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Abstract

Structured control (static output feedback, reduced-order control, and decentralized
feedback) is one of the most important open problems in control theory and practice.
In this thesis, various techniques for synthesis of structured controllers are surveyed
and investigated, including H 2 optimization, H, optimization, L1 control, eigenvalue
and eigenstructure treatment, and multiobjective control. Unstructured control-
full-state feedback and full-order control-is also discussed. Riccati-based synthe-
sis, linear matrix inequalities (LMI), homotopy methods, gradient- and subgradient-
based optimization are used. Some new algorithms and extensions are proposed, such
as a subgradient-based method to maximize the minimal damping with structured
feedback, a multiplier method for structured optimal H2 control with pole regional
placement, and the LMI-based H2/H,/pole suboptimal synthesis with static output
feedback. Recent advances in related areas are comprehensively surveyed and future
research directions are suggested.

In this thesis we cast the parameter optimization of passive mechanical systems
as a decentralized control problem in state space, so that we can apply various decen-
tralized control techniques to the parameter design which might be very hard tradi-
tionally. More practical constraints for mechanical system design are considered; for
example, the parameters are restricted to be nonnegative, symmetric, or within some
physically-achievable ranges. Marginally statable systems and hysterically damped
systems are also discussed. Numerical examples and experimental results are given to
illustrate the successful application of decentralized control techniques to the design
of passive mechanical systems, such as multi-degree-of-freedom tuned-mass dampers,
passive vehicle suspensions, and others.
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Chapter 1

Introduction

1.1 Background

In the design of passive mechanical systems, such as tuned mass dampers, vehicle sus-

pensions, vibration isolators, structures and machine elements, we must often choose

the parameters of stiffness and damping to achieve some performance objectives, such

as vibration suppression and disturbance rejection. Usually the design is accomplished

through trial-and-error procedures based on the designer's experience. There are also

numerous optimization methods proposed for some special problems in this catalog,

yet they are not widely adopted due to their complexity and numerical inefficiency.

And many problems still remain challenging.

For example, it is known that multi-degree-of-freedom tuned mass dampers have

the potential capacity to damp more than one mode, yet there is no available approach

for their design, other than in the simple case where the motions are decoupled in

space ([OsD98] [WhiOO]). Another example is vehicle suspensions. Although active

suspensions have been investigated for three decades ([EKE95] [Hro97]), passive sus-

pensions are still dominant in the automotive industry since they are simple, reliable

and economical. But design methods are still based on the simplified quarter-car or

half-car model, and there is no efficient method to take account of the full car model

or all of the performance requirements.

However, it is very interesting to view these problems from the view of feedback



control. The springs feed back the relative displacements locally, the damping elements

feed back the relative velocities locally, and the control forces with decentralized feed-

back take the role of stiffness and damping connections. This means that parameter

selection and optimization of a huge class of passive mechanical systems becomes

a structured control problem. Thus many difficult problems in passive mechanical

systems become tractable in the framework of structured control.

1.2 Problem Formulation

For a mechanical system, we can write the equations of motion in matrix form as

Mq + Cq4 + Kqq = Buu + Bad + Bpqo + Bv4o (1.1)

where Mq, C and Kq are the mass (positive definite), damping, and stiffness matrices,

respectively. The "control force" vector input u is generated by the springs and

damping elements to be designed, d is the exogenous disturbance force input, qO and

40 are the exogenous displacement and velocity disturbances.

For simple systems, the motion equation (1.1) can be obtained with Newton's law.

For complicated systems, we can use the Lagrange-Hamilton principle. Structural

matrix analysis [Gha97] is a very powerful method to model large three-dimensional

structural systems. The basic idea is to assemble the individual mass, damping, and

stiffness matrices by taking every node as independent, and then to use a constraint

condensation technique to get the system motion matrix.

Defining the state variables as

qx =
4 - MqgaBvqo



we can write the equation of motion (1.1) as

0 Il
L -Mf 7Kq -M-1Cq J

+ [
0 MqBv

Mq- 1Bd Mq 1 B, - Mq-1CqMq-1Bv

0

Mq-'Bu

Ax+Blw+B 2u

Using geometric information, we can write the output vector of relative displacements

and velocities between connection points as

y = C2x + D 21w (1.3)

in which the coefficient of u D2 2 is zero naturally. Also, we can take the the displace-

ments and velocities at the critical nodes together with the the control force u as the

cost output z

z = Cix + Duw + D 1 2U (1.4)

Thus parameter design of passive mechanical systems is cast as a decentralized control

problem in state space, as shown in Figure 1-1. Our goal is to determine the feedback

law

U = Fy (1.5)

where the feedback gain F is a decentralized (block-diagonal) matrix composed of

Figure 1-1: Decentralized control block diagram of passive mechanical systems

d
q0

(1.2)



the parameters to be designed:

ki ci

F k2 c2  (1.6)

km Cm

where ki > 0 and ci 2 0, i = 1, 2, ...m. For systems with hysteretic damping, F is a

complex decentralized matrix:

ki(1+i 91) 0

F=k2(1 + i W 2) 0

kn(1+iZ-L7n) 0

Therefore, state-space control techniques can be used to design passive systems. We

should bear in mind that for a practical design, the parameters ki and ci should be

be nonnegative or reside in some reasonable internals.

With system augmentation, this above setup is still valid for the case where the

disturbance w includes velocities or accelerations and the cost output z includes

accelerations. We can also handle weighted costs or weighted disturbances by taking

shape filters into account in the generalized plant.

1.3 State-Space Control

Optimal and robust control has achieved great progress since the 1960s thanks to

the contributions of Kalman, Athans [LeA70], Anderson and Moore [AnM90], Doyle

and Glover [DGK89], Boyd [BEF94], Gahinet [GaP94], Patton [LiP98], and many

others. The most popular techniques are H 2/LQR, H, optimization, and to a lesser

extent, eigenstructure treatment. Multi-objective control has also been developed

recently. As we know, H 2/LQR or H, controllers with full-state feedback or full-

order output feedback can be obtained nicely by solving one or two Riccati equations

or by solving linear matrix inequality (LMI) problems. Eigenstructure assignment

software packages are also available now [LiP98].



However, modern control has not been widely adopted in industry. Besides the dif-

ficulty of modelling the plant uncertainties, an important reason is that unstructured

controllers are often physically impossible or impractical, because they required high-

order implementation or full-state sensing. Structured controller design-reduced

order, static output-feedback control, and especially decentralized control-is one of

the most important open problems in modern control theory and practice. Structured

control problems usually require a non-convex optimization, and some problems turn

out to be NP hard [BIT97]. Recently, structured control has been investigated exten-

sively, and some encouraging progress has been achieved for static output-feedback

control [EOA97]. More information can be found in the recent surveys [Sil96] [SAD97].

We note that state-space control techniques have already been utilized for the

design of passive systems in the past decade. Lin et al. [LLZ90] adopted Kosut's sub-

optimal LQG [Kos70] to the design of passive vibration isolation system. Projective

control has been used to design an SDOF TMD [Ste94]. Static output H2 was also

formulated in [HaA98] for a passive system and was solved via a genetic algorithm. A

Kalman filter was used in [SuTOO] to trade off the rejection of disturbance force and

ground vibration, but this approach only yields a practical design for an SDOF main

system. Camino et al. [KZP99] used the static output LQG algorithm developed by

Geromel [GSS98] in the design of a quarter-car suspension. Iterative LMI for static

output H, was adopted by Poncela and Schmitendorf [PonS98] to the design of the

SDOF TMD. In the above literature, only (centralized) static output feedback control

is related. Cluck et al. [GRG96] proposed some engineering approximation methods

to the full-state feedback LQG, so as to obtain the passive parameters of supplemental

dampers. Kosut's suboptimum also has been used by Karnopp [EKE96] for design

of decentralized passive suspension. The application of gradient-based decentralized

LQR optimization to the design of passive dampers can be found in [AgY99].

1.4 Thesis Outline

In this thesis, various techniques of state-space controller design are examined, in-

cluding structured and unstructured H 2, H,, L 1, and multi-objective optimal con-



trol, and eigenvalue & eigenstructure treatment. Riccati-based, LMI-based, gradient-

and subgradient-based optimization, and homotopy methods are used to solve these

problems. Recent advances in related areas are comprehensively surveyed, including

structured and unstructured cases. Some new algorithms and extensions are proposed.

Numerical examples and experimental results are given to illustrate their successful

application to the design of passive mechanical systems, such as tuned mass dampers,

passive vehicle suspensions, and others.

In Chapter 2, the concept and physical meaning of the H2 norm are introduced,

and the synthesis approach of H2 optimal control with full-state and full-order dy-

namic output feedback are briefly reviewed. Then we focus on structured H2 control-

static output feedback, lower-order control, decentralized control-and the associated

computational methods. Examples are given to illustrate the application to passive

mechanical systems, such as tuned-mass dampers. Practical constraints for passive

mechanical systems are considered, such as nonnegative or symmetric parameters.

In Chapter 3, the concept of the H, norm and robustness are briefly introduced,

then we discuss Riccati-based and LMI-based H, synthesis for full-state feedback

and full-order control. H, control with lower-order output feedback or static output

feedback is solved with iterative LMI techniques. Decentralized H" control is also

examined. Numerical examples are given to show the application to the parameter

design of passive mechanical systems, and the efficiency of various algorithms are

compared.

In Chapter 4, the physical meaning of the eigenvalues and eigenvectors are high-

lighted, and important results and techniques of eigenvector and eigenstructure as-

signment are reviewed, including full-state feedback, static output feedback, con-

strained output feedback, and regional pole placement. A new approach is proposed

to treat the poles of decentralized (and other architecture constrained) systems, so

as to maximize the minimal damping. Hysteretically damped systems (complex feed-

back) are considered. Practical examples are presented to illustrate the application to

the design of passive mechanical systems. The performance of the closed-loop systems

produced with H2, H,, and eigenvalue treatment are compared in the examples.



After we investigate the individual control techniques, we turn to multi-objective

synthesis in Chapter 5. There we discuss multi-objective control in the classification

of H 2 /H,, H 2/regional pole placement, and H, or H 2 /H./regional pole placement.

Unstructured control and structured control are covered. L1 optimization and L1

associated multi-objective control are briefly reviewed. In this chapter, we also ex-

tend the cone-complementary linearization algorithm [EOA97] to general multiobjec-

tive suboptimal control with static output feedback; we propose a new approach for

decentralized H 2 control with arbitrary pole regional constraints.The advantages of

multi-objective control are highlighted in the example of a mechanical system design.

Chapter 6 presents the conclusions and the main contributions of this thesis. Some

future research directions are suggested.
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Chapter 2

Optimal H2 Control

H2 optimal control, or equivalent to linear quadratic regulator, is one of the most

widely used and elegant control techniques. For full-state feedback and full-order

dynamic output feedback, we have an almost "analytic" solution by solving one or two

matrix Riccati equations. However, if the controller has some structure constraints,

such as static output feedback, fixed order, or decentralized architecture, Riccati

equations turn out to be useless for direct H2 synthesis. Nonlinear programming or

linear matrix inequalities are used to seek for structured H 2 or LQR control.

In this chapter, the concept and physical meaning of the H 2 norm are introduced,

then synthesis approaches of H2 optimal control with full-state and full-order dy-

namic output feedback are briefly discussed. And we focus on structured H2 control

static output feedback, lower-order control, decentralized control, and the associ-

ated computational methods. Examples are given to illustrate their application to

the design of passive mechanical systems, such as tuned mass dampers, and passive

isolation and suspensions.

2.1 Norm and System H2 Norm

2.1.1 Norm, Signal Norm, and System Norm

A norm is a map from a space (vector, matrix, function space, etc.) to the real num-

bers. A norm must be nonnegative, homogeneous, and satisfy the triangle inequality.



For example,

" the 1 norm of an n-dimensional vector: ||xz| 1 = maxii lzil;

* the 2 norm of an n-dimensional vector: |xf|2 = (z');

" the oo norm of an n-dimensional vector: ||x11. = Enjjzil;

* the 2 norm of an m x n matrix: ||A|| 2 = max11 11 = 1 f(x'A'Ax) = Amax(A'A) =

Amax(AA') = omax(A), where Amax means the largest eigenvalues of a matrix,

omax is the largest singular value of a matrix;

" the oo norm of a mxn matrix: ||A1ll, = max1 61 =1 ||z|Ax|o = maxl<i<m _ an

where the prime indicates the complex conjugate transpose of a vector or matrix.

In modern control techniques, a signal norm is often used as a measure of signals.

For example, the L2 norm of a continuous-time vector signal f(t) is defined as the

square root of the signal's energy:

|f|| 2 = [ f'(t)f(t)dt] = [ F'(.)F(w)dw] 1/2 (2.1)

where F(w) is the Fourier transform of f (t). The L0o norm of a continuous-time vector

signal f(t) is defined as the peak amplitude, evaluated over all signal components and

all time:

|f|o = sup maxIf(t)| = sup||f(t)1100  (2.2)
t i t

Based on a given signal norm, we can define a system induced norm, which is

the upper bound of the gain of a system Hz. (supposed unbiased). That is,

||Hz.||,i = sup 1Z4P (2.3)
w$AO H1WH1

where ||w||, is the signal p-norm of the input w(t), ||zl|, is the signal p-norm of the

corresponding output z(t). The index p is often chosen to be 1, 2, or oo. If the signal

p-norm of the system output is finite for any input with finite p-norm, we say the

system is p-stable. Further if ||H||,i is finite, we say this system is p-stable with finite

gain. For systems that can be represented by a finite-dimensional state-space model,



p stability coincides with BIBO stability, meaning that any bounded input results in

a bounded output [MMV99].

The L, induced system norm is the upper bound of the L, - L, gain, and is

sometimes called the system H1 norm, since for LTI systems the L" induced norm

turns out to be the 1 norm of the system transfer matrix. The L 2 induced norm is

the upper bound of the L 2 -* L 2 gain, called the system H, norm because for LTI

systems this bound turns out to be the oo norm of the system transfer matrix. The

system H2 norm is not an induced norm, but is also important and meaningful. In

the following, we focus mainly on the system H 2 norm and optimal H 2 control. We

will discuss system H, norms in the next chapter.

2.1.2 System H 2 Norm

The system H 2 norm is the upper bound of the peak amplitude of the output with unit

energy input. Therefore, it is also called the L 2 to Loc gain.

||z||2 = (sup max |z(t)j)2 <const + 72||w|I = const + -Y2 f w(t)'w(t)dt (2.4)
t i J0

Consider a causal finite-dimensional continuous-time LTI system, represented in state-

space form by the matrices (A, B, C, D) so that its transfer matrix Hzw is given by

Hzw(s) = C(sI - A)- 1 B + D (2.5)

The L 2 to L, gain is the H 2 norm of H.. Physically, it is the signal energy of the

impulse response with initial states set to zero:

|Hzw|| = trace[H (jw)Hzw(jw)]dw

= j trace[hz(t)hzw(t)] dt (2.6)
f0-

Before we obtain the analytical expression for the system H 2 norm, we introduce

one identity:

Lemma 2.1 If M is symmetric and A is Hurwitz (that is, all eigenvalues are in the

open right half plane), then K = f0 eA'tMeAt dt if and only if KA + A'K + M = 0.



Proof: "<", post-multiply K = fO eA'tMeA dt by A, integrate by parts, notice

lime-oce At = 0, we can get the Lyapunov equation.

"=->", pre-multiply and post-multiply the Lyapunov equation by e^'t and eAt and

integrate.

For the casual LTI system H(s) = C(sI - A)- 1B + D, the impulse response is

hZW(t) = Ce ̂ B+ D

so to obtain a finite H 2 norm, D in equation (2.5) has to be zero. Further, if A is

Hurwitz, according to equation (2.6) and Lemma 2.1, we have:

||Hzw|| = trace[h'zw(t)hzw(t)] dt

= J trace[B'e'^'C'CetAB] dt = trace(B'QB)
J00j trace[CetABB'e' C'] dt = trace(CPC')

where P,Q are the unique solutions of Lyapunov equations AP + PA' + BB' 0,

A'Q + QA +-C'C = 0.

This result is restated in the following theorem [Meg0l] [ZDG95]:

Theorem 2.1 The H 2 norm of system (A,B,C,D) is infinite if A is not Hurwitz

or D # 0, otherwise

|IH| |= trace(CPC') = trace(B'QB) (2.7)

where P or Q can be computed by solving Lyapunov equations

AP + PA'+ BB' = 0 (2.8)

A'Q + QA +C'C = 0 (2.9)

Remark: Take V(x) = x'Px as a Lyapunov fuction, then V(x) = 'Px + x'Pi =

x'(PA + A'P)x = -x'BB'x. So if B has full row rank, then P > 0 is sufficient and

necessary to guarantee that A is Hurwitz, ie asymptotically stable. Similarly if C

has full column rank, then Q > 0 is sufficient and necessary to guarantee that A is

Hurwitz.



Theorem 2.1 provides an approach to evaluate the system H 2 norm. More impor-

tant, it also provides a start point to derivate the Riccati equation for unstructured

H 2 control or to obtain the conditions for structured H 2 control.

If a symmetric Q exists, then for any X such that X > Q, we have A'X + XA +

C'C < 0 and trace(B'XB) > trace(B'QB). Thus we can get a matrix inequality to

compute the system H2 norm if A is Hurwitz [BEF94]:

||H| |= inf{trace(B'XB) : A'X + XA + C'C < 0} (2.10)

Or similarly for any Y such that Y > P, we have

|IHI = inf{trace(CYC'): AY +YA' + BB' <0} (2.11)

Further, it can be shown [GNL95] that this inferior in (2.11) can be calculated as:

||H |2= inf

S.Y

trace(S)

AY + PY'+ BB' < 0

S CY
> 0

YC' Y

(2.12)

This matrix inequality is also very useful in LMI-based H2 synthesis

White Noise to Variance Gain, another view of H2 norm.

White noise is the most important stochastic model in LTI system design. In

mathematics, a scalar white noise signal f(t) is a weird set of generalized functions,

equipped with a probability measure such that
b b

E g = 0 and E Ig|2 = |a h(t|12 dt for g = fah(t) f (t) dt (2.13)

for any function h(t) [Meg0l], where E is the average or expected value. This defini-

tion can be extended to the vector case.

So, if a vector z(t) is the output of a causal LTI system with (unit) white noise

input under zero initial condition, we have

1 pT I.t
lim E- I z(t)'z(t)dt = lim I trace(h(t)'h(t)dt = ||H|| (2.14)

T-oo T 0  too J0

This means that H 2 norm is the asymptotic value of system output variance with

(unit) white noise input.



2.2 H2 Control with Full Sate Feedback

In this section, Riccati equation for H 2 control with full-state feedback is developed,

and more equivalent statements are introduced. More detail can be found in the

lecture notes by Megretski [Meg0l] and the book of Anderson and Moore [AnM90].

2.2.1 H2/LQR and Riccati Equation

Full-state feedback problem: given a continuous-time LTI model

J = Ax + B1 w + B 2u

z = Cix + D12u (2.15)

All states are available for control, and we are required to design a full-state feedback

controller

U = Fx

to minimize the H2 norm of the closed-loop system w(t) - z(t).

We make the following four assumptions

1) (A, B 2 ) is stabilizable;

2) (C1, A) is detectable;

3) D 12 has full column rank;

4) A-jwI 2 has full column rank for all w.
C1 D12

where "stabilizable" means all unstable modes of A are controllable under B 2. As-

sumption (2) is not essential. It enforces that unconditional optimization will result

a stabilizing control law [ZFDG95]. Assumption (2) together with assumption (1)

guarantees that the BIBO stability is equivalent to internal (Lyapunov) stability. As-

sumptions (3) and (4) are used to avoid the singularity of Riccati-based algorithm,

but they are not required for LMI-based algorithm, as in Hoo optimization [GaP94].



Wi

1 -
= ||Hzw| = lim E-

T-oo T 0
z(t)'z(t)dt

1 IT
- lim E{- I (Cx + D12u)'(Cix + D12u)dt}

T-*oo T 0

1 T x C/ C1 CID1 x
- lim E{- dt}

T-*oo T U D 2C1 D' 2D12

= E j[]x Q N x
0 U N' R u

dt with x(t)|t=o = zO

in which Q = C'C1, R = D'2 D1 2, N = CD 1 2 .

This is a standard LQR problem with initial state xO satisfying E(xox') = trace(B'B1).

(For the LQR problem, generally xo can be any given state.) Further, with the idea

of "completion of square", we have

= E j{[x Q N x
o Eu N' R u

= E~ *x Q N x

Jo U N' R U

+ -(x'Kx)
dt

d
- (x'Kx)
dt

d
+[(Ax + B2 u)'Kx + x'K(Ax + B2u)] - -(x'Kx) dt

dt

= E {(u - Fx)'R(u - Fx) - +(x'Kx)}dt

> _j+ (x'Kx)dt

= E(x'Kxo) = trace(B'KB1)

where K is a symmetric matrix.

By comparing the two sides of the above equation (2.17) we can obtain

Q + A'K + KA = F'RF

-RF = N'+ BK

(2.17)

Since R > 0, we can further obtain the algebraic Riccati equation for the matrix

K:

(A - B 2R- 1N')'K + K(A - B 2R- 1 N') - KB 2R-1 B K + Q - NR- 1 N' =0 (

J(u)

(2.16)

J(u) dt

th the definition of system H 2 norm, we have

(2.18)



and the stabilizing optimal control u = Fx:

F = -R-1(B K + N') (2.19)

where K is the stabilizing solution to Riccati equation (2.18). (Note: for the general

Riccati equation A'X + XA - XBB'X + Q = 0, "stabilizing" means A - BB'X is

Hurwitz.) Consequently the minimum H 2 norm is given by

||H |2= min J(u) = E(x'Kxo) = trace(B1KB1) (2.20)
U

Remark: From (2.18) and (2.19), we can see that full-state feedback H2/LQR

optimal gain F doesn't depend on the initial state xO or B 1. This is quite different

from static output feedback.

If the above four assumptions are satisfied, the algebraic Riccati equation (2.18)

will have a unique stabilizing solution K, and then we can solve for the optimal con-

troller. Numerically efficient algorithms to solve the algebraic Riccati equations (and

Lyapunov equations) were developed around 1970 and standard codes are available

[ZDK95].

The above equations (2.18) and (2.20) can also be obtained from Theorem 2.1,[A + B2F B1 1inoteLauv
by substituting the closed-loop description into the Lyapunov

C1 + D12F 0
equation therein. We will see this type of procedure in next section.

2.2.2 KYP Lemma

There are also other equivalent statements for H2 optimal control with full-state

feedback. They are summarized in the KYP lemma. For the proof of KYP lemma,

please refer to the lecture notes [Meg01].

Theorem 2.2 (Kalman, Yakubovich, Popov, etc) The following statements are

equivalent:

1) Minimum in the H2/LQR problem (2.15) and (2.16) exists and is unique for

any xo;



3) (A, B2 ) is stabilizable, R > 0, and the algebraic Riccati inequality

(A - B 2R- 1 N')'L + L(A - B 2R 1N') - LB 2R- 1 B L + Q - NR- 1 N' > 0

has a solution L = L';

4) (A, B2) is stabilizable, R > 0, and the Hamiltonian matrix

H= A- B2R-'N'
Q - NR- 1 N'

B2R-'B2
-(A - BR-1 N')'

doesn't have any eigenvalue on the imaginary axis;

5) (A, B 2 ) is stabilizable, and there exists a scalar c > 0, such that

(jwl - A)-'B2

I

(jwI -

-A)--

Q N (jwI - A)-1B 2

N' R I

B2 (jwI - A)-1B2

for all w E R except those for which jw is an eigenvalue of A.

If these conditions hold, then

a) The minimum ||H||1 equal to trace(B'KB1 ) (or equavalently the minimum cost

of LQR equals 'Kxo), and the optimal state-feedback control is

u(t) = Fx(t) = -R- 1 (B K + N')x(t), for Vt

b) K equals -I<-Q where the columns of [<', x1']' form a base in the stable

invariant subspace of the Hamiltonian matrix.

Remark: The algebraic Riccati inequality (in KYP statement (3) doesn't seem

to be linear about L, however using the Schur complement

Q(x)

S'(X)

S(x)
R(x)

R(x) > 0

Q(x) - S(x)R- 1 (x)S'(x) > 0
(2.21)

2) (A, B 2 ) is stabilizable, R > 0, and the algebraic Riccati equation (2.18) has a

stabilizing solution K = K';



We can cast it in an equavalent linear matrix Inequality (LMI) form,

(A - B 2R- 1N')'L + L(A - B 2R- 1N') + Q - NR- 1 N' LB 2 1
I> 0 (2.22)

B L R

Thus, full-state feedback H 2 optimization (or LQR) problem also can be handled with

the LMI techniques.

min trace(B'LB1) subject to LMI (2.22) (2.23)
L

And to solve this LMI problem, we don't have the singularity limitation, unlike

Riccati-based method. Another LMI relation to solve full-state feedback H 2 control

also can be derived based on (2.12), see [GNL95].

2.2.3 Phase Margin and Gain Margin

Phase margins and gain margins play a critical role in the classical control systems

design. One attracting feature of H 2 optimal controllers with full-state feedback is

that they can guarantee certain stability robustness with respect to uncertainties in

the gain margin or phase margin of the feedback loop.

For i = Ax+B 2u, u = Fx, the upper gain margin is defined as the scaler factor gu

by which the gain F can increase before the closed system A + B2guF goes unstable.

The lower gain margin ga is the scaler factor by which the gain F can decrease before

the closed system A + B 2gdF go unstable. The phase margin is the smallest 4' such

that A + B2e0F and A + B 2e -jF are still stable.

Corollary 2.1: For the optimal H 2 controller with full-state feedback, the upper

gain margin is infinity, lower gain margin is at least 0.5, and phase margin is at least

3'

Taking V(x) = x'Kx as the Lyapunov function for the "perturbed" system, and

use the Reccati equation (2.18), we can prove the above corollary.



2.3 Full Order Optimal H 2 Control with Output

Feedback

From the previous section, we see that the optimal H 2 controller with full-state feed-

back can be obtained just by solving the Riccati equation. However for most cases,

it is impractical or impossible to sense the full-states. So it is more important to be

able to design a controller that feedback only the output signals. In this section, we

will examine H2 optimization to design the full-order compensator with output feed-

back. Then in the next sections we will discuss static output feedback and lower-order

output-feedback controllers with H 2 optimization.

2.3.1 Kalman State Estimator and Kalman filter

First let's see how to estimate the state of the plant with process noise from the

measured output signals. Given a continuous time LTI plant model

, = Ax+Bu+Gw

YV = Cx+Du+v (2.24)

where the process noise w and measurement noise v satisfying E(w) = E(v) =

0, , E[w(t)w'(T)] = Q6(t-Tr), E[v(t)v'(T)] = R6(t-T), and E[w(t)v'(r)] = NJ(t-T),

this means that w and v are zero-mean white noises. We are required to estimate

the state x with #(t) using yv(t) and u(t), so as to minimize the steady-state error

covariance

J = lim E[e(t)e'(t))], where e(t) = x(t) - i(t)
t-.oo

Suppose the estimator has the form

X = A + Bu - H(yv - C2 - Du) (2.25)

From equation (2.25) and equation (2.24), we obtain the differential equation for

estimation error

e=(A + HC)e+[G H] [ (2.26)

--q



Figure 2-1: Kalman state estimator

We can see that minimization of the error covariance is a linear quadric problem.

Following the idea of 'completion of square' similar as in Section 2.2, we can get

another Riccati equation. Below we use another approach starting from Theorem

2.1.

From equation (2.26), we write the closed-loop system

w A - HC [G,H ]

v I0

Rescaling the intensity of the white noise, and substituting the closed-loop into the

Laypunov equation in Theorem 2.1, we can express the cost J = trace(L), where L

is a symmetric matrix satisfying

(A+ HC)L+ L(A+ HC)'+[GH]Q [G H]' 0 (2.27)
N' R

Define

Q N
J(L, H, M) = J + trace{[(A + HC)L + L(A + HC)'+ [G, H] N [G, H]']S}

where S is a Lagrange matrix. To minimize trace(L) subjecte to (2.27), we require

&J/OH = 0, that is L'C'+GN+H R =0. If R > 0, we write H = -(GN+LC')R- 1 .

Substitute it into (2.27), we obtain the Riccati equation about L

( A-GNR 1 C)L+ L( A-GNR- 1 C)- LC'R-CL+G(Q -NR- 1 N')G' =0 (2.28)

If the pair (C, A) is detectable, R > 0, Q - NR 1 N' > 0, and [A - NR- 1C, Q -

NR-N'] has no uncontrollable mode on the imaginary axis, then Riccati equation



(2.32) has a unique solution L [ZDK95]. Thus we can solve for the residue matrix H

for state estimator and the minimum cost Jmin

H = -(GN + LC')R- 1  (2.29)

Jmin = trace(L) (2.30)

The above is design of Kalman state estimator. From equation (2.32) and (2.29) we

can see that the residue matrix H is independent of B and D.

More generally, instead of estimating state x, if we would like to estimate some

output z = M'x with the minimum error in the sense of H 2 norm. The cost J =

limte, E[(z(t) - (t))'(z(t) - (t))']. The optimal H 2 estimator looks like a filter to

obtain the concerned signal z from the signal with process noise w and sensor noise

v, as shown in Figure 2-2. That is why it is also called Kalman filter.

w , x=Ax+Bu+Gw z+, e

u z=M'x y_ yv-
S y=Cx+Du Kalman Filter i

Figure 2-2: Kalman filter

The estimator is constructed as

x = A+Bu+ H(y,-CJ -Du)

Z = M' (2.31)

As in the Kalman state estimator, we can solve for the optimal problem

min J = trace(MLM'), s.t. () (2.32)
H

Further the residual gain matrix H is exactly the same as that in the state estimator

and can be obtained from equation (2.32) and (2.29). The corresponding minimum

cost of H 2 estimation is trace(MLM'). It is interesting to observer that the resid-

ual matrix H DOES NOT depend on which component M'x of the state is being

estimated. This is different from H, optimal estimation.



2.3.2 Output Feedback

Now let's consider the general full-order H 2 control problem with output feedback.

Given an LTI plant model

= Ax+B 1 w+B 2u

z = Cix + D 12 u (2.33)

y = C2x+D 21w+ D 22U

we are required to design a proper rational controller K0opt(s) which stabilizes the

plant internally and minimizes the H 2 norm of the closed-loop system from the input

w to cost z.

In the plant model, D11 is assumed to be zero so as to guarantee that the H 2

problem is well posed. And since the case D 22 nonzero can be recovered from zero

case [ZhD95], without loss of generality, we can assume D 22 to be zero in the following.

The H 2 optimal control problem can be taken as an LQR problem involving the

cost

J(u) = lim E{ j z(t)'z(t)dt}
T-*oo T 0

1 T x CC CD12 x dt
= lim E{ dt}D2 C l 1 2 I

T-+oo T 0 U D'1C D'12D12 UD12D1212

with correlated process white noise ((t) and sensor white noise 0(t) entering the

system via the channels [B', D']',

(t) (T) I B1  B1  6(t-T)E{ I} =ILt r
0(t) 0(T) D12  D12

And the H 2 optimal control problem can be realized as a full-state feedback controller

and a Kalman state estimator, as shown in Figure (2-3). One remarkable feature of the

H 2 optimal compensator is that we can design control gain and estimator separately,

which is not the case for the Hoo optimization.

Theorem 2.3 For the H2 optimal control problem (2.33), if



Figure 2-3: Full-order dynamic output feedback H2 controller

i) (A, B 2 ) is stabilizable, and (C2, A) is detectable;

ii) D 12 has full column rank and D2 1 has full row rank;

iii) A jwI

C1

B2]

D12

iv) A -jwLI Bi

C2 D21

has full column rank for all w;

has full column rank for all w,

then there exists a unique optimal H2 controller

Kp (s) :=
A-HC2 + B 2F H]

F 0
(2.34)

where F is the H 2 optimal gain matrix with full-state feedback, H is the residual gain

matrix of Kalman state estimator, and the cost

min||H.|| 11 = trace(B'KB1) + trace((B'F + D' 2 C1)L(B F + D' 2 C1)')

= trace((HCG + B1D12)'P(HC2 + BiD12 )) + trace(Ci LC')(2.35)

in which K and L are respectively the solutions of the Riccati equations associated

with the full-state feedback and the Kalman state estimator.

For a detailed proof of the above separation theorem of H 2 optimal control, please

refer to [ZhD95] or [DGK89]. Further more, all the stabilizing -y-suboptimal H 2

controllers such that ||H~, |2 <y can be expressed as



Figure 2-4: Q parameterization of suboptimal H2 controller

where M(s) is

A- HC2 + B2F H B 2

M(s):= F 0 I
-02 I 0

and Q is any stable transfer function, and ||Q|| < 2 (min| |Hzll2)2 [DGK89].

Finally, we should point out that, H2 control with full order output feedback also

can be handled with LMI techniques, even for singular plants that don't meet the

assumptions ii)-iv) in Theorem 2.3 ([GaP94] [MOS98]).

2.4 H2 Control With Static Output Feedback

In Sections 2.2 and 2.3, we showed that optimal H2 control with full-state feedback

or full-order output feedback can be obtained simply by solving one or two decou-

pled Reccati equations. However, in most application to sense the full-states is not

practical or impossible, and it's also difficult and not robust to implement full-order

controller (the order of the original plant + the order of shape filters). That is one

of the most important reasons that modern control is not widely adopted by the

engineers in industry. Generally the design of a lower-order optimal controller leads

to a untractable problem. We will discuss some approaches available for lower-order

control the next section. In this section, we will focus on H 2 optimal control with

static output feedback.



The static output problem is one of the most important problems in control en-

gineering. It has been brought to the attention of the control community in 1970 by

Levine and Athans [LeA70], and has been investigated intensively in the past three

decades. However, many problems still remain open. (More information can be found

in the recent review paper [SAD97]).

In this section, we will introduce static output stabilization, and and the static

output H 2 optimization and sub-optimization. Other related topics will be discussed

in the following chapters, such as H, optimization and eignstructure assignment with

static output feedback.

2.4.1 Static Output Stabilization Problem

Given a plant model

± = Ax+Blw+B 2u

z = Cix + D12u (2.36)

y = C2x+D 21W

with the static output feedback control u(t) = Fy(t), the closed-loop would be:

± = (A+B 2FC2)x+(B1+B 2 FD 21)w

z = (C1 + D12FC 2)x + D 12 FD 2 1w (2.37)

Before we come to optimal control, we need to consider a more basic problem: Does

there exist a stabilizing static gain F? In another words, is there an F such that

A + B2FC2 is Hurwitz?

Theorem 2.4 There exists a stabilizing static output feedback gain if and only

if there exists some P = P' > 0 such that

B 21(AP + PA')B I < 0 (2.38)

CL(A'P- 1 + P1 A)(C' 21 )' < 0 (2.39)

where B 21 and C'21 are full-rank matrices orthogonal to B 2 and C2, respectively.



The above theorem follows from Lyapunov stability theorem. V(x) = x'Px,

V(x) = x'[(A + B 2FC 2)P + P(A + B 2FC 2)']x without w. So A + B 2FC 2 is Hur-

witz if and only if there exists some symmetric matrix P such that

(A+B 2FC 2)P+P(A+B2FC 2)'<0, and P = P'> 0 (2.40)

With elimination lemma [BEF94] and considering P > 0, we can obtain Theorem 2.4

from (2.40).

Lemma 2.2 (Elimination Lemma) Given matrices G e R nxn, U c R" X and

V E Rfnxr, there exists an S E Rm xr such that G + USV'+ VS'U' > 0 if and only if

ULGU1 > 0 and VJGV1 > 0

Theorem 2.4 gives the sufficient and necessary condition for the existence of a

stabilizing static output feedback gain. However, to check this condition or solve for

such gain is not easy, because the condition given by (2.38) and (2.39) is not convex

for P. This problem remain open for long time and different algorithms have been

presented. Recently, two nice algorithms ([01G97], [GSS98], [EOA97]) have been

proposed to solve it.

The first is the Min/Max Algorithm proposed by Geromel et al.

Their ideas are summarized as:

1. Inequality (2.40) is equivalent to

(A+B 2FC 2)P+P(A+B2FC 2 )'+B 1 B' <0, and P =P' > 0

With the Schur complement, (2.41) can be written as,

[01G97].

(2.41)

(A + B2FC2)P + P(A + B2FC2)' B1

B1 -IJ
<0, and P = P' > 0

Then by eliminating the matrix F, we can say that A + B 2FC 2 is Hurwitz if and only

(2.42)



if there exists some matrix pair (P, Q), such that

B2 (AP + PA' + B1B1 )B 1 < 0, P = P' > 0 (2.43)

C1 0 Q A + A'Q QB1  (C21)' 0
L0 1 BQ -I 0 I

P = Q-1 (2.45)

2. Observe that (2.43) is in LMI form (convex in P), and if P satisfies (2.43) then

pP will also satisfy (2.43) for p > 1; (2.44) is also in LMI form (convex in Q), and if

Q satisfies (2.44) then OQ will also satisfy (2.44) for 0 < 1. So a min/max algorithm

is presented: Starting from Qo satisfying the LMI (2.44), iteratively solve the two

convex problems until convergence.

" Solve for (pk, Pk):

min p, s.t. Q satisfying LMI (2.43) and Q-' < P < pQ-1
P,P

" Solve for (Ok, Qk):

max 0, s.t. Q satisfying LMI (2.44) and 0P 1 < Q < PC'
O,Q

Remark 1: The min/max algorithm above will generate a monotonically decreas-

ing sequence Pk with the lower bound of 1, and a monotonically increasing sequence

0 k with the upper bound of 1. It also generates a increasing sequence Pk and a de-

creasing sequence Qk. If the sequence Pk is bounded, then PQ, = I. Numeric

experiments showed ([01G97] [EOA97]) that this algorithm failed to converge for

less than 5% of 1000 randomly generated stabilization problems satisfying Kimura's

sufficient condition [Kim75].

Remark 2: In (2.41), B 1B' is an immaterial item for stability study, but it plays

an important role in for the convergence of the algorithm. Without it we can't guar-

antee that 0Q also satisfies (2.44) if Q satisfies (2.44) and 0 < 1. B1 B' can also be

replaced by any symmetric negative semi-definite matrix with appropriate dimension.



El Ghaoui et al. ([EQA97]) proposed another better approach to solve the static

output stabilization problem. Assuming Q = P 1 , with Lemma 2.3 we can obtain

Corollary 2.3.

X I
Lemma 2.3 For any pair of symmetric n x n matrices (X, Y), if > 0

I Y

then trace(XY) ;> n, and the equality holds iff YX = I.

Corollary 2.2 Stabilizing static output feedback gain exists if and only if

B21(AP+ PA')B'1 < 0,P > 0

C'21(A'Q + QA) (C'21 )' < 0, Q > 0

P I
> 0

IQ_
and trace(PQ) = n

where n is the order of the plant.

El Ghaoui's approach is to minimize a bilinear objective function trace(PQ) sub-

ject to three LMI constraints with the cone complementarily linearization al-

gorithm. Thus this method is more general than the min/max algorithm. The

efficiency of El Ghaoui's approach is extremely satisfactory. We will discuss the de-

tails in next chapter.

Once we get the feasible pair (P, Q), we can reconstruct the static gain F with the

closed-form formula in [IwS94] or get F by solving the LMI feasible problem (2.40)

or (2.42) with the solved P.

2.4.2 Static Output H2 Optimization

Checking the closed-loop system (2.37) with Theorem 2.1, we can see that D 12FD 21

has to be zero, otherwise the optimal H 2 problem is not well posed. For convenience,

we assume D21 = 0 or D12 = 0. Since in most applications sensor noise is ignorable

compared with process noise, below we assume D21 = 0. For the case D 12 =0 and

D21 # 0, we can get similar result.



From Theorem 2.1, we can obtain the Theorem 2.5 for static output H 2 optimiza-

tion.

Theorem 2.5 Given the LTI plant model

= Ax + B 1w + B2u

z = Cix + D 12U (2.46)

y =C 2x

With the stabilizing static output feedback u(t) = Fy(t), the H 2 norm IHz.||1 of the

closed loop would be trace(B'KB1), where K satisfies

K(A + B2FC 2) + (A + B2FC 2)'K + (C1 + D12FC2)'(C1 + D 12 FC2 ) = 0

or is trace((C1 + D 12FC 2)P(C1 + D 12FC2)'), where P satisfying

(A + B 2FC 2)P + P(A + B 2FC 2)' + B1 B' = 0

(2.47)

(2.48)

Remark: If B1 is full row rank, A + B 2FC 2 is (asymptotically) stable if and only

if P > 0. If C1 is full column rank and D'2C1 = 0, then K > 0 is sufficient (not

necessary) to guarantee the stability of A + B 2 FC 2 .

So static output H2 control becomes a constrained optimization:

min trace(B'1KB 1 )
F

(2.49)

s.t. K(A + B2FC 2) + (A + B2FC 2)'K + (C1 + D12FC2)'(C 1 + D 12 FC2)

A + B2FC 2 is Hurwitz

min trace((C1 + D12FC2)P(C1 + D 12FC2 )')
F

s. t. (A + B 2 FC2 )P + P(A + B2 F0 2 )' + BjB' = 0

(2.50)

A + B2FC2 is Hurwitz



Levine and Athans [LeV70] derived the necessary condition for simplified LQR (C2

is full row rank, and C'D 12 = 0) for the random initial states. Extending their ap-

proach to general H 2 control with static output feedback, we can arrive The Corollary

2.3.

Corollary 2.3 If C2 is full row rank, the necessary condition for static output

feedback H 2 optimal control is:

F = -(D' 2 D 12 )- 1(D' 2 C1 + B'K)LC2(C2LC2)- 1  (2.51)

K(A + B 2FC 2) + (A + B2FC2)'K + (C1 + D 12FC2)'(C 1 + D 12FC2) (2.52)

L(A + B 2FC 2)' + (A + B 2FC 2)L + B1B 1  (2.53)

However, to solve the above highly coupled nonlinear matrix equations (2.51)-

(2.53) is not a trivial procedure. Levine and Athans proposed an iterative procedure

(but convergence is not guaranteed): Start with a stabilizing Fo and update F with

equation (2.51) Fk+1 = -(D' 2 D12 ) 1 (D'12C1+B1Kk)LkC'(CLC')- 1, where Kk and Lk

are obtained by solving the Lyapunov function (2.52) and (2.53) with the previous Fk.

Later the other gradient based algorithms, such as Newton method, have also been

successfully used, please see the survey paper by Makila and Toivonen ([MaT85]). In

addition, homotopy has also proved to be an efficient method to search for static

output feedback gain ([Mer9l] [CoS98]). We will discuss the computational methods

in Section 2.7.

It's worthy to note that the optimal gain F will depend on the initial state x0

(LQR) or B1 (H 2), which is different from the case of full-state feedback.

2.4.3 -y-Suboptimal H2 Problem with Static Output Feedback

Suppose we would like to design a static output feedback controller u = Fy, subject

to some performance of the H2 norm -(> -yot)

||Hzw ll 2 < 7Y (2.54)

This problem is usually called -y-suboptimal H2 problem with static output

feedback. It is also interesting, since in most applications, the H2 norm is not the



only objective, we might also want to achieve some other performance goal, such as

H.. norm or damping ratio. The -- suboptimal H2 problem can be handled with the

LMI techneques

[A +B 2FC2  B1 1
Substituting the closed-loop description A into (2.10), we[ C1 +D 12FC2  0

can get

||= inf trace(B'XB1)

s.t. A + B 2FC 2 is Hurwitz (2.55)

(A + B 2FC 2)'X + X(A + B 2FC 2) + (C1 + D 12FC2)'(C1 + D 12FC2) <((2.56)

With the Schur complement (2.56) can be written as

(A + B2FC2)'X + X(A + B2FC2 ) (C1+ D12FC2)'
2FC) C1 D2FC)'< 0 ( 2.57 )

(C1 + D 12FC2) -I

If (C1 + D 12FC2)'(C1 + D 12FC2) > 0, from the Lyapunov stability theorem we know

that A + B2 FC2 is Hurwitz iff X > 0. Since (C1 + D 12FC2)'(C 1 + D 12FC2 ) > 0 for

whatever F, X > 0 is the necessary condition for F to be optimal. Eliminating F

with Lemma 2.2, we can obtain Theorem 2.6.

Theorem 2.6 Given the plant model (2.46), the necessary condition for the ex-

istence of a stabilizing static gain u = Fy subject to |IH,|12 < -y is that there exist

positive matrix pair (X,Y) such that

trace(B'XB1 ) < Y2  (2.58)

A'X + X A C'
N Y' Ny < 0 (2.59)C11

N' AY+YIYINu <0 (2.60)
C1Y -I

X =Y-1 > 0 (2.61)

where Ny and N, are respectively an orthogonal basis to the null space of [C2, 0] and

[B2, D12]. If some feasible pair (X, Y) is found, we can reconstruct F by solving the



LMI feasible problem (2.57). Further, if such F is stabilizing, then it is a 'y-optimal

H 2 solution.

Similar to the static stabilization problem, condition (2.61) X = Y- 1 destroys

the convexity. However Geromel's min/max algorithm ([OlG97],[GSS98]) can't be

extended for checking the static H 2 conditions (2.58)-(2.61), since (2.58) destroys the

feasibility of generating a monotonically decreasing sequence, so convergence is no

guaranteed. El Ghaoui's cone complementary algorithm ([EOA97]) can be extended

to the static H2 problem to handle X = Y- 1. We will see this algorithm in next

chapter.

Once the feasible pair (X, Y) is solved, (2.57) becomes an LMI form in F. And

there always exists some feasible F, since (2.59)-(2.61) hold iff (2.57) holds and X > 0.

Remark 1: The above (2.58)-(2.61) are necessary conditions, and they will be-

come sufficient if (C + D 12FC2)'(C 1 + D 12FC 2) > 0. So this F obtained in the above

procedure might not be the -y-optimal H 2 solution, since the closed loop A + B 2FC 2

might have pure imaginary eigenvalue. So we need to check: If F is stabilizing, then

it is a -y-optimal H 2 solution. (This point has been ignored in most of the literature.)

Particularly, if C'D 12 = 0 and C1 has column rank, then the conditions are necessary

and sufficient.

Remark 2: If F has additional architecture constraints, such as decentralization,

,we can't guarantee the reconstruction of a structured F with pair (X, Y). Since the

elimination lemma doesn't hold for structured F: (2.59)-(2.61) => (2.57) and X > 0,

but vice versa is not true.

2.4.4 Suboptimal H2 Control

As we've already seen above, we need iterative computational methods to get the

optimal or -- suboptimal H 2 gain F. There is also some non-iterative approaches to

obtain a suboptimal controller. The idea for the suboptimum is, to find a output

feedback gain 'closest' (in some sense) to the full-state feedback gain F*.



Kosut ([Kos70]) proposed an approximation of output feedback to minimize the

effect of error excitation for the deterministic case with C1D 12 = 0. Similar ideas can

be extended to the stochastic case and without limit on C'D 12.

Suppose F* is the optimal H2 gain with full-state feedback (which can be obtained

by the Riccati equations in Section 2.2, x* is the state corresponding its closed loop

A + B2F* B1 ]and x is the state of the closed-loop A + B2FC2  B1

C1 + D12F* 0 C1 + D12FC2  0
corresponding to the output feedback gain F. One approximation is to find some F

that minimizes the control force error variance q(t) = (F* - FC2)x* with some weight

R* > 0. This turn out to be a problem similar to the Kalman estimator. We can get

min lim E{ jT q'(t)R*q(t)dt} = min trace(B'VB1 )
F T-oo0 T 0

s.t. (A + B 2FC 2)'V + V(A + B2FC 2) + (FC2 - F*)'R*(FC2 - F*)

Then by introducing matrix Lagrangian L, we can get the necessary condition for

the case of full-row-rank C2:

F = F*LC2(C 2LC2>l (2.62)

where L is got by solving the Lyapunov equation

(A + B 2FC 2)L + L(A + B 2FC 2)' + B1 B' = 0 (2.63)

So, we can solve the Riccati equation (2.18) for F*, then solve another Lyapunov

equation (2.63) then get a "suboptimal" H 2 control F with static output feedback.

Although the above design procedure is quite concise, we can only get an approx-

imation. Worse, there is no guarantee of the stability of the close-loop system, since

the cost function doesn't contain the dynamic information about the closed-loop sys-

tem. However, it is still worthy to mention, since it us concise and can be used as an

initial start point for other iterative procedures.

Another H2 suboptimal approach is projective control. we will discuss it in

the section of lower-order control, since it can also be used to design the suboptimal

reduced-order controller.



2.5 Lower-Order H 2 Control with Output Feed-

back

The order of a system is the minimal number of state in its state-space realization.

Design of lower-order optimal controllers remains as a challenging job in the last

two decades. Till now it is still one of the main focuses in the community of control.

Generally speaking, there are indirect approaches (suboptimal) and direct approaches.

It's very interesting to note that lower-order H 2 control problem can be cast as a static

output feedback problem. And so the methods for optimal static output control, such

as gradient-based optimization, homotopy methods and LMI, can be used to directly

design lower-order controller.

2.5.1 Lower-Order H 2 Control Problem and Lower-Order Sta-

bilization

Lower-order H2 Control Problem: Given a n-th order LTI plant model

± = Ax + B1w + B2u

z = Cix + D12U (2.64)

y = C2x + D 21W

design a k-th order controller (k < n)

XK = AKXK + BKY

U = CKXK +DKY (2.65)

to stabilize the plant internally and minimize the the H 2 norm of the closed-loop

system from w to z.

Before we solve the lower-order H2 control, we need to know that the existence of

lower-order stabilizing control. This is Lower-Order Stabilization Problem. The

result is given in Theorem 2.7. The proof is similar to that of static output feedback,

or see reference [IwK94] for details.



Theorem 2.7 There exists a k-th order output feedback stabilizing control for

n-th order LTI plant model (2.64) if and only if there exists symmetric matrices R

and S, such that

B21(AR + RA')BI1 < 0, R > 0

C'21 (A'S + SA)(C' 21 )' < 0, S > 0

R I
> 0

I S

and trace(RS) < n + k

where B21 and C'21 are full-rank matrices orthogonal (null space) to B 2 and C re-

spectively.

The cone complementary linearization algorithm ([EOA97]) or the min/max al-

gorithm ([GSS98]) can be used to check the above condition and to solve for the

stabilizing reduced-order control.

2.5.2 Indirect Design of Lower-Order Controller

Model order reduction is the most widely used indirect method to design for lower-

order H 2 controllers as well as lower-order Hoo controllers. Projective control is also an

approximation to keep some dynamic properties with the reduced-order realization.

Model Order Reduction

The idea of model reduction is to use a lower-order system to approximate a high

order system in some distance measure. Balance model reduction and Hankel norm

approximation are two good ones among the numerous approaches proposed in the

past years.

Balance mode reduction was first introduced by Moore (1981), and was con-

tributed to by many other researchers after that. As we know, the realization of a

system is not unique. Any stable LTI system has a balance realization (A,BC,D),



whose controllability and observability Gramians are equal and diagonal ([ZDG95],

[Meg0l]).

A + EA'+ BB'= 0 (2.66)

A' + EA + C'C = 0 (2.67)

where Gramian E = diag([oi, U2 , ... Or,, 0r, ---Un]), -1 > U 2 > ... Ur > Uri > ... on.

Partition A,B,C as Arxr * Br: and [C:r, *]. Then the truncated r-
* * J L*

th order system (Arxr, Br:, C:r, D) is an approximation whose H, error bound is

2(ori + Ur2... + 9-)

For the proof, please refer to [ZhD95].

Hankel norm approximation is another mode reduction approach. It is based

on Hankel operator and yield an 'analytical' solution which minimizes the Hankel

norm. Please see the reference [ZhD95] for details. Hankel norm approximation re-

sults in a lower-order system whose H. error bound is (orin + Ur2... + on), which is

smaller than that of balance model reduction.

To get a lower-order optimal controller, we can first reduce the order of the plant

(2.64) from n to m, then design a m-order optimal controller for the reduced-order

plant via the approach in section 2.3. Or we can design an optimal controller with the

same order of the original plant (??), then approximate it as a lower-order controller.

In both case, the lower controller is not really the H 2 or H. optimum; worse, generally

it can't guarantee the stability of the closed loop, since we didn't consider the closed

loop information when we reduced the order.

Projective Control

Projective control can also be interpreted as a controller order reduction approach.

It tries to keep the dominant behavior (eigenstructures) of the full sate or full order

optimal (H 2 or H,) controller.



Static Output Feedback via Projective Control. Suppose Ff is an opti-

mal control with full-state feedback, then the closed loop Ac = A + B2Ff. For the

corresponding eigen-structure matrix (X, A), we have

(A + B 2Ff)X = XA (2.68)

With the output feedback y E R', u = Fy = FC 2x, static projective control tries

to preserve the r number of eigen-structures (Xr, A,) of the closed-loop of optimal

full-state feedback.

(A + B 2FC 2)X, = XrAr = (A + B 2Fj)Xr (2.69)

Then we obtain:

F = FfXr(C2Xr) 1  (2.70)

Lower-Order Feedback via Projective Control We discuss the case of strictly

proper controller, which was first introduced in [NaV93]. Suppose we want to use a

p-th order controller (AK, BK, CK, 0) to preserve the p eigen-structures (Xp, Ap) of

the plant with a strict-proper optimal H 2 or Hoo controller (Af, Bf, Cf, 0).

A B25 X X[ O B ILW Ap (2.71)
B5 C2 A5 W,5 W,5

A B2CK X, X(
BKO A I= XPA, (2.72)

BKC2 AK W, WP

Thus we can obtain

AK = Ap - LC 2X,, BK = L,, CK = OfWpf (2.73)

where L, is free parameter matrix.

As we have seen, projective control can preserve some dominant eigenvalues and

eigenvectors and thus keep some dominant behavior of the optimal controller. How-

ever, the the procedure the other poles are not considered, and thus might yield a

unstable system.



2.5.3 Direct Design of Lower-Order H2 Controller

To get better performance, we can design lower-order H 2 controller directly.

Assume

L u=±

XK
,and Y

LY

Then from the plant model (2.64) and the controller equation (2.65) we can get an

augmented plant description

S [A 0 ]

0 [ 0]xx
Z = [1, I0]z; + [0,1 D12]6

0
Ikxk

(2.74)

(2.75)

(2.76)0 Ikxk]+[ 0]
C2 0 D21

and a "static" output controller

i2=F#9= [AK BK
CK DK

(2.77)

So we can see that that the optimal lower-order control can be cast as a static

output feedback problem with the augmented plant

0 ]

0kxxk

[C1, 0]

0 Ikxkl

C2 0

0
D21

B1
0

0 B 2

Ikxk 0

[0, D12]

0

(2.78)

and the "static" output feedback gain F for the augmented

[AK BK1
system matrix of reduced-order controller .

CK DK

plant is composed of the

Therefore, the techniques used in static output feedback can be used directly for

the design of optimal lower-order control, such as gradient-based methods, LMI-based

xK

[ $1 B2 1
Oi Ll D1 2

02 D21 D22 _

B1
W +

0



methods, and homotopy.

Similarly, we also can cast the dynamic decentralized control as a static structured

control with output feedback. The system augmentation is the same as (3.33) and

(2.78), except that AK, BK, OK and DK in (3.33) are in block diagonal form with

appropriate size.

2.6 Decentralized H2 Control With Static Output

Feedback

In the previous sections about H 2 optimal control, we assume the information from

each sensor is available for each actuator. This is sometimes called centralized control.

However, this is not the case for many real applications, such as power network system,

flexible manufacturing systems, where the controller architecture is structured: the

outputs of certain group of sensor are only available for certain actuators.

Static decentralized control is a typical example, and most of methods developed

for decentralized control can be extended to arbitrary architectured control. Decen-

tralized control has attracted attention since the 1970s. The early work can be seen in

the survey paper by Sandell, Varaiya, Athans and Safonov ([SVA78]), and later work

can be found in the book by Siljak (1991) or the survey [Sil96]. Before the 1980s,

the main technique for decentralized control is decomposition, which is problem de-

pendent. Then Wenk and Knapp (1980), Geromel and Bernussou (1982) extended

Athans's work([LeA70]) about centralized LQR to decentralized. And more efficient

convergent algorithms were adopted after that, including Newton's method([ToM87])

and Homotopy method([Mer91]).

To help the understanding, we will introduce some relevant knowledge about ma-

trix calculus. Kronecker product is also mentioned, since it is useful in eigenstructure

assignment and to solve the modified Lyapunov equation in multi-objective control.



2.6.1 Matrix Calculus

Matrix Calculus is a set of differentiation formulas which preserve the matrix notation

during the operation of differentiation. So it is very useful in optimization and system

theory.

The Kronecker product of A (p x q) and B (m x n) is denoted A 0 B and is a

pm x qn matrix defined by

a11B a 12 B ... aiqB

A a21B a 22 B ... a2qB

AoB=

ap1B ap2 B ... apqB

The Kronecker sum of N (n x n) and M (m x m) is defined as

A
N D M = N 0 Im+ In 0 M

An important vector-valued function of the matrix (p x q) defined as

vec(A) =

A.1

A.2

A.q

(2.79)

(2.80)

(2.81)

There are number of associated operation rules, such as

vec(ADB) = B' O A)vec(D)

trace(ADB) = (vec(A'))'(I 0 D)vec(B)

please refer to [Bre78] for details.

The derivative of a matrix A with respect to a scalar b is done term by term:

OA &as-
= ( )

(2.82)

The derivative of a matrix A with the respect to a matrix B is defined to be a

partitioned matrix whose ijth partition is g-. There are also associated operation



rules. Please refer to [Bre78]. The derivative of a scalar function f(X) with respect

to a matrix X is also done term by term:

Of Of
=x ( i)oX 8i

(2.83)

Based on this definition, we can obtain some useful formulas about the trace

function

trace[( )16X]aX
lim f(X + EX) - f(X)v X
=--0 lmV

" trace(NXL) = N'L'
ax 09trace(NX'L) = LNax

a trace(NXLX') = N'XL' + NXL

2.6.2 Decentralized H2 Optimal Control with Static Output

Feedback

The static decentralized H2 problem can be stated as: Given a LTI plant model

N

J = Ax+Blw+(B 21ui

i=1

N

(2.84)z = C1X+ZD12iui
i=1

yj = C2ix, i = 1, 2, ... , N

where y is the ith measurement available for the ith control vector ui. Design the

decentralized static output feedback controller ui = Fjyj, i = 1, 2, ..., N, such that

the system is stable and the H 2 norm IHzw||1 of closed loop w -+ z is minimized.

Let B2 = [B21, B22 , ...B2N] , C = C22, ''' CN] D12 = [D 121, D122, ...B12N],

u = [u'i, n'2, -- ]', and y =[y'i, y, ...y']'. The controller can be written as

U = Fd Y =

Fdl

Fd2

FdN



With Theorem 2.1, we can formulate the decentralized problem as a constrained

optimization problem:

min J(F) = ||H2.|| = trace(B'KB) (2.85)

s.t. K(A + B2FdC 2) + (A + B 2FdC2)'K + (C + D12FdC 2)'(Cl + D12FC 2) =0

Fd E Sf

where Sf is the set of matrices which have the prescribed decentralized structure and

stabilizes the closed-loop system. Define the Lagrange function as

C(F,K,L) = trace{(B'KB1) + [K(A + B2 FdC 2 )

+(A + B2FdC2)'K + (C1 + D12 FdC2 )'(Cl + D12FdC 2)]LX2.86)

where L is a symmetric Lagrange multiplier matrix, then, using matrix calculus we

reviewed previously, we can obtain

& /OFd = 2(D12D 12FdC 2 + D12C1 + BIK)LC2 (2.87)

Of/OL = K(A + B2FdC 2 )+ (A + B2FdC2)'K + (C1 + D12 FdC 2)'(Cl+ D12 FC 2

(2.88)

Of/OK = L(A + B2 FdC 2 )' + (A + B2 FdC 2 )L + B1 B'1 (2.89)

The meaning of OfE/OFd is (Of/OFdj), so 2(D'2 D12 FdC2 + BGK)LCD in the right

side of (2.87) is not exactly the derivative of E with respect to the design variables

in Fd. So we need to pick out the entries corresponding to the free design variables,

f/Fd = 2(D'12 D12 FdC 2 + D' 2 C1 + B'K)LC2.F, (2.90)

where F, is a matrix with an 0 in the positions corresponding to the prescribed

entries in Fd and 1 corresponding to the free design entries in Fd, and M.F, denote

multiplication of M and F, entry by entry.

The necessary conditions of optimization are each of the expressions in Equations

(2.90), (2.88) and (2.89) to be zero

BE/Fd = 0, Of/OL = 0, Of/OK = 0 (2.91)



and

A + B2 FC 2 is Hurwitz (2.92)

But it is not easy to solve these nonlinear equations. We will discuss computational

methods in Section 2.7.

2.6.3 Decentralized Suboptimal H2 Control

Kosut's suboptimal ([Kos70]) can also be applied to the static decentralized case.

Following a procedure similar to the centralized case, the result obtained is

Fd = F*LC' (C2i LC )-1 (2.93)

Where F* is obtained by solving the Riccati equation (2.18) for full-state feedback,

and L is obtained by solving the Lyapunov equation (2.63)

- As in the case of static output feedback, Kosut's suboptimum (2.93) can't guar-

antee the stability of the closed-loop system.

Finally, we need to point out that the LMI-like conditions in Theorem 2.6 can't

be extended to the decentralized output feedback case, since the given conditions

on input and output null spaces lose the sufficiency for the decentralized case, and

we can't reconstruct Fd with the matrix pair (X, Y) therein. Optimal decentralized

control with output feedback is essentially a bilinear matrix inequality (BMI) prob-

lem. However, some particular decentralized H2 problems can be handled within the

framework of LMI, such as decentralized state feedback ([BCG98]), or some part of

the decentralized (strict proper) dynamic output controller are fixed ([OGB00]). For

the case of state feedback decentralized H 2, parameter space optimization [GBP94]

and Hamilton-Jacobi-style equations [SaS94] are also reported.



2.7 Computational Methods for Structured Opti-

mal H2 Control

In the previous discussion, we've seen that the H2 control for full-state feedback and

full-order output feedback can be obtained easily by solving Riccati equations. Model

reduction, Kosut's suboptimum, and projective approximation can also be obtained

concisely. However, with structural constraint (such as static output feedback, decen-

tralized static-output feedback, lower-order optimal control), H 2 control will result in

a constrained optimization problem (such as (2.50), (2.91), or (2.49)), or a nonconvex

matrix inequality problem (such as (2.59)-(2.61)). In this section, we will focus on

how to solve these problems iteratively.

2.7.1 Direct Constrained optimization

Let's propose the iterative procedure for constrained H2/LQR from the view of non-

linear programming. We will take the static decentralized control as an example,

static output feedback and lower-order optimal control follow the same procedure.

Nonlinear Programming

Constrained optimization problem is usually solved with unconstrained optimization

techniques by introducing Lagrange multipliers or penalty functions. Generally for

Unconstrained Optimization

min f(x), x E R', f(x) E R

there are non-gradient-based and gradient-based methods. The Simplex method

starts with multi-dimensional points, then follows the procedure of reflection and

expansion. It only requires to evaluate the function values, not derivatives, but it

converges very slowly. Powell's method searches successively in a prescribed set of

directions, and converges faster than the simplex method. If we use the gradient at

the current point of the iteration to update the searching direction, we can expect



more efficiency. Steepest descent, conjugate gradient and BFGS are such methods.

Any smooth function f(x) can be approximated by a Taylor series

f (x) = f (xk) + f (xk)(x - Xk) + (x - xk)'V 2 f (xk)(x - xk) + ... (2.94)

If we update x according to

Xk+1 = Xk - akVf(Xk) (2.95)

then f(xk+1) = f(xk) - ak IVf(xk)1 2 + o(ak). So with properly chosen ak ;> 0,

searching in the direction of -Vf(xk) will result in a descent sequence. Further, if

f(x) is smooth, this sequence will converge to a local minimum eventually. This is

the steepest descent method.

For the functions whose contours form a narrow valley near the minimum, the

steepest descent method might converge very slowly because of the so-called zip-zag

phenomenon. The conjugate method has been proposed to accelerate the convergence.

Suppose we have moved along some direction u and now intend to move along

some new direction v. The motion along v not to spoil our minimization along u

is just that direction staying perpendicular to u, i.e. that the change in gradient be

perpendicular to u.

0 = u'6(Vf) = u'V2fv (2.96)

If so, we say the u and v are conjugate with respect to matrix V 2 f. For an N dimen-

sional quadric function, minimizing along N linearly independent mutually conjugate

directions will result in exactly the minimum. In practice, the search directions of

conjugate gradient method are generated by

do= -Vf(xo) (2.97)

(Vf(k) - Vf(xk1))'Vf(xk)
dk = --Vf (xk ) -t-) dk_1 (2.98)



Newton's method tries to use the second-order derivative (Hessian matrix),

and uses quadratic function to approximate the objective function. Newton's method

converges very fast typically. However, usually it is hard to get the Hessian ma-

trix analytically. Quasi-Newton methods were proposed to construct a sequences of

matrices to approximate the inverse of the Hessian matrix. The BFGS algorithm

(named after Broyden, Fletcher, Goldfarb and Shanno) is an efficient Quasi-Newtown

method. It is is not so sensitive to the accuracy as the conjugate method, and usually

doesn't need to be periodically restarted as the steepest gradient method. The BFGS

algorithm iterates according to:

Xk+1 = Xk+ akdk (2.99)

dk = -DkVf(xk) (2.100)

Dk+1 = D P- -|- _Dkddk + TkVkVk (2.101)
PkQk q1Dkqk

where Pk = Xk+1 - Xk, qk = Vf(xk+l) - Vf(xk), Tk = qk qk, Vk = -k- D a

Do can be chosen as any positive definite matrix, such as I.

After we obtain the searching direction dk, we need to choose the proper step size

ak to update the point Xk. There are a number of rules for step size selection, please

refer to [Ber95].

Minimization Rule:

ak = arg min f (xk + adk) (2.102)
a>O

The golden section search method, parabolic interpolation, or any other one dimen-

sional minimization can be used to solve for ak.

Armijo Rule: The Armijo rule is a successive stepsize reduction to avoid the

considerable computation for one dimensional minimization. For the fixed scalar s,

# E (0, 1), e E (0, 1), set ak = S/mk, where mk is the first nonnegative integer m such

that

f (xk) - f (xk + s#3dk) > -Es#3Vf (xk)'dk (2.103)

s can be chosen as 1, 3 is usually 0.1 - 0.5, and e is usually close to zero. The Armijo

rule required that the cost improvement e sufficiently large in each step.



Adaptive Rule: Try the step size at some length (such as 1), if the cost improves,

we can extend the step size by a fixed factor, until the cost can't be improved any

more; if the first step length fails, we decrease the step size by a fixed factor, until a

local 'best' cost is achieved.

The above is unconstrained optimization, and more information about it can be

found in [Ber95] [PFT88]. As we mentioned, by introducing Lagrange multipliers (un-

der some conditions) or a penalty function, we can change a constrained optimiza-

tion problem into an unconstrained optimization problem. The necessary condition

can be seen from Kuhn-Tucker's Theorem, please refer to [Ber95] for details.

Theorem 2.8 (Kuhn-Tucker Necessary Conditions) Let x* be a local minimum

of the constrained optimization problem:

min f(x) (2.104)
XeR-

s.t. hi(x) = 0, i =1, 2, ... m

gj(x) < 0, j =1, 2, ...r

and assume Vhi(x*), i = 1,2, ...m, and Vgj(x*), j c {jlgj(z*) = 0}, are linearly

independent, then there exist unique Lagrange multipliers A* = (A*,...A*), p* =

(p*,...*), such that

V2L(x, A, p) = 0 (2.105)

p ;> 0, j = 1, 2, ...r (2.106)

pj = 0, Vj with gy (x*) < 0 (2.107)

where L(x, A, p) = f(x) + Em1 A hi(x) + E 1 [jgj (X)

If so, f (x*) = minxER L(x, A*, *)

The Lagrange multipliers A* and p* are usually obtained by solving a dual problem,

which is non-smooth. Penalty function or multipliers methods can change a

constrained optimization into an unconstrained problem directly. We will see this

application in Chapter 4.



Gradient-based Optimization for Structured Control

Let's consider the problem:

min f(y)

s.t. h(x, y) = 0

where x E R', y E R", f(y) : R' -* R, and h(x, y) : R x R" -+ R'.

Define the Lagrange function E(x, y, A) = f(y) + A'h(x, y), A E R'. Then

&E(x, y, A) - A/Oh(x, y) and (x, y, A) f(y) +A, h(x, y)
ax ax ' ay ay ay

if (xyA) = 0, then f(y) = -A'ah(x,y); and if h(x, y)=O, then 9h(x,y) + ah(x,y) a = 0.
9y ay ay ax ay OX

So

Of(y(x)) _f(y) Oy A/ h(x, y) Ah(x, y)O h(xy) ,Oh(x, y) OL(x, y, A)

Ox ay ax ay Ox ay Ox Ox

This means, f(y(x)) .(xyA) under the constraint h(x, y) = 0 and OL(xyA) = 0.

Now come back to structure constrained H 2 problems. Take decentralized case

(2.85) and (2.86) as an example. Map the free design variables in Fd as the vector

y, and map K as the vector x, L as the vector A, we can see that BE/OFd is ac-

tually the gradient matrix of OIHzw||2 /OFd if K and L are evaluated via OE/OL = 0

and OE/OK = 0. And it's also interesting to note, for fixed Fd, OE/OL = 0 and

OE/OK = 0 are two decoupled Lyapunov equations, which can be solved easily. So

we can used gradient-based methods to solve for the optimal H 2 gain Fd. However,

we should keep in mind that we have another constrain: A + B2 FC 2 is Hurwitz.

The gradient-based algorithm is summarized as

Step 1: Find an initial stabilizing Fd with structure constraints.

Step 2: Solve the decoupled Lyapunov equations for K and L

K(A + B2 FdC 2 ) + (A + B2FdC2)'K + (C1 + D12 FdC 2 )'(Cl + D12 FdC 2 ) = 0

L(A + B2 FdC 2 )' + (A + B2 FdC2 )L + B1 B' = 0



Evaluate the gradient

8J(Fd)/8Fd = 2(D'2D12FaC2 + D'2 C1 + B K)LC'.Fp

If ||8J(F)/&Fd| is small enough, stop, otherwise go to step 3.

Step 3: Based on the gradient &J(F)/&Fd, calculate the search direction D

(steepest descent, conjugate gradient, or FBGS). Choose the step size a (minimiza-

tion rule, Armijo rule, or adaptive rule, etc.) with the additional requirement that

A + B2 (F + aD)C2 is Hurwitz. Update Fd with Fd + aD. Go to Step 2.

Remark 1: Gradient-based algorithms require a stabilizing initial Fd. We can use

Cao's iterative LMI method to get such an initial Fd, see [CSM98] or next chapter.

Kosut's suboptimum or projective control might also be a good initial guess for Fd,

if they yield a stabilizing Fd.

Remark 2: Note that in step 3 when we choose the stepsize a, we also require that

A+B 2 (Fd+aD)C2 is Hurwitz in addition to cost descent. Such an a exists under mild

conditions ([ToM85], [MoC85], [MaT87]), and if so the gradient-based algorithm will

converge to a stationary point. Generally, if the sensors or actuators are redundant,

step 3 might be infeasible. That means we can't find the next stabilizing point in

in the steepest gradient direction, conjugate direction, or FBGS direction. If so, we

can project the search direction into the stabilizing set, and continue the iteration

in the feasible projection direction. Or more simply and practically, we can choose

another initial point to restart the iteration. Numerical experience indicates that it

only happens sporadically, and the algorithm works well practically.

Remark 3: Gradient-based method can only converge to a local minimum. So

as to have more chance to find the global minimum, it's necessary to choose more

stabilizing initial points, restart the iteration, and compare the local minima.

Toivonen and Makila ([ToM85]) adopted the Anderson-Moore algorithm for opti-

mal static output decentralized control with D'2D 12 > 0, C'D 12 = 0, and C2i full row

rank, and they claimed its convergence under certain conditions. There the search

direction is obtain with second order Taylor series approximation of the the cost func-



tion, D = -(D' 2 D12 ) 1 (D'2 C1 + B'K)LC (C2LC2)- 1 .F, - Fd, and the step size is

determined using Armijo's rule. Levine-Athans-type method [LaA70] (no converge

guaranteed) in fact searches in the same direction with a fixed step size 1.

2.7.2 LMI-based Approaches

As we have seen in Sections 2.4, static output stabilization and -- suboptimal H2

control with static output feedback (or with lower-order dynamic feedback) can be

described with LMI constraints and a nonlinear equality or rank constraint. (See the

expression in Theorem 2.4 and Theorem 2.6).

The non-convex constraint X = Y (Equation (2.60)) makes this problem impos-

sible to solve directly in the framework of LMI. However, there are several methods

proposed to handle it with an iterative LMI approach. The most numerically ef-

ficient two are proposed recently by Geromel et al. [GSS98] and El Ghaoui et al.

[EOA97]. We already discussed Geromel's min/max algorithm for the static output

stabilization problem and pointed out that it can't used in H2 7-suboptimal control.

El Ghaoui's cone complementary linearization algorithm is essentially a method for

bilinear objective optimization subject to LMI constraints. So it can be extended to

H 2 and H, problems with (centralized) static output feedback or lower-order control.

We will discuss this efficient algorithm in the next chapter.

We also note that homotopy/continuation method has also been successfully

applied to solve the structure constraint problem by Mercadal [1991], and it is ob-

served that its performance is better than that of the conjugate gradient, and a little

less efficient then FBGS method [CoS98].

2.8 Applications in the Design of Passive Mechan-

ical Systems

As we have introduced in the Chapter of introduction, many passive mechanical sys-

tems can be cast as structured (decentralized) control. Tuned-mass dampers, passive



vibration isolators, and vehicle suspensions are such practical examples. Since it is

hard to implement a negative stiffness or dashpot, in the design for these passive

mechanical systems, we have an additional constraint: we require the parameters

to be nonnegative, or more practically fall into some reasonable range. Further, for

some design like vehicle suspensions, we also require that the parameters in left and

right sides are symmetric. We note that Blondel and Tsitsiklis [BlT97] have proved

that static centralized output-feedback stabilization problem with gain intervals con-

straints, and static decentralized output-feedback stabilization with identical blocks

are NP hard. In the following examples, we would like to emphasize how to modify

the previous algorithms, so as to handle these additional constraints.

2.8.1 Application 1: Multi-Degree-of-Freedom Tuned Mass

Damper Design

Tuned-mass dampers (TMD)- often called dynamic vibration absorbers (DVA) -

are efficient passive vibration suppression devices comprising of a mass, springs, and

viscous or hysteretic dampers. Since proposed in 1909, they have been widely used in

machinery, buildings, and structures. A great deal of research has been carried out

since Den Hartog presented his "equal peaks" method method for design of SDOF

tuned-mass dampers in 1928. Many methods have been developed for the design

of a single-degree-of-freedom (SDOF) absorber to damp SDOF vibration. Yet there

are very few studies for the case where both the damper and the main system have

multiple degrees of freedom.

If TMD has more then one degree of freedom, we can expect to make full use of

the mass inertia to damp more than one mode of the main system. If the movements

are decoupled in space, we can design the parameters individually, just by taking it

as individual SDOF TMDs. However, this occurs rarely in practice. Structured H 2

is one good solution for this problem, as well as the the multiple SDOF TMDs design.

Consider an aluminium block supported with six flexures, as shown in Figure 2-

5. The cube dimensions is 150 mm x 170 mm x 200 mm. To keep the cube free of



deformation, kinematic supports are used, resulting in a very lightly damped system.

And worrying about material creep, we can't use viscoelastic material. Moreover,

the space available for damping treatment is very limited. So we intend to design a

MDOF TMD.

Y

X

Figure 2-5: Multi-Degree-of-Freedom Tuned Mass Damper

Figure 2-6 shows the six modes consisting of motions of the rigid block (without

TMD) relative to the ground. We can see that the movements are coupled in space.

Suppose we attach another 110 mm x 125 mm x 6.35 mm steel tuning mass on

the top of cube (4.8% of the aluminium block mass). Take the ground excitation

(Xg, yg, zg)' as the noise input w, and the velocities (ac, ye, ic, d2, 6y, 62)' at the cube

mass center as the cost output z. Now our task is to design the six spring/dashpot

parameters connecting the TMD and the cube, so as the minimize the variance of the

motion of cube mass center subject to the white noise input w.

Replace the flexures between the TMD and cube with control forces generated by
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k and c. With the structural matrix analysis, we can get the the the plant model and

the static decentralized controller to be designed as

A B1 B2

C1 0 D12

C2 0 0

ki ci

Fd = k2 c2

k6 c6

where ki 2 0, ci > 0, i = 1, 2,...6.

As in [B1T97], it not easy to handle the problem that the elements of gain Fd in

constrained in some interval. However, if we replace Fd with Fd.F, the constraint

of nonnegative parameters is satisfied automatically. With this replacement, we

need to modify the gradient-based algorithm.

Now the Lagrange function (2.86) becomes C(Fd.Fd, K, L). With

& E(F.Fd, K, L)/OL = 0

O1(Fd.Fd, K, L)/OK = 0

OJ(Fd)/DFd would be equal to O.E(Fd.Fd, K, L)/OFd. Thus we have

K(A + B2 (Fd.F)C2) + (A + B2(Fd.Fd)C 2)'K +

(C1 + D 12 (Fd.Fd)C2 )'(Cl + D 12 (Fd.Fd)C2) = 0 (2.108)

L(A + B 2 (Fd.Fd)C2)' + (A + B 2(Fd.Fd)C 2)L + B1 B' = 0 (2.109)

8J(Fd)aFd = 4[(D'2D12 ( F.Fa)C2 + D' 2 C1 + B1K)LC ].Fa (2.110)

Note: with array multiplication of Fd, the derivatives J(Fd) to free design variables

are also picked out automatically. The other part is the same as what we already

discussed in sections 2.6 and 2.7. More general, if we would like to constrain some



parameter Fdia in some internal [ri, r2] for some physical reason, we can specify

Fdij with one parameter r,

0.5(r1 + r 2 ) + 0.5(r 2 - ri)sinr (2.111)

and make the corresponding modification the Equation (2.110).

With initial parameters ki = 5 x 10' N/m, and ci = 20 N-s/m, i = 1, 2, ...6,

the FBGS method converged very quickly. We also tried around 20 groups of initial

parameters Fd randomly, and compared the the results. One local minimum was

found as:

i ki, N/m ci, N-s/m

1 1.9763 x 105 104.090

2 1.3878 x 106 884.522

3 8.9773 x 104  33.6856

4 3.6651 x 105 39.5086

5 1.3392 x 106 62.8814

6 4.1487 x 106 2.86 x 10-12

Since there are always uncertainties between the model and plant, adjustable

springs and dashpots are necessary for the implementation. We created one type such

flexures, where the stiffness and damping in axile direction is adjustable around the

designed values, and the stiffness in other directions are ignorable, as shown in Figure

2-7. The damping is generated by squeezing film, and the stiffness is dominated by the

Belleville springs. For the sake of brevity we omit the details about the determination

of geometrical dimensions and the test of prototypes.

With the above parameter design, we built an experiment to implement the 6DOF

TMD, using the adjustable spring/daspot elements we created. Figure 2-8 is the

experiment setup.

After several turns of adjustment around the designed parameter, the whole sys-

tem was well tuned. one typical transfer function was shown in figure 2-9. All six

modes are damped well.



Rod

Belleville Spring

Figure 2-7: Flexure with adjustable one-directional stiffness and damping

2.8.2 Application 2: Passive Vehicle Suspension Design

As we mentioned in Chapter 1, optimal design of passive vehicle suspensions is another

application of decentralized control techniques. Figure 2-10 shown an 8-DOF full car

model including the passenger dynamics.

The stiffness and damping of suspensions play a critical role in four important per-

formance measures of the vehicle: ride comfort, body motion, road handling, and

suspension travel. The ride comfort is measured by the accelerations of the passenger

with the human-vibration sensitivity filter according to the IS02631 standard. The

body motion includes height, pitch, and roll velocities. Road handling requires that

the dynamic contact force between the ground and tires large enough. Suspension



Figure 2-8: 6DOF TMD experiment setup
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Figure 2-9: One typical transfer function with/without one 6DOF TMD
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Figure 2-10: Passive vehicle suspension

travel is limited by the bump and rebound stops. These four aspects conflict each

other somehow. As it is well-known to the automotive engineers, the typical velocity

excitation from the ground can be modelled as white noise whose intensity depends

on the roughness of road surface and the vehicle speed. Thus LQR or H2 active

control can make a meaningful trade off for the four requirements [TaE98] [Hro97].

However, since active or semi-active suspensions increase the cost and complexity,

the simple and reliable passive suspensions still dominate in the automobile indus-

try. Here we apply the decentralized H 2 optimization to the parameter design of the

passive suspension for a full car.

The system modelling is shown in Figure 2-11, in which the four requirements are

specified as the cost output. The road inputs at the left track and the right track are

assumed to be independent, and the excitation on the real wheels is taken as a delay

of the excitation on the front wheels.

-4,
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Figure 2-11: Decentralized control modelling of passive vehicle suspension

Using Pade functions to approximate the delay, we can get a rational generalized

plant. And the feedback gain is decentralized. We can use the gradient-based methods

to solve for the optimal H 2 parameters Fd.

Fd =

kf cfp

kfr Cf r

krr Crr

(2.112)

A detailed design based on a real car model is currently under investigation and

will be reported later. Here we would like to highlight something. As we know, for

a real car the mass is not symmetric about the x axis, but in the suspension design,

we would like to make the parameters symmetric:

k= kjr := kf

kri = krr kr

Cf = cfr := Cf

CH1 = crr := Cr

W1

e-s

W2 D

e-



Usually this kind of constraint will yield a very hard problem. Blondel and Tsitsik-

lis [BIT97] proved that the decentralized stabilization problem with identical blocks

is NP-hard. However, our problem is still tractable. In the decentralized control we

proposed before, (2.90) is used to generate the gradient of cost the J with respect to

the free parameters. With the basic gradient chain rule, we can get:

OJ/akf = OJ/Okfl + OJ/Okf5

Thus we can get the the gradient of J to the true free design parameters subject

to the symmetry constraints. The gradient-based procedure is still valid with this

modification.
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Chapter 3

Optimal Ho Control

As we have seen from the previous chapter, the H2 norm is meaningful performance

measure, and H2 optimization is an efficient method to design an unstructured or

structured controller, which will minimize the output peak magnitude with unit en-

ergy input, or in other words, minimize the output variance with white noise input.

But sometimes, we care more about the peak magnitudes of a system's steady-state

response to the worst case sinusoid disturbance. Moreover, the H2 norm is not a

system induced norm, and it is hard to handle system robust stability and robust

performance under uncertainties. That is why H, has attracted more attention in

the control community since the 1980s, especially after LMI (linear matrix inequality)

techniques developed in the 1990s.

In this chapter, the concept of the H. norm and robustness are briefly introduced,

then we discuss Riccati-based and LMI-based H. synthesis for full state feedback

and full order control. H, control with lower order output feedback or static output

feedback is solved with iterative LMI techniques. Decentralized H, control is also

examined. Numerical examples are given to show the application in parameter design

of passive mechanical systems.



3.1 Hoo Norm, Uncertainty, and Hoo Problems

3.1.1 System Hoo Norm

A causal system has finite L 2 -+ L 2 gain if there exists some finite constant -y such

that

IzI1 = z(t)'z(t)dt

< const + 72||WI| = const + Y2  w(t)'w(t)dt (3.1)

for any input w(t) and any output z(t), where the "const" can be dependent on the

initial status [Meg0l] [ZGD95].

A finite order LTI system has finite L 2 -- L2 gain if all of its poles are in the open

left half plane. The L 2 -+ L 2 gain of a stable causal LTI system turns out to be the

HOo norm of the transfer matrix [DDV99]:

||H z.1 2i = SUPw+0 ||z|12 = sup omax[H2w(w)] (3.2)
||w i 12

Proof:

||z|1 z(t)'z(t)dt
2 f

- 0 Z(w)'Z(w)dw27r
1jc w (w)'Hzw (w)'H2w (w) w(w) dw

27_.mxw[H2)IW()'w()dw

< sup ox [Hz2 (O)]||z2

and the upper bound can be achieved by choosing the input as the singular vector

associated with the largest singular value of Hzw(wo)

For a SISO system, the Ho norm is the peak magnitude of Bode plot: the max-

imum steady-state response to the worst-case sinusoid inputs. So it's also a mean-

ingful performance measure in many applications. Furthermore, unlike H 2 norm,



the H, norm is an induced norm (with the important property ||H1(w)H2 (w)|| <

||H1(w)||o||H2(w)||o), and it can be used in robust control design.

The theorem below gives one approach (-y iteration) to computate the |IHI|o, norm

for continuous-time systems.

Theorem 3.1 Let A be Hurwitz, then the L 2 gain of the LTI system (A,B,C,D)

is less than -y if and only if y > o(D), and the matrix

A + B(- 2I - D'D)-D'C B(y2I - D'D)-'B' (33)
-C'C - C'D(y 2I - D'D)- 1 D'C -A' - C'D(-y2 1 - D'D)--1 B

has no eigenvalues on the imaginary axis.

Proof: First observe that IHI| < y <-> I - -LH'(jw)H(jw) is invertible for

all w E R <-> [I - 1H'(s)H(s)]- 1 has no poles on imaginary axis. Construct a

realization of [I - -H T (-s)H(s)]- 1 with feedback }H T (-s) and -!H(s), and write

down the state equation of this realization (2n-order) [DDA99].

From Theorem 3.1 we also can get an equivalent description in matrix inequality

via KYP Lemma. We will introduce it later in Theorem 3.6.

3.1.2 Uncertainty and Robustness

One of the most important things in control is robustness. In classical control we use

gain margin and phase margin to ensure some performance and robustness. Modern

control is some kind of optimization. How well the "optimal" controller can work

in reality greatly depends on how close the model is to the physical plant. Unfortu-

nately, we can never model exactly the physical plant. And because of time variance,

nonlinearity, lumping of parameters, and ignorance of high order modes, there are

always some differences or errors between our model and reality. Because of this it's

more practice to represent the physical system as a set of plant with model uncer-

tainty. The task of robust control is to make the controller designed for the nominal

plant be able to stabilize the whole set of plants, or be able to achieve the required

performance for the whole set of plants. This is known as robust stability and robust



performance.

Usually the uncertainty is represented as

1) Additive perturbation

Q = {P(s)|P(s) = Po(s) + W(s)A(s)), |IAlloo < 1}

2) Multiplicative perturbation

Q = {P(s)|P(s) = Po(s)(I + W(s)A(s)), IIAloo 1}

3) Feedback perturbation

Q = {P(s)|P(s) = Po(s)(I + W(s) A(s))- 1 , | 1}

Where A(s) is an arbitrary stable transfer matrix with L 2 gain no greater than 1, W(s)

is a stable proper rational transfer matrix to represent the frequency characteristics

of uncertainty. The three uncertainty representations are shown in Figure 3-1.

S(S)(s) W(S) W(s) (S)

Additive perturbation Multiplicative perturbation Feedback perturbation

Figure 3-1: Representations of uncertainty

We can describe the connection with uncertainty as linear fraction model, as seen

in Figure 3-2.

[ 1'(S) G11(s) G12(s) 1 (s)
LX2 (S) LG21(s) G22 <b(2 (S)

where Gu(s), G12(s), G 21(s) and G22(s) are stable. Then the closed loop of Ge242 is

obtained as

G12+2(s) = G 22 (s) + G2 1(s)A(s)(I - Gu(s)A(s))-1 G12(s)



Figure 3-2: Standard model for uncertainty

So the stability of the closed loop will depend on (I-Guj(s)A(s))-1 . If JGuA||. < 1,

then (I - Gu(s)A(s))-1 will have no poles, and thus we can achieve robust stability

for the closed loop under uncertainty A(s). This is the small gain theorem.

Theorem 3.2. (Small Gain Theorem) Define the set of stable uncertainty

matrices as {A(s)I|I|AIo < 1}, if M(s) is stable, then (I- M(s)A(s))- and A(s)(I-

M(s)A(s))-1 are stable if and only if ||MI|K < 1.

If the uncertainty A has some structure, for example it is diagonal, it will result

a structured singular value problem, which is known as p-synthesis, (handled by D-K

iteration) contributed by Doyle, Safonov, et al..

3.1.3 Hoc Problems

Consider the LTI system

± = Ax+B 1 w+B 2u

z = C1x + D11 w + D 1 2u (3.4)

y = C2x+D 21w

Optimal H, Problem: Design a stabilizing controller Ctrl(s) such that the

closed loop ||Hm||K is minimized.

Suboptimal H, Problem: Given -y > 0, find a stabilizing controller Ctrl(s)

such that the closed loop IIHz.||K < -y.



There might also be some structural constraints on Ctrl(s), such as static output

feedback, fixed order, or decentralized structure. This is called structured H, control.

For a MIMO system, the optimal H, controller is generally not unique. From

the small gain theorem, we can see it is that often good enough to get an suboptimal

controller: design a controller such that the close loop L 2 gain is less than one over

the H, norm of the uncertainty. In this chapter, we will discuss both optimal and

suboptimal H, problems

3.2 Riccati-based Full-State and Full-Order Hoe Con-

trol

After the paper [DGK89] by Doyle et al., Riccati-based approach came to be widely

accepted as an efficient H, synthesis method for full state and full order feedback.

In some of the literature, it is called DGKF's solution.

3.2.1 Full-State Feedback

Given a plant model

S= Ax + B 1w + B 2u

z =Cx + D12u (3.5)

design a full state stabilizing gain F, such that the closed loop ||Hzw||o < Y.

To simplify the theorem statement and proof, the following assumptions are made.

For the general case, please refer to [ZDG95].

i) (C1, A) is detectable;

ii) (A, B 2 ) is stabilizable;

iii) D12[C1 , D 12] = [0, ].



With those assumptions, by introducing a symmetric matrix X we have

11z1' - 7y2 ||w|= j [(Cx + D12u)'(Clx + D12u) - 172 w'w]dt

J'[ [+(x'Xx) + |Cix + D12u)||2 _ _y2 w'w]dt - j +(x'Xx)dt

= >j[2x'X(Ax + B1 w + B2u) + ||Cix + D12u||2 _ 2 w'w]dt

- x (oo)Xx(oo) + x'(O)Xx(O)

x'(A'X + XA + CjC1 + X( B1 B' - B 2B')X)xdt

+ j ||tu + B Xx||2 dt - j 7 2 ||w - B'Xx||2dt - x'(oo)Xx(oo) + x'(O)Xx(O)

Thus, under zero initial state x(O) = 0 and with a stabilizing (x(oo) = 0) controller

u = -B'Xx, where X satisfies the Riccati equation XA + A'X + X(LB1B -
B 2B )X + C1C' = 0, we can arrive |z|| - =2_ fo" 2 ||w - 1 B Xx||2 dt < 0.

Therefore, we have Theorem 3.3. In the theorem, X > 0 is necessary and sufficient

to guarantee the stability [ZDG95].

Theorem 3.3 (Suboptimal H)o with full state feedback) If the assumptions (i)

(iii) hold, then ||HzW||oo < y with full state feedback if and only if there exists some

symmetric matrix X > 0 such that

1
XA + A'X + X(-B 1 B'1 - B 2B')X + C1CI = 0 (3.6)

one such controller is u = -B'Xx, and all the stabilizing controllers satisfying

Hz,||oo < -y can be parameterized as

1
u = -B X - -Q(s)B'XQ(s) (3.7)

where Q is stable and ||Q|oo < -y

Theorem 3.3 gives an approach to solve suboptimal Ho problem. To find the

optimal Hoo control, we can use -y iteration: solve a series of suboptimal problems

until we know that -y can not decrease any more.



3.2.2 Hoc Filter

Like the Kalman filter with H2 measure, the H, filter is an estimator with the H,

measure. Suppose a dynamic system is described as

x = Ax+Blw+B 2u, x(0) = 0

z = Cix + Duw + D 1 2u (3.8)

y = C 2x+D 21w

find a causal estimate i of z using u and the measurement y, such that the L 2 gain

of w to the error z - 2 is less than -y. See the Figure 3-3.

Figure 3-3: H, filter problem

For the sake of brevity, we make some assumptions as below and set D11 = 0. For

relaxed case please refer to [ZDG95]

i) (C2, A) is detectable;

ii) (A, B 1) is stabilizable;

iii) [B1  0
D21 I

Suppose the filter is in the form

X = A + B2U+ L(y - C2:)

z = C(39 + D12U (3.9)



Then the error e = z - satisfies

e = (A - LC 2)e + (B 1 - LD 2 1w (3.10)

Following a procedure similar to that in full-state feedback, we can get the Riccati

equation for the H, filter, as seen in Theorem 3.4.

Theorem 3.4 (H, Filter) If the assumptions (i) (iii) hold, then there exists

a causal filter such that the L 2 gain of w to error z - 2 is less than -y if and only if

there is some symmetric matrix Y > 0 satisfying the Riccati equation

1
AY + YA' + Y(I C'C1 - C2C 2 )Y + B1 B' =0 (3.11)

and one such filter is given by equation (3.9) where L = -YCs.

Remark: Unlike H 2 Kalman filter, where the residual gain matrix doesn't depend

on which component x of the state is being estimated, the residual gain matrix L in

the H, filter depends on C1.

3.2.3 Full-Order Hoo Control (Suboptimal)

As we discussed in Chapter 2, full order H 2 control is composed of a full-state feedback

gain and a H 2 state estimator, and the two associated Riccati equations are decoupled.

For full order H, control, we also can construct same structure: full-state gain and

a H, filter. However, we arrive two coupled Riccati equations, as stated in Theorem

3.5. Please refer to [DGK89] for proof.

Theorem 3.5 (full-order H, suboptimal control.) For LTI system,

x = Ax-+ B 1 w-+B 2u

z = Cix + D11w + D 12u (3.12)

y = C2x+D 21w

Assume:

i) (A, B1) is stabilizable and (C1, A) is detectable;

ii) (A, B 2 ) is stabilizable and (C1 , A) is detectable;



iii) D'12 [C1 , D12] = [0, ];

iv) ]Di= [ .
D21

Then there exists a stabilizing output-feedback controller such that the L 2 gain bound

of w -+ z |Hzj | < y if and only if there exist symmetric matrices X > 0 and Y > 0,

such that

1
XA + A'X + X(-B 1B' - B 2BI)X + C1C1 = 0 (3.13)

1
AY + YA' +Y(-CjC1 - C C2 )Y + B 1B' = 0 (3.14)

p(XY) < _Y2 (3.15)

And one such controller is

A +- -B1BIX + B 2F + (I - 1YX)-'LC2 -(I - -YX)-1L
7y2 7 (3.16)

F 0
where F = -B'X and L = -YC2.

For the relaxed cases, such as D1 # 0, or D'12 [C1, D 12] # [0, I], or [B', D'1]'D'1 #
[0, I]', we also can obtain two coupled Riccati equations, and all the suboptimal

controller can be described by a free parameter transmission Q(s), please see the

book by Zhou et al. for details [ZDG95].

3.3 LMI-based Ho, Synthesis

Section 3.3 is an outline of H, synthesis by solving Riccati equations for the case of

full-state feedback or full-order output feedback. It has been widely accepted as an

efficient H, synthesis method. However, Riccati equation turns out to be helpless

to design structured controller, and it is unclear how to exploit the Q parameteriza-

tion for the design proposes, such as multi-objective control [GaP94]. Linear matrix

inequalities (LMI) has emerged recently as a powerful approach in linear system anal-

ysis and synthesis. In this section, after a brief introduction to LMI, we will show



its application in state feedback and full-order H, control. In the following section,

we will show how to handle structured H, control in the framework of LMI. More

applications of LMI in multi-objective control will be shown in Chapter 5.

3.3.1 Linear Matrix Inequalities

An LMI is any constraint of the form

A(x) = Ao+ x1Al+ x 2 A 2 +...+ XNAN < 0 (3.17)

where x = (X1i, x2, ... XN) are scalar variables, A0, ...AN are given symmetric matrices,

and A(x) < 0 means negative definite.

The LMI (3.17) is a convex constraint on x, and the feasible set of x is a convex

set. So if the objective function (such as c'x) is also convex, then the optimization is

a convex problem which can be handled in polynomial time. Multiple LMIs can be

regarded as a single LMI: A(1(x) < 0, ...A(k)(x) < 0 4-> diag(A(1)(x), ...A(k)(X)) < 0.

This property is useful to describe the various specifications individually in LMI form

without destroying convexity.

In control applications, mostly the decision variables come out as matrix variables

A(X) < 0, such as Lyapunov inequality A'X + XA < 0, X is symmetric. These kind

inequalities can still be written in the standard form (3.17), so it is LMI in matrix

variables X. Moreover, X can have some structure, for example, some entries of X

are prescribed.

There are three generic LMI problems,

1. Feasible problem, find a solution such that A(x) < 0;

2. minimizing of a convex objective under LMI constraints. In particular, the

linear objective min, c'x s.t. A(x) < 0;

J A(x) < AB(x)
3. Generalized eigenvalue minimization: min, A s.t. B(x) > 0

C(x) < 0



All of the above three generic LMI problems are tractable in polynomial time with

the efficient interior point algorithm, please see the book by Boyd, El Ghaoui et al.

[EGF94]. [VabOO] is also a good review of LMI in control. Several software packages

were developed for solving LMI problems. Contributed by Gahinet and Nemirovisji,

LMI control toolbox is available in the environment of Matlab [GNL95]. In this tool

box, there are functions feasp mincx and gevp to handle the three generic LMI prob-

lems.

For example, in Chapter 2 Theorem 2.1, the H2 norm of the system (A, B, C, D) is

computed by solving Lyapunov equation AP+PA'+BB' = 0, ||H |2= trace(CPC').

It also can be shown that ||H||1 = infx-x, trace(CXC') s.t. AX + XA' + BB' < 0.

So we can use LMI techniques to solve for the H2 norm.

H, norm computation is another example of LMI application. As we have seen

section 3.1, based on Theorem 3.1 y iteration is used to compute H. norm, subjected

to the corresponding Hamilton matrix has no eigenvalue on imaginary axis. We also

can solve system H, norm with LMI techniques: minx -y2 subject to the LMI con-

straint (3.18) or (3.19) in Theorem 3.6.

Theorem 3.6 Continuous-time LTI system (A,B,C,D) is stable and the L 2 gain

is less than y if and only if there exists some symmetric matrix X, such that

A'X +XA XB C'

B'X -721 D' < 0 (3.18)
C D -I

X > 0

or equivalently there exists some symmetric matrix Y, such that

AY +Y A' B YC'

B' -I D' < 0 (3.19)

CY D -2y
Y > 0



Proof: If A is Hurwitz, then

L 2 gain less than -y <-

0> ||y|| - ]2|| [(Cx + Du)'(Cx + Du) - 2 'u]dt

f0 d [(x'Xx) + (Cx + Du)'(Cx + Du) - _2w'w]dt - d(x'Xx)dt0 dt 0 dt

Substituting i = Ax + Bu, and completing the square, we can obtain

A'X + XA + C'C XB + C'D
0 >

B'X + D'C D'D -1

A'X + XA XB C'
X 21 + [C D] (3.20)

B'X-I D

Using the Schur complement (in Section 2.2), we can get the LMI (3.18). And with

Laypunov stability theory, we know X > 0 guarantees A is Hurwitz. Similarly we

can obtain the LMI (3.19).

Remark: If we multiply both sides of inequality (3.20) by 1 or j, with Schur

complement we can get another two equivalent expressions of the LMI (3.18).[A'X+XA XB C'
B'X -- I D' <0,IX > 0

C D -- yI

or

A'X +XA XB C'

B'X -I D' <0,X >0C D -2-y21
Similarly we also can get two equivalent expressions of the LMI (3.19).

3.3.2 LMI-based Hoc Control with Full State Feedback

Using Theorem 3.5, we can derive the LMI-based Hcc synthesis approach with full

state feedback. It is a direct optimization procedure, not like that in Section 3.2

where a series of suboptimal problems are solved.



Given an LTI system,

± = Ax+Blw+B 2u (3.21)

z = Cix+Diiw+D12U

with the full-state feedback u = Fx, the close loop would be

A+B2F B11
C1 + D 12F Dui

Substitute the closed-loop description into LMI (3.19), we can get the necessary and

sufficient condition for H. control with full-state feedback:

(A + B2F)Y + Y(A + B2F)' B 1 Y(C 1 + D 12F)'
BI -I D' < 0 (3.22)

(C1 + D12F)Y DJ -21
Y > 0

In inequality (3.22), gain F and symmetric matrix Y are unknown. It doesn't look

like a LMI problem. However, if we define Y = FY, then the constraint is in LMI

form with matrix variable Y, Y and a scalar variable _y2 . So the full-state feedback

problem is a convex minimization problem, which can be solved efficiently with LMI

techniques ([Gap94], [GNL95], [MOS98]).

Corollary 3.1 Optimal H, problem with full state feedback is equivalent to the

following linear objective minimization under LMI constraints:

min -2
y',,y2

AY +YA'+ B2Y± Y'B' B1  YC' +Y'D'2
s.t. B1 -I < 0 (3.23)

C1Y + D 12Z DJ -721

Y = Y, > 0

and the feeback gain is F = Y- 1



3.3.3 LMI-based Hoc Control with Dynamic Full-Order Out-

put Feedback

The dynamic full-order output feedback H, problem also can be solved concisely

with LMI techniques.

Theorem 3.7 (Suboptimal H,) Given a constant -y > 0, and the LTI plant

± = Ax+Blw+ B 2u

z = C1 x + D11w + D 12u

y = C 2x+D 21w

there exists an output feedback controller u = K8,b(s)y, such that L 2 gain bound of

the closed loop w -* z ||Hz,,|| < y if and only if there exist symmetric matrices R

and S satisfying the following LMI constraints:

' A'S+SA SB1 C1
0

B'S -- yI D's

C1 D11 -- yI

+AR +RA' RC{ B1

C1 R -yI D11

BI D IB1 D'1 -YI

Ns

[0

0
I J

NR

0

R I

I S

< 0 (3.24)

< 0 (3.25)

> 0 (3.26)

where NR and N are the null space of [BG, D' 2] and [02, D21], respectively. Moreover,

there exist suboptimal controllers of lower order k < n if and only if

rank(I - RS) ; k (3.27)

The proof of Theorem 3.7 follows from Theorem 3.6. Suppose

AK BK

CK DK

K.b (s) :=

Ns
0

[NR

0



AK is an k x k matrix, then the closed loop w -* z would be

A Bc A+B 2DKC2 B2CK B1 + B2DKD21

= BKC 2  AK BKD21
D D L [C1 + D12DKC2 D12CK] Dnl + D12 DKD2 1

Substituting it into Theorem 3.7, we can get
A'X + XeAc XeBe C'

B'Xc -yI D' <0 (3.28)

Cc Dc -7I
for some matrix X' = Xc > 0. Partition Xc as

XcN:=[ ,/ X 1 [=](3.29)

where S and R are n x n matrices. Substituting the partition of X, into (3.28), and

eliminating the controller parameters AK, BK, CK and DK, we can obtain the LMI

(3.24). Similarly we can get the LMI (3.25). Moreover, Xc > 0 and Xc is k x k

dimension are equivalent to (3.27) and the LMI (3.26). (see reference [GaP94] for

details).

Controller Reconstruction: The controller can be reconstructed with feasible

pair (R, S) [GaA94]. Since

S N R M
N I=I

we can get two full column rank n x k-dimensional matrices M and N from MN'

I - RS, then a feasible Xc can be obtained as

Xe
M' 0 0 N'

Once Xc is known, (3.28) becomes an LMI with respect to AK, BK, CK and DK,

thus the controller can be reconstructed. More strict arguments in [GaA94] shows



that the reconstruction procedure is always possible if pair (R, S) is feasible. Explicit

formulas for reconstruction of the controller with pair (R, S) were investigated in

[IwS94] and [Gah96]. In reference [EOA97], another simple LMI procedure to recon-

struct the controller from the feasible pair (R, S) is proposed given some a stability

margin.

Inequalities (3.24), (3.25)and (3.26) are in LMI form, so H, suboptimal prob-

lem with full-order output feedback becomes a feasible LMI problem, and full-

order H, optimal control becomes linear objective (convex) minimization subject to

LMI constraints. However, convexity is destroyed by adding constraint (3.27) on the

controller order and the problem is much harder. There were some attempts with

non-differential programming in reference [GaI94] and GaA94]. More satisfactory

approaches were reported later [EOA97] [GSS98], which we discuss in next section.

3.4 Static Output Feedback and Reduced Order

Hoo Control

3.4.1 System Augmentation of Reduced Order Control

As we have already discussed in the chapter about H 2 optimal control, reduced-order

control problems are readily transformed into static-output feedback problem, using

system augmentation techniques.

Given an nth order plant model

± = Ax + B1w B 2u

z = Cix + D11w + D 1 2U (3.30)

y = C2x + D21w



and the kth order output controller (k < n) to be designed

-iK = AKXK+ BKY (3-31)

U = CKXK+ DKY

where xG R", u C R"u, y G R"f, z E Rnz and XK R Rk.

X XK XK
Assume f = , u = , and 9 = , then we can get an aug-

mented plant

A 0 B1 0 B2

A 1  N2  0 Okxk 0 Ikxk 0

C Din D 1 2  := [C1 ,0] Du [0 , D 1 2 ] (3.32)

C2 D 21 D22 _ 0 Ikxk 0

C2 0 D21
and the "static" output controller

[AK BK

ft F CK DK Y(.3

Therefore, the reduced-order control problem becomes a static output control prob-

lem.

Finally, note that, other than direct design for reduced order controller in the

framework of static output feedback, model order reduction is a widely used tech-

niques to get reduced order H. controller, please refer to Section 2.6.

3.4.2 Hc Control with Static Output Feedback

Many problems with static output feedback remain open [SAD97]. In the past sev-

eral years, there has been great process contributed by El Ghaoui [EOA96], Skelton

[IwS94] [GrS96], Geromel [GSS98] et al.. In this section, we will extend some tech-

niques proposed for static output stabilization problem to handle static H, control

efficeintly.



For the given plant model (3.30), with the static output feeback u = Fy the closed

loop is

A+B 2FC2 B1 + B 2FD 21

C1 + D 12FC 2 Dul + D 12FD 21

Using Theorem 3.6, we can get the necessary and sufficient

optimal H, control:

condition for static sub-

(A + B2FC2)'S + S(A + B2FC2)

(B1 + B2FD 21)'S

C1 + D 12FC 2

S(B1 + B 2FD 2 1)

-Y1

Dil + D 12FD 21

(C1 + D 12FC2)'

(Dul + D 12FD 21)'

-7I

S = S, > 0

< 0
(3.34)

(3.35)

Begin with (3.34) and follow a procedure similar to the derivation of Theorem

3.7, or just by setting k = 0 in condition (3.27), we can get another necessary and

sufficient condition, as stated in Theorem 3.8 [GaP94].

Theorem 3.8 Given a constant y > 0 and the LTI plant (3.30), there exist a

suboptimal H, control with static output feedback gain F, such that the closed loop

||Hz.||o < -y if and only if there exist symmetric matrices R and S satisfying the

following constraints:

Ns
0

NR

0

'[
0]
I

A'S+SA

B'S

C1

AR+RA'

C1R

B1

SB 1

-- YI

Du

RC'

-7YI

D'11

CI

Dp'

B1

D11

-7YI

Ns
0

NR

0

0
< 0

IJ

< 0
S = R-1 > 0

(3.36)

(3.37)

(3.38)

where NR and N, are the null space of [B', D'2] and [C2, D21], respectively.

Remark: with some matrix operations, we can get two equivalent expressions of

ONE



the LMI (3.36) and (3.37):

A'S+SA+ 1 CC 1  SB 1 + CID'(
NS 'Y 1 Y Ns (3.39)

B S + !D'1 C1  -yI + D'1D11

AR + RA + !B 1B RCI + !B1 D'(
N' 7 N1 13.40)

R C1 R + 1D11B1 -- yI + !DnD' N

However, the constraint (3.38) S = R- 1 destroys the convexity. To track this con-

straint is not trival. This type of constraint S = R- 1 also appears in the static output

stability problem and there are several methods proposed, such as the alternating pro-

jection method [GrS95], min/max algorithm [GSS98] and the cone complementarity

algorithm [EOA97]. As we mentioned in Chapter 2, the min/max algorithm [GSS98]

is an excellent method to tack the static output stability problem. However, if it is

extended to H. problem, the feasibility of this procedure lost and convergence is not

guaranteed, similar as to H 2 problem. Cone complementarity algorithm [MaP95] is

proved extremely efficient for static output stability problem, and has also been used

in certain robust control problem ([EOA97]). In the following we will make a more

comprehensive extension. Recall the following Lemma 2.3 mentioned in Chapter 2:

X I
Lemma: For any pair of symmetric matrices (X,Y), if [ 0, then

I Y
trace(XY) > n, and the equality holds iff YX = I.

Thus we can rewrite constraint (3.38) as

S I
> 0 (3.41)

I R

and trace(SR) = n.

then the H, suboptimal problem can be tracked by solving:

min trace(RS)

s.t. LMI (3.36), (3.37) and (3.41) (3.42)

or LMI (3.39), (3.40) and (3.41)

and there exists an H, control with static output iff the minimum achieved is n.
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This problem is a bilinear objective optimization with linear matrix inequality con-

straints. The sequential linearization method (described in [MaP95]) can be adopted

to solve this type of problem:

Cone Complementarity Linearization Algorithm:

Step 1. Find a start point So and Ro satisfying LMI (3.36) (or LMI /(3.39)) and

(3.37) (or LMI /(3.40)) respectively, set k = 1.

Step 2. Solve the LMI linear minimization (convex) problem:

minfk(R, S) = trace(Rk_ 1 S + RSk_1)

s.t. LMI (3.36), (3.37) and (3.41) (3.43)

or LMI (3.39), (3.40) and (3.41)

Step 3. If the stopping criterion is satisfied, exit; otherwise, set (Sk, Rk) =

arg min fk(R, S), k = k + 1 and go to step 2.

The above algorithm will generate a decreasing sequence fk which is bounded from

below, so it will converge to some value.

Theorem 3.9 The cone complementarity algorithm presents the following prop-

erties: (i) 2n < fk+1 fk, (ii) f(X*, Y*) = 2n iff X*Y* = I.

The above cone complementarity linearization algorithm is very easy to implement

using the LMI toolbox. El Ghaoui etc ([EOA96] [EOA98]) have used this method,

and showed it is extremely satisfactory for the a-stability problem with static out-

put feedback or reduced order controller. They gave some intuitive explanation from

the view of primal-and-dual, and named it the "cone complementarity linearization

algorithm". El Ghaoui etc also used it for certain H, suboptimal problems for the

case Du = 0 and D21 = 0. Our extension here is more general and requires less com-

putation since we decrease the decision matrix number from four to two. Numerical

comparison and extension to H 2 problem were reported in reference [01G97].

Once we get the feasible pair (R, S), we can reconstruct the static gain F with the

method in [GaA94] or [Gah96]. The method developed in the stabilization problem

in [IwS94] also can be extended directly for H, control reconstruction.
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3.5 Decentralized Hoo Control

In Section 3.4, we discussed the Ho control with lower-order and static output feed-

back, and solve them efficiently with cone complementarity linearization algorithm

and LMI solver. However, if there are more constraints on the static gain, or not all

sensor signals are available for each actuator, the above algorithm will fail, since we

can't reconstruct the controller with pair (R,S). Static decentralized architecture is

one such typical constraint of practical importance. Similar as Section 3.4, decen-

tralized reduced order control can also be cast as a static decentralized problem with

system augmentation. So in this section we will mainly focus on static decentralized

control.

3.5.1 Static Decentralized Hoo Problem and BMI

The static Decentralized Hoe Problem: Given an LTI plant model

N

x = Ax+Biw+(B 2 iUi

i=1

N

z = C1 x + Duw + E D12ini (3.44)
i=1

yj = C2jx + D 2 1iW, i = 1, 2, ... , N

where yj is the i-th measurement available for the i-th control vector ui. Design the

decentralized static output feedback controller ui = FDiyi, i = 1, 2, ..., N, such that

closed-loop system is stable and ||Hz||oo < y.

Define B 2 = [B21, B 22 , ... B2N]I C2 = C1, C2, ... C2 N], D 12 = [D 121, D 122, ... B12NI,

D=[Dj, D 12, ...D1NU = [u1, u2, .- N ]', and y = [y', y', ...y' ]'. The controller

can be written as

FD1

u = Fdy = FD2

FDN
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With Theorem 3.6, we can conclude that Fd is a decentralized static sub-optimal

H, controller if and only if there exists some symmetric matrix S such that:

(A + B2 FdC2 )'S + S(A + B2 FdC 2 ) S(B1 + B 2FdD 2 1) (C1 + D12FdC2 )'

(B1 + B2FdD 21)'S -7yI (Dnl + D12FdD 21)' < 0

C1 + D12FdC 2  Dnl + D12FdD 21 -J1

(3.45)

S = S' > 0 (3.46)

The condition (3.45) and (3.46) look similar as (3.34) and (3.35), but there is a

great difference. since Fd is has block diagonal structure, we can't use elimination

lemma to arrive at the equivalent conditions as in Theorem 3.8. So the decentralized

static sub-optimal H, problem is essentially a non-convex bilinear matrix problem

(BMI).

BMI was popularized after a series of papers ([SGL94], [GTS94], [GSP94], [SGL96])

by Safonov et al.. Unfortunately BMI problems are generally NP-hard, not solvable

in polynomial time. However, practical algorithms do exist for BMI problems, even

although not efficient. LMI-based iteration ([ShC96], [CSM98]), nonlinear program-

ming ([ImF99], [Lee99]), or homotopy methods ([IZF96], HHB99], [IZF99]) are used

to search the local minima. Branch-and-bound methods ([GSP94], [Tas97], [KSK97],

[BVB97], [SMP99], [TANOO], [TANOO]) are also used to solve for the global minima

and various tricks were used to simplify the calculation of the upper or lower bound,

but it still takes too much time even for a modest-size problem [VaBOO]. In addition,

some sufficient conditions for decentralized H, control were also proposed in [GBP94]

and [CrT99].

3.5.2 Algorithms for Decentralized Hoc

In the following, we will introduce some easily-implemented algorithms for decen-

tralized H, control: alternative minimization, iterative LMI, and homotopy. For

nonlinear programming approach and brunch-and-bound method, please refer to the

literature we previously mentioned.
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Alternative Minimization Algorithm:

The most easy to implement algorithm for decentralized H, is probably the alterna-

tive minimization:

Start with a stabilizing Fd, repeat OP1 and OP2 until -y can not decrease any

more:

OPl: Fix Fd, search for S = arg mins y, subject to constraints (3.45) and (3.46);

OP2: Fix S, search for Fa = arg minF 7, subject to constraint (3.45).

After the matrices Fd or S is fixed, OP1 and OP2 are LMI problems, which can

be solved easily with LMI solver. The alternative minimization will generate a de-

creasing sequence of -y, and it works well in many practical problems. However, this

algorithm might converge very slowly, and might even stop at a non-stationary point.

Iterative LMI Algorithms:

Shiau and Chow [ShC96] developed an iterative LMI approach for decentralized state

feedback. They first designed a full state H, controller (seen in Theorem 3.3), and pa-

rameterized the set of all decentralized state-feedback H' controllers with parameters

M and Fd. To solve for Fd, they used the equality (X - M)'B 2B (X - M) > 0 to relax

the BMI conditions and iteratively solve the LMI problem with fixed X(k) = M(k-1).

Cao et al. [CSM98] used an approach similar to that of Shiau and Chow to relax

BMI for decentralized output-feedback stabilization problem, and used it as a frame-

work for the H, problem. Their ideas are summarized as following:

1. Define

S 0 0 A B1  0 B2
9:= 0 I0 , A:= 0 2I [ 0 ,:= [C2 D 21 0]

001I C1 D ^'I D12

then the sub-optimal condition (3.45) and (3.46) can be re-arranged as

$(A + BFdC) + (A + BFdC)'$ (3.47)
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which is exactly the same as a decentralized stabilization problem with the augmented

plant (A, B, 0, 0) and some structure on S.

2. For the LTI plant (A, B, C, 0), it is well known that there exist a static sta-

bilizing decentralized controller u = Fd y if and only if there exists some symmetric

matrix S > 0 such that

S(A + BFdC) + (A + FdC)'S < 0 (3.48)

Add an immaterial item C'FdFdC to the above inequality, and it is shown that (3.48)

holds if and only if

A'S + SA - SBB'S + (B'S + FdC)'(B'S + FdC) < 0 (3.49)

3. Since (X - S)'BB'(X - S) > 0, we can get a sufficient condition for inequality

(3.49)

A'S+ SA XBB'S - SBB'X + XBB'X + (B'S + FdC)'(B'S + FdC) < 0 (3.50)

This condition become necessary if X = S holds. Using the Schur complement, we

can get

A'S + SA - XBB'S - SBB'X + XBB'X

B'S + FdC

(B'S + FdC)'
< 0

4. The algorithm for the decentralized stabilization problem is following.

(3.51)

(This

algorithm can be applied to decentralized Ho, problem with the augmented plant

(A, B, C, 0) and structured S).

Step 1. Solve the following Riccati equation for S with some Q > 0, then set X

as S

A'S + SA - SBB'S +Q = 0

Step 2. Fix X, solve problems OP1 and OP2 with the LMI solver:

OP1: generalized eigenvalue problem

mm a
S>O,Fda

A'S + SA - XBB'S - SBB'X + XBB'X - aS

B'S + FdC

(B'S + FdC)'

-I
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OP2: Fix the a as that achieved in OPI

min trace(S)
S>O,Fd

s.t. A'S + SA - XBB'S - SBB'X + XBB'X - aS (B'S + FC)' < 0
B'S + FdC -I

Step 3. If a < 0, and Fd is a feasible decentralized gain, stop; else if JX - S1| < 6

(a pre-determined tolerance), there may be no feasible Fd, stop; otherwise update X

as S achieved in OP2, and go to Step 2.

Problem OP1 is used to move the closed-loop poles from right to left, and in OP2

trace(S) is bounded from below since S > 0. Theoretically Cao's iterative LMI pro-

cedure will generate a decreasing sequence a, and a bounded sequence trace(S). So

it should be convergent, although it might not converge to an acceptable solution.

Homotopy Algorithms

Hassibi et al. [HHB99] proposed a homotopy method to solve BMI problems in

control. They linearize the BMI with a first-order perturbation approximation, and

continuously make slight improvements of the controller performance with the LMI

solver. They showed the effectiveness of the approach, but there are still no conver-

gence guarantees.

Zhai et al. [ZIF01] [IZF96] proposed another homotopy method to deform the

centralized gain into a decentralized controller. Write the left side of inequality (3.45)

as F(Fd, S), and define a matrix function H(Fd, S, A) = F( (1- A)Fd+AFc, S), where

Fc is a centralized output feedback gain, which can be found using the approaches in

last section. Observe that (1 - A)Fd + AF = Fc if A = 0, and (1 - A)Fd + AFC = Fd

if A = 1. The idea of their approach is:

Step 1: Find a centralized suboptimal Ho. gain FC and the corresponding S, set

So = S

Step 2: Set Ak = k/2M, solve the following LMI feasible problems for k = 1 to

2M s
OP1: search for Fdk with fixed Sk_1 subject to H(Fdk, Sk_1, Ak) < 0,
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OP2: search for Sk with fixed Fdk subject to H(Fdk, Sk, Ak) < 0 and Sk > 0.

If this procedure is feasible for all Ak, then we have obtained a suboptimal H. con-

troller Fd. If the procedure is infeasible for some selected Ak, Zhai et al. will increase

M or restart the procedure with another centralized Fc. Zhai's method is easy to

implement, but similar to the alternative minimization there is no guarantee that an

acceptable solution can be found with their algorithm.

As we know, the computation for a centralized suboptimal H, gain Fc is also

troublesome. So Zhai et al. further extends their approach by starting with a full-

order centralized H, controller, which can be obtained with the existing Matlab

toolbox. They constructs some uncontrollable and unobservable (but stable) modes

and deform it into a reduced-order decentralized controller. However, this will ex-

tremely increase the number of design variables in S.

We propose another homotopy approach here, which will only require the initial

controller to be stabilizing. Represent the left side of inequality (3.45) as F(Fd, S,7)

and let 'Yg be the goal we are required to achieve.

Step1: Find a stabilizing Fdo, and the corresponding closed loop H, norm -Yo,

Step 2: Set a trial step-size J, = (yo - yg)/Nm, yk = yo - k& , k = 1 to Nm. For

every Yk, find a pair (Fdk, Sk) such that F(Fdk, Sk, -yk) < 0 and Sk > 0 with the pair

(Fd(k-1), Sk-1)

Wherein, for every k, the pair (Fdk, Sk) can be obtained by shifting the poles of

F(Fd, S, -/k) < 0 continuously from left to right: start with Fd(k_1), alternatively fix

Fd and S, minimize t, such that F(Fd, S, -Yk) < tI and S > 0, until we arrive at t < 0.

Although this homotopy method has outer and inner LMI iterations, our (limited)

experience showed that the computation efficiency is almost the same as alternative

minimization. The reason might be that the inner LMI iteration does't require feasi-

bility. For this reason, the initial yo can be chosen less than the closed loop H. norm

with Fdo feedback. To accelerate convergence, we can use diminishing step-sizes of 7.

107



3.6 Application: Passive Mechanical System De-

sign

Example: Five-Mass System

We apply the approaches of structured control to the design of the lumped-

parameter mechanical structure. Figure 3-4 depicts a five mass system composing

masses, springs and dashpots. We are given that ml = m2 = m3 = m4 = m5 = 1,

k1 = k3 = k5 = 1, and ci = c3 = c5 = 0. Our goal is to choose k2, c2, k4 and

c4 to minimize the H, norm from Fdl and Fd2 to the velocities of masses m2 and

m4. It can be cast as a decentralized H, problem with static output feedback. The

plant order is 10, closed loop is 2 by 2, and the controller is a block diagonal matrix

composed of two 2 x 1 blocks.

This example is borrowed from the literature [SMP99], in which a new branch and

bound method is used and the achievable H, norm is obtained between 2.775 and

3.083 after 6661 iterations nearly one and a quarter hours' computation on a Pentium

II 400, while the traditional branch and bound can't get convergence after 12 hours

of computation.

F i Y -y 2

K1 K2 K3 K4 K5

mi m2 m3 m4 m5
Cl= C2 r> C3 C4 r> C5

Fdl Fd2

Figure 3-4: Diagram of the five-mass system.

With the alternative minimization algorithm, after 1070 LMI iterations with initial

parameters

k2 c2 0 0 1 1 0 0
Fd =

0 0 k4 c4 0 0 1 1
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Fd =
0.7007 0.1032 0 0

0 0 0.0192 0.4890

With the homotopy algorithm we proposed, set initial 'yo as 6, and step as -0.1,
we can achieve H, norm 3.10 after 899 LMI iterations.

With cone complementary algorithm, we obtained a centralized static output feed-

back gain

0.5376 0.4285 -0.4306 0.6011
F 0 -

-0.2891 0.3104 0.2690 1.2730
(It converged very quickly for this plant model). With this Fc, we tried Zhai's homo-

topy method, for y = 3.10 it converged after 212 = 4096 LMI iterations. (It couldn't

produced a acceptable solution after 211 = 2048 LMI iterations.)

The singular value of the closed-loop system is shown in Figure 3-5, comparing

with the case k2 = k4 =1 without damping. In this example, alternative searching

algorithm and pole shifting algorithm converge much faster than the branch and

bound method. We also tried other initial parameters, or optimize three parameters

rather than four, and it is found that both algorithms work pretty efficiently.

Figure 3-5: Closed-loop singular value of five-mass system.
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In addition, we also applied the structured control techniques to TMD design.

An SODF TMD can be taken as a centralized static output feedback problem. The

cone complementary algorithm and alternative LMI converge very fast for this 4-order

system. We can get an H, optimal tuned ratio and damping. One example can be

found in Section 5.6. We would like to point out that H, design is not the same as

Dan Hartog's analytic result. However Dan Hartog's design is quite close to that of

H., as found by Nishihara and Asami [NiAOO]. The multi-degree-freedom TMD can

be cast as a decentralized control and designed via H, optimization.
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Chapter 4

Eigenvalue & Eigenstructure

Treatment

Poles determine the rate of the system's response; right eigenvectors fix the modal

shapes and left eigenvectors plays a determining role of the observability. Pole place-

ment (the so-called inverse eigenvalue problems) is a well-known approach in dynam-

ics and modern control since 1960s. Eigenstructure assignment, which can assign

eigenvalues and eigenvectores simultaneously, has also been proposed in the past

two decades. In this chapter, the important results and techniques of eigenstructure

assignment are reviewed, including full-state feedback, static output feedback, con-

strained output feedback, and reginal pole placement. A new approach is proposed

to treat poles of architecture constrained systems, so as to maximized the minimal

damping. Practical examples are given to demonstrate the application to the design

of passive mechanical systems. The performances of the closed-loop system produced

with H2, Hoc and pole treatment are compared.
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4.1 Modal Decomposition and Eigenstructure Treat-

ment

4.1.1 Modal Decomposition

Consider the following n-dimensional system with initial condition:

i = Acx + Bcr, x(O) = xo (4.1)

It is well-known that the zero-input response to initial condition is

x(t) = eActxo

Suppose Ac has eigenvalues Ai and right eigenvectors (eigendirections) vi,

(4.2)

If all eigenvalues are distinct, then

Ac = V- 1AV

where V = [v1 , v 2, ... v,], A = diag{[A1, A2 , ...An]}. Now we can write the response as:

x(t) = eActx0 = e V-'AVtxo = V-leAVxo

(4.3)= vieAitw x O

where wi is the it hrow of W = V-1, which is known as the left eigenvector since

weAc = Aiwi.

Equation (4.3) is called the modal decomposition or modal expansion of

the undriven system. With modal transformation, we can also obtain the modal

decomposition for zero-state response with nonzero driven r(t):

n

x(t) = S vi eitw' * Ber(t)

where '*' means convolution.
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The total response is the sum of the zero-input responses and zero-state responses.

If the eigenvalues are not distinct, Ac might not be diagonalizable. If so we can use

Jordan form for modal decomposition.

From Equation (4.3) and (4.4), we can see that

" The eigenvalues (poles) determine the response rate of the system; but poles

(together with zeros) can't define a whole system (other than the single-input-

single-output case);

" The right eigenvectors fix the modal shapes of the response;

" The left eigenvectors can influence the observability;

* The initial condition determines to which degree each mode will participate in

the undriven response;

" The control matrix Bc determines to which degree the input will contribute in

the zero-state response.

4.1.2 Eigenvalue & Eigenstructure Treatment

Because the importance of eigenvalues and eigenvectors, it is useful to change the

closed-loop modes with the feedback so as to meet performance requirements. For

examples, we may wish to assign poles precisely (or arbitrary close) to the prese-

lected self-conjugate set {A }, or assign the eigenvalues and eigenvectors (so-called

eigenstructures) precisely to the self-conjugate scalar set {Aq} and corresponding vec-

tor set {vi}, or place the poles in some ideal regions. We use the the term eigen-

value/eigenstructure treatment to refer to eigenvalue/eigenstructure assignment, pole

regional placement, and the pole shifting.

Consider the plant model:

, = Ax+Bu

y = CX (4.5)

where x E R", u E R', and y E R'.

117



Our problem is to design the controller gain F, to meet the specification on the

eigenvalues or eigenstructures of the closed-loop A + BFC. For general C, the above

is a output feedback problem. Full-state feedback problem is the case C = I. If

some entries of F are prescribed as zero, such as decentralized, this is architecture

constrained problem.

Eigenvalue/Eigenstructure problems have been investigated extensively since the

1960s. Wonham [Won67] originally connected full-state pole placement with control-

lability. Davidson [Dav70] examined the pole assignment with static output feedback.

Kimura [Kim75], Davidson and Wang [DaW75] independently proposed the same

sufficient condition m + r > n for output pole assignment, and this condition was

extended by Wang [Wang92]. Various algorithms for pole placement have been pro-

posed. Pole placement problem was extended to eigenstructures by recognition that

multi-input systems can have a multiplicity of eigenvector associated with each eigen-

value. Moore [Moo76] described the freedom available to assign eigenvectors other

than poles for full-state feedback. Srinathkumar [Sri76] investigated the freedom of

eigenstructure assignment using output feedback. O'Reilly and his coworkers [FaO82]

[RoO87] [FaO88] parameterized the eigenstructure assignment for full-state and out-

put feedback. Liu et al. [LCT93] parameterized the decentralized eigenstructures

assignment. Shapiro and his coworkers [ShC81] [ASC83] [SSA94] [PSS94] investi-

gated the 'best achievable' eigenstructures via projection. Kautsky et al.. [KNV82]

[KNV85] developed the robust eigenstructure assignment. Regional pole placement

is also investigated with other objectives, such as H, minimization [PaL94] [YeL95]

[CGA99] or H 2 minimization [YaB92] [YAJ96] or both [BSU94] [FNM97] [CGP99].

Eignstructure assignment control toolbox was developed in 1994 by Liu and Patton.

Eigenstructure assignment has been successfully applied in some flight control sys-

tem. More information and application can be found in the survey paper [ASC83]

[Spu90] [SSA94] [Whi95] [SAD97] and the book by Liu and Patton [LiP98].

In the following of this Chapter, we will survey some the important results and

algorithms. Then proposed a subgradient-based approach to shift the poles so as to
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maximize the minimal damping for architecture-constrained systems.

4.2 Pole/Eigenvalue Assignment

In this section we will discuss the conditions and algorithms for the problems of eigen-

value assignment with full-state feedback, static output feedback and decentralized

output feedback. Some other aspects, such as fixed modes, partial pole assignment,

and robust pole assignment are also worthy to mention.

4.2.1 Eigenvalue Assignment with Full-State Feedback

Consider the full-state feedback problem: Given a self-conjugate complex scalar set

{Af}, i = 1,2, ...n, find a m x n real matrix F, such that the eigenvalue of A + BF

are precisely the set {A4}.

Theorem 4.1 There exists a real matrix F, such that

n

det(AI - A - BF) = f(A-A') (4.6)

for an arbitrary self-conjugate complex scalar set {A '}, i = 1, 2, ...n if and only if

(A, B) is controllable: rank{[B, AB, A 2 B, ...A"-1B]} = n.

The proof can be seen in the lecture notes by Dahleh et al. [DDV99].

Below we will demonstrate the pole placement design for single-input case B = b.

It is well-known that a nonsingular similarity transformation will not change the

eigenvalues and controllability of the system. Since (A, b) is controllable, there exists

a transform matrix T to change the pair (A, b) into the control canonical form [LiP98]:

-ai -a 2 ... -an1 -an

1 0 ... 0 0

A= T-1 AT= 0 1 ... 0 0 (4.7)

0 0... 1 0

S= T-1 b = [1 0 0 ... 0]' (4.8)
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And the characteristic polynomial is given by the first row of A:

det(AI - A) = det(AI - A) = A" + Al"1 + 2 ... + dn-1 + an

Denote the full-state feedback F in the new coordinates as

F= FT = [f f2 f 3 ... fn

then the closed-loop matrix has the form:

A+b =T- 1(A+bF)T =

and the closed-loop characteristic polynomial is given by

det(AI - A - bF) = det(AI - A - bF)

= An + (ai - fi)A"n1 + (d2 - 2)An- 2 + ... + (an-1 - fn-1)A + (an - fn(4.11)

Rewrite Equation (4.6) as

det(AI - A - BF)
n

=J7(A - Ad)
i=1

= A +A + dAn 2 + ... + a + 

Compare thing coefficients in (4.11) and (4.12), we have

(4.13)

And the full-state feedback gain in the original coordinate is obtained as

F = FT-1 =[f f2 3 ... fn]T-1 (4.14)

The matrix T which transforms the pair (A, b) in to the control canonical form (A, b)

is given by

T = [b Ab A 2 b ... A"-'b][b Ab A26 An-l]- (4.15)
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The above procedure results in the following concise formula, which is commonly

called Ackermann's formula

F = -[0 0 ... 0 1][b Ab A 2 b ... A-b]-i -A + A2. + sd I) (4.16)

A similar procedure can be developed for multi-input case by introducing the

MIMO control canonical form. For the MIMO case, the feedback matrix for pole

assignment is not unique, and this additional freedom can be used to assign eigen-

vectors. We will discuss the details in the next section.

4.2.2 Eigenvalue Assignment with Static Output Feedback

Assignment conditions with output feedback

Pole placement with static output feedback has remained challenging for several

decades. Given a minimal-realized (controllable and observable) n-order real-coefficient

system (A, B, C, 0) and a self-conjugate complex scalar set {A }, i = 1, 2, ...n, find an

m x n real matrix F such that the eigenvalue of A + BFC are precisely (or arbitrary

close to) the set {A }. Usually we assume B has full column rank m and C has full

raw rank r.

In 1975 Davidson and Wang [DaW75], and Kimura [Kim75] proved that a suffi-

cient condition for arbitrary (self-conjugate) pole assignment with a real matrix F is

that

m + r > n (4.17)

Herman and Martin [HeM77] showed that if complex feedback is allowed a necessary

and sufficient condition of static output pole assignment is

mr > n (4.18)

Tarokh [Tar89] used the rank(E) = n as the pole assignability criterion with real F,

where E is n x mr matrix whose kth row is formed from the rows of CAk 1B. But

Carotenuto [CFM01] provided a counter example to show that Tarokh's assertion is

only true for complex F, and for the case of real F it is false. Wang [Wan92] provided
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the best-known tight condition as below. An alternative concise proof can be found

in [RSW95].

Theorem 4.2 If the degree of Grassmannian

1!2!...(r -1)!mp! (4.19)
m Mr m(m + 1)! ... (m + p - 1)!

is odd, mr > n is a necessary and sufficient condition of arbitrary pole assignability

with real static output F; if dm,, is even, mr > n is a sufficient condition.

The case mr = n and dm,r even is left inclusive. Carotenuto [CFM01] showed that

for arbitrary selected plant with n = 4, m = 2 and r = 2 (dm,, even), the chance

of pole assignability is around 85%. Some new conditions can be found in [RoS98].

More related information can be found in the survey paper by Rosenthal and Wang

[RoW97].

Unlike the above conditions for arbitrary pole placement, in [FaO88] a neces-

sary and sufficient condition is used to check the assignability of certain preselected

poles Ai: rank[C adj(AgI, - A)B] > 1 for real eigenvalue Ai, and rank[C adj(AgIn -

A)B, C adj(A*I, - A)B] > 2 for real eigenvalue Ai. The proof can be found therein.

Algorithms for output feedback

Most available algorithms of output pole assignment required m + r > n and only

place some part of poles. We will see these algorithms in Section 4.3. Here we mainly

focus on the algorithms to place whole set of poles.

Fahmy and O'Reilly [FaO88] proposed a multistage parametric approach to as-

sign some eigenvalues and right eigenvectors first with a matrix F1, and convert

these eigenstructures into uncontrollable and unobservable modes in a particular n-

order 'equivalent' system (A + BF 1C, BB, CC, 0), then assign some other eigenvalues

and left eigenvectors. This approach can be used to assign n self-conjugate poles if

m + r > n. We will see their parameterization and protection method in next section.

After Wang [Wan92] provided the tighter sufficient condition mr > n some new

algorithms were proposed. Soylemez and Munro [SoM98] proposed an approach to
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place some poles successively with a single input, and to make these poles uncontrol-

lable from other input so as to place all the poles. Alexandridis and Paraskevopoulos

[AlP96] proposed a relatively easy approach to assign whole set of eigenvalues via two

coupled Sylvester matrix equations. This algorithm is detailed below:

Suppose the set of the self-conjugate closed-loop poles {A}, i = 1, 2, ...n are

distinct and don't coincide with the open-loop poles. Assume that the set can be

partitioned into two self-conjugate sets {A '}, i = 1, 2, ...r and {A}, i = r+1, r+2, ...n.

Write Ad = diag{[Ad, ... , Ad]} and Ad_, = diag{[Aa 1 , ..., A ]}. Assuming vi, i =

1, 2, ...r, is the ith eigenvector (to be determined) corresponding Ai, Vr = [Vi, ..., Vr],

we obtain

(A + BFC)vi = A dV,, i = 1, 2, ... , r

(A + BFC)Vr = VrAd

Defining Tr = FCVr, we obtain the well-known Sylvester matrix equation

Vr A - AVr = BF, (4.20)

Since C is full row rank and Ad contains no poles of A, CV, is invertible. So the

output feedback is obtained as

F = Tr(CVr)-1 (4.21)

Next we will see how to choose Vr so as to place the rest of the poles A , In

[AlP96] it is shown that if F satisfies (4.20) and (4.21), the remaining n-r closed-loop

eigenvalues are the eigenvalues of the (n - r) x (n - r) matrix

A 2 2 - LA 12 (4.22)

where

L = CVr(CVr)- 1  (4.23)

and A 2 2 = CAT 2, A 1 2 = CAT 2 , C is any (n - r) x n matrix such that [C', C]

is nonsingular, [T1 , T 2] = [C', C]-. Further it is shown that the pair (A2 2 , A12 )

is observable if and only if pair (A, C) is observable. So the remaining problem is
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to choose L so as to place the poles of A 2 2 - LA 12 as Ad_, subject the constraint

(4.23). Note that to determine the poles of A 22 - LA 12 is equivalent to an observer

pole placement problem, which is the duality of full-state feedback. Consequently,

another Sylvester matrix equation is obtained as:

A__WT - W A 22 = T_, A 1 2  (4.24)

where Wnr = [Wr+1, ---, Wn] are the left eigenvectors of the n - r order matrix A 2 2 -

LA 12, and 4Dr = [&+1, ... ,], (% = -LTw 3 , j = r + 1,..., n. So

L = nr-w-_1,@4_,(4.25)

To simplify the solution of two Sylvester matrix equations (4.20) and (4.24) cou-

pled with (4.22) and (4.23), [Alp96] used the result of [Dua93] to parameterize V, Tr

Wn-,r and 4 n-r as:

TWr = [Zi, Z 2 , ... , Zr] (4.26)

Vr [SiZi, S 2Z 2 , ... , SrZr] (4.27)

=-r [r+1, Zr+2, ... , Zn] (4.28)

Wn-r = [Rr+1zr+1, Rr+2Zr+2, ... Rnzn] (4.29)

where Si = (AdI- A)- 1B, zi is a vector of length m of the form [zi 1 , Zi2, ... , Zi(m-1), 1]I

for i = 1, 2, ... , r, Rj = [CAT 2 (A4Id- CAT2 ) - 1]T , zj is a vector of length r in the form

[zni, zi 2, ... , Zj(r-1), 1]T, for j = r + 1, r + 2, ... , n. Further, the vectors zi and zj satisfy

the algebraic conditions:

zMi z = 0 for i = 1,2,...,r andj =r+ 1,r+2,...,n (4.30)

where Mij is an m x r matrix given by

Mig = ST (CTRj + CT) = {C[I + AT 2(A I - CAT 2)<1< 1C](A I - A)- 1 B}T

Now we summarize the above pole placement procedure as the following. Solve

the r(n - r) equations (4.30) for the r(m - 1) free parameters in zi and (n - r)(r - 1)

free parameters in zj, assemble T, and Vr as (4.26) and (4.27), then the output feed-

back gain F is computed using equation (4.21). For the existence of a solution, it
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is necessary that r(m - 1) + (n - r)(r - 1) > r(n - r), i.e., mr > n; if mr > n the

remaining free parameters can be used for the eigenvectors; if m + r > n, the zj can

be chosen as a constant vector, and equations (4.30) become linear.

Leventides and Karcanias [LeK95] proposed a novel global asymptotic lineariza-

tion method to place all the poles with static output feedback (mr > n), which is

quite different from the state-space methods. Suppose the open-loop transfer func-

tion is H(s) = C(sI - A)-'B = N(s)D(s)-1 , then the closed-loop polynomial may

expressed by

p(s) = det(I - FH(s)) (4.31)

A degenerate point is a gain F which make the system not well-posed, i.e., p(s) = 0 for

any s. They explored the properties of system degeneracy, and linearize the system

around a degenerate gain. This method, however, might produce asymptotically

infinite gains in the feedback.

4.2.3 Eigenvalue Assignment with Decentralized Feedback

Pole placement with architecture constrained (decentralized, etc.) static output feed-

back is still an open problem. Given a minimally-realized N-channel LTI plant model
N

x = Ax + Biui
i=1

yi = Ciz, i = 1, 2, ...,I N (4.32)

where x E R', ui E R'" and yi E R', design an N-channel decentralized feedback

ui = Fiyi, i = 1, 2, ... , N (4.33)

to place n preselected self-conjugate poles.

Assignment conditions with decentralized feedback

If complex feedback is allowed, one necessary condition for arbitrary decentralized

pole placement is known as
N

miri > n (4.34)
i~1
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Unlike the centralized case, the above condition is not necessary for real feedback .

Tarokh [Tar89] used the rank of an n x E miri matrix ED to check the sufficiency,

where the kth row of ED is formed from CAk-1B after removing the elements cor-

responding to the prescribed elements in constrained F. Lu et al. [LCT93] restated

Tarokh's condition with a matrix of Kronecker products to check the possibility of

partial pole assignability. However, Carotenuto [CFM01] showed that Tarokh's as-

sertion is only true for complex decentralized feedback. Leventides and Karcanias

[LeK98] independently obtained such a matrix ED, and explored its relation with the

gradients of the characteristic polynomial coefficients. They proved that

N

rank(ED) = n and [Zmiri > n (4.35)
i=1

are sufficient conditions for arbitrary pole assignment with decentralized complex

static-output feedback.

Wang [Wan94] provided some sufficient conditions for arbitrary pole assignability

with a decentralized real matrix:
N

dG(mi, ...mN, rl...rN) is odd and Tmiri 2 n (4.36)
i=1

N

or dG(mi, ...mN, r...rN) is even, Zmiri > n
i=1

and ml= m 2 =...=mN or r= 2 = =rN (4.37)

where dG(mi, ...mN, r...rN) is the degree of product Grassmannian under Plucker-

Segre embedding:

ni!+...nN! mi + i
dG(mi, ...MN, T1---.rN)=H mi , where ni =

ni!....nN- i=1 Ti

Another sufficient condition for decentralized (real-matrix) pole assignment can

be found in [LeK93].

Algorithms for decentralized feedback

Least-square-like approach ([ASC83] [PSS94]) and parametric decentralized method

([LCT93]) are also proposed for architecture-constrained partial eigenvalue assign-
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ment together with some eigenvectors. we will summarize the methods in the next

section.

The reports we found to assign whole set of poles with static decentralized output

feedback are [LRD85], [Tar89], [WiD92], and [LKL97]. [LRD85] and [Wi92] adopted

continuation/homotopy method via Kronecker product and matrix. In [LKL97] ho-

motopy method is also used with matrix ED for the decentralized pole placement.

Leventides et al. [LKL97] extended their early work in [LeK95] to asymptotically

linearize the problem around a decentralized degenerate gain and place the poles.

In the author's view, one multistage nonlinear programming algorithm is also

ready to implement: evaluate the eigenvalue sensitivity respect to the decentralized

gain F, and so we can efficiently place the first complex conjugate eigenvalue pair (or

real eigenvalue) with gradient-based methods, then make eigenvalue pair uncontrol-

lable with the techniques in [FaO88], and assign the the rest of pole pair by pair (or

one by one).

4.2.4 Other Research about Pole Placement

At the end of this section, it is also worthy to note other interesting aspects of

pole placement research. Although mostly we would like to have no fixed modes,

such that the system is arbitrarily pole-assignable. However, it is also possible to

achieve the disturbance rejection via closed-loop fixed modes. Details can be found

in the papers [MMD98] [DeMOO]. In practice sometime only small number of poles

are not ideal, so the methods for partial pole reassignment without changing the

rest poles are also proposed in [DaS99] [DEROO]. Note that in these two papers

a second order description is used rather than the common first order sate-space

description. On the contrast, most partial eigenvalue placement methods associated

with eigenstructure assignment can't predict the other poles, even yield an unstable

system. The worst reputation about pole assignment is the eigenvalue sensitivity. So

robust pole assignment techniques are also presented by minimizing the eigenvalue

sensitivity [KNV85], the norm or feedback gain [VarO0], or by guaranteing some norm



condition [ChLO1]. We will discuss some details in next section.

4.3 Eigenstructure Assignment

As we stated in Section 4.1, eigenvalues can't uniquely define a system;eigenvectors

also play an important role is the system response. So soon after eigenvalue placement

was brought up, eigenstructure assignment was also proposed. In this section we will

discuss four catalogs of algorithms: parametric method, protection method, projec-

tion method, and robust eigenstructure assignment. Full-state feedback, static output

feedback and constrained (decentralized) feedback are all considered. The readers can

also refer to the surveys in [ASC83] [Spu90] [Whi95] and the book [LiP98].

4.3.1 Freedom of Eigenstructure Assignment

As it well-known, eigenstructure assignment is an over-determined problem. The

below two theorems originally contributed by Moore [Moo76], Kimura [Kim75], and

Srinathkumar [Sri78] give the freedom of eigenstructure assignment with full-state

and static-output feedback. The proof can also be found in the parametric algorithm

later.

Theorem 4.3 Assume (A, B) is controllable, A E Rnxn, B E R nx", and {Ai}_ 1

is a self-conjugate set of distinct complex numbers. There exists a real m x n matrix

F such that

(A + BF)vi = Aivi, i = 1, 2, ... , n (4.38)

if and only if, for each i

a) vectors of {v,}7_1 are linearly independent set in C";

b) vi =v if Ai = A*;

c) vi E span{ NA }, where NA is the compatible partition of the null space of

[AI - A B].

Also, if F exists and rank(B) = m, then F is unique.
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Theorem 4.4 Given a controllable and observable plant '(A, B, C, 0), A E Rn,

B E Rnxm, rank(B) = m, C E fR'X"l, and rank(C) = r. Then max(m, r) closed-loop

eigenvalues can be assigned and max(m, r) eigenvectors (or left eigenvectors) can be

partially assigned with min(m, r) entries in each vector arbitrary chosen using real

static output feedback.

4.3.2 Parametric Method for Eigenstructure Assignment

Fahmy and O'Reilly ([FaO82] [FaO83] [Fa85]) developed a parametric method for

eigenstructure assignment using full-state feedback.

Assume the closed-loop eigenvalues are distinct. With the feedback u = Fx, we

have:

(A + BF)vi = Aivi, i = 1, 2, ... , n

Rearranging the above equation, we write

(AgIn - A)vi = BFoi, i = 1, 2, ... , n

Define zi = Fvi E Cm. If the closed-loop eigenvalues {A}" 1 are different from the

open-loop eigenvalues, then (AiI, - A) is invertible, and

vi = (AiIn - A)- 1 Bzi, i = 1, 2, ... , n (4.39)

and the feedback gain is obtained as

F = [z1, z2, ...za][(A1In - A)- 1 Bzi, (A 2 In - A)- 1 Bz 2, ... , (AnIn - A)- 1 Bzn]- 1 (4.40)

Equations (4.39) and (4.40) are the parametric expression of eigenstructure as-

signment with full-state feedback, in which the zi are the free parameters used to se-

lect the appropriate eigenvector from m-dimensional subspace (so-called eigenspace)
span{(AnIn - A)- 1B}. When determining the zi, we should ensure that {v2 }7_1 be

self-conjugate, which can be guaranteed if we partition the eigenstructure into real

and imaginary parts. With preselected poles, the free zi's parameters can be used to

achieve other objectives, such as minimal norm [FaO83b]. Fahmy and O'Reilly also
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treated the more general cases [FaO85] where multiple eigenvalues or some closed-

loop eigenvalues coincide with open-loop ones.

O'Reilly and his coworkers [RoO87] [FaO88] further extended the parametric ap-

proach to static output feedback. Given an nth order controllable and observable

plant (A,B,C,O), B E Rnxm, rank(B) = m, C E Rrxn rank(C) = r. Below is

the approach to assign r eigenvalues and the corresponding right eigenvectors with

r m-dimensional vector parameters. Let the open-loop characteristic polynomial be

A,(A) and adjoint matrix be T(A)

A,(A) = det(AIn - A)

IF (A) = adj(AIn - A)

The closed-loop characteristic polynomial can be written as

det(AIn - A - BFC) = det[Ao(A)Im - FC'I(A)B]/A--1(A) (4.41)

Assume the desired self-conjugate closed-loop eigenvalues {A,}[_ 1 are

each other and different from the open-loop eigenvalues. Then

det[Ao(Ai)Im - FCI(Ai)B] = 0, i = 1, 2, ..., r

So for some non-null m-dimensional vector zi, we have

FCI(Ai)Bzi = Ao(Ai)zi, i = 1, 2, ..., r

Therefore, under mild conditions:

a) det[C4(Ai)Bz1 , ..., CJI(Ai)Bz,] - 0;

b) zi c R m if A c R; zi = z Cm if Ai= AcC;

the partial-eigenstructure assignment problem can be parameterized as

vi = IF(Ai)Bzi, i = 1, 2, ..., r

F = [Ao(Al)zi,...,Ao(Ar)Zr][C'J(A)Bzi,...,C4'(Ai)Bz,]-

listinct with

(4.42)

(4.43)

(4.44)
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where zi are free parameter vectors.

In [FaO88] the case of less than r eigenvalues and right eigenvectors to be as-

signed is handled by partitioning the gain F and output matrix C. The procedure of

assigning m eigenvalues and the associated right eigenvectors with m r-dimensional

parametric vectors is just the dual of the above. Partial right eigenvectors and left

eigenvectors can also be assigned successively with a protection modification [FaO88]

using output feedback.

Lu et al. [LCT93] extended the parametric approach to partial-eigenstructure

assignment using decentralized feedback, and obtained some nonlinear equations.

For the case where all eigenvalues {Ai} 1 are distinct from each other and are different

from the open-loop poles, they concluded that the assignment of eigenvalues {Ai}' 1

and the corresponding eigenvectors can be parameterized with k m-dimensional vec-

tors

vi = (AIl- A)~1 Bz,, i = 1, 2, ..., k (4.45)

Fi = E [zi, ... , Zk][Cj(AIn - A)~1 Bz, ...C(AkI - A)-1 Bzk],

j =1,2, ... , N (4.46)

under the constraints:

a) zi E R m if Ai E R; zi = zj E Cm if A = A E C;

b) the matrix [Cj(AlI - A)- 1 Bzi, ...Cj(AkIn - A)- 1 Bzk] E Cjrxk is full rank, j =

1, 2, ..., N;

c) EJ[zi, ... , zk][Cj(AlIn - A) 1 Bzl,...Cj(AkIn - A)~ 1 Bzk]' = 0, j = 1, 2, ... , N,

where Ej is an mj x m matrix formed from the rows of m x m identity matrix

Im = [ET, E2, ... , ET], M+ and M' are defined as

M+ f MT(MMT)-, if M E CPXq, p < q

(MTM)-lMT, if ME CpXq, p > q

ML = Iq - M+M
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To finish the procedure, one can use any method to solve the nonlinear equations

(c) for m x k parameters in zi. So Lu's parametric approach is somewhat cumbersome.

4.3.3 Projection Method for Eigenstructure Assignment

Shapiro and his coworkers [ShC81] [ASC83] [SSA94] [PSS94] developed a projection

method for eigenstructure assignment. They also proposed a least-squares-like ap-

proximation for architecture constrained feedback.

As stated in Theorem 4.3 and Theorem 4.4, only some elements of the eigenvector

vi can be selected arbitrarily. In general the desired eigenvector of will not reside in

the eigenspace span(N%), where the columns of [N,\, *]' form the basis for null space

of [Ail, - A B]. (If A2 is not the eigenvalue of A and B is full column rank, NA\ can be

chosen as N,\= (A2I, - A) 1 B.) The best achievable eigenvector vi is the projection

of V onto the eigenspace:

vi = arg min |v - vI 2  (4.47)
vi =Nx. zi

Solving this least square problem, the m-dimensional vector zi and the best achievable

eigenvector vi can be obtained as

zi = (Ni NA, N vi (4.48)

vi = NA zi = NA (N N ) 1 N v' (4.49)

In many practical applications, complete specification of v is not required or

known. Rather, the designer is interested in certain elements of the eigenvector.

Projection methods were also proposed in [ASC83] for the partial specifications of v.

Pick the k specified elements of v and arrange them as a k-dimensional vector f.

Also pick the rows of NA corresponding the specified elements of v and reorder them

as k x m matrix NA,. Proceeding in the same manner as before, we can obtain the

the m-dimensional vector zi and the best achievable eigenvector vi as

,= (NrNA)Nf (4.50)

vi= NAz = NA (NNA1 )- N_'f (4.51)
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Once zi and vi are obtained, Equation (4.40) or (4.44) can be used to construct

the full-state feedback controller u = Fx and output feedback controller u = Fy, or

we can use the procedure described in [ASC83]. To avoid ill-condition in computa-

tion, singular value decomposition is suggested [SSA94], which we will also see in the

decentralized case below.

Shapiro and his coworkers ([ASC83] [PSS94]) also extended the projection method

to eigenstructure assignment with architecture constrained gain, such as decentral-

ized control. However, unlike the previous projection method which was able to

assign the eigenvalues precisely and eigenvectors approximately, this approach can't

even guarantee the eigenvalues. Assume {A }i, and {vd}i, are the desired self-

conjugate eigenvalues and the corresponding desired eigenvectors, k < n. Then

N

(A + EZ BFC)vi = Aivi, i = 1, 2, ...k (4.52)
j=1

Writing it in matrix form, we have

F1C1M

MA - AM = BFCM = B : (4.53)

FNCNM

where A is the k x k diagonal matrix diag{[A, ..., A]} M = [v, ... , v] E C""k and F

is the m x r decentralized (real) gain matrix diag{ [F1, F2, ..., FN] }. We can write the

n x m matrix B and r. x k matrix CjM in the form of singular value decomposition:

B = [Uo U1] V1= UoEVT
0

C3 M = [Ugo U1] ' = UjoEjV" for k < rj

V T
or CjM = [Uj Ej 0] j" U EjVT, for k > r

VT jo
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Thus
UOEVTF 1 1 E1T 1

MA-AM = (4.54)

UOEVTFNN N N

where Uj = Ujo for k < rj or Ujf ork > rj, and 94 = V for k < rj or Vo for k > r.

Note that equation (4.54) is generally over-determined. Partition MA - AM into N

matrices with dimension mj x k, and denote them as (MA - AM),. Now we can

obtain the projection-like solution

F = VE-'U0T(MA - AM);Zi2EI 10f, j = 1, 2, ...N (4.55)

I call this approach as 'projection-like' method, because it is different from the the pro-

jection method mentioned before. It is not the least-square solution of minFj ||MA -

(A + EN 1 BJF-C)M12, rather it is just the solution to minFj I(MA - AM)j -

BFCM1|2, j = 1, 2,...N. Thus this approximation can't guarantee the eigenvalues

even when the desired eigenstructures are achievable. However, since the eigenstruc-

ture assignment is generally redundant, this concise projection-like method might be

acceptable in some application.

4.3.4 Robust Eigenstructure Assignment

The fatal disadvantage of eigenstructure assignment is sensitivity. So robust eigen-

structure assignment has been proposed to reduce the closed-loop eigenvalue sensi-

tivity [CNK84] [KNV85] [MuP88] [PaL94]. Suppose vi and wi, i = 1, 2, ..., n, are the

right and left eigenvectors of the closed-loop Ac = A + BF. It is known that the

sensitivity of the eigenvalue A2 depends on the condition number ci:

dA o I 2i = (4.56)
d||Ac|| | wTvi|

so minimizing the condition number ci will reduce the sensitivity of A, and increase

the stability robustness of eigenstructure assignment. A bound upon the individual

eigenvalue sensitivities is given in [KNV85] as

max ci < r(V) = ||V|| 2 ||V ||2 (4.57)
i=1,...n
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where K(V) denotes the condition number of the right eigenvector matrix [vi, v2 , ... , vn.

Thus an iterative process to minimize ii(V) is proposed [KNV85] to choose the eigen-

vector from achievable eigenspace and make it maximally orthogonal to the column

space of Vi = [v1 , ... , vi 1, vi+1, ...vn]. Performing the QR decomposition of Vi, we can

obtain

Vi =[Qi, 7yi] Ri
0

and the n x 1 vector y is orthogonal to column space of V, then project yi onto

the achievable eigenspace, a new eigenvector vi is obtained. The procedure is then

repeated until no more improvement in the condition number K(V). The control gain

F is obtained as Equation (4.40).

This technique was extended to output feedback by performing the QR decom-

position of B and C [CNK84]. Liu and Patton [LiP98b] presented a parametric

optimization method for low-sensitive and robust eigenstructure assignment with out-

put feedback. Eigenstructure assignment with matrix-family modelling uncertainty

[Dua92] [PSS94] was also proposed. In [ABG93] pole placement in a sector with

uncertain an A matrix was examined with Laypunov-type approach. Chilali et al.

[CGA99] investigated the robust pole placement in LMI regions under the plant uncer-

tainty with Ho. bounded. They used LMI tools to solve for the full-state or full-order

controller.

4.3.5 Protection Method for Eigenstructure Assignment

Fletcher and Magni ([Fle8l], [F1M87]) developed the protection method for eigen-

value assignment with full-state and static output feedback. This method is further

developed in [Alp96] [SoM98]. Fahmy and O'Reilly [FaO88] extended it to eigenvector

projection, so that it can also be used for eigenstructure assignment.

First one eigenvalue Ai is selected and the parameter vector zi is also chosen to

pick the corresponding right eigenvector vi from the eigenspace N 2, vi = NA, zi. It

can be shown easily that for any m-dimensional vector ti satisfying

tiCzi = 1
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the below unity-rank gain matrix F assigns eigenvalue Ai and the eigenvector vi

F(') = vit[ (4.58)

For a matrix C satisfying

C)Czi = 0

the closed loop system with gain F is (A + BF(2)C, B, 0()C, 0). This augmented

system has an unobservable eigenvalue Ai. This means that the eigenvalue Ai is

protected. Note that the dimension of the output matrix C)C is reduced to (m -

1) x n. Dually, we can make the eigenvalue Ai uncontrollable in the augmented

system (A + BFW)C, BP(0), C, 0). This procedure is repeated for another eigenvalue.

The final gain matrix can be obtained by combining the separate gain matrices by

superposition, passed through the protection matrices () and P(5).

We should know, for an uncontrollable eigenvalue, we still can change the associ-

ated right eigenvector with feedback. Same is true for the left eigenvector associated

an unobservable eigenvalue. In [FaO88] it is shown that the right (left) eigenvector

associated with the unobservable (uncontrollable) eigenvalue is invariant with output

feedback. Thus, in the augmented system (A + BF(2)C, B, COC, 0 ), not only Ai is

protected (uncontrollable), the right eigenvector vi is also protected (but wi is not);

similar result can be obtained for Aj and wj in (A + BFU) C, B() , C, 0). In [FaO88]

p (p < r eigenvalues and the associated right eigenvectors are assigned first, and

with protection method, some other eigenvalues and the associated left eigenvectors

are assigned. One potential problem is that when we protect some eigenvectors, the

others might also be protected, and the assignable number decreases.

In recent years some methods were also developed to eigenvalue or eigenstructure

assignment via properly chosen of the weighting matrices in LQR ([SZC90] [LuL95)

[Sug98] [ChS99] [BoF99]). This is the so-called inverse LQR problem. Luo and

Lan [LuL95] used that fact that the n closed-loop poles are among 2n Hamiltonian

matrix eigenvalues, and developed a method for determining the weighting matrices

of LQG to produce specified closed-loop eigenvalues. Choi and Seo [ChS98] examined

the projection eignstruture assignment and the Riccati equation of full-state feedback
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4.4 Regional Pole Placement

In practice, the exact positions of ideal poles are not known or necessary. Rather, as

we do in classical control design, we would like to specify them in some region in the

right half plane, so as to guarantee the some performance, such as rise time, settling

time and overshot. So regional pole placement makes more sense sometimes. The

shaded region in Figure 4-1 is ideal in most applications. To simplify the algorithms,

different regions are utilized to approximate the region shown in Figure 4-1, such as

vertical strips, disks, sectors, ellipses, or parabolic regions.

Anderson and Moore [AnM90] showed before 1970 that the poles of the closed-

loop real matrix Ac reside in the left side of the vertical line Re(s) = -a if and only if

Ac + aI is stable. Or we say that there exists some n x n positive definite symmetric

matrix P such that

(Ac + al)'P + P(Ac + al) < 0 (4.59)

In the control literature, this is sometimes called a-stability.

Furtuta and Kim [FuK87] investigated circle-region pole placement of continuous
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LQG, and concluded that they result in the same gain under some conditions. Sug-

imoto [Sug98] partitioned the right coprime factor as a two factors, one of which is

used to place m poles exactly and he other is use to guarantee LQG optimality with

full-state feedback by choosing some weighting Q. Genetic algorithms were used in

[BoF99] to find the weighting Q and R so as to minimizing the eigenvalue sensitivity

while placing poles in some internals. Kawaski and Shimemura [KaS83] proposed a

procedure to choose weighting matrix Q of LQG so as to place the closed-loop pole

in the ±r/4 sector with full-state feedback, and this procedure is further simplified

by Shieh et al. [SZC90] to place the pole in the ±r/2k sector (k > 2) through solving

Lyapunov or Ricatti equations. We should mention that the inverse LQR problem is

not limited to eigenvalue or eigenstructure assignment. Some other performance can

also be achieved by weighting selection in quadratic optimal control, such as mixed

H 2/Ho ([ZhS90]).
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Figure 4-1: Pole regional constraints.

and discrete systems and concluded that the poles of a real matrix Ac reside in a disk

D(a, p) with radius r and center at -a + Oj if and only if there exists some n x n

positive definite matrix P such that

aA'P + aPAc + AcPAc + (a 2 _ p2 )P < 0 (4.60)

They also obtained a discrete Ricatti equation for full-state feedback, which is easy

to understood with the fact that the poles of stable discrete systems is in unit circle

region. This is called D-stability in the control literature. (In some literature, the

term 'D-stability' is also used to general pole-region stability.)

Aderson et al. [ABJ75] also show that the poles of Ac reside in a sector ±13 if and

only if Acsinp Accosi is stable, or we say there exist some 2n x 2n positive
-Accos3 Aesin3

definite matrix P such that

Aesin3 Accos - + Aesin3 Accos <

-Accoso Aesin3 J -Accoso Acsin3 J
And in [ChG96] it was shown that the condition (4.61) is equivalent to that there

exists some n x n positive definite symmetric matrix P such that

(AcP + PA')sino (AcP - PA')cos31
( -< 0 (4.62)

SP Ac - Ac P)coso ( Ac P + PA'c)sino
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[lij P + mijA' P+mj PAc] i < 0 (4.63)

The region S(a, p, #) in Figure 4-1 is one example of the LMI regions. The poles

of Ac reside in S(a, p, 3) if and only if there exists an n x n symmetric matrix P > 0

such that

AcP+PA'+2aP< 0[p AP] <0 (4.64)
PA'e -pP

(AcP + PA)sinl

(PAc - AcP)cos3

(AcP - PA')cosO

(AcP + PA')sino

and LMI techniques [GNL95] can be utilized to assign poles in the LMI regions with

full-state feedback directly. The above equations can also be written in the form of

the generalized Lyapunov equation [BSU94], so Lyapunov/Ricatti-based methods can

be used for the case of full state feedback.

Keerthi and Phatak [KeP95] described a class of pole regions with equalities and

described poles with equalities, then used homotopy method to find the architecture

constrained static gain.

Another great advantage of regional pole placement is that we have more freedom

to specify other performance, such as H2/LQG and H,. This is multi-objective con-
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Similar description for Ellipse and Parabolic region can be found in the paper

[BSU94]. Chilali and Gahinet [ChG96] generalized the above characterization using

linear matrix inequality (LMI regions), including not only above typical regions, but

also any convex polygonal regions symmetric with real axis. Further they showed

that the intersection of any LMI regions can be characterized using the same matrix

P without conservation.

Theorem 4.5 The real matrix Ac has all its eigenvalues in the LMI region

{s|s E C : [lij + migs + mijs*]i,j < 0}

if and only if there exist a symmetric P > 0 such that



trol associated with pole regional placement. The examples are, H2/LQG optimiza-

tion with regional pole placement ([HaB92] [Seh93] [SKK93] [Mis96] [YAJ96]), Hoo

control with regional pole placement ([PaL94] [YeL95] [ChG96]), and mixed H2 /H,

with regional pole placement [BSU94] [FND97] [CGP99]. More details will be dis-

cussed in next chapter.

4.5 Maximize the Minimal Damping via Pole Shift-

ing

In this section a subgradient-based minimax method is adopted to shift the poles so

as to maximize the minimal damping.

4.5.1 Introduction and Problem Statement

As we know, arbitrary eigenvalue assignment requires some conditions, and regional

pole placement offers more flexibility if such requirements are not met. However, it

still faces a similar problem: the preselected region might be unassignable. Also,

the LMI characterization of the pole region is not convenient for structured control,

such as static output feedback or decentralized feedback. In addition, it is easy to

understand that traditional regional placement is conservative, since the transition

performance of a system is dominated by some part of poles, mostly the low-frequency

poles. Therefore, in this section we propose a subgradient-based approach to shift

the critical poles into some sector region, and make the sector region as small as

possible. The physical meaning is to maximize the minimal damping of the poles in

some frequency range. This is extremely helpful for the structured control, where

the controller structural constraints might limit the flexibility of pole treatment too

much. Another advantage is that this approach can also handle unstable or marginal

stable closed-loop system, which is impossible in the framework of H 2 or H,. Fur-

ther, practical questions, such as nonnegative parameters and hysteric damping are

considered.
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The problem can be stated as:

max(min((G(F)))
FEQ iEl (4.65)
I = {i Iw1  of < W, w = Im(leig(A + B 2 FC 2)|)}

where A c Rlx", B (E R" ", C E RrXn, Q is the set of real or complex matrices F

with prescribed structure constraints (such as decentralized), and internal [w1 , Wh] is

the preselected frequency bandwidth.

This is a nonsmooth optimization problem, which have been examined extensively

after Polyak(1969) and Dem'yanov (1974). As we stated in Chapter 2, gradient-based

algorithms converge much faster than Simplex or Powell algorithms in constrained or

unconstrained smooth optimization. However minGi(F) is a nonsmooth function, so
iE1

we can't use the well-known conjugate gradient or BFGS algorithm. For nonsmooth

optimization, the subgradient or c-subgradient plays an important role similar to the

gradient in smooth optimization. So in the following we will give some introduction

to convexity, the subgradient, and non-smooth optimization, then adopt the minimax

algorithm ([Dem74]) to solve the problem (4.65).

4.5.2 Convexity and Subgradient

Below are some concepts from nonsmooth optimization.

Convex Set: Let S be a subset of Rn, we say that S is convex if

Cx + (1 - a)y E S, Vx, y C S, Va CE 0, 1] (4.66)

A convex hull is a special convex set. Convex hull of X, denoted as conv(X), is the

set of all convex combinations of the elements of X. In particular, if X consists of

a finite number of vectors, X = {xii, then its convex hull is closed and can be

expressed as

convxli =1, 2,...,m}= EairsJai>0,i=1,2,.,m, ai =1 (4.67)

Projection: Let S be a closed convex set, then for every x, there is a unique

vector x+ in S, such that

x+ = argmin ||x - zl| (4.68)
zES
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X+ is called the projection of x onto S. This definition is identical to

(x - x+)'(y - x+) < 0, Vy E S (4.69)

With this definition, we can see the projection of a vector x onto a convex hull

conv{xili = 1, 2, ..., m} is just a least square problem with convex constrain:

m

z+ arg min || aizi - Xz| (4.70)
a.....=1,,.. ... ,m

SAt. aizi = 1,I ai > 0i=11

Such problems can be solved using a standard code, such as the function lsqlin from

Matlab Optimization Toolbox.

Convex Function: Let S be a convex set in R", a function f : S -+ R is said to

be convex if

f[ax + (1 - a)y] < af(x) + (1 - a)f(y), Vx, y E S, Va E [0, 1] (4.71)

If f(x) is convex on S, the -f (x) is concave on S. If fi(x) : S -* R is convex, the

index i E I, and S is convex, then maxiEI f(x) is convex, and mini,, f(x) is concave.

One important property of a convex function are that local minima of convex function

are global.

Subgradient: Given a convex function f : R -+ R, a vector d is called a

subgradient of f at x if

f(z) > f(x) + d'(z - x), Vz E R" (4.72)

The set of all subgradients of f at x, denoted by Of (x), is called the subdifferential of

f at x. It is a nonempty, convex and compact set. Figure 4-2 shows the subdifferential

of a scalar function

f (x) = max(-2x + 2, -0.5x + 1, x - 2)

It is easy to see that if f(x) is differentiable at x0 , then Of(xo) = {Vxf(xo)}. The

the relation of the subdifferential f(x) and the directional derivative f'(x; y) is:

f'(x;y) := lim +ay - x = max y'd, VyE Rn (4.73)
a\O a dE~f(x)
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From (4.73) it can be seen that x* is the optimal point if and only if

0 E Of(x*)

-2x+2

-x/2+1

(4.74)

f (x)

x-2

(2/3, 2/3)

(2, O

Figure 4-2: Example of subgradient

E-Subgradient: Given a convex function f : Rn -+ R, for a scalar F > 0, we say

that a vector d is an e-subgradient of f at x if

f (z) + E > f (x) + d'(z - x), Vz E !R (4.75)

The set of all E-subgradients of f at x, denoted by B9,f (x), is called the E-subdifferential

of f at x. With this definition it can be shown that e-subgradient has the following

properties:

inf f(X
a>O

+ ay) - f(x) + C = max y'd
dEOEf(X)

(4.76)

(4.77)0 C af (x) if and only if f (x) < f (x*) + c

In [Dem74] Dem'yanov called such a point satisfying (4.77) as an e-stationary point.

Similarly, we can define the subgradient and c-subgradient for a concave function.
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4.5.3 Nonsmooth Optimization and Minimax Theories

From (4.72) and (4.73), we can see that any subgradient is a descent direction for

convex function f : R" -+ R. So arbitrarily selected subgradients can yield a descent

sequence. A general convex function over a convex domain M E R' has a similar

property.

Key Lemma [Ber01]: Consider the minimization of a nonsmooth convex function

f (x) over a closed convex set M E R" and the subgradient method:

xk+1 _ k - akdk]+ (4.78)

where dk is an arbitrary subgradient dk e E (Xk)I ak is a positive scalar stepsize, and

[.]+ denotes the projection onto the set M. Assume |ldkH| < y, Vk. Then for all y E M

and k,

ix k±1 _ y111 < Ilnk - yfl2 - 2 Ciek[f (Xk) _ f (y)] + (ak)2, 2 (4.79)

The Key Lemma hints that if the stepsize ak is small enough, the distance of Xk+1

to x* is improved, but the cost function might not improve. (If M = R", then the cost

also improves.) Based on the Key Lemma, three typical stepsize rules are provided:

constant stepsize, diminishing step size, or dynamic step size [AHK87] [Ber0l]. For

a small constant stepsize ak - cy if

<a< 2(f (xk) - f*)

the sequence will tend to a level set of f* with maximal error ary2/2. For a dimimin-

ishing stepsize

ak k-+ 0 ak -- x

k

then limk-oc f(xk) = f*. For a dynamic stepsize

Cek fXk) _ fk

where fk is an estimate of f*. If fk = f*, it makes progress at every iteration; if

fk < f*, it tends to oscillate around the optimum; if fk > f*, it tends to a level set

of f* with maximal error fk - f
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The above is subgradient-based optimization for nonsmooth convex functions. The

interesting thing is that any subgradient can be used as a search direction, which is

convenient for the case where the whole set subdifferential is hard to evaluate. How-

ever, for the nonsmooth convex function maxiEI fi(x) or concave function minieI fi(x),
where I is a finite index set, it is easy to find the whole set subdifferential.

Theorem 4.6 (Danskin's Theorem, [Ber0l]): If fi(x)R"-+R is smooth for all i EI,
then the subdifferential of f(x) = max fi(x) is

iEI

Of (x) = conv{Vxfj (x)|j E I(x)} (4.80)

where I(x) = {ilfi(x) = maxfi(x)}, and Vxfj(x) is the gradient of fj at x.
iEI

If 0 E Of(x), then the optimal point of

min maxfi(x)
xER- iEI

is obtained; otherwise, a special subgradient can be obtained by projection of 0 onto

Df(x): arg min ||d(x)||.
deaf(x)

Dem'yanov [Dem74] showed that this special subgradient has some important

property.

Theorem 4.7: The necessary condition of a continuous nonsmooth (not neces-

sarily convex) function f(x): R" -+ R to attain a minimum at x*-sufficient also if

f(x) is convex-is that 0 E Of( x*) if 0 ( Of(x). Then the direction

-arg min ||d(x)J|
dEaf(x)

is the steepest descent direction.

Theorems 4.6 and 4.7 suggest an approach for standard minmax problems (or

max-min problems): Start with an arbitrary initial point zo, evaluate Of(xo), update

x0 in the direction of - arg min ||d(xo) with one dimensional optimization, then
dEf(Xo)

repeat this procedure. One might expect the limit point of this descent sequence to

be a minimal point of the nonsmooth function. However, due to the lack of smooth,

other than the phenomena of zip-zag, the limit point of the sequence generated with

above algorithm based on Theorem 4.6 may not even be a stationary point of f(x),
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please see the example in [Dem74] p.74. Thus an e-subgradient algorithm is suggested

for minimax problems.

Theorem 4.8: Assume E > 0, IF = {ilmaxfj(x) - fi(x) < E}, and Bf(x)
zEI

conv{Vxfj(x)|j E I(x)} is not empty. Then the searching direction - arg min ||d(x)
dE 0e f (x)

and one-dimension minimizing step size will yield a sequence whose limit point is an

E-stationary point of f(x), which is an approximation to a stationary point with the

absolute error at most E.

4.5.4 Minimax Pole-Shifting Algorithm

With the above background of nonsmooth optimization, let's come back to our prob-

lem (4.65): determine the structural constrained feedback gain F to maximize the

minimal damping in a certain frequency bandwidth. Our algorithm is based on The-

orems 4.6 and 4.8. To evaluate the gradient of jth mode damping VFj(F), we need

to introduce an eigenvalue sensitivity theorem [Cal86] [MaG97].

Eigenvalue Sensitivity: Given a real-coefficient dynamic system i = (A +

BFC)x, the sensitivity of the jth eigenvalue Aj to changes in the klth element of F

is
DAj_ wbkClvj (4.81)
&Fkl -WjVj

where v and w are the jth right and left eigenvector of A+BFC, respectively, bk is

the kth column of B, and ci is the lth row of C.

Since A, B, C and F are real matrices, the eigenvalues of A + BFC are symmetric

with respect to the real axle in complex plane. We need only consider the poles and

the associated damping in the second quadrant. The damping ratio

=-Re(Ag)(j (F) = e(j

so we can write the damping sensitivity with the chain rule:

a( 1 3 BA. BA
e(- a2 + Re(Aj)2-Aj)Re( I ) A A)&AA|N)Re( ) (4.82)

Now we can set of the procedure as below:
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Step1: Choose the initial parameters-a block diagonal matrix F.

Step2: Solve for steepest descent subgradient drt(F):

Evaluate the eigenvalues and eigenvectors of A + BFC, find the set I(F) =

{il(i(F) = minjEr (j(F)}, and evaluate VF(j(F) with respect to the free design vari-

ables in F for all j E Ie(F) using (4.81) and (4.82). We obtain a convex set B&((F).

Solve the problem min ||d(F)|| using Equation (4.70) and obtain the steepest de-
d68eC(F)

scent subgradient drt(F) = - arg min Id(F)||. If drt(F) = 0, stop; otherwise go
dcOE-(F)

to step 3.

Step3: One-dimensional minimum:

Search in the direction drt(F), get the stepsize a which maximizes the function

min(j(F + a -drt(F)), j E I, and update F with F + a - drt(F). Then go to step 2.

Remark 1: Generally, gradient-based methods are not finitely convergent. So

typically we can stop computation when |ldrt(F)|| or a||drt(F)|| becomes sufficient

small, not necessarily drt(F) = 0.

Remark 2: To make the approach more practical, we also can maximize the

weighted minimal damping in a selected frequency range.

Remark 3: In practical design of passive mechanical systems, we would like to

ensure that the parameters be nonnegative.In this case, we can replace F with F2,

and replace the right side of equation (4.81) by 2Fkl wbkv , then we can get all non-

negative parameters. More generally, if we would like to constrain some parameter

Fk to be in some internal [ri, r2], we can specify Fkj with one parameter r:

0.5(r 1 + r2 ) + 0.5(r 2 - ri)sinr

and replace the right side of equation (4.81) as

Fkj = 0.5(r 2 - ri)cosrW bkClVj
w vi

Remark 4: For the systems with hysteretic damping, the matrices A, B and F

are complex. There are seldom reports for design of this kind system, although it is

important in practice. We can extend the eigenvalue sensitivity theorem to the case

of complex coefficients:
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Oj W1 bkClvJ OA___ _______~

&Re(Fkl) wIvj ' Im(Fkl) wgvs

where i is -, and the other variables are the same as in Theorem 4.1. Then we can

get the modal damping sensitivity and OIl(Fkl) to changes in the real part

and imaginary part of the free design parameters in F.

The above is the subgradient-based approach to shift some dominant poles into a

sector region and make this region as small as possible. It's useful in the design for

some performance with structure constrained feedback. This gradient-based approach

can also be extended to general pole regional placement with structured feedback gain.

4.6 Application to the Design of Mechanical Sys-

tems

In this section we will give some application of the decentralized eigenstructure as-

signment, and the minimax pole-shifting method to the design of mechanical systems.

First we apply above two approaches to real-coefficient static decentralized control

(2DOF TMD). Then provide an example of a marginally-stable system with a com-

plex matrix feedback (hysteretic damping). Finally we compare the three techniques

of decentralized H2 , decentralized Ho, and decentralized minimax in the example of

the five-mass system introduced in Chapter 3.

4.6.1 Example 1, Decentralized Eigenstructure Assignment

and Minimax

A two-DOF primary system that can translate in the x direction and rotate about

the z axis as shown in Figure 4.6.1. Our task is to choose ki, k2, ci, and c2 to damp

the two modes of the main system. As we mentioned in Chapter 1, the design of this

mechanical system can be cast as a decentralized control problem, where the feedback
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Md, Id= 5

kl C1 k2 c2

xM, ID

YK1 K2

Cl 0

Figure 4-3: Sketch of the two-DOF system with tuned-mass damper (TMD): L1 =

0.25 m, L2 = 0.2 m, M = 5 kg, 1 0.1 kg-m 2, K1 = 50 kN/m, K2 = 80 kN/m,

Md = 0.05M, Id = 0.0351

gain is

F =ki ci 0 0

0 0 k2 C2

One intuitive approach to design an MDOF TMD is to match the modal shapes

and frequency of the damper (with the main mass fixed) and the main system (without

damper), so that more energy will be dissipated in resonance. Thus we can propose

one procedure as: (1) choose the ideal undamped eigenstructure of TMD; (2) calcu-

late the equivalent mass ratios for each mode via total modal energy; (3) obtained the

ideal damped eigenvalues by analogy with Den Hartog's formula for SDOF TMD; 4)

assign the ideal damped eigenstructure. In the above procedure, Step (1) is important

and depends on the designer's experience, Steps (2) and (3) is straightforward, and

Step (4) is decentralized eigenstructure assignment. One possible method for Step

(1) is to use the modal output of the main mass system at the point of the damper

cg while setting the damper mass to zero. The available approaches for decentral-

ized eigenstructure assignment are Lu's [LCT93] and Shapiro's [PSS94]. As we have

seen, Lu's parametric method [LCT93] is cumbersome in computation, and Shapiro's

projection-like approximation [PSS94] is not even in least square sense. Consider the

over-determination of eigenstructure assignment, below we will directly assign the

eigenstructure via nonlinear programming with Shapiro's approximation as the start

point.

Suppose vd and Ad, i = 1, 2, 3, 4, are the ideal self-conjugate (normalized) eigen-
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vectors and eigenvalues of the system with main mass fixed.

4

min Z[ailvi - v'l 2 + Oi(Ai/A' - 1)2] (4.83)
Fi=1

s.t. (A + BFC)vi = Aivi, i = 1, 2, 3, 4

where ac and #3i are the weighting coefficients, and A, B, C is the system matrices

with the main mass fixed. In this example the above procedure yield the closed-loop

damping ratio 1.52%, 1.53%, 2.41%, and 2.58%. For brevity we omit the details.

In this mechanical problem, although we know intuitively that the eigenstructure

of the damper should be close to that of the main mass, the true ideal eigenstructure

is still unknown. And the proper choice of the weighting matrix in (4.83) requires

several trials. So maximizing the minimal damping is the straightforward algorithm

for this problem. With initial guess [500,50,0,0; 0,0,500,50] the minimax algorithm

converges to

[6036 11.7 0 0
F =

0 0 2678 5.9

and produces a system with the four modes:

Mode Damping Ratio (%) Frequency (Hz)

1 8.77 24.24

2 8.77 24.24

3 13.50 36.66

4 8.77 40.71

We can see that it is much better than the result of eigenstructure assignment. The

bode plots of the transitions from ground vertical input xo to x and 0 of the main

mass Cg are shown in Figure 4-4.

4.6.2 Example 2, Eigenvalue Treatment for a Marginally-

Stable System

Now consider planar vibration of the free-free tube beam shown in Figure 4-5. The

bending stiffness El is 1.636x 105 Nm 2, the mass per unit length is 23.245 kg/m,
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Figure 4-4: Bode plots of transmission from ground vertical input xO to x and 0 of

the main mass

and the rotational inertia is 6.997x 10-2 kgm. We are required to damp the first

three flexural modes. In the following we will provide three designs: traditional

multiple SDOF TMDs, minimax multiple SDOF TMDs, and a multi-DOF TMD.

The advantages of the minimax algorithm and multi-DOF TMD are highlighted.

Complex feedback (hysteretic damping) is employed in this example.

The beam is a distributed parameter system, and we discretize it into twelve

segments with thirteen nodes. Each of the node has three degrees of freedom of

vibration in plane.

The fist setup is a 3DOF TMD, as shown in Figure 4-5. Attached to the end of

beam is a small rigid block whose mass is 4% of that of the beam and whose lenght

is 10% of the length of the beam. It is mounted with three flexures 55.4mm from the

neural axis of the beam.

We cast the problem as an 82nd-order system with decentralized static output

feedback. Using the minimax algorithm and eigenvalue sensitivity, we maximize the

minimal damping ratios of first three modes with a weighting 1:1.1:1.6, and obtain

the optimal parameters for both hysteretic and viscous 3DOF TMDs:

The corresponding damping ratios achieved by hysteretic and viscous 3DOF TMDs
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Figure 4-5: 3-DOF TMD for a 39-DOF discretized free-free beam.

Table 4.1: Optimal parameters of 3DOF TMD via minimax algorithm

Hysteretic 3DOF TMD Viscous 3DOF TMD

Stiffness ki (N/m) & Lost Factor r/i Stiffness ki (N/m) & Damping ci (Ns/m)

1 1.468 x 105  0.4420 1.5256 x 105  125.42

2 9.308 x 105 0.4187 9.8195 x 105  248.17

3 1.548 x 107 0.3066 1.5800 x 107  1556.6

are listed in Table 4.2: One typical frequency response (from disturbance force w to

Table 4.2: Damping ratio achieved by hysteretic and viscous 3DOF TMDs

the local position output in the x direction) is show in Figure 4-6. We can see that

the performance with hysteretic and viscous TMDs are almost the same. Usually

structural material has viscoelastic property, and can be characterized as hysteretic

model; while most fluid dampers show ideal viscous property.

We note that Zhang et al [ZMH89] developed a two-DOF cantilever-type TMD

to damp the first two modes of a railway wheel; they used a transfer function to get
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mode hysteretic viscous

1 10.67% 10.67% 10.81% 10.81%

2 9.70% 9.71% 9.82% 9.83%

3 6.67% 6.67% 6.80% 7.11%



Frequency Response - Original System without TMD
- With 3 SDOF TMD (rminimax)
- -- With 3 SDOF TMD (traditional)

- With one 3DOF TMD (viscous)
... With one 3DOF TMD (hvsteretic)
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Figure 4-6: Frequency Responses of the TMD systems

an equivalent mass ratio, and obtained tuning parameters by analogy with an SDOF

primary system. To the authors' knowledge, this is the only study where both the

damper and main system have more than one coupled degree of freedom. Zhang's

approach is hard to generalize; while the minimax optimization based on decentral-

ized control make the design much easier and more general.

Currently, in practical design, multiple SDOF TMDs are used to damp more than

one mode, and each SDOF TMD is independently tuned to a target mode by taking

the main system as an equivalent SDOF system [SMT97]. As a comparison, we design

three SDOF TMDs. The setup is shown in Figure 4-7, and each small mass is 1.33%

of that of the beam.

W 411 42

X 1 t 4
3 6 9 12 15 18 21 24 27 30 33 39

36

Figure 4-7: Three SDOF TMDs for a 39-DOF discretized free-free beam.
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The procedure for traditional design is quite standard:

(1) Compute the equivalent SDOF main mass of the beam at the connection point j

via the modal energy relation proposed in [SOY87] for the kth mode, k = 1, 2, 3:

M(k)X2  Y~M 2

where xz is the displacement of the connection point, Mi is the generalized mass

(including mass or rotational inertia), and x. is the displacement of i-th mass

in the kth mode.

(2) Ignore the coupling of the other modes, and design the parameters for each mode

based on the equivalent SDOF main mass with mass ratio pjk) = m, use

the well-known SDOF TMD formula [Den47]:

f = ( = ,(4.84)
1 + p' 8(1 + P)3

where the tuning ratio f is defined as the ratio of the natural frequency of

damper and that of the main mass, and ( is the damping ratio of the damper.

From step (2), we can see that if the modes of main mass don't separate well

at the connection points, this approach based on equivalent SDOF systems will not

produce a good design. In this example, the equivalent mass ratios and the parameters

obtained according to the above procedure are shown in Table 4.3.

Further we cast the system as a 82nd-order plant with decentralized feedback,

and proceed to design via the minimax algorithm with the weighting 1:1.1:1.6. The

optimal parameters obtained are also shown in Table 4.3.

The damping ratios achieved by the three designs are compared in Table 4.4:

From Table 4.4 and Figure 4-6, we can see that:

" The minimax algorithm yields TMDs with performance much better than the

traditional design;

" MDOF TMDs have the capacity to damp more than one modes, and the per-

formance is better than multiple SDOF TMDs. And decentralized control tech-

niques provide a general and uniform framework for the design.
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Table 4

Table 4.4: Comparison of the damping ratios achieved by three (viscous) design

Three SDOF TMDs Three SDOF TMDs One 3DOF TMD
Mode

Traditional Design Minimax Design Minimax Design

1 3.38% 7.22% 6.78% 8.74% 10.81% 10.81%

2 2.44% 5.92% 6.17% 6.17% 9.83% 9.92%

3 1.52% 4.62% 4.38% 6.22% 6.79% 7.12%

Following similar procedure, we designed the parameters of two-DOF TMD to

damp the first two nonzero modes of free-free beam, and implemented it in experi-

ment. We designed spring-dashpot pairs in the form of flexures whose stiffness and

damping are independently adjustable, as shown in Figure 4-9 and 4-9. In the exper-

iment we hang the beam using latex tubing so as to approximate a free-free beam, and

use an impact hammer and accelerometer to measure transfer functions. One typical

transfer function (from force to acceleration at the end is shown in Figure 4-10, where

we plot the predicted and measured responses with and without the damper. As one

would expect, the system initially exhibits almost no damping, with ( ~ 10-4 for

each of the first three modes. With the damper installed and properly tuned, each
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Undamped Equivalent Mass Traditional Design Minimax Design

k Modal Mlq , and k(k) (N/m) k(k) (N/rm)

Freq, (Hz) Pk) - mk/M q c(k) (N -s/m) c(k) (N - s/m)

1 89.33 19.388Kg 1.686 x 105 1.540 x 105

2.924% 63.804 89.07

2 246.29 32.525Kg 1.311 x 106 1.200 x 106

1.743% 138.188 194.76

3 483.09 62.955Kg 5.129 x 106 4.6250 x 106

0.900% 197.270 323.78

.3: Design of three SDOF TMDs to damp three modes



adjustment)

Figure 4-8: Flexure with adjustable stiffness and damping

Figure 4-9: Photograph of a flexure with adjustable stiffness and damping

of the first two modes of the beam exhibit damping close to that predicted. More

details can be found in the author's paper [ZuN02].

4.6.3 Case Study: Comparison of Decentralized H2, Hoo, and

Minimax

We will take the serial five-mass system discussed by Sipila et al. [SMP99] as an

example, as shown in Figure 4-11.

In last Chapter 3 we gave the design of the system with Hoc. We further design

the parameters k2 , c2 , k4 and c4 with decentralized H 2 and the minimax approach.
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Frequency Response
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Figure 4-10: Force-to-acceleration frequency response at node 1 of the free-free beam:

comparison of the predicted undamped response (dotted), measured undamped re-

sponse (dashed), predicted damped response (dash-dot), and measured damped re-

sponse (solid).

F 1

Figure 4-11: Diagram of the five-mass system.
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Frequency Response (Magnitude Only) From Disturbances Fdl and Fd2 to Velocities of m2 and m4
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Figure 4-12: Frequency response of five-mass system.

Figure 4-12 shows the frequency response from each of the two inputs to each of the

two outputs for each of the design methods. Figure 4-13 shows the impulse response

of the closed-loop system designed with H2, Hc, and minimax approaches. Table

4.5 gives the resulting H 2, H, norms obtained and minimal damping from the above

three decentralized techniques

From Figures 4-12 and 4-13, we can see that the minimax design gives the fastest

decay for each mode of excitation, but it takes no account of the system zeros and

therefore produces a damping ratio of greater than 10 per cent in each mode. The H2
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Figure 4-13: Impulse response of five-mass system.

Table 4.5: Results of the three optimization methods applied to the five-mass system
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Method IH2 norm H norm minimal dampingI

H2 1.52 4.68 2.70%

Ho 1.72 3.04 5.73%

MiniMax 2.058 10.02 10.9%



design has the lowest energy but disturbances diminish somewhat more slowly than

in H, design. Both the H2 and H, design take advantage of the zeros of the system

to minimize the effects of modes at certain positions; therefore they produce some

lightly damped modes (with damping ratios as low as 2.7 per cent) as well as some

overdamped modes.

Decentralized LQG/H2 optimization yields a very good design for suppression

of white noise input, and the BFGS method is an efficient numerical algorithm for

its solution. H, optimization minimizes the amplitude of vibration under several

sinusoidal frequency inputs since it minimizes the "peak" of the frequency response.

And the minimax algorithm gives the parameters that ensure very good damping.

The minimax algorithm can specify the design in some frequency range directly, while

for H2 or H, optimization we must use some dynamic shape filter as the weight to

specify the performance in some frequency band or even might be impossible. (the

TMD for free-free beam is such a example).

We should also note that there are some imperfect points for each method. It's

not easy to choose the weights for LQG/H2 optimization (mostly we need to try).

Static decentralized H, optimization is NP-hard; there is no guarantee of convergence

for the the LMI-based algorithms employed here, though they work well in practice.

Like the steepest method for smooth optimization, the steepest-subgradient method

doesn't converge very fast.
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Chapter 5

Multi-Objective Control

5.1 Introduction

As we have seen in Chapters 2, 3 and 4, H 2 or LQR, H, and eigenvalue/eigenstructure

treatment provide us three basic synthesis approaches. In the past decades, L1 synthe-

sis has also been investigated. H 2 design is based upon a stochastic noise disturbance

model possessing a fixed covariance (power spectral density). Since it tries to mini-

mize the energy of the impulse response of the closed loop-or system output variance

with white noise input-H 2 design is particularly suited to meet some performance

specification. H, design is predicated on a deterministic disturbance model consist-

ing of bounded power. It tries to minimize the worst-case attenuation regardless of

the frequency. The H, norm is also a natural tool to model plant (unstructured)
uncertainty and thus H, theory is suitable for practical robust design, in which H2

with output feedback has been shown to be weak [BeH89]. (For structured uncer-

tainties the H, framework can be refined as p-synthesis.) While H" is concerned

with the robust stability and frequency specification, it tells little about time-domain

performance. Poles have an intuitive and direct connection with the transition char-

acteristics of the closed loop, but pole placement might be too sensitive to parameter

changes. L1 optimal control can directly specify the signal magnitude in the time-

domain, as well as the optimal rejection to the persistent bounded disturbance. But

in the usual L1 design, the controller order can be arbitrarily high [HalO0].
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Obviously any practical design is a tradeoff between different and often conflict-

ing objectives, such as robust stability, simultaneous rejection of disturbances with

different characteristics (white noise, bounded energy or power, bonded magnitude),

good tracking, finite capacity of actuators, and close-loop bandwidth. Therefore, in

the past decade multi-objective control techniques have been developed, which might

include two or more specifications on the system H 2 norm, H, norm, L1 induced

norm, pole regional placement, or passivity, and so on. And various approaches has

been used, such as linear and nonlinear programming, Riccati-based solutions, LMI

convex optimization, and Youla parameterization.

Some pioneering work in this area are done by Bernsten and Haddad [BeH89]

[HaB92], Dolye and Zhou ([DZB89] [ZGB94] [DZG94]), Khagoneckar ([KhR91] [SKK93],

Stoorvogel [Sto93], Sznaier ([SHB95]), Chilali and Gahinet (ChG96], El Ghaoui [GhF96],

and others. Brief survey can be found in [VrJ97]. Although multi-objective control

has great potential in practical applications, most interesting problems in this area

are still open, even for full-state or full-order feedback. There are also several reports

attempting to treat static output feedback or even decentralized feedback.

In the following, we try to discuss the multi-objective control in the classification

of H 2/H,, H 2/regional pole placement, H, or H 2/Ho/regional pole placement, and

L1 associated multi-objectives. Unstructured control (full-state feedback, full-order

feedback) and structured control (static output feedback, lower-order control, and

decentralized control) are covered. Other than a comprehensive survey, in this Chap-

ter we extend the cone-complementary linearization algorithm [EOA97] to general

multiobjective suboptimal control with static output feedback; we propose a new ap-

proach for decentralized H2 with arbitrary pole regional constraints; and a tractable

optimization problem is posed for decentralized H 2/Ho/poles optimal control.

5.2 H2 /Hoo Control

Mixed H 2 /H, has attracted great deal of attention. It is probably the most intu-

itive and direct way in many practical designs: to minimize the H 2 norm (optimal

performance) under the constraint of H, bound (robust stability).
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Suppose the plant G(s) is given as in Figure 5-1 with three sets of inputs and

outputs,

w2 z2

W1 Zl1
F2 (s) -~- - -(S IN

Figure 5-1: Multi-objective control configuration

where G(s) is given as

S= Ax + BIw1 + B2w2 + BU (5.1)

z = Cix + D11wi + D 12w 2 + D 13U (5.2)

Z2= C2x + D 21WI + D22w 2 + D 23U (5.3)

y = C3x + D3 1Wi + D 32w2  (5.4)

and x E R, w1 E Re , w1 c R , z1 E R , ER u c R', y e R.

Without lose of generality, we have assumed D33 = 0. For the mixed H2 /H"
problem, the sets (zi, wi) are related to the H 2 performance, whereas z2, w2) are

related to the H, requirement.

Various of approaches has been proposed for the mixed H2 /H. problem for various

configurations. (For example, some researchers set wi = w2, and others set zi = z2.)
Below we will classify the approaches as the Bernsten-Haddad-type auxiliary cost

optimization, LMI convex optimization, worst-case design, and Q-parameterization.
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5.2.1 Bernsten-Haddad-Type Auxiliary Cost Optimization

Bernsten and Haddad [BeH89] did the pioneering work on mixed H2 /Ho, where

they addressed the synthesis of a strictly proper fixed-order controller to minimize an

auxiliary cost which is the upper bound of the H 2 norm.

They considered the case wi= w2, as in Figure 5-2,

Figure 5-2: Mixed H2 /H. control configuration I

G(s):=

A

C1

C2

03

B1 B 2

0 D21

0 D22

D 13 0

where it is assumed D 21 and D22 have full column ranks.

kth order strictly-proper

Suppose the controller is

K(s) := [A Bk
Ck 0
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then the closed-loop w -

A B3

C1 D1
C2 D2

Zi 1
is

Z2

A B2 Ck

BkC 3  Ak

[C1 D21C]

[C2 D22Ck]

B1

BkD13

From Theorem 2.1, we know that the H 2 norm can be calculated as

||Hwzi ll2 = J(Ak, Bk, Ck) = trace(QO0C1)

where Q satisfies the Lyapunov equation

AQ +QA'+ B1B' = 0

Bernsten and Haddad [BeH89] showed that if there exists some nonnegative definite

matrix Q satisfying the Ricatti equation

AQ + QA' + 7-2QC'C 2Q + B1B' = 0 (5.5)

then Q < Q. Hence

|Hwzi 1|2= trace(QO'01) < trace(QO'01) (5.6)

using the controllability and observability Gramians, they further showed that

||Hwz2 ||o Y (5.7)

The Bernsten-Haddad-type auxiliary cost minimization, which will guarantee an up-

per bound on the H 2 norm w -+ zi subject to the requirement on the H, norm

w -+ z2, is,

min trace(QCC 1), s.t. Equation(5.5)
Ak,Bk,CkQ

(5.8)

As a simplification, Bernsten and Haddad [BeH89] assumed C'D 21= 0, B1 D'

0, and C2D 22 = 0. With matrix Lagrange multipliers, they obtained four highly-

coupled Ricatti equations, and the homotopy method was developed to solve the
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four coupled Ricatti equations numerically [GCW94]. (But it is computationally ex-

pensive). Khargoneckar and Rotea [KhR91] showed that the Bernsten-Haddad-type

auxiliary cost minimization with full-state feedback can be handled with convex opti-

mization, and the full-order output feedback problem can be chosen as a combination

of the H, state estimator and a full-state feedback gain for the mixed H 2 /Ho syn-

thesis problem of an auxiliary plant.

Doyle et al. [DZB89] [ZGB94] and Zhou et al. [ZGB94] investigated another

system with two sets of inputs and one set of cost output, as shown in Figure 5-3,

Figure 5-3: Mixed H 2 /H, control configuration II

where wi is a vector signal of bounded spectrum (white noise)

|Wills :v|S.1(jw)||o = I

and w2 is a vector signal of bounded power independent of wi or dependent causally

on wi

|w2 ||P trace SWjw)dw

The objective is to design a stabilizing controller K(s) such that

sup inf {||z|2 _ P2 w 2

w2 Cp K(s)
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They obtained necessary and sufficient conditions for the mixed H2/Ho control. Yeh

et al. [YBC92] proved that the results of Bernsten and Haddad and the results of

Doyle and Zhou are in fact dual to each other.

In [VrJ97] the Bernsten-Haddad-type auxiliary cost minimization is extended to

C1the case of wi f w2 and zi / Z2, just by replacing C1 in (5.5) by .
C2

Although Bernsten and Haddad only tried to design a strict proper dynamic con-

troller, their idea of can be extended to more cases of (centralized) static output

feedback. With the well-known system augmentation we introduced in Chapter 2,

reduced-order control can also be handled as static output feedback. In fact this

approach would be more concise than Bernsten and Haddad's approach, since it will

only result in two coupled Ricatti equations, not four, even for the more general cases

CD21 # 0, B 1D1 = 0, and CGD22 = 0 or wi $ w2 and zi / z2. In this way, the

gradient-based approach used in Chapter 2 can also be applied to Bernsten-Haddad-

type auxiliary cost H 2 /H, minimization with decentralized control. However, the

more constrained, the more conservative is the design.

In addition, the entropy of H.2 (||H,2J < y) defined in [Mus89] [MGL91] [YaS97]

for the case wi f w2 and zi / z 2 also provides an upper bound of the H 2 norm:

lim {2 In det[I - _Y2H2(jw)Hwz(jw)]|( '50 )2dw}
so-*o 27 -, so- jw

And it is proved that negative of the entropy equals the auxiliary cost defined by

Bernsten and Haddad. For the full-state feedback, decoupled Ricatti equations are

also obtained therein. Yaesh and Shaked [YaS97] investigated the static output-

feedback entropy optimization with an H, norm bound. They obtained a modified

Riccati equation and a Lyapunov equation, and adopted a homotopy method to solve

these two decoupled equations.

5.2.2 LMI Convex Optimization

Soon after LMI-based H2 or Ho was proposed in [GaP94], [BEF94], [GNL95], the

approach attracted the attention for its potential application in multi-objective con-
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trol immediately ([ElF96], [SGC97], [Schoo], [Lei0l]). As we know, a combination

of several LMIs is still an LMI, so many specifications can be characterized as LMIs

and be handled at a time. Currently most work only focuses on unstructured cases

(full-state feedback or full-order feedback) and they only obtain a suboptimum with

common LMI variables. More recently non-common LMI approach has also been

proposed to obtain a less conservative design [FaFOO] [EHSO1I. Static H2 /H, output

feedback controllers are also examined in the past two years [SchOO] [Lei01].

Let's consider the full-state feedback for the general configuration (5-1) with plant

model (5.1)-(5.3). The matrix Dul is assumed to be 0 to ensure a well-posed problem.

Recall the LMI form in Chapter 2 (or see [GNP95]) for H 2 control: The closed loop

with full-state feedback |H,1 , 1 ||2 < Y2 iff there exist some X 2 > 0 and a matrix T2

such that

AX2 + X 2 A' + B3T2 + T2BI B1
BI 3 J1 < 0 (5.9)

[ (X0X 2 +D 3T2  < 0 (5.10)
(C1X2 +DisT2)' X2

trace(S) < 72 (5.11)

Recalled the LMI form in Chapter 3 about H, control: The closed loop with full-

state feedback ||HW2 22|| < yo. iff there exist some positive definite matrix Xo > 0

and a matrix T such that

AXx + XOA' + B 3Tx + T',B& B 2  (C2Xx + D23 T) ('
BG-1 DI2 < 0 (5.12)

C2Xo + D23To D22-

The variables T2 and T are introduced through the change of variables:

T2 := FX 2 , To := FXc

The mixed H2/Hc problem is stated as:

min Y2 (5.13)
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and the general H 2 /H, multi-objective problem is stated as:

min aY 2 + (1 - a)7m (5.14)

where a is a given scalar in the interval [0,1]. These problems are nonconvex because

of the constraint

F := TOX 1 = T2X2 (5.15)

To avoid this difficulty, recently this nonconvex problem has been translated into a

convex problem by imposing the extra (technical) constraints X 2 = Xo and T2 = T0,

and thus a suboptimum can be obtained easily with some reservation [GNL95].

For the full-order H 2 /HO problem, similar technical constraints were enforced, and

a convex programming method was formulated. For details, please refer to [GNL95).

Leibritz [Lei0l] examined the suboptimum of H2 /H, with static output the sub-

optimal for the plant setup in Figure 5-3. However, in practice we have more interest

in the configuration as in Figure 5-1, which enable us to achieve optimal performance

in one channel while keeping the stability requirement through the other channel. Be-

low we will extend El Ghaoui's cone complementary linerization algorithm [EA097]

to the mixed H2/H) problem for the configuration in Figure 5-1. The proposed ap-

proach can also be utilized to treat the reduced-order H 2/H. problem with system

augmentation.

Suppose the plant model is given by (5.1)-(5.3) and the measurement output is

y = C3 x + D32w 2

and we would like to design a static output feedback controller u = Fy such that the

H 2 norm of channel wi -> zi is less than 72 and the HO norm of channel w2 -- z 2 is
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less than 7,,. Recall the single-objective H 2 y-suboptimization problem:

trace(X 2Y2) = n

trace(B'X2 B1) < Y2

A'X 2 + X 2A C(

C1 -1

AY+Y 2A' Y2 CI

C1Y 2 -I

N < 0

N < 0
X2 I
I Y2

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)> 0

where N. and N, are, respectively, the orthogonal bases to the null space of [C3, 0]

and [B', D'13]. Also recall the single-objective H, '-suboptimization problem:

-I A'X+X.A
0

II-1 20

C2yoo

XOB 2 C

I D22]

D 22

YoC&2 B2

-7ml D 22

D'2  -To J22[
where NR and N, are, respectively, the null spaces of [B'/, D23) and [C3 , D32].

Now impose the technical constraints

X := X2 = X., and Y := Y2 = Yo

then we can use the cone complementary linerization algorithm [EA097] to solve the

bilinear objective minimization problem subject to LMI constraints:

min trace(XY), s.t. LMI (5.17), (5.18), (5.19), (5.20), (5.22) and (5.23)
X,Y

(5.25)
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0

= n

< 0

< 0

> 0
X00 I
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If this minimization results in n, we obtain the pair (X, Y), and the static H 2 /H,
controller can be reconstructed in the same way as the single-objective case. We

haven't yet perfomed numerical experiments for this approach, it efficiency should

be similar is to the cone complementary linerization algorithm. Like the full-state

feedback case, the result of this approach is conservative, since we impose a common

Lyapunov function for H 2 and H,.

Lee [Lee99] changed the H, BMI feasible problem into a highly nonlinear min-

imization problem while keeping the controller structure (such as decentralization)

inside. The conditional gradient method was used to solve the problem via iterative

LMI. An example of mixed H2 /H, control was also given therein.

To obtain a less conservative design, Shimomura and his coworkers [ShFO0] [EHSO1]

investigated noncommon LMI approaches to the unstructured or structured controller

design via iteration. The design is less conservative at the cost of computational com-

plexity.

5.2.3 Worst-Case Design

Stoorvogel [Sto93], Steinbuch and Bosgra [StB94], Limebeer et al. [LAH94], and

Chen et al. [CSZ98] considered the H 2 norm under the worst disturbance. For the

configuration shown in Figure 5-1, the problem of worst-case design is:

sup min |Hw12 1(K, A)|| 2  (5.26)
|A I , 1 K(s)

Stoorvogel [Sto93] analyzed the worst-case effect of a disturbance w2 on the H 2

norm wi -+ zi and obtained an upper bound (tight if wi is a scalar) dominated

by an algebraic Riccati equation with an additional Lagrange multiplier. Nonlinear

time-varying A(s) are also considered.

Steinbuch and Bosgra [StB94] assumed the worst-case A(s) is achieved as a finite-

order "less bounded real" transfer function

AT(-s)A(s) = I

which can be expressed by a rational "lossless positive real" transfer function F(s),

A(s) = [I - F(s)][(I + F(s)]-. (This assumption is reasonable although not strictly
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proved, if A(s) is finite-order, causal, and LTI.) Then based on the definition of

"lossless positive real"F(s) + FT(-s) = 0, F(s) is parameterized by three matrices

At, Bt, and Dt: Bt(sI - At)- 1BT + Dt, where At + Af = 0 and Dt + DT = 0. Thus

worst-case design became a unconstrained optimization problem:

max min |IH 1, (a = K(s)y)||2 (5.27)
At,Bt,Dt K(s)

Note that for a fixed (At, Bt, Dt), the problem minK(s) ||Hw1 2,(u = K(s)y)||2 becomes

a standard H 2 optimization with a dynamic (n + nt)-order controller, where nt is the

order of A(s). This observation can be used to simplify the gradient-based computa-

tion. The drawback of this method is that the controller order might be very high,

and it is only limited to finite-order LTI A(s) (which may not be true in practice).

Limebeer et al. [LAH94] proposed the Nash game approach for the worst-case

solution with full-state feedback for the case of wi = w 2 and zi = z2. Chen et al.

[CSZ98] extended this approach to the case of full-order output feedback and to the

case of wi f w2 and zi # z2. The Nash game is a two-player nonzero sum game with

two performance criteria. In these two papers the Nash game is used to characterize

the mixed H2 /H, problem by assigning one performance index to reflect the H2

requirement and another one to reflect the H, constraint. Three coupled Ricatti

differential equations or algebraic equations are obtained to minimize the energy of

the output zi under the worst-case disturbance w2 applied to the system. Nonlinear

A(s) are also considered.

5.2.4 Youla-Parameterization

Consider the configuration in Figure 5-1. It is known that the closed-loop -]
W2[ ]

Z2

{G(s) = P,,2,(s) + P,,2(s)K(s)[I - P,,,(s)K(s)]-1P,,,(s) | K(s) stabilizing}
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With the Youla parameterization Q, all achievable closed loop can be represented in

the affine form in Q [HHB98]:

{G(s) = W(s) - U(s)Q(s)V(s) | Q E RH } (5.28)

where RHO denotes the function space with finite Hoe norm and analytic continuity

for Re(s) > 0, H(s), U(s), V(s) are stable matrix transfer functions with appropriate

dimensions.

Now the mixed H 2 /Hoo problem become

min ||W 2(s) - U2 (s)Q(s)V 2(s)|12, s.t. ||Woo (s) - Uo (s)Q(s)Voo (s)|oo < yeo (5.29)
QERH-

and the multi-objective H 2 /Hoo problem become:

min of W2 (s) - U2(s)Q(s) V2 (s)1|2 + (1 - a||IW, (s) - Uoo (s)Q(s)Voo (s)||oo (5.30)
QeRHx

where a is given in [0,1].

Generally this is infinite dimension optimizational. Megretski [Meg94] showed

has shown that the exact optimum of H 2/Hoo via Youla parameterization is generally

infinite order. In the literature finite dimensional optimization is used to approxi-

mate it. Most reports of Youla-parameterization are for discrete systems ([Sch95]

[HHB98] [SchOO] [DCRO1]). The FIR (finite impulse response) structure of the Youla

parameterization is used, and LMI convex optimization is formulated by fixing AQ

and BQ in the state-space realization of Q(s) [AQ BQ HHB98]). In [Sch900],
CQ DQ

Scherer considered a very special class of plant with static output feedback and for-

mulated the H2 /Hoo control for this plant as an LMI problem, then used Youla pa-

rameterization to force the dynamic output feedback of more general plants into that

class. In this approach, the size LMI is reduced. Sznaier et al. [SRBOO] recast the

continuous-time H 2 /Hoo problem into discrete equivalent via bilinear transformation,

and a e-suboptimal solution was found by solving a sequence discrete truncated prob-

lems. Compared with other techniques, Youla parameterization algorithms reduces

the conservatism, but the controller order usually increases significantly.
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So far, we have surveyed the main techniques for mixed H 2/H, or multi-objective

H 2 /H, control. We see that no readily-to-implement approach for H2 /H" control

without much conservatism is available, even for full-state feedback. H 2 /H, control

with static output feedback can also be obtained with LMI with some conservatism.

Iterative LMI might be promising for decentralized H 2/H., but a further investiga-

tion is needed.

5.3 Optimal H2 Control with Regional Pole Place-

ment

5.3.1 Introduction

As we have pointed out in Chapter 4, the poles determine the dynamic performance

of the system to some extent, especially the transient response. Usually, exact pole

placement is impractical and unimportant as long as the poles are in some region.

Regional pole placement offers additional freedom to meet other specification. H 2

control with full-sate feedback can guarantee 600 phase margin, but H 2 with output

feedback might yield a system with very light damping or small decay rate. So H2

control with regional pole placement is proposed to enhance the robustness of the

closed loop. In general applications, the ideal pole region is shown in Figure 5-4.

Strip, disk, or sector regions are used to approximate it. Elliptical or parabolic region

are also addressed.

Consider a plant mode given by

= A+ Bi+ B2 U (5.31)

z = ix + D11w + D12U (5.32)

y= C2x (5.33)

where D11 is assumed to be zero to ensure the H 2 problem is well posed. Design a

controller u = K(s)y such that the H 2 norm of the closed loop w -+ z is minimal and

the poles are in some prescribed region.
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S plane

Figure 5-4: Pole regional constraints.

In the following section, Riccati-based approaches are surveyed for the auxiliary

minimization problem defined by Haddad and Bernstein [HaB92]. LMI-based sub-

optimal approaches are discussed. A simple example is given to show that they are

fairly conservative. In order to directly minimize the structured (or unstructured) H 2

norm with general pole regional constraints, we formulate a tractable optimization

problem, and some approaches are hinted to solve it. We also present the method of

multipliers for more general regional constraints, or constraints on partial poles only.

5.3.2 Auxiliary Function Minimization and LMI Subopti-

mization

Since dynamic feedback can be cast as a static output feedback problem, let's consider

static output feedback back first. With u = Fy, the closed loop is

Ac Be A + B 2FC 2  B1

Ce De +C1  D12FC2  0

Recall Theorem 2.1 again for the computation of H2 norm:

|H2,||2= trace(CeQcC') (5.34)
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where Qc is a nonnegative definite matrix satisfying

AcQc + QcAc + BeB' = 0

Also recall the Lyapunov equation description of the pole region.

(5.35)

All poles are in

the a-stability region (Rc(s) < -a) iff there exists some positive definite Q [AnM90],

such that

(Ac + al)Q + Q(Ac + al)'+ V = 0 (5.36)

where V is any positive definite matrix. All poles are in the the disk region D(a, p)

(a > p > 0) in the left half plane iff there exists some positive definite Q [FuK87],

such that

1
(Ac + aI)Q + Q(Ac + al)' + -(Ac

p
where V is any positive definite matrix.

+ al)Q(Ac + al)'+ V = 0

Imaginary

Real

Figure 5-5: Disk pole region

Assume that Bc has full column rank. If there exist some matrix Q > 0 satisfying

(5.36) or (5.37) in which the matrix V is taken as BcB', it can be shown ([HaB92])

that there exist some Qc > 0 satisfying (5.35), and thus ||H2 11|= trace(CcQcC') <

trace(CcQC') Therefore an auxiliary minimization is formulated as:

min trace(CcQC')
F

1
s.t. (Ac ± aI)Q + Q(Ac ± al)' + -(Ac + aI)Q(Ac + aI)' + BcB' =C(5.38)

or (Ac + al)Q + Q(Ac + al)' + BcB' = 0 (5.39)
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Solving this auxiliary minimization problem, we obtain a controller which guar-

antees an upper bound on the H 2 norm with all closed loop poles placed in the

a-stability region or disk region. For a-stability H 2 control, the design procedure is

the same as the single-objective H 2 control if we replace A by A - af. For the case of

disk-regional pole constraint, with Lagrange matrix multiplier method a discrete-time

algebraic Riccati equation is obtained for the auxiliary minimization problem with

full-state feedback. Two decoupled modified Riccati equations [HaB92] or two de-

coupled discrete-time algebraic Riccati equations [SKK93] are obtained for full-order

feedback. For static output feedback, two coupled Riccati equations are obtained.

The auxiliary cost minimization problem is usually solved with homotopy methods

[GCW94], in which the controller structure can't be considered. For this reason, we

extend the gradient-based method (discussed in Section 2.7 for single-objective H2 )

to solve the auxiliary minimization problem (5.38) with decentralized F. However,

the auxiliary minimization (5.38) is generally quite conservative. This can be seen

from the simple example of an SDOF TMD with a prescribed disk region. (Please

see that last section of this chapter.)

The sector region is also interesting, since it can specify the damping ratio directly.

Consider the sector region in Figure 5-6. Recall that all poles reside in this sector

Imaginary

S plane

6 S o roReal

Figure 5-6: Sector region
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region iff

(Ac - al)sin (Ac - al)cos#
-(Ac - aI)cos# (Ac - al)sinJ

is stable. In [HaB92) a 2n-order system was augmented, and nth order dynamic feed-

back controller can be obtained by solving four nonlinearly coupled matrix equations

by iteration. However, although all poles is placed in the sector region, the LQR cost

of this design has no direct relation to the original H2 norm requirement.

In Chapter 4, we have already seen that the a-stability region, disk region, sector

region, etc., can be characterized with a matrix in LMI form. In [ChG96] more general

convex regions are characterized in LMI form (so-called LMI regions). By imposing

additional (technical) constraints similar to these discussed in previous section, H2 ,

H,, or H2 /H, control with LMI pole regional constraint can be treated naturally

by the promising LMI tools. For unstructured H2 with regional pole placement, the

LMI-based approach is more efficient and convenient than the Riccati-based approach,

and it can be applied to more general regions, such as the sector region or the ideal

region in Figure 5-4. We also can extend the LMI-based approach to static output

feedback H2 suboptimal control with pole regional constraints, by following the spirit

of the extension for the mixed H2 /H, control.

5.3.3 Direct Minimization

Since the previous auxiliary minimization may produce a quite conservative design, so

direct minimization was also developed. Liu and Yedavalli [LiY93] consider full-sate

H2 optimization with the a-stability pole region constraint, and use the Lagrange

multiplier method. Yuan et al. [YAJ96] investigated optimal H2 control by static

output feedback with pole placement within the sector region shown in Figure 5-6.

They proposed a iteration which will converge to a stationary point if B2 and C1

have full rank. However, in practice, the sector region with prescribed damping and

stability specifications (Figure 5-7) is suitable. So Sehitoglu [Seh93] approximated it
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with a hyperbola and translated into the left half plane of an associated 4n-th order

system. Unlike [HaB92), in this approach the H2 norm can be minimized directly.

But the numerical computation is not so efficient.

Figure 5-7: Sector region with prescribed damping and stability specifications

In the following, we will extended the techniques for single-objective structured

H 2 in Chapter 2 to the H 2 control with pole placement in a general region. Sup-

pose the prescribed pole region is the intersection region of the a-stability region, a

disk D(a2, p), and a sector (a3 , ±). This is reasonable in practice, and one special

example (with a 2 = a3 = 0) is the ideal pole region in Figure 5-4. (More general

LMI regions can be extended in the same way.) This region is convex and can be

characterized by three matrices Q1 > 0, Q2 > 0, and Q3 > 0:

(Ac + al)Q1 + Qi(Ac + af)' + V1 = 0 (5.40)
1

(Ac + a2 1)Q2 + Q2 (Ac ± a21)' + -(Ac + a2I)Q2 (Ac + a21)' + V2 = 0(5.41)

(Ac - aI3 )sin#3

-(Ac- a 3 l)cos3

+ (Ac - a3I)sin#3
± Q3

-(c- asI)cos#3

(Ac - a31)cos 3
(Ac - a31)sino

(Ac - aI)cos/3 +V 3 =0

(Ac - a3 )sin

where V1, V2, and V3 are any given positive definite matrices of compatible dimension,
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and
Ac Bc A+B2FC2  B1

Ce De C1 + D 12FC2  0

Therefore, we can formulate the direct minimization of the H 2 norm with pole place-

ment in the prescribed region as a constrained optimization problem:

min trace(CcQcC') (5.43)
Qc>O,Q1>O,Q 2 >0,Q 3 >0,F

s.t. AcQc + QcAc + BcB' = 0

and Equations (5.40), (5.41), (5.42)

In this problem, the feedback gain F is retained, thus we can consider structured

control, such as decentralization. Note that for a fixed F, all the four equation con-

straints are in easy-to-be-solved Lyapunov or Riccati form, which is similar to single

H2 optimization. Thus the gradient-based algorithms, homotopy method, descent

Anderson-Moore algorithm [ToM85], or iterative LMI (the constraints (5.40), (5.41),

(5.42) can be replaced with LMI [ChG96]) can be used to minimized the H2 norm

exactly with pole regional constraint. Moreover, in the problem (5.43) we can also

add the Hoc constraint. Further investigation, especially of convergence properties,

is required.

For disk region, Fischman et al. [FND97] developed an LMI-based approach to

take into account the controller structure without introducing conservatism. We will

discuss this approach later.

5.3.4 Method of Multipliers for Structured H 2 with Regional

Pole Placement

In the previous two subsections, we discussed LMI suboptimal design and the aux-

iliary minimization of the H2 upper bound. We also examined direct minimization,

where all poles are placed in some typical region. However, we know that the perfor-

mance of the system transient response is determined by the dominant poles. So it

is not necessary to require all the poles to be within the region. Below we propose
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another direct minimization approach: the method of multipliers. It is able to specify

the region for some dominant poles only. Compared with the methods in previous

section, another advantage is that we can describe more general pole regional con-

straints. The computational efficiency is also comparable, since we only take the free

variables in structured gain F as our design variables and the procedure is gradient-

based.

The multiplier method combines the advantage of the Lagrange multiplier method

and penalty function approach. It generates a sequence to approximate the Lagrange

multipliers. Let us briefly introduce this method.

Theorem 5.1 ([Ber95]): If x* is a local minimum of

min f (x) (5.44)X

s.t. h(x) = 0, g(x) < 0

where f : R" --+ R, h : R" -> R', and g : Rn -- R' are given smooth functions.

Define the augmented Lagrangain function L, : Rn x Rrn x R- -+ R,

Lc(x, A, p) = f (x)+A'h(x)+ ||h(x)||2+ {mujgg (x, y, c) + [g(xy, c)]2 (5.45)
j=1

where g (x, ,, c) = max{gj (x), -1}. Then there exist (A*, pu*) that minimize Lc(x*, A*,p*)

if c is large enough. In addition, (A*, [p*) are the Lagrange multipliers if the original

problem adopts Lagrangian multipliers.

Note that Lc(x, A, p) is differentiable. The augmented Lagrangain function is

the combination of a penalty function and a Lagrangain function. A Multiplier

method [Ber95] was proposed to avoid the fact that (A*, p*) is unknown: For a given

ck, update (A, p) as:

Ak+1 _ k + ckh(xk)

p1_7 =~ + p + ga (5.46)

where xk is the (unconstrained) local minimum of Lek (x, Ak, pk). Usually ck is a

gradually increasing sequence: ck+1 = 3ck, 13 E [5, 10]. It was shown that this proce-

dure converges to a local minimum of f(x) with the constraint of h(x) and g(x), and
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(Ak, Pk) converges to Lagrange multipliers (A*, p*). For details about this algorithm,

please refer to [Ber95].

The specification of regional constraints on partial poles can be characterized with

the eigenvalues of A + B 2FC 2. Suppose it is g(A + B 2FC 2) < 0. The structured H2

problem with regional constraints on all or partial poles can be formulated as:

min J(F) = ||Hz |= trace(B'QcB1) (5.47)

s.t. Qc(A + B 2FC 2) + (A + B2FC2)'Qc + (C1 + D 12FC2)'(C1 + D 1 2 FC2 ) =0

g(A + B 2FC 2 ) 0

Map the free design parameters in F to the vector x. In this problem, we can

evaluate the conditional gradient of &J/&F by solving the two associated Lyapunov

equations similar as Section 2.7. So we can avoid introducing h(x) and A. The

gradient of g(A + B 2FC2) with respect to F is easy to evaluate via the eigenvalue

sensitivity formula in Section 4.5. Introducing the multipliers y and c, we can use

BFGS unconstrained optimization to solve the structured H2 problem with pole re-

gional constraints. Numerical examples will be given in the last section of this chapter.

Other than the above H 2 optimization with regional pole placement, H2 control

with exact eigenvalue/eigenstructure assignment [LiP98], by inverting LQR problems

to determinate the weighting matrix, have also been proposed recently. About this,

we already give a brief review at the end of Section 4.3.

5.4 Hoe or H2 /Hoo Control with Regional Pole Place-

ment

As a frequency domain method, H, optimization can't guarantee the performance

in the time domain. So H, or H 2 /H, control with regional pole placement has

also proposed recently [BSU94] [PaL94] [YeL95] [ChG96] [FND97] [CGA99] [ShFOO]

[EhS01].
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5.4.1 LMI Suboptimization and Nonlinear Programming

The plant model is given in (5.31)-(5.33). Since the dynamic feedback can be cast as

a static output feedback, let's consider the static output feedback first. The problem

is to design some feedback gain u = Fy such that the closed loop poles are placed

in some prescribed region, and the H, norm system w -+ z is minimal or less than

some prescribed -y.

With u = Fy, the closed loop is H22(s) = Bc(sI - Ac)-1Cc + Dc,

Ac Be A+B 2FC2  B1

Ce De C1 + D 12FC2 D11

Recall some results about the system H, norm:

SHzw llO= sup omaj[Hzw(w)] (5.48)
w

For a stable system, llHzw llo < -y iff there exists a symmetrix matrix X, > 0 such

that

A' X, + Xc.Ac X, Be C'

B'Xo - 21 D' < 0 (5.49)

L Ce De -I

Consider the pole region in Figure 5-4 characterized in LMI form: there exists XD > 0

such that

AcXD - XDAc+ 2aXD < 0

-PX AXD < 0 (5.50)
XDA'c - pXD

(AcXD + XDA') sin/3 (AcXD - XDA')cos1C < 0
(XDAc - AcXD)Cos/ (AcXD + XDAc)sin/o

With the additional (technical) constraint XD = X, [ChG96], full-state feed-

back H, with pole regional constraints can be naturally handled in the framework

of LMI with some conservatism. Full-order output controller can also be handled in

a similar way. It is also easy to understand that the full-state (or full-order) H 2/H)

control with pole regional constraints is also tractable with some conservatism by
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imposing a common Lyapunov function. Multi-objective control by centralized static

(or reduced-order) output feedback can also be handled with some extension of cone

complementary algorithm proposed in [EOA97].

Although the additional technique constraint makes the centralized multi-objective

problem tractable and yields some acceptable suboptimal design, it can be fairly con-

servative in some systems. So direct minimization is also proposed. One example is

non-common LMI iteration [EHS01]. Another example is successive approximation

via nonlinear programming [YeK95]. Genetic algorithms are also used [PaL94] and

have attracted more attention recently [CaC01]. Bambang et al. [BSU94] investigated

the (centralized) static output feedback, and an iterative algorithm was proposed for

a less conservative upper bound of the H2 norm.

5.4.2 H2 /Hoc with Pole Placement in a Disk Region

For H2 /Hoo control with pole placement in a disk region D(p, p), an attractive ap-

proach has been developed by Fischman et al. [FND97]. They formulated the con-

straints as bilinear equations and linear matrix inequalities without conservatism,

and the control structure can also be handled therein. The plant in Figure 5-2 was

examined by Fischman et al.. (Their idea is readily extended to the general plant

shown in Figure 5-1.) Suppose the plant is given as:

x = Ax + Bw + B 2w 2 + B 3U

zi = Cix + D 12w 2 + D13u (5.51)

Z2 = C2x + D 21w1 + D 22w2 + D23u

y = C3X

and B1 and C3 are assumed to have full rank. With a structured static output

controller u = Fy, the closed loop is

Ac Be1 Bc2 A+B3FC3  B1  B2

Cci 0 Dc12 C1 + D13FC3  0 D12

Cc2 Dc21 Dc22 C2+ D23FC3 D21 D22
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We would like to design a structured controller gain F such that the H 2 norm of the

closed loop wi - zi is less than a given value '72, the Hoo norm of w2 -+ z2 less than

700, and the closed loop poles reside in the disk region D(a, p).

For the disk specification (5.37) and Schur complement (in Section 2.2), it can be

obtained [GBA95] that the closed-loop poles residue in the (open) disk D(a, p) in left

half plane iff there exist matrices (P, W 1, F) such that

P1

A+aI+B3 FC

(A + aI + BFC )]

W1 _

> 0

and W1P1 = p21.

For the system (AC, Bci, Cci, 0), from Section 2.1, we know that

2H=1 |= inf{trace(BG P2Bc,) A' 1P2 + P2Aci + Cc1Cci < 0}

Add an immaterial item 1A'P 2Ac to the inequality, the following conclusion can be
P2

drawn with some matrix operations. The H2 norm of wi -- zi is less than 72 iff there

exist matrices (P2 , W2, F) and a scalar P2 such that

_72 - trace(B'jP2Bc1 ) > 0 (5.54)

A + p2 I + B3 FC3

(C1 + D 13FC3

(A + P21 + B3FC3 )'

W2
0

(C1 + D 13FC3 )'

0

P21

and W2P2 = p2I.

Fischman et al. [FND97) also obtained that the Hoo norm of w2 - z2 is less than

700 iff there exist matrices (P3 , W3 , F) and scalar p3 such that

Ap 3 1+BFC3

BIP 3 + Dh2 (C 2 +D 23 FC 3 )

(C2 + D 23FC3

(A + p3I + B3FC3 )'

W3

P3 B 2 + (C 2 +D 23FCs)'D 2 2
'YOO

p3Q(7ooI D22D 22

(C2 + D 23FC3 )'

> 0

P3I
(5.56)

and W3P3 = p3I.
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With Lemma 2.3, we know that WiPi = piI is equivalent to

[ i (1> 0, i =1, 2, 3 (5.57)
pi I Wi

and trace(WP) - p2 = 0, for i = 1, 2, 3, and pi p (disk radius).

Therefore, the multi-objective control problem becomes

min trace(W1P1 +W 2P2 + 3WP3 ) - p2 - p- p (5.58)
W1,W 2 ,W 3 ,P 1 , P2 ,P3,P2,P3

s.t. LMI(5.52), (5.54), (5.55), (5.56), and (5.57)

A successive linearization procedure is proposed similar to that in [EOA97]. Con-

sidering the excellent performance of the algorithm in [EOA97], the computational

efficiency of this successive linearization procedure should be satisfactory. But we

worry that P2 might be very large or converges to infinity, because if Y2 is too tight

the item 1 A'P 2Ac, only becomes "immaterial" for large enough P2. This is a similar
P2 C

problem with p3. More investigation is deserved, since the controller structure can be

specified directly in this approach.

5.5 Li Norm (Peak to Peak Gain) and Associated

Multi-Objective Control

In the previous Chapters of this thesis, we mainly concentrate on the H2 norm (im-

pulse - energy, or white noise -+ covariance), H. norm (L 2 -- L2 gain). In the past

fifteen years Li (or 11 for discrete-time) norm control techniques have also been devel-

oped and extended to multi-objective control thanks to the contribution of Dahleh,

Sznaier, and others. In the following we will introduce some concepts about the L1

norm and its computation methods, then survey some important investigations about

the associated multi-objective control.
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5.5.1 System Li Norm

Recall the definition of the signal norm. The L1 norm of a vector valued signal f(t)

is

fli III If(t)Idt

And the Lo-norm of a vector valued signal f(t) is the maximal magnitude (peak) of

the entries evaluated for all all time:

||ff|0 = max sup f(t)|i t>0

For a causal system H : w(t) -+ z(t), the system LI norm is defined as the system

induced L, -* L, (peak -+ peak) gain:

||H||1 := sup {IzlOO : x(0) = 0,Vt > 0} (5.59)
wiell <1 for t>o

If the system is causal and LTI z(t) = h(t) * w(t), where h(t) is an r x q impulse

response matrix, the LI norm turns out to be

q

|H||1 = sup ||h * w|oc = max ||hi|1, (5.60)

For a causal system, it can be proved that the system L1 norm is an upper bound of

the system L, norm [SzB98]:

|H||, < IH||i, p = 1, 2, oo (5.61)

From the definition (5.59), we can see that L1 norm |IHI1 is the worst-case peak

gain in time domain, while we already know in Chapter 3 that HO norm is the worst-

case peak gain in the frequency domain. Besides specifying the signal magnitude

requirement in the time domain, the L1 norm can also specify the rejection to persis-

tent bounded disturbance, or describe the system robustness under uncertainty.

Unlike the H 2 or Ho problem whose optimal controller order is limited by the

generalized plant order, in L1 (or 11 for discrete) control the order of the optimal

solution can be arbitrarily high. Dahleh developed a synthesis approach via linear
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programming combined with duality theory, and more details can be found in the

book [DaD95]. More recently, Kahammash [KalOO] proposed a new approach for li

optimization, referred as the scaled-Q method. There some computational burden is

avoided and the controller recovery was made straightforward.

5.5.2 L1 Norm Associated Multi-Objective Control

In the past several years, many Li (or 11 associated multi-objective optimizations

have been addressed, such as H2/l or Li ([ElD98] [AmA99]), L 1/H 2 ([ABS98]),

l1 /H) ([SzB98]), li/poles ([HalO0]), and more general multi-objective control [SGC97]

[QKS01]. LMI tools are also used for H 2/L1 or l1 /H, sub-optimization ([SHB95]

[SGC97] [BuS97]).

Elia and Dahleh [ElD98] generalized the linear programming approach for the

standard 11 problem to multi-objective control. They expressed a large class of spec-

ifications as linear equalities or inequalities in the unknowns. Then a linear primal

problem and its dual are obtained:

(primal) min, cTx (dual) max, yT b

s-t. Ax = b s.t. yT A < cT
xi > 0, i= 1,...n

By examining the dual problem, it can be shown that the general multi-block problem,

which has infinitely many variable and constraints, is partly finite dimensional. The

parts which are still infinite dimensional are approximated by appropriate truncation

of the original problem. The basic approximation methods ([DaB95] [VrJ97]) are

1. Finitely many variables (FMV): provide a suboptimal polynomial feasible solu-

tion by constraining the number of (primal) variable to be finite;

2. Finitely many equations (FME): provide a superoptimal infeasible solution by

including only a finite number of (primal) equality constraints;

3. Delay augmentation (DA): provides both a suboptimal and a superoptimal so-

lution by embedding the problem into a one-block problem through the aug-
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mentation of the operators U and V with delays, where U and V are within the

Youla parameterization Hz. = W + UQV. This method is used more often then

FME/FMV since it doesn't necessarily suffer from order-inflation when inputs

and outputs are (re)ordered properly.

Sznaier and his coworkers ([ABS98] [AmS99]) extended Elia and Dahleh's work [ElD98]

to continuous-time systems. They showed that the mixed H 2/L1 and L 1/H 2 prob-

lems lead to non-rational solutions, even when the original plant is rational. And

they showed that the optimal cost can be approximated arbitrarily closely by ratio-

nal controllers that can be synthesized by solving an auxiliary discrete-time problem,

obtained by Euler approximation s = (z - 1)/T of the plant, together with an addi-

tional interpolation constraint.

Sznair and Bu [SzB98] investigated the mixed l1 /H, problem, and obtained the

rational c-optimal controller by solving a finite dimensional convex optimization prob-

lem together with an unconstrained H, problem.

inf ||Hz1w 1(z)||i inf ||WI(z) + U1(z)Q(z)V(z)||1
Q(z)ERHo Q(z)ERHo

s.t. |lHw2z 2(z)||o = |W 2(z) + U2(z)Q(z)V 2(z)||o < _y (5.62)

To avoid the potential failure of convergence by sampling on the unit circle, they used

RH*'6 to replace RH', and thus a sequence of modified problems were solved and

proved to converge to an optimum.

|IH(z)||,, = sup o-max[H(6ew)]
O<w<7r

They also showed that contrary to the H 2 /Hoo problem [Meg94], the l1i/Ho prob-

lem admits an optimal solution in 11. Continuous-time L1 /Ho c-optimal controller

was synthesized by solving a discrete-time l1i/Ho problem obtained by Euler approx-

imation. The most severe limitation is that a very high order controller might be

produced and model reduction is necessary.

The scaled-Q method proposed by Khammash [KhaOO] has also been used in

l1 /H 2 /Hoo problem. 11 suboptimal control with exact pole placement was also re-
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ported [HalO0]

LMI techniques have also been used for L1 (1i) sub-optimization [NAP94), and

extended to Li (li) associated multi-objective control with full state or full-order feed-

back [SHB94) [SGC97] [BuS97]. Given a closed-loop system (Ac, Bc, Cc, Dc), Nagpal

and Abedor [NAP94] [ANP96] showed that Li norm is bounded from above by A

||HJ|1 < A

where A satisfies the following matrix inequalities with matrix parameter P and scalar

parameters a and p:

a > 0

A'P+PAc+aP PBe[ BP PI < 0 (5.63)

aP 0 C',

(A-)I D' > 0

Cc De AI

Note that because of the item aP, the inequalities (5.63) are in LMI form only for

fixed a, hence a linear search over a > 0 is required. It also should be clear that

that the upper bound obtained in such a way might be fairly conservative, especially

for a lightly-damped closed-loop system. By imposing a common matrix P, the

above (5.63) is readily combined with other specifications in multi-objective control

synthesis via full-state or full-order feedback ([SHB95] [SGC97]).

No structured controller synthesis has been seen for Li associated multi-objective

control.

We also notice that recently generalized H2 performance (energy -* peak) [Rot93])

and general quadratic constraints [WaWO1] are also formulated in LMI form, and have

also been taken account of in multi-objective control [SGC97]. Some other objectives,

such as direct time specification [QKS01], or passivity requirement [SGC97], were also

discussed.
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5.6 Applications: Design of Passive Mechanical

Systems

The ground vehicle (suspension and steering) is one typical application of multi-

objective control ([TCZ98] [YoC99] [WaW01] [ChGOj). Other applications can be

found in aerospace systems [PMF0O], power systems [CMLOO] and others. In the

following we will give some examples to show the application to passive mechani-

cal system design via structured H 2 control with pole regional placement and other

methods.

Mk c

K

]No

Figure 5-8: Single-Degree-of-Freedom Tuned Mass Damper

We apply the multi-objective control to multiple and single DOF (degree-of-

freedom) tuned-mass dampers (TMD). The SDOF TMD system is shown in the

Figure 5-8. This is a 4-th order system with structured feedback. (Although this is a

static output problem, all the techniques we mention below can be used for decentral-

ized cases). Suppose M and K are normalized as one, and the mass ratio m/M is 10%.

We employ five design methods: (1) the gradient-based H2 optimization with control

structure constraints (presented in Chapter 2); (2) the alternative LMI minimization

of Hc design in Chapter 3; (3) the minimax method proposed in Chapter 4; (4) H2

sub-optimization via auxiliary cost (defined by Harddad and Bernsten [HaB92]) with

pole placement in a disk region D(10, 9.99) (solved by the gradient-based method);

(5) optimal H2 with pole placement in a sector (10.5% damping required) via the

multiplier method we proposed in Section 5.3.
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Table 5.1: Results of the five methods applied to the design of SDOF TMD

Method tuning ratio & closed loop model H2 norm H, norm
damping ratio dampings (%)

Den Hartog 0.90909 0.18464 9.607 9.607 1.7890 4.5902

# 1 0.93154 0.15254 7.207 8.649 1.7681 5.2368

# 2 0.90927 0.18309 9.518 9.533 1.7877 4.5900

# 3 0.90909 0.30151 15.811 15.811 1.9607 6.4141

# 4 0.9245 0.2092 10.1 11.7 1.811* 5.044

# 5 0.9091 0.2016 10.5 10.5 1.805 4.653
* note: the auxiliary function minimization yielded an upper bound 2.5434

The design results are shown in Table 5.1 compared with Den Hartog's design.

From the table we can see that the Harddad-Bernsten auxiliary cost (upper bound

of H2) (method 4) is quite conservative. Moreover, minimization of the auxiliary cost

might make the real H2 norm worse, which can be seen from Figure 5-9, where the

iteration begins with the result produced with minmax. The method of multipliers

(method 5) provides a better way to find the optimal H 2 norm with pole placement in

some region efficiently. The data in Table 5.1 also show that Den Hartog's fixed-points

method (Equ 4.84) produces a system which is very close to that of H. design.

Figure 5-9: Auxiliary cost decreases but H 2 norm becomes worse

The Bode plots of the closed-loops produced with method (1), (2), (3), and (5) are
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shown in Figure 5-10, and impulse response are shown in Figure 5-11. We can see that

optimal H2 with regional pole placement can produce a system with very good perfor-

mance. All of the five methods converge well in this simple example. Generally, the

computational efficiency of gradient-based methods for structured H2 optimization

are very good, while the subgradient-based minimax converges slowly to the opti-

mum. And there are no convergence guarantees for alternative LMI minimization of

H,. The efficiency of multiplier methods is fine.

S- H ifnt

FF r 50 e rencsefc)

Figure 5-10: Magnitude frequency response of closed loops via different designs

Figure 5-11: Impulse response of closed loops via different designs
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Figure 5-12 shows the results of a passive 3DOF TMD designed with decentralized

H 2, minimax, and decentralized H 2/pole placement in a sector region (via the method

of multipliers). We can see that for this plant H 2/pole region yielded a system with

better performance than pure H2 or minimax pole shifting.

Max min damping: dsah-dot
damping 6.93-19.8%, H 2 =2.38e4

40 H2 optimazition: solid
damping 0.37-4.83%, H2 =1.704e4

H2/pole (4% damp in sector): bold solid

damping 4.00-M H 2 1.806e4
Original system: dash line

29D

Frequency (rad/sec)

Figure 5-12: Sigma values of 3DOF TMD via minimax, H 2, and H2/pole
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Chapter 6

Conclusion

6.1 Summary

In this thesis, the parameter design of passive mechanical systems is cast as a state-

space control problem with controller structure constraints. A wide class of control

techniques are surveyed and investigated, including H 2 control, Ho control, eigen-

value and eigenstructure treatment, L1 control, and multi-objective optimization.

Structured control-static output feedback, fixed-order control, and decentralized

control-are discussed, as well as unstructured cases-full state feedback and full-

order control. Riccati-based methods, LMI, homotopy methods, and nonlinear pro-

gramming are used.

The system H 2 norm is the energy of the impulse response at zero initial states, or

the asymptotic value of system output variance with unit-energy white noise input.

It is the 2 norm of the LTI transfer matrix, which can be evaluated by solving a

Lyapunov equation. The unstructured (full-state or full-order) H2 controller can be

synthesized via one or two decoupled Riccati equations, or via the LMI techniques.

Model-order reduction is a useful approach to get a lower-order suboptimal controller

from the full-order design. Projective control and Kosut's suboptimization are con-

cise (but possibly unstabilizing) approximation for structured control. Gradient-based

nonlinear programming methods (steepest descent, conjugate gradient, FBGS, etc.)

are efficient for decentralized H2 optimization, as well as static output feedback or
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reduced-order controller. Homotopy method is also a good approach for optimal H2

with structure constraints. H 2/LQR design is suitable to meet performance specifi-

cations under white noise disturbances.

The system H, norm is the L 2 to L2 gain, or we say the worst-case peak-to-peak

gain in the frequency domain. For LTI systems it is the maximal sigma value of the

transfer matrix evaluated at all frequencies. The H, norm provides a natural way

to model system uncertainty and is therefore suitable for robust control. Full-state

feedback H, controller can be solved by a Riccati equation, while full-order H"

optimization yields two coupled Riccati equations. Both can be obtained efficiently

with the LMI tools. The cone complementary linearization method is extremely

efficient for centralized static output or fixed-order H, control. Decentralized H,

results in a BMI problem, and is still open. LMI-based iterations and homotopy

methods have been proposed for it.

The so-called L 1 norm is the L, to L, gain, or the worst case peak-to-peak gain

in the time domain. The L1 norm is suited to meet some time-domain specifications,

or to reject persistent disturbances. Linear programming with duality, and convex

optimization have been developed for the synthesis. However, unlike the optimal H 2  A

or H. design, the optimal L1 controllers usually have a very high order, which might

be much larger than the generalized plant. LMI-based suboptimal L1 control has also

been developed.

Eigenvalues determine the response rate of a system; right eigenvalues fix the

modal shapes and left eigenvalues influence the observability. Under some condi-

tions, eigenvalues can be assigned arbitrarily. Eigenstructure assignment is essen-

tially overdetermined. Parameterization, projection, and protection methods have be

proposed for eigenvalue and eigenstructure assignment with full-state feedback, static

output feedback, and decentralized feedback. Robust eigenvalue and eigenstructure

assignment has also been developed. Regional pole placement has been proposed

together with other objectives. With controller structural constraint, it might be im-

possible to place pole exactly, but maximizing the minimal damping (or shifting the

poles to some region) might be ideal in many applications.
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Each of the above techniques has its own advantages and disadvantages. Any real

design in practice must meet more than one specification. Multi-objective control

has been brought up recently, such as H 2/H., H 2/poles, Ho/poles, H 2/H,/poles,

L 1/H 2 , L 1/H,. Auxiliary cost optimization yields some coupled Riccati equations

for centralized control. By imposing an additional technical constraint, unstructured

multi-objective suboptimal control can be obtained via LMI optimization. Youla

parameterization, linear programming, and nonlinear programming approaches have

been used. The exact optimal solution of multi-objective control is still a hard prob-

lem, even for full state feedback. The decentralized optimal H 2 control with regional

pole placement seems to be tractable with nonlinear programming methods. Decen-

tralized H. associated multi-objective control is open.

Decentralized H2 , decentralized H,, minimax pole shifting, and decentralized H2

with regional pole placement have been used in the design of passive mechanical

systems. Some numerical examples and experimental results are given.

6.2 Conclusions and Contributions

From the the survey of related literature, we see that unstructured H2 , H', and

eigenvalue (and eigenstructure somehow) assignment have been solved. Efficient al-

gorithms for H 2 and H, optimization with static output or reduced-order feedback

have also been developed. Static output eigenvalue and eigenstructure assignment

are also clear. However, decentralized problems are generally open. Approaches have

been proposed for the decentralized H2 and work well in practice, but convergency

requires some strong conditions or are generally dependent on the initial guess. No

efficient method is known for the decentralized H, problem. Decentralized pole

placement also needs further investigation. Minimax pole shifting has been proposed.

Optimal multi-objective control remains an open problem, even for full-state feed-

back. Centralized suboptimal multi-objective control (H 2, H., eigenvalues) can be

obtained with LMI or Riccati-based approach. Decentralized multi-objective control

is still under way.
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Our main contributions herein are highlighted here:

1. We cast the parameter design of general passive mechanical systems as a decen-

tralized control problem, and a wide range of decentralized control techniques

have been used to treat it according different specification requirements.

2. A comprehensive survey of structured and unstructured control has been pre-

sented. Topics include H 2, H,, eigenvalue and eigenstructure, multi-objective

optimization, as well as L1 control. Some future research directions are sug-

gested.

3. In structured H2 optimization, more practical constraints are considered. For

instance, the parameters are nonnegative, symmetric, or reside in certain ranges.

We propose easy-to-implement modifications to handle such constraints.

4. We extend the cone-complementary algorithm to more general static output-

feedback H, control, and also multi-objective (H 2 /H./poles) control with

static output feedback.

5. We present a homotopy method to solve for decentralized H, control, and its

efficiency is shown by examples.

6. We use the subgradient-based minimax algorithm and eigenvalue sensitivity

to maximize the minimal damping; hysterically damped systems (complex-

coefficient matrix feedback) and marginally stable systems are also considered.

7. We adopt the method of multipliers to solve the problem of optimal structured

H 2 control with general pole regional constraints. And a tractable optimization

problem is also posed for decentralized multi-objective control.

8. Successful application to passive system design. An MDOF (multi-degree-of-

freedom) TMD (tuned mass damper) has been designed and built. To the

author's knowledge, in the 70 years of TMD research this is the first time that

six modes are damped with one passive TMD.
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6.3 Future Work

Since many topics that we covered are still open, there is a lot of challenging work

we can do in the near future.

LMI is a well-known technique for full-state and full-order control. Recently LMI

has been extended to the problems of stabilization, H 2 and H, optimization with cen-

tralized static output, and achieved extremely satisfactory computational efficiency.

Decentralized control usually yields a BMI problem, which has been proved to be NP

hard. Decentralized stabilization with identical controller or controller gain bound

has been proved to be NP hard. Hopefully some efficient and ready-to-implement

LMI-based algorithm for decentralized (suboptimal) control might be developed, es-

pecially for decentralized H,. And it deserves further investigation.

Gradient-based algorithms and other similar iterations have been shown to be

efficient in solving for the local minimal structured H 2 controller. The convergence

needs more extension. And it might also be possible use nonlinear programming

methods for H, and multi-objective control. To find the global optimum, it might

help to combine the gradient-based methods and genetic algorithms.

To achieve performance requirements under the system uncertainties and distur-

bance, we might turn to the (structured and unstructured) multi-objective control.

Although some problems have been proved to be almost "hopeless" (such as pure

mixed H 2/H,), it is still worthy for further investigation considering its potential

application in practice. This area, especially for the exact optimal solution, is far

from the end, and the future direction is not so clear. Linear and nonlinear program-

ming, LMI, and Q parameterization are examined currently.

To make the application to the parameter design of passive mechanical systems

more practical, we need to investigate the approaches for robust performance. Be-

cause there are a lot of uncertainties in real systems; and the passive parameters are

much harder to adjust than the gains in control application.
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