
This is a repository copy of Increasing eigenstructure assignment design degree of 
freedom using lifting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117411/

Version: Published Version

Article:

Chen, Lejun, Pomfret, Andrew James orcid.org/0000-0003-0325-1617 and Clarke, Timothy
orcid.org/0000-0002-5238-4769 (2016) Increasing eigenstructure assignment design 
degree of freedom using lifting. International Journal of Control. pp. 1-13. ISSN 0020-7179 

https://doi.org/10.1080/00207179.2016.1236294

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



For P
eer R

eview
�

�

�

�

�

�

���������	
��	�����
��
��
����	�����
����	�
��	���
��


�������

���	
������	�
�

�

�������	� ������������	
������	
�

������	�


������
������ ������������������


������
������ 	� � !�����"�� ��

# �$��%�	� �
&�
�!'� 
! ��������� ����
!�( ��'�������
����������
���

��

�

�

http://mc.manuscriptcentral.com/tcon

International Journal of Control



F
o
r P

eer R
eview

August 10, 2016 International Journal of Control tCONguide

To appear in the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1–20

Increasing Eigenstructure Assignment Design Degree of Freedom using

Lifting

(Received 00 Month 20XX; accepted 00 Month 20XX)

This paper presents the exposition of an output-lifting eigenstructure assignment (EA) design framework,
wherein the available EA design degrees of freedom (DoF) is significantly increased, and the desired
eigenstructure of a single-rate full state feedback solution can be achieved within an output feedback
system. A structural mapping is introduced to release the output-lifting causality constraint. Additionally,
the available design DoF can be further enlarged via involving the input-lifting into the output-lifting
EA framework. The newly induced design DoF can be utilised to calculate a structurally-constrained,
causal gain matrix which will maintain the same assignment capability. In this paper, the robustification
of the output-lifting EA is also proposed, which allows a trade-off between performance and robustness
in the presence of structured model uncertainties to be established. A lateral flight control benchmark
in the EA literature and a numerical example are used to demonstrate the effectiveness of the design
framework.

Keywords: lifting; eigenstructure assignment; causality constraint

1. Introduction

Eigenstructure assignment (EA) is a mature technique for the design of control systems, especially
for flight control system (Alireza & Batool, 2012; B. Chen & Nagarajaiah, 2007; Clake, Ensor,
& Griffin, 2003; Farineau, 1989; Kshatriya, Annakkage, Hughes, & Gole, 2007; G. P. Liu &
Patton, 1998; Y. Liu, Tan, Wang, & Wang, 2013; Moore, 1976; Ouyang, Richiedei, Trevisani,
& Zanardo, 2012; Piou & Sobel, 1994, 1995; Pomfret & Clarke, 2009; Shi & Patton, 2012;
Wahrburg & Adamy, 2013; White, 1995; White, Bruyere, & Tsourdos, 2007). EA facilitates
control system design by synthesizing a feedback gain matrix that exactly places the closed loop
eigenvalues whilst matching the closed loop eigenvectors as closely as possible to a desired set. Some
useful properties EA imbues on a system are: stability of response, appropriateness of transient
response, decoupling of state or output response and disturbance rejection. Compared with many
other competitive approaches exist to manipulate the eigenvalues of the closed-loop system and
do not takes into account the role of the eigenvector, EA clearly exploits how system inputs affect
mode dynamics and how these mode dynamics will be assigned to system states. Through defining
a set of ideal closed-loop eigenstructure (e.g. eigenstructure which represents the realistic handling
qualities of the flight control system), the realistic control effect will be guaranteed. In addition,
the algorithm itself and the expression of the available design DoF can be highly visible. However,
due to the lack of design DoF, e.g. the Kimura condition is not satisfied (Kimura, 1975), output
feedback EA usually cannot fully assign the desired eigenstructure. This is an open problem which
has been widely discussed in the literature (Andry, Shapiro, & Chung, 1983; L. Chen & Clarke,
2009; Clarke & Griffin, 2004; Pomfret, Clarke, & Ensor, 2005; Roppenecker & O’Reilly, 1989;
Srinathkumar, 1978; Zhao & Lam, 2016a, 2016b).
Multirate control systems are those samplers and hold mechanisms that operate at more than one

rate. Analysis and design methods for multirate control can be divided into two perspectives, the
inferential control approach and the lifting approach (Tangirala, Li, Patwardhan, Shah, & Chen,
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2001) which is the focus of this paper. Lifting rearranges various input or output signals, working
at different rates of a multirate system, using a uniform, slower frame rate, effectively increasing
the number of system inputs and outputs.
This work introduces a formulation for output-lifted EA and first provides the solutions to deal

with output-lifting causality constraints that naturally arise. The primary motivation for lifting
is to significantly increase the available EA design DoF such that the desired eigenstructure only
achievable through single-rate full state feedback solution can be achieved using an output feedback
system. The combination of the output-lifting framework and EA effectively solve the open problem
in EA literature wherein deign DoF is not enough for assigning eigenstructure.
By invoking the Gronwall Lemma, design DoF afforded by output-lifting framework are utilized

to derive a time-domain stability robustness measure of output-lifted system in the presence of
uncertainty. The Gronwall Lemma was adopted in B. S. Chen and Wong (1987) and Sobel, Banda,
and Yeh (1989b) to deduce a time domain robustness measures taking into account of structured
and unstructured uncertainties, respectively. The results were extended to discrete system in Sobel,
Banda, and Yeh (1989a) and the conservatism of the measure was reduced through using Perron
weighting. This paper extends the results from Sobel et al. (1989a); Yu, Piou, and Sobel (1993)
and allows the location and the sensitivity of individual eigenvalues can be operated on rather than
the spectrum of the all of the system eigenvalues. This further improves the design conservatism.
Due to extra DOF offered by output-lifting, a multi-objective optimisation is deduced by taking
into account of the trade-off between system stability robustness and mitigation of degradation in
equivalent full state feedback performance.
Output-lifting will necessitate a causality constraint which requires structural changes to the gain

matrix, a structure mapping is proposed, wherein a directly-calculated, non-causal gain matrix can
be utilized to generate a new closed-loop system structure that alleviates the causality constraint.
In addition, the available design DoF can be further enlarged by adding input-lifting to the output-
lifting EA framework. The newly introduced design DoF can be utilised to calculate a structurally-
constrained, causal gain matrix which will maintain the same assignment capability.
The paper is organized as follows. In Sections 2, EA and lifting are briefly introduced. Section 3

proposes output-lifting EA. A less conservative time-domain robustness measurement is developed
in Section 4 to ensure the robustification of output-lifting EA. In Section 5, a structure mapping is
introduced to alleviate the causality constraint induced by output-lifting. The proposed approaches
are demonstrated using a well-known example taken from EA literature and the simulation results
are shown in Section 6. By using extra DoF that input-lifting can benefit, a structurally-constrained,
causal, lifted controller can be found directly in Section 7 and the associated numerical example is
given in Section 8. Concluding remarks are given in Section 9.

2. Preliminary

Consider a continuous-time, controllable and observable linear time-invariant system, given by

ẋ = Acx+Bcu

y = Ccx
(1)

where Ac ∈ Rn×n, Bc ∈ Rn×r, Cc ∈ Rm×n and Dc ∈ Rm×r.
Consider a multirate control system, wherein the hold circuit and the sampler work with sample

periods of qiTb and poTb respectively. Tb is the base sampling period of the system, which can be
any common factor of the input and output sampling periods. The main sampling period of the
system is given by T = l.c.m(po, qi) ∗ Tb, l.c.m stands for least common multiple. According to the
framework for lifting summarized in T. Chen and Francis (1995), the system inputs and outputs

2
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are lifted by q and p, respectively, where

q =
l.c.m(po, qi)

qi
p =

l.c.m(po, qi)

pi
(2)

The resulting state space lifted system is expressed as

x(k + 1) = ALx(k) +BLū(k)

ȳ(k) = CLx(k) +DLū(k)
(3)

where x(k) := x(kT ), and the lifted inputs and outputs are given by

ū(k) =




u(kT )
u(kT + pTb)
u(kT + 2pTb)

...
u(kT + (pq − p)Tb)




ȳ(k) =




y(kT )
y(kT + qTb)
y(kT + 2qTb)

...
y(kT + (pq − q)Tb)




In (3), matrices AL ∈ Rn×n, BL ∈ Rn×qr, CL ∈ Rpm×n and DL ∈ Rpm×qr are

[
AL BL
CL DL

]
=




Apq
pq−1∑
i=pq−p

AiB
pq−p−1∑
i=pq−2p

AiB · · ·
p−1∑
i=0

AiB

C D0,0 D0,1 · · · D0,q−1

CAq D1,0 D1,1 · · · D1,q−1

CA2q D2,0 D2,1 · · · D2,q−1
...

...
...

. . .
...

CApq−q Dp−1,0 Dp−1,1 · · · Dp−1,q−1




where A, B, C and D are deduced via a discretization of system (1) and the element D(i, j) is
given by

Di,j = DX[jp,(j+1)p)(iq) +

(j+1)p−1∑

h=jp

CAin−1−hBX[0,iq)(h) (4)

where the characteristic function on integers, X[a,b)(h), conditionally nulls elements within the
matrix DL,

X[a,b)(h) =

{
I a ≤ h < b

0 otherwise

Obviously, lifting will enlarge the number of system inputs and outputs (r → qr and m → pm):
the design DoF is enlarged. The extra free elements can be parameterised to more closely achieve
specified design requirements.

3. Output-lifted Eigenstructure Assignment

The output-lifting framework will transform a strictly-proper controllable and observable
continuous-time system of (1) into the semi-proper controllable and observable discrete-time sys-

3
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tem of (3), wherein DL is non-null (pathological conditions of choosing base sampling frequency
and desired eigenvalues to prevent controllability and observability of (3) are described in T. Chen
and Francis (1995) and Sheng, Chen, and Shah (2002)).
Assume the system outputs are lifted by a factor p and the matrix CL satisfies row(CL) =

pm ≥ rank(CL) = n, where row(CL) represents the number of rows of CL, a static control law
ū(k) = Kȳ(k) + r̄(k) is applied to the lifted system to yield

x(k + 1) = (AL +BLNCL)x(k) + (BL +BLNDL)r̄(k)

ȳ(k) = (CL +DLNCL)x(k) + (DL +DLNDL)r̄(k)

where r̄ is the lifted exogenous input and

N = (I −KDL)
−1K (5)

Remark 3.1: In (5), this time, the term I −KDL in N is assumed to be nonsingular. The con-
straint is not a curiosity of the exposition presented here. Rather, it represents a system singularity.
The feedforward matrix and the feedback matrix form direct forward and backward transmission
paths, coupling the input and output through a pair of simultaneous equations. When the constraint
is not satisfied, no instantaneous solution exists to these equations for ȳ given r̄ and x. Thus the
constraint is somewhat pathological; it is reasonable to assume that a control system design ap-
proach based on meeting performance goals would never give rise to such a situation. Nevertheless,
ensuring that this is the case is a simple matter in most cases. This issue will be discussed later in
the analysis of the algorithm.

Using the fact that the distinct eigenvalue/eigenvector pair of the closed-loop lifted system, λi
and vi, satisfy

(AL +BLNCL)vi = λivi (6)

0 = [AL − λiI BL]

[
vi

NCLvi

]
(7)

[
vi

NCLvi

]
thus belongs to the nullspace of [AL − λiI BL].

For some fi ∈ Cqr×1,

[
vi

NCLvi

]
=

[
Pi
Qi

]
fi (8)

where

range

([
Pi
Qi

])
= null([AL − λiI BL]) (9)

and Pi ∈ Cn×qr is an orthonormal basis for the allowable subspace used to select vi. Once the
design vector, fi has been established, the matrices V, S can be calculated through

V = [v1 . . . vl] = [P1f1 . . . Plfl] (10)

S = NCLV = [Q1f1 . . . Qlfl] (11)

4
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Substituting (5) into (11) to obtain

S = (I −KDL)
−1KCLV = K(DLS − CLV ) (12)

The gain matrix may be recovered by finding

K = S(CLV +DLS)
†

+Z(I − (CLV +DLS))(I − (CLV +DLS)
†) (13)

where, (·)† is the Moore-Penrose inverse operation and Z is the free matrix to be parameterised. l
represents the lth assigned eigenvector and associated eigenvalue. Clearly, (13) holds only if l ≤ pm.
Consequently for an original un-lifted output feedback system (p=1), a maximum of m poles can
be assigned and the other (n −m) remain unassigned and may become unstable due to the lack
of design DOF to parameterise the allowed right eigenvector subspace. For output lifting system,
suppose pm ≥ n, (13) holds and the desired eigenstructure of full state feedback can be assigned.

Following the discussion in Remark 3.1, Theorem 3.1 is proposed here to avoid the pathological
condition that the term I −KDL becomes singular.

Theorem 3.1: By suitably choosing the set of desired eigenvectors, such that I−DLS(CLV +DLS)
is singular, Z can be parameterized to ensure the non-singularity of I −KDL.

Proof: Suppose x ∈ ker(CLV +DLS) and Q = S(CLV +DLS)
† + Z, it is easy to choose a free

parameter Z, such that I −DLQ is nonsingular - i.e. there must not exist a zero-valued eigenvalue
for I −DLQ. That is, DLQ must have no eigenvalues of unit value. So

DLQx 6= x (14)

DL(S(CLV +DLS)
† + Z)x 6= x (15)

For any x ∈ ker(CLV +DLS),

Zx = Z(I − (CLV +DLS)(CLV +DLS)
†)x (16)

then (15) can be written as

(I −DLS(CLV +DLS)
†

−DLZ(I − (CLV +DLS)(CLV +DLS)
†))x 6= 0 (17)

Using the expression of K in (13), (17) can be written as

(I −DLK)x 6= 0 (18)

Suppose y ∈ range(CLV +DLS), it follows

Z(I − (CLV +DLS)(CLV +DLS)
†)y = 0 (19)

By suitably choosing a set of desired eigenvectors, such that I −DLS(CLV +DLS) is nonsingular:

(I −DLS(CLV +DLS))y 6= 0 (20)

5
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Substituting (19) to (20) to yield

(I −DLS(CLV +DLS)
†

−DLZ(I − (CLV +DLS)(CLV +DLS)
†))y 6= 0

(21)

that is (I −DLK)y 6= 0.
The range and kernel describe a complete space,

R
n = range(CLV +DLS)⊕ ker(CLV +DLS) (22)

For any vector z in full space, where {z} = {x} ∪ {y}

(I −DLK)z 6= 0 (23)

Since the non-singularity of I − DLK is necessary and sufficient to ensure the non-singularity of
I −KDL (Fletcher, 1981), Z can be chosen to ensure the term I −KDL to be nonsingular. �

The gain matrix can be recovered since rank(CL) = n ≤ row(CL). Using this K, the equivalent
of state feedback EA can be achieved since the allowable subspaces of output-lifting feedback and
state feedback corresponding to each desired eigenvalue are same, the proof of which is in Theorem
3.2 below.

Theorem 3.2: Suppose As, Bs is a discrete-time system working at the main sampling period,
the allowable subspace of the output-lifted system is the same as for the single main sampling rate
system.

null([AL − λiI,BL]) = null([As − λiI,Bs]) (24)

Proof: Let Ac, Bc, Cc,Dc and A,B,C,D represent a continuous-time system and an equivalent
system sampled at a base sampling period, Tb. A and B can be given by

A = eTbAc B =

∫ Tb

0
eτAcdτBc (25)

Suppose system outputs are lifted by a ratio p, the main sampling period becomes pTb, and

As = epTbAc = Ap (26)

Bs =

∫ pTb

0
eτAcdτBc =

p∑

i=1

∫ iTb

(i−1)Tb

eτAcdτBc (27)

Using the integral identity

∫ β

α

f(x)dx =
β − α

ψ − ϕ

∫ ψ

ϕ

f(
β − α

ψ − ϕ
τ +

βψ − αϕ

ψ − ϕ
)dτ (28)

6
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Equation (27) can be written as

Bs =

p∑

i=1

∫ iTb

(i−1)Tb

eτAcdτBc

=

∫ Tb

0
eτAcdτBc +

p∑

i=2

∫ iTb

(i−1)Tb

eτAcdτBc (29)

=

∫ Tb

0
eτAcdτBc +

p−1∑

i=1

∫ iTb

(i−1)Tb

e(τ+iTb)AcdτBc (30)

=

∫ Tb

0
eτAcdτBc +

p−1∑

i=1

eiTbAc

∫ Tb

0
eτAcdτBc (31)

=

p−1∑

i=0

(Ai)B = BL (32)

Therefore, by inspection, (24) is true. �

4. Robustification

In this section, the design DoF generated by output-lifting framework is utilized in a post assign-
ment process, to achieve the robustification of the output-lifting EA. A multi-objective optimisation
is established to improve the stability robustness, whilst to mitigate the degradation in equivalent
full state feedback performance.

4.1 Robustness measure with time-varying uncertainty

Suppose the lifted system is subject to time-varying parametric structured uncertainty
∆AL(k),∆BL(k),∆CL(k) and ∆DL(k), satisfy ∆A+

L (k) ≤ Am, ∆B
+
L (k) ≤ Bm, ∆C

+
L (k) ≤ Cm,

and ∆D+
L (k) ≤ Dm. In this paper, (·)+ replaces the entries of matrix by their absolute values and

(·)m represents the absolute value of the maximum variation of time varying uncertainties, on an
element by element basis. A stability robustness measure for an output-lifted system is defined in
Theorem 4.1.

Theorem 4.1: The uncertain closed-loop system is asymptotically stable for all ∆AL(k), ∆BL(k),
∆CL(k) and ∆DL(k) if

n∑

i=1

(wi)
+(Acm + EmΞ)(vi)

+

1− |λi|
< 1 (33)

where

Acm = Am +Bm(NCL)
+ + (BLN)+Cm +BmN

+Cm

Em = (BLN)+Dm +BmN
+Cm (34)

Ξ = (I −N+Dm)
−1(N+(C+

L + Cm) (35)

and V and λi are the modal matrix and the ith eigenvalues of (AL +BLNCL) respectively. wi and
vi are achieved left and right eigenvectors associated with λi.
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Proof: See Appendix A. �

Remark 4.1: Note that minimization of the left side of (33) will increase the stability robustness
of the system. A large denominator in (33) indicates that the eigenvalue is far away from the unit
circle, which exhibits greater stability robustness. Also, choosing different eigenvectors directions
to decrease the numerator of (33) can be considered as reducing the sensitivity of the closed-loop
system to the given structured perturbation.

From the left side of (33), the stability robustness of the ith eigenvalue/eigenvector pair can be
measured by using (36).

Jsi = min
fi,λi

(wi)
+(Acm + EmΞ)(vi)

+

1− |λi|
(36)

4.2 Multi-objective output-lifting EA

Criteria associated with retaining full state feedback performance is also considered alongside
robustification. In this paper, the performance measure is proposed to minimise the errors between
the desired and the achieved eigenstructure. A cost function as shown in (37) is used to fulfil the
task.

Jvi = min
fi,λi

‖vid − Pifi‖
2
2 (37)

s.t.|λid − λia| < r

where fi and vid represent the ith design vector and the ith desired right eigenvector. ‖ · ‖ denotes
the vector or matrix 2-norm. λid and λia represent the desired and achieved eigenvalue, respectively.
Pi is the allowable subspace for the ith achieved eigenvalue. r is the radius of the allowed region
for the ith eigenvalue.
In improving the stability robustness, whilst, mitigating the performance degradation, a multi-

objective optimisation is given by

Ji = aiJsi + biJvi (38)

where, Jsi, defined in (36), represents the stability robustness measure. The weighting parameters
ai and bi control the relative significance of the robustness and the performance terms of the ith
eigenvalue/eigenvector pair.

5. Releasing causality constraints using structure mapping

Since the outputs of the controller at current time only depend on the output of the plant at or
before current time, lifting system outputs will introduces causality constraints upon the constant
gain matrix. For example, suppose lifting system inputs and outputs as defined in (4), the resulting
feedback gain matrix K must be lower triangular, under causality. With the causality constraint
enforced, any fully-populated gain matrix, calculated as a general outcome of the direct use of EA
on an output-lifted system is non-causal and even unstable.
In this section, a structure mapping is proposed to release the causality constraint, whilst allowing

the non-causal full gain matrix to be utilised. The structure mapping is achieved through the change
of implementation structure of the closed-loop system, which is shown in Figs. 1 and 2.
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+

+

r̄(k + 1) ū(k + 1)
GL

K

ȳ(k + 1)

Figure 1. Closed-loop structure under causality constraint

+

+

+

ū(k + 1)

Z−1 GLH

L

M

r̄(k + 1) ū(k) ȳ(k)

Figure 2. Closed-loop structure without causality constraint

In Fig. 1, the direct-calculated non-causal gain matrix K satisfies

ū(k + 1) = Kȳ(k + 1) + r̄(k + 1) (39)

= K[CLx̄(k + 1) +DLū(k + 1)] + r̄(k + 1)

= NCL(ALx̄(k)+BLū(k))+(I−KDL)
−1r̄(k+1)

where the term I−KD is assumed to be nonsingular (the implications of this restriction is discussed
earlier). In Fig. 2, the new implementation structure releases the causality constraint. Appropriate
equations can be obtained directly from the figure.

ū(k + 1) = Lū(k) +Mȳ(k) +Hr̄(k + 1) (40)

= Lū(k) +MDLū(k) +MCLx̄(k) +Hr̄(k + 1)

A mapping between (39) and (40) are given by

MCL = NCLAL (41)

L+MDL = NCLBL (42)

H = (I −KDL)
−1 (43)

Using above structural mapping, matrices M , L and H can be calculated based on non-casual
matrix K. The causality constraint is released and the eigenstructure of the closed-loop system in
Fig. 1 can be maintained.
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Table 1. Achieved Eigenstructure (Full state feedback case)

Roll Dutch roll Flight-path
mode mode mode

0.0002 ± 0.0001i 0.3188 ± 0.3185i 0.7072
−0.2226 ∓ 0.1480i 0.0000 ± 0.0001i 0.0001

0.9636 −0.0000 ∓ 0.0000i 0.0001
−0.0000 ∓ 0.0001i 0.8819 −0.0002
0.0001 ± 0.0002i 0.0978 ± 0.0980i 0.7070
0.8841 ± 0.0709i 0.9202 ± 0.0738i 0.9802

6. Example 1

A fifth-order FPCC Lateral Dynamics Flight Control benchmark within the EA literature (Sobel
& Lallman, 1989) is illustrated here. The continuous-time state space system is given by

Ac =




−0.340 0.0517 0.001 −0.997 0
0 0 1 0 0

−2.69 0 −1.15 0.738 0
5.91 0 0.138 −0.506 0

−0.340 0.0517 0.001 −0.0031 0




(44)

Bc =




0.0755 0 0.0246
0 0 0

4.48 5.22 −0.742
−5.03 0.0998 0.984
0.0755 0 0.0246



Cc =




0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


 (45)

The states [β φ p r γ]′ correspond to sideslip angle, bank angle, roll rate, yaw rate and flight
path angle, respectively. The control inputs [δr δa δc]

′ denote the surface deflections of the rudder,
ailerons and vertical canard respectively. The desired eigenvalues, corresponding to Dutch roll,
Roll and Flight path modes are λddr = −2 ± j2, λdroll = −3 ± j2 and λds = −0.5, respectively.
The design goal is a yaw pointing/lateral translation control law in which the lateral/directional
flight-path response is decoupled from the yaw rate response. Also, both of these responses should
be decoupled from the roll rate and bank angle response. Hence, the desired eigenvectors are chosen
as:

vddr =
[
0 0 0 1 0

]T
± j

[
1 0 0 1 0

]T

vdroll =
[
0 0 1 0 0

]T
± j

[
0 1 1 0 0

]T

vds =
[
1 0 0 0 1

]T
(46)

Suppose the holder and the sampler works at the main sampling period 0.04sec and the base
sampling period 0.01sec, respectively. The system outputs are chosen to be lifted by 4. After
discretisation at the main sampling period, the desired eigenvalues for the roll, Dutch roll and
flight-path modes become 0.8804 ± 0.0709i, 0.9202 ± 0.0738i, 0.9802 in the unit circle.
Full state feedback EA and output-lifted EA are both implemented on benchmark. Results are

presented to demonstrate the equivalence of performance. In tables 1 and 2, top and bottom
rows show the achieved eigenvectors and eigenvalues, respectively. Clearly, output-lifting EA can
achieve the same eigenstructure as achieved using full state feedback. Figs. 5 and 6 show the nominal
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Table 2. Achieved Eigenstructure (Output-lifted feedback case)

Roll Dutch roll Flight-path
mode mode mode

0.0002 ± 0.0001i 0.3188 ± 0.3185i 0.7072
−0.2226 ∓ 0.1480i 0.0000 ± 0.0001i 0.0001

0.9636 −0.0000 ∓ 0.0000i 0.0001
−0.0000 ∓ 0.0001i 0.8819 −0.0002
0.0001 ± 0.0002i 0.0978 ± 0.0980i 0.7070
0.8841 ± 0.0709i 0.9202 ± 0.0738i 0.9802
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Figure 3. Full State Feedback Responses to a Unit Heading Command
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Figure 4. Full State Feedback Responses to a Flight-Path Command

outputs responses of output-lifted system to unit heading and flight-path commands respectively,
wherein, the nominal mode decoupling information is shown, which is same as that of a full state
feedback design as shown in Figs. 3 and 4, representing the best possible performance.
Continuous-time structured uncertainty is assumed, in line with the literature, to be of the form

∆Ac =




0.1 0 0 0 0
0 0 0 0 0
0 0.1 0 0 0
0 0 0.1 0 0
0 0 0 0.1 0



,∆Bc = 0 (47)

The allowed migration regions for the real and imaginary parts of the eigenvalues of the dutch
roll, roll and flight-path modes are 0.03, 0.03, and 0.01 respectively.
The solution of nominal output-lifted system offers relatively poor robustness since the value of

left hand side of (33) equates to 1.4769. In view of increasing the stability robustness of the system,
two robust solutions of the gain matrices are given. In calculating one solution, increasing stability
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Figure 5. Lifted Output Responses to a Unit Heading Command
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Figure 6. Lifted Output Responses to a Flight-Path Command
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Figure 7. Lifted Output Responses to a Unit Heading Command after robustification without performance protection

robustness without performance protection is considered, that is, in (38), ai = 10, bi = 0 (i =
1, . . . , n). This solution yields a value of 0.3845 for the left hand side of (38), which demonstrates
better robustness.
Another solution is calculated, combing the performance protection. In this case, ai, bi = 1 (i =

1, . . . , n) in (38), a value of 0.9487 is yielded for the left hand side of (33). Compared with the
value calculated under the circumstances not involving performance protection, the robustness is
reduced and the performance is improved.
The following time histories demonstrate the results of the robustification.
Fig. 7 and Fig. 8 depict output responses to unit heading and flight-path commands without

performance protection. Output responses to unit heading and flight-path commands with perfor-
mance protection is shown in Figs. 9 and 10. These figures show that performance protection has
done a lot to preserve the decoupling action of the controller although, as expected, responses have
suffered some degradation due to robustification.
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Figure 8. Lifted Output Responses to a Flight-Path Command after robustification without performance protection

0 2 4 6 8 10 12 14
−0.5

0

0.5

1

1.5

Time(sec)

D
e
g

re
e

r

φ
γ

Figure 9. Lifted Output Responses to a Unit Heading Command after robustification with performance protection
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Figure 10. Lifted Output Responses to a Flight-Path Command after robustification with performance protection

7. Input-lifting benefits

Lifting system inputs can increase the dimension of the allowable subspace
([

P Ti QTi
]T)

so

that each desired eigenvector can be exactly achieved (i.e. all of the elements in each) (Patton,
Liu, & Patel, 1995). Lifting system outputs can be used to enable assignment of all of the desired
eigenvectors. Therefore, if system inputs and outputs are both lifted (dual-lifting), all of the desired
eigenvectors can be exactly achieved. As an additional bonus, since the size of the gain matrix is
increased considerably after the dual-lifting process, many elements in the gain matrix are still
available, as further design freedom, and can be parameterised.
As mentioned in the last section, lifting system outputs induces a causality constraint such that,

either a structural mapping must be invoked, or some elements in the gain matrix must be nulled,
resulting in a directly-causal gain matrix of appropriate form. It is possible to parameterise and
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exploit some of the extra DoF, described above, to impose this structure. So, if the available DoF
are larger or equal to the sum of the DoF used for assigning eigenstructure and satisfying the
causality constraint, then a solution for the EA gain matrix which simultaneously satisfies the
causality constraint can be found directly. The procedure for this is now presented.

Proposition 7.1: For the dual-lifting case, wherein subsets of samplers or hold circuits works at
different rates, the distribution of the DoF for finding a directly-causal gain matrix is given by

r∑

i=1

qin+ t ≤

r∑

i=1

m∑

j=1

qipj (48)

t=
r∑

i=1

m∑

j=1

qipj−(rm+
r∑

i=1

qi−1∑

k=1

m∑

j=1

{
round(

kpj

qi
+1)

}
) (49)

where t equates the number of the fixed null elements inside the gain matrix constrained by causality.
qi and pi are lifting ratios of the ith input and output respectively.

After choosing suitable dual-lifting ratios to satisfy Proposition 1, the free parameter matrix Z
in (13) can be used to formulate a causal gain matrix. This process for finding a suitable Z matrix
can be achieved by using a permutation matrix Uδ×mprq (Pomfret, 2006), δ is the number of the
null elements of the gain matrix caused by the causality constraint. In each row of U , only one
element is unity, others are all null, which can be used to select the specified elements of the vector
version of the gain matrix. Therefore, all null elements in the gain matrix are selected by using U ,
which is given by

Uvec(K) = 0 (50)

where vec(·) denotes column-wise vectorisation of a matrix. Substituting (13) into (50) yields

Uvec(K) = 0 (51)

Uvec(K0 + Z(I − Y Y †)) = 0 (52)

Uvec(K0) + Uvec(Z(I − Y Y †)) = 0 (53)

where K0 = S(CLV +DLS)
† and Y = CLV +DLS.

Applying the identity vec(AY B) = (BT ⊗A)vec(Y ) to (53) yields

Uvec(K0) + U((I − Y Y †)T ⊗ I)vec(Z) = 0 (54)

Define Ξ = (I − Y Y †)T ⊗ I, (54) can be written as

UΞvec(Z) = −Uvec(K0) (55)

Provided the identity UΞ is a full row rank, it follows

vec(Z) = −(UΞ)†Uvec(K0) + (I − (UΞ)†UΞ)vec(Z̃) (56)

where Z̃ represents a free matrix. If rank(UΞ) = δ, and DoF of the lifted system satisfies (48),
the free matrix Z in (13) can be find and the causal matrix K can be calculated to assign the
eigenstructure under the causality constraint.
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8. Design example 2

To demonstrate direct-causal feedback gain matrix design, consider the following system and its
desired eigenstructure (Patton et al., 1995):

A =




0 1 0
0 0 1
−6 −11 −6


B =




1 1
0 1
1 1


C =




1 0 0
0 1 0
0 0 1


 (57)

λ = {−0.5,−0.6,−0.7} Vd =




1 0 0
0 1 0
0 0 1


 (58)

Let the main sampling period be 0.1sec and the two holds operate at periods of 0.05sec and
0.02sec, respectively. Three samplers are assumed to work at periods of 0.02sec, 0.05sec and 0.1sec,
respectively. The lifting ratios of two system inputs are selected to be 2 and 5, respectively, and
those of three system outputs are selected to be 5, 2 and 1, respectively. The desired discrete
eigenvalues are given by

λdis = {0.9512, 0.9418, 0.9324} (59)

Notice that the causality constraint requires that the structure of the causal gain matrix to satisfy




u1(0s)
u1(0.05s)
u2(0s)
u2(0.02s)
u2(0.04s)
u2(0.06s)
u2(0.08s)




=




× 0 0 0 0 × 0 ×
× × × 0 0 × × ×
× 0 0 0 0 × 0 ×
× × 0 0 0 × 0 ×
× × × 0 0 × 0 ×
× × × × 0 × × ×
× × × × × × × ×




·




y1(0s)
y1(0.02s)
y1(0.04s)
y1(0.06s)
y1(0.08s)
y2(0s)
y2(0.05s)
y3(0s)




where ′×′ represent the free elements to be parameterized and the zero elements denote the causality
constraints.
Recall (48), in this example, t = 20,

∑r
i=1 qin = 21,

∑r
i=1

∑m
j=1 qipj = 56. Since the distribution

of DoF satisfies (48), the matrix Z can be calculated using (56).

Z=




1.61 1.83 −3.77 −4.11 1.06 −6.40 0.43 −2.64
0.16 −0.82 −1.57 3.96 −0.72 1.33 0.43 0.77
2.24 1.87 −4.59 −4.98 0.98 −7.89 −0.01 −3.48
0.23 2.54 −2.56 −2.77 0.49 −3.55 −0.10 −1.60
0.01 0.08 0.14 −0.32 −0.05 −0.09 −0.17 −0.11
0.19 0.15 0.13 0.12 −0.66 −0.03 −0.06 −0.04
0.00 0.00 0 0 0 0 0 0



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Substituting matrix Z into (13) to yield a directly-causal gain matrix Kc, given by

Kc=




−7.56 0 0 0 0 −13.41 0 −4.79
8.22 0.59 −5.22 0 0 7.07 0.24 4.37
−8.10 0 0 0 0 −15.44 0 −7.46
−5.37 1.58 0 0 0 −7.59 0 −4.04
−0.36 0.10 0.45 0 0 −0.25 0 −0.83
5.61 1.26 −2.05 −2.26 0 4.10 0.21 1.16
11.81 2.32 −4.92 −5.37 1.32 8.85 0.36 3.31




and Uvec(Kc) = 0. Using Kc, the desired eigenstructure is achieved.

9. Conclusions

Through exposing design DoF induced by output-lifting EA, the desired eigenstructure of a single-
rate full state feedback solution can be achieved with an output feedback system, and output-lifting
causality constraint is released by the structural mapping. In addition, the available design DoF can
be further enlarged via involving the input-lifting in the output-lifting EA framework. The newly
introduced design DoF can be utilised to calculate a structurally-constrained, causal gain matrix
which will maintain the same assignment capability. In addition, a less conservative time-domain
robustness measurement is developed to ensure the robustification of output-lifting EA.

Appendix. A

Proof of Theorem 4.1

Consider an lifted system with time-varying uncertainty

x(k + 1) = (AL +∆AL(k))x(k) + (BL +∆BL(k))ū(k) (60)

ȳ(k) = (CL +∆CL(k))x(k) + (DL +∆DL(k))ū(k) (61)

ū(k) = Kȳ(k) (62)

Substituting (61) into (62) yields

(I −KDL)ū(k) = K(CL +∆CL(k))x(k) +K∆DL(k)ū(k) (63)

From (63),

ū(k) = N(CL +∆CL(k))x(k) +N∆DL(k)ū(k) (64)

Now substitute (64) into (60) to obtain

x(k + 1) = Aclx(k) + ∆Acl(k)x(k) + ∆E(k)ū(k) (65)

where

∆Acl(k) = ∆AL(k) + ∆BL(k)NCL + (B +∆BL(k))N∆CL(k) (66)

Acl = AL +BLNCL (67)

∆E(k) = (BL +∆BL(k))N∆DL(k) (68)

Let M represent the modal matrix of AL + BLNCL and define matrix D as a diagonal matrix
with real positive entries, then MD also represents a modal matrix. Using the modal similarity
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transformation, it follows

x(k) = D−1M−1z̄(k) (69)

Applying the similarity transformation to (65) and the solution of z̄(k) is given by

z̄(k) = D−1ΛkDz̄(0) +

k+1∑

j=0

Λk−j−1D−1M−1∆Acl(j)MDz̄(j)

+

k+1∑

j=0

Λk−j−1D−1M−1∆E(j)ū(j) (70)

where Λ is a diagonal matrix of the eigenvalues of Ac. Applying the absolute value operator to get

z̄+(k) ≤ D−1ΛkDz̄+(0) +

k+1∑

j=0

Λk−j−1D−1(M−1)+∆Acl(j)M
+Dz̄+(j)

+
k+1∑

j=0

Λk−j−1D−1(M−1)+∆E(j)ū+(j) (71)

Also, (64) can be written as

ū+(k) = N+(C+
L + Cm)x

+(k) +N+Dmū
+(k) (72)

Then

ū+(k) ≤ ΞM+Dz̄+(k) (73)

Substituting (73) into (71) yields

z̄+(k) ≤ D−1ΛkDz̄+(0) +

k+1∑

j=0

Λk−j−1D−1(M−1)+∆Acl(j)M
+Dz̄+(j) (74)

+

k+1∑

j=0

Λk−j−1D−1(M−1)+∆E(j)ΞM+Dz̄+(j)

Using the fact that ‖Λk‖ ≤ αk and α = max|Λ|, it follows

z̄+(k) ≤ D−1akDz̄+(0) +
k+1∑

j=0

αk−j−1D−1(M−1)+(Acm + EmΞ)M
+Dz̄+(j) (75)

Then

z̄+(k)α−k ≤ z̄+(0) +

k+1∑

j=0

α−1D−1(M−1)+(Acm + EmΞ)M
+Dα−j z̄+(j) (76)
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Using the Discrete Gronwall Lemma, (76) can be written as

z̄+(k)α−k ≤ z̄+(0)(1 + α−1(D−1(M−1)+(Acm + EmΞ)M
+D))k (77)

Now multiply both sides of (77) by αk and then take the norm for both sides of (77) to obtain

‖z̄+(k)‖ ≤ ‖z̄+(0)‖(α + ‖D−1(M−1)+(Acm + EmΞ)M
+D‖)k (78)

From (78), a sufficient condition for the asymptotically stable response is given by

‖D−1(M−1)+(Acm + EmΞ)M
+D‖ < 1− α (79)

which equates to

‖(M−1)+(Acm +EmΞ)M
+‖2D < 1− α (80)

Since the matrix term inside the norm of the above equation only contains the positive elements,
the condition in (80) can be written as

inf
D

‖(M−1)+(Acm + EmΞ)M
+‖2D < 1− α (81)

Using the fact that

inf
D

‖A+‖2D = ρ(A+) (82)

where ρ represents the perron eigenvalue of the matrix with all positive entries. (81) can be written
as

ρ[(M−1)+(Acm + EmΞ)M
+] < 1− α (83)

Since the eigenvalues of AB and of BA are identical for all square A and B, (83) equates to

ρ[M+(M−1)+(Acm + EmΞ)] < 1− α (84)

Dividing both sides of (84) by (1− α) yields

ρ[
M+(M−1)+(Acm + EmΞ)

1− α
] < 1 (85)

which equates to

ρ[

∑n
i=1 v

+
i (wi)

+(Acm + EmΞ)

1− α
] < 1 (86)

Using this result, if A+ ≤ B+, then

λmax(A
+) ≤ λmax(B

+) (87)

18

Page 18 of 20

http://mc.manuscriptcentral.com/tcon

International Journal of Control

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

August 10, 2016 International Journal of Control tCONguide

Substitute (87) into (86) and invoke the property |Λk| ≤ αk, a sufficient condition is given by

ρ[

n∑

i=1

v+i (wi)
+(Acm + EmΞ)

1− |λi|
] < 1 (88)

The spectral radius of the square matrices A,B satisfies (89), which can be proven by using
Rayleigh’s principle.

ρ(A) + ρ(B) ≥ ρ(A+B) (89)

Applying the above matrix property to (88) to get

n∑

i=1

ρ[
v+i (wi)

+(Acm + EmΞ)

1− |λi|
] < 1 (90)

which can be simplified by

n∑

i=1

(wi)
+(Acm + EmΞ)v

+
i

1− |λi|
< 1 (91)
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