may be assigned and 

parametric approaches may be applied [H087]. 

• A dynamic compensator of order l = (n + 1) - (m + r) is required for complete pole assign­

ment. 

• The method is conceptually straightforward and simple to apply. 

The system augmentation method is now cursorily described. Suppose a dynamic compensator of 

order l, is required then the open loop system should be augment as follows: 

c = [C 0] o I, 
(4.7.321) 

The augmented system is illustrated in Figure 4.7.1. 

r-----------------, 
I 

ul yl 

u2 I ([> : ) y2 
L _________________ J 

Figure 4.7.1: The augmented system 

A static gain K E lR(r+l)x(m+I) can be calculated using any feedback design technique. If the closed 

loop gain is partitioned in accordance with the augmented system: 

A [DC Cc] K= 
Bc Ae 

then it is clear that the feedback compensator is: 

Xc = Aexc + Beyl 

ul = Cexc + Deyl 

(4.7.322) 

(4.7.323) 

(4.7.324) 
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Where ul and yl are inputs and outputs of the open loop system. The augmented system has some 

interesting properties. Consider calculation of the allowed right eigenvector subspace: 

(4.7.325) 

We see that the portion of the eigenvector associated with the open loop states must be selected from 

the unaugmented allowed subspace (Q) and that the portion associated with the compensator may be 

arbitrarily assigned. It is readily shown that the same is true for the allowed left eigenvector subspace. 

The transmission zeros [MK76, KH86] of the augmented system are the same as those for the open 

loop system, since if: 

(4.7.326) 

is rank deficient then it is readily shown that: 

(4.7.327) 

is also rank deficient. Hence the transmission zeros are invariant under dynamic compensation intro­

duced by the augmented system method. 

A drawback of this method is that there is no well developed theory [SS87] for selecting compensator 

eigenvalues and eigenvectors. However, with a good understanding of the plant the design engineer 

can apply classical ideas such as washout filters and lead-lag networks. 

The augmented system method may be applied in a less generic manner by augmenting the system 

with a known compensator structure and then applying static feedback techniques. For instance, the 

augmented system method described above is pure feedback compensation and does not draw any 

information from the open loop system inputs. However, an additional input matrix (Bp) can be 

added to the usual augmented structure to feed input information into the compensator states. 

A [B 0] 
B = Bp 1/ (4.7.328) 
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The matrix Bp describes how the open loop system inputs couple into the compensator and must 

be selected by the design engineer prior to calculating the feedback gains. Since the resultant com­

pensator uses both feedback and input information it may be equivalently represented by a pre­

compensator and feedback compensator. The pre-compensator functionality may be desirable for 

shaping input commands. 

4.7.2 The Observer Method 

An observer is a specific type of dynamic compensation that seeks to estimate the states, outputs or 

other variables of the open loop system. The theory of observer design is well established [Lue66, 

Br091, KaiSO] and many techniques may be applied including eigenstructure assignment [KHS6, 

GL90]. Some techniques can offer robust estimation [AMS9]. However, when the estimation is used 

for feedback there is no guarantee that the closed loop system will inherit the robustness properties 

[DS79, Doy78]. 

The separation theorem [Br091, p. 525] allows the observer and controller to be designed separately. 

To construct a full order observer a feedback gain (Ko) for the pair (A, C) is designed. If eigen­

structure assignment is utilised then n left eigenvectors are selected from the allowed left eigenvector 

subspace (£().i). The associated eigenvalues determine the error dynamics, which are selected as a 

compromise between fast convergence, good noise rejection and good robustness. 

ul yl 

Figure 4.7.2: An observer and controller 

The controller is constructed by the designing a state feedback gain (Kc) for the pair (A, B). The 

complete system is illustrated in Figure 4.7.2 and may be represented as an augmented system as 

follows: 
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K= [0 KO] 
Kc 0 

(4.7.329) 

Full state estimation requires a nth order compensator9• However, it may not be required to estimate 

all the states since some may be measurable or simply not needed. In which case a reduced order 

observer [Br091, Kai80] may be employed. 

Suppose an open loop system has m measurable outputs then a similarity transform may be applied 

such that: 

x = [::] A = [All 
A2l B = [::] c = [Im 0] (4.7.330) 

The lower partition indicates how an open loop estimation of X2 may be achieved, let Xe2 be the 

estimated state: 

(4.7.331) 

For the system above to produce a meaningful estimate corrective feedback will be required. From 

the upper portion we see A12X2 contributes to the dynamics of Xl which are measurable. Thus an 

error term may be formulated as follows: 

(4.7.332) 

Substituting the equation from the upper partition gives: 

(4.7.333) 

The term Xl is undesirable since it implies differentiating the system output. Fortunately, this prob­

lem can be obviated by noting that the error term will be multiplied by a gain (Ko) then integrated. 

Rather than integrating the term Ko Xl one may simply add Ko Xl to the output. Thus 

gIn fact full state estimation may be achieved with an - 1 order compensator [Kai80]. 
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Xez = Azzxez + (AZIXl + Bzu) + Ko e 

= A22Xe2 + (A2IXI + B2U) + Ko «Xl - AllXl - BlU) - A12Xe2) 

= (A22 - Ko A12)Xe2 + (A21 - Ko All)Xl + (B2 - Ko Bl)U + Ko Xl 
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(4.7.334) 

(4.7.335) 

Let us remove the derivative term (Xl) by re-defining the state variable Xe2 1-+ z + Ko Xl: 

z = (A2Z - Ko AIZ)(z + Ko Xl) + (A2l - Ko AU)Xl + (B2 - Ko BI)u 

= (A22 - Ko A 12)Z + (A2l - Ko All + A22Ko - Ko A12Ko )Xl + (B2 - Ko Bl)u 

Design of the reduced order observer is the same as for the full state case except that the pair 

(A2Z, A 12) are used. Once the reduced order observer has been designed it may be incorporated 

in an augmented system to facilitate controller design using static feedback techniques. 

A = 
[(AZl - Ko All + A~KO - Ko AIZKo ) 

(A 0 )] (4.7.336) 
22 - KoAl2 

B = 
[(B2 - ~OBl)] (4.7.337) 

C = [~o ~l (4.7.338) 

It is interesting to note that an observer makes use of both input and output information and is thus 

both a pre-compensator and a feedback compensator. 

This section has developed tools that allow the fixed gain eigenstructure assignment techniques. that 

have already been developed. to enjoy the additional design freedom offered by dynamic compens­

ation. The observer method allows the designer to achieve near state feedback performance and is 

useful when the move from state feedback to static output feedback has caused an unrecoverable loss 

in performance. However. it should be borne in mind that the robustness properties of the state feed­

back solution are unlikey to be recovered. The augmented system approach is very flexible. but since 

there is a dearth of theoretical guidance for designing dynamic compensators using eigenstructure as­

signment. This technique is best combined with a controller strategy appropriate for the given applic­

ation. The controller strategy may be drawn from past experience. classical compensator approaches 

and analysis of the observer based solution. 
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4.8 Summary and Further Work 

4.8.1 Summary 

This chapter pulls together a lot of the current eigenstructure assignment theory and presents it in a 

unified manner. Several novel extensions to the existing theory are developed. These include: 

• An eigenvalue trade-off algorithm with an analytical solution for the real eigenvalue case. 

• Concise and simplified proofs that facilitate a clear understanding of the fundamentals of ei­

genstructure assignment 

• A novel gain equation that forms the basis of a versatile eigenstructure assignment algorithm. 

• A retro-assignment stage that allows unused design freedom to be recovered. 

• The iterative and sympathetic projection algorithms. These allow more control over the distri­

bution of design freedom during the projection process. 

• It is argued that direct assignment of the modal coupling matrices is more appropriate for the 

output feedback case. Theory is developed that facilitates a technique for direct assignment of 

the modal coupling matrices. 

All the extensions are straightforward additions to a basic two stage assignment algorithm. 

4.8.2 Further Work 

Undoubtedly, the most irritating lacuna in the preceding work is the lack of an analytical result to 

the trade-off algorithm for the case of complex eigenvalues. Much of the work in Appendix C was 

undertaken in an effort to find an analytical solution for this case and would form a good starting point 

for further work. The aim of which would be to find a solution or unequivocally establish there is no 

analytical solution. 

For the work is this chapter to be of use to practising engineers it must be supported by reliable quality 

software. While considerable software has been developed to exercise the algorithms. Further work 

would be necessary to package the code in a consistent and complete manner. Probably, the most 

appropriate format for the software would be a toolbox that provides simple commands which can 

be easily combined to achieve complex designs. This low level approach ensures the engineer always 

maintains control over the design. 

Many controller synthesis problems have been recently re-expressed as linear matrix inequalities 

(LMI) [SI96]. This has provided a unified approach. It would be interesting to explore if eigenstruc­

ture assignment can re-expressed as an LMI and therefore unified with other, traditionally distinct, 

branches of control theory. 
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The direct assignment technique does not lend itself to sympathetic projection in its present form. A 

topic for further work could be to develop an equivalent mechanism for controlling the influence of 

the first stage on subsequent assignment stages. 

The current approach to gain suppression only considered the affect on the eigenvalues. It would be 

worthwhile to develop extensions that also consider the eigenvectors and even their associated assign­

ment errors. This will provide the engineer with a clearer idea of the likely impact on performance of 

eliminating a gain. While gain suppression can be useful in simplifying the design this post-design 

sensitivity analysis is an ad hoc way of achieving structural constraints. A challenging topic for fur­

ther work would be the development of theory that allowed hard structural constraints to be specified 

from the outset of the design. 

For complete assignment, all techniques considered in this chapter must satisfy the constraint: 

m+r >n (4.8.339) 

This constraint is imposed not because of a fundamental law, but because it affords a simplification 

of the problem that allows us to calculate a solution using linear algebra techniques. It has been quite 

recently shown [Wan92, RSW95] that complete assignment only requires: 

mr>n (4.8.340) 

The inefficiency of the current constraint becomes more acute as the order of the system is increased. 

For example, for a fourth order system both constraints require an equal number of gains, but for a 

fortieth order system the linear constraint may require as many as ten times more gains. Developing 

a general solution to the problem of complete pole assignment using output feedback that requires the 

minimum number of gain elements is a fundamental problem in control theory and certainly worthy 

of further research. 
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This chapter gives the theoretical basis for a robustness improvement algorithm. The algorithm will 

improve robustness with respect to either a time domain or singular value based robustness measure. 

The algorithm employs a gradient based optimisation and analytic expressions for the gradients are 

derived. Some typical results can be found in Chapter 6. 

5.1 Introduction 

No mathematical system can precisely model a real system. There are always unpredictable inputs 

and dynamics that form a fundamental limit and in all practical models there will additional behaviour 

that is approximated or unmodelled [Pad96, p 90]. This means that even if the inputs of a system are 

known, the output can not be predicted exactly and is subject to some uncertainty. 

Robustness refers to the ability of a system to tolerate uncertainty. Practical approaches to measuring 

and improving robustness require a description of the uncertainty and means of deciding if a system 

is tolerating or has been overcome by the uncertainty. Generally, stability is used as the deciding 

threshold and it is in the area of stability robustness where most of the useful theoretical results are 

concentrated. However, it is easy to imagine a situation where perfonnance has degraded to an unac­

ceptable level long before instability sets in. It is thus, in general, more desirable to achieve perform-

Page 175 
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ance robustness. Unfortunately, the area of performance robustness is fundamentally more difficult 

and is consequently less well developed. The fundamental problem is that acceptable performance 

is; difficult to define, problem dependent and often, once defined, mathematically unsuitable for the 

development of a robustness theorem. This has hindered the development of a uniform approach to 

robust performance. However, results have been developed for some specific situations where ac­

ceptable performance can be defined by a norm bounded transfer function [PD93, SD91] or as an 

allowed region for the closed loop spectrum [YA94, YS91, Jua91, Yed93b]. 

The numerous sources of uncertainty that are present in a helicopter design model make robustness an 

important issue for helicopter flight control law design. Some of the significant sources of uncertainty 

are listed as follows: 

1. The rotorcraft flight condition, this represents different trim conditions, altitudes, and other 

parameters associated with the Operational Flight Envelope (OFE). Generally, forward speed 

is the dominant uncertainty and therefore of most interest. 

2. Sensor errors associated with measuring attitudes, rates, accelerations and speed. In fact at low 

air speeds, speed measurements are so inaccurate that they prohibit effective gain scheduling. 

3. Linearisation of non-linearities. Most design will be based around linear models that have been 

extracted from full non-linear simulations. The linear model rapidly becomes invalid for mod­

erate perturbations and manoeuvres away from trim. 

4. The linear model is a time invariant representation of a time varying system. This especially 

true of the rotor dynamics, where the spinning rotor is represented by a static system. 

5. Deliberate reduced order modelling. For convenience and simplicity a reduced order linear 

and/or non-linear simulation may be used during the design. These models may ignore such 

things as actuator dynamics, rotor-states, structural modes, etc. 

6. Unmodelled dynamics. Even the most precise model will be unable to describe all the sys­

tem dynamic behaviour, since the high frequency effects are often stochastic or depend on un­

measurable exogenous inputs. Furthermore, the negative phase introduced by these effects is 

insidious since it can destabilise. 

7. The rotorcraft state represents uncertain inputs that will vary from flight to flight. For instance, 

the c.o.g positions. all-up weight, weather conditions, etc. 

8. Controller implementation. Finite precision arithmetic and the computational delay associated 

with digital realisations of controllers introduce significant uncertainty. 

9. Further uncertainty results from manufacturing variation, non-critical component failure, wear 

and aging. 
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The uncertainties above can be broadly divided into two groups: unmodelled dynamics and parameter 

variations. Parameter variations will cause the elements of the state space description to change in 

a structured way. Uncertainty in the state space description is called either state space parametric 

uncertainty or more succinctly time domain uncertainty [Yed85, SSA94]. 

For the following three independent and significant sources of time domain uncertainty some inform­

ation about the structure can be extracted. 

Flight condition By comparing state space models for different flight conditions, information about 

variations in the model and its subsequent eigenstructure can be extracted. 

Rotorcraft state The stability and control derivatives of the state space model can be expressed 

as approximate equations derived using physical arguments and written in terms of physical 

quantities [Pr090]. Error tolerances can be associated with physical quantities and used to 

calculate a combined tolerance for the state space derivative. 

Linearisation Errors The errors introduced by linearisation of a non-linear model can be estimated 

using the algorithm described in Section 2.3. 

It is well established that time domain models are a suitable format for flight control problems and it is 

suggested that robustness should concentrate on time domain uncertainty. Time domain uncertainty 

forms a natural complement to the state space model, provides the same physical insight and the tech­

niques described above can be used to extract valuable structural information. The drawback of time 

domain uncertainty is that it does not explicitly accommodate unmodelled dynamics which are an 

important source of uncertainty and should not be over looked. However, in some cases robustness 

to unmodelled dynamics can be re-expressed as time domain uncertainty. 

5.2 Eigenstructure Assignment and Robustness 

Unlike other techniques such as the Linear Quadratic Regulator (LQR) [AM89] or ?loo control 

[Zam81], Eigenstructure Assignment has no explicit means of guaranteeing robustness margins. But 

Eigenstructure Assignment does provide access to all the available design freedom and may assign 

a robust solution as easily as a non-robust solution. It is therefore only required to provide a tech­

nique that will steer the assignment towards a robust solution and many such techniques have been 

developed. 

Early techniques reduced the sensitivity of the eigenvalues to perturbations in the system matrix 

by orthogonalising the eigenvectors [Bur90, MP88, KND85], since Gilbert and Wilkinson show 

[Gi184, Wil65] that the system eigenvalues are most insensitive when eigenvectors are orthogonal. 

Strictly speaking these are not robustness techniques since they do not define a class of perturb­

ation for which the system will remain stable or maintain some performance measure. However, 

some techniques do optimise the condition number of the modal matrix [KND85] and robustness 
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measures based on the condition number of the closed loop modal matrix have been developed 

[ND84, YA94, YL86a, SBY89b]. The orthogonalisation techniques also suffer the draw back that 

all the eigenvector design freedom is used to othogonalise the eigenvectors with no consideration of 

how this affects the system response and especially decoupling. For this reason these techniques are 

best considered as numerically well-conditioned pole placement algorithms [GLLT90, see place]. 

Work on singular value sensitivities [CFL81] led to techniques that improve singular value based ro­

bustness measures [Gar89, MN84, NM85, SATC86, Web92]. These techniques assume that a nom­

inal design has been generated. They attempt to improve the robustness of the design by calculat­

ing the gradient of the singular value robustness measure with respect each design parameter. The 

design parameters are adjusted in a direction that improves the robustness measure. The principal 

difference between the algorithms is the choice of design parameters. Garg [Gar89] and Scpgaard­

Andersen et al [SATC86] assume the nominal design is generated using state feedback eigenstructure 

assignment and calculate gradients with respect to the desired eigenstructure and design vectors re­

spectively. Mukhopadhyay and Newsom [MN84, NM85] calculate a gradient with respect to the gain 

elements of the nominal design. This work therefore makes no assumption about how the nominal 

design is produced and as a result the gradient functions are simpler. A key issue with these improve­

ments techniques is maintaining performance while improving robustness. All the techniques address 

this problem by starting with a design that is optimised for performance then hoping that adequate 

robustness can be achieved before performance has degraded too far. In addition, the techniques of 

Garg [Gar89] and Srpgaard-Andersen et al [SATC86] can be configured to adjust selected design 

parameters. These techniques also have the advantage that they adjust the parameters used in the 

original design. Hence the trade-off between performance and robustness is more visible. Robust­

ness improvement techniques based on measures other than the maximum singular value have been 

developed [Apk88, Apk89. SYP+92]. 

An alternative to the improvement techniques are approaches that combine the robustness and per­

formance goals in a single constrained optimisation [Muk87, PL94, Dav94, YPS91, YS91, WCY91]. 

These techniques do not generally use analytically derived gradient information since the cost and 

constraint functions are too complex to differentiate. As this suggests, the optimisation problems 

are often difficult and novel techniques such as Genetic Algorithms (GA) have been applied [PL94, 

Dav94]. Again, optimisation techniques based on measures other than the maximum singular value 

have been developed [YPS91, YS91, WCY91]. 

Although, the combined optirnisation approaches go some way to addressing the problem of achiev­

ing robustness and performance goals simultaneously, they do so at the expense of visibility. The 

author believes the visibility offered by the improvement techniques make them preferable to the 

combined optimisation approach. Thus the work presented in the remainder of this chapter is a ro­

bustness improvement technique which has been developed by the author. 
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5.3 An Outline of the Robustness Improvement Algorithm 

The author's robustness improvement algorithm starts with a controller solution that has been op­

timised for performance. This solution is expressed in terms of optimal eigenvalue locations and 

design vectors. The design vectors select the best achievable eigenvector directions from the allowed 

subspaces. Since the solution is optimal and generally unique, it is clear that any adjustment of the 

eigenvalues or design vectors will create a sub-optimal solution and consequently a degradation in 

performance. The robustness improvement algorithm will adjust eigenvalues and design vectors thus 

there is an inevitable trade-off between performance and robustness. The performance robustness 

trade-off is a common feature of many modern control techniques [lS90, SA87, Kwa93] and it is 

important that it is presented in a way that makes the trade-off clear to the design engineer. 

The robustness improvement algorithm uses the same parameters as the original design; that is, the 

eigenvalues and design vectors. This is to make the performance robustness trade-off visible. At each 

step the algorithm selects an adjustment vector that is a compromise between robustness improvement 

and performance degradation. The algorithm is also constrained to keep the closed loop eigenvalues 

within specified regions and thereby maintain performance. The basic steps of the algorithm are listed 

as follows. 

1. Produce initial optimal design. 

2. Calculate the robustness measure for the current controller. 

3. If the robustness measure is acceptable stop else continue. 

4. Calculate the gradient of the robustness measure with respect to the design parameters. 

5. Calculate the gradient of the performance measure with respect to the design parameters. 

6. Select a compromise direction. 

7. Perform a line search in the compromise direction to find a cost reduction step. 

8. Re-calculate the controller with new design parameters. 

9. Go to step 2. 

The key features of the algorithm that distinguish it from previous attempts are as follows: 

• It is an extension to output feedback eigenstructure assignment. 

• It provides an explicit mechanism to maintain performance through the use of compromise dir­

ections. 

• It uses novel robustness measures. 

Before describing the algorithm in detail it is instructive to look at the robustness measures employed 

and their derivatives. 
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5.4 Robustness Measures 

For comparison it was decided to implement the algorithm using two different robustness measures, 

a time domain measure and a maximum singular value based measure. Either measure would have to 

be evaluated at step two of the robustness improvement algorithm this would also require specifying 

an uncertainty structure. Several time domain measures were considered. 

5.4.1 The Time Domain Robustness Measure 

Lypaunov derived conditions [PTS77, PT80, Yed8S, YL86b, Lee82, ZK87, KBH88] were rejected 

due to their conservatism and limited ability to handle structured perturbations. Polynomial derived 

conditions [GJ81, KBH88, Vic89, Yed93b] were also examined. They are reported to be conservat­

ive [Wis92] and cumbersome to calculate. Other less conventional robustness measures were also 

considered [ND84, TV90, Yed93a]. 

For the time domain robustness measure it was decided to use the Gronwall Lemma [Vid93, p. 236] 

derived condition presented by Yu et al [YPS9I]. The decision was based on the following reasons: 

• published results [YPS91, SBY89a] show the measure to be less conservative than comparable 

measures [CW87] . 

• The measure is dependent on the closed loop eigenstructure in an obvious and intuitive way, 

which lends itself to differentiation. 

Consider a nominal state space system (A, B, C) subject to continuous time varying uncertainties 

described by AA and AB. 

x(t) = Ax(t) + AA(t)x(t) + Bu(t) + ABu(t) 

y(t) = Cx(t) 

(S.4.I) 

(S.4.2) 

Suppose the absolute value of the maximum variation is bounded by the matrices AM and BM on 

an element by element basis. 

abs (AA (t)) $ AM 

abs (AB (t)) $ BM 

Consider, also an output feedback gain thus 

(S.4.3) 

(S.4.4) 
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u(t) = Ky(t) (5.4.5) 

Theorem 5.4.1 Theorem 2 Yu et al [YPS91] 

Suppose that K is such that the nominal closed loop system is stable with a non-defective modal 

matrix. Then, the uncertain closed loop system is stable for all aA and aB if, 

(5.4.6) 

where W i and Vi are the left and right closed loop eigenvectors associated with the closed loop ei­

genvalue Ai. 

Equation (5.4.6) has not been reproduced exactly as stated by Yu et al [YPS91]. The additional term 

abs (WiVi) has been added to the denominator. In the original equation this term was omitted since 

it was tacitly assumed that the eigenvectors were scaled to satisfy WiVi = 1. With the following 

definitions: 

ACL 

ABM 

V 

WT 

ARE 

= 
= 
= 
= 
= 

A+BKC 

AM + BM abs(KC) 

[VI, ... , v n ] 

(5.4.7) 

(5.4.8) 

(5.4.9) 

[wf, .... w;] (5.4.10) 

diag [ -Re (AdAC~)) abs (WI VI)' ••• , -Re (An (AC~)) abs (wn Vn)] (5.4.11) 

Equation (5.4.6) can be more succinctly expressed as: 

p (abs (M) ARE abs (W) ABM) $ 1 (5.4.12) 

Equation (5.4.6) repays closer examination but first some useful matrix properties are needed: 

1. Suppose that X is a square matrix with simple eigenvalues and that (Wi. Vi) are the left and 

right eigenvectors of X associated with the eigenvalue Ai. Then the first order sensitivity of 

the eigenvalue Ai to perturbations in each element of X may be expressed in matrix form as 

(Porter and Crossley [pe72, p. 22]): 
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(5.4.13) 

Thus if nominal X is subject to a perturbation such that:x:' = X + E then a first order estimate 

of the deviation in Ai, denoted 8Ai, is: 

1"\. _ WiEvi 
UA, - ---

WiVi 
(5.4.14) 

2. If X and Y are equal size square matrices composed of non-negative elements and satisfy 

(5.4.15) 

on an element by element basis. Then the Perron-Frobenius Theorem [Gra87, p. 121] for non­

negative matrices shows: 

p(X) > p(Y) (5.4.16) 

3. If X and Y are square matrices composed of non-negative elements then they satisfy the fol­

lowing spectral radius inequality 

p(X) + p(Y) ~ p(X + Y) (5.4.17) 

The inequality can be proved using a straight forward application of Rayleigh:SO principle 

[Gra87, p. 121] as shown below, although the form below is adapted for the purposes of the 

proof: 

p(X + Y) = max x
T 

(X + Y)x = xo
T 

(X + Y)xo 
x~O xT X xoT XO 

(5.4.18) 

Where x is a column vector of appropriate length composed of non-negative elements. Further 

application of Rayleigh's principle shows: 
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XoTXXo XTXX 

XoTXo 
< max -T - = p(X) (5.4.19) 

x2:0 X X 

xoTyxo 
~ 

xTyx 
xoTxo 

max -T - = p(Y) (5.4.20) 
x2:0 X X 

since p(X) and p(Y) are always non-negative. it follows that: 

p(X) + p(Y) ~ p(X + Y) (5.4.21) 

Reference to Equation (5.4.13) shows that the robustness condition (Equation (5.4.6» is intimately 

related to the eigenvalue sensitivity. 

Matrix property two shows that increasing Re (Ai (ACL)) will always improve the robustness meas­

ure. This result is intuitive since one would expect that moving the eigenvalues further from the un­

stable RHP would improve robustness. 

Direct application of matrix property three to Equation (5.4.6) produces the following inequality: 

n (abS(V'w,) ) 
p (abs (M) ARE abs (W) ABM) < ?: P -Re (Ai (ACL'» ~bs(wiVi) ABM 

t=1 (5.4.22) 

Which can be simplified by noting 

( 
abs(viw.) A) 

P -Re (A. (ACL» abS(WiV') BM 
= ( abs(vi) abs(w.)ABM ) 5 

P -Re (AdAcL» abs(w.v.) (.4.23) 

= 
abs(w.)ABM abs(v.) 

(5.4.24) 

the final inequality thus becomes: 

(
abS(Wi)ABM abS(Vi») 

nabs w·v· 
p (abs (M) ARE abs (W) ABM) < 2: ( t ,) 

i=1 -Re (A' (A CL » 
(5.4.25) 

Comparison with Equation (5.4.14) shows that the numerator is closely related to the first order es­

timate of eigenvalue perturbation and may be considered a worst case eigenvalue deviation. The de­

nominator can be in interpreted as the the maximum eigenvalue deviation for which stability is guar-
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Figure 5.4.1: Input multiplicative uncertainty with constant output feedback 

anteed. Thus if any summand is greater than unity, stability can not be guaranteed and the robustness 

test fails. The numerator is principally dependent on the closed loop eigenvectors and one might seek 

to improve robustness by decreasing it. This can be achieved by reducing abs(wi)ABM abs(vi) or 

increasing abs(wivi). Reducing abs(wi)ABM abs(vi) amounts to selecting eigenvector directions 

that reduce sensitivity to the given uncertainty structure. Increasing, abs(wivi) requires making the 

left and right eigenvectors (W;, Vi) more co-linear which, if possible, would ultimately lead to the 

solution of the eigenvalue insensitivity problem that is orthogonal eigenvectors or equivalently unit-

aryV and W. 

Equation (5.4.25) is useful beyond its illustrative properties, since in practice it is a fair approximation 

of the robustness measure. Examination of the individual summands indicates which parts of the 

eigenstructure form the dominant contribution to the robustness measure. The individual terms, being 

much simpler than the original robustness measure, are more easily adjusted to improve robustness. 

5.4.2 The Singular Value Robustness Measure 

Singular value robustness measures are an important part of modern control theory. They refer to 

techniques where the model uncertainty (A(s)) is represented by an unknown transfer function mat­

rix. The techniques calculate the maximum norm that the uncertainty transfer function may realise 

while still guaranteeing stability. The matrix norm used is, generally, the spectral or Hilbert norm 

which is equal to the maximum singUlar value. 

Before looking at the details of the robustness measures used in this work it worth outlining some 

background on singular value robustness tests. 

The first step in using a singular value uncertainty bound is to produce an uncertainty representa­

tion. An engineer should choose a representation that most accurately accommodates the model er­

ror information that is available. For instance, if is it known that the actuators of a plant introduce 

considerable delay and non-linearity then input multiplicative uncertainty may be considered most 

appropriate. Some common uncertainty representations are shown in Table 5.4.1. 

To assess the impact of the uncertainty on the closed loop system the open loop uncertainty represent­

ation must be combined with an appropriate controller structure. For instance, an input multiplicative 

representation may be combined with a constant output feedback gain as shown in Figure 5.4.1. 
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Block representation I Mathematical representation 

Input Multiplicative 

G(s) = [I + A(s)]Go(s) 
Input Inverse Multiplicative 

G(s) = Go(s)[1 + A(S)J-l 

G(s) = [I + A(S)]-lGo(S) 
Feedforward Additive 

G(s) = A(s) + Go(s) 
Feedback Additive 

G(s) = Go(s)[I - A(s)Go(s)J-l 
Input Bilinear 

G(s) = Go(s)[I - A(s)J-l[I + A(s)] 
Output Bilinear 

G(s) = [I - .0.]-1[1 + A]Go(s) 

Table 5.4.1: Common open loop uncertainty representations 
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Figure 5.4.2: The general single loop structure. 

~--------------------------------~ I 
I 
I 

I 
I 
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I 
I L-________________ ~ : 

~--------------------------------~ 

Figure 5.4.3: Single loop structure for input mUltiplicative uncertainty. 
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All the uncertainty representations and linear controller structures can beexpressed as a single loop 

structure [Mac89, p. 102], where the uncertainty (.t::l(s)) acts as feedback on a single closed loop 

transfer function (M(s) as illustrated by Figure 5.4.2. It is also possible to represent time domain 

uncertainty using the same single loop approach [PD89, PD93]. 

The previous example is no exception and may be converted into a single loop as shown in Fig­

ure 5.4.3. In this case the closed loop transfer function (M(s) = KG(s)[I + KG(S)]-l) is recog­

nised as the Complementary Sensitivity function. It is often the case that the closed loop transfer 

function has classical significance [DS81, CFL81, SLH81] and the experience from classical SISO 

techniques [Bod47, FPEN91] can be brought to bear by using the maximum singular value as a gen­

eralisation of vector gain [MSJ79] to the scalar case. 

Table 5.4.2 shows the single loop transfer function for each uncertainty representation of Table 5.4.1 

while assuming a constant output feedback gain (K). The state space representation for the transfer 

function is also given. In practice, this is the more important form. 

In general, the state space and transfer function can be derived by progressively applying simple rules 

for system interconnection [Mac89, p. 371] [Dai91, p. 15]. Software packages that automate this 

process have been developed [BPDG93]. However, the user should be aware that finite precision 

calculations can cause these software packages to accumulate unobservable and uncontrollable dy-

namics. 

Once the single loop structure has been derived then the Multivariable Nyquist Criterion [DW80. 

MP77] can be used to bound the maximum norm of the uncertainty A(s) such that the loop is guar­

anteed to maintain stability. 
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I Transfer function I State space 

Input Multiplicative 

M(s) = KG(s)[1 - KG(S)J-l [A+K~KC I ~] = [I - KG(s)J-1KG(s) 

Output Multiplicative 

M(s) = G(s)K[1 - G(s)KJ-l [A+~KC I BoK ] 
= [I - G(s)KJ-1G(s)K 

Input Inverse Multiplicative 

M(s) = [I - KG(s)J-l [A+K~KC I ~] = 1 - KG(s)[1 - KG(s)J-l 

Output Inverse Multiplicative 

M(s) = [I - G(s)K]-l [A+~KC I B~] = 1 - G(s)K[1 - G(S)K]-l 

Feedforward Additive 

M(s) = K[I - G(s)K]-l [A+K~KC I BKK] = [I - KG(s)]K-l 

Feedback Additive 

M(s) = G(s)[1 - KG(S)J-l [A+~KC I ~] = [I - G(S)K]-lG(S) 

Input Bilinear 

M(s) = [I + KG(s)][1 - KG(s)]-l [A+BKC I B] 
= [I - KG(S)tl[1 + KG(s)] 2KC 1 

Output Bilinear 

M(s) = [I + G(s)K][1 - G(s)K]-l [A+2~KC I Bt] = [I - G(S)K]-l[1 + G(s)K] 

Table 5.4.2: Single loop transfer functions for some uncertainty representations 
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Theorem 5.4.2 Theorem L1 [DW80] 

The single loop structure of Figure 5.4.2 is stable if and only if 

1. det [I - a(oo)M(oo)] '" O. 

2. The image ofdet [I - a(s)M(s)] on the complex plane as '8' traverses the Nyquist Contour 

encircles the origin Po times. Where Po is the number of right hand-plane (RHP) poles of 

a(s)M(s). 

Theorem 5.4.2 can be developed further by using the relationship between the detenninant of a mat­

rix and the product of its eigenvalues. ultimately this idea leads to the Characteristic-locus Method 

[Mac89. p. 142]. 

The proof of the Theorem 5.4.2 hinges on the fact that the determinant of the return difference matrix 

is equal to the ratio of the closed (<Pc! (s)) and open (<Pol (s)) loop characteristic polynomials. 

det (I - a(s)M(s)) = :::~:~ (5.4.26) 

The useful identity of Equation (5.4.26) is easily proved when polynomial matrix fraction descrip­

tions (MFDs) are applied. Let N(s)D(s)-l be a right coprime matrix fraction description of the 

transfer function product A(s)M(s). then the loop transfer function ([I - a(s)M(s)rl) may be 

expressed as: 

[I - a(s)M(s)]-l = [I - N(s)D(s)-lr1 

= D(s) [D(s) - N(s)]-l 

(5.4.27) 

(5.4.28) 

Since N(s) and D(s) are coprime it follows that D(s) and [D(s) - N(s)] are also coprime [Mac89. 

p. 57]. [DW80]. Thus det (D(s) - N(s)) is the closed loop characteristic polynomial [Mac89. p. 

50]. [Kai80. p. 447] and. equally. det (D(s)) is the open loop characteristic polynomial. 

det [I _ A(s)M(s)] = det [D(s) - N(s)] = <Pcl(S) 
det [D(s)] <Pol(S) 

(5.4.29) 

The Multivariable Nyquist Criterion is necessary and sufficient for internal stability [Mac89. p. 56]. 

[DFT92. p. 36]. [GL. p. 39]; that is. all bounded inputs not only promote bounded outputs but also 

bounded internal signals. 

Derivation of an upper limit on the nonn bounded uncertainty proceeds by assuming that a(s)M(s) 
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is stable. This is justified as follows: 

1. Stabilisation is often a purpose of feedback. Hence the nominal transfer function M( s) will be 

stable. 

2. It is unlikely the unmodelled dynamics represented by the uncertainty A. (s) are unstable for 

if they were, their divergent behaviour would dominate the system response and dominant dy­

namics should be included in the nominal model. 

With the stability assumption in place, it clear that the characteristic locus of the nominal system, 

subject to no uncertainty, makes zero encirclements of the origin. As the size of the uncertainty (in 

a noun-bounded sense) is increased, in general, the potential for instability will increase until the 

system becomes unstable. At the transition between stability and instability the system will have 

poles on the jw axis and the characteristic locus will pass through the origin. Mathematically the 

transition point implies: 

det (I - A.(s)M(s)) = 0 for some s = JW (5.4.30) 

Thus if the uncertainty A.( s) is norm bounded such that Equation (5.4.30) is never satisfied then sta­

bility is guaranteed. The following well known matrix property achieves this: 

Let X be non-singular and Y be an equal size arbitrary matrix. Then: 

Q:(X) > a(Y) 

implies that X + Y is non-singular [GL, p. 34], [LCL +81, Wis92] or: 

det(X + Y) i= 0 

Thus, referring to Equation (5.4.30), stability is guaranteed if: 

Q:(I) > a(A.(s)M(s)) 

1 > a(A.(s)M(s)) forall S =JW 

(5.4.31) 

(5.4.32) 

(5.4.33) 

(5.4.34) 

Using sub-multiplicative property shared by all induced norms [GL, p. 33] the singular value in­

equality may be more usefully expressed as follows: 
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1> a (a(s)) a (M(s)) for all s = JW 

1 
a (M(s)) > a (a(s)) for all s = JW 
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(5.4.35) 

(5.4.36) 

It is also possible to use the Small Oain Theorem [OL, p. 98], [Dai9!, p. 47]. This leads to a more 

general normed space operator approach where norms other than the maximum singular value may 

be applied [Saf82]. 

Although, singular value bounds are useful, to practising engineers they are often seen as abstract 

quantities that lack engineering 'feel'. Many researchers address this problem by using the induced 

norm property of the maximum singular value [OL83, p. 449]. This enables the maximum singular 

value to be interpreted as a worst case vector gain [MSJ79] or in physical terms, as the worst case 

energy amplification [Mo081]. The concept of a frequency dependent vector gain leads to the term 

'principal gains' [KP82, PEM81] and a generalisation of SISO frequency domain concepts [Bod47, 

FPEN91] such as loop shaping to the MIMO case [Mac89, DS81]. 

Despite this engineering interpretation of singUlar values, an alternative bound based on insightful 

and familiar engineering concepts is desirable [BD094]. The Multivariable Oain and Phase Margins 

[Dai91, SOLL81, PEM81, SA77, LSA81, SLH81] are such a measure and defined as follows: 

The MIMO Gain Margin (GM) If each channel of a MIMO system is simultaneously subject to a 

gain variation of the form r, then the OM is the real interval [G L, Gul such that the system 

remains stable for all gain variations satisfying G L ~ r ~ Gu. MIMO gain margins are not 

unique. 

A MIMO Phase Margin (PM) is the largest interval of phase change [-(J, 8] simultaneously per­

mitted in each channel such that the system will remain stable. The MIMO phase margin is 

unique. 

The MIMO gain and phase margin differ from their SISO counterparts in some important ways. 

Firstly they bound simultaneous and uncorrelated perturbation in all specified channels. Secondly, 

both margins may be defined with respect to channels at the input, output or any other point in the 

feedback loop, and the margins will, in general, vary for each location in the loop. This is not sur­

prising since there is no physical reason why tolerable gain and phase error should be the same at the 

sensors and actuators. 

Exact calculation of the MIMO gain and phase margins is a hard problem which is often described 

as a 'real J1. problem'. Fortunately, the more amenable singular values bounds can be used to cal­

culate conservative estimates of the MIMO gain and phase margin. In one way these estimate may 

be considered superior to the precise gain and phase margins. While MIMO gain and phase margins 

do consider simultaneous perturbation in multiple channels they are, however, restricted to perturb a-
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tion of pure gain or phase. The singular value estimates do, as an inherent part of their conservatism, 

accommodate simultaneous perturbations that are a combination of gain and phase. 

To calculate the MIMO gain and phase margins using singular values, we suppose that a perturbation 

of the form: 

(5.4.37) 

has been inserted into the feedback loop at the relevant point. For instance at the plant input: 

G(s) = Go(s)H (5.4.38) 

Where Go(s) is a nominal plant model, H represents uncertainty at the input and G(s) is a model 

of the actual plant. 

The gain margin dictates that the system is stable for G L ~ r i ~ G u, (jJ. = 0 and the phase margin 

dictates the system is stable for e ~ (jJi ~ -e, ri = 1. The multiplicative and bilinear uncertainty 

representations of Table 5.4.1 may also be considered as perturbations that have been inserted in the 

feedback loop. However, the uncertainty represented using H is a subset of that portrayed by A. This 

is because H is diagonal and does not represent any channel cross-feeds, while on the other hand, 

A is full matrix that may adopt any structure and thus encompasses all possible channel cross-feeds. 

Gain and phase margin estimates based on uncertainty representations using A are conservative. This 

is partly, because of their inability to portray the structure of H which leads to consideration of a 

larger class of uncertainty than is required. The gain and phase margins are derived by accepting 

the conservatism described above and supposing that the plant is equivalently represented using the 

A (s) and H uncertainty matrices. The simple structure of H then allows a bound on a (A (s) to be 

converted into a bound on ri and (jJi. For instance, suppose H is inserted at the input and the bound 

for input multiplicative uncertainty is applied, then assuming equivalent representations: 

Go(s)[I + A(s)] = Go(s)H (5.4.39) 

thus, 

a(A(s)) = a(H - I) (5.4.40) 
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and since H is diagonal: 

a(.A(s)) = max {abs(ri e1tP• - I)} 
\=l..k 

(5.4.41) 

a(.A(s)) = iI,;l5 { VI -2r, COS(t/>i) + T~ } (5.4.42) 

Thus to calculate the gain margin, t/>i is assumed to equal zero, and from Equation (5.4.36) stability 

is maintained if: 

Or equivalently: 

1 
f1 (M(s)) 

1 

> a (.A(s)) 

f1 (M(s)) > 
1 

a (M(s)) 
> {ri - 1,1 - ri} for all i = l..k 

1 1 
1 - a (M(s)) < Ti < 1 + 0" (M(s)) for all i = l..k, S = JW 

To calculate a bound on the phase margin we assume r, = 1 and stability is maintained if: 

1 ,';lt5: { ";2 - 2 cos( t/>i) } a (M(s)) > 

1 
i';lt5: { 4sin2(~i) } 

a (M(s)) > 

1 
{2 sin ( ~i ) ,-2 sin ( ~i )} 

a (M(s)) > 

and it follows: 

(5.4.43) 

(5.4.44) 

(5.4.45) 

(5.4.46) 

(5.4.47) 

(5.4.48) 

(5.4.49) 

. -1 ( 1 ) '" 2 . -1 ( 1 ) 
2sm 2f1(M(s)) > '1" > - sm 2a(M(s)) for all i = 1 .. k, s = JW 

(5.4.50) 

Thus, in this case, the gain and phase margins are both dictated by the minimum of: 



5.4 Robustness Measures Page 193 

General formula Gain margin Phase margin 

Multiplicative Input or Output 

t > JI - 2ri COS (<Pi) + r; 1- t < ri < 1 + t -2sin 1 (t) < <Pi < 2 sin -1 (~) 

Inverse Multiplicative Input or Output 

t> VI - 2:; COS(<Pi) + -!r 1 1 
1-t > ri > Ht - 2 sin -1 (~) < <Pi < 2 sin -1 (~) 

Bilinear Multiplicative Input or Output 

t> 
1-2r; cOS(4);)+r2 
1+2r; cos(4);)+r~ 

!H I-t 
1-t > ri > IH -2 tan-l (t) < <Pi < 2tan-1 (t) 

t - 1 where M( s) IS the appropnate transfer functIOn from Table 5.4.2. - 8UP.=,,,, O'(M(a» 

Table 5.4.3: Gain and phase margins for the uncertainty representations of Table 5.4.1 

1 . 1 .,,--..,.....,..- = mIn 
IIM(s)lIoo '=)W a (M(s)) 

(5.4.51) 

which can be expressed as the reciprocal of a 1£00 norm. This minimum value can be used in con­

junction with Equation (5.4.42) to calculate margins for combined gain and phase variation. 

The same derivation of gain and phase margin can be applied to the inverse multiplicative and bilinear 

uncertainty representations and Table 5.4.3 summarises the results for these cases. 

The singular value bounds assume a single full uncertainty block of complex values. The derivation 

of the gain and phase margins demonstrated that this can introduce conservatism when the uncertainty 

has an alternative structure such as diagonal. Unfortunately, structured uncertainty is common. For 

instance, if more than one uncertainty block is considered then the single loop representation of the 

system produces a single uncertainty matrix with a block diagonal structure. 

The structured singular value (JL) [Ooy82, S091, P089, P093] is an extension to the conventional 

singular value bounds that addresses the problem of structured uncertainty. The structured singular 

value is defined as follows [P093, Oefn 3.1]: 

Let M E (;'xn, and let AA be set of all matrices that have the prescribed block diagonal structure 

(5.4.52) 

The ail matrices are called a repeated scalar blocks and each I may be of arbitrary size. The Ai 

matrices are calledfull blocks. Again, they may be of arbitrary size. 
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J.t(~) = min {a-(a) : a E aA, det(1 - Ma) = O} (5.4.53) 

Unless no a E aA makes I - aM singular, in which case J.t(M) = 0 

For a frequency s = JW the structured singular value defines the smallest matrix (in term of its max­

imum singular value), with a specified structure that destabilises the M (s) a (s) single loop system. 

Repeated scalar and full blocks arise naturally when a system with multiple uncertainties is trans­

formed into a single loop system. The repeated scalar blocks represent a single uncertainty variable 

that affects the system at more than one point and full blocks are simply MIMO uncertainty blocks 

associated with MIMO system blocks. 

In Equation (5.4.52) the SSV is defined as a reciprocal; this may seem unnecessarily convoluted. 

However, it provides a measure that is consistent with the singular value bounds and allows J.t(M) 
to be used in an analogous manner to both a-(M) and p(M). The SSV defines a potentially useful 

robustness measure, however, to be of practical value an efficient means of calculating J.t must be 

available. 

Unfortunately, exact computation of the SSV for general block diagonal uncertainty structures can 

not be achieved in polynomial time [BYDM94]. However, for practical purposes the SSV can be 

acceptably approximated by optimising upper and lower bounds. Consider two special cases for the 

uncertainty structure: 

1. If a = {81 : 8 E C} then JL(M) = p(M). This follows almost directly from the definition of 

eigenvalues. det [ll + M] = 0 ::} l = -Ai (M). For a general uncertainty structure 

(aA), 81 will describe'a subset of the uncertainty and thus p(M) is an optimistic estimate of 

JL(M) or a lower bound. 

2. If a = (;lxn then J.t(M) = a-(M). In this case the structure of aA has been ignored and 

result simply reverts back to the unstructured case. Since (;lxn is a supers et of the general 

uncertainty structure (aA ), thus a(M) is a pessimistic estimate of J.t(M) or an upper bound. 

Thus the SSV is bounded as follows: 

p(M) ~ J.t(M) ~ a(M) (5.4.54) 

An estimate of the SSV is calculated by applying transformations that do not affect J.t(M) , but tighten 

the upper and lower bounds. When the difference between the upper and lower bounds is sufficiently 

small then either bound can be used as an acceptable approximation to J.t(M) , however, generally the 

upper bound is used since this is a safe over estimate. 
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Figure 5.4.4: Equivalent transformed single loop systems. 

If D is a non-singular diagonal scaling matrix that satisfies D~D-l = ~ then Figure 5.4.4 illus­

trates that: 

J.t(M) = J.t(DMD-1) (5.4.55) 

The D scaling may be viewed as a structured similarity transform thus it will affect the upper bound 

of Equation (5.4.54) but not the lower bound. 

Let U be a unitary matrix, that is UU· = I then the 2-norm preserving property dictates that: 

q(U~) = q(~) (5.4.56) 

From Equation (5.4.56) and the definition of the SSV: 

JL(M) = JL(UM) = JL(MU) (5.4.57) 

Clearly, the norm preserving property of the unitary transform means that it will not affect the upper 

bound of Equation (5.4.54) but will affect the lower bound. Optimisation of U and D leads to the 

following tighter bounds for the SSV: 

(5.4.58) 

Doyle [Doy82] has shown that the lower bound is an equality: 

max p(UM) = JL(M) (5.4.59) 
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and that the upper bound is also an equality for three or less blocks. Unfortunately the lower 

bound is a non-convex optimisation and thus local minima may lead to false estimates of f.L. On 

the other hand, the upper bound, is a convex optimisation but for large block problems it may pro­

duce a conservative estimate. Practical algorithms for optimising both bounds have been developed 

[PD89, PD93, BPDG93, FID91]. 

The singular value robustness measure used in this work is the SSV upper bound (i7(DMD-l). This 

measure is a logical extension to the conventional singular value measures used in previous improve­

ment algorithms [Gar89, MN84, NM85, SATC86, Web92]. However, by exploiting the benefits of 

the SSV this algorithm can better deal with structured uncertainty. The focus of this work is the im­

provement of MIMO gain and phase margins which by definition have a diagonal structure. Thus an 

upper bound on f.L us an appropriate measure. 

The structured singular value can also accommodate time domain uncertainty. Suppose that each 

element of the system (A) and input (B) matrices is subject to time domain uncertainty. Then the 

error matrices (aA, aB) of Equation (5.4.1) may be expressed as follows: 

aA = LA diag (oall, oa12, ... , oann ) RA 

AB = LBdiag(obll,ob12 , ••• ,obnm)RB 

(5.4.60) 

(5.4.61) 

For brevity let us assume the system is third order (n = 3) with two inputs (m = 2), in which case 

LA and RA have the following structure: 

[1 1 1 0 0 0 0 0 

~] LA = 0 0 0 1 1 1 0 0 

o 0 0 0 0 0 1 1 

(5.4.62) 

[W~' 
0 0 W21 0 0 W31 0 

1.1 RA T = W12 0 0 W22 0 0 W32 

0 W13 0 0 W23 0 0 

(5.4.63) 

The terms Wij scale the uncertainty on individual elements of the system matrix. An analogous pair 

of matrices can be constructed to form LB and RB. Let us assume that the system has outputs y 

given by: 

y=Cx (5.4.64) 

where, for brevity, the output matrix (C) is not subject to uncertainty. The open loop system is: 
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(5.4.65) 

Applying a feedback law u = Ky the single loop system (M(s) becomes: 

[ 

A + BKC LA LB ] 
RA 0 0 

Ra KC 0 0 

(5.4.66) 

The structure of LA ,LB and RA ,RB is easily extended to accommodate systems of arbitrary size 

systems, the approach can also handle uncertainty in the output CC) and feed-through CD) matrices. A 

more detailed treatment can be found in [PD89] which also considers correlated perturbations to the 

system matrix elements. It should be noted that since the matrices of the state space representation 

contain only real elements, an accurate estimate of the robustness requires the solution of a real-JL 

problem. 

Robustness to either time domain uncertainty or unmodeIled dynamics reduces to calculating JL for the 

appropriated single loop system. It may occur that a time domain and unmodelIed dynamics problem 

yield identical single loop systems and are thus equivalent in the context of JL-analysis. Input and 

output multiplicative uncertainty is an example of such an equivalence. Comparison with Table 5.4.2 

shows that if: 

LA =B 

RA =KC 

(5.4.67) 

(5.4.68) 

then input multiplicative uncertainty may be equivalently expressed as time domain uncertainty. Sup­

pose that the feedback (K) and input (B) matrices are decompose, as follows: 

B = [hI, ... , h r ] 

KT = [kl' ... ,kr] 

Then an equivalent system error matrix is: 

(5.4.69) 

(5.4.70) 

(5.4.71) 
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r 

aA = Lb;bikiC (5.4.72) 
.=1 

However, to accommodate unmodelled dynamics Oi must be allowed to be complex. 

5.5 Robustness Measure Gradient Functions 

Principally, the robustness improvement algorithm is a specialised optimisation algorithm where the 

objective function is the robustness measure and the eigenstructure assignment design parameters 

are the optimised variables. An off-the-shelf optimisation algorithm may be employed to perform 

robustness improvement, however, development of a specialised algorithm allows it to be carefully 

taylored to meet the needs of this particular problem. 

If a function is continuous and smooth then a gradient based optimisation will generally out perform, 

algorithms that only evaluate the objective function [Gra89]. Step four of the robustness improve­

ment algorithm, requires derivative information in order to generate a descent direction (d). In this 

section analytical formulae are derived and perturbation techniques are described that enable the de­

rivative information to be calculated. A descent direction is a perturbation on each parameter (od) 

that will, if sufficiently small, decrease an objective function. Mathematically, this implies: 

1
· f(x + ad) - f(x) 0 
1m < 

Q-40 a 
(5.5.73) 

which in the limit may be expressed as: 

[V' f(x)]T d < 0 (5.5.74) 

where x is a vector of design parameters, f(x) is the objective function, a is a scalar and V' is the 

vector differential operator [Jef89, p. 516]. 

The simplest descent direction is the opposite direction to the gradient itself: 

d = -V'f(x) (5.5.75) 

and algorithms that use this direction are known as methods of steepest descent, since the function 

reduces most rapidly in this direction. Steepest descent algorithms are characterised by initial rapid 
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reductions in the objective function, but as they approach a minimum they become locked in a cycle 

of diminishing return; as the function approaches the optimum point, the gradient vanishes and thus 

so does the direction information. 

An alternative descent direction is the Newton Raphson direction [WaI75], which is defined as fol­

lows: 

(5.5.76) 

where H is a matrix of second order derivatives known as the Hessian matrix [RS70, p. 160] and 

since it is positive definite, it follows that (cl) is always a descent direction. 

(5.5.77) 

If I(x) is a quadratic function then the Newton Raphson direction will find the optimum point in a 

single step, whereas the steepest descent algorithm will approach the optimum asymptotically. The 

quadratic function is the simplest function with a strong minimum and objective functions with min­

ima can be reasonably approximated with quadratic functions. Thus, in general, the Newton al­

gorithm will converge faster than the method of steepest descent. The drawback of the Newton Raph­

son techniques is that calculating and inverting the Hessian can be computationally intensive. 

Popular compromises are the quasi-Newton methods. These only require first order gradient inform­

ation, but use successive gradient measurements to estimate the Hessian matrix. Initially, they start 

with an estimate: 

Ho =1 (5.5.78) 

which is progressively updated, using a formula such the Davidon Fletcher Powell formula (DFP) 

or the Complementary DFP formula [Wal75 , Gra95]. If the function is quadratic, then the Hessian 

estimate (Hk) will tend to the actual Hessian and converge on the optimum point in a finite number 

of steps. 

An important part of all the optimisation methods described above is the line search. Once a des­

cent direction has been calculated a step is taken in that direction. For a very small step the objective 

function is guaranteed to decrease, however, the decrement is likely to be correspondingly small. On 

the other hand, large steps offer no guarantee of decreasing the function since the descent direction 

is only valid locally. It is therefore usual to search along the descent direction for a minimum, and 

thus find the largest step size for which the function monotonically decreases. Different line search 
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algorithms may be applied. For instance [WaI75], a Fibonacci search, a bisection search or quad­

ratic/cubic interpolation and extrapolation. For quasi-Newton methods an accurate line search is ne­

cessary to maintain a positive definite Hessian [WaI75, p. 121]. 

The method of steepest descent was applied in this work for the following reasons: 

• This algorithm does not seek to find the optimum point i.e. the most robust configuration, but 

instead seeks a point with acceptable robustness. Thus, the initial fast convergence of steepest 

descent is attractive and the poor performance near the optimal point should be irrelevant. 

• The descent direction is altered in order to maintain performance. It is thus potentially fruitless 

to expend computational effort calculating an optimal direction that will later be adjusted. 

• It was decided to start with a simple algorithm and progressively increase complexity as ne­

cessary to meet the robustness goals. 

Step four of the algorithm may uses either of two methods to calculate the function gradients, numer­

ical perturbation and approximate analytic expressions. Numerical perturbation is computationally 

more intensive and less accurate than analytically derived gradient functions. But is more flexible, 

since fresh gradient functions do not have to be derived each time the synthesis technique or robust­

ness measure is changed. Let us first consider estimation of the robustness function gradient with 

respect to eigenvector parameters using the numerical perturbation method. 

5.5.1 Numerical Perturbation 

An important feature of the robustness improvement algorithm is that the optimisation is conducted 

using the parameters that are input to the controller synthesis algorithm. Naturally, the relationship 

between the design parameters and the robustness of the final design will largely depend on the con­

troller synthesis algorithm employed. Thus the first step is to choose a controller synthesis algorithm. 

For the following reasons is was decided to use two stage output feedback assignment. 

• The algorithm is simple. 

• The algorithm is a good starting point for later extension to multistage or iterative assignment 

methods. 

• Even if the initial design is conducted using an alternative method, robustification using two 

stage assignment should not cause too much loss of visibility or performance. 

For brevity we will assume that right eigenvectors are assigned in stage one and left eigenvectors in 

stage two. For both stages one and two, the assigned vectors are most succinctly expressed as vectors 

selected from allowed subspaces by a design vector: 
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Vi = Qifi 

Wj = gjLj 
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(5.5.79) 

(5.5.80) 

Where W j, vi are left and right eigenvectors, L j, Qi are the allowed subspaces and gj, fi are the 

associated design vectors. 

Clearly, a design vector is only meaningful when taken in conjunction with its corresponding sub­

space. In principle, numerical perturbation proceeds by perturbing an element of the design vec­

tor, while keeping all other elements constant, performing the design algorithm and then noting the 

change in robustness of the new system. Unfortunately, adjusting the stage one design vectors (fi ) 

forces re-calculation of the stage two subspaces (Lj). Since the stage two subspaces must satisfy 

Equation (5.5.81) in order to maintain orthogonality: 

(5.5.81) 

Computation of the new subspace produces a matrix with columns that form an arbitrary basis for the 

subspace CLj). When the new subspace is used with the old design vectors an arbitrary vector may 

result. This computational artifact leads to meaningless gradient values. The problem is not restricted 

to just the gradient calculation. When the optimisation incrementally adjusts the design vectors the 

synthesis algorithm must be re-run and equally unwanted arbitrary left eigenvectors may result. It is 

therefore necessary to address this problem. 

One obvious approach is to re-calculate design vectors by projecting the desired left eigenvector on 

to the new subspace. 

(5.5.82) 

While for the first iteration of the optimisation this is a sensible approach, in subsequent iterations 

the design vector should be guided to a new direction that improves robustness. However, repeated 

re-calculation using the desired eigenvector severely limits the direction in which the design vector 

may evolve. 

The approach adopted is to calculate the new design vector by projecting the old eigenvector on to 

the new subspace. Using this approach the new eigenvector is as close as possible to the old eigen­

vector. Thus maintaining continuity between iterations and helping to ensure the dominant changes 

in direction are due to adjustments made by the optimisation and not simple re-calculation. 

In summary gradient calculation using numerical perturbation proceeds as follows: 
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1. Perturb a specific element of a right design vector (fi). 

2. Calculate the right eigenvectors (Vi)· 

3. Calculate the new left allowed subspaces CL j ). 

4. Re-align the left eigenvectors (Wj) in the new subspaces CLj) with the old left eigenvectors 

(Wj). 

5. Calculate the gain matrix Equation (4.5.136). 

6. Calculate the robustness measure Equation (5.4.6). 

7. The gradient is approximated by the change in the robustness measure divided by the perturb­

ation size. 

In practice the algorithm uses positive and negative perturbation and compares the resulting gradient 

values. If the gradient values differ considerably then the perturbation size is reduced. The algorithm 

deals with complex design vectors by perturbing the real and imaginary parts separately. It should 

be borne in mind that perturbing a real or imaginary component affects two eigenvectors. 

A complementary procedure is used to calculate the gradient with respect to the eigenvalues. 

5.5.2 Analytic Gradients for the Time Domain Robustness Measure 

The numerical perturbation procedure algorithm illustrates the difficulty in deriving analytic expres­

sions for the gradients. For instance, working backwards, the partial derivatives may be calculated 

as follows: 

1. The robustness function with respect to the gain. 

2. The gain with respect to the eigenstructure. 

3. The eigenstructure with respect to the design vectors (including re-alignment). 

The crux of the problem lies with steps two and three where parameters input to the synthesis al­

gorithm (design vectors) are differentiated with respect to its outputs (gain matrix). The synthesis 

algorithm is sequence of complex functions and thus very awkward to express as a single mathem­

atical function let alone differentiate. 

To simplify matters and avoid generating error prone cumbersome expressions that offer no compu­

tational saving over numerical perturbation. It was decided to make some simplifying assumptions 

and derive approximate gradient expressions. A simple mechanism was devised to ensure that the 

integrity of the optimisation algorithm was not compromised by using approximate data. If the ap­

proximate gradients are too inaccurate then the line search will fail to find a step size that reduces the 
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cost function and the optimisation switches to numerical gradients. On the other hand, if the gradi­

ents are sufficiently accurate then the line search will reduce the cost function and the optimisation 

continues with approximate gradients. The simplifying assumption are: 

Al The term BM abs (KC) of Equation (S.4.6) is independent of the design parameters or equi­

valently BM is zero. 

A2 The matrices V of Equation (S.4.9) and W of Equation (5.4.10) are related solely by the for­

mula W = V-I. 

While assumption two is, by the definition of eigenvectors, true it ignores the additional subspace 

constraints associated with the left eigenvectors as illustrated by Equation (5.5.81). 

The derivation proceeds as follows: 

Lemma 5.5.1 Porter and Crossley [PC72, p. 22] 
Let X be a non-defective square matrix, that is afunction of an independent variable a. Then the 

following holds: 

op(X) oX 
--=w-v oa oa (S.5.83) 

where (w , v) are the left and right eigenvectors associated with the largest eigenvalue ofX. 

Lemma 5.5.1 may be applied to Equation (5.4.6) as follows: 

where the following definitions hold: 

Ai = Ai (A + BKC) 

ABM = AM + BM abs(KC) 

and for brevity let us define: 

(S.S.84) 

(5.5.85) 

(S.5.86) 
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N Ln abs(viwi) A = BM -Re ()..) abs (w·v·) 
i=l • • • 

(5.5.87) 

Then (WN, VN) are the left and right eigenvectors associated with the largest eigenvalue of Nand 

with a slight abuse of notation fkj is the jth element the kth design vector. It is worth remarking that 

since N has non-negative elements, (WN, VN) will also be non-negative and are sometimes called 

the Perron-Frobenius eigenvectors [Hor85]. 

Assumption two ensures that (Vi, Wi) are appropriately scaled such that abs (WiVi) = 1. Expanding 

abs(viwi) gives: 

(5.5.88) 

Where the operatorpow(X, n) raises each element of X to the powern and conj(X) forms the com­

plex conjugate of each element and • 0' indicates element by element multiplication which is some­

times known as the Hadamard product [HJ91]. Further expansion reveals: 

aN a (~ ( 1) ABM ) ar: = ark' ~ pow pow (Re (ViWi) ,2) + pow (lm (ViWi) ,2), '2 -Re ()..) 
kJ J .=1 • (5.5.89) 

Lemma 5.5.2 [GraS!] 
Let X be an arbitrary matrix that is afunction of a variable 0:. The following chain rule holds: 

a ax ao: pow (X, n) = n ao: 0 pow (X, n - 1) (5.5.90) 

For brevity let us define Xi as follows: 

(5.5.91) 

then it follows that: 

(5.5.92) 
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Further application of the chain rule can be used to evaluate g~; : 

(5.5.93) 

Continuing we must calculate a~; Re (ViWi) and at Im (ViWi). we note that: 

(5.5.94) 

and equally: 

(5.5.95) 

For both Equation (5.5.94) and Equation (5.5.95) two cases must be considered; the case k = i where 

both viand W i are dependent on fki and the case k i:- i where only W i is dependent on f ki . Let us 

first consider the simpler k i:- i case. 

The ith left eigenvector (Wi) may be expressed as: 

(5.5.96) 

where Zk is a 1 by n row vector with all zero elements except the ith element which is unity as shown 

below: 

Zi = [0, ... , 1, '" , 0] 

Thus substituting Equation (5.5.96) into Equation (5.5.94) gives: 

Further progress requires the following lemma. 

Lemma 5.5.3 [GraS1] 
Let X be a non-singular arbitrary matrix that is a function of a variable et then it follows: 

(5.5.97) 

(5.5.98) 
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(5.5.99) 

Application of Lemma S.S.3 on Equation (S.5.98) gives: 

(5.5.101) 

Only the vector Vk is dependent on fki thus the derivative with respect to the other vectors is zero. 

(5.5.102) 

(5.5.103) 

(S.5.104) 

We recall from Equation (5.5.79) that the kth right eigenvector (Vk) is selected from an allowed sub­

space (Qk) by a design vector (fk ) as follows: 

The following simple lemma illustrates how to differentiate Equation (5.5.1 OS). 

Lemma 5.5.4 [GraS1] 
Let A, X, B be arbitrary matrices thatform the following product: 

Y=AXB 

Then the derivative ofY with respect to the ijth element of X denoted Xij is: 

ay A ax B 
aXii = aXij 

= AEijB 

(5.5.105) 

(5.S.106) 

(5.S.107) 

(5.5.108) 
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Where E is a matrix of equal dimensions to X with all zero elements except the ijth element which 

is unity. 00 
Application of Lemma 5.5.4 on Equation (5.5.105) and substitution into Equation (5.5.104) gives: 

(5.5.109) 

Where ej is a vector of equal dimensions to fie with all zero elements except the jth element which 

is equal to unity. The slightly more complex k = i case requires a matrix calculus product rule as 

summarised in the following lemma. 

Lemma 5.5.5 [Gra81] 
Let UV be the product of two matrices conformalfor multiplication and both dependent on a variable 

a. Then the following holds: 

8(UV) = BU V + UBV 
8a 8a Ba 

(5.5.110) 

00 
Returning to Equation (5.5.94) and applying Lemma 5.5.5, gives: 

(5.5.111) 

The first term requires differentiation of Vi using Lemma 5.5.4 and the derivative of the second term 

is given directly by Equation (5.5.109). The combined result is illustrated in Equation (5.5.112). 

8ViWi 
-- = Qke ·W· - V·W·Qke 'Wk 

Bfkj J'" J 
(5.5.112) 

We are now in a position to construct the complete solution. This involves combining Equations 

(5.5.84), (5.5.93), (5.5.94), (5.5.95), (5.5.109) and (5.5.112). 
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Where Oik is the Kronecker delta which is defined as follows: 

Oik = {o it j, 
1 i =j 
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(5.5.113) 

(5.5.114) 

Extension to complex design vectors is very straightforward and is accomplished as follows: 

1. Since the design vectors must always appear as conjugate pairs, a real component of one design 

vector will never differ from the real component of its conjugate counterpart and is thus a single 

variable present in two vectors. The same is, naturally, true for the imaginary components. This 

has little affect on the derivation until Equation (5.5.98) (Vi ~) where the left eigenvector 

(Wi) is dependent on fk; in two instances. Let us assume that the design vectors are ordered 

such that conjugate pairs are adjacent. It follows that: 

(
aVk aVk+1 ) 

= -ViWi afk; Wk + afk; Wk+1 (5.5.117) 

which upon differentiation gives: 

(5.5.118) 

and by noting the two terms in brackets form a conjugate pair we may simplify as follows: 
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(5.5.119) 

2. The derivative with respect to the imaginary part of a complex design vector (fkj ) is based on 

the following simple result: 

(5.5.120) 

Where fkj is the imaginary part of the specified design vector element. 

All the previous results including the one above are for the real case, however, they can be 

converted to the imaginary case by replacing all the 'ej 's with' Jej·. 

The Time Domain Measure Eigenvalue Gradients 

Differentiation with respect to the eigenvalue parameters must take into account that the allowed sub­

spaces are dependent on the eigenvaIues locations. Thus adjustment of the eigenvalue locations will 

also affect the eigenvectors. The simplest formulae that express this dependency are: 

Qi = (A - IAi)-lB 

Li = C(A - IAi)-l 

(5.5.121) 

(5.5.122) 

Equation (5.5.121) and Equation (5.5.122) lend themselves directly to differentiation. However, they 

do suffer the limitation that the formulae break down when the closed and open loop eigenvalues 

are co-incident. With these formulae in mind the derivation of the robustness measure gradient with 

respect to eigenvaIue parameters proceeds as follows. Returning to Equation (5.5.84) 

(5.5.123) 

and applying the definition given in Equation (5.5.85) and Equation (5.5.86) while invoking assump­

tion A2, gives: 
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OAk 
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(5.5.124) 

(5.5.125) 

The second term of the sum will evaluate to zero when differentiated with respect to the imaginary 

part of an eigenvalue. However, for the case k = i, the real part of an eigenvalue, the expression 

evaluates as follows: 

(5.5.126) 

The first term of Equation (5.5.125) is differentiated using the assumptions of the previous section 

and the initial derivation follows that of the eigenvector case. Thus: 

(5.5.127) 

and examination of Equation (5.5.94) and Equation (5.5.95) and the subsequent derivation reveals: 

(5.5.128) 

(5.5.129) 

Thus it only remains to calculate partial derivative of eigenvectors with respect to the eigenvalues. 

Recalling Equation (5.5.121), Equation (5.5.79) and applying Lemma 5.5.3: 
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8Vk 8 ( 1 (5.5.130) = 8Ak A - IAk)- Bfk 
8Ak 

= -(A - IAk)-l o(A - IAk) (A - IAk)-lBfk OAk 
(5.5.131) 

= -(A - IAk)-l(-I)(A - IAk)-lBfk (5.5.132) 

= (A - IAk)-lvk (5.5.133) 

Thus the complete solution can now be constructed by backing substituting the preceding results into 

Equation (5.5.125). 

5.5.3 Analytic Gradients for the Singular Value Robustness Measure. 

To re-cap the singular value robustness measure used in this work is an upper bound on the structured 

singular value: 

(5.5.134) 

The structured singular value is a frequency dependent robustness measure and to improve robust­

ness it is necessary to reduce the peak value across all frequencies. The peak value must be found 

by searching across a range of frequencies, since J.£(M) can not be a calculated directly. At each fre­

quency point J.£(M) must be estimated. This is generally achieved by optimising the D-scalings of 

the singular value upper bound indicated in Equation (5.5.134). Algorithms that perform the peak 

search and D-scaling optimisation have been a keen area ofresearch [FTD91, PD93] and reliable 

software implementations are now available. This work made use of the J.£-toolbox from Math Works 

[BPDG93]. 

The robustness improvement algorithm adjusts the design parameters to reduce the singular value 

upper bound of J.£(M) that corresponds to the peak frequency. 

It is assumed that, for each iteration of the optimisation algorithm, the D-scaling remains constant. 

This ignores the fact that the D-scaling is a function of the single loop system (M) and thus a function 

of the design parameters. However, the relationship between the D-scaling and the design parameters 

can not be expressed in a closed form since the D-scaling are the solution to a numerical optimisation. 

Hence gradient expressions can not be derived. For each iteration of the optimisation, only small 

adjustments are made to the to the system. Thus the assumption of a constant D-scaling is likely to 

be reasonable. Ultimately, for this technique to be of value it is only necessary for the D-scaling to 

offer benefit over conventional singular value measures where no scaling is applied. 

Derivation of analytical gradients for the singular value based measure requires the follows steps: 
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1. The partial derivative of the maximum singular value with respect to the single loop system 

matrix (evaluated at the peak frequency) is derived. 

2. The partial derivative of the single loop system matrix with respect to the gain matrix is derived. 

3. The partial derivatives of the gain matrix with respect to the left and right parameter vectors 

are derived. 

4. The partial derivative of the left design parameters with respect to the right design parameters 

is derived. 

Step one is expressed in the following Lemma. 

Lemma 5.5.6 [MN84] 
Let X be a general complex matrix, dependent upon a variable 0:, with distinct singular values ((J'i) 

and. left and right normalised singular vectors (Ui, Vi). Which by definition satisfy: 

(5.5.135) 

and 

(5.5.136) 

where 5ii is the Kroneckerdelta. It/ollows that: 

(5.5.137) 

Thus, for this case: 

S =JWo (5.5.138) 

Where U and V are the singular vectors associated with the maximum singular value (a) and Wo is 

the peak frequency. 

The precise nature of the solution for Step two depends on the structure of the single loop system. 

Let us assume that the single loop system has the following state space description: 
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M(s) = C(sI - A)-lB + n (5.5.139) 

The individual matrices will be functions of the gain matrix and thus the design parameters. For brev­

ity let us define: 

~ = (sI - A)-l (5.5.140) 

differentiation then proceeds as follows: 

= a~k; (C~B+f» (5.5.141) 

ac • • a~· • aB an 
= afk; ~B + c afk; B + C4? afk; + afkj 

(5.5.142) 

ac • • aft.. • • aB an 
= ark; 4?B + C~ afkj ~B + C~ afk; + afk; (5.5.143) 

For example, if robustness to input multiplicative uncertainty is optimised then from Table 5.4.2 the 

single loop system is as follows: 

M(s) = KC(sI - A - BKC)-lB 

Again, for brevity let us define: 

<P = (sI - A - BKC)-l 

Substituting this case into the general formula of Equation (5.5.143) gives: 

aM(s) 
ark; 

(5.5.144) 

(5.5.145) 

(5.5.146) 

(5.5.147) 

All the entries of Table 5.4.2 can be differentiated in a similar manner. Step three involves differenti­

ation of the gain matrix which is a little more involved. The formula for the gain matrix is reproduced 
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in Equation (5.5.148): 

(5.5.148) 

Differentiation proceeds as follows: 

8(W2 B)t T2 + (W2 B)t 8T2 + 8SI (CVI)t + SI 8(CVl )t 
8rk j 8rk; 8rk; 8rkj 

_ 8(W2 B)t T2 CVI (CVl)t _ (W2 B)t 8T2 CVl (CVl)t 
8~j 8~i 

_ (W2 B)tT2 8(CVI) (CVI)t _ (W2 B)tT2 CVI 8(CVl )t (5.5.149) 
8~j 8~i 

It is apparent from Equation (5.5.149) that differentiation of the gain matrix requires differentiation 

of the pseudo inverse of a matrix. Fortunately, for assignment to proceed W 2 B and CV 1 must be 

full rank, thus Equation (5.5.150) may be used to represent the pseudo inverse of W 2 B or CV 1 • 

(5.5.150) 

Differentiation of the pseudo inverse of a matrix using Equation (5.5.150) is summarised in the fol­

lowing Lemma: 

Lemma 5.5.7 
Let X E er x C where c < r and rank (X) = c. Then the pseudo inverse of X may be expressed as: 

(5.5.151) 

and the derivative of X with respect to an independent variable (0:) is: 

8xt = (X.X)-l 8X· (I _ xxt) _ xt 8Xxt 
8a 80: 80: 

(5.5.152) 

Proof 
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a ((X·X)-I) 
axt = x. + (X.X)-l ax· 
80. 80. 80. 

= _ (X.X)-1 a (X·X) (X.X)-l X. + (X.X)-1 8X· 
aa aa 

= _ (X.x)-l [x· 8X + ax· x] (X.X)-l X. + (X.X)-l ax· 
80. 80. 80. 

=(X.X)-l 8X· (I _ xxt) _ xt 8Xxt 
80. 80. 
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(5.5.153) 

(5.5.154) 

(5.5.155) 

(5.5.156) 

00 
Once Lemma 5.5.7 has been applied to Equation (5.5.149) it remains to calculate 8(~f:l), O(':c~iB), 
8(511 and 8

o
(Tr 2). But since CV 1 and SI depend solely on fi and in the dual case, W 2 Band T2 

of,,; "; 
depend solely on gi. This task reduces to calculating ik; and gf.~. From the previous derivation it 

is clear that: 

(5.5.157) 

However. to derive the final Step (4) we must consider how the left eigenvectors are assigned. The 

left eigenvectors are calculated using a constrained projection. 

minllwi - giLill~ subjectto 0 = giLiV1 (5.5.158) 
gi 

Where W i is. initially. the desired left eigenvector and subsequently the value from the previous iter­

ation. 

The constrained optimisation may be expressed equivalently as a matrix inversion problem [BIG74, 

p. 112]. 

(5.5.159) 

Equation (5.5.159) lends itself directly to differentiation, yielding: 
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Finally, from the previous derivation we recall that: 

aVl [ ] af
kj 

= O, ... ,Qkej, ••• ,O (5.5.161) 

Some computational saving is possible by noting that only part of the matrix inversion solution is 

required and also, that some entries of the multiplying vector are zero. 

The results of Steps one through to four can be combined to produce an analytic estimate of the ro­

bustness measure gradient. It is worth noting that this result does not require assumption A2 which 

was used to derive the time domain measure. However, the penalty for removing this assumption is 

a considerable increase in the size of the final expression and a corresponding increase in computa­

tionalload. Using the mathematical techniques described above assumption A2 could be removed 

from the derivation of the time domain measure gradient functions. However, a similar profusion in 

the number of equations can be expected. 

A small extension to the above derivation is necessary to accommodate the complex case. As noted 

in the derivation for the time domain measure, the real and imaginary elements must be treated as 

independent variables present in two vectors. This approach is necessary to ensure the eigenvectors 

remain in conjugate pairs. Thus, if: 

then: 

av 
ao 
av 
a{3 

= 

= 

(5.5.162) 

(5.5.163) 

(5.5.164) 

Where it is assumed that the vectors of V are ordered such that conjugate pairs are adjacent. Equally, 
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8E 
8a 
8E 
8{3 

No other extensions are required to accommodate the complex case. 

The Singular Value Based Measure Eigenvalue Gradients 
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(5.5.165) 

(5.5.166) 

Compared to the time domain measure, the following eigenvalue gradient functions are less restrict­

ive, since they do not assume the parameter vector is fixed and make no exception for coincident 

open and closed loop eigenvalues. The effect of adjusting an eigenvalue is that the associated allowed 

subspace is altered and, as a result, a different eigenvector is assigned. The assignment is succinctly 

expressed in the following equations: 

Vk = QkQtvdk 

Uk = PkQtvdk 

The derivatives of the above expressions are 

= 

= 

(5.5.167) 

(5.5.168) 

(5.5.169) 

(5.5.170) 

Lemma 5.5.7 shows how 8~~:) can be calculated from ~~: and Qk, thus it remains to calculate ~~: 
and ~~~. P and Q are the solution to the following implicit equation: 

(5.5.171) 
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differentiation gives: 

[A - Akl B] a~k [~:] + a~k [A-Akl B] [~:] = 0 (5.5.172) 

[A - AkI B] a~k [~:] + [-I 0] [~:] = 0 (5.5.173) 

[A-Ak I B] [!t] = Qk (5.5.174) 
8>.. 

Thus the required derivatives are given by the solution to Equation (5.5.174) which may be expressed 

as follows: 

(5.5.175) 

To calculate the complete derivative with respect to the eigenvalue, the result above must be used to 

evaluate Equation (5.5.169) and Equation (5.5.170) and the result must then be back-substituted into 

the parameter vector gradient functions. 

Again, differentiation of complex eigenvalues requires that the real and imaginary parts should be 

treated as independent parameters that appear in two eigenvalues. 

Most of the matrix calculus tools used in the preceding exposition have been collected in Lemma 5.5.1 

to Lemma 5.5.7. However, for a more complete and detailed treatment the author strongly recom­

mends the text' Kronecker Products and Matrix Calculus' by Alexander Graham [GraS 1]. 

5.6 Mitigation of Performance Degradation 

So far the robustification algorithm will improve robustness with no regard for the inevitable degrad­

ation in perfonnance. It is an aim of this work to provide an algorithm that allows an engineer to 

choose a compromise between perfonnance and robustness. It is important to appreciate that any 

attempt to mitigate the degradation in perfonnance will almost certainly come at the expense of im­

peding the improvement in robustness. In this section the fonnulae necessary to implement step four 

and five of the robustness improvement algorithm are described. 

5.6.1 Eigenvector Protection 

The approach taken here is that, each iteration of the optimisation chooses a descent direction that 

is a compromise between perfonnance protection and robustness improvement. The idea supporting 



5.6 Mitigation of Perfonnance Degradation Page 219 

this approach is that a set of different controllers will achieve acceptable robustness, however, the 

controllers among this set will vary in performance. The robustness improvement algorithm needs 

to be guided such that it selects a controller with good performance from among those with accept­

able robustness. Thus if, at each iteration, the algorithm improves robustness while minimising the 

degradation in performance, then the route taken to the acceptably robust controller should lead to a 

controller with good performance. 

Performance is measured in terms of the original design goals, that is, how closely the achieved ei­

genvectors approximate the desired eigenvectors. 

(5.6.176) 

If the parameter vector f" is incrementally adjusted by ~f" then a first order estimate of the degrad­

ation in performance can be formulated as follows: 

(5.6.177) 

(5.6.178) 

Equally, if the robustness measure is denoted 'Y then the numerical or analytical partial derivatives of 

the robustness measure (*l ) allow the improvement in robustness to be estimated as follows: 

(5.6.179) 

Assuming that a steepest descent algorithm is being applied then solely to optimise robustness one 

would adjust the parameter vector in the opposite direction to the robustness gradient. 

(5.6.180) 

Where ~fk would be appropriately scaled. In this implementation the parameter adjustment vector 

(~fk) is scaled to a length that is a fixed proportion of the current parameter vector (r,,). The line 

search algorithm reduces this length until a reduction in the robustness function is achieved. 

Let us, for a moment, suppose that the goal of the optimisation is to improve performance. In this 

case, the optimum direction (in terms of steepest descent) for the parameter vector is the opposite 

direction to the performance function gradient: 
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(5.6.181) 

Thus a compromise direction can be formed from a linear combination of the of the robustness and 

performance function gradients: 

(5.6.182) 

The linear combination must fulfil the following constraints: 

• The parameter adjustment vector (~fk) must be scaled to an appropriate size . 

• The primary objective of the optimisation is to improve robustness. Thus the parameter ad­

justment vector (~fk) must be a descent direction with respect to robustness. Mathematically, 

that is: 

(5.6.183) 

To determine the precise nature of the linear combination some additional mathematical rigour is 

required. The principle behind the following approach is that a fixed proportion of the robustness 

descent (~,) is sacrificed to mitigate the degradation in performance. Let us assume the parameter 

adjustment vector must be scaled to a fixed proportion of the current parameter vector, let the pro­

portion be denoted p and for brevity. Let us define: 

(5.6.184) 

The parameter adjustment vector that achieves the maximum estimated improvement in robustness 

is: 

(5.6.185) 

and the maximum estimated reduction in robustness is: 
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= 1IV'''(1I2Pllfk Il 2 

Page 221 

(5.6.186) 

(5.6.187) 

Let the compromise direction achieve a fixed proportion of the maximum estimated reduction in ro­

bustness and let the proportion be denoted by q. Again, for brevity let us define: 

(5.6.188) 

Thus the compromise parameter adjustment vector must satisfy: 

(5.6.189) 

and naturally, it must also satisfy the scaling constraint. 

(5.6.190) 

Equation (5.6.190) and Equation (5.6.189) have an insightful geometric interpretation that leads to a 

simple and intuitive solution. Equation (5.6.189) is the scalar product of two vectors and thus may 

be expressed as follows: 

1IV''Y1I2PllfkIl2q = V''Y. [V'c!> V''Y] [;] (5.6.191) 

~ lIV111, [V~ V1]~] , co,(O,) (5.6.192) 

Where 91 is the angle between the two vectors, substituting Equation (5.6.190) into Equa­

tion (5.6.192) gives: 

1I'V"(1I2Pll fkIl2Q = 1IV'''(lbpllfklb cos(9t} 

Q = cos«(h) 

(5.6.193) 

(5.6.194) 
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Figure 5.6.5: A geometric interpretation of performance protection. 

Figure 5.6.6: An illustrative geometric interpretation of performance protection. 

We see that (h is the maximum angle the parameter adjustment angle may deviate from the best es­

timated robustness improvement direction (V',). Figure 5.6.5 illustrates a geometric interpretation 

of the problem. 

From which we can see that the parameter adjustment vector must be constructed from a scaled com­

bination of V'''! and 'V'cjJ. Furthermore, the angle between V', and the parameter adjustment vector 

(Llf) is fixed at Bl . Figure 5.6.6 is an equivalent expression of the problem and inspection leads to 

the following equation: 

(5.6.195) 

From Equation (5.6.195) the ratio of a to {3 is easily determined and thus the direction of the com­

promise parameter adjustment vector. It only remains to scale the vector which is achieved as follows: 

(5.6.196) 

It is a straightforward matter to show that the angles Bl and 92 may be calculated as follows: 

B1 = arcs in ( .;t=q2) (5.6.197) 
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and 

(5.6.198) 

Occasionally, it may occur that the performance direction (V' rp) already subtends the robustness dir­

ection (V''Y) at a smaller angle than (h. In which case, the parameter adjustment vector should equal 

the performance direction. However, Equation (5.6.196) does not accommodate this scenario and 

will generate a parameter adjustment vector at the angle (h regardless. From Equation (5.6.198) is 

can be seen that this scenario implies that 02 is negative and thus the following simple extension will 

accommodate this exception: 

(5.6.199) 

In practice it was observed that, initiaIly, V''Y is often very small which may lead to numerically unre­

liable performance directions. This is because, the initial parameters are optimised for performance 

and a property of the optimal design is that the derivative of the performance measure with respect 

to the design parameters will be zero. 

Equally, if the robustness optimisation begins to converge before achieving acceptable robustness. 

As the optimal solution is approached, the robustness improvement direction may become very small 

and thus numerically unreliable. 

5.6.2 Eigenvalue Protection 

The eigenvalue locations have a significant and usually dominant affect on the system performance. 

To protect their contribution to performance, a constrained line search is employed. This simply con­

fines each eigenvalue to an allowed region. The allowed regions are formulated as discs around the 

original desired locations. 

5.7 Further Work 

While the robustness improvement algorithm has proved an effective tool there is certainly scope to 

develop the algorithm further and investigate alternative approaches. A fundamental limitation of 

the existing algorithm is that it only improves stability robustness. Although considerable effort is 

applied to ensure that the robust design achieves good nominal performance, it is only guaranteed 

that stability will be maintained in the face of the uncertainty. The performance may well become 
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unacceptable before instability sets in. Thus some possible extensions to performance robustness are 

indicated. 

5.7.1 Development of the Robustness Improvement Algorithm 

Most of the possible developments listed in this section are natural extensions to the existing al­

gorithm. 

1. Currently, a steepest descent algorithm is employed. Unfortunately these algorithms show poor 

convergence near the optimum point. While it is envisaged that the algorithm should not pro­

ceed to the optimum point, since this would indicate a poor compromised between performance 

and robustness. A Quasi Newton method, such as DFP [WaI75] may improve the conver­

gence of the algorithm, both initially and near the optimum point. However, the Quasi New­

ton method will also require an improved line search algorithm. The current algorithm suc­

cessively reduces the step size until a reduction in the cost function is achieved. The Quasi 

Newton algorithms require a line search that finds the point along the descent direction that not 

only reduces the cost function but also that minimises the cost function. Common line search 

algorithms include; bisection, Fibonacci and Gold Section searches, however, interpolation ap­

proaches such as Davidon's or Powell's have often proven the most effective [Gra89]. 

2. The approximate analytical gradients developed for the time domain robustness measure are 

based on some simplifying assumption. However, the development of the a singular value ro­

bustness measure gradients indicates how these assumptions may be removed at the expense 

of a more complicated final expression. This may represent a worthwhile development if, in 

other applications, the approximate gradients, prove unreliable. 

3. As mentioned in Section 5.6, for initial iterations of the robustness improvement algorithm 

the performance direction is often numerically unreliable. This could be overcome by using a 

second order estimate of the performance degradation as shown in Equation (5.7.200). 

(5.7.200) 

Where 6.1jJ is the incremental change in performance, QA: is the allowed eigenvector subspace, 

VdA: is the desired eigenvector, fA: is the current parameter vector and 6.fA: is incremental ad­

justment to the parameter vector. 

Although, for initial iterations the first term is small a reliable estimate of the change in per­

formance will be provided by the second quadratic term. However, to incorporate this devel­

opment it will be necessary to re-work how the compromise direction is calculated. 
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4. Currently, the improvement of the singular value based measure occurs at a single peak fre­

quency value. It often occurs that there is more than one dominant frequency point and that 

reducing one peak alone causes the others to increase. Thus a successful optimisation may 

have to consider more than one peak simultaneously. The robustness improvement algorithm 

can be easily extended to find more than one peak and the parameter gradient at each peak. 

However, the resulting optimisation problem is more complicated and may be formulated as 

a constrained optimisation, where the dominant peak is reduced subject to the parameter ad­

justment vector being a descent direction with respect to the peaks. Alternatively, the problem 

may be formulated as a multi-objective minimisation. 

5. The singular value based measure used in this work is a straightforward approximation to the 

structured singular value. However, the structured singular value has been topic of consid­

erable research and several extension have been developed; for instance, to encompass real 

[Fr091] and unstable [FP88] uncertainty. These extensions (particularly real uncertainty) 

could be incorporated into the robustness improvement algorithm. This would require devel­

opment of new gradient expressions. 

5.7.2 Extension to Performance Robustness 

The structured singular value already provides a method of guaranteeing performance robustness. 

If the performance criterion can be expressed as a bound on the peak value of a weighted transfer 

function spectral norm, as would be formulated for an 1£00 problem, the uncertainty model may be 

augmented to include this criterion. In this case, the main loop theorem [PD89, PD93, BPDG93, 

SD91, DFf92] allows the resultant structured singular value to be bounded such that the perform­

ance bound will be satisfied for all variations of the given uncertainty description. This approach to 

performance robustness does not require any further development of the robustness improvement al­

gorithm. However, it does require that the design goals are re-expressed as frequency domain bounds, 

which is incongruous with the proposed design methodology, since performance robustness would be 

achieved with respect to different design goals than those used to synthesise the controller. Further­

more, if the design criterion can be accurately expressed as frequency domain bounds, the original 

decision to use eigenstructure assignment is undermined. 

Two pieces of work have been identified that could form the basis for a performance robustness ap­

proach that employs the design goals used by the original controller synthesis. 

Apkarian [Apk88] proposes an extension to the structured single value that allows robustness to be 

formulated in terms of the poles of the system remaining in non-intersection closed regions. At a 

simplistic level the bound works as follows: the conventional structured single value searches along 

the jw-axis and indicates if a pole would cross this boundary. Apkarian's extension searches along 

the contours of the closed regions and consequently indicates if a pole would exit a closed region. 

A drawback of this extension is that is assumes the uncertainty has poles within the specific closed 

region. This is equivalent to the conventional assumption that the uncertainty is stable. It would be 
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a straightforward matter to incorporate Apkarian's extensions into the current robustness improve­

ment algorithm. The peak search routine should be re-written to follow a given contour rather only 

searching along the jw-axis. 

Yedavalli and Ashokkumar [YA94] develop some singular value based robustness measures, that 

bound time domain uncertainty such that the poles of the system will remain in specified closed re­

gions. They also extend the work to consider the degree to which the eigenvectors may change direc­

tion. This work could be incorporated into the robustness improvement algorithm but would require 

development of new analytical gradients. A drawback of this approach is that it does not explicitly 

consider unmodelled dynamics. 
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This chapter presents a design example for attitude stabilisation of a Lynx helicopter in hover. The 

example is not intended as a definitive solution but illustrates some of the tools and techniques de-

scribed in this Thesis. 

6.1 A State Feedback Control Law 

Although state feedback is not realistic for helicopter control law design it does have a role to play 

in the development of the more practical fixed gain output feedback solution. The state feedback 

solution illustrates the best that one can hope to achieve with output feedback. If an acceptable state 

feedback solution can not be found then progression to output feedback is pointless and one should 

instead re-examine the synthesis technique and design objectives. 

The initial state feedback solution is derived using simple projection and fixed eigenvalue locations. 

At this stage, it is hoped that more powerful techniques are not necessary to achieve the design goals. 

The desired eigenstructure derived in Section 3.5.4 was employed with the following ideal eigenvalue 

locations: 

[ Ap I AlI I Aq I Au I Aw I Ar I 
[ -1.5 ± J1.6 I -0.004 I -1.5 ± J1.6 I -0.002 I -0.33 I -1.75 I 

Table 6.1.1: Desired eigenvalue locations for a helicopter in hover (see Section 3.5.2) 

Page 230 
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The velocity eigenvalue locations (All. Au) were chosen to coincide with the open loop zeros. The 

heave mode (Aw) is left at its open loop location and the yaw mode (Ar ) is the mid point of the criterion 

given in Equation (3.5.64). The open loop system is given in Appendix A.2 and the resulting gain 

matrix is: 

x = [u v w p q r tP 0] 

[
All [_0.0013 
El _ 0.0008 

Ba 0 
et 0.0001 

0.0004 0 

o -0.0001 

o 0 

0.0011 0.0004 

0.0525 

-0.0398 

o 
-0.0576 

-0.0361 -0.0002 -0.0383 _0.00341 
0.0743 0.0058 -0.0015 0.2450 

0.0007 -0.0002 0.0062 -0.0052 

0.0154 0.1911 -0.0807 0.0103 

The gain values are generally small. This is often a good indication of a sensible feedback solution. 

The roll and pitch response to a 10% one second pulse in the longitudinal and lateral channels is 

shown in Figure 6.1.1. along with a template that illustrates the Def-Stan handling qualities criteria 

(see Section 3.3). Starting from left to right the criteria depicted by the template are: 

1. The gate at 0.5s represents the initial delay and over-sensitivity criteria (YI). 

2. The rising vertical line. which coincides with peak response. indicates the minimum value of 

the peak response. For a larger amplitude response the maximum value is shown as a horizontal 

line. 

3. The gate one second after the peak response this embodies the 30% decay criteria (T30 ). 

4. The coincident drop in the lower bound represents the first trough (Xl) and steady state settling 

criteria (XF). 

5. The descending vertical line serves to check that a zero crossing occurs in the 1-2 second win­

dow after the peak response (Tal). 

6. Finally the lower upper bound also represents the steady state settling criteria (TF. XF). 

A new template must be calculated for each response since most of the gates are defined relative the 

peak value and time. The applied handling qualities criteria are for the attentive phase because the 

helicopter is in the hover and the control law provides attitude command (see Section 3.3). Different 

criteria are required for the roll and pitch channels. although in this case the only difference is the 

bounds for the peak response value. Unless otherwise indicated the template described above will be 

applied to the appropriate output responses. Returning to Figure 6.1.1 we see that the responses pass 

comfortably between the all the gates and thus clearly meet the level one handling qualities criteria. 

The cross-coupling into off-axis rates and attitudes is minimal. In both cases the off-axis rates were 

less than 0.5 deg/s and the attitudes less than 0.1 degrees. Figure 6.1.2 depicts the on-axis and off-axis 

attitude responses to the lateral and longitudinal stick inputs applied previously. 



6.1 A State Feedback Control Law Page 232 

Lateral response with level 1 spec. (phase=attentive) 
10 

'" <U 
8 

~ 
Ol) 6 <U 

"'0 
0 

"'0 4 .3 
.~ 

2 
::a 
~ 

-2 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Time in seconds 

Longitudinal response with level 1 spec. (phase=attentive) 
8 

'" 6 0 
<U .... 
Ol) 
<U 

"'0 4 0 
"'0 
=' .0;: 

2 ~ 
..c: 
u -c: 

-2 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Time in seconds 

Figure 6.1.1: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a longit­
udinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with state 
feedback control. 
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Figure 6.1.2: On and off axis attitude responses (roll and pitch) to a 10% one second lateral (top) and 
longitudinal (bottom) pulse input for an 8th order linear helicopter model at hover with state feedback 

control. 
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Figure 6.1.3: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) induced 
by a 10% step input for an sth order linear helicopter model with state feedback control. 

The yaw and heave responses to a 10% one second pulse and 10% step input respectively are shown in 

Figure 6.1.3. Both exhibit the desired first order characteristic. Before the addition of heading hold 

the yaw response is aimed to achieve rate command with level 2 compliance. From Section 3.5.3 

we recall that the peak response should be between 5 - 200 /8, greater than 30% at 0.58 and have 

decayed to 10% peak value between 1 - 28 after the peak reponse. Inspection shows that the yaw 

response achieves all these criteria. The criteria for the heave response were drawn from the ADS 

33 (see Section 3.2 and Section 3.5.3) and stipluate that the reponse should have a time constant less 

than 5 seconds and initial delay less than 0.2 seconds. The response shown in Figure 6.1.3 has no 

initial delay and a time constant of ~ 2.88 thus clearly meets the level one criteria. 

The results from the state feedback controller are very good. However, this simplified problem uses 

the reduced st h order model and full feedback information. Thus it may be expected to give good 

results. To promote confidence in the solution it is worth checking performance with the full 12th or-
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Figure 6.1.4: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a longit­
udinal pulse input of 10% for one second of a 12th order linear helicopter model at hover with state 

feedback control. 

der model. Figure 6.1.4 shows the lateral and longitudinal responses to a one second pulse with the 

usual Def-Stan template. The rotor dynamics can be seen to have introduced some initial delay, re­

duced the system damping and increased the response frequency. Despite these effects the responses 

still meet the Level one criteria. 

In Section 3.5.2 it was established that the response damping was dependent on the real part of the 

complex eigenvalues. Thus moving the eigenvalues to the left should increase the damping and im­

prove the response. Figure 6.1.5 shows the lateral and longitudinal responses for the pole locations 

of 1.7 ± )1.6. The responses show improved damping, which demonstrates a visible link between 

perfonnance and the desired eigenstructure. 

So far no attention has been paid to robustness. The multivariable gain and phase margins are given 

in Table 6.1.2, they show that the nominal state feedback solution offers very poor robustness. 
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Figure 6.1.5: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of a 12th order linear helicopter model at hover with a 
revised state feedback control law. 
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Input Output 

Gain Margin -0.25 dB, 0.25dB -0.24 dB, 0.24dB 
Phase Margin 

Table 6.1.2: Multivariable gain and phase margins at the input and output of an 8th order linear heli­
copter model with the initial state feedback control law. 

It is instructive to apply the robustness improvement algorithm to the initial state feedback solution, 

since this will establish an upper limit that any output feedback solution is very unlikely to exceed. It 

also provides a good opportunity to demonstrate the performance protection properties of the robust­

ness improvement algorithm. For expediencel , the input gain and phase margins are optimised using 

the bilinear uncertainty structure. An initial optimisation was performed using no performance pro­

tection other than confining the eigenvalues to disks with radius of 0.1 centred around the assigned 

locations. The optimisation was then repeated with the algorithm set to sacrifice fifty percent of ro­

bustness improvement to eigenvector performance protection (see Section 5.6). 

I I Without protection With protection 

r I Input Output Input Output 

r Gain Margin I -4.53 dB, 3.73 dB -1.18 dB, 1.17 dB -3.18 dB, 3.18 dB -3.18dB. 2.55 dB 
r Phase Margin I -23.45°,23.45° -7.26°,7.26° -20.54°,20.54° -17.65°,17.65° 

Table 6.1.3: Multivariable gain and phase margins at the input and output of an 8th order linear heli­
copter model with input robustness optimised (singular value measure) control laws employing zero 
and 50% performance protection. 

Table 6.1.3 shows that, as expected, the optimisation without protection achieves better input robust­

ness margins and in fact reduced JL to a value of 4.84. The input margins achieved by the optimisation 

with protection are comparable and correspond to a value for JL of 5.52. Interestingly, the algorithm 

with protection achieves better output margins. This may be because the algorithm without protection 

is more focused on input robustness. 

The gain matrix for the solution with protection is: 

lThe computational time to estimate the structured singular value increases with the number of uncertainty blocks. An 
input based optimisation uses four uncertainty blocks whereas an output based one will use eight. 
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x= [u V W P q r <P 0] n [-00013 
0.0003 0 0.0500 -0.0362 -0.0007 -0.0440 

_0.
00401 El _ 0.0005 0 0 -0.0385 0.0773 0.0085 0.0002 0.2536 

00 0 0 0 -0.0021 0.0011 -0.0001 0.0051 -0.0044 

Ot 0.0002 0.0006 0.0004 -0.0871 0.0159 0.1871 -0.1608 -0.0007 

and equally, the gain matrix for the solution without protection is: 

x = [u v w p q r <P 0] n [_0.004 
0.4401 -0.1495 61.33 -44.99 0.000 -60.48 -0.4230 1 

Bl = -0.0843 -0.0055 -0.0097 -0.070 -17.46 0.354 32.064 -54.60 

00 -0.0277 0.0211 -0.0001 0.000 -0.6628 0.8193 1.836 -1.914 

Ot -0.2836 0.0315 -0.0767 16.56 6.627 -15.07 10.28 0.000 

Figure 6.1.6 and Figure 6.1.7 show the roll and pitch attitude responses, along with the usual Dcf-Stan 

template, of the robustified state feedback control law with and without perfonnance protection. The 

response for the algorithm with protection is noticeablely better although, as expected, both responses 

have suffered some degradation due to robustification. 

Figure 6.1.8 and Figure 6.1.9 show the on-axis and off-axis attitude responses that accompany Figures 

6.1. 7 and 6.1.6. The plots demonstrate that perfonnance protection has done a lot to preserve the 

decoupling action of the controller. 

Figure 6.1.10 and Figure 6.1.11 show the yaw and heave response, to a one second pulse and step 

input respectively. The heave response is largely unaffected by robustification. The yaw response 

has degraded due to robustification but considerably less so for the solution produced by algorithm 

with perfonnance protection. 

Although the response of the linear velocities is not explicitly specified for the attitude command 

response type, examination of these responses is important and helpful in evaluating the perfonnance 

of the control law. Figure 6.1.12 and Figure 6.1.13 show the linear velocity responses that accompany 

Figures 6.1.7 and 6.1.6. The plots confinn that performance protection is effective in preserving the 

general decoupling properties of the controller. 
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Figure 6.1.6: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with a 
robustified state feedback control law employing performance protection. 
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Figure 6.1.7: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with a 
robustified state feedback controllaw not employing performance protection. 
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Figure 6.1.8: On and off axis attitude responses (roll and pitch) to a 10% one second lateral (top) and 
longitudinal (bottom) pulse input for an 8th order linear helicopter model at hover with robustified 
feedback control employing performance protection. 
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Figure 6.1.9: On and off axis attitude responses (roll and pitch) to a 10% one second lateral (top) and 
longitudinal (bottom) pulse input for an 8th order linear helicopter model at hover with robustified 
feedback control not employing perfonnance protection. 
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Figure 6.1.10: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with robustified state feedback 
control produced employing performance protection. 
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Figure 6.1.11: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with robustified state feedback 
control produced without performance protection. 
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Figure 6.1.12: Linear velocity responses (u, v, w) to a one second 10% pulse for an 8th order linear 
helicopter model with robustified state feedback control produced with performance protection. 
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Figure 6.1.13: Linear velocity responses (u, v, w) to a one second 10% pulse foran 8th. orderlinear 
helicopter model with robustified state feedback control produced without performance protection. 
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6.2 An Output Feedback Control Law 

The first task of the output feedback design is to decide which variables are available for measure­

ment. Some of the variables indicated at this stage may later be removed from the design. However, 

initially, it is important to include as many variables as possible. For the helicopter it is common 

practice to measure p, q, r, (), 4J and, although requiring some additional estimation functions, it is of­

ten also available. Naturally, forward airspeed is also measured (u) but the measurement is generally 

very inaccurate at low air speeds making it unsuitable as a feedback variable for a hover control law. 

The following equation shows how it may be derived from existing states. 

it = sin(O)u - cos(O) sin(4J)v - cos(O) cos(4J)w (6.2.1) 

For the hover trim condition 0 = 3.4° and 4J = 3.3°, thus for the linear model it may be approximated 

as follows: 

;. '" [0.057 0.057 -1.01 [:] (6.2.2) 

Before commencing with the details of the output feedback design it worth examining the role of the 

now unavailable feedback variables in the state feedback solution. This can be done be seeing how 

the relevant gain elements modify the stability derivatives of the open loop model. 

I Derivative I A I BK I Derivative I A IBK 

Zu 0.0278 -0.0278 Z" 0.0000 0.0000 

Lu 0.1678 -0.1678 L" -0.0564 0.0564 

Mu 0.0158 -0.0158 M" -0.0001 0.0001 

Nu 0.0298 -0.0298 N" -0.0015 0.0015 

Table 6.2.4: The change in key linear velocity stability derivatives due to state feedback. 

Table 6.2.4 shows that feedback of the linear velocities is used to counteract their influence on the 

angular rates. Therefore without feedback of the linear velocities, it can be expected that decoupling 

of the velocity modes from the lateral and longitudinal modes will be difficult. 

We note that with four input variables and six output variables complete assignment is possible and 

that 24 DoF exist. Firstly, one must decide how many stages to employ and what order to assign the 

eigenvectors. An important factor in this decision is the distribution of design freedom, Table 6.2.5 

lists some of the possibilities. 
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Option Stage 1 Stage 2 Stage 3 Retro-stage 
Vectors DoF Vectors DoF Vectors DoF Vectors DoF 

1 4 right 12 4 left 4 - - - -
2 5 right 15 3 left 0 - - 1 1 

3 2 left 10 6 right 6 - - - -
4 3 left 15 5 right 0 - - 1 1 

5 4 right 12 2 left 2 2 right 2 - -
6 3 right 9 3 left 6 2 right 0 1 1 

Table 6.2.5: A list of some of the multi stage assignment possibilities for a six output, four input, 
eighth order helicopter model. 

For this application stages with zero DoF are best avoided. Since eigenvectors assigned in these 

stages are effectively prescribed by those assigned in the previous stages. Therefore to alter these 

vectors one must assign different vectors in the previous stages, which offers no design visibility. In 

this application, options one, three and five were considered. 

A second important decision is the whether to perform the assignment in the state space Le with ei­

genvectors or in the input and output spaces. In this case, the state space and output spaces are almost 

coincident. The state space additionally contains u, v and has w instead of h. Although, u, v are not 

measurable outputs they are system outputs and we do wish to assign which modes appear in these 

outputs. Hence assignment of right eigenvectors was conducted in the state space. However, assign­

ment of left eigenvectors was conducted in the input space. 

Since we have a full set of desired right eigenvectors, a set of orthogonal desired left eigenvectors can 

be created by inverting the right eigenvector matrix. To generate the desired input coupling vectors 

the desired left eigenvectors are multiplied by an idealised input matrix, which is shown below: 

u 0 0 0 0 

v 0 0 0 0 

w 0 0 1 0 

[!~l p 1 0 0 0 
= (6.2.3) 

q 0 1 0 0 

r 0 0 0 1 

tP 0 0 0 0 
() 0 0 0 0 

Next one must decide which vectors to assign in which stages. Assignment of an input coupling vec­

tor effectively determines which columns of the transfer function matrix a mode will appear. While 

this can ensure that a mode is excited by a single input, it may still appear in several unwanted outputs. 

Equally, assignment of an output coupling vector determines in which rows of the transfer function 
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matrix a mode will appear. Again, this can ensure a mode only appears in one output but it may be 

excited by inappropriate inputs. Assignment of input or output coupling vectors alone is not suffi­

cient to guarantee complete de coupling and some experimentation with the assignment of input or 

output coupling vectors may be necessary to get the best results. 

In this case, the right eigenvectors associated with p, <p and q, () have been formulated to achieve a 

specific zero structure and are thus best assigned as output vectors. The eigenvectors associated with 

wand r are formulated to achieve decoupling and may be assigned as either input or output vec­

tors. The right eigenvectors associated with the linear velocity modes present a problem. Ideally 

they would be assigned as output vectors to ensure the velocity modes only appear in the velocity 

outputs. However, consider the feedback output matrix (C): 

h 0.057 0.057 -1.0 0 0 0 0 

p 0 0 0 1 0 0 0 

q 0 0 0 0 1 0 0 
= 

r 0 0 0 0 0 1 0 

<p 0 0 0 0 0 0 1 

() 0 0 0 0 0 0 0 

and the desired linear velocity eigenvectors: 

v~ = [1 0 0 0 0 0 0 0] 

v; = [0 1 0 0 0 0 0 0] 

0 

0 

0 

0 

0 
1 

u 

v 

w 

p 

q 

r 

<p 
() 

(6.2.4) 

(6.2.5) 

(6.2.6) 

It is clear that assignment of the right eigenvectors (vu, vv) or the equivalent output vectors is ill 

conditioned. This is because, output feedback is being used to make the velocity modes unobservable 

in the measured outputs and observability is an invariant property of output feedback. As the modes 

become less observable, they are harder to control and the gain value magnitudes quickly explode. 

The lack of linear velocity feedback has obvious control implications. These are not obscured by the 

eigenstructure assignment technique and, indeed, have a clear interpretation. One approach to this 

problem is to assign the linear velocity modes as left eigenvectors. This is unlikely to achieve the 

desired decoupling, but will avoid an ill-conditioned problem. 

Three candidate assignment options (1, 3, 5) were identified in Table 6.2.5 and all three options were 

briefly evaluated. Option five produced inferior results to options one and three, and was discarded. 

Option one was performed, assigning the modes p, 4>, q and () as right eigenvectors in stage one and 

assigning u. v. wand r as input vectors in stage two. The resulting gain matrix is given below: 
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h 

[!~I [or 0.0541 -0.0440 -0.0656 -0.0371 _0004201 p 

-0.0410 0.0772 0.0575 -0.0019 0.2626 q 
= (6.2.7) 

0 0.0012 -0.0002 0.0059 -0.0031 r 

0.0199 -0.0534 0.0124 0.0183 -0.0849 -0.0174 4> 
(J 

Figure 6.2.14 shows Ihe roll and pitch attitude responses to a one second 10% pulse along wiIh Ihe 

usual Def-Stan template. BoIh comfortably meet Ihe level one requirements. However. Figure 6.2.15 

shows Ihe corresponding on and off-axis attitudes from which it can be seen Ihat the longitudinal 

motion couples very efficiently into roll. 

The accompanying linear velocites depicted in Figure 6.2.16 paint a similar picture of poor cross­

coupling performance. 

The heave and yaw responses to a step input and one second pulse are shown in Figure 6.2.17. They 

show a poor steady state error in Ihe yaw response and a divergent height mode due to cross-coupling 

wiIh Ihe linear velocites. 

It is clear Ihat. while Ihe primary responses are acceptable. Ihe cross-couplings require some attention. 
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Figure 6.2.14: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with an 
output feedback control law synthesized according to option one of Table 6.2.5. 
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Figure 6.2.15: On and off axis attitude responses (roll and pitch) to a 10% one second lateral (top) 
and longitudinal (bottom) pulse input for an 8th order linear helicopter model at hover with an output 
feedback control law synthesized according to option one of Table 6.2.5. 
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Figure 6.2.16: Linear velocity responses (u. v. w) to a one second 10% pulse for an 8th order lin­
ear helicopter model with an output feedback control law synthesized according to option one of 

Table 6.2.5. 
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Yaw rate response to a one second pulse tail rotor collective 
15~--~----.-----r----.----.-----r----.----.-----r---~ 

10 

1.5 2 

, . . . . . . .... . ... . .. .; .. .. " .... : . ......... : .. ... , .. , 

2.5 
Time sec 

3 3.5 4 4.5 

Heave velocity response to a step in main rotor collective 

5 

80~--~----.-----r.----T. ----.-----r----.----.-----'----' 

60 1--" I ":" ·_ ·· ·-h ·· · ·· 

. :- . 

i 

... . :. . ....... .; .. ... . . 

. -
. -

. -' •• , ••••• •• • • ..J.o ••• '" -' .- . 

~~ ... - ' . . ... . •.... .....•... 

4 5 6 7 8 9 10 
Time sec 

Figure 6.2.17: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with output feedback control syn­
thesized according to option one of Table 6.2.5. 
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Assignment option three was perfonned, assigning the r, w modes as input vectors in stage one and 

assigning the remaining modes as right eigenvectors in stage two. The resulting gain matrix is shown 

below: 

0.0534 

-0.0403 
0.0004 

-0.0554 

-0.0336 -0.0715 -0.0384 

0.0732 

0.0001 

0.0072 

0.0564 -0.0012 
0.0007 0.0059 

-0.0008 -0.0930 

-0.0031] 
0.2435 
0.0027 
0.0714 

k 
p 

q 

r 
(6.2.8) 

Figure 6.2.18 shows that the roll and pitch attitude responses are largely the same as option one and 

the template demonstrates that the responses meet the level one requirements. However, the corres­

ponding on and off axis attitudes illustrated in Figures 6.2.19 and 6.2.20 show that the cross-couplings 

are considerably reduced. 

This is because assigning the velocity modes as output vectors facilitates better output decoupling. 

The low gain values indicate that the potential hazard of assigning ill-conditioned right eigenvectors 

has been avoided. This is because the right eigenvectors were assigned in stage two and thus selected 

from a reduced subspace which precludes the ill-conditioned directions. Assignment of the output 

vectors in stage two has enabled the constraints on the right eigenvectors, that ensure the solution is 

well conditioned, to be imposed without squandering design freedom. 

The yaw and heave responses of Figure 6.2.21 resemble those for assignment option one. The yaw 

response is first order but has a large steady state error (15.3%), which just exceeds the level two 

requirement of 15.0% and thus deserves some attention. The vertical velocity (w) initially shows the 

desired first order build up to a step input, although some decay can be seen after six seconds. The 

height response (k) shows divergent growth due to cross-couplings into sideslip and forward velocity. 

Whilst these cross-couplings are undesirable it is unlikely they are as catastrophic as the plot suggests. 

A pilot would expect an increase in collective to induce a forward velocity and would correct for this 

with longitudinal stick before it dominated the response. 

Part of the philosophy behind this design approach is to begin with a simple design technique, gain 

some experience and understanding of the problem, then progressively add embellishments to im­

prove perfonnance. So far, we have moved from state feedback to output feedback with simple pro­

jection. The next step is to apply iterative projection. The aim of this to trade-off the good decoupling 

in the longitudinal responses for a better steady state error in yaw. 

The iterative projection technique was described in Section 4.5.8, but, briefly, it involves assigning 

each vector as a compromise between approximating the desired eigenvector and adopting a direc­

tion orthogonal to the left or right eigenvectors, as appropriate. The balance of the compromise is 

detennined by a weighting. This implementation was based on synthesis option three of Table 6.2.5 
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Figure 6.2.18: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with an 
output feedback control law synthesized according to option three of Table 6.2.5. 
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Figure 6.2.19: On and off axis attitude responses (roll and pitch) to a 10% one second lateral (top) 
and longitudinal (bottom) pulse input for an 8th order linear helicopter model at hover with an output 
feedback control law synthesized according to option three of Table 6.2.5. 
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Figure 6.2.20: Linear velocity responses (u, v, w) to a one second 10% pulse for an 8th order lin­
ear helicopter model with an output feedback control law synthesized according to option three of 

Table 6.2.5. 
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Figure 6.2.21: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with an output feedback control 
synthesized according to option three of Table 6.2.5. 
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and a separate weighting was used for each eigenvector. An eigenvector was deemed close enough to 

orthogonal if the product between it and its complementary eigenvectors was less than 10-6 • When 

an eigenvector failed the orthogonality test its weighting was increased by a factor of 1.03. All the 

weightings were initialised with a value of 10-3 except the left heave eigenvector which had a value 

of 10-4 . A lower initial weighting value shifts the compromise more towards approximating the de­

sired eigenvector and was found necessary for the heave mode. To avoid an ill conditioned solution 

and, in general, gave better results. The algorithm converged after 687 iterations which took 37.6 

seconds using Matlab 4.2c on a Pentium 133 Personal Computer. The final weighting values were of 

the order 104• The resulting gain matrix is given below: 

[t~] 
0.0570 

-0.0433 

0.0001 
-0.0466 

-0.0319 -0.0850 -0.0362 -0.0067] 
0.0720 0.0697 -0.0032 0.2459 

0.0006 0.0001 0.0060 0.0049 
0.0185 0.0221 -0.0741 0.0663 

h 
p 

q 

r 

Figure 6.2.22 shows that the roll and pitch attitude responses achieve good level one performance. 

Figure 6.2.23 shows that the steady state yaw error has been reduced while the heave response remains 

largely unchanged. 

However, both the on and off axis attitudes of Figure 6.2.24 and the linear velocities of Figure 6.2.25 

shows that the improvement in steady state yaw error has come at the expense of the cross-coupling 

performance. It appears that there is a trade-off between the yaw response and cross-coupling. Fur­

ther improvement of both of these goals is likely to require additional design freedom. Therefore the 

next step is to introduce some freedom in the eigenvalue locations. 

Eigenvalue trade-off was incorperated into the previous iterative projection method and operated by 

adjusting the eigenvalue locations in order to minimise the eigenvector assignment errors. The eigen­

values were confined to disks in the complex plane. It was found that, for best results, the disk should 

not necessarily be centred on the ideal eigenvalue locations. For instance, the complex eigenvalues 

tended towards under damped solutions with the disk centred on the ideal locations. Moving the disk 

to left excluded these solutions and thus gave better results. The position of the linear velocity ei­

genvalues proved key to achieving a good trade-off between decoupling and the steady state error in 

yaw. They were hand placed at -0.045 for the forward speed mode and -0.043 for the side-slip mode. 

Table 6.2.6 summarises the radius and centre locations of the assigned eigenvalues. 

The resulting gain matrix is: 
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Figure 6.2.22: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with an 
output feedback control law synthesized using the iterative projection algorithm of Section 4.5.8. 
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Figure 6.2.23: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8 th order linear helicopter model at hover with an output feedback 
control synthesized using the iterative projection algorithm of Section 4.5.8 . 
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Figure 6.2.24: On and off axis attitude responses (roB and pitch) to a 10% one second lateral (top) 
and longitudinal (bottom) pulse input for an 8t h order linear helicopter model at hover with an output 
feedback control law synthesized using the iterative projection algorithm of Section 4.5.8. 
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Figure 6.2.25: Linear velocity responses (u, v, w) to a one second 10% pulse for an 8th order lin­
ear helicopter model with an output feedback control law synthesized using the iterative projection 
algorithm of Section 4.5.8. 
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I Lateral I Long. 

-1.7 ± )1.6 -1.7 ± )1.6 
0.1 0.1 

Table 6.2.6: Centre locations and radii used for the output feedback control law synthesis with eigen­

value trade-off. 

it 

[~;l = [oor 
0.0547 -0.0335 -0.1259 -0.0408 -OOOMO] p 

-0.0406 0.0862 0.0439 -0.0016 0.2623 q 

0.0007 0.0003 0.0056 0.0076 -0.0023 
(6.2.9) 

r 

Ot 0.0187 -0.0514 0.0088 -0.0674 -0.0875 0.0476 <P 

() 

which yields the closed loop eigenvalues given in Table 6.2.7. 

I Eigenvalue I Mode 

-2.0500 Yaw 
-1.6196 ± )1.5405 Lateral 
-1.6078 ± )1.5613 Long. 
-0.2300 Heave 
-0.0433 Side-Slip 
-0.0450 Forward 

Table 6.2.7: Eigenvalue locations for the closed loop helicopter system using a control law synthes­
ised with eigenvalue trade-off. 

The roll and pitch attitude responses are shown in Figure 6.2.26 along with the usual Def-Stan tem­

plate. In places. it can be seen that the responses are at the limit of the level one performance. 

However. the corresponding on and off axis attitudes illustrated in Figure 6.2.27 show that the cross­

coupling between these responses is minimal. 

Figure 6.2.28 depicts the yaw and heave responses. The yaw steady state error is 3.5% which com­

fortably meets both the level one and two requirements. The linear velocites of Figure 6.2.29 show 

that the de coupling is generally good. 

Further improvements in performance are difficult to achieve without employing dynamic compens­

ation. It is worth examining the robustness of the control law. Table 6.2.8 shows that the stability 

margins are slightly better than the initial state feedback solution but still poor. 

Figure 6.2.30 shows the roll and pitch attitude responses of the 12th order helicopter model (inc1ud-
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Figure 6.2.26: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with 
an output feedback control law synthesized using an iterative projection algorithm employing eigen­

value trade-off. 
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Figure 6.2.27: On and off axis attitude responses (roll and pitch) to a 10% one second lateral (top) 
and longitudinal (bottom) pulse input for an 8t h order linear helicopter model at hover with an output 
feedback control law synthesized using an iterative projection algorithm employing eigenvalue trade-

off. 
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Figure 6.2.28: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with an output feedback control 
synthesized using an iterative projection algorithm employing eigenvalue trade-off. 
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Figure 6.2.29: Linear velocity responses ('1.1, v, w) to a one second 10% pulse for an 8 tll order lin­
ear helicopter model with an output feedback control law synthesized using an iterative projection 
algorithm employing eigenvalue trade-off. 
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Input Output 

Gain Margin -0.65 dB. O.62dB -0.82 dB. O.75dB 
Phase Margin 

Table 6.2.8: Multivariable gain and phase margins at the input and output of the closed loop helicopter 
system using a control law synthesised with eigenvalue trade-off. 

ing the regressive flapping dynamics) with output feedback control synthesized using the iterative 

projection algorithm employing eigenvalue trade-off. The roll response has coupled with the rotor 

dynamics and is, as a consequence, severely degraded, but the pitch response is relatively unaffected. 

The static feedback solution will need considerable robustification before it can be used on the non­

linear model let alone the real plant. The robustness improvement algorithm using the singular value 

based measure was applied to the static output feedback solution. It may be recalled that the analytical 

gradients were derived assuming assignment of right eigenvectors first (see Section 5.5.3), but the 

current synthesis approach (option three of Table 6.2.5) assigns left eigenvectors first. This problem 

is easily overcome by using the dual system, that is: 

(6.2.10) 

(6.2.11) 

(6.2.12) 

An important consideration with the singular value based approach is the choice of uncertainty struc­

ture. We wish to improve the gain and phase margins at both the input and output. Therefore a bi­

linear uncertainty structure was introduced at both of these points. The state space representation of 

the resulting single loop system is: 

[ 

A+BKC B BK] 
M(s) = 2KC I 2K 

2C 0 I 

(6.2.13) 

This structure can give a direct estimate of the gain and phase margins. However, it is very conser­

vative since it encompasses perturbation at two loop breaking points (the input and output) whereas 

gain and phase margins are only defined with respect to one loop breaking point. The eigenvalues 

were constrained to be stable and within a radius of 0.2 from their assigned location. The optimisa­

tion was constrained to update design vectors and eigenvalues by no more than 10 percent per step. 

There were four steps per iteration, one each for the left and right design vectors and one each for the 

left and right eigenvalues. The algorithm was set to concede 20% of its robustness improvement to 
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Figure 6.2.30: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
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Figure 6.2.31: Convergence of the robustness improvement algorithm with the singular value based 
measure for an 8th helicopter model with output feedback control and a bilinear uncertainty structure 

at the input and output. 

performance protection. However, maintaining performance proved to be an impossible task. 

Figure 6.2.31 shows how the minimisation of the J.L upper bound progressed. It can be seen that ini­

tially the function decreases monotonically, but then suffers periodic increases from which it recom­

mences the minimisation. The increases are all due to frequency jumps. That is, after minimising one 

peak a new peak has arisen at a different frequency. The algorithm will leap between peaks attempt­

ing to minimise them all independently. However, eventually a impasse is reached where minimising 

one peak causes an increase in another and vise-versa. The algorithm then becomes locked in a cycle, 

trying to minimise both peaks and progresses no further. 

The gain matrix after 19 iteration (76 steps) is given below: 
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it n [00003 
0.0433 -0.0231 -0.0450 -0.0586 -0 0 0049] p 

BI 0.0032 -0.0421 0.0818 0.0312 0.0083 0.2576 q 

Bo - 0.0003 0.0095 0.0007 -0.0064 0.0109 0.0396 
(6.2.14) 

r 

Bt 0.0101 -0.0669 0.0715 0.0751 -0.1575 0.3176 <P 

B 

The gain and phase margins are shown in Table 6.2.9. A substantial improvement has been achieved. 

However, this has come at the expense of performance. 

Input Output 

Gain Margin -3.65 dB, 3.1dB -4.39 dB, 3.58dB 
Phase Margin -19.8°,19.8° 

Table 6.2.9: Multivariable gain and phase margins at the input and output of the closed loop helicopter 
system using a control law that has been optimised with respect to a singular value based robustness 

measure. 

Figure 6.2.32 depicts the roll and pitch attitude responses along with the usual Def-Stan template and 

Figure 6.2.33 displays the corresponding attitude cross-coupling. 

Figure 6.2.34 shows that the yaw and heave responses have not been greatly affected by the robus­

tification but the linear velocities depicted in Figure 6.2.35 shows that the general decoupling has 

suffered. 

For comparison robstification with respect to the time domain measure was also undertaken. Again, 

the optimisation was constrained to update the eigenvalues or eigenvectors by no more than 10% and 

20% of the robustness improvement was conceded to performance protection. The eigenvalues were 

constrained to be stable and within a 0.2 radius of their initial location. A time domain uncertainty 

structure must be chosen and it was decided to use the non-linearity information from the linearisa­

tion. The linearisation algorithm produces three system matrices a nominal matrix plus an upper and 

a lower bound. The algorithm was allowed wide error tolerances (fa = 0.1, fp = 0.1) to ensure 

a reasonable amount of uncertainty information was produced. The upper and lower bounds were 

processed in an identical fashion to the nominal matrix then subtracted from the nominal matrix to 

produce error information. The uncertainty information is given below: 
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Figure 6.2.32: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second of an 8th order linear helicopter model at hover with an 
output feedback control law that has been optimised with respect to a singular value based robustness 

measure. 
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Figure 6.2.34: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with an output feedback control 
law that has been optirnised with respect to a singular value based robustness measure. 
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Figure 6.2.35 : Linear velocity responses (u, v, w) to a one second 10% pulse for an 8th order lin­
ear helicopter model with an output feedback control law that has been optimised with respect to a 
singular value based robustness measure. 
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0.0046 0.0058 0.0022 0.0079 0.0360 0.0000 0.0000 0.0019 

0.0060 0.0197 0.0058 0.0519 0.0175 0.0115 0.0019 0.0018 

0.1059 0.1026 0.0613 0.0093 0.0038 0.0000 0.0313 0.0313 

0.0896 0.0145 0.1219 1.7437 0.9981 0.0084 0.0000 0.0000 
AA= 

0.0067 0.0057 0.0124 0.1428 0.2082 0.0000 0.0000 0.0000 

0.0402 0.0155 0.0650 0.3202 0.2362 0.0716 0.0000 0.0000 
(6.2.15) 

0 0 0 0.1795 0.0004 0.0127 0 0 

0 0 0 0 0.1270 0.0122 0 0 

Figure 6.2.36 shows the progress of the optimisation algorithm which. unlike the singular value based 

measure. exhibits a monotonic decrease. The final gain matrix is: 

h n [-0 0

0017 
0.0407 -0.0354 -0.0495 -0.0431 -00232] P 

El _ -0.0016 -0.0417 0.0913 -0.0378 0.0119 0.2897 q 

00 - 0.0006 -0.0270 0.0164 -0.0015 -0.0459 -0.0109 r 

Ot 0 -0.2403 0.0967 -0.0460 -0.3888 0.0545 rP 
(6.2.16) 

0 

For comparison with the singular value measure the multi variable gain and phase margins are given 

below. They show considerable improvement over the nominal solution. However. the time domain 

robustness measure is not focused on the frequency domain gain and phase margins and thus it does 

not achieve the tolerance of the singular value based optimisation. 

Gain Margin 

Input ! Output 

-2.30 dB, 2.24dB -2.65 dB. 2.58dB 

Phase Margin 

Table 6.2.l0: Multivariable gain and phase margins at the input and output of the closed loop heli­
copter system using a control law that has been optimised with respect to a time domain robustness 

measure. 

Figure 6.2.37 shows the roll and pitch attitude responses along with the usual Def-Stan template and 

Figure 6.2.38 shows the corresponding attitude cross-coupling. It can be seen that both sets of re­

sponses have suffered but that the decoupling has degraded but to a lesser extent. 

Figure 6.2.39 shows that both the yaw and heave responses have been detrimentally affected by the 

robustification and Figure 6.2.35 depicts the linear velocities and shows that the general decoupling 

has also suffered. 
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Figure 6.2.36: Convergence of the robustness improvement algorithm with the time domain meas­
ure for an 8th helicopter model with output feedback control and the uncertainty structure of Equa-

tion (6.2.15). 
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Figure 6.2.37: Roll attitude response (top) to a lateral and pitch attitude response (bottom) to a lon­
gitudinal pulse input of 10% for one second o.f ~ 8th ~rder linear heli~opter model at hover with an 
output feedback control law that has been optImIsed wIth respect to a tIme domain robustness meas-

ure. 



6.2 An Output Feedback Control Law Page 281 

6 

bO 
4 

/ 0 
"0 

:..c 
0. 2 

/ 

/ 

~ / 

-0 / 
-5 o -' 

-2 
0 0.5 

/ 

Roll and pitch attitude responses to 1 sec pulse in lateral stick 

" \ 
\ 

\ 

\ 

\ , 

1.5 

, 
- - .- .- ' 

2 2.5 3 
Time sec 

_.- ' 

-- pitch 
. - . - roll 

-'-'- ' - ' _.- ' - ' 

3.5 4 4.5 

Roll and pitch attitude responses to I sec pulse in longitudinal stick 

5 

6 __ --~----._--_.----._--_,r_--_r----._--_.----~--~ 

bO 4 
o 

"0 

:..c 
0. 2 

'- '- '- '- '- '- '- '- ' .- .- ' -

-- pitch 
. - . - roll 

_2L---~--~----~--~----~--~--~----~--~--~ 
o 0.5 1.5 2 2.5 3 3.5 4 4.5 5 

Time sec 
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and longitudinal (bottom) pulse mput for an 8 order linear helicopter model at hover with an output 
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Figure 6.2.39: Yaw rate response (top) to a one second 10% pulse and heave velocity (bottom) in­
duced by a 10% step input for an 8th order linear helicopter model with an output feedback control 
law that has been optimised with respect to a time domain robustness measure. 
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Figure 6 .2.40: Linear velocity responses (u, v, w) to a one second 10% pulse for an 8th order linear 
helicopter model with an output feedback control law that has been optimised with respect to a time 
domain robustness measure. 
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6.3 Summary 

In this chapter an attitude command hover control law was designed using static feedback techniques. 

An initial state feedback solution showed that the desired eigenstructure derived in Section 3.5.4 con­

cisely expresses the handling qualities performance goals. A visible link between the system eigen­

structure and its performance was also demonstrated. 

The robustness improvement algorithm was applied to the state feedback solution. It delivered a sig­

nificant increase in the input and output gain and phase margins. The inevitable degradation in per­

formance was observed. However, it was demonstrated that the performance protection technique is 

effective in keeping the degradation to a minimum. 

A more realistic output feedback design was undertaken. Assignment was performed in the input and 

output spaces for best performance. Different assignment options were considered, the pros and cons 

of which became clearly evident As expected the initial output feedback solutions did not achieve 

the performance of the state feedback case. However, using the techniques of iterative assignment 

and eigenvalue trade-off, performance approaching that of the state feedback case was achieved. 

Robustness optirnisation with respect to the singular value and time domain robustness measures 

was performed on the output feedback solution. Substantial robustness improvement was achieved. 

However in both case maintaining performance proved an overwhelming task. 

It appears that both good performance and robustness using output feedback will require dynamic 

compensation. Experimentation with a variety of compensator strategies must be undertaken. Al­

though, the theory and tools are now in place to do this. This will provide a substantial and exciting 

piece of further work. 
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In the introduction it was argued that eigenstructure assignment is an appropriate technique for the 

design of helicopter control laws. The reasons given were: 

• it provides engineering design visibility, 

• there is considerable support for rapid design iteration, 

• there is a straightforward relationship between the handling qualities specification and the de­

sired eigenstructure, 

• it lends itself to integrated vehicle design by using concepts familiar to both control engineers 

and flight dynamicists, 

• controller structures are easily determined and generally simple, 

• design trade-offs can easily be seen and made. 

However, to exploit the benefits of eigenstructure assignment fully it should be incorporated into a 

suitable design methodology. 

Development of such a methodology began in Chapter 2 through an understanding of vehicle dy­

namics. The hover case dynamics were analysed using modal techniques and a simplified system. 

Page28S 
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A reliable linearisation with useful uncertainty information was produced. This formed the basis of 

further development 

Chapter 3 continued development of the design methodology by examining the design objectives. 

The relevant criteria in the two most important handling qualities specifications (Def-Stan 00-970 

and ADS 33) were examined and compared. By combining the criteria of the Def-Stan 00-970 and 

knowledge of the system dynamics, a desired eigenstructure was constructed. To maintain flexibility, 

the eigenvalues were specified as allowed regions, although ideal nominal points were also identified. 

The desired eigenstructure was shown to be consistent with both specifications. 

With the desired eigenstrUcture in place, attention moved in Chapter 4 to developing an eigenstruc­

ture assignment technique that would enable the designer to achieve the best possible performance. 

To do this the designer needs the facility to exploit all the available design freedom. Initially, the 

state feedback case was considered. It was shown that improved eigenvector assignment could be 

achieved by introducing freedom in the eigenvalue locations. A mathematical framework for this 

trade-off was set up and later shown to be equally applicable to the output feedback problem. The 

helicopter problem requires output feedback. This was considered next. A two stage algorithm was 

developed, based on the sequential assignment ofleft and right eigenvectors. This algorithm was ex­

tended to multiple stages. It was shown how unused design freedom could be recovered and put to 

good use. The choice of eigenvectors in the initial stages places strong constraints on those available 

in subsequent stages. Therefore, selecting the optimum eigenvector in each stage alone is unlikely to 

lead to the best overall solution. Projection techniques were developed to combat this problem. They 

force the initial stages to mitigate their effect on later stages or iterate until a compromise solution is 

reached. These techniques enable the designer to make better use of the available design freedom. 

If the system states have no physical significance, the eigenvectors lose their engineering visibility. 

In such cases it is more appropriate to work in the input and output spaces, which implies assigning 

the modal coupling matrices. A technique for doing this was developed in Chapter 4. Assignment in 

the input and output spaces enables the engineer to make more effective use of the available design 

freedom. Static feedback can not always deliver the required performance and dynamic compensa­

tion must be employed. It was shown how some different approaches to dynamic compensation may 

be incorporated into the existing eigenstructure assignment framework. Eigenstructure assignment 

provides no inherent mechanism for ensuring robustness. A credible design methodology should ad­

dress robustness and this is the topic of the next chapter. 

Chapter 5 developed a post-assignment robustness improvement algorithm. This algorithm will im­

prove robustness with respect to either a time domain or singular value based measure. The drawback 

of post-design robustness improvement is that an optimum solution, in terms of performance, can 

only be degraded by the adjustments made to improve robustness. However, this algorithm attempts 

to keep the degradation to a minimum by confining eigenvalues to allowed regions and protecting 

the eigenvector directions. The algorithm performs the optimisation with the same parameters used 

to synthesise the controller. This gives more control over the performance robustness trade-off. 
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A complete methodology is now in place with a powerful assignment technique, providing insight­

ful access to all the available design freedom, a method of addressing robustness and clearly defined 

design objectives. In Chapter 6 the methodology was applied to design an attitude command control 

law for the hover case. The design example began with the state feedback case which is used to illus­

trate that the desired eigenstructure does embody the required performance goals. The robustness im­

provement algorithm was shown to deliver significant improvement in robustness and to be effective 

in keeping the inevitable degradation in performance to a minimum. As expected the output feedback 

case proved to be a more difficult problem but. using the techniques of iterative assignment and ei­

genvalue trade-off performance approaching that of the state feedback case was achieved. However, 

achieving both good performance and good robustness was not possible for the static output feedback 

case and it is concluded that further development would require dynamic compensation. 

The author concludes that the potential of eigenstructure assignment to deliver an appropriate and 

effective means of designing helicopter control laws has been demonstrated. Further work is needed 

before the above methodology would offer a complete solution to helicopter control law design. 

7.2 Contributions 

To the best of the author's knowledge the list below describes the novel contributions of this work: 

• Development of a novel algorithm that produces representative linearisations of non-linear 

models accompanied with useful error data and bounds on acceptable state excursions. 

• Use of the Hessian form to improve the fidelity of a state space helicopter model. 

• Construction of an insightful, simplified model of the helicopter hover dynamics using sensit­

ivity analysis. 

• Characterisation of all the second order systems, as a region in the complex plane, that meet 

the Def-Stan 00-970 response criteria, derived using analytic techniques. 

• Derivation of an ideal eigenstructure that meets the Def-Stan 00-970 response criteria and is 

consistent with the system physics. 

• Derivation of some novel proofs of sufficient conditions for complete pole assignment using 

static output feedback. These proofs are concise and insightful and lead directly to a two stage 

assignment technique. 

• Derivation of novel gain equation that removes restrictions on the number of left or right ei­

genvectors that must be assigned and thus supports a flexible multi stage assignment technique. 

• Discovery that unused design freedom can exist after complete assignment and development 

of a method for recovering the design freedom and its utilisation in a recursive way, consistent 

with the original assignment approach. 
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• Fonnulation of a simultaneous eigenvalue and eigenvector assignment problem that enables a 

trade-off between the eigenvalue and eigenvector design objectives. An analytical solution to 

this problem is derived for the case of real eigenvalues. 

• Development of some basic theory for assignment in the input and output spaces using the 

modal coupling matrices and subsequent fonnulation of an assignment technique. 

• Development of a novel algorithm for improving robustness with respect to either of two pre­

viously non-utilised robustness measures. 

• Derivation of analytic gradients between the output feedback design parameters and both of 

the robustness measures. 

• Development of a mechanism for maintaining performance through the sc\ection of comprom­

ise directions. 

While significant contributions have been made, the design of helicopter control laws is a substantial 

problem and considerable opportunities exist for further work. 

7.3 Further Work 

Many suggestions for further work have been made, in context, at the end of each chapter. However, 

some key topics are highlighted below: 

The current analytical solution to the eigenvalue trade-off algorithm is only valid for the real case. 

Further work is needed to extend the solution to the complex case. This not a trivial matter. A quick 

description of the direct approach to calculating the solution illustrates the nature of the problem. For 

the real case evaluation and differentiation of the cost function gives a single polynomial in onc vari­

able, the roots of which lead to the global minimum. For the complex case evaluation and differenti­

ation gives two coupled equations in two unknowns, a general solution for this system of equations 

as yet does not exist. However, once found, a general subspace projection tool can be produced that 

minimises the following constrained optimisation: 

J = min IIvd - Q(s)fll~ + w/IIW2 Q(s)fll~ subject to Iso - si ~ rd 
f 

Where the tenns take their usual meaning. 

(7.3.1) 

An efficient computational solution to the above problem has many applications in this work. For 

instance: 

1. Setting w/ = 0 and r d = 0 is the simple projection case. 
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2. Setting w/ t-* 00 and Td = 0 provides a constrained projection. 

3. Setting w/ #- 0 ,Td = 0 and W2 to the desired eigenvectors produces the sympathetic projec­

tion. 

4. Setting Td = 0 and increasing w/ #- 0 in a loop with a second complementary optimisution 

yields the iterative projection technique. 

5. Defining a radius T d#-O enables eigenvalue trade-off to be performed with any of the uhove 

projection methods. 

This tool subsumes conventional approaches to projection and is recommended in their place. 

It was identified as part of the design example that dynamic compensation is needed to achieve both 

the robustness and performance goals simultaneously. The tools are in place for applying a variety 

of techniques for dynamic compensator design. These include full order observers, reduced order 

observers, feedback compensation and pre-compensation. Further work would experiment with dif­

ferent dynamic compensation approaches and identify a suitable strategy. An initial task would be to 

design a reduced order observer and verify the performance against the state feedback solution. The 

design example results show that robustification often causes the command tracking performance to 

suffer. Dynamic compensation to improve the tracking performance may also form a good early task. 

Another practical topic for further work would be to apply the techniques and tools described in this 

thesis to a wider set of problems The modal analysis and construction of simplified models could be 

repeated for different forward speeds and other trim conditions. The desired eigenstructures could be 

developed for rate command and translational rate command, then used to design controllers. Auto­

pilot functions such as Direction Hold (DH), Height Hold (HH). Transition to Hover and so on, could 

also be designed. 

Once some control law design experience with different response types and flight condition has been 

gained. a natural topic for further work is to integrate the control laws in to an AFCS. This will involve 

addressing issues such as gain scheduling, control law switching, bumpless transfer and anti-windup. 

The robustness improvement algorithm delivers good results that certainly justify its continued de­

velopment. Several opportunities for improvement exist. They include the use of quasi-newton des­

cent directions. the development of an improved line search and the derivation of improved analytical 

descent directions for the time domain measure. It was observed that, while the time domain meas­

ure achieved a monotonic convergence the singular value measure suffered periodic increases due 

to frequency jumping. This snag is easily removed. Currently, the algorithm scans across the fre­

quency range and identifies the dominant peak. It then calculates a descent direction with respect to 

that peak. The algorithm could be modified to ide~tify a set of peaks and calculate a descent direction 

that will decrease all the peaks simultaneously. This does not require the derivation of any new ana­

lytical gradients. The line search algorithm will have to be modified to ensure reduction with respect 

to either all peaks or just the dominant peak. 
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Design visibility is an important issue for practising engineers. Traditionally, the engineers have ad­

justed the feedback gains directly and thus gained experience and a good understanding of design 

using these parameters. A feature of eigenstructure assignment is the bijective mapping between the 

gains and design parameters. That is, a set of eigenvalue and eigenvector directions can be used to 

calculate a unique gain matrix and, equally, the gain matrix can be transfonncd into a unique set of ei­

genvalues and eigenvector directions. It would be fruitful to develop this characteristic eigcnstructure 

assignment into a design methodology that allows the design to be conductcd in either the eigcnspuce 

or the gain space. This will further enhance visibility by enabling the designer to use the design para­

meters appropriate to a particular objective. Development of this design methodology will involve 

addressing two main issues: firstly, giving eigenvector and eigenvalues, produced by gain adjust­

ment, a meaningful interpretation in terms of the desired eigenstructure and secondly, ensuring that 

compromises can be reached between adjustments made in either space. 

In summary, this work represents the application of eigenstructure assignment to the rotorcraft prob­

lem. It further emphasises the true suitability of this technique to the problem domain. The tools, 

techniques and theory developed here are generic and reduce the practice-theory gap. Thcy form the 

basis for follow on work which GKN-Westland wish to support, leading to a completely new philo­

sophy for advanced high performance rotorcraft control system design. 



Appendix A 

Helicopter Linearistion at Hover 

This appendix contains the state space linearisations, produced using the algorithm described in Sec­

tion 2.3, of the non-linear helicopter model outlined in Section 2.2.1. The model has been trimmed 

for the hover using a Newton-Raphson technique as dicussed in Section 2.2.2. 

A.1 The State Space Description 

The state and input vectors are defined as follows: 

xT ~ [u, v, W,p, q, r, rP, O,?/I, all, bll ] 

uT A [A1,Bl,00,(h] 

(A. 1.1) 

(A.I.2) 

Where the linear velocites (u, v, w) are in feet per second, the angular rates (p, q, r) are in radians per 

second and the body (rP, 0, 'I/J), flapping (aLt, bLt ) and inputs (Ai, B l , 0o, et) angles are in radians. 

The system, input and output matrices are: 
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-0.0044 0 0.0177 0 0.0089 0 0 -32.12 0 -32.82 0 
0.0007 -0.0185 -0.0034 -0.0697 -0.0625 0.3543 32.06 0.1096 0 0 32.82 

0.0298 0 -0.3228 0 -0.0534 0 1.836 -1.914 0 -2.291 0 

0 -0.0004 -0.0001 -0.0028 6.627 -0.0260 0 0 0 0 113.0 

0.0005 0 -0.0021 -1.009 -0.0153 0 0 0 0 17.21 0 

A= -0.0004 0.0086 0.0027 0.0355 1.246 -0.2208 0 0 0 0 20.35 

0 0 0 1.000 -0.0034 0.0596 0 0 0 0 0 

0 0 0 0 0.9984 0.0572 0 0 0 0 0 

0 0 0 0 -0.0573 1.000 0 0 0 0 0 

0.0158 -0.0012 0.0011 -0.0131 -1.273 0 0 0 0-14.06 -2.202 

0.0189 -0.0070 0.0013 -1.236 -0.0706 0 0 0 o 2.202 -14.06 

0 0 17.90 0 

0 0 -1.415 12.89 

0 0 -299.4 0 

0 0 6.723 -0.9451 

0 0 -1.523 0 

B= 0 0 14.28 -8.030 

0 0 0 0 

0 0 0 0 

0 0 0 0 

2.740 -16.02 0 0 

15.93 2.756 0 0 

The linearisation uncertainty information as described in Section 2.3 is: 
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0.0011 0.0006 0.0007 0.0006 0.0006 0 0 0.0018 0 0 0 

0.0006 0.0016 0.0006 0 0.0111 0.0137 0.0017 0.0017 0 0 0 

0.0110 0.0101 0.0140 0.0110 0.0028 0 0.0294 0.0294 0 0 0 

0 0 0.0003 0 0.0008 0.0010 0 0 0 0 0 

0 0 0.0002 0 0.0025 0 0 0 0 0 0 

~A= 0.0003 0.0001 0.0010 0 0.0066 0.0085 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0.0001 0 0 0 0 0 0 0 0 

0.0002 0 0.0003 0 0 0 0 0 0 0 0 

0 0 0.0527 0 

0 0 0.0042 0.1453 

0 0 0.8818 0 

0 0 0.0818 0.0107 

0 0 0.0045 0 

~B= 0 0 0.1604 0.0905 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0.1609 0.6853 0 0 

0.9358 0.1178 0 0 

A.2 The Reduced Order Model State Space Description 

The state space description for the reduced order helicopter model is given below: 

yT A [u, v, W,p, q, r, 4>, (J, 1/;, ah, bh ] (A.2.3) 

xT A [u, v, w,p, q, r, 4>, 0] (A.2.4) 

uT A [AI,B1,Oo,(Jt] (A.2.S) 
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-0.0337 0.0002 0.0157 -0.4111 2.883 0 0 -32.12 
0.0494 -0.0348 0 -2.890 -0.6777 0.3543 32.06 0.1096 

0.0278 0 -0.3230 -0.0287 0.1473 0 1.836 -1.914 

0.1678 -0.0564 0.0117 -9.710 4.509 -0.0260 0 0 
A= 

0.0158 -0.0001 -0.0010 -0.7938 -1.522 0 0 0 
0.0298 -0.0015 0.0048 -1.714 0.8642 -0.2208 0 0 

0 0 0 1.000 -0.0034 0.0596 0 0 

0 0 0 0 0.9984 0.0572 0 0 

-0.5570 37.50 17.90 0 
37.28 0.5602 -1.415 12.89 

-0.0389 2.618 -299.4 0 

128.3 1.928 6.723 -0.9451 
B= 

0.2920 -19.66 -1.523 0 
(A.2.6) 

23.12 0.3475 14.28 -8.030 

0 0 0 0 

0 0 0 0 

1.000 0 0 0 0 0 0 0 

0 1.000 0 0 0 0 0 0 

0 0 1.000 0 0 0 0 0 

0 0 0 1.000 0 0 0 0 

0 0 0 0 1.000 0 0 0 

c= 0 0 0 0 0 1.000 0 0 (A.2.7) 

0 0 0 0 0 0 1.000 0 

0 0 0 0 0 0 0 1.000 

0 0 0 0 0 0 0 0 

0.0009 0 0 0.0125 -0.0876 0 0 0 

0.0015 -0.0005 0.0001 -0.0859 -0.0187 0 0 0 
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0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

D= 0 0 0 0 (A.2.8) 
0 0 0 0 

0 0 0 0 

0 0 0 0 

0.0170 -1.143 0 0 
1.136 0.0171 0 0 
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To avoid stifling the flow of the main text some of the supporting mathematics is relegated to the 

following appendix. 

B.I Proof of Matrix Lemma 4.5.3 

Lemma 4.5.31 forms an important part of the proof of Theorem 4.5.3 and leads to a powerful ex­

pression for the gain matrix (K). Before proving the Lemma, for completeness, let us first restate 

it. 

Lemma 4.5.3 
LetK E ((;xm, X E cn xz , S1 E ((;XZ, YE (:!1xr andT2 E (:!Ixm, where m ~ xandr ~ y. 

Then the matrix equations: 

KX = SI 

YK = T2 

have a consistent solution for K if all the following conditions hold. 

(B. 1.1) 

(B. 1.2) 

lTo the author's knowledge the only other instance of this result is presented by Rao et al [RM711. However. although the 
solution is identical the accompanying necessary and sufficient conditions are incorrect. 

Page 296 



B.1 Proof of Matrix Lemma 4.5.3 

Cl rank (X) = x 

C2 rank (Y) = y 

C3 T2X =YSl 

The general solution/or K is then: 

or equivalently: 
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(B. 1.3) 

(B.1.4) 

where Z E ({)I x:e is a free parameter matrix that characterises the complete set 0/ solutions. 

Proof 
The proof proceeds by first characterising all the solutions to Equation (B.l.1) and then seeking a 

subset of these solutions that will also satisfy Equation (B .1.2). 

Examination of Equation (B.1.2) and Equation (B. 1.1) quickly reveals that all solutions will satisfy: 

YSl = Y(KX) = (YK)X = T2 X 

YSl =T2X 

(B,1.5) 

(B.l.6) 

However, meeting this condition is not enough to guarantee a solution exists. Therefore, Equa­

tion (B.1.6) is a necessary condition. A general solution [BIG74, p. 40] to Equation (B.Ll) alone 

will exist if and only if: 

rank ([~]) = rank (X) (B. 1.7) 

in which case the solution is: 

(B.l.S) 
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Where X(l) is a generalised one inverse [BIG74, p. 7] that satisfies XX(l)X = X and Zl E IRrxm 
is a free parameter that characterises the set of solutions. 

Substituting the general solution of Equation (B.1.l) into Equation (B. 1.2) 

YK = T~ 

Y(SlX(l)+Zl (I-XX(l»)) = T~ 

YSl X(1) + YZl - YZl XX(l) = T~ 

and invoking the necessary condition of Equation (B. 1.6) gives: 

T2 XX(1) + YZl - YZl XX(l) = T~ 

(B. 1.9) 

(B.LlO) 

(B.l.ll) 

(B. 1.12) 

We now seek a solution for Zl that will satisfy Equation (B.l.12). It is worth noting that examination 

of Equation (B.1.12) shows that YZl = T~ is a sufficient condition for a solution. However, to 

find the general solution Equation (B.1.12) is rearranged into a familiar format for which the general 

solution is well known. 

(B.1.13) 

A solution for Zl exists if and only if 

= rank(Y) CB. 1.14) 

CB.l.1S) 

Examination of the general conditions above shows that, in this case, Equation CB.l.lS) is always 

satisfied. If Equation (B.1.14) is satisfied then the general solution [BIG74, p. 39] is: 

Zl =y(1)T2 (I-XX(1») (I_XX(l»)(l) +Z2 -y(1)YZ2 (I-XX(1») (I-XX(l)Yl) 

(B.1.16) 

The expression (I - XX(l») is always idempotent. It is therefore straightforward to show that: 
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(B. 1.17) 

Thus the following simplifications are afforded: 

(B.1.18) 

Substituting Equation (B.l.18) into Equation (B.l.8) reveals the final solution: 

K = 81X(1) + (y(1)T2 (I - XX(l») + Z2 - Y(1)YZ2 (I - XX(l»)) (I - XX{l») 
(B. 1.19) 

= 81X(l) + y(l)T2 (I - XX{l») Z2 (I - XX(l») - Y{l)YZ2 (I - XX(l») 
(B. 1.20) 

(B.1.21) 

If one begins with Equation (B.1.2) instead of Equation (B. 1.1) the final solution is: 

we see from Equation (B.l.6) that the two solutions are identical. The derivation above is summarised 

in the following lemma: 

LemmaB.l.l 
LetK E (;xm,X E cmx"" 81 E (;x"', YE (()1xr andT2 E (()Ixm. Then the matrix equations: 

KX = 81 

YK = T2 

have a consistent solution for K if all the following conditions hold. 

Cl rank ([~]) = rank (X) 

C2 rank ([Y T2 (I - XX(l»)]) = rank (Y) 

(B. 1.23) 

(B.1.24) 
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C3 T2X=YSl 

The general solution/or K is then: 

or equivalently: 

where Z E (()I x '" is a free parameter matrix that characterises the complete set 0/ solutions. 

The conditions for a solution given in Lemma 4.5.3 are more restrictive than those of Lemma B.t.t. 

However, for the purposes of eigenstructure assignment the conditions of Lemma 4.5.3 are more ap­

propriate and form a natural complement to Theorem 4.5.3. 

Let us consider Equation (B. 1.7), recalling that X E cm xz and m ~ x it is clear that: 

rank (X) = x (B.l.27) 

implies that: 

(B.l.28) 

The same argument applies to Equation (B. 1.15) and if X is full rank then X(l) = xt [BIG74] thus 

Lemma 4.5.3 is a corollary of Lemma B.l.l. 00 

B.2 Guaranteed Real Gain Matrix Proof 

In Section 4.5.3 it was stated that conditions Ct and C2 of Theorem 4.5.3 ensure that gain matrices 

calculated using the formula below are always real: 

(B.2.29) 



D.2 Guaranteed Real Gain Matrix Proof Page 301 

Proof 
The proof proceeds by showing that conditions Cl and C2 of Theorem 4.5.3 ensure that all the com­

plex matrices of the gain equation may be expressed as the product of a unitary complex matrix and a 

real matrix. It is then demonstrated, for each summand of Equation (B.2.29) in turn, that the complex 

elements cancel to give real products and thus a real gain matrix. 

Examination of Condition C2 of Theorem 4.5.3 confirms that W 2 may be factorised into two full 

rank matrices (XW 2 ). Such that W 2 E IRS2 x n is real and X is complex and constructed as follows: 

k = 1 ... 82 (B.2.30) 

with 

AD2 i,i is real, i = 1..82 

AD2 i,i, AD2 Hl,i+1 are a complex pair, i = 1..82 
(B.2.3I) 

Where AD2 i,i is the ith. diagonal element of AD2 which is the eigenvalue associated with the left 

eigenvector (Wi) or ith. row of W2. The construction of X ensures that it is unitary and thus will 

satisfy X*X = I. 
The pseudo inverse (W2 B)t may be calculated from a full rank factorisation [BIG74, p. 23]. The 

factorisation constructed above is one such factorisation and thus: 

(W2 B)t = (X(W2 B))t 

= (W2Bf«W2B)(W2B)T)-1(X*X)-lX* 

= (W2B)T«W2B)('W2B)T)-lX* 

(B.2.32) 

(B.2.33) 

(B.2.34) 

Since T2 is constructed in an identical manner to W2, there also exists a factorisation T2 = XT2 

where T2 E 1R82 xm is real and X is defined above. 

Thus: 

(W2B)tT2 = (W2B)T«W2B)(W2Bf)-lX·XT2 

= (W2B)T«W2B)(W2B)T)-lT2 

which since all terms are real the result is also real. 

(B.2.35) 

(B.2.36) 
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An almost identical argument holds for the term SI (CV 1 ) t. Since this term has the same structure 

as the term (W 2 B) t T2 , only transposed. 

Finally, we consider the term (W2 B)tT2 CVl (CVl)t. Recalling that: 

(B.2.37) 

the term may be rewritten as (W2 B)tW2 BSI (CVl)t. This term is considered in halves. It has 

already been established that the portion SI (CVl)t is real. Reference to Equation (B.2.34) shows 

that if W2 B is expressed as XW2 B then the remaining portion (W2 B)tW2 B must also be real. 

Thus the term (W2 B)tW2 BSl (CVl)t is a real matrix and hence the gain matrix (K) is also real. 

B.3 Proof that the Retro-Stage Offers No Additional DoF 

In Section 4.5.4 it was stated that re-assigning eigenvectors in the retro-stage offers no advantage 

over assigning them in the initial design. Assuming that the initial design is performed using two 

stage assignment this statement is proved. 

Proof 

The proof proceeds by arguing that eigenvectors assigned in stage one of the initial design enjoy the 

maximum design freedom and thus can not be bettered. The proof then focuses on re-assignment of 

eigenvectors initially assigned in stage two and shows that all the allowed subspace solutions avail­

able in the retro-stage were also available in stage two of the initial design. 

During stage one of the initial design, assignment enjoys the maximum design freedom for a given 

(A, B) or (A, C) system pair. Any assignable eigenvector must satisfy condition Cl or C2 of 

Theorem 4.5.3 and since these are the only restrictions that apply during stage one, it is clear that the 

maximum design freedom is available. 

Since the stage one eigenvectors can not be bettered it is assumed that they are protected. For con­

venience let us assume that right eigenvectors (V 1 ) were assigned in stage one and thus the reduced 

system will satisfy: 

O=CVl (B.3.38) 

Consider assignment of the left eigenvectors in stage two of the initial design. The allowed subspace 

must satisfy the augmented matrix equation below: 
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0 _- [LJ. MJ.] [VOl A -C
AdjI

] for all j = (81 + 1) ... n 

Which may be expressed as two separate equations: 

Lj(A - AdjI) + MjC = 0 

LjVl = 0 

Equally, the allowed subspace in the retro-stage CL;) must satisfy the following equation: 
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(B.3.39) 

(B.3.40) 

(B.3,41) 

(B.3,42) 

To demonstrate that there is no additional design freedom in the retro-stage we will show that all the 

solutions for £j of Equation (B.3,42) also satisfy Equation (B.3.40) and Equation (B.3,41). 

Expansion of A and a little rearrangement of Equation (B.3.42) shows that Lj will satisfy Equa­

tion (B.3.40): 

Lj(A + BKC - AdjI) + MjNcV C = 0 

Lj{A - AdjI) + (LjBK + MjNcv)C = 0 

Multiplication of Equation (B.3.42) by V 1 gives: 

which due to Equation (B.3.38) becomes: 

and since V 1 are the closed loop eigenvectors: 

LjV1ADl = 0 

Thus Lj also satisfies Equation (B.3.41) which completes the proof. 

(B.3,43) 

(B.3,44) 

(B.3.45) 

(B.3.46) 

(B.3.47) 
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Some of the techniques described in this thesis involve the manipulation of polynomial matrices. Al­

gorithms and reliable software for the manipulation of polynomial matrices are considerably less well 

developed than for numerical matrix computations. This chapter considers computation of two par­

ticular problems. However. much of the theory may be used for general manipulation of polynomial 

matrices. 

C.l Calculation of the Allowed Eigenvector Subspace 

This section considers solving the following equation: 

(C.l.l) 

Where (A, B) are a controllable pair. 

Duan [Dua93] proposes two symbolic methods for calculation of the solution. The first uses the 

Smith Canonical Form [Bar83. p319] and exploits the fact that for a controllable pair (A, B) the 

matrix [A - sI B] maintains full rank for all values of s [DeC89]. The Smith Canonical Form 

constructs two unimodularmatrices1 (Y(s), X(s» that diagonalise a given polynomial matrix, the 

1 Unimodular matrices have constant non·zero detenninants. They are the units of the ring of polynominl matrices. 
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zeros of the diagonal matrix (D(s) indicate the values of s at which the given polynomial matrix 

loses rank. For this case the Smith Canonical Form satisfies: 

Y(s) [A - sI B] X(s) = D(s) (C.l.2) 

Since the pair (A, B) are controllable no value of s will cause D(s) to lose rank thus it follows: 

Y(s) [A - sI B] X(s) = [I 0] (C.l.3) 

The leading diagonal of D(s) forms an identity matrix. The last r columns of X(s) produce the r 

zero columns of D(s). Since Y(s) is a non-singular matrix, these columns solve Equation (C. 1.1). 

Thus we can partition X( s) to extract the solution, as follows: 

X(s) = [Xl (s) Xl (s)] = [Xl (s) N(s)] (C. 1.4) 

where X(s) is n + r by n + r, Xl (s) is n + r by nand X2 (s) = N(s) which are n + r by r. 

To apply this approach in practice an algorithm is needed to calculate the Smith Canonical Form, 

fortunately the general proof of this form [Mac89, GLL82, RS70] is constructive and thus may be 

easily converted into an algorithms. 

The second approach uses the Matrix Fraction Description (MFD) [KaiSO]. If all the elements of 

a matrix are proper rational polynomials then the matrix may be factored as X (s) Y (s) -1. The ele­

ments of (sI - A)-1 B are rational polynomials. thus: 

(sI - A)-1B = X(s)Y(S)-1 

o (A - sI)X(s) + BY(s) 

o = [A-si B] [~~:~l 

(C.I.5) 

(C.I.6) 

(C.l.7) 

Equation (C. I. 7) shows that any MFD of (sI - A) -1 B is automatically a solution of Equation (C. I. I ), 

explicitly we note: 

[
X(S)] = N(s) 
Y(s) 

A convenient solution for Equation (C.l.7) can be found by inspection: 

(C.l.S) 
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X(s) = (sI - A)-lB 

Yes) = I 
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(C.I.9) 

(C.1.10) 

The Smith Canonical Form and MFD approaches are both concise mathematical solutions to Equa­

tion (C.1.I). But both approaches require symbolic manipulation to perform the Smith Decomposi­

tion or matrix inversion. This presents no difficulty when working by hand or using a symbolic soft­

ware package such as Maple [Hec93]. However, it is desirable to develop numerical algorithms 

[SPG92] that can be directly implemented in software packages such as Matlab and Octave. This 

requires a numerical representation of a polynomial matrix. A polynomial matrix N(s) of degree d 

may be written as: 

(C.UI) 

Where the degree d is the highest power of 8 over all the elements of N(s), Ni is a matrix of coef­

ficients for the indeterminate (s) of power i. The coefficient matrices may be concatenatcd in to a 

single block coefficient matrix. 

(C.1.12) 

This representation is used in numerical software packages such a Matlab, where block coefficient 

matrices may be stored in row: 

(C. l.l 3) 

or column form: 

(C.1.l4) 

Note, that one form is not the transpose of the other since the individual coefficient matrices are not 

transposed. In the following development, the column representation will be used. 
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Addition of two polynomial matrices using the block coefficient matrix representation is straightfor­

ward. The block coefficient matrix of lower degree is padded with zeros, the two equal size matrices 

are then simply added. Multiplication using block coefficient form requires the construction of a mat­

rix known as the resultant of a polynomial matrix. The resultant of a polynomial matrix L(s) is de­

noted < L > d, where d is the order of the resultant. The following recursive formula allows the 

resultant of a polynomial matrix to be constructed a column at a time: 

< L >0 ~ L 

[
< Lo >i LO] < L >i+1 ~ i =O ... d 

(C. 1.15) 

(C. 1.16) 

We see final form is the column representation ofL(s) repeated and staggered down the main diag­

onal: 

Lo 

< L >i= Lf71 

0 

o 

Where L(s) has degree m. 

0 

Lo 

Lm 

o 

o 
Lo 

(C. 1.17) 

If two polynomial matrices are conformable for multiplication then the block coefficient matrix of 

their product can be calculated directly using the resultant matrix. The order of the resultant matrix 

must equal the degree of the multiplying matrix. 

X=< L >dN (C. 1.18) 

Where N is a block coefficient matrix of degree d, < L > d is an order d resultant of the polynomial 

matrix L( s) and X is the block coefficient matrix of their product. 

Returning to the original problem, we see that solving Equation (C.l.I), requires that the product of 

two polynomial matrices should equal zero. Let 
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L(s) = [A - sI, D] (C. 1.19) 

and the block coefficient representation is: 

L = [A DJ 
-I 0 

(C.l.20) 

The block coefficient form of the solution is a matrix of dimension r that spans the null space of 

< L >d. Thus a numerical method for solving Equation (C.l.1) is: 

1. Find minimum d such that ker « L >d) has dimension r. 

2. Calculate a matrix (N) that spans ker « L >d). 

In fact, since both Lo and Ll of Equation (C.1.19) are full rank the dimension of ker « L >d) is 

equal to the excess of columns over rows. Thus the minimum order of the resultant < L >d which 

has a null space of dimension greater than or equal to r can be calculated, thus: 

(d+l)(n+r)-((d+l)r+n) ~ r 

The solution in block coefficient form is: 

range (N) = ker « L >d) 

n 
r 

(C.1.21) 

(C. 1.22) 

(C. 1.23) 

Where the order of the resultant < L >d is given by Equation (C.1.22). Calculation of the null 

space can be computed using numerically stable codes such as Singular Value Decomposition (SVD) 

and QR decomposition [GL83]. A memory efficient form of the algorithm that does not explicitly 

calculate the resultant was proposed by Wang and Davision [WO?3] and implemented in Matlab by 

Kwakernaak [Kwa90]. A similar approach was also taken by White [Whi91]. 

e.2 Evaluation of the Eigenvector Cost Function 

This section details methods of evaluating the expression below, and also describes some interesting 

properties. 
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(C.2.24) 

Before becoming embroiled in the details of calculating Equation (C.2.24) it is worth stating some 

properties of the matrix: 

'PQ = Q (Q*Q)-l Q* (C.2.2S) 

A matrix of this structure is at the heart of the general least squares solution [BIG74] thus the fol­

lowing properties are generally applicable. 

1. The matrix 'PQ is known as a Projector [BIG74, p. 48], because when multiplied by an arbit­

rary vector (v) the result is the component in the subspace spanned by range (Q). Or in other 

words the projector calculates the projection of v on Q. 

2. The matrix 

'PQL = 1 _ Q (Q*Q)-l Q* 

'PQL = 1 - 'PQ 

(C.2.26) 

(C.2.27) 

is the orthogonal projector and calculates the component of an arbitrary vector in the space 

that is not in range (Q) which is known as the complement space of range (Q) and denoted2 

Q.L. Thus an arbitrary vector (v) can be decomposed into the component in range (Q) and 

range (Q.L ), as shown below: 

v = 'PQLV + 'PQv 

The above equation is easily verified as follows: 

v = (I _ Q (Q*Q)-l Q*)v + Q (Q*Q)-l Q*v 

v = v 

(C.2.28) 

(C.2.29) 

(C.2.30) 

2Tbe use ofQ.l is a slight abuse of notation since strictly speaking one can only fonn the complement of a space. However. 
Q.l should be interpreted as a matrix with columns that span the complement space of range (Q). 
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3. If the columns of X fonn a minimal basis for the subspace range (X) then the projector (Px) 

onto X is 

Px = X (X·X)-l X· (C.2.31) 

4. The projectors PQJ. and PQ are idempotent matrices3 that is satisfy XX = X. They are also 

hermitian and positive semi-definite. 

5. All projectors have eigenvalues of 0 and 1 only and since PQJ. and PQ are hcnnitian their 

singular values are also 0 and 1 only. 

The preceding properties have immediate consequences on the evaluation of Equation (C.2.24). Sup­

pose that there exists F( s) of maximum and full rank that satisfies: 

F(s)Q(s) = 0 (C.2.32) 

then by properties 2 and 3. 

(C.2.33) 

This equality is only of benefit if a simple expression of for F(s) can be found. Recalling Equa­

tion (4.3.21) and Equation (4.3.22), we note 

(A - sI)Q(s) + BP(s) = 0 (C.2.34) 

Let F be a matrix of maximum and full rank that satisfies: 

FB=O (C.2.35) 

pre-multiplying Equation (C.2.34) by F gives: 

3 All projectors are idernpotent 
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F(A - sI)Q(s) + FBP(s) = 0 

F(A - sI)Q(s) = 0 

Thus an appropriate expression for F( s) that satisfies Equation (C.2.32) is 

F(s) = F(A - sI) 

(C.2.36) 

(C.2.37) 

(C.2.38) 

Using Equation (C.2.33) and Equation (C.2.38) to calculate JVi offers considerable simplification. 

It obviates the need to calculate Q(s) and sinee F(s) is of lower order than Q(s) subsequent manip­

ulations are also simplified. 

Evaluation of Equation (C.2.33) or Equation (C.2.24) involves the inversion of a polynomial matrix, 

an algorithm that uses block coefficient form has been developed by Stefandis et al [SPG92]. It is 

worth noting that the controllability of the pair (A, B) implies that the inverse of (F(s)F(s)*) exists 

for all s and thus the inverse of (Q (s) * Q (s) ) , must also exist. 

Proof 

The existence of (F(s)F(s)*)-l can be proved by contradiction as follows: 

Non-existenceof(F(s)F(s)*)-l impliesdet(F(s)F(s)*) = O. Which implies F(s) is rank deficient 

and since F is by definition full rank this implies: 

(C.2.39) 

Recalling Equation (C.2.35) we note that (FT).l = B, thus 

[B, (A - sI)].l -I 0 (C.2.40) 

the above only holds if [B, (A - sI)] is rank deficient for some s which would imply (A, B) are 

an uncontrollable pair and contradict the controllability assumption. <><> 

Although, direct evaluation of JVi is always possible, it involves calculating an inverse then im­

mediately collapsing it into a scalar. Intuition appeals for a more efficient approach and indeed, the 

following lemma shows an alternative approach can be taken. 

LemmaC.2.1 

Let Z be a non-singularn by n matrixoverafieldlF, andxT , y be n by 1 vectors over the same field 
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(IF), then: 

Z-l _ det(Z + yx) 
x y - det(Z) - 1 (C.2.41) 

Proof 

xZ-1y = (1 + xZ-1y) - 1 (C.2.42) 

= (det(1 + xZ-1y)) - 1 (C.2.43) 

= (det(ln + Z-lyx)) - 1 (C.2.44) 

= (det(Z-lZ + Z-lyx)) -1 (C.2.45) 

= 
det(Z + yx) 

-1 (C.2.46) 
det(Z) 

00 
Lemma C.2.1 may be applied to either Equation (C.2.33) or Equation (C.2.24). The expressions for 

Jv i are as follows: 

= det (F(s)(1 + VdiVdi)F(s)-) _ 1 
det (F(s)F(s)-) 

det (Q (s)* (I - VdiVdj)Q (s») 
= det (Q (s)" Q (s») 

(C.2.47) 

(C.2.48) 

The next step in this evaluation approach is to calculate the determinant of a polynomial matrix this is 

achieved using a linearization4 [GLL82]. This is an equivalent polynomial matrix with unity degree 

from which the determinant can be easily calculated. 

Two square polynomial matrices (N (s). L( s) are called equivalent if there exist unimodular (X (s). 
Y ( s)) such that: . 

X(s)N(s)Y(s) = L(s) (C.2.49) 

Equivalence is denoted by "'. In the following it will be assumed that N (s) is a monic matrix polyno­

mial. that is the leading coefficient matrix (N d) is the identity. A polynomial matrix is called regular 

4This fonn of Jinearization is not to be confused with generating a first order ODE from a non· linear model. 
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if the leading coefficient matrix (N d) is non-singular in which case an equivalent monic polynomial 

matrix can be fonned by multiplying with Nd i
. 

A linear matrix polynomial sI - Lo is a linearization of a monic polynomial matrix N(s) if they are 

equivalent, that is: 

(C.2.50) 

A polynomial matrix will have a set of linearisations5• A convenient linearisation is the first com­

panion form as shown below for N(s): 

Lo = 

o 
o 

I 
o 

-No -Ni 

o 
I 

The unimodular matrices (X(s), Y(s», that satisfy: 

o 
o 

X(s) [N~S) ~l Y(s) = sI - Lo 

can be constructed [GLL82] such that det (X(s)) = det (Y(s)) = 1. Thus: 

det (N(s)) = det (sI - Lo) 

(C.2.S1) 

(C.2.S2) 

(C.2.S3) 

Calculating det (N (s)) is reduced to finding the characteristic polynomial of Lo, a task for which nu­

merically robust algorithms [GL83] exist. Thus the numerator and denominator of Equation (C.2.47) 

and Equation (C.2.48) can be evaluated using a linearisation. 

The application of transfer function based theory leads to an alternative computational approach. 

Equation (C.l.9) shows that a transfer function solution for Q (s) is: 

5 If Lo is a linearization of N (8). then any matrix similar to Lo is a Iinearization. 
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Q (s) = (sI - A)-IB (C.2.54) 

Applying the above definition, the product (Q (8) * Q (8)) is a square transfer function and thus its 

detenninant is the quotient of the system pole and zero polynomials [Mac89, p. 46]: 

det (Q (8)* Q (8)) = ZI«8)) 
PI S 

Equally, this holds for the numerator detenninant: 

Expressing Q (s) as: 

det (Q (s)* (I + vdivdi) Q (8)) = Z2«8» 
P2 s 

Q (s) = adj(sI - A) B 
det(81- A) 

It is clear that pole polynomials PI (s) and P2 (8» will equal one another and thus satisfy: 

Thus the desired eigenvector cost function is the quotient of two zero polynomials: 

det [Q (sr (I + VdiVdj)Q (s)] Z2(S) 
det [Q(sr Q(s)] = ZI(S) 

For a square system (A, B, C) the zero polynomial is defined as: 

([
SI - AB]) z(s)=det C 0 

(C.2.55) 

(C.2.56) 

(C.2.57) 

(C.2.58) 

(C.2.59) 

(C.2.60) 

The zeros polynomials for both square and non-square systems can be calculated with numerically 

stable code [END82] from the state space description. Thus it only remains to derive the state space 



C.3 References Page 316 

representations, Application of a little system interconnection theory [Mac89, Dai91] gives: 

(C.2.61) 

and, 

Q (s)' (1+ VdiVdj)Q (s); [_I_+_:_i_Vd...;i_~-:O;=-+_~_] (C.2.62) 

This method has the drawback that the transfer function is not defined if the closed and open loop 

poles are coincident. However, it is straightforward to implement in software packages such as Mat­

lab and Octave where stable code for zero polynomial calculations is readily available. 
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