
1

Robust control of longitudinal flight with handling
qualities constraints
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Abstract— Classical flight control systems are still widely used
in industry because of acquired experience and good under-
standing of their structure. Nevertheless, with more stringent
constraints, it becomes difficult to easily fulfill all the criteria with
this classical control laws. This article aims at showing that this
problem can be solved by first designing a high order controller
satisfying all the constraints, then by reducing and structuring
it in order to make it look like a classical controller. Firstly, an
H∞ synthesis is performed in order to get a robust controller
versus mass and center of gravity variations, which will satisfy
the handling qualities; then it will be reduced by using robust
modal control techniques

Index Terms— Handling qualities, Robustness, Modal reduc-
tion

I. INTRODUCTION

The development, integration and flight testing of flight
control systems are costly and time-consuming. Modern tech-
niques such as H∞ or µ − synthesis provide effective and
robust controller design techniques but the main problem re-
mains their high order which prevents them from being easily
implemented ([7], [16]). Classical flight control systems are
still widely used because of their well-studied and understood
architecture [6]. However, they have to deal with stringent
performance and robustness requirements over the full flight
envelope. It is therefore of interest to keep the simplicity of
classical architectures while using modern technique advan-
tages for analysis.

This article expands upon the work initiated in [14] and
[13] wherein the authors propose a method to choose the 5
controller gain parameters of two fixed architecture classical
control laws. Nevertheless, in [15], for a given flight condition,
it is necessary to schedule the controller with the mass and
center of gravity measurements to fulfill parametric robust
constraints. A unique controller should be sought that would
insure, for a chosen flight condition, performance in spite
of varying mass and center of gravity location. Moreover,
this controller should have a simple structure (low order and
physical meaning of the filters)

Firstly, an H∞ synthesis will be performed in order to get
a robust controller which will satisfy the handling qualities in
spite of mass and center of gravity variations. Then by using
robust modal control techniques, this controller will be reduced
to an order as low as possible without losing on performance.

Finally, the controller will be put in a classical form while
adding a feedforward gain to improve some particular criteria.

II. MODEL AND CONSTRAINTS

A. Challenger 604 aircraft model
We consider the longitudinal flight model of the Challenger

604 of Bombardier Inc. The open loop order is 35 for a
given flight condition: full dynamics of each components are
considered. Figure 1 shows a classical pitch attitude hold
system. In this structure, the two filters are first order and there
are 5 varying gains that must be tuned in order to satisfy the
criteria.
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Fig. 1. Classical pitch attitude hold system

B. Handling qualities requirements
The overall performance objective is to track pitch rate com-

mands with predicted Level 1 handling qualities and desired
time domain response behavior. The handling quality criteria
considered in this article are short period mode damping ratio
ζsp , Gibson’s dropback Drb, settling time ST , pitch attitude
bandwidth ωBWθ

, phase delay τp, gain margin MG and phase
margin Mϕ [15]. The boundaries of these criteria are defined
by military standards [17]. Table I summarizes the handling
quality boundaries being considered in the design procedure.

C. Mass and center of gravity variations
The robustness specifications are based on the variation of

total mass (m) and center of gravity along the body X-axis
(xcg). For the flight condition at stake, eight models of differ-
ent masses and centers of gravity are provided by Bombardier
Inc. and considered in Table II. A unique controller that will
fulfill all the requirements is sought.
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TABLE I
HANDLING QUALITIES

Handling qualities Level 1

Short period damping ζsp 0.35 < ζsp

θ-bandwidth ωBWθ
ωBWθ

> 1.5 (rad/s)

Gibson’s dropback Drb −0.2 ≤ Drb ≤ 0.5

Phase delay τp τp < 0.2 (s)

Gain margin MG MG > 6 (dB)

Phase margin Mϕ Mϕ > 45 (◦)

Settling time ST 2% en 3 (s)

TABLE II
GRID POINTS FOR VARYING m AND xcg

m (lbs) \ xcg (% chord) 16 20 35 38 48
30 000 × ×
32 000 ×
39 000 × × ×
46 000 × ×

III. H∞ SYNTHESIS

We seek a controller that satisfies the performance criteria
for the 8 configurations. H∞ synthesis will be used.

A. Theory

H∞ synthesis was initiated by Zames [18] and further
developped by Doyle [4]. H∞ problem is a stabilization and
disturbance rejection problem. A controller is sought that will
minimize disturbance effects while stabilizing the system.
Theoretical aspect can be found in [19] and [1].

Let us consider the augmented system P (s) (including
weight functions or filters) composed by 4 multivariable
transfer functions between the inputs u and w and the outputs
y and z where:

- u represents the system command
- w represents exogenous inputs (reference and/or distur-

bance)
- y represents measurements
- z represents regulated outputs

P

w z

yu

Fig. 2. Augmented model

P (s) can be separated in the following way:[
Z(s)
Y (s)

]
=

[
P11(s) P12(s)
P21(s) P22(s)

]
·
[

W (s)
U(s)

]
(1)

By closing the loop with the control law U(s) = K(s)Y (s),
one can obtain the transfer between the inputs w and the
outputs z namely Linear Fractionnal Transformation (LFT):

Gzw(s) = Fl(P (s),K(s))
= P11 + P12K(s)(I − P22K(s))−1P21

(2)

P

w z

K

Fig. 3. Standard H∞ synthesis

The optimal H∞ problem is the synthesis of a controller
K(s) among all internally stabilizing controllers that
minimizes the H∞ norm of Gzw(s) = Fl(P (s),K(s)).

H∞ norm of a transfer function G(s) is defined as:

‖G(s)‖∞ = sup
ω∈R

σ̄(G(jω)) (3)

Optimal H∞ problem:
Finding a stabilizing controller K(s) such as

‖Fl(P (s),K(s))‖∞ is minimal

Knowing the minimal H∞ norm can be theoretically useful
because a limit can be fixed on the reachable performances.
Nevertheless, in a practical way, the suboptimal H∞ problem
is defined where the H∞ is reduced under a positive threshold
γ.

Suboptimal H∞ problem:
Finding a stabilizing controller K(s) such as

‖Fl(P (s),K(s))‖∞ ≤ γ

Although there are several ways to solve this problem,
Doyle et al. [5] method will be used as it is based upon a
state variable approach. One major problem of H∞ synthesis
is that the controller K(s) is the same order as the augmented
plant. The controller has to be reduced in order to simplify it.

The following references are examples of synthesis which
gave good results. [7],[2],[8],[9]. Note that in [3], the authors
design H∞ controllers with fixed order a priori.

B. Application

An H∞ synthesis will be performed on our aircraft model.
As the controller order is equal to the augmented plant order,
the open loop is first reduced to an 11th order. The augmented
plant is the one on Figure 4. In order to improve the H∞
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synthesis, a reference model that satisfies most constraints is
chosen 1

Wref (s) =
e−0.1s

s2 + 2(0.75)(4)s + 42
(4)

The pure time delay is approximated by a second order
Pade. Wperf is a low-pass filter which weights the difference
between the reference model and the aircraft pitch rate q at
low frequencies. The other filters are scalar weights which are
adjusted till a satisfying synthesis is obtained.

Finally a 16th order controller is designed with a gain
margin of MG = 6.4 dB and a phase margin of Mϕ = 52◦.
Time responses are on Figure 5 and Table III gathers all
handling qualities values (most of them are satisfied, except
dropback).
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Fig. 4. H∞ synthesis diagram
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Fig. 5. Time responses of the H∞ controller

IV. CONTROLLER REDUCTION USING ROBUST MODAL
CONTROL METHODS

A. Theoretical aspects

1) Notations and propositions: Let us consider the follow-
ing linear system, with n states, m inputs and p outputs:{

ẋ = Ax + Bu
y = Cx + Du

(5)

1Dropback satisfaction is not considered in this reference model as it will
be tuned with a specific feedforward gain

TABLE III
HANDLING QUALITY VALUES OF THE H∞ CONTROLLER

Cas m/xcg ζsp1 ζsp2 ωBWθ
Drb τp ST

30 000 /20 0.75 0.64 1.57 -0.5 0.21 1.72
30 000 /35 0.73 0.67 1.7 -0.38 0.22 1.92
39 000 /20 0.74 0.5 1.5 -0.55 0.21 1.21
39 000 /38 0.74 0.53 1.67 -0.36 0.22 2.58
46 000 /16 0.74 0.41 1.49 -0.65 0.19 3.05
46 000 /38 0.74 0.47 1.59 -0.38 0.21 3.05
32 000 /48 0.73 0.5 1.85 -0.29 0.26 2.29
39 000 /48 0.7 0.58 1.76 -0.27 0.25 2.38

where x is the state vector, y the measurement vector and
u the input vector, A ∈ Rn×n, B ∈ Rn×m , C ∈ Rp×n

et D ∈ Rp×m. wi and vi are the input directions and right
eigenvectors associated to the closed loop eigenvalue λi. The
control feedback is defined by u(s) = K(s)y(s), and K(s)
is obtained using dynamic eigenstructure assignment defined
by Proposition 1.

Proposition 1: [11] The triple Ti = (λi, vi, wi) satisfying[
A0 − λiI B0

] [
vi

wi

]
= 0 (6)

is assigned by the dynamic gain K(s) if and only if

K(λi)
[

Cvi + Dwi

]
= wi (7)

If the eigenvalue is complex, the equality (7) has to be
completed by its conjugate.

The elementary design procedure associated with this
proposition is as follows:
• Choose the closed loop eigenvalues λi and determine the

closed loop admissible eigenvector space using Equation
(6). At this step, the triple (λi, vi, wi) is defined.

• Compute K(s) satisfying Equation (7). This computation
is detailed in the next section.

2) Technical resolution: The transfer matrix K(s) is as-
sumed to have the following form at each input-output:

Kij(s) =
bijqs

q + · · ·+ bij1s + bij0

aijqsq + · · ·+ aij1s + aij0
(8)

Common or different denominators are fixed a priori for the
matrix K(s). The coefficients aijk are chosen by choosing the
desired roots of each denominator (e.g. the roots of an initial
controller) and to identify the corresponding coefficients. The
free parameters are the numerator coefficients denoted by
bijk. The structure of the feedback as defined in Equation (8)
usually offers a large number of degrees of freedom. For this
reason, a quadratic criterion J is considered, for example to
keep the controller as close as possible to an initial feedback
Kref :

J =
∑

i=1...r

‖Kref (jωi)−K(jωi)‖2
F (9)

Proposition 2: The problem of computing K(s) satisfying
Equation (7) and minimizing criterion (9) consists in solving
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for Ξ a LQP problem of the form

ΞA1 = b1; J = ΞHΞT + 2Ξc (10)

where Ξ denotes unkown coefficients of the numerators bijk.

The main result can be found in [10, 12] for derivation, and
[11] for software implementation.

Now we will describe how to combine modal analysis
and dynamic eigenstructure assignment to reduce an initial
controller while concurrently satisfying the closed loop
performances. The method is based on the fact that the
system is entirely defined by its closed loop eigenstructure.
First the dominant eigenstructure is extracted using modal
analysis . In the second step, the dominant eigenstructure of
the system will be assigned using a reduced order controller
which has a fixed structure obtained from the first step of the
procedure. Frequency critera will be minimized to optimize
the efficiency of the reduction.

Step 1: Modal analysis
A modal analysis of the closed loop system is performed

in order to identify the dominant modes and their associated
eigenvectors.
Step 2: Reduction
• Choice of the controller poles: this choice is made a

priori as a subset of the poles of the original controller.
The selection is made using the analysis of the domi-
nant eigenvalues obtained at Step 1. At this stage, the
coefficients aijk of Equation (8) are all fixed.

• Eigenstructure assignment: the constraints defining the
re-assignment of dominant eigenstructure (selected at
Step 1) are derived; these constraints correspond to
Equations (6) and (7). The number of constraints depends
on the desired controller order. The higher the order,
the higher the number of constraints to be processed.
The equations for eigenstructure assignment are linear
constraints. At this stage, using Proposition 2, Equation
ΞA1 = b1 (10) is known.

• Controller structure constraints: some coefficients of the
reduced controlle can be fixed. For example, a desired dif-
ference of degree between numerators and denominators
means that the relevant bijk must be set to zero. So, there
is an additional equality constraint and new constraints of
the form ΞA′

1 = b′1 are added.
• Criterion: a quadratic criterion of the form (9) where

Kref (s) is the transfer function of the initial controller
is defined. This criterion will fix the degrees of freedom
remaining after the above onstraints have been taken into
account. The computed controller will become as close
as possible to the initial controller. The choice of the
frequencies ωj depends on the frequency domain features
of the initial controller. At this stage, usging the result of
Proposition 2, the criterion is written in the following
form: J = ΞHΞT + 2Ξc

• Slove the LQP problem for Ξ, then deduce from Ξ the
values of the coefficients bijk.

Step 3: Final analysis

Performance is evaluated in the time domain, in the fre-
quency domain and in the parametric domain. If some prop-
erties are not satisfactory, Step 2 must be repeated.

B. Application

The initial H∞ controller order is 16. Before proceeding
to the modal analysis, it is sought to reduce in a significant
way the order of the controller by using balanced reduction
techniques. Moreover, as the controller is a two degree con-
troller, the feedforward part is separated from the feedback
part. Again, balanced reduction are performed on each sub-
controller. As modal reduction has only interest in the feed-
back controller, the feedforward controller will remain as it
was after the balanced reduction. Fortunately, the feedforward
controller order is 3 without any major loss on the temporal,
frequency and parametric criteria. The feedback controller
order is then 10; if further balanced reduction is performed,
there are some significant loss compared to the initial H∞
controller. New modal reduction is to be used in order to see
if the controller can be further reduced.

First a modal analysis is performed to find the dominant
poles that must be reassigned. The integral effect must be
kept on the q feedback; a pole is set to zero to ensure this.
Then a low frequency pole is kept on the two feedback
measurements. A roll-off constraint is applied. After a first
iteration of the algorithm, expected results are not obtained.
By further analyzing the dominant poles, complex conjugate
poles are necessary. After trials, a supplementary pole located
in −18 is added on the nz feedback.

Finally, the feedforward controller order is 3, the feedback
on q is a 4th order (with an integrator pole) and the feedback
on nz is a 4th order.

δ1

qref
=

K1(s2 + 11s + 65.38)
s(s2 + 6s + 16.58)

(11)

δ2

q
=
−K2(s + 1.42)(s2 + 11.65s + 67.5)

s(s + 2.5)(s2 + 40s + 1025)
(12)

δ3

nz
=

K3(s + 2.14)(s2 + 12.2s + 60.4)
(s + 2.5)(s + 18)(s2 + 40s + 1025)

(13)

The reduced controller is then tested on the complete high
order model and provides similar results to the original one on
time responses (Figure 6). Table IV summarizes the handling
qualities values.

TABLE IV
HANDLING QUALITY VALUES OF THE REDUCED H∞ CONTROLLER

Cas m/xcg ζsp1 ζsp2 ωBWθ
Drb τp ST

30 000 /20 0.63 0.76 1.5 -0.52 0.23 1.69
30 000 /35 0.66 0.79 1.64 -0.7 0.21 1.94
39 000 /20 0.52 0.59 1.4 -0.42 0.22 1.78
39 000 /38 0.58 0.57 1.52 -0.48 0.21 2.78
46 000 /16 0.55 0.46 1.32 -0.65 0.2 3.22
46 000 /38 0.59 0.4 1.51 -0.38 0.21 3.21
32 000 /48 0.54 0.79 1.82 -0.3 0.25 2.31
39 000 /48 0.52 0.71 1.66 -0.3 0.24 2.52
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Fig. 6. Time responses of the reduced H∞ controller

V. SETTING IN CLASSICAL FORM

In order to get close to the classical structure of Figure 1,
the former transfer functions are manipulated. A PI controller
can then be extracted and filters on each measurements. A
feedforward gain Kff is added (Figure 7).
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Fig. 7. Classical form setup

By adjusting quickly Kff = 1.1, some criteria values can
be improved in particular dropback and θ-bandwidth. Time
responses have a larger overshoot but satisfying dropback can
imply larger overshoots (Figure 8 et Table V)

TABLE V
HANDLING QUALITY VALUES OF THE REDUCED H∞ CONTROLLER WITH

FEEDFORWARD GAIN

m/xcg ζsp1 ζsp2 ωBWθ
Drb τp ST

30 000 /20 0.63 0.76 1.55 -0.02 0.23 1.89
30 000 /35 0.66 0.79 1.69 -0.2 0.21 2.05
39 000 /20 0.52 0.59 1.51 0.08 0.22 1.98
39 000 /38 0.58 0.57 1.57 0.02 0.21 2.98
46 000 /16 0.55 0.46 1.49 -0.15 0.2 3.32
46 000 /38 0.59 0.4 1.57 0.12 0.21 3.31
32 000 /48 0.54 0.79 1.89 0.2 0.25 2.61
39 000 /48 0.52 0.71 1.73 0.2 0.24 2.72

VI. CONCLUSIONS

We sought in this article to find a classical control structure
from a high order controller issued from H∞ synthesis, satis-
fying most handling qualities criteria. Robust modal reduction
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Fig. 8. Time responses of the reduced H∞ controller with feedforward gain

lowered the controller order to make it similar to classical
structures usually used in industry. Finally, for a given flight
condition, we obtained a controller which is robust to varying
mass and center of gravity location (at least on the 8 tested
configurations) Next step consists in extending this controller
structure to the whole flight enveloppe, by scheduling the
PI controller gains and filter gains. This work is presently
pursued.
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