102 research outputs found

    Performance Evaluation And Anomaly detection in Mobile BroadBand Across Europe

    Get PDF
    With the rapidly growing market for smartphones and user’s confidence for immediate access to high-quality multimedia content, the delivery of video over wireless networks has become a big challenge. It makes it challenging to accommodate end-users with flawless quality of service. The growth of the smartphone market goes hand in hand with the development of the Internet, in which current transport protocols are being re-evaluated to deal with traffic growth. QUIC and WebRTC are new and evolving standards. The latter is a unique and evolving standard explicitly developed to meet this demand and enable a high-quality experience for mobile users of real-time communication services. QUIC has been designed to reduce Web latency, integrate security features, and allow a highquality experience for mobile users. Thus, the need to evaluate the performance of these rising protocols in a non-systematic environment is essential to understand the behavior of the network and provide the end user with a better multimedia delivery service. Since most of the work in the research community is conducted in a controlled environment, we leverage the MONROE platform to investigate the performance of QUIC and WebRTC in real cellular networks using static and mobile nodes. During this Thesis, we conduct measurements ofWebRTC and QUIC while making their data-sets public to the interested experimenter. Building such data-sets is very welcomed with the research community, opening doors to applying data science to network data-sets. The development part of the experiments involves building Docker containers that act as QUIC and WebRTC clients. These containers are publicly available to be used candidly or within the MONROE platform. These key contributions span from Chapter 4 to Chapter 5 presented in Part II of the Thesis. We exploit data collection from MONROE to apply data science over network data-sets, which will help identify networking problems shifting the Thesis focus from performance evaluation to a data science problem. Indeed, the second part of the Thesis focuses on interpretable data science. Identifying network problems leveraging Machine Learning (ML) has gained much visibility in the past few years, resulting in dramatically improved cellular network services. However, critical tasks like troubleshooting cellular networks are still performed manually by experts who monitor the network around the clock. In this context, this Thesis contributes by proposing the use of simple interpretable ML algorithms, moving away from the current trend of high-accuracy ML algorithms (e.g., deep learning) that do not allow interpretation (and hence understanding) of their outcome. We prefer having lower accuracy since we consider it interesting (anomalous) the scenarios misclassified by the ML algorithms, and we do not want to miss them by overfitting. To this aim, we present CIAN (from Causality Inference of Anomalies in Networks), a practical and interpretable ML methodology, which we implement in the form of a software tool named TTrees (from Troubleshooting Trees) and compare it to a supervised counterpart, named STress (from Supervised Trees). Both methodologies require small volumes of data and are quick at training. Our experiments using real data from operational commercial mobile networks e.g., sampled with MONROE probes, show that STrees and CIAN can automatically identify and accurately classify network anomalies—e.g., cases for which a low network performance is not justified by operational conditions—training with just a few hundreds of data samples, hence enabling precise troubleshooting actions. Most importantly, our experiments show that a fully automated unsupervised approach is viable and efficient. In Part III of the Thesis which includes Chapter 6 and 7. In conclusion, in this Thesis, we go through a data-driven networking roller coaster, from performance evaluating upcoming network protocols in real mobile networks to building methodologies that help identify and classify the root cause of networking problems, emphasizing the fact that these methodologies are easy to implement and can be deployed in production environments.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Matteo Sereno.- Secretario: Antonio de la Oliva Delgado.- Vocal: Raquel Barco Moren

    NFV and SDN-based differentiated traffic treatment for residential networks

    Get PDF
    Producción CientíficaResidential networks play a critical role in assuring that services or applications such as tele-work, tele-education, medical care, entertainment, home automation, among others, have the required resources to obtain an optimal performance. Although current residential gateways try to meet the Quality of Service (QoS) demands, the traditional networking paradigm does not have the appropriate mechanisms to address the heterogeneous and dynamic nature of the services running at home. In this context, a feasible solution consists of leveraging the flexibility and adaptability of the Software Defined Networking (SDN) and Network Functions Virtualization (NFV) paradigms to provide a differentiated traffic treatment intended to improve the QoS support of residential networks. The proposal takes advantage of the Service Function Chaining (SFC) concept intrinsic to NFV as well as the capacity of an SDN-based residential gateway to differentiate the traffic of a certain application. Thus, an association between an SFC and the differentiated traffic is stablished to apply a specific treatment. Besides, a comprehensive architecture composed of the software defined residential network (SDRN), the software defined access network (SDOAN) and the NFV-compliant ISP's edge cloud infrastructure is envisioned. This architecture would allow dramatically improving the life cycle management of the residential network from a centralized point which follows a user-centric approach.Ministerio de Ciencia, Innovación y Universidades (grants TEC2015-67834-R, TEC2017-84423-C3-1-P, RED2018-102585-T and 0677_DISRUPTIVE_2_E

    Experimentation and Characterization of Mobile Broadband Networks

    Get PDF
    The Internet has brought substantial changes to our life as the main tool to access a large variety of services and applications. Internet distributed nature and technological improvements lead to new challenges for researchers, service providers, and network administrators. Internet traffic measurement and analysis is one of the most trivial and powerful tools to study such a complex environment from different aspects. Mobile BroadBand (MBB) networks have become one of the main means to access the Internet. MBB networks are evolving at a rapid pace with technology enhancements that promise drastic improvements in capacity, connectivity, and coverage, i.e., better performance in general. Open experimentation with operational MBB networks in the wild is currently a fundamental requirement of the research community in its endeavor to address the need for innovative solutions for mobile communications. There is a strong need for objective data relating to stability and performance of MBB (e.g., 2G, 3G, 4G, and soon-to-come 5G) networks and for tools that rigorously and scientifically assess their performance. Thus, measuring end user performance in such an environment is a challenge that calls for large-scale measurements and profound analysis of the collected data. The intertwining of technologies, protocols, and setups makes it even more complicated to design scientifically sound and robust measurement campaigns. In such a complex scenario, the randomness of the wireless access channel coupled with the often unknown operator configurations makes this scenario even more challenging. In this thesis, we introduce the MONROE measurement platform: an open access and flexible hardware-based platform for measurements on operational MBB networks. The MONROE platform enables accurate, realistic, and meaningful assessment of the performance and reliability of MBB networks. We detail the challenges we overcame while building and testing the MONROE testbed and argue our design and implementation choices accordingly. Measurements are designed to stress performance of MBB networks at different network layers by proposing scalable experiments and methodologies. We study: (i) Network layer performance, characterizing and possibly estimating the download speed offered by commercial MBB networks; (ii) End users’ Quality of Experience (QoE), specifically targeting the web performance of HTTP1.1/TLS and HTTP2 on various popular web sites; (iii) Implication of roaming in Europe, understanding the roaming ecosystem in Europe after the "Roam like Home" initiative; and (iv) A novel adaptive scheduler family with deadline is proposed for multihomed devices that only require a very coarse knowledge of the wireless bandwidth. Our results comprise different contributions in the scope of each research topic. To put it in a nutshell, we pinpoint the impact of different network configurations that further complicate the picture and hopefully contribute to the debate about performance assessment in MBB networks. The MBB users web performance shows that HTTP1.1/TLS is very similar to HTTP2 in our large-scale measurements. Furthermore, we observe that roaming is well supported for the monitored operators and the operators using the same approach for routing roaming traffic. The proposed adaptive schedulers for content upload in multihomed devices are evaluated in both numerical simulations and real mobile nodes. Simulation results show that the adaptive solutions can effectively leverage the fundamental tradeoff between the upload cost and completion time, despite unpredictable variations in available bandwidth of wireless interfaces. Experiments in the real mobile nodes provided by the MONROE platform confirm the findings

    QoE on media deliveriy in 5G environments

    Get PDF
    231 p.5G expandirá las redes móviles con un mayor ancho de banda, menor latencia y la capacidad de proveer conectividad de forma masiva y sin fallos. Los usuarios de servicios multimedia esperan una experiencia de reproducción multimedia fluida que se adapte de forma dinámica a los intereses del usuario y a su contexto de movilidad. Sin embargo, la red, adoptando una posición neutral, no ayuda a fortalecer los parámetros que inciden en la calidad de experiencia. En consecuencia, las soluciones diseñadas para realizar un envío de tráfico multimedia de forma dinámica y eficiente cobran un especial interés. Para mejorar la calidad de la experiencia de servicios multimedia en entornos 5G la investigación llevada a cabo en esta tesis ha diseñado un sistema múltiple, basado en cuatro contribuciones.El primer mecanismo, SaW, crea una granja elástica de recursos de computación que ejecutan tareas de análisis multimedia. Los resultados confirman la competitividad de este enfoque respecto a granjas de servidores. El segundo mecanismo, LAMB-DASH, elige la calidad en el reproductor multimedia con un diseño que requiere una baja complejidad de procesamiento. Las pruebas concluyen su habilidad para mejorar la estabilidad, consistencia y uniformidad de la calidad de experiencia entre los clientes que comparten una celda de red. El tercer mecanismo, MEC4FAIR, explota las capacidades 5G de analizar métricas del envío de los diferentes flujos. Los resultados muestran cómo habilita al servicio a coordinar a los diferentes clientes en la celda para mejorar la calidad del servicio. El cuarto mecanismo, CogNet, sirve para provisionar recursos de red y configurar una topología capaz de conmutar una demanda estimada y garantizar unas cotas de calidad del servicio. En este caso, los resultados arrojan una mayor precisión cuando la demanda de un servicio es mayor

    Quality of Experience monitoring and management strategies for future smart networks

    Get PDF
    One of the major driving forces of the service and network's provider market is the user's perceived service quality and expectations, which are referred to as user's Quality of Experience (QoE). It is evident that QoE is particularly critical for network providers, who are challenged with the multimedia engineering problems (e.g. processing, compression) typical of traditional networks. They need to have the right QoE monitoring and management mechanisms to have a significant impact on their budget (e.g. by reducing the users‘ churn). Moreover, due to the rapid growth of mobile networks and multimedia services, it is crucial for Internet Service Providers (ISPs) to accurately monitor and manage the QoE for the delivered services and at the same time keep the computational resources and the power consumption at low levels. The objective of this thesis is to investigate the issue of QoE monitoring and management for future networks. This research, developed during the PhD programme, aims to describe the State-of-the-Art and the concept of Virtual Probes (vProbes). Then, I proposed a QoE monitoring and management solution, two Agent-based solutions for QoE monitoring in LTE-Advanced networks, a QoE monitoring solution for multimedia services in 5G networks and an SDN-based approach for QoE management of multimedia services

    Performance Study of Multi-access Edge Computing Deployment in a Virtualized Environment

    Get PDF
    Various real-time, latency-sensitive, and high-speed mobile applications are evolving as 5G applications. These applications are realized using Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) technologies in the 5G system. MEC platform, MEC service, and MEC application are the main components of an MEC Framework. NFV Orchestrator, Virtualized Infrastructure Manager (VIM), and virtualization technologies such as Virtual Machines (VM) and Containers are the main pillars of the NFV technology. In this paper, we study the impact of the virtualization technologies in the deployment of the MEC framework and its components while. We also study the impact of virtualization technologies on NFV and MEC KPIs such as onboarding time, instantiation time, MEC service and application response times. The experiments and its analysis show that containers perform better than VM to instantiate/terminate MEC components in the NFV framework. The observed MEC service KPIs show that the edge application's performance will be improved to meet the QoE of the applications irrespective of the virtualization technology used. These results can be used as a reference while deploying the MEC components based on their granular functionalities. © 2020 IEEE

    A Lightweight Service Placement Approach for Community Network Micro-Clouds

    Get PDF
    Community networks (CNs) have gained momentum in the last few years with the increasing number of spontaneously deployed WiFi hotspots and home networks. These networks, owned and managed by volunteers, offer various services to their members and to the public. While Internet access is the most popular service, the provision of services of local interest within the network is enabled by the emerging technology of CN micro-clouds. By putting services closer to users, micro-clouds pursue not only a better service performance, but also a low entry barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of these services is not so simple. Due to the large and irregular topology, high software and hardware diversity of CNs, a "careful" placement of micro-clouds services over the network is required to optimize service performance. This paper proposes to leverage state information about the network to inform service placement decisions, and to do so through a fast heuristic algorithm, which is critical to quickly react to changing conditions. To evaluate its performance, we compare our heuristic with one based on random placement in Guifi.net, the biggest CN worldwide. Our experimental results show that our heuristic consistently outperforms random placement by 2x in bandwidth gain. We quantify the benefits of our heuristic on a real live video-streaming service, and demonstrate that video chunk losses decrease significantly, attaining a 37% decrease in the packet loss rate. Further, using a popular Web 2.0 service, we demonstrate that the client response times decrease up to an order of magnitude when using our heuristic. Since these improvements translate in the QoE (Quality of Experience) perceived by the user, our results are relevant for contributing to higher QoE, a crucial parameter for using services from volunteer-based systems and adapting CN micro-clouds as an eco-system for service deployment
    corecore