

Aflevering van adaptieve videodiensten met beperkte vertraging

Low-Latency Delivery of Adaptive Video Streaming Services

Jeroen van der Hooft

UNIVERSITEIT
GENT

Promotoren: prof. dr. ir. F. De Turck, dr. ir. T. Wauters
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie

Voorzitter: prof. dr. ir. B. Dhoedt

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2018 - 2019

ISBN 978-94-6355-243-1
NUR 986, 988
Wettelijk depot: D/2019/10.500/51

P

GHENT
UNIVERSITY

“mec

Examination Board:

prof. dr. ir. Filip De Turck
dr. ir. Tim Wauters

prof. dr. ir. Ronny Verhoeven
prof. dr. Peter Lambert

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

imec
Internet Technology and Data Science Lab

(advisor)
(advisor)
(chair)
(

secretary)

prof. dr. ir. Danny De Vleeschauwer

prof. dr. Jeroen Famaey
prof. dr. Christian Timmerer
dr. ir. Jiirgen Slowack

/\ | AGENTSCHAP
(& \ INNOVEREN &
\ ONDERNEMEN

hFACULTY OF ENGINEERING
Al | AND ARCHITECTURE

Supported by grant of Flanders
Innovation & Entrepreneurship

Dissertation for acquiring the degree of
Doctor of Computer Science Engineering

Dankwoord

“One, two, three four, five, hunt the hare and turn her down the rocky road, all the
way to Dublin, whack follol de rah!”

—D. K. Gavan, as performed by The Dubliners, 1976

“De tijd gaat snel, gebruik haar wel”, vertelde Rachelle mijn zus en mij
steevast toen we klein waren. Niks is minder waar gebleken: bijna vijf jaar
geleden is het alweer dat ik voor het eerst kennis mocht maken met het le-
ven van een doctoraatsstudent. Hoewel het niet altijd even makkelijk was
- getuige daarvan de elfendertig deadlines in de aanloop naar het schrij-
ven van dit dankwoord - houd ik vooral positieve herinneringen over aan
deze ervaring. Ik kan terugkijken op een fantastisch avontuur, waarin ik
zowel op wetenschappelijk als op persoonlijk vlak gegroeid ben. Dit heb ik
te danken aan de vele mensen met wie ik me de afgelopen jaren omringd
zag, die ik langs deze weg even in de bloemen wil zetten.

In de eerste plaats wil ik mijn promotoren bedanken. Filip, meer dan
zeven jaar geleden kwam ik voor de eerste keer met je in contact om een
zomerstage te regelen. Sindsdien kon ik steeds bij je terecht voor het no-
dige advies of een leuk gesprek, en zelfs om hulp te vragen toen ik in het
verre Qostenrijk mijn treinticket (weer eens) kwijtgespeeld had. Bedankt
voor de aangename samenwerking doorheen de jaren, en om me een voor-
beeld te geven om naar op te kijken. Tim, waar ik bij anderen op de deur
kwam kloppen, bleef die van jou - letterlijk en figuurlijk - altijd openstaan.
Waar een berichtje via Mattermost vaak volstaan had, heb ik hier meer dan
eens van geprofiteerd om je om raad te vragen of om even te klagen over
zaken waar weinig over te klagen valt. Bedankt voor je geduld en je nuch-
tere kijk op de zaken, en voor de vele tafeltennisgerelateerde gesprekken
die we doorheen de jaren gevoerd hebben.

Mijn Italiaanse compagnon en favoriete co-auteur moet ook bij naam
genoemd worden. Stefano, man, I don’t know where to begin. Maria once
told me that "wherever you go, there’s always an Italian". I'm certain there
is truth in that, and I'm glad you turned out to be the one I met in Ghent.
Thanks for your insights and advise, for the many conversations we had
throughout the years and for the awesome trips we shared. I've said it five
years ago and I'll say it again today: grazie mille!

ii

Ook Jeroen en Maria ben ik veel dank verschuldigd. Jeroen, bedankt
om me te begeleiden tijdens mijn masterproef en tijdens het voorbereiden
van mijn beursaanvraag. Na je vertrek was het even aanpassen, maar voor
deze zaken blijf ik je enorm dankbaar. Maria, thanks for the amazing work
together in the last year. I really appreciated your contributions and sug-
gestions, not in the least the ones related to the dissertation you're reading
now. jMuchas gracias!

Doorheen mijn doctoraat mocht ik bureaus 2.22 en 200.026 delen met
verschillende toffe collega’s: Bert, Cedric, Elias, Harald, Jacob, Joachim,
Jolien, Lander, Matthias, Ozan, Pieter, Pieter-Jan, Prashant, Rein, Sam, Ste-
ven B., Steven V. C., Tim en Xander. Een lunchpauze in 't Blauw Kotje of
de Frietketel was nooit ver weg, en ook de TGIF’s (met of zonder toastje
met zalm) zijn en blijven onvergetelijk. Ook andere collega’s wil ik graag
bij naam noemen, omwille van de papers waar we samen aan werkten of
de verschillende practica die we samen begeleidden (maar stiekem toch
vooral omwille van de talloze gesprekken die we ’s middags voerden over
onze favoriete series en guilty pleasures): Andy, Bart, Bram, Bruno, Chris,
Christof, Dries, Eric, Femke D. B., Femke O., Gilles, Gregory, Helen, He-
manth, Hendrik, Ilja, Jelle, Johannes, Jonas, Joris, José, Laurens, Leandro,
Mario, Mathias, Maxim, Merlijn, Niels, Philip, Pieter B., Pieter S., Rafael,
Stijn, Thilo, Thomas D., Thomas V., Wannes en Wim. Zonder jullie zouden
mijn werkdagen niet geweest zijn wat ze waren, bedankt daarvoor!

IDLab zou IDLab niet zijn zonder de uitstekende omkadering waarvan
ze geniet. Piet weet onze onderzoeksgroep op uitstekende wijze te leiden,
en ik zal nooit vergeten dat hij me toestond met de taxi naar het werk te
komen toen ik zes weken lang onbeholpen op krukken rondliep. Voor ad-
ministratieve zaken kon ik steeds terecht bij Martine en Davinia, die me
met een lach op het gezicht met raad en daad bijstonden. Bedankt voor
alle hulp doorheen de jaren, en voor de leuke gesprekken die hier vaak
het gevolg van waren. Ook bedankt aan Bernadette, Joke en Karen, die
me op organisatorisch en financieel vlak steeds verderhielpen waar nodig.
Sabrina wil ik graag bedanken om onze werkomgeving zorgvuldig proper
te houden, en om iedereen ‘s ochtends zo warm en enthousiast te ontha-
len. Ook een shout-out naar ons A-team kan niet ontbreken, aangezien
ik steeds op Bert, Brecht, Joeri, Simon en Vincent kon rekenen wanneer ik
mijn laptop weer eens om zeep geholpen had.

Naast de collega’s bij IDLab wil ik ook de medewerkers van het Agent-
schap voor Innoveren en Ondernemen (VLAIO) bedanken voor de onder-
zoeksbeurs die ik mocht ontvangen. Deze liet me toe om gedurende vier
jaar mijn onderzoek voort te zetten, zonder me zorgen te moeten maken
over contractverlengingen en andere financiéle zaken. Many thanks also
go to Christian and Hermann, for receiving me so well at the Alpen-Adria
Universitdt in Klagenfurt. I really enjoyed working together, and hope we
can continue to do so in the future. Let me know when you're visiting
Ghent, and I'll be glad to show you around.

iii

Naast de ondersteuning op het werk, kon ik door de jaren heen steeds
terugvallen op mijn familie. Het leven is niet altijd makkelijk geweest,
mama, maar dat weerhield je er niet van om er steeds voor Erinke en mij
te zijn. Terugblikkend op de voorbije tien jaar, denk ik dat ik mag zeggen
dat je het er fantastisch vanaf gebracht hebt. Een niet onbelangrijk aandeel
gaat hierbij naar jou, Jurgen, voor de zorgen die je mama ontnomen (en
af en toe wel eens bezorgd) hebt. Ik ben blij dat jullie in Assenede jullie
stekje gevonden hebben. Ook jij bent er altijd voor mij geweest, zus, en
hebt het inmiddels uitstekend gedaan. De eerste stappen naar een nieuwe
dierentuin in Sint-Lievens-Houtem zijn gezet, en ik kijk ernaar uit om de
groei ervan in de toekomst mee te mogen maken. Of Quentin hier even
enthousiast over is, zal nog moeten blijken, maar ik heb er vertrouwen in
dat mijn schoonbroer je zal ondersteunen in alles wat je doet.

Familie kan je zijn, maar je kan het ook worden. Getuige hiervan zijn
Nancy en Geert, die me de afgelopen jaren bijgestaan hebben in al mijn
ondernemingen. Zonder jullie had ik niet gestaan waar ik nu sta, en ik ben
jullie daar dan ook oprecht dankbaar voor. Een hoogtepunt voor mij was
toch het huwelijk van Jolien en Pieter, waarbij ik met Nadine, Camila en
Fu het mooie weer mocht maken achter het stuur van jullie wagen. Het
was mooi dat ik deze rol op mij kon nemen, aan het begin van de mooie
toekomst die het jonge bruidspaar ongetwijfeld wacht. Jona, onze film- en
(niet-)pizzamomenten zal ik nooit vergeten. Ruzién met jou is een voor-
recht dat niemand ooit zal begrijpen, maar ik ben blij dat we het nog niet
verleerd zijn. Take good care of her, Sabya, and don’t forget the kittens!

De voorbije jaren heb ik ook beter kennis mogen maken met mijn fami-
lie uit het verre Nederland. Het was mooi om de laatste jaren van opa’s
leven met hem te kunnen delen, ook al blijft er sinds januari een gevoel
van gemis achter. Ik ben er zeker van dat hij trots geweest zou zijn, en dat
hij - jury of niet - op de eerste rij had willen zitten. Ik kijk uit naar de vele
momenten met mijn neefjes en nichtjes die nog mogen komen, en naar de
volgende wedstrijd in de Johan Cruijff ArenA. Ook de andere tak van de
familie heeft veel voor me betekend: de kerstfeestjes in Veurne waren tel-
kens iets om naar uit te kijken en vormen een blijvende herinnering aan
wie oma en opa waren. De familiefeesten met de Meulenaeres en de Pittil-
lions zijn steeds een ervaring, temeer omdat ik zo mijn tante, nonkel en de
resterende kwartjes even terug kan zien. Afspraak op 15 augustus?

Inspanning kan niet bestaan zonder ontspanning. Op dat vlak ben ik
de voorbije jaren verwend geweest, met een hele resem aan activiteiten die
ik heb kunnen ondernemen. Ik blik met plezier terug op de voetbalwed-
strijden met Marieke en Axelle, op de fiets- en trektochten met Isaac, op de
optredens met Joren en op de vele Xbox-avonden met Achim en Verelst.
Ook de weekends met de CW en de etentjes met onze klas uit Strobrugge,
die beide inmiddels een echte traditie geworden zijn, kunnen in dit lijstje
niet ontbreken. Het zijn alle activiteiten waar ik heel wat plezier aan be-
leefd heb, en ik hoop dit in de toekomst ook te mogen blijven doen.

iv

Om inspanning en ontspanning te combineren, kon ik steeds terecht
in onze tafeltennisclub. Door de jaren heen heb ik zoveel mensen mogen
leren kennen: de jonge garde die nu onze A-ploeg vormt, de iets minder
jonge garde die reeds lang mijn ploegmaten zijn in de B- en C-ploeg, mijn
eigen persoonlijke trainer en telkens weer nieuwe, jonge spelers in onze
jeugdreeksen. Het hele tafeltennisgebeuren boeit me inmiddels al achttien
jaar, en ik lijk het maar niet beu te worden. Dat hoeft niet te verwonderen,
gezien de vele spannende wedstrijden en toernooien, de leuke kaartavon-
den en de (soms iets minder leuke) bestuursvergaderingen. Een speciaal
woord van dank gaat uit naar Jan, van wie ik zoveel geleerd heb en aan
wie ik tot op vandaag een voorbeeld neem.

Het leven zou niet hetzelfde geweest zijn zonder mijn twee fantastische
kotgenoten, met wie ik de voorbije vijf jaar een appartement heb mogen
delen. Samen barbecueén, poolen of gewoon een serie kijken zijn herinne-
ringen die ik mijn leven lang zal koesteren. Bert en Sigy, ik wens jullie het
allerbeste toe in jullie nieuwe appartement en hoop dat we elkaar nog re-
gelmatig mogen zien (er komt een derde seizoen van Derry Girls!). Klaas,
met jou kijk ik voorlopig uit naar het moment waarop we de duurste fles
champagne kraken die we kunnen vinden, om te vieren dat je overwonnen
hebt wat niemand ooit zou moeten overwinnen. Ik wens je een spoedig
herstel en een prachtige toekomst toe.

“Save the best for last”, zeggen ze wel eens, en in dit geval zit daar zeker
waarheid in. Ik had je naam hierboven al verschillende keren kunnen laten
vallen, Thomas, want jij zat naast me tijdens die voetbalwedstrijden, hebt
meegedeeld in de reizen en trektochten die ik ondernam, en bent en blijft
mijn favoriete Xbox-partner. Je kent me na al die jaren door en door, en
ik ben blij dat ik jou mijn maat mag noemen. Dat ik door jou mensen als
je ouders en je zus heb leren kennen, maakt die band alleen maar sterker.
Ik kijk uit naar wat de toekomst mag brengen, en niet het minst naar het
moment waarop je met Laura eindelijk die volgende stap mag zetten.

Gent, juni 2019
Jeroen van der Hooft

Table of Contents

Dankwoord
Samenvatting
Summary

1 Introduction

1.1 A Brief History of Video Streaming
1.2 Challenges for HTTP Adaptive Streaming
1.3 Dissertation Outline
1.4 Publications

1.4.1 Publications in International Journals

1.4.2 Publications in International Conferences
References

2 An HTTP/2 Push-Based Approach for Low-Latency Live
Streaming with Super-Short Segments
21 Introduction
22 RelatedWork oo,
22.1 HTTP Adaptive Streaming
222 TheHTTP/2Protocol
223 HTTP/2 for Multimedia Delivery
2.3 Push-Based Approach
23.1 Full-PushApproach
2.3.2 Full-Push Approach with Acknowledgments
2.4 Segment duration and Encoding Overhead
2.5 Evaluationand Discussion
2.5.1 ExperimentalSetup.
2.5.2 Rate Adaptation Heuristics
2.5.3 EvaluationMetrics
254 EvaluationResults
2.6 Conclusions and Future Work
References
Addendum L

Xix

xxiii

vi

3 Performance Characterization of Low-Latency Adaptive

Streaming from Video Portals 51
31 Introduction 52
32 RelatedWork 55
3.21 Low-Latency End-to-End Delivery 55

3.2.2 Prefetching of Multimedia Content 58

3.3 Proposed Framework 59
3.3.1 Hybrid Segment Duration 60

3.3.2 Application Layer Optimization 62

3.3.3 Server-Side User and Content Profiling 64

3.34 Client-SideStorage 67

34 Evaluation 67
3.4.1 UseCase: deredactiebe 68
3.4.2 ExperimentalSetup. 69

3.4.3 Short Segment Duration 70

3.4.4 Short Segment Duration and Server Push 71

3.45 Userand Content Profiling 73

3.4.6 Proactive Prefetching 76

3.4.7 Impact on Buffer Starvation 80

348 Summary 83

35 Conclusions 83
References 84
4 Tile-Based Adaptive Streaming for Virtual Reality Video 89
41 Introduction 90
42 State-of-the-Artand Challenges 92
421 Video Capture and Encoding 93

422 ViewportPrediction 95

423 Tile-Based Rate Adaptation 96

424 Application Layer Optimization 98

425 Quality Evaluation 100

43 Proposed Framework 102
43.1 Tile-Based Rate Adaptation 103

432 Feedback Loop for Quality Reassignment 106

44 Evaluationand Discussion 108
441 ExperimentalSetup. 108

442 EvaluationMetrics 110

443 EvaluationSpace 112

444 ViewportPrediction 113

445 Tiling and Rate Adaptation 113

446 Feedback Loop for Quality Reassignment 115
447 Application Layer Optimization 119

448 AG/LTEScenario 121

449 General Conclusions 123

4.5 Conclusions and Future Work 124

vii

References e 125
Addendum 129
Towards 6DoF HTTP Adaptive Streaming Through Point Cloud
Compression 131
51 Introduction 132
52 RelatedWork 135
52.1 Point Cloud Compression 135
522 6DoF Video Streaming 135
53 PCC-DASH Approaches 136
53.1 DASH-Compliant Scene Generation 137
5.3.2 Multi Point Cloud Rate Adaptation 138
54 Evaluation 141
54.1 Object Compression and Scene Generation 142
542 ExperimentalSetup. 143
5.4.3 EvaluationMetrics 145
5.4.4 EvaluationSpace 145
545 EvaluationResults 146
54.6 LessonslLearned 151
5.5 Conclusionsand Future Work 151
References e 152
Addendum 154
Conclusions and Future Perspectives 157
6.1 Review of the Addressed Challenges 157
6.2 Future Perspectives of Media Delivery 159
References i e 162

HTTP/2-Based Adaptive Streaming of HEVC Video over 4G/LTE

Networks 165
Al Introduction 166
A.2 HTTP/2 Push-Based Approach 168
A3 MeasurementStudy. 170
A.3.1 Available Bandwidth in 4G/LTE Networks 170
A32 HEVC-EncodedVideo 170
A4 Evaluation 172
A4.1 ExperimentalSetup. 172
A42 ObtainedResults 173
A5 Conclusions e 175

References 175

List of Figures

1.1 The concept of HTTP adaptive streaming

2.1 The concept of HT'TP adaptive streaming
2.2 Alive video scenario for HTTP/1.1 and HTTP/2
2.3 The full-push approach in a CDN environment
2.4 HTTP/2’s server push with explicit acknowledgments

2.5 Relative encoding bit rate for different frame rates
2.6 Relative encoding bit rate for a frame rate of 24FPS
2.7 Encoding bit rates for the Soccer video
2.8 Experimental Mininetsetup.
2.9 Perceived bandwidth and latency for a 3G network
2.10 Results for the MSS, FESTIVE and FINEAS heuristics
2.11 Impact of network latency and the segment duration

2.12 Impact of network latency and the parameterk
2.13 Optimal values for the parameterk
2.14 Impact of the buffersize
2.15 Screenshots of the considered videos

3.1 The concept of HTTP adaptive streaming
3.2 Proposed delivery framework for media-rich news content .
3.3 Possible segment duration schemesin HAS
3.4 Sequence diagrams for HTTP/1.1 and HTTP/2
3.5 Screenshots of deredactiebe
3.6 Experimentalsetup,
3.7 Encoding bit rate as a function of the segment duration . . .
3.8 Startup time as a function of the segment duration
3.9 Category preference and corresponding accuracy
3.10 Results for the proposed user categories
3.11 Relative number of users with changing optimal strategy . .
3.12 Performance for changing recommendation strategy
3.13 Startup time for prefetched articles
3.14 Bandwidth overhead for prefetched articles
3.15 Cumulative distribution of the startup and freeze time

41 The HAS principle applied to VR video streaming

4.2
43
44
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
52
5.3
54
5.5
5.6
5.7
5.8
59
5.10

Al
A2
A3
A4
Ab5
A6

Viewport prediction using spherical walks
Rate adaptation proposed by Hosseini and Swaminathan. .
Rate adaptation proposed by Petrangelietal.
HTTP/1.1 (1), HTTP/1.1 (6) and HTTP/2
Heatmap of the users’ gaze
Viewport sampling for quality evaluation
Required components for VR-based HAS
Example of the presented quality reassignment scheme . . .
Experimentalsetup
Prediction error as a functionof time
Weighted video quality for different tiling schemes
Evaluation results for a 4x4 tiling scheme
Evaluation results for quality reassignment
Number of quality increments and decrements
Weighted video quality in presence of network latency .
Weighted video quality over time for the Sandwich video . .
Considered 4G/LTE bandwidth traces
Screenshots of the considered videos

Dynamic point cloud object in MPEG’s dataset
An example scene and camera path (Scene1)
An example field of view corresponding to Scene1
Experimentalsetup
An example 4G/LTE bandwidth trace
Weighted PSNR for different ranking methods
Weighted PSNR for different bit rate allocation schemes . . .
Weighted PSNR for different prediction schemes
Example field of view forscene2
Example field of view forscene3

The concept of HTTP adaptive streaming
A live video scenario for HTTP/1.1 and HTTP/2
An example GPS and 4G/LTE bandwidth trace
Encoding bit rates for the El Fuente video
Impact of network latency
Impact of the buffersize

1.1

21
22
23

4.1
42
4.3

51
52
5.3
54
55
5.6

6.1

Al

List of Tables

Considered use cases and challenges 7
Evaluated configurations for the parameter k. 38
Evaluated buffer configurations for the FINEAS heuristic . . 40
Performance summary 43
Obtained video bitrates 111
Overview of parameter configurations 112
Emulation results for 4G/LTE networks 122
Obtained point cloud bitrates 142
Overview of parameter configurations 145
BD-BR for different ranking methods 147
BD-BR for different bit rate allocation schemes 148
BD-BR for different buffer sizes and prediction schemes . . . 149
Results for different 4G/LTE traces and buffer sizes 150
Contributions to the considered usecases 158

Performance summary 174

3G
4G
6DoF

AVC

BOLA

CSs
CDN
CMAF
CRF
CTF

D

DANE
DASH
DiffServ

List of Acronyms

3" Generation
4th Generation
Six Dimensions of Freedom

Advanced Video Coding

Buffer Occupancy-based Lyapunov Algorithm

Cascading Style Sheets

Content Delivery Network
Common Media Application Format
Constant Rate Factor

Center Tile First

DASH-Aware Network Elements
Dynamic Adaptive Streaming over HTTP
Differentiated Services

Xiv

EMWA

F

FDSP
FEC
FESTIVE
FINEAS
FPS

G

GOP

HAS
HEVC
HM
HMD
HSDPA
HSPA
HSPA+
HTML
HTTP

IDR
IEC
IETF
IPTV
IPTV
ISO

Exponentially Weighted Moving Average

Flexible Dual TCP-UDP Streaming Protocol
Forward Error Correction

Fair Efficient and Stable adapTIVE

Fair In-Network Enhanced Adaptive Streaming
Frames per Second

Group of Pictures

HTTP Adaptive Streaming

High Efficiency Video Coding
HEVC Test Model

Head-Mounted Display

High Speed Downlink Packet Access
High Speed Packet Access

Evolved High Speed Packet Access
Hypertext Markup Language
Hypertext Transfer Protocol

Instantaneous Decoder Refresh

International Electrotechnical Commission
Internet Engineering Task Force

Integer Linear Program

Internet Protocol Television

International Organization for Standardization

XV

L

LOLYPOP
LTE

M

MANE
MPD
MPEG
MSS

NAT
NLP

PCN
PSNR

QUIC
QoE
QoS
QP

RAM
RFC
RGB

LOw-LatencY PredictiOn-based adaPtation
Long-Term Evolution

Media Aware Network Elements
Media Presentation Description
Moving Picture Experts Group
Microsoft Smooth Streaming

Network Address Translation
Natural Language Processing

Pre-Congestion Notification
Peak Signal-to-Noise Ratio

Quick UDP Internet Connections
Quality of Experience

Quality of Service

Quantization Parameter

Random Access Memory
Request for Comments
Red, Green, Blue

XVi

RTP
RTSP
RIT

SAND
SARSA
SDN
SHVC
SSIM
SvC

TCP

UuDP
URL
uvp

VoD
VR
VRT
V-PCC

WebRTC

Real-Time Protocol
Real-Time Streaming Protocol
Round-Trip Time

Server and Network Assisted DASH
State-Action-Reward-State-Action
Software-Defined Networking
Scalable High Efficiency Video Coding
Structural SIMilarity index

Scalable Video Coding

Transmission Control Protocol

User Datagram Protocol
Uniform Resource Locator
Uniform Viewport

Video on Demand

Virtual Reality

Vlaamse Radio en Televisie
Video Point Cloud Compression

Web Real-Time Communication

Samenvatting
— Summary in Dutch -

Sinds de verzending van het eerste bericht via een pakketgebaseerd net-
werk, in oktober 1969, is efficiénte aflevering van pakketten, media en
diensten steeds belangrijker geworden. Hoewel de onderzoeksinspannin-
gen zich aanvankelijk vooral richtten op het delen van berichten en tekst-
gebaseerde bestanden, is video streaming in snel tempo de meest domi-
nante toepassing op het internet geworden. Momenteel genereren service
providers zoals Netflix en YouTube meer dan 75% van het downstreamver-
keer in de Verenigde Staten, een cijfer dat de komende jaren naar verwach-
ting tot 82% zal groeien. Om de media aan de eindgebruiker te bezorgen,
wordt over het algemeen HTTP adaptieve streaming (HAS) gebruikt. In
HAS wordt de inhoud gecodeerd met behulp van verschillende kwaliteits-
representaties, tijdelijk gesegmenteerd en opgeslagen op een of meerdere
servers binnen een content delivery network. De duur van het segment
ligt over het algemeen tussen een tot tien seconden, athankelijk van de be-
schouwde use case. De HAS-server beheert een manifestbestand dat met-
adata bevat, die onder meer verschillende aanpassingssets beschrijft waar-
aan een type media is toegewezen, zoals video, audio en ondertitels, en
de beschikbare kwaliteitsrepresentaties bijhoudt. Op basis van de waarge-
nomen netwerkomstandigheden, de apparaatkenmerken en de voorkeu-
ren van de gebruiker, kan de client vervolgens beslissen over de kwaliteit
van elk van deze segmenten. Door de mogelijkheid om de videokwaliteit
aan te passen, vermijdt deze methode op actieve wijze buffer starvation
en resulteert daarom in een soepelere weergave en een hogere Quality of
Experience (QoE) voor de eindgebruiker.

Ondanks het vermogen van HAS-clients om zich aan hun omgeving
aan te passen, blijven sommige uitdagingen onopgelost. In de eerste plaats
richten oplossingen zich vaak op de Quality of Service, terwijl de ware
zorg bij de QoE van de gebruiker hoort te liggen: de prestaties van een
systeem moeten worden gemeten op basis van hoe de gebruiker de strea-
mingsessie ervaart, wat afhangt van factoren zoals de videokwaliteit, het
optreden van playout freezes, de opstarttijd, etc. Ten tweede introduceren
videostreamingoplossingen vertraging door de opname van beelden, vi-
deocodering, opslag op de server, netwerkvertraging en buffering aan de

XX SAMENVATTING

clientzijde. In de afgelopen jaren is interactiviteit met beperkte vertraging
evenwel steeds belangrijker geworden: met een steeds groter aanbod wil-
len aanbieders de gebruiker in staat stellen snel tussen video’s te bladeren,
video’s op te starten en te stoppen wanneer dat nodig is. Verder worden
steeds interactievere applicaties en use cases overwogen voor video strea-
ming, zoals 360° video. Dergelijke use cases vereisen snelle reactie van de
client op veranderingen in het netwerk, of op de positie van de gebrui-
ker binnen de video: bij een plotselinge beweging van het hoofd kan de
gebruiker geconfronteerd worden met lage kwaliteit, omdat de client een
dergelijke actie niet geanticipeerd had. Ten derde moeten services wor-
den afgestemd op de eindgebruiker. Vele service providers gebruiken aan-
bevelingssystemen om relevante inhoud te suggereren, gebaseerd op de
geschiedenis van de gebruiker. Hierdoor kan de provider relevante sug-
gesties doen voor nieuwe inhoud, wat resulteert in lagere zoektijden en
een hogere klanttevredenheid. Verder is personalisatie vereist om dien-
sten in staat te stellen zich aan te passen aan de manier waarop gebruikers
omgaan met de video. Sommige gebruikers kunnen bijvoorbeeld op hoge
snelheid bewegen in een immersieve video, terwijl andere weinig bewe-
gen en zich richten op een specifieke regio in de video. Ten slotte moeten
diensten voldoende aanpassing bieden, niet alleen aan het netwerk maar
ook aan beweging van de gebruiker, de beschouwde video, etc. Vooral in
het geval van immersieve video, waarbij ruimtelijke segmentatie gebruikt
wordt om de kwaliteit van de video in de zichtbare regio te verhogen, moe-
ten heuristieken voor het aanpassen van de kwaliteit rekening houden met
een hele reeks factoren, en aanpassingen kunnen doen op een tijdsschaal
in de orde van honderden milliseconden. In dit proefschrift zijn vier on-
derzoekshoofdstukken opgenomen die deze uitdagingen behandelen voor
verschillende use cases.

In Hoofdstuk 2 proberen we de vertraging voor traditionele video strea-
ming te beperken. We stellen een methode voor die een nieuwe HTTP
feature gebruikt om de server toe te laten gegevens achtereenvolgens te
verzenden, zonder dat de client een verzoek voor elk afzonderlijk segment
hoeft te sturen. Door deze methode te combineren met segmenten met een
duur lager dan één seconde (superkorte segmenten), is het mogelijk om de
opstarttijd en de end-to-end vertraging in HAS live streaming aanzienlijk
te verlagen. We evalueren eerst de coderingsoverhead voor verschillende
segmentduren en laten zien dat de resulterende waarden afhangen van de
beschouwde video en frame rate. Vervolgens gebruiken we de meest ge-
schikte segmentduur en evalueren we de pushgebaseerde methode in een
multi-clientscenario met variabele bandbreedte en vertraging, en laten we
zien dat de opstarttijd kan worden verminderd met 31.2% in vergelijking
met traditionele oplossingen via HTTP /1.1 in mobiele netwerken met hoge
vertraging. Bovendien kan de end-to-end vertraging in live streaming aan-
zienlijk worden gereduceerd, terwijl de video aan dezelfde kwaliteit wordt
aangeboden.

SUMMARY IN DUTCH Xxi

In Hoofdstuk 3 concentreren we ons op op nieuwsgebaseerde portals,
die grote hoeveelheden video aanbieden om nieuwsartikels te begeleiden.
Om de betrokkenheid van gebruikers tijdens het zoeken door een video of
browsen tussen video’s te stimuleren, is het verminderen van de opstarttijd
steeds belangrijker geworden: terwijl de huidige laadtijd typisch in de orde
van seconden ligt, heeft onderzoek aangetoond dat gebruikers maximaal
twee seconden mogen wachten om een acceptabele QoE te bereiken. In dit
hoofdstuk stellen we vier complementaire componenten voor die geopti-
maliseerd en geintegreerd werden in een uitgebreid raamwerk voor de af-
levering van nieuwsgerelateerde video met beperkte vertraging: (i) server-
side codering met korte videosegmenten; (ij) HTTP/2 server push op de
applicatielaag; (iii) server-side gebruikersprofilering om relevante inhoud
voor een bepaalde gebruiker te identificeren; en (iv) opslag aan clientzijde
om proactief geleverde inhoud te bewaren. Aan de hand van een grote
dataset van een Belgische nieuwsaanbieder, die miljoenen requests voor
tekst- en videogebaseerde artikels bevat, laten we zien dat het voorge-
stelde raamwerk de opstarttijd van de video’s in verschillende scenario’s
met meer dan de helft vermindert, waardoor de gebruikersinteractie ver-
betert en er sneller door de beschikbare video’s gebladerd kan worden.

In Hoofdstuk 4 verleggen we onze focus naar immersieve 360° video.
De meeste providers bieden diensten voor virtual reality aan door middel
van een tweedimensionale weergave van de video, gecombineerd met tra-
ditionele technieken voor video streaming. Omdat slechts een beperkt deel
van de video (i.e., de viewport) door de gebruiker wordt bekeken, wordt
de beschikbare bandbreedte niet optimaal gebruikt. In dit hoofdstuk be-
spreken we daarom de voordelen van ruimtelijke segmentatie van de vi-
deo, wat resulteert in meerdere regio’s binnen de video, die ook wel tegels
genoemd worden. Met behulp van deze methode kan de kwaliteit van elk
van deze tegels worden aangepast aan de netwerkkenmerken en de focus
van de gebruiker, wat leidt tot een hogere QoE. Om zijn volledige poten-
tieel te benutten, stellen we een intuitieve methode voor om de beweging
van het hofd van de gebruiker te voorspellen, en bespreken we twee heu-
ristieken voor het aanpassen van de kwaliteit die rekening houden met de
geintroduceerde ruimtelijke dimensie. Verder introduceren we een nieuwe
feedback loop aan clientzijde, waardoor kwaliteitsbeslissingen gewijzigd
kunnen worden tijdens het downloaden van de vereiste tegels voor een
bepaald videosegment, en bespreken we de voordelen van HTTP /2 server
push voor de aflevering van deze bestanden. Aan de hand van een uit-
gebreide evaluatie tonen we aan dat de voorgestelde methoden resulteren
in een aanzienlijke verbetering van de videokwaliteit, in vergelijking met
state-of-the-art oplossingen.

In Hoofdstuk 5 concentreren we ons op de aflevering van volumetri-
sche media voor immersieve video met zes vrijheidsgraden. Een manier
om dit te realiseren is door objecten vast te leggen via een aantal camera’s
die in verschillende hoeken zijn geplaatst, en op die manier toelaten om

xxii SAMENVATTING

een een zogeheten point cloud te genereren die bestaat uit de locatie van
een groot aantal punten in de driedimensionale ruimte, en hun overeen-
komstige kleur. Het resulterende object kan vervolgens vanuit elke hoek
worden gereconstrueerd, zodat de gebruiker vrij kan bewegen in de im-
mersieve video. In dit hoofdstuk stellen we PCC-DASH voor, een methode
voor het streamen van scenes met meerdere, dynamische point cloud ob-
jecten. We presenteren verschillende heuristieken voor het aanpassen van
de kwaliteit, die informatie over de positie en focus van de gebruiker, de
beschikbare bandbreedte en de bufferstatus van de client gebruiken om
te beslissen over de meest geschikte kwaliteitsrepresentatie van elk object.
Aan de hand van een geémuleerde evaluatie bespreken we de voor- en
nadelen van elke oplossing en belichten we potentiéle uitbreidingen voor
toekomstig werk.

De voorgestelde benaderingen pakken belangrijke uitdagingen aan bij
het leveren van adaptieve videodiensten, wat resulteert in een beperkte
vertraging en een verbeterde aanpassing van de kwaliteit. Dit proefschrift
is evenwel slechts een eerste stap naar een effectieve aflevering van de
diensten van morgen. Hoewel de ontwikkelingen op het vlak van video
streaming de afgelopen jaren aanzienlijk zijn toegenomen, voorspellen we
dat de hoeveelheid onderzoek naar steeds veeleisendere toepassingen ook
in de toekomst zal blijven groeien. Toepassingen voor immersieve video
en de intuitieve bediening van apparaten op afstand zullen de technologie
verder stimuleren en nieuwe uitdagingen voor service providers introdu-
ceren. We kunnen dus stellen dat ons werk nog lang niet af is.

Summary

Ever since the transmission of the first message over a packet-based net-
work, back in October 1969, efficient delivery of packets, content and ser-
vices has been of crucial importance. While research efforts initially mainly
focused on sharing messages and text-based files, video streaming has
quickly become the most dominant application on the Internet. Currently,
content delivery providers such as Netflix and YouTube generate more
than 75% of downstream traffic in the United States, a number which is
expected to grow to 82% in the next few years. To deliver the content to
the end user, HTTP adaptive streaming (HAS) is generally used. In HAS,
the content is encoded using several quality representations, temporally
segmented and stored on one or multiple servers within a content delivery
network. The segment duration is generally between one to ten seconds,
depending on the considered use case. A manifest file is maintained by the
HAS server, which contains metadata describing, among others, different
adaptation sets (each of which is attributed a type of media, such as video,
audio and subtitles), and the available quality representations. Based on
the perceived network conditions, the device characteristics, and the user’s
preferences, the client can then decide on the quality of each of these seg-
ments. Having the ability to adapt the video quality, this approach actively
avoids buffer starvation, and therefore results in smoother playback and a
higher Quality of Experience (QoE) for the end user.

Despite the ability of HAS clients to adapt to their environment, some
challenges remain unsolved. First, solutions often focus on the Quality of
Service (Qo0S), while the true concern should be with the user’s QoE: the
performance of a system should be measured based on how the user ex-
periences the video streaming session, which depends on factors such as
the video quality, the occurrence of playout freezes, the startup time, etc.
Second, video streaming solutions introduce latency through camera cap-
ture, video encoding, server-side storage, network latency and client-side
buffering. Over the last years, however, low-latency interaction has how-
ever become more and more important: with an ever-increasing supply
of content, providers want to enable the user to quickly browse between
videos, starting and stopping playout whenever required. Furthermore,
more interactive applications and use cases are now considered for video
streaming, such as 360° video. Such use cases requires fast reaction of the

xXxiv SUMMARY

client to changes in the network, or to the user’s focus within the video:
when making a sudden head movement, the user might be confronted
with low-quality content because the client had not anticipated this ac-
tion. Third, services need to be fine-tuned and personalized towards the
user. Many service providers use recommendation systems to suggest rele-
vant content, based on the user’s history. This allows the provider to make
relevant suggestions for new content, which results in lower search times
and higher customer satisfaction. Furthermore, personalization is required
to allow services to adapt to the way users interact with the content. Some
users might, for instance, move their head at high speeds within an immer-
sive video, while others focus on a specific region. Finally, services need
to provide sufficient adaptation, not only to the network but also to user
movement, considered video content etc. Especially in the case of immer-
sive video, where spatial segmentation is often considered to increase the
video quality of the visible region, rate adaptation heuristics need to take
into account a whole range of factors, adapting to changes on a time scale
of hundreds of milliseconds. In this dissertation, four research chapters are
included which address these challenges for different use cases.

In Chapter 2, we attempt to reduce the latency for traditional video
streaming solutions. We propose to use a novel HTTP feature that is able
to send data back-to-back, without a need for the client to send a request
for each individual segment. Combining this approach with segments of
sub-second duration, referred to as super-short segments, it is possible to
significantly reduce the startup time and end-to-end delay in HAS live
streaming. We first evaluate the encoding overhead for different segment
durations, and show that resulting values depend on the considered video
content and frame rate. Then, using the most appropriate segment dura-
tion, we evaluate the push-based approach in a multi-client scenario with
highly variable bandwidth and latency, and show that the startup time can
be reduced with 31.2% compared to traditional solutions over HTTP /1.1
in mobile, high-latency networks. Furthermore, the end-to-end delay in
live streaming scenarios can be reduced significantly, while providing the
content at similar video quality.

In Chapter 3, we focus on news-based portals, which provide signif-
icant amounts of multimedia content to accompany news stories and ar-
ticles. To stimulate user engagement with the provided content, such as
searching through a video or browsing between videos, reducing the start-
up time has become more and more important: while the current me-
dian load time is in the order of seconds, research has shown that user
waiting times must remain below two seconds to achieve an acceptable
QokE. In this chapter, we propose four complementary components, which
are optimized and integrated into a comprehensive framework for low-
latency delivery of news-related video content: (i) server-side encoding
with short video segments, (ii) HTTP/2 server push on the application
layer, (iii) server-side user profiling to identify relevant content for a given

SUMMARY XXV

user, and (iv) client-side storage to hold proactively delivered content. Us-
ing a large dataset of a major Belgian news provider, containing millions of
text- and video-based article requests, we show that the proposed frame-
work reduces the videos’ startup time in different mobile network scenar-
ios by more than half, improving user interaction and allowing the user to
quickly skim through available content.

In Chapter 4, we shift our focus to immersive media, and 360° video
specifically. Most providers offer virtual reality streaming services through
a two-dimensional representation of the immersive content, combined with
traditional streaming techniques. However, since only a limited part of the
video (i.e., the field-of-view or viewport) is watched by the user, the avail-
able bandwidth is not optimally used. In this chapter, we therefore discuss
the advantages of spatial segmentation of the video, resulting in multiple
regions or tiles. Using such approach, the quality of each of the resulting
tiles can be adapted to the network characteristics and user movement, re-
sulting in a higher QoE. To unlock its full potential, we propose an intuitive
viewport prediction scheme, and two rate adaptation heuristics which take
into account the newly introduced spatial dimension. Furthermore, we in-
troduce a novel feedback loop at the client-side, which allows us to change
quality decisions whilst downloading the required tiles for a given video
segment, and discuss the advantages of HTTP/2 server push for content
delivery. Through an extensive evaluation, we show that the proposed
approaches result in a significant improvement in terms of video quality,
compared to state-of-the-art solutions.

In Chapter 5, we focus on delivery of volumetric media for immersive
video with six degrees of freedom. One way to realize this is by capturing
objects through a number of cameras positioned in different angles, and
creating a so-called point cloud which consists of the location and color of
a significant number of points in the three-dimensional space. The corre-
sponding object can then be reconstructed from every given angle, allow-
ing the user to freely move around within the immersive video. In this
chapter, we propose PCC-DASH, a standards-compliant means to adap-
tively stream scenes comprising multiple, dynamic point cloud objects.
We present different rate adaptation heuristics which use information on
the user’s position and focus, the available bandwidth, and the client’s
buffer status to decide upon the most appropriate quality representation
of each object. Through an extensive evaluation, we discuss the advan-
tages and drawbacks of each solution, and highlight interesting paths for
future work.

The proposed approaches address important challenges in the delivery
of adaptive video streaming services, resulting in lower latency and im-
proved quality adaptation. This dissertation is, however, only a first step
towards effective delivery of tomorrow’s video streaming solutions. We
predict that, although the developments in the field of video streaming
have increased considerably in the past few years, research for more de-

XXVi SUMMARY

manding use cases will continue to grow. Immersive media and remote
control, especially, will further push technology forward and continue to
introduce new challenges for service providers. One can only conclude
that our work is far from finished.

Introduction

“Remember who you are.”

-The Lion King, 1994

1.1 A Brief History of Video Streaming

In 1994, Disney’s The Lion King was first released. Young and old could go
see the adventure of Simba in theater, and about one year later, buy a copy
on a Video Home System (VHS) cassette. Now, about twenty five years
later, VHS has mostly been replaced by the more recent digital versatile
disc (DVD) and Blu-ray disc alternatives. Over the last decade, however,
even their sales have gone down significantly [1]. The decline of tradi-
tional video media can mostly be attributed to the ever-increasing supply
of content delivery services over the Internet. One notorious example is
Netflix !, the number one video service provider in the United States. This
company, founded in 1997 by Reed Hastings and Marc Randolph, initially
focused on renting and selling DVDs online, delivering all ordered goods
by mail. By the year 2005, the company offered a total of 35000 different
films and shipped around one million DVDs per day. By this time, how-
ever, bandwidth speeds had improved significantly, opening up the possi-
bility of delivering video over the Internet. While Netflix initially planned

1https: / /www.netflix.com

2 CHAPTER 1

to deliver video using a so-called Netflix box, a piece of hardware which
would download a movie overnight, the popularity of YouTube 2 (founded
in 2005 and acquired by Google in 2006) and other streaming services made
the company reconsider, and adopt a streaming concept instead. As of to-
day, the company has 139 million paid subscriptions worldwide, and re-
ports a netto profit of about $1.6 billion per year [2].

How did we get so far? To answer this question, we have to go back
to 1969. In October of this year, Charley Kline, a student at the University
of California in Los Angeles (UCLA), manages to send the first message
over a packet-based network [3]. Although the system crashed during the
attempt, the message "LO" (the first two letters of the intended "LOGIN")
was successfully received on the other end. Over the next decade, more
and more hosts would connect to the Advanced Research Projects Agency
Network (ARPANET), until the network grew to a total of 213 connected
computers. By 1982, the Internet protocol suite (TCP/IP) had been intro-
duced as the standard networking protocol, which is still used today. By
1987, more than 20 000 hosts were connected to the Internet, and by 1991,
the World Wide Web was introduced to the public. The first ever live video
was broadcast in 1993, showing footage of Severe Tire Damage, a band con-
sisting of employees of the DEC Systems Research Center, Xerox PARC and
Apple Computer. A few months later, the first webcam was introduced, ef-
ficiently monitoring the status of the Trojan Room coffee pot in the Univer-
sity of Cambridge. As of 2018, more than 23 billion devices are connected
to the Internet, generating an estimated total of 107 EB (107 million million
million bytes) of data each month [4].

Throughout the years, bandwidth speeds increased significantly: while
the first modems, developed by AT&T in 1962, offered a throughput of
300b/s, speeds increased to 56 kb /s by 1986. Today, most developed coun-
tries report connection speeds well over 18 Mb/s. As these values in-
creased over time, so did the bit rates of streamable videos. The first ever
YouTube video, Me at the Zoo®, came with a frame rate of 15FPS and a
resolution of 144p and 240p only, resulting in bit rates of 61 and 137 kb/s,
respectively. Fourteen years later, 360° immersive videos — videos in which
the user can look around by moving her head — can be streamed at 8K res-
olution, with bit rates well over 50 Mb/s.

How can we provide services that efficiently deal with these types of
videos and bit rates? Generally, a distinction is made between Internet
Protocol Television (IPTV) on the one hand, and over-the-top video stream-
ing on the other. In IPTV, services are offered and managed by a network

Zhttps:/ /www.youtube.com
Shttps:/ /www.youtube.com/watch?v=jNQXACIIVRw

INTRODUCTION 3

provider over a dedicated and managed network. This allows the opti-
mization of services to suit network and end-device capabilities, so that
the Quality of Service (QoS) can be guaranteed. Examples in Belgium in-
clude Telenet* and Proximus®, which offer digital television by means of a
set-top box, a video decoder in the resident’s home. Over-the-top stream-
ing services, however, use the best-effort Internet to deliver the content to
the user. Although the QoS is not guaranteed, this approach is cheaper be-
cause no dedicated network elements are required. Furthermore, no hard-
ware other than the playout device is needed, further reducing the cost and
increasing the ease of use.

Throughout the years, multiple protocols and solutions for video stream-
ing have been proposed. In the early days, most solutions focused on real
time delivery, using e.g., the real time transport protocol (RTP) and the Real
Time Streaming Protocol (RTSP) to transfer the content to the client. These
technologies rely on the User Datagram Protocol (UDP), which achieves
lower latency than the Transmission Control Protocol (TCP), because no
acknowledgments are required and no retransmissions occur. Over time,
however, most providers shifted to approaches based on the Hypertext
Transfer Protocol (HTTP) combined with TCP. Using HTTP allows to reuse
the existing optimized and scalable network infrastructure of the Internet,
while firewall and network address translation (NAT) traversal is guaran-
teed. Generally, three generations of HTTP-based content delivery meth-
ods are distinguished: (i) traditional streaming, (ii) progressive download
and (iii)) HTTP adaptive streaming (HAS). In traditional streaming meth-
ods, data packets are sent at real-time rates only. The server sends enough
data to fill the buffer at the client-side, but no additional content is trans-
ferred when the video is paused or stopped. A well-known example is the
stateless Windows Media HTTP Streaming Protocol (MS-WMSP), which
was introduced in 2006 and is still maintained today [5]. In progressive
download methods, a simple file is downloaded from the server. The ap-
proach is progressive, in that the client can play the video while the down-
load is still in progress. Web servers keep sending data until the download
is complete, contrary to streaming servers that stop sending data when a
certain amount of video is available to the client. A progressive down-
load allows the client to play the video more smoothly, yet is not always
bandwidth-effective: when discarding a video after a mere few seconds, a
lot more data might have been downloaded already.

HAS has been introduced about one decade ago, and has since then be-
come the de facto standard for over-the-top video streaming. An overview

*https:/ /www.telenet.be/
5 https:/ /www.proximus.be/

4 CHAPTER 1

Bandwidth
Bit rate !

3|

]| BD

Time Time

e S (N

Figure 1.1: The concept of HTTP adaptive streaming.

Bit rate

of the general concept is shown in Figure 1.1. In HAS, the content is en-
coded using several quality representations, temporally segmented and
stored on one or multiple servers within a content delivery network. The
segment duration is generally between one to ten seconds, depending on
the considered use case. A manifest file is maintained by the HAS server,
which contains metadata describing, among others, different adaptation
sets (each of which is attributed a type of media, such as video, audio
and subtitles), and the available quality representations. Based on the
perceived network conditions, the device characteristics, and the user’s
preferences, the client can then decide on the quality of each of these seg-
ments [6]. Having the ability to adapt the video quality, this approach ac-
tively avoids buffer starvation, and therefore results in smoother playback
of the requested content and a higher Quality of Experience (QoE) for the
end user [7]. Protocols and interfaces for HAS are defined by the Dynamic
Adaptive Streaming over HTTP (DASH) standard, which defines, among
others, the content of the manifest file or Media Presentation Description
(MPD) [8, 9]. This standard allows compliant players to request and play
content from any HTTP server, increasing reusability, scalability and reach.

1.2 Challenges for HTTP Adaptive Streaming

In 2018, 75% of downstream traffic in the United States consisted of data
related to multimedia delivery. Expectations are that this number will
increase to 82% by 2022, further straining the network [4]. At the same
time, the demands and constraints set by new applications and technolo-
gies are increasing fast: while traditional video-on-demand streaming at
1080p comes with bit rates of around 5Mb/s, high-quality 360° video at
8K resolution requires bit rates of 50 Mb/s and more.

INTRODUCTION 5

Early evaluations of video streaming services generally reported QoS
parameters to define their performance. Effective delivery, however, rather
depends on the user’s QoE. This concept has been defined by Qualinet, a
Network of Excellence, as "the degree of delight or annoyance of the user
of an application or service. It results from the fulfillment of his or her ex-
pectations with respect to the utility and/or enjoyment of the application
or service in the light of the user’s personality and current state”, a descrip-
tion which has later been adopted by the International Telecommunication
Union [10]. This definition indicates that the performance of the service
strongly depends on how the user experiences the service, which depends
on multiple factors, including the video quality, the occurrence of playout
freezes, the startup time, etc.

Measuring the user’s satisfaction, however, requires subjective evalua-
tions. These are expensive and time-consuming, and should be repeated
for every considered scenario and parameter configuration. For this rea-
son, a large number of models have been proposed throughout the years,
which estimate the subjective QoE based on objective measurements. These
models not only allow service providers to evaluate and compare different
configurations in a scalable way, but also allow to identify key indicators
for the QoE. Nevertheless, these models are scenario-dependent and gen-
erally rely on certain assumptions. In this work, we will focus on the opti-
mization of individual indicators, rather than a specific model. Below, we
list three important challenges for HAS, each of which is related to one or
more of these indicators.

Challenge #1: Allow low-latency interaction with the provided con-
tent, both before and during video streaming.

Over the last years, low-latency interaction has become more impor-
tant. With an ever-increasing supply of content, providers want to enable
the user to quickly browse between videos, starting and stopping playout
whenever required. Furthermore, more interactive use cases are now con-
sidered for video streaming, such as 360° video. When immersive media
is considered, the user has the freedom to move her head and focus on
a specific region, which is referred to as the field-of-view. While current
solutions typically download the whole video at the same quality, some
solutions distinguish between different regions. Using appropriate encod-
ing schemes, which will be discussed later in this dissertation, the quality
of relevant regions can be increased significantly. Such an approach, how-
ever, requires fast reaction to changes in the position of the user’s head:
when the user makes a sudden movement, she might be confronted with
low-quality content because the client had not anticipated this action.

6 CHAPTER 1

Challenge #2: Personalize the provided content and services to the
targeted end user.

Most content providers deal with a huge amount of content. While
Netflix has a limited content catalog (e.g., around 5600 titles in the US),
YouTube currently deals with more than seven billion videos. While some
content might be relevant to a given user, most of it is not. Therefore,
content providers spend a lot of effort on personalizing the platform to
the targeted user. Both Netflix and YouTube, and many other providers
with them, use recommendation systems, which attempt to build a pro-
file based on the user’s viewing history. This allows the provider to make
relevant suggestions for new content, which results in lower search times
and higher customer satisfaction. Aside from recommending the right con-
tent, personalization is also required to allow services to adapt to the way
users interact with the content. In an immersive video, for instance, users
might look around at high speeds, while others stay still and focus on a
specific region within the video. A different optimization strategy might
be required for each of these users, maximizing the user’s satisfaction in
entirely different ways.

Challenge #3: Adapt the quality of the requested content to network
characteristics, user movement and the considered video content.

One of the key challenges to video streaming is adapting to changes
in the network and the user’s movement, in order to provide the content
at the most relevant video quality. To this end, an adept rate adaptation
heuristic should be used at the client-side, which makes decisions on the
quality representation for each of the requested media objects. In tradi-
tional video streaming, rate adaptation occurs on the temporal level only,
defining the quality for each of the different segments, which are typically
requested back-to-back. When tile-based solutions are considered, or when
multiple objects within an immersive scene can be distinguished, an addi-
tional spatial dimension is added to the decision-making process. Taking
into account this new dimension is not a straightforward task, since it re-
quires precise monitoring of the perceived bandwidth, the user’s move-
ment, the buffer status, the file size of the requested content, etc.

1.3 Dissertation Outline

This doctoral dissertation is comprised of four research-focused chapters
and one additional appendix. Each research-focused chapter deals with
a unique use case, tackling one or more challenges related to HAS (see
Table 1.1). The content of each chapter is briefly discussed below.

INTRODUCTION 7

Table 1.1: The four different use cases discussed in this dissertation, and the chal-
lenges they address.

Low-Latency | Personalization | Adaptation

Traditional video X

News-based video X
360° video X
X

Volumetric media

Chapter 2 — Traditional Video

Despite the ability of HAS to deal with changing network conditions, a low
average quality and a large camera-to-display delay are often observed in
live streaming scenarios. This is a consequence of intermediate steps, such
as video capture and processing, video encoding and server-side storage.
This can be detrimental for the QoE, which suffers when low-quality con-
tent is presented to the user, or when events are spoiled by other parties
(e.g., a goal is scored and other viewers are celebrating through chat).

In Chapter 2, we propose to use a novel HTTP feature that is able to
deliver data back-to-back, without a need for the client to send a request
for each individual segment. Combining this approach with segments of
sub-second duration, referred to as super-short segments, it is possible to
significantly reduce the startup time and end-to-end delay in HAS live
streaming. In this chapter, we first evaluate the encoding overhead for dif-
ferent segment durations, and show that resulting values depend on the
considered video content and frame rate. Then, using the most appropri-
ate segment duration, we evaluate the push-based approach in a multi-
client scenario with highly variable bandwidth and latency, and show that
the startup time can be reduced with 31.2% compared to traditional solu-
tions over HTTP/1.1 in mobile, high-latency networks. Furthermore, the
end-to-end delay in live streaming scenarios can be significantly reduced,
while providing the content at similar video quality.

Chapter 3 — News-Based Video

News-based websites and portals provide significant amounts of multime-
dia content to accompany news stories and articles. In this context, HAS is
generally used to deliver video over the best-effort Internet. To stimulate
user engagement with the provided content, such as searching through a
video or browsing between videos, reducing the startup delay has become
more and more important: while the current median load time is in the
order of seconds, research has shown that user waiting times must remain

8 CHAPTER 1

below two seconds to achieve an acceptable QoE. Low-latency solutions
are thus required, and the principles presented in Chapter 2 can be applied
again. On top of that, personalization can help define content preferred by
the user, so that (the first part of) relevant videos can be prefetched before
the user requests the actual content.

In Chapter 3, four complementary components are integrated into a
comprehensive framework for low-latency delivery of news-related video
content: (i) server-side encoding with short video segments, (ii) HTTP/2
server push on the application layer, (iii) server-side user profiling to iden-
tify relevant content for a given user, and (iv) client-side storage to hold
proactively delivered content. Using a large dataset of a major Belgian
news provider, containing millions of text- and video-based article requests,
we show that the proposed framework reduces the videos’ startup time in
different mobile network scenarios by more than half, improving user in-
teraction and allowing the user to quickly skim through available content.

Chapter 4 - 360° Video

The increasing popularity of head-mounted devices and 360° video cam-
eras allows content providers to provide virtual reality video streaming
over the Internet, using a two-dimensional representation of the immersive
content combined with traditional streaming techniques. However, since
only a limited part of the video (i.e., the viewport) is watched by the user,
the available bandwidth is not optimally used. For this purpose, tile-based
video can be used, which allows us to adapt the quality of each of the re-
sulting tiles to the network characteristics and user’s focus. This requires
not only appropriate quality adaptation which takes into account the in-
troduced spatial dimension, but also adept prediction of the movement of
the user’s head. Since this movement can be volatile, changes should be
detected on a short time scale, resulting in a need for low-latency solutions.

In Chapter 4, we address the above challenges by means of a content-
agnostic viewport prediction scheme (i.e., a scheme which does not take
into account the content of the video, but only the movement of the user’s
head), and two rate adaptation heuristics which take into account the addi-
tonal spatial dimension. Furthermore, we introduce a novel feedback loop
within the client’s viewport prediction and rate adaptation schemes, which
allows us to change quality decisions whilst downloading the required tiles
for a given video segment, and discuss the advantages of HTTP/2 server
push for content delivery. Through an extensive evaluation, we show that
the proposed approaches result in a significant improvement in terms of
video quality, compared to state-of-the-art solutions.

INTRODUCTION 9

Chapter 5 — Volumetric Media

While the above solution allows the user to freely move her head, her loca-
tion is fixed by the camera’s position within the scene. Recently, however,
an increased interest has been shown for free movement within immer-
sive scenes, referred to as six degrees of freedom (6DoF), in which the user
can both walk and look around. One way to realize this is by capturing
objects through a number of cameras positioned in different angles, and
creating a so-called point cloud. In its simplest form, a point cloud consists
of a significant amount of six-tuples, defining each point’s location in the
three-dimensional space and its corresponding red, green and blue (RGB)
color. The resulting output is referred to as volumetric media. Although
capturing a human object requires around 5 Gb /s of data for a frame rate of
30 FPS, MPEG’s reference encoder now allows to compress dynamic point
cloud objects to bit rates in the order of 3 to 55Mb/s, allowing feasible
delivery over today’s mobile networks.

While preliminary work exists on the delivery of single point cloud ob-
jects, no work has been done on quality adaptation for scenes consisting
of multiple objects. Similar to traditional 360° video, considering multi-
ple objects introduces a new spatial dimension which should be taken into
account. In Chapter 5, we propose PCC-DASH, a standards-compliant
means to adaptively stream scenes comprising multiple, dynamic point
cloud objects. We present a number of rate adaptation heuristics which
use information on the user’s position and focus, the available bandwidth,
and the client’s buffer status to decide upon the most appropriate quality
representation of each object. Through an extensive evaluation, we discuss
the advantages and drawbacks of each solution, and highlight interesting
paths for future work.

Appendix A — Adaptive Streaming over 4G/LTE Networks

Evaluations of the proposed approaches should include relevant scenarios
with high variability and significant network latency. In Appendix A, we
first discuss the merits of HTTP/2 server push for HAS, and analyze the
induced bit rate overhead for HEVC-encoded video segments with a sub-
second duration. We show that the proposed approach results in a higher
video quality and lower freeze time, and allows to reduce the live delay
compared to traditional solutions over HTTP/1.1. More importantly, how-
ever, we then present the details of a measurement study on the available
bandwidth in 4G/LTE networks within the city of Ghent, Belgium. The
results of this study are used in the evaluations of Chapters 3, 4 and 5.

10 CHAPTER 1

1.4 Publications

The results obtained during this PhD research have been published in sci-
entific journals and presented at a series of international conferences and
workshops. The following list provides an overview of these publications.

1.4.1 Publications in International Journals

[1] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. Ron-
dao Alface, T. Bostoen, and E De Turck. HTTP/2-Based Adaptive
Streaming of HEVC Video over 4G/LTE Networks. Published in IEEE
Communications Letters, vol. 20, no. 11, p. 2177-2180, 2016.

[2] J. van der Hooft, M. Claeys, N. Bouten, T. Wauters, J. Schon-
wilder, A. Pras, B. Stiller, M. Charalambides, R. Badonnel, J. Serrat,
C. R. Paula dos Santos, and F. De Turck. Updated Taxonomy for the
Network and Service Management Research Field. Published in the Jour-
nal of Networks and Systems Management, vol. 26, no. 3, p. 790-808,
2018.

[3] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
and F. De Turck. An HTTP/2 Push-Based Approach for Low-Latency Live
Streaming with Super-Short Segments. Published in the Journal of Net-
works and Systems Management, vol. 26, no. 1, p. 51-78, 2018.

[4] S. Petrangeli, J. van der Hooft, T. Wauters, and F. De Turck. Qual-
ity of Experience-Centric Management of Adaptive Video Streaming Ser-
vices: Status and Challenges. Published in Transactions on Multimedia
Computing Communications and Applications, vol. 14, no. 2, p. 31:1-
31:29, 2018.

[5] S. Petrangeli, D. Pauwels, J. van der Hooft, M. Ziak, J. Slowack,
T. Wauters, and F. De Turck. A Scalable WebRTC-Based Framework
for Remote Video Collaboration Applications. Published in Multimedia
Tools and Applications, p. 1-34, 2018.

[6] J. van der Hooft, C De Boom, S. Petrangeli, T. Wauters, and
FE. De Turck. Performance Characterization of Low-Latency Adaptive
Streaming from Video Portals. Published in IEEE Access, vol. 6, no. 1,
p- 43039-43055, 2018.

[7] J. van der Hooft, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck,
T. Wauters, S. Latré, and F. De Turck. Clustering-Based Quality Selec-
tion Heuristics for HTTP Adaptive Streaming over Cache Networks. Pub-

INTRODUCTION 11

(8]

[9]

lished in the International Journal on Network Management, vol. 28,
no. 6, 2018.

J. van der Hooft, M. Torres Vega, S. Petrangeli, T. Wauters, and
F. De Turck. Tile-Based Adaptive Streaming for Virtual Reality Video. In
revision for publication in ACM Transactions on Multimedia Com-
puting, Communications, and Applications, 2019.

R. I. Tavares da Costa Filho, M. Caggiani Luizelli, S. Petrangeli,
M. Torres Vega, J. van der Hooft, T. Wauters, F. De Turck, and
L. Paschoal Gaspary. Dissecting the Performance of VR Video Stream-
ing Through the VR-EXP Experimentation Platform. Submitted to ACM
Transactions on Multimedia Computing, Communications, and Ap-
plications, 2019.

1.4.2 Publications in International Conferences

(1]

(2]

(3]

[4]

[5]

J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, F. De Turck, A
Learning-Based Algorithm for Improved Bandwidth-Awareness of Adaptive
Streaming Clients. Published in Proceedings of the IFIP/IEEE Inter-
national Symposium on Integrated Network Management, Ottawa,
Canada, 2015.

R. Huysegems, J. van der Hooft, T. Bostoen, P. Rondao Alface, S. Pe-
trangeli, T. Wauters, F. De Turck, HTTP/2-Based Methods to Improve the
Live Experience of Adaptive Streaming. Published in Proceedings of the
ACM Multimedia Conference, Brisbane, Australia, 2015.

J. van der Hooft, S. Petrangeli, N. Bouten, T. Wauters, R. Huysegems,
T. Bostoen, F. De Turck, An HTTP/2 Push-Based Approach for SVC
Adaptive Streaming. Published in Proceedings of the IEEE/IFIP Net-
work Operations and Management Symposium, Istanbul, Turkey,
2016.

S. Petrangeli, J. van der Hooft, T. Wauters, R. Huysegems, P. Ron-
dao Alface, T. Bostoen, F. De Turck, Live Streaming of 4K Video over the
Internet. Published in Proceedings of the ACM Multimedia Systems
Conference, Klagenfurt, Austria, 2016.

D. Pauwels, J. van der Hooft, S Petrangeli, T. Wauters,
D. De Vleeschauwer, F. De Turck, A Web-Based Framework for Fast
Synchronization of Live Video Players. Published in Proceedings of the
IFIP/IEEE International Symposium on Integrated Network Man-
agement, Lisboa, Portugal, 2017.

12

CHAPTER 1

(6]

[7]

(8]

[9]

[10]

(11]

(12]

(13]

J. van der Hooft, S Petrangeli, T. Wauters, R. Rahman, N. Verzijp,
R. Huysegems, T. Bostoen, F. De Turck, Analysis of a Large Multimedia-
Rich Web Portal for the Validation of Personal Delivery Networks. Pub-
lished in Proceedings of the IFIP/IEEE International Symposium on
Integrated Network Management, Lisboa, Portugal, 2017.

S. Petrangeli, D. Pauwels, J. van der Hooft,]. Slowack, T. Wauters,
E. De Turck, Dynamic Video Bitrate Adaptation for WebRTC-Based Re-
mote Teaching Applications. Published in Proceedings of the IEEE /IFIP
Network Operations and Management Symposium, Taipei, Taiwan,
2018.

J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, F. De Turck,
An HTTP/2 Push-Based Framework for Low-Latency Adaptive Streaming
Through User Profiling. Published in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium, Taipei, Taiwan,
2018.

R. L. T. da Costa Filho, M. Torres Vega, M. Caggiani Luizelli,
J. van der Hooft, S. Petrangeli, T. Wauters, F. De Turck,
L. Paschoal Gaspary, Predicting the Performance of Virtual Reality
Video Streaming in Mobile Networks. Published in Proceedings of
the ACM Multimedia Systems Conference, Amsterdam, The Nether-
lands, 2018.

S. Petrangeli, D. Pauwels, J. van der Hooft,]J. Slowack, T. Wauters,
F. De Turck, Improving Quality and Scalability of WebRTC Video Collabo-
ration Applications. Published in Proceedings of the ACM Multimedia
Systems Conference, Amsterdam, The Netherlands, 2018.

J. van der Hooft, D. Pauwels, C. De Boom, S. Petrangeli, T. Wauters,
F. De Turck, Low-Latency Delivery of News-Based Video Content. Pub-
lished in Proceedings of the ACM Multimedia Systems Conference,
Amsterdam, The Netherlands, 2018.

M. Torres Vega, T. Mehmli, J. van der Hooft, T. Wauters, F. De Turck,
Enabling Virtual Reality for the Tactile Internet: Hurdles and Opportu-
nities. Published in Proceedings of the International Workshop on
High-Precision Networks Operations and Control, Rome, Italy, 2018.

J. van der Hooft, M. Torres Vega, S. Petrangeli, T. Wauters,
FE. De Turck, Quality Assessment for Adaptive Virtual Reality Video
Streaming: A Probabilistic Approach on the User’s Gaze. Published in
Proceedings of the International Workshop on Quality of Experience
Management, Paris, France, 2019.

INTRODUCTION 13

[14] J. van der Hooft, M. Torres Vega, S. Petrangeli, T. Wauters,
FE. De Turck, Optimizing Adaptive Tile-Based Virtual Reality Video
Streaming. Published in Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management, Washington DC,
USA, 2019.

[15] M. Torres Vega, J. van der Hooft,]. Heyse, S. Petrangeli,
E. De Backere, T. Wauters, F. De Turck, Exploring New York in 8K -
An Adaptive Tile-based Virtual Reality Video Streaming Experience. Ac-
cepted for publication in Proceedings of the ACM Multimedia Sys-
tems Conference, Amherst, USA, 2019.

[16] J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, H. Hell-
wagner, Towards 6DoF HTTP Adaptive Streaming Through Point Cloud
Compression. Submitted to the ACM Multimedia Conference, Nice,
France, 2019.

14 CHAPTER 1

References

[1] Statista. Electronic Video Sales in the United States 2014-2018, by Type,
2019. Available from: https://www.statista.com/statistics/788096/
video-sales-revenue/.

[2] Netflix. Shareholder Letter - Q4 2018, 2019. Available from:
https:/ /s22.q4cdn.com /959853165/files /doc_financials/quarterly_
reports/2018/q4/01/FINAL-Q4-18-Shareholder-Letter.pdf.

[3] K. A. Zimmermann and]. Emspak. Internet History Timeline:
ARPANET to the World Wide Web, 2017. Available from: https://www.
livescience.com/20727-internet-history.html.

[4] Cisco. Cisco Visual Networking Index: Forecast and Trends,
2017-2022, 2017. Available from: https://www.livescience.com/
20727-internet-history.html.

[5] Windows. Windows Media HTTP Streaming Protocol, 2019. Avail-
able from: https://docs.microsoft.com/en-us/openspecs/windows_
protocols/ms-wmsp /8f34d1£f-237d-4acd-939d-63552c97422c.

[6] A.Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann.
A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP.
IEEE Communications Surveys Tutorials, 21(1):562-585, 2019.

[7] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofifeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys Tutorials, 17(1):469-492, 2015.

[8] T. Stockhammer. Dynamic Adaptive Streaming over HI'TP: Standards
and Design Principles. In Proceedings of the 2nd ACM Conference on
Multimedia Systems, pages 133-144, New York, 2011. ACM.

[9] 1. Sodagar. The MPEG-DASH Standard for Multimedia Streaming over
the Internet. IEEE MultiMedia, 18(4):62-67, 2011.

[10] K. Brunnstrom, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M. Gar-
cia, T. Hofifeld, S. Jumisko-Pyykko, C. Keimel, M. L, et al. Qua-
linet White Paper on Definitions of Quality of Experience. Technical re-
port, Qualinet, 2013. Available from: https://hal.archives-ouvertes.
fr/hal-00977812 /document.

https://www.statista.com/statistics/788096/video-sales-revenue/
https://www.statista.com/statistics/788096/video-sales-revenue/
https://s22.q4cdn.com/959853165/files/doc_financials/quarterly_reports/2018/q4/01/FINAL-Q4-18-Shareholder-Letter.pdf
https://s22.q4cdn.com/959853165/files/doc_financials/quarterly_reports/2018/q4/01/FINAL-Q4-18-Shareholder-Letter.pdf
https://www.livescience.com/20727-internet-history.html
https://www.livescience.com/20727-internet-history.html
https://www.livescience.com/20727-internet-history.html
https://www.livescience.com/20727-internet-history.html
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wmsp/8f34d1ff-237d-4acd-939d-63552c97422c
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wmsp/8f34d1ff-237d-4acd-939d-63552c97422c
https://hal.archives-ouvertes.fr/hal-00977812/document
https://hal.archives-ouvertes.fr/hal-00977812/document

An HTTP /2 Push-Based Approach
for Low-Latency Live Streaming
with Super-Short Segments

“Now you're looking for the secret. But you won'’t find it because of course, you're
not really looking. You don’t really want to work it out. You want to be fooled.”

—The Prestige, 2006

As discussed in Chapter 1, a low video quality and a large camera-to-display
delay are often observed in live streaming scenarios. In this chapter, we propose
a push-based approach for HAS, in which HTTP/2’s push feature is used to ac-
tively push segments from server to client. This allows the server to send data
back-to-back, without the client requesting each individual segment. Combining
this approach with segments of sub-second duration, it is possible to significantly
reduce the startup time and end-to-end delay. First, we evaluate the encoding
overhead for different segment durations, and show that resulting values depend
on the considered video content and frame rate. Then, using the most appropriate
segment duration, we show that the startup time can be reduced with 31.2% com-
pared to traditional solutions over HTTP/1.1 in mobile, high-latency networks.
Furthermore, the end-to-end delay in live streaming scenarios can be reduced with
4 s, while providing the content at similar video quality.

* % x

16 CHAPTER 2

J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems,
T. Bostoen, and F. De Turck

Published in the Journal of Networks and Systems Management, vol. 26,
no. 1, p. 51-78, 2018

vspace(.38cm

Abstract Over the last years, streaming of multimedia content has become
more prominent than ever. To meet increasing user requirements, the con-
cept of HTTP adaptive streaming (HAS) has recently been introduced. In
HAS, video content is temporally divided into multiple segments, each
encoded at several quality levels. A rate adaptation heuristic selects the
quality level for every segment, allowing the client to take into account the
observed available bandwidth and the buffer filling level when deciding
the most appropriate quality level for every new video segment. Despite
the ability of HAS to deal with changing network conditions, a low aver-
age quality and a large camera-to-display delay are often observed in live
streaming scenarios. In the meantime, the HTTP /2 protocol was standard-
ized in February 2015, providing new features which target a reduction
of the page loading time in web browsing. In this chapter, we propose a
novel push-based approach for HAS, in which HTTP/2’s push feature is
used to actively push segments from server to client. Using this approach
with video segments with a sub-second duration, referred to as super-short
segments, it is possible to reduce the startup time and end-to-end delay in
HAS live streaming. Evaluation of the proposed approach, through emula-
tion of a multi-client scenario with highly variable bandwidth and latency,
shows that the startup time can be reduced with 31.2% compared to tra-
ditional solutions over HTTP/1.1 in mobile, high-latency networks. Fur-
thermore, the end-to-end delay in live streaming scenarios can be reduced
with 4 s, while providing the content at similar video quality.

2.1 Introduction

Over the last years, delivery of multimedia content has become more promi-
nent than ever. Particularly, video streaming applications are currently re-
sponsible for more than half of the Internet traffic [1]. To improve video
streaming over the best-effort Internet, HTTP adaptive streaming (HAS)
has recently been introduced. As shown in Figure 2.1, video content is
temporally divided into segments with a typical length of 1 to 10 seconds,
each encoded at multiple quality levels. Video segments are requested by
the HAS client, equipped with a rate adaptation heuristic to select the best
quality level based on criteria such as the perceived bandwidth and the

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 17

l Rate adaptation T
heuristic
Video Video
encoding _ _R_eﬂlleit (sigi) decoding
Video l;|
segmentation) . - —> Buffer
Server TTTSTTTTST-TC P (Client

Segment (s;,q;)

Figure 2.1: The concept of HTTP adaptive streaming.

video player’s buffer filling level. The ultimate objective of this heuristic is
to optimize the Quality of Experience (QoE) perceived by the user, which
depends among others on the average video quality, the frequency of qual-
ity changes and the occurrence of playout freezes [2]. The client decodes
all incoming segments and plays them out in linear order.

This approach comes with a number of advantages. For the over-the-
top provider, video delivery is cheaper because the existing HTTP infras-
tructure for web surfing can be reused. Better scalability is guaranteed,
since quality selection is performed by clients in a distributed way. The
user generally perceives a smoother playback experience, because the client
adapts the requested bit rate to network conditions; when the perceived
bandwidth drops for instance, a lower quality level can be selected to pre-
vent buffer starvation. Because of these advantages, major players such
as Microsoft, Apple, Adobe and Netflix massively adopted the adaptive
streaming paradigm and proposed their own rate adaptation heuristics.
As most HAS solutions use the same architecture, the Motion Picture Ex-
pert Group (MPEG) proposed Dynamic Adaptive Streaming over HTTP
(DASH), a standard which defines the interfaces and protocol data for
adaptive streaming [3].

Despite the many advantages brought by HAS, several inefficiencies
still have to be solved in order to improve the QoE perceived by the user
in live video streaming scenarios. For instance, the camera-to-display de-
lay, which is the delay between capturing an event and its playout on the
client’s display, is very important in a live video scenario. In current HAS
deployments however, this delay is in the order of tens of seconds. This
is because encoding video in real-time is a computationally expensive and
time consuming process, a large buffer at the client is generally used to
prevent playout freezes and the server only sends a new video segment
once a request is issued by the client. One possible way to lower this de-

18 CHAPTER 2

lay is to use segments with a sub-second duration, henceforth referred to
as super-short segments: less time is required for encoding at the head-end
and transport over the network [4], while a lower temporal buffer size can
be used. The rate adaptation heuristic can also adapt faster to changing
network conditions, preventing buffer starvation when the available band-
width drops. Unfortunately, several disadvantages to this approach exist.
First, as every segment must start with an Instantaneous Decoder Refresh
(IDR) frame to make it independent of other segments, a significant encod-
ing overhead can be introduced [5]. Second, a larger number of HTTP GET
requests are required to retrieve the segments, resulting in a larger network
and server overhead. Moreover, at least one extra round-trip time (RTT) cy-
cle is lost between subsequent requests, significantly reducing bandwidth
utilization when the RTT is relatively high compared to the segment dura-
tion. This problem mainly arises in mobile networks, where the RTT can
vary significantly, depending on the network carrier and the type of con-
nection [6]. Furthermore, factors such as the type of WiFi network and the
distance between client and server, have a possible impact on the RTT in
the order of 100ms [7]. As a consequence, it is typically infeasible to use
segment durations below the one second range, and the resulting camera-
to-display delay is in the order of tens of seconds. In this chapter how-
ever, we introduce a novel technique to use super-short segments, using
the push feature of the recently standardized HTTP/2 protocol.

Early 2012, the Internet Engineering Task Force (IETF) httpbis working
group started the standardization of HTTP/2 to address a number of de-
ficiencies in HTTP/1.1 [8, 9]. The new HTTP/2 standard was published
in February 2015, and is now supported by major browsers such as Google
Chrome, Firefox and Internet Explorer [10, 11]. The main focus of this stan-
dard is to reduce the latency in web delivery, using three new features that
provide the possibility to terminate the transmission of certain content, pri-
oritize more important content and push content from server to client. In
earlier work, we proposed a number of HTTP /2-based techniques that can
improve the QoE in HAS, and particularly in live video streaming [12].
We mainly focused on a push-based approach, in which video segments
are actively pushed from server to client in order to avoid idle RTT cycles.
An overview of first results was provided for a fixed bandwidth scenario,
showing that the approach is capable of significantly reducing the startup
and end-to-end delay in high-RTT networks. In this work, however, we fo-
cus on the application of these techniques in mobile networks, where high
variability in the available bandwidth is generally perceived. The adoption
of our initially proposed approach is not straightforward in this case, be-
cause it assumes that pushed segments are delivered within a certain time

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 19

interval. This assumption no longer holds when the available bandwidth
is highly variable and sudden bandwidth drops occur. We therefore pro-
pose an improved technique which allows the deployment of a push-based
approach in mobile networks, effectively using HTTP/2’s newest features.

The contributions of this work are three-fold. First, we introduce a
novel push-based approach, discussing its advantages for live video stream-
ing in HAS. We show that in high-RTT networks, the startup and end-to-
end delay can be significantly reduced, while a higher bandwidth utiliza-
tion can be achieved. Second, we perform a detailed analysis on the encod-
ing overhead for super-short segments, with relevant factors including the
frame rate, the GOP length and the type of content. The trade-off between
high responsiveness and a higher overhead is discussed, and a suitable
segment duration is selected. Third, we present results from an extensive
evaluation to characterize the gain of the proposed approach compared to
state-of-the-art HAS over HTTP/1.1. Results are reported for a multi-client
setup with variable bandwidth and latency, illustrating possible gains in
mobile, high-RTT networks.

The remainder of this chapter is structured as follows. Section 2.2 gives
an overview of related work, focusing both on HAS and HTTP/2. The pro-
posed push-based solution is presented in Section 2.3, followed by a dis-
cussion on the encoding overhead for super-short segments in Section 2.4.
Detailed evaluation results on the push-based approach are provided in
Section 2.5, before coming to final conclusions in Section 2.6.

2.2 Related Work

2.21 HTTP Adaptive Streaming

Techniques to improve the QoE perceived by the user for HAS services can
be divided in client-based, server-based and network-based solutions [13].
A number of client-based solutions have recently been proposed in liter-
ature. Benno et al. propose a more robust rate adaptation heuristic for
wireless live streaming [14]. By averaging the measured bandwidth over
a sliding window, fluctuations are smoothed out, allowing the client to se-
lect a quality level that is sustainable and avoids oscillations. Petrangeli
et al. propose a rate adaptation heuristic that strongly focuses on a new
model for the QoE, taking into account the average video quality, its stan-
dard deviation and the impact of freezes in the decision taking process [15].
By expanding the heuristic to take into account a hierarchical fairness sig-
nal, fairness among clients can be induced without explicit communication
between peers. Menkovski et al. propose the use of the SARSA(A) tech-

20 CHAPTER 2

nique at the client-side to select the most appropriate quality level, based
on the estimated bandwidth, the buffer filling and the position in the video
stream [16]. Claeys et al. propose the use of a Q-learning algorithm in the
rate adaptation heuristic, based on the estimated bandwidth and the buffer
filling [17]. Results show that the client outperforms other deterministic
algorithms in several network environments. Many other rate adaptation
heuristics exist, but we refer to a survey by Seufert et al. for a more exten-
sive view on the matter [13]. The above research attempts to increase the
QoE through more intelligent client-side decisions, either increasing the
average video quality, reducing the amount of switches or the occurrence
of playout freezes for video on demand (VoD). In contrast, this research
focuses on a reduction of the startup time and end-to-end delay for live
streaming scenarios, taking into account the average video quality and the
duration of playout freezes. Furthermore, the proposed approach is more
general in nature: it can be extended to work on top of any existing rate
adaptation heuristic.

Server-side solutions typically focus on encoding schemes for HAS [13].
The H.264/AVC codec is most widely used for video streaming, although
it requires the server and intermediate caches to store multiple representa-
tions of the same video. This generally results in a storage overhead, in-
creased bandwidth requirements and reduced caching efficiency. As sug-
gested by Sdnchez et al., the adoption of scalable video coding (SVC) in
HAS offers a solution to this problem [18]. In SVC, redundancy is reduced
because every quality level is constructed as an enhancement of the lower
quality level. In the encoding process, lower quality layers are retrieved
from a high-quality video bitstream by lowering the spatial or temporal
resolution, the video quality signal or a combination thereof. Starting from
the lowest quality level, called the base layer, the client can decode higher
quality levels in combination with the lower layers. Although SVC pro-
vides an effective means to reduce content redundancy, it does introduce
an encoding overhead of about 10% per layer. Since multiple requests are
required to retrieve a single video segment, SVC-based solutions are even
more susceptible to high RTTs. In addition, the commercial availability of
SVC encoders and decoders often poses a problem. For these reasons, the
application of SVC-encoded content in HAS is often questioned. In this
chapter, we focus on AVC-encoded content only.

Other server-side solutions exist as well. Akhshabi at al. propose server-
based traffic shaping to reduce video quality oscillations at the client [19].
Their evaluations show a major reduction in terms of instability, practi-
cally stabilizing competing clients without a significant utilization loss. De
Cicco et al. propose an approach based on feedback control, providing a

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 21

Quality Adaptation Controller centralized at the server-side [20]. Based
on a predefined target level, this controller attempts to keep the TCP send
buffer at a bit rate close to the available bandwidth. Although the authors
show that results are promising, the continuous bit rate control leads to
a large, non-scalable workload at the server-side and does not take into
account the client’s buffer filling. In our proposed approach, quality deci-
sions are located at the client, resulting in a distributed, scalable solution.

Network-based approaches often target IPTV solutions, where a ded-
icated network is used to provide the content to the user. Network ele-
ments are used to either optimize the QoE of single users, or to optimize
the global QoE by providing fairness among clients. Bouten et al. avoid
suboptimal distribution by introducing intelligence in the network that can
override the client’s local quality decisions [21]. In more recent work, the
same authors use Differentiated Services (DiffServ) to give priority to the
base layer segments in SVC [22]. As a result, the SVC-based client is more
robust to video freezes, even when the total buffer size is decreased signif-
icantly to reduce the end-to-end delay for live video streaming. Petrangeli
et al. suggest an approach in which each client learns to select the most ap-
propriate quality level, maximizing a reward based both on its own QoE
and on the QoE perceived by other clients [23]. To this end, a coordination
proxy estimates all perceived rewards and generates a global signal that
is sent periodically to all clients. Without explicit communication among
agents, the algorithm is able to outperform both Microsoft Smooth Stream-
ing (MSS) and the algorithm proposed by Claeys et al. in a multi-client
scenario [17]. More recently, the same authors propose priority-based de-
livery of HAS video [24]. In their approach, an OpenFlow controller is used
to prioritize segments for clients which are close to buffer starvation. An
extensive evaluation shows that their approach allows to reduce the total
freeze time and frequency with up to 75%. Schierl et al. apply SVC-based
streaming in a network environment with support for graceful degrada-
tion of the video quality when the network load increases [25]. The au-
thors argue the need for Media Aware Network Elements (MANEs), capa-
ble of adjusting the SVC stream based on a set of policies specified by the
network provider. More recently, MPEG proposed Server and Network
Assisted DASH (SAND) [26]. In the suggested approach, a bi-directional
messaging plane is used between the clients and other so-called DASH-
Aware Network Elements (DANESs), in order to carry both operational and
assistance information. In this way, the client can request the network to
provide guaranteed bit rates for the video streaming session. Finally, La-
tré et al. propose an in-network rate adaptation heuristic, responsible for
determining which SVC quality layers should be dropped, in combination

22 CHAPTER 2

with a Pre-Congestion Notification (PCN) based admission control mech-
anism [27]. In contrast to these works, this chapter considers over-the-top
video streaming only. Therefore, no extra middlebox functionality is re-
quired for the proposed approach.

2.2.2 The HTTP/2 Protocol

The new HTTP/2 standard was published as an IETF RFC in February
2015, mainly focusing on the reduction of latency in web delivery. The first
draft for this protocol was based on SPDY, an open networking protocol
developed primarily by Google [28]. Using this protocol, an average re-
duction of up to 64% was observed for the page load time. Other studies
show that the mere replacement of HTTP by SPDY helps only marginally.
Cardaci et al. evaluate SPDY over high latency satellite channels [29]. On
average, SPDY only slightly outperforms HTTP. Erman et al. provide a de-
tailed measurement study to understand the benefits of using SPDY over
cellular networks [30]. They report that SPDY does not clearly outperform
HTTP due to cross-layer dependencies between TCP and the cellular net-
work technology. Similar results are reported by Elkhatib et al., who con-
clude that SPDY may both decrease or increase the page load time [31].
This is a consequence of the fact that SPDY’s multiplexed connections last
much longer than HTTP’s, making SPDY more susceptible to packet loss.
Similarly, Wang et al. show that SPDY can either reduce or increase the
load time of web pages [32]. They conclude that next to a careful con-
figuration of the TCP protocol, a reduction of the page load time may be
achieved by changing the page load process using SPDY’s server push.
With respect to energy consumption, a recent study by Chowdhury et al.
shows that HTTP/2 is more energy efficient than HTTP /1.1 when RTTs in
the order of 30 ms or more are observed [33]. Since high RTTs are often
observed in mobile networks, this is of significant importance for mobile
devices with constrained battery life.

2.2.3 HTTP/2 for Multimedia Delivery

Mueller et al. are the first to evaluate the performance of DASH-based
adaptive streaming over SPDY [34]. The existing HTTP/1.0 or HTTP/1.1
layer is replaced by SPDY, without any modifications to the HAS client or
server. The authors show that if SPDY is used over SSL, the gains obtained
by using header compression, a persistent connection and pipelining are
almost completely cancelled out by the losses due the SSL and framing
overhead. Wei et al. first explore how HTTP/2’s features can be used to
improve HAS [4]. By reducing the segment duration from five seconds

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 23

to one second, they manage to reduce the camera-to-display delay with
about ten seconds. An increased number of GET requests is avoided by
pushing k segments after each request, using HTTP/2’s server push. One
disadvantage to this approach is that when a client switches to another
quality level, the push stream for the old quality level is in competition
with the segments downloaded at the new quality level. This results in
an increased switching delay for the client and bandwidth overhead in the
network. In later work, the authors show that the induced switching delay
is about two segment durations and is independent of the value of k, while
the introduced bandwidth overhead heavily depends on this value [35].
Cherif et al. propose DASH fast start, in which HTTP/2’s server push is
used to reduce the startup delay in a DASH streaming session [36]. Ad-
ditionally, the authors propose a new approach for video adaptation, in
which WebSocket over HTTP/2 is used to estimate the available band-
width. In previous work, we proposed a number of techniques to im-
prove the QoE in HAS, using on HTTP/2’s stream prioritization, stream
termination and server push [12]. Every technique has its own advan-
tages, such as a higher bandwidth utilization and a gain of one or mul-
tiple RTT cycles in the client’s startup phase. We thus proposed a full-push
approach, in which several techniques are combined together. A first eval-
uation showed promising results, such as a lower startup time and end-
to-end delay in high-RTT networks. In other work, we showed that the
occurrence of playout freezes can be reduced through SVC-based stream-
ing over HTTP/2, limiting the quality loss in high-RTT networks by push-
ing base layer segments to the client [37]. Although results are promising,
the average quality is lower than for AVC-based HAS, and only a limited
amount of quality layers can be used because of SVC’s encoding overhead.

Except for our work on SVC, focus in the above research is mainly on
reducing the live latency and the number of GET requests issued by the
client. Results are shown for scenarios in which the available bandwidth is
constant, or only changes every 20 seconds. Although significant improve-
ments are obtained, it is not clear how the proposed approaches impact
other aspects of the QoE, such as the average quality or the amount of
playout freezes. Furthermore, there is no analysis of the encoding over-
head introduced by using shorter video segments. In this chapter, a new
push-based approach is proposed to provide the server with more explicit
feedback from the client, in order to avoid network congestion and buffer
starvation when sudden bandwidth drops occur. The encoding overhead
for shorter video segments is analyzed in detail, and evaluations are ex-
tended to a multi-client mobile network scenario with high variations in
the available bandwidth and network latency.

24 CHAPTER 2

2.3 Push-Based Approach

In this section, we first elaborate on the initially proposed push-based ap-
proach, in which video segments are actively pushed from server to client [12].
Its advantages and possible applications are discussed in detail, along with
new challenges that arise in mobile, bandwidth-variable networks. We
then propose an extension to the suggested approach, in which explicit
feedback from the client is used to improve performance.

2.3.1 Full-Push Approach

In HAS, a video streaming session starts with the client sending a request
for the video’s media presentation description (MPD). This file contains in-
formation regarding the video segments, such as the duration, resolution
and available bit rates. In live video, it also contains information regarding
the timing of the video streaming session and the segments available on
the server. Based on the contents of the MPD, the client then starts request-
ing video segments one by one, ramping up the buffer by downloading
segments at the lowest quality. Once the buffer filling is sufficiently high
- typically when a certain panic threshold is exceeded - further decisions
regarding the video quality are made by the rate adaptation heuristic. The
main drawback of this approach is that one RTT cycle is lost to download
each segment, which has a significant impact on the startup time in high-
RTT networks. An illustration of this behavior is presented in Figure 2.2a,
where the first phase of a live streaming session is shown. In the full-
push approach, the server pushes m segments to the client as soon as the
MPD request is received, where m corresponds to the number of segments
that fit into a preferred buffer size defined by the client. This of course
requires that the server is aware of the relationship between the different
HAS objects, and that the client can indicate its maximum buffer size in the
MPD request. Since state-of-the-art rate adaptation heuristics ramp up the
buffer by downloading segments at the lowest quality, it makes sense to
push these at low quality as well. Note that the client cannot select another
quality anyway, since the MPD defining all quality levels has not yet been
received. As illustrated in Figure 2.2b, at least one RTT cycle is gained in
the reception of the first video segment, and multiple RTT cycles are gained
during the buffer rampup phase. Once the MPD and the first m segments
are sent, the server either periodically pushes a new segment to the client
at the specified quality level (VoD), or as soon as a new segment is avail-
able (live video). Every time a segment is completely received, the client
estimates the perceived bandwidth and checks the buffer filling. Based on
these parameters, the rate adaptation heuristic determines the most suit-

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 25

Chent ' v

Server

n+3 Tntd

(a) Adaptive streaming using traditional HTTP/1.1

AV/ V0 {9k

Server
rn | o rn+4

(b) Adaptive streaming using HTTP/2’s server push

Figure 2.2: An example live scenario for HTTP/1.1 and HTTP/2, where the client
requests m available segments to ramp up the buffer [12]. If the last
released segment has index n, the first segment to play is n — m + 1.
Note that r; denotes the release of segment i at the server-side, while
s; denotes its request/download by the client. Furthermore, quality g;
indicates that the server should change the quality of pushed segments
to ;.

able video quality and if required, a request is sent to change the bit rate of
pushed segments. Figure 2.3 shows a possible application of the full-push
approach in a content delivery network (CDN) environment, both for VoD
and for live video. The client controls the session by sending start, stop,
pause, or resume messages under the form of an HTTP GET request to the
server. In VoD, the client informs the server about the state of its buffer,
indicating that segments must either be sent back-to-back or in a periodic
way. In case of live streaming, the server ramps up the buffer by pushing
the last m segments and from then on, pushes new segments to the client
as soon as they are available.

The proposed approach has a number of advantages. Since the first
m segments are pushed back-to-back when the manifest is requested, the
client’s startup delay can be significantly reduced in high-RTT networks.
Since no RTT cycles are lost to request the video segments, video segments
with a sub-second duration can be used, further reducing this delay. Using
a smaller temporal buffer, the approach can effectively reduce the overall
end-to-end delay as well. However, there are two disadvantages to a full-
push approach for super-short segments.

First, while a segment 7 is being pushed from server to client, it is pos-
sible that new segments n + 1, ..., n + [are released. Since the rate adapta-

26 CHAPTER 2

CDN Delivery Node Client Node
Player
Push Module Rate
Adaptation

i i

Start, stop, pause, resume

CDN Change video quality
—> Irétﬁmal HTTP/2 Server Loading state, steady state HTTP/2 Client
ient

MPD/segment push

Figure 2.3: Application of the full-push approach in a CDN environment. The
client controls the session by sending request messages under the form
of HTTP GET requests to the server.

tion heuristic of the client is only activated when a segment is completely
received, these segments will all be pushed to the client at the same video
quality as segment n. This entails that, when sudden bandwidth drops
occur, the server will not immediately lower the quality level to match the
available bandwidth within the network. This will generally result in more
packet queuing in the network buffers, leading to a higher risk of buffer
starvation and thus to a lower QoE. To overcome this issue, Section 2.3.2
covers a way to limit the maximum number of segments in flight. In this
way, network congestion is avoided, as the server can proactively adjust
the pushed video quality to the available bandwidth.

Second, since every segment has to start with an IDR frame, a higher
bit rate is required to achieve the same video quality. Therefore, an en-
coding overhead is required to achieve the same visual quality for content
provided with a smaller Group of Pictures (GOP). In Section 2.4, we inves-
tigate the encoding overhead for eight different videos and select an ap-
propriate minimal segment duration to evaluate the proposed push-based
approach.

2.3.2 Full-Push Approach with Acknowledgments

In the full-push approach, the server can theoretically push an indefinite
number of (high-quality) segments to the client. When the available band-
width suddenly drops, a large number of packets will thus be queuing
in the network. However, the intention of the HTTP/2-based approach
is merely to push segments in order to bridge the idle RTT cycles that oc-
cur when segments are pulled by the client. To achieve this, the server does
not need to send an indefinite number of segments; it is sufficient to push a
maximum of k segments consecutively, where k depends on the network’s

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 27

BW drop
@ (Sn 17‘]]')/ qujfl)
Sn—1,4j Sn-1,4j Snt2,4j-2 Sn-3,4j—1
Server A : L = 1 Py
Fn—1 Fn Fnl Tnt2 Fnt3 Fnt4 Fnt5

Figure 2.4: Illustration of HTTP/2’s server push with explicit acknowledgments. A
value of k = 2 is used in this scenario, so that either 0, 1 or 2 segments
are in flight (indicated in white, light gray and dark gray respectively).

RTT and the segment duration of the video. For this reason, we propose an
improved approach in which the maximum number of segments in flight
is limited to a certain value k. Note that this is no standalone solution; it
represents a possible, complimentary dimension of the initially proposed
push-based approach.

The suggested approach is illustrated in Figure 2.4, for a value of k = 2.
Similar to the full-push approach, the client first sends a GET request to
fetch the MPD, indicating its preferred buffer size. The server pushes the
first m segments at the lowest quality, where m corresponds to the number
of segments that fit in the buffer size defined by the client. Then, segments
are periodically pushed as soon as they become available. The main dif-
ference is, however, that the server stops pushing new segments until the
reception of the kth last segment is acknowledged by the client. To this end,
a sliding window is used on the server’s application layer, defining which
segments can and cannot yet be pushed. At the client-side, the rate adap-
tation heuristic determines its preferred quality level for future segments
once a new segment has completely arrived. This quality level and the re-
ceived segment’s index are then passed along to the server, which moves
the sliding window one segment to the right and pushes the next segment
as soon as it is available (if not already). With respect to the parameter k,
the following rules of thumb apply:

1. For low RTTs and high segment durations, high bandwidth utiliza-
tion is achieved even without the presence of a push-based approach.
Low values of k should be used in order to minimize network con-
gestion;

2. For high RTTs and low segment durations, a large value of k should
be applied in order to maximize bandwidth utilization. Unfortu-
nately, this is expected to have a negative impact on the freeze du-
ration and frequency as well.

28 CHAPTER 2

The value of k should thus be finetuned based on the state of the network
and the video’s segment duration. In section 2.5, we will show that the
following rule of thumb can be used to calculate the optimal value for k,
given the RTT and the segment duration seg:

seg seg (2.1)

L ceil (RIT) 11, if RIT > g,
N 1, otherwise.

In this equation, the value of k is directly proportional to the ratio of the
RIT and the segment duration, unless this ratio is lower than a thresh-
old value a. The reasoning behind this is as follows. When the ratio
of the RTT and the segment duration is small, little improvement of the
average video quality is expected when a push-based approach is used.
Since pushing multiple segments increases the chances of buffer starvation
when a sudden bandwidth drop occurs, it is more appropriate to only pull
the segments in this case. Using k = 1, one segment is pushed for every
request/acknowledgment, which indeed corresponds to a pull-based ap-
proach. If the ratio of the RTT and the segment duration is large, however,
a significant gain can be achieved for the average video quality. In this
case, idle RTT cycles should be avoided by actively pushing new video
segments. In Section 2.5, we will show that 2 = 0.2 is an appropriate value
for the ratio’s threshold.

2.4 Impact of the Segment Duration on the En-
coding Overhead

Since our proposal is to use video segments with a sub-second duration,
it is important to analyze the induced encoding overhead. To perform this
analysis, eight different videos are considered: Big Buck Bunny' (BBB),
Earth from Space? (EFS), Netflix’ El Fuente® (NEF), Sintel* (STL), Tears
of Steel® (ToS), Elephant’s Dream® (ED), a benchmark performing testing
video on Forza Motorsport 6 Apex’ (FZA) and a 10-minute part of a soc-
cer game from the 2014 World Championship® (SOC). All content is avail-
able in Full HD (1920 x 1080 px), and comes with a minimal frame rate of

https:/ /peach.blender.org/

Zhttps:/ /www.youtube.com /watch?v=n4ThCSMkADc
3https: / /www.netflix.com /title /70297450

4https: //durian.blender.org/

Shttps:/ /mango.blender.org/

Shttps:/ /orange.blender.org/

"https:/ /www.youtube.com/watch?v=d-Jgf6rtEg8
8https:/ /www.youtube.com /watch?v=qOHd20F0e9k

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 29

30l —~ BBB 24 EFS 24 NEF 24
: -%- BBB 30 EFS 30 NEF 30
@ X - BBB 60 EFS 60 NEF 60
©26-
022+t
(7]
s
2181
=
=
E 1.4+
1.0} ,
0.125 0.25 0.5 1 2 4 8

Segment duration [s]

Figure 2.5: Encoding bit rate relative to a segment duration of 2s as a function of
the segment duration, for frame rates of 24, 30 and 60 FPS.

24 FPS. In our analysis, segment durations from 125ms up to 8s are con-
sidered, using the FFmpeg library® to segment the video. To allow each
segment to be decoded independently, every segment starts with an IDR
frame and the Group of Pictures (GOP) length is set accordingly. To assess
the impact of shorter GOP lengths on the compression performance, the
encodings for different segment durations are set to target the same visual
quality and allow a subsequent overhead in the achieved nominal bit rate.
To realize this, the Constant Rate Factor (CRF) rate control implemented
in the x264 encoder'? is used. The obtained encodings for the same nom-
inal rates but different segment durations, have the same visual quality,
measured in terms of Peak Signal-to-Noise Ratio (PSNR), with deviations
smaller than 0.205 dB for all content bar BBB (1.045 dB).

Figure 2.5 shows the encoding bit rate relative to a segment duration
of 2s, for the BBB, EFS and NEF content provided in Full HD with frame
rates of 24, 30 and 60 FPS. The encoding overhead is significantly lower for
higher frame rates, which is a consequence of the higher GOP length: for
a segment duration of 500 ms, a GOP length of 12, 15 and 30 is used for
24, 30 and 60 FPS respectively, resulting in relatively less IDR frames. The
obtained results are also strongly content-dependent: an overhead of 70.8%
is obtained for NEF at 24 FPS, while an overhead of 195.9% is obtained
for BBB. This is because the former is a video showing actually captured
footage with high-detail shots, whereas the latter is synthetically produced
3D video.

https:/ / ffmpeg.org
10http: / /www.videolan.org/developers/x264.html

30 CHAPTER 2

| —~— BBB TOS
3.0 ~ - FFS NEF
@ STL ED
26 SOC —-+- FZA
=
022
(%)
~ X
o18)
2 &
= 14 \
& o
1.0 -
0.125 0.25 0.5 1 2 4 8

Segment duration [s]

Figure 2.6: Encoding bit rate relative to a segment duration of 2s as a function of
the segment duration, for a frame rate of 24 FPS.

Figure 2.6 shows the relative encoding bit rate for all considered videos,
provided in Full HD at 24 FPS. For all content bar BBB, the encoding over-
head is between 62.0% and 106.1% for a segment duration of 125ms, be-
tween 28.7% and 49.9% for 250 ms, between 12.1% and 20.4% 500 ms and
between 3.9% and 6.6% for 1s. Based on these values, we conclude that a
minimal segment duration of 500 ms should be used in order to limit the
encoding overhead and achieve a similar video quality when the available
bandwidth is constrained. Evaluation results in the next section will con-
firm this conclusion, yet also show that lower segment durations can result
in an even lower video startup time and end-to-end delay. Since our focus
is on live streaming scenarios, the soccer video will be used to evaluate
results for the push-based approach. For this video, average overhead val-
ues of 87.4%, 41.9%, 18.0% and 5.8% are obtained for a segment duration
of 125ms, 250ms, 500ms and 1s respectively. A frame rate of 24 FPS is
used to show the minimal gains of the approach; even better results can
be achieved with a frame rate of 30 or 60 FPS, currently supported by most
live stream providers .

2.5 Evaluation and Discussion

To illustrate the possible gains of the push-based approach presented in
Section 2.3, results are evaluated for different network conditions and video
segment durations. The experimental setup is presented below, followed
by a discussion on the evaluated rate adaptation heuristics and a detailed
overview of the obtained results.

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 31

10
—— 1080 px
fffff 720 px
— L 480 px
2 8 360 px
§ 240 px
= 5l 144 px
<]
=
3 o4t
o
(<%}
=
> 2+
0 10 20 30 40 50

Figure 2.7: Video encoding bit rates for the first 50 segments of the Soccer video,
for a segment duration of 2s.

2.5.1 Experimental Setup

The considered video in our evaluation is a part of a soccer game, which
has a total length of 596 seconds and comes with a frame rate of 24 FPS.
Similar as in the previous section, the video is segmented using segment
durations ranging from 125 ms to 8 s, corresponding to GOP lengths rang-
ing from 3 to 192. The video is encoded at six quality levels, with res-
olutions of 256 x 144, 428 x 240, 640 x 360, 856 x 480, 1280 x 720 and
1920 x 1080 px, using x264 with a CRF of 23. Note that there’s a lot of
variability among bit rates for the different segments, as illustrated in Fig-
ure 2.7 for a segment duration of 2.

To stream the content, the network topology in Figure 2.8 is emulated
using the Mininet framework!!. It consists of 30 clients, streaming video
from a dedicated HAS server. To evaluate the proposed approaches in a
realistic scenario, bandwidth and latency patterns are applied for every
client. Patterns for the available bandwidth are extracted from an open-
source dataset, collected by Riiser et al. on a real 3G/HSDPA network [38].
The average available bandwidth in the 30 traces is 2358 kb /s, with a stan-
dard deviation of 1387 kb/s. The minimum available bandwidth is set to
300kb/s, in order to provide the minimal video streaming service. An ex-
ample trace is shown in Figure 2.9a, illustrating the high bandwidth vari-
ability over time. As for latency, first evaluations are performed with a
statically defined value ranging between 0 and 300 ms in order to assess its
impact on the performance of a number of rate adaptation heuristics and
the optimality of the number of segments in flight k. In a final evaluation,

1 http:/ /mininet.org/

32 CHAPTER 2

¥ iy D

il

M |
[“»«“.‘U“p‘ .'ﬁ‘\;r‘ 1

HAS Server

Figure 2.8: Experimental Mininet setup.

= 6 750

) z

= E600t

=] >

s 4

s 5 450

23 =

3 g 300

El 5

> [

= S 150+

o1 5

5 0 - 0

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time [s] Time [s]
(a) Perceived bandwidth (b) Perceived latency

Figure 2.9: Perceived bandwidth in one of the considered 3G/HSDPA traces [38],
along with the perceived latency collected in a 3G/HSPA network.

the latency is dynamically changed according to measurements performed
in a real 3G/HSPA network, illustrated in Figure 2.9b. To collect a trace
for the perceived latency, we hosted a dedicated server in iLab.t’s Virtual
Wall infrastructure?. Sending a ping request every second from a smart-
phone connected over 3G/HSPA, the perceived latency was measured and
logged for a total of 17 minutes. For each client, the trace is looped and
latency values are set according to a random starting point. The average
latency is 232.2 ms, with a standard deviation of 12.5ms.

Values for variable bandwidth and latency are introduced through traf-
fic shaping with tc on the client-side switches. The bandwidth on links L¢
is set to 10 Mb/s, while the bandwidth on the link Lg is set to 30 X L =
300Mb/s. Since the maximum bandwidth in the traces is 6.2Mb/s, the
bottleneck thus resides with the clients and the actual bandwidth corre-
sponds to the bandwidth perceived at the time of trace collection.

12https: //doc.ilabt.imec.be/ilabt-documentation/

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 33

2.5.1.1 Server-Side Implementation

The HAS server implementation is based on the Jetty web server!3, which
was recently expanded to provide support for HTTP/2. Jetty’s HTTP/2
component allows to define a push-based strategy, which defines all re-
sources that need to be pushed along with the requested resource. Such a
strategy is ideal for web-based content, where the required JavaScript and
CSS files, images and other content can immediately be pushed. However,
since we target a live stream scenario, not all segments are available when
the initial request is issued. Therefore, we defined a new request handler
that processes GET requests issued by the client. This handler allows a
client to issue a live stream request, passing along parameters such as the
temporal buffer size and quality level. When this request corresponds to a
new session, the server starts a push thread that pushes the m last released
video segments at the lowest quality, where m corresponds to the num-
ber of segments that fit in the indicated buffer. In order to simulate a live
stream scenario, a release thread makes new segments available every seg-
ment duration. As soon as a new segment is available, the push thread is
notified and the segment is pushed to the corresponding client. When the
client wants to change the quality level at which the segments are pushed,
a new request is issued and the quality level is updated at the server-side
accordingly.

2.51.2 Client-Side Implementation

The HAS client is implemented on top of the libdash library!4, the official
reference software of the ISO/IEC MPEG-DASH standard. To make use of
the server push provided by HTTP/2, anumber of changes are made. First,
an HTTP/2-based connection is added to enable the reception of pushed
segments. The nghttp2 library’® is used to set up an HTTP/2 connection
over SSL. Second, the rate adaptation heuristic is modified to recalculate
the quality level every time the push stream of a pushed segment is closed.
While a GET request is required for every segment in HTTP /1.1, no request
is sent in the HTTP /2-based scheme if no quality change is required. Third,
the perceived bandwidth is estimated based on the elapsed time between
the reception of the push promise and the time the segment is available. In
HTTP/1.1, this estimation is based on the total download time, which nat-
urally includes the time to send the GET request. Note that by default, the
available bandwidth is estimated by the Exponentially Weighted Moving

13 https:/ /webtide.com/
https:/ / github.com/bitmovin/libdash/
Shttps:/ /nghttp2.org/

34 CHAPTER 2

Average (EWMA) over the observed download rates. It is worth noting
that major browsers such as Google Chrome, Moxilla Firefox and Inter-
net Explorer all provide support for HTTP/2 [11]. Although a standalone
client is used in this chapter, a browser-based dash.js reference player has
been released by libdash as well'®. Provided that some changes to the im-
plementation are made, the proposed approach can thus be applied in any
browser with support for HTTP /2.

2.5.2 Rate Adaptation Heuristics

To achieve a baseline for adaptive streaming over HTTP /1.1, a number of
state-of-the-art rate adaptation heuristics were embedded at the client-side.
Evaluated heuristics are the MSS heuristic developed by Microsoft [39], the
FESTIVE heuristic developed by Jiang et al. [40] and the FINEAS heuris-
tic!” developed by Petrangeli et al. [15].

In the MSS heuristic, the next quality level is selected based on the
buffer filling and the perceived bandwidth. The most important param-
eters are the buffer size and the panic, lower and upper thresholds, which
actively steer the buffer filling towards a value between the lower and up-
per threshold. A lower quality level is selected when the buffer filling
drops below the lower threshold, while a higher quality level is selected
when the bulffer filling exceeds the upper threshold. When the bulffer fill-
ing is lower than the panic threshold, the rate adaptation heuristic imme-
diately selects the lowest quality level, in an attempt to avoid buffer starva-
tion. In accordance with conclusions drawn by Famaey et al., panic, lower
and upper thresholds of respectively 25%, 40% and 80% of the total buffer
size were selected [41].

In the FESTIVE heuristic, the first 20 segments are downloaded at the
lowest quality, because initially there is not enough information on the
available bandwidth [40]. From segment 21 on, the rate adaptation heuris-
tic computes a reference quality level g,.; based on the available band-
width (defined as the harmonic mean of the download rates for the last
20 segments) and the last selected quality level g.,,. A gradual switching
strategy is applied, so that the reference quality can only switch to the next
lower or higher quality layer. Furthermore, a switch from quality level m
to m + 1 can only occur once at least m segments have been downloaded at
quality m. Given gcyr and gy, the heuristic then calculates a certain metric

6http:/ /dashif.org/reference/players /javascript/1.4.0/samples/ dash-if-reference-
player/

7The in-network computation performed by the authors has not been implemented in this
work.

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 35

score for the session’s stability and efficiency, and finally selects the most
appropriate quality level.

In the FINEAS heuristic, the goal is to maximize the user’s QoE [15].
This is achieved by intelligently selecting the next quality level, pursuing
a high average quality level while limiting the number of quality switches
and avoiding play-out freezes. Quality selection is based on a utility func-
tion, designed to be a metric for the QoE. Used parameter values for this
evaluation are a panic threshold of two segments, a targeted buffer filling
of 80% and a quality window of 70 seconds, selected after tweaking the
heuristic for a buffer size of 10s. Note that, in order to limit the number
of switches for super-short segments, upward switching is only allowed
every 2 seconds.

2.5.3 Evaluation Metrics

The following evaluation metrics are considered. First, the average video
quality, expressed as the average quality level (1-7) perceived during a
streaming session. Second, buffer starvation, defined by the frequency and
total duration of playout freezes. Third, the initial startup delay, which is
defined as the time between requesting the live video at the client-side and
the playout of the first video segment. Fourth, the server-to-display delay,
defined as the time between the release of a segment at the server-side and
its playout at the client-side, plus the segment duration. This is not the
same as the camera-to-display delay, as the content is not captured in real-
time. Note that segments are not skipped during playout, so every freeze
results in a larger buffer and total server-to-display delay. When no freezes
occur, the initial and final server-to-display delay are the same.

To evaluate the impact of the proposed approach on these metrics, the
considered video is streamed by 30 different clients; results are therefore
shown using the observed averages and the corresponding 95% confidence
intervals.

2.5.4 Evaluation Results

In this Section, we first show results for HTTP /1.1, highlighting the advan-
tages that the proposed push-based approach can bring. Second, a param-
eter analysis is performed to find the optimal value for the parameter k,
based on the segment duration and the network’s RTT. Third, the impact
of the buffer size on the QoE is evaluated, showing results for the average
video quality, freeze time, startup time and server-to-display delay. Finally,
a detailed comparison of results is made between the proposed HTTP/2-
based approach and traditional HAS over HTTP/1.1.

36

CHAPTER 2

(=2}

MSS MSS
---- FESTIVE ---- FESTIVE
5t FINEAS FINEAS
6,

= w

o EE - 7]

R e 3

> e &,
2 B e
1= 50 100 150 200 250 300 0950 100 150 200 250 300

Round-trip time [ms] Round-trip time [ms]

(a) Video quality (b) Freeze time

Figure 2.10: Average video quality and freeze time for the MSS, FESTIVE and
FINEAS heuristics, as a function of the RTT for a segment duration
of 2s and a buffer size of 10s.

2.5.4.1 HAS over HTTP/1.1

With respect to the considered rate adaptation heuristics, Figure 2.10 shows
the average video quality and freeze time for MSS, FESTIVE and FINEAS
as a function of the latency. The MSS heuristic decreases the video qual-
ity in a conservative way, only allowing a decrease of one level at a time
as long as the panic threshold is not exceeded. Because of this, reaction
to changes in the available bandwidth are generally slow, resulting in a
relatively large average freeze time. In the FESTIVE heuristic, the video
quality is decreased one level at a time as well. Furthermore, the estimated
bandwidth is based on the harmonic mean over the last 20 samples, in-
stead of the more aggressive EWMA. Therefore, the average freeze time
is similar to the one for MSS. The average video quality is however sig-
nificantly lower, because even with sufficient bandwidth it takes a long
time for the heuristic to reach the highest quality: 20 segments are first re-
quested at the lowest quality, another 20 are requested at the intermediary
levels (2-6). The FINEAS heuristic allows to change the quality level with
more than one level at a time, resulting in a more aggressive reaction to
changes in the available bandwidth. Furthermore, buffer starvation is ac-
tively prevented by taking into account both the current buffer filling and
the estimated download times of future segments. Comparing results with
MSS, a similar average video quality is observed, yet with a significantly
lower average freeze time. FINEAS thus leads to the best results, and will
be used to evaluate the proposed HTTP/2-based approach in the following
sections.

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 37

6 1000

—— 2000 ms SD 250 ms SD —— 2000 ms SD
1000 ms SD -~ 125 ms SD 1000 ms SD -
500 ms SD 500 ms SD
5 1 100k 250 ms SD
> z —~——- 125ms Sq
g4t Y
& |- | £yl
g i I g 1
=1 [)
271 LR S I
PI 1] 1 41 '»—w,,,:,,,/———/””’T
“y 1 1
1 0 50 100 150 200 250 300 01 0 50 100 150 200 250 300
Round-trip time [ms] Round-trip time [ms]
(a) Video quality (b) Freeze time
3 —— O0msRTT 200 ms RTT Z 15 —— O0msRTT 200 ms RTT
100 ms RTT - 300 ms RTT % 100 ms RTT -~ 300 ms RTT
= = g12r 4
2 > o
2r - & //
2 : 5 9f =
g | - 2 e
(=9 Q >
2 76 e
51 - -
0 T T =
ap®] 83 _
— — i
_— .3 e
e s OB L
%‘125 0.25 0.5 1 2 ~ 70.1250.25 0.5 1
Segment duration [s] Segment duration [s]
(c) Startup delay (d) Initial server-to-display delay

Figure 2.11: Impact of the RTT on the average video quality and freeze time for
the FINEAS heuristic (top), and the impact of the segment duration
(SD) on the startup delay and server-to-display delay (bottom). While
super-short segments can result in a lower startup and end-to-end de-
lay, they result in a low video quality and high freeze time for high
RTTs.

Figure 2.11 shows results for the FINEAS heuristic over HTTP /1.1, for
an increasing RTT and for all considered segment durations. From Fig-
ure 2.11a, it is clear that super-short segments suffer significantly from
large RTTs: for a segment duration of 125ms, the lowest quality is always
selected for RTTs above 200ms. For a segment duration of 2s however,
the average video quality is only reduced with 7.2% for an RTT of 300 ms.
Looking at the total freeze time in Figure 2.11b, a significant increase is ob-
served for a segment duration of 125ms and RTTs above 200 ms: in this
case, a freeze inevitably occurs for every downloaded video segment. Fur-
thermore, since the buffer size is five times the segment duration (and thus
only 625ms for a segment duration of 125ms), the freeze time for super-
short segments is relatively high, even when a negligible RTT is consid-
ered. From these results, we conclude that a segment duration of 2 s should
be used in order to achieve an appropriate video quality and freeze time in

38 CHAPTER 2

Table 2.1: Evaluated configurations for the parameter k.

Parameter Evaluated values
Segment duration [s] 0.125,0.25,0.5,1, 2
Latency [ms] 0, 100, 200, 300

k 1,2,3,4,5,00

mobile, high-RTT networks. Note that similar results are achieved for the
MSS and FESTIVE heuristics, omitted here due to space constraints.

Despite these disadvantages, there are clear advantages as well. For
one, Figure 2.11c shows that the startup delay increases significantly for
larger segment durations. This is because more data needs to be put on
the wire for the first video segment, and because the underlying TCP slow
start requires multiple RTT cycles to transfer the required files from server
to client. More importantly, Figure 2.11d shows that the initial server-to-
display delay increases linearly with the buffer size. Since both the startup
and the end-to-end delay are important factors in live video streaming, our
goal is to realize the advantages of super-short segments, while still pro-
viding the content at an acceptable video quality. The following sections
will therefore focus on the applicability of super-short segments, using the
proposed push-based approach to avoid idle RTT cyles.

2.5.4.2 Impact of the Parameter k

In Section 2.3.2, Equation 2.1 was proposed as a rule of thumb for the max-
imum number of segments in flight k. To test the validity of this equa-
tion, all combinations of the parameter configurations in Table 2.1 were
evaluated, applying latency to the links L in the experimental setup. Fig-
ures 2.12a and 2.12¢ show the impact of the value of k on the average qual-
ity, for a segment duration of 125 and 500 ms respectively. In the former
case, a total of two, three and four segments must be pushed for an RTT of
100, 200 and 300 ms respectively, in order to achieve a video quality sim-
ilar as for a negligible RTT. In the latter case, however, it is sufficient to
push a maximum of two segments at the same time. With respect to the
average freeze time, shown in Figures 2.12b and 2.12d, two observations
can be made. First, for super-short segments, the average freeze time is
significantly reduced when multiple segments are pushed. This is because
bandwidth is used more efficiently, so that no freeze occurs for every sin-
gle segment. For a segment duration of 500 ms, however, a reduction is
less apparent. Second, once a certain threshold for k is exceeded, the av-
erage freeze time increases significantly. This is because more segments

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 39

6 —— O0msRTT 200 ms RTT 1000 . —— O0msRTT 200 ms RTT
100 ms RTT -~ 300 ms RTT 100 ms RTT -~ 300 ms RTT
> — 100}
2)
EES g A
& S 10t 7
g3 RS 3 -
Sl) E
2r P g
5 S o
Maximum number of segments in flight k Max1mum number of segments in flight k
(a) Video quality, SD 125 ms (b) Freeze time, SD 125 ms
6 1000
—— O0msRTT 200 ms RTT —— O0msRTT 200 ms RTT
100 ms RTT -~ 300 ms RTT 100 ms RTT -~ 300 ms RTT
> — 100} .
3 4r T : g)
| £
St Hos
L3, g
> | =gl
2!
/
S N © 01
Maximum number of segments in flight k Max1mum nurnber of segments in flight k

(c) Video quality, SD 500 ms (d) Freeze time, SD 500 ms

Figure 2.12: Impact of the RTT and impact of the parameter k on the average video
quality and freeze time, for the FINEAS heuristic with a segment du-
ration of 125ms (top) and 500 ms (bottom). The optimal value for k
depends both on the segment duration and the network’s RTT, with
higher values for lower segment durations and high RTTs.

are allowed to be in flight, resulting in a slower quality reduction when
sudden bandwidth drops occur. This is in line with the reasoning in Sec-
tion 2.3.2, where the maximum number of segments in flight is based on
the segment duration and the network’s RTT, and shows that the initial
approach (k = o0) is not suitable in mobile, highly variable networks.

For all combinations of the evaluated segment durations and RTTs in
Table 2.1, the lowest value for k was selected that resulted in a compara-
ble video quality compared to a scenario with negligible RTT. Figure 2.13
shows the obtained values for these configurations, along with the output
of Equation 2.1. A nearly perfect match is obtained for 2 = 0.2, showing
the suitability of the proposed rule of thumb. In the remainder of this chap-
ter, a value of k = 2 will be used to push video segments with a segment
duration of 500 ms.

40 CHAPTER 2

— 4
300
E
' 200 3
&
k=
5
E 100 2
2
a4

0

0.125 0.25 0.5 1 2
Segment duration [s]

Figure 2.13: Optimal values for the parameter k in the configurations of Table 2.1,
along with the output of Equation 2.1 for a value of 2 = 0.2 in colors
from dark grey (k = 1) to white (k = 4).

2.5.4.3 Impact of the Buffer Size

Having analyzed different heuristics and optimal values for the parameter
k as a function of the latency, we illustrate the gains of the proposed ap-
proach below. In this experiment, we analyze the impact of the buffer size
on the different evaluation metrics, and show that the proposed approach
allows to reduce the buffer size and the end-to-end delay significantly. To
this end, temporal buffer sizes ranging from 2s to 10 s are used. A segment
duration of 2 s is used for HTTP /1.1, while a segment duration of 500 ms is
used for HTTP/2 (k = 2). In the former case, panic thresholds and targeted
buffer filling are selected based on observations by Petrangeli et al., with
values presented in Table 2.2 [15]. In the latter case, multiples of 500 ms
are selected for the panic threshold and buffer target respectively. Note
again that the maximum buffer size can change over time: no segments are

Table 2.2: Evaluated panic thresholds (PT) and targeted buffer filling (BF) for the
FINEAS heuristic, both for HTTP/1.1 (1) and HTTP/2 (2) with different
values of the buffer size.

Buffer size [s] | PT-1[s] | BF-1[s] | PT-2[s] | BF-2[s]

2 2 2 1 1.5
4 2 2 2 3
6 4 4 2.5 4.5
8 4 6 3.5 6
10 4 8 4 8

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 41

HTTP/1.1 20 HTTP/1.1
HTTP/2 HTTP/2
5r _15}
z)
e g
e ¥
s 3 g
> = s
2 L
1= 6 8 10 03 4 6 10
Buffer size [s] Buffer size [s]
(a) Video quality (b) Freeze time
=15 —24
— HTTP/1.1 i) HTTP/1.1
% HTTP/2 %, HTTP/2
$12f S8}
) 5
2 9r =
g S12t
=]
L 61 2
o 3
% 3+ § 6
03 4 6 8 10 05 4 6 8 10
Buffer size [s] Buffer size [s]
(c) Initial server-to-display delay (d) Final server-to-display delay

Figure 2.14: Impact of the buffer size on the video quality, the freeze time and the
server-to-display delay for the FINEAS heuristic, for an RTT of 300 ms.
A segment duration of 2s is used for HTTP /1.1, while a segment du-
ration of 500 ms is used for HTTP/2 (k = 2).

skipped when playout freezes occur, thus increasing the end-to-end delay
and the amount of content the server can push to the client.

Figure 2.14a shows the average video quality in terms of the initial
buffer size. For HTTP/1.1, the lowest quality is most frequently selected
for a buffer size of 2s, since the panic threshold is almost always ex-
ceeded. For higher buffer sizes, the average quality gradually increases.
For HTTP/2, however, the average video quality is almost unaffected by
the buffer size. Figure 2.14b shows the average freeze time per episode,
indicating a decreasing trend for larger buffer sizes. When a buffer size
of 2 or 4s is used, a large number of playout freezes occur for HTTP/2.
This is because the rate adaptation heuristic can download the video at
high quality (the panic threshold is often not exceeded), yet a buffer this
small cannot cope with the high variability of the perceived bandwidth
and the video segment’s size. This is less of a problem for HTTP /1.1, sim-
ply because the heuristic most often downloads the video at the lowest
video quality. Once the buffer threshold exceeds 65, higher quality rep-

42 CHAPTER 2

resentations can be downloaded both for HTTP/1.1 and HTTP/2. Since
the latter allows to react faster to changes in the available bandwidth, a
lower playout freeze time is observed. The initial server-to-display delay
is shown in Figure 2.14c, increasing linearly with the selected buffer size.
Figure 2.14d, on the other hand, shows the server-to-display delay at the
end of the video streaming session. Since no segments are skipped in our
setup, every playout freeze results in an increase of the end-to-end delay.
Therefore, the total delay corresponds to the sum of the initial delay and
the episode’s total freeze time. Even though a buffer size in the order of a
few seconds can be used to reduce the initial delay, it cannot cope with the
highly variable bandwidth and segment sizes. As a result, the total delay
is significantly higher than for a buffer size of 6s.

From these results, we conclude that a minimal buffer size of 10s is
required for HTTP/1.1, in order to obtain an acceptable video quality with
a relatively low amount of playout freezes. Because of the shorter segment
duration, a buffer size of 6 s can be used for HTTP/2, reducing the end-to-
end delay while limiting the total freeze duration.

2.5.4.4 Discussion

Table 2.3 summarizes results for traditional HAS over HTTP/1.1 and our
proposed push-based approach. The average quality for MSS and FESTIVE
is significantly lower than for the FINEAS heuristic (—3.9% and —32.4%
respectively), while the average quality for the proposed push-based ap-
proach is more or less the same. Furthermore, while MSS results in an
average freeze time close to 3s, the FINEAS heuristics results in a freeze
time well below 2s both for HTTP/1.1 and HTTP/2. With respect to the
video quality and freeze time, we thus conclude that both FINEAS ap-
proaches perform well. For the startup delay, however, a reduction of 0.57 s
(—31.2%) is obtained. This is because the first segment is immediately
pushed along with the MPD, and because TCP slow startup requires fewer
RTT cycles to transfer the first, super-short segment. As for the server-to-
display delay, a reduction of 4.04 s (—32.9%) is obtained, which is beneficial
in a live streaming scenario. Given that significantly better results are ob-
tained for the startup and server-to-display delay, and similar results are
obtained for the video quality and freeze time, we conclude that the pro-
posed push-based approach with super-short segments can significantly
improve the QoE for live streaming in this scenario.

The reported results specifically target a mobile 3G/HSPA network,
with relatively high values for the perceived latency. Compared to these
networks, 4G/LTE networks allow to significantly reduce latency. For Bel-
gian providers such as Base, Proximus and Mobistar, OpenSignal reports

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 43

Table 2.3: Performance summary for the different heuristics and the proposed
push-based approach. Average values are reported, along with the 95%
confidence intervals. Note that a segment duration of 2 s and a buffer size
of 10s are used for HTTP/1.1, while a segment duration of 500 ms and
a buffer size of 6 s are used for HTTP/2. The term “server-to-display” is
abbreviated to S2D.

Approach Heuristic Video quality Freeze time [s] Startup time [s] S2D delay [s]

HTTP/1.1 MSS 3.61+0.20 2.68 +1.00 1.82+0.13 14.31 +£1.04
HTTP/1.1 FESTIVE 2.544+0.21 1.54+1.09 1.82+0.12 13.32+1.14
HTTP/1.1 FINEAS 3.76 £0.25 0.68 £0.57 1.82+0.13 12.30 + 0.60
HTTP/2 FINEAS 3.76 £0.25 1.38 + 0.67 1.25+0.04 8.26 £ 0.69

a reduction from 214 to 94 ms, from 241 to 64ms and from 229 to 77 ms
respectively [6]. Although the proposed approach should still result in
lower startup times and end-to-end delay, the gains will be significantly
lower. Highly congested networks, in contrast, introduce additional la-
tency through network queueing. This can have a significant impact on the
overall perceived latency, and depending on the variability of the network
load, result in packet delay variation. In such a scenario, the parameter k
could be changed dynamically, similar to the approach proposed by Wei
etal. [35].

It should be noted that results are presented for H.264-encoded video
with a frame rate of 24 FPS. As shown in Section 2.4, using higher frame
rates results in a lower relative encoding overhead for the same segment
duration, thus reducing its impact on shorter video segments. The encod-
ing bit rate however increases, which might be unsuitable under certain
network conditions. An alternative can be provided through H.265, which
in some cases allows to reduce the encoding bit rate by half compared to
H.264 [42]. Numerous other possibilities exist within adaptive streaming,
but cannot all be considered in this evaluation.

2.6 Conclusions and Future Work

In this chapter, focus is on improving the user’s Quality of Experience
(QoE) in HTTP adaptive streaming (HAS) in mobile, high round-trip time
(RTT) networks. To this end, we proposed a novel push-based approach
for HAS over the recently standardized HTTP/2 protocol. Using this ap-
proach, available video segments are actively pushed from server to client,
effectively eliminating idle RTT cycles. This enables the use of segments
with a sub-second duration, referred to as super-short segments, which not
only allow the client to start the video playout faster, but also allow to sig-

44 CHAPTER 2

nificantly reduce the buffer size and thus the end-to-end delay. In contrast
with previous work, we proposed a means to effectively limit the amount
of segments in flight, and performed an analysis of its optimal value for
different segment durations and network latencies. Furthermore, we dis-
cussed in detail the encoding overhead introduced by shorter segments,
and evaluated the proposed approach using highly variable bandwidth
and latency traces collected in real 3G networks. Using a segment dura-
tion of 500 ms and a buffer of a mere 65s, reductions of 31.2% and 32.9% are
obtained for the startup time and the server-to-display delay respectively,
compared to traditional HAS over HTTP/1.1 with a segment duration of
2s and a buffer size of 10s.

Future work includes a real-life study of the overall approach using
subjective measurements, such as the Mean Opinion Score, which could
reveal interesting insights. An interesting future research path includes
maximizing the average QoE and fairness for competing HAS clients in
congested networks, using a dynamic approach to change the parameter k
based on changing network conditions.

References
[1] Sandvine Incorporated. Global Internet Phe-
nomena Report. https:/ /www.sandvine.com/

downloads/general/global-internet-phenomena /2016 /
global-internet-phenomena-report-latin-america-and-north-america.
pdf, 2016. Accessed 21 February 2017.

[2] R. Mok, E. Chan, and R. Chang. Measuring the Quality of Experience
of HTTP Video Streaming. In IFIP/IEEE International Symposium on
Integrated Network Management, pages 485-492, 2011.

[3] T.Stockhammer. Dynamic Adaptive Streaming over HI'TP: Standards and
Design Principles. In Proceedings of the 2nd Annual ACM Conference
on Multimedia Systems, pages 133-144, 2011.

[4] S. Wei and V. Swaminathan. Low Latency Live Video Streaming over
HTTP 2.0. In Proceedings of the Network and Operating System Sup-
port on Digital Audio and Video Workshop, pages 37:37-37:42. ACM,
2014.

[5] G.Van Wallendael, W. Van Lancker, J. De Cock, P. Lambert,].-F. Macq,
and R. Van de Walle. Fast Channel Switching Based on SVC in IPTV
Environments. Broadcasting, IEEE Transactions on, 58(1):57-65, 2012.

https://www.sandvine.com/downloads/general/global-internet-phenomena/2016/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2016/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2016/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2016/global-internet-phenomena-report-latin-america-and-north-america.pdf

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 45

[6] OpenSignal. IConnect 4G Coverage Maps. http://opensignal.com/
networks/usa/iconnect-4g-coverage/, 2016. Accessed 21 February
2017.

[7] Igvita. High Performance Browser Networking. https://www.igvita.
com/2014/03/26 /why-is-my-cdn-slow-for-mobile-clients/, 2014.
Accessed 21 February 2017.

[8] M. Belshe, R. Peon, M. Thomson, and A. Melnikov. SPDY Pro-
tocol. https://tools.ietf.org/html/draft-ietf-httpbis-http2-00/, 2012.
Accessed 21 February 2017.

[9] IETE. Hypertext Transfer Protocol (httpbis). https:/ /datatracker.ietf.org/
wg/httpbis/charter/, 2012. Accessed 21 February 2017.

[10] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer Protocol Ver-
sion 2. https:/ /datatracker.ietf.org/doc/rfc7540/, 2015. Accessed 21
February 2017.

[11] A.Deveria. CanI Use HTTP/2? http://caniuse.com/#search=HTTP%
2F2, 2016. Accessed 21 February 2017.

[12] R. Huysegems, J. van der Hooft, T. Bostoen, P. Alface, S. Petrangeli,
T. Wauters, and F. De Turck. HTTP/2-Based Methods to Improve the Live
Experience of Adaptive Streaming. In Proceedings of the 23rd ACM Mul-
timedia Conference. ACM, 2015.

[13] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofifeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys Tutorials, 17(1):469—-492, 2015.

[14] S. Benno, A. Beck,]J. Esteban, L. Wu, and R. Miller. WiLo: A Rate De-
termination Algorithm for HAS Video in Wireless Networks and Low-Delay
Applications. In IEEE Globecom Workshops, pages 512-518, 2013.

[15] S. Petrangeli,]J. Famaey, M. Claeys, S. Latré, and F. De Turck. QoE-
Driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming. ACM
Transactions on Multimedia Computing, Communications and Ap-
plications, 12(2):28:1-28:24, 2015.

[16] V. Menkovski and A. Liotta. Intelligent Control for Adaptive Video
Streaming. In IEEE International Conference on Consumer Electronics,
pages 127-128, 2013.

[17] M. Claeys, S. Latré, J. Famaey, and F. De Turck. Design and Evaluation of
a Self-Learning HTTP Adaptive Video Streaming Client. Communications
Letters, IEEE, 18(4):716-719, 2014.

http://opensignal.com/networks/usa/iconnect-4g-coverage/
http://opensignal.com/networks/usa/iconnect-4g-coverage/
https://www.igvita.com/2014/03/26/why-is-my-cdn-slow-for-mobile-clients/
https://www.igvita.com/2014/03/26/why-is-my-cdn-slow-for-mobile-clients/
https://tools.ietf.org/html/draft-ietf-httpbis-http2-00/
https://datatracker.ietf.org/wg/httpbis/charter/
https://datatracker.ietf.org/wg/httpbis/charter/
https://datatracker.ietf.org/doc/rfc7540/
http://caniuse.com/#search=HTTP%2F2
http://caniuse.com/#search=HTTP%2F2

46

CHAPTER 2

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

Y. Sanchez de la Fuente, T. Schierl, C. Hellge, T. Wiegand, D. Hong,
D. De Vleeschauwer, W. Van Leekwijck, and Y. Le Louédec. iDASH:
Improved Dynamic Adaptive Streaming over HTTP Using Scalable Video
Coding. In Proceedings of the 2nd Annual ACM Conference on Mul-
timedia Systems, pages 257-264. ACM, 2011.

S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and A. Begen. Server-
Based Traffic Shaping for Stabilizing Oscillating Adaptive Streaming Play-
ers. In Proceeding of the 23rd ACM Workshop on Network and Op-
erating Systems Support for Digital Audio and Video, pages 19-24.
ACM, 2013.

L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive
Live Video Streaming. In Proceedings of the 2nd Annual ACM Confer-
ence on Multimedia Systems, pages 145-156. ACM, 2011.

N. Bouten,]J. Famaey, S. Latré, R. Huysegems, B. Vleeschauwer,
W. Leekwijck, and F. Turck. QoE Optimization Through In-Network
Quality Adaptation for HTTP Adaptive Streaming. In 8th International
Conference on Network and Service Management, pages 336-342,
2012.

N. Bouten, M. Claeys, S. Latré,]J. Famaey, W. Van Leekwijck, and
E. De Turck. Deadline-Based Approach for Improving Delivery of SVC-
Based HTTP Adaptive Streaming Content. In IEEE Network Operations
and Management Symposium, pages 1-7, 2014.

S. Petrangeli, M. Claeys, S. Latré, J. Famaey, and F. De Turck. A Multi-
Agent Q-Learning-Based Framework for Achieving Fairness in HTTP
Adaptive Streaming. In IEEE Network Operations and Management
Symposium, pages 1-9, 2014.

S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck.
Network-Based Dynamic Prioritization of HTTP Adaptive Streams to Avoid
Video Freezes. In IFIP/IEEE International Symposium on Integrated
Network Management, pages 1242-1248, 2015.

T. Schierl, C. Hellge, S. Mirta, K. Griineberg, and T. Wiegand. Using
H.264/AV C-based Scalable Video Coding (SVC) for Real Time Streaming in
Wireless IP Networks. In IEEE International Symposium on Circuits
and Systems, pages 3455-3458, 2007.

E. Thomas, M. van Deventer, T. Stockhammer, A. Begen, and
J. Famaey. Enhancing MPEG DASH Performance via Server and Network
Assistance. In Proceedings of the IBC 2015 Conference, 2015.

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 47

[27] S. Latré and F. De Turck. Joint In-Network Video Rate Adaptation and
Measurement-Based Admission Control: Algorithm Design and Evaluation.
Journal on Network and Systems Management, 21(4):588-622, 2013.

[28] S. Badukale and W. P. SPDY: An Experimental Protocol for a Faster
Web. http:/ /www.chromium.org/spdy/spdy-whitepaper/, 2009.
Accessed 21 February 2017.

[29] A. Cardaci, L. Caviglione, A. Gotta, and N. Tonellotto. Performance
Evaluation of SPDY over High Latency Satellite Channels. In Personal
Satellite Services, volume 123, pages 123-134. Springer International
Publishing, 2013.

[30] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan. To-
wards a SPDYler Mobile Web? In Proceedings of the 9th ACM Confer-
ence on Emerging Networking Experiments and Technologies, pages
303-314. ACM, 2013.

[31] Y. Elkhatib, G. Tyson, and M. Welzl. Can SPDY Really Make the Web
Faster? In IFIP Networking Conference, pages 1-9. IEEE, 2014.

[32] X. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
How Speedy is SPDY? In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, pages 387-399.
USENIX Association, 2014.

[33] S. Chowdhury, V. Sapra, and A. Hindle. Is HTTP/2 More Energy Effi-
cient than HTTP/1.1 for Mobile Users? Peer] PrePrints, 3:e1571, 2015.

[34] C.Miiller, S. Lederer, C. Timmerer, and H. Hellwagner. Dynamic Adap-
tive Streaming over HI'TP/2.0. In IEEE International Conference on
Multimedia and Expo, pages 1-6, 2013.

[35] S. Weiand V. Swaminathan. Cost Effective Video Streaming Using Server
Push over HTTP 2.0. In IEEE 16th International Workshop on Multi-
media Signal Processing, pages 1-5, 2014.

[36] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori. DASH
Fast Start Using HTTP/2. In Proceedings of the 25th ACM Workshop
on Network and Operating Systems Support for Digital Audio and
Video, pages 25-30. ACM, 2015.

[37] J. van der Hooft, S. Petrangeli, N. Bouten, T. Wauters, R. Huysegems,
T. Bostoen, and F. De Turck. An HI'TP/2 Push-Based Approach for SVC
Adaptive Streaming. In IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 104-111, 2016.

http://www.chromium.org/spdy/spdy-whitepaper/

48 CHAPTER 2

[38] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen.
Video Streaming Using a Location-Based Bandwidth-Lookup Service for Bi-
trate Planning. ACM Transactions on Multimedia Computing, Com-
munications and Applications, 8(3):24:1-24:19, 2012.

[39] A. Zambelli. IIS Smooth Streaming Technical Overview. https:
/ /www.iis.net/learn/media/on-demand-smooth-streaming /

smooth-streaming-technical-overview/, 2009. Accessed 21 February
2017.

[40] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Sta-
bility in HTTP-Based Adaptive Video Streaming with Festive. IEEE/ ACM
Transactions on Networking, 22(1):326-340, 2014.

[41] J. Famaey, S. Latré, N. Bouten, W. Van de Meerssche,
B. De Vleeschauwer, W. Van Leekwijck, and F. De Turck. On the
Merits of SVC-based HITP Adaptive Streaming. In IFIP/IEEE Inter-

national Symposium on Integrated Network Management, pages
419-426, 2013.

[42] G. Sullivan, J. Ohm, H. W., and T. Wiegand. Overview of the High Ef-
ficiency Video Coding (HEVC) Standard. 1EEE Transactions on Circuits
and Systems for Video Technology, 22(12):1649-1668, 2012.

Addendum

Since the start of this PhD research, a significant amount of contributions
have been made with respect to fast video startup and low end-to-end de-
lay. In this regard, it is worth mentioning the Common Media Application
Format (CMAF), which was proposed by Apple and Microsoft in 2016 and
was standardized in 2018. One of the advantages of this format is that it
allows chunked encoding: the video can be broken into smaller chunks of
a set duration, which are immediately published upon encoding. This way,
near-real-time delivery can take place while later chunks are still process-
ing. An additional advantage compared to the proposed approach with
super-short segments, is that the encoding overhead is less significant: al-
though chunked encoding requires additional headers, a single IDR-frame
per (longer) segment suffices.

Additionally, the publication above does not define the characteristics
of the videos used to evaluate the encoding overhead in Figures 2.5and 2.6.
To illustrate the considered types of content, Figure 2.15 shows a screenshot
of each of the eight videos.

https://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview/
https://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview/
https://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview/

AN HTTP /2 PUSH-BASED APPROACH FOR LOW-LATENCY LIVE STREAMING 49

(g) Forza Motorsport 6 Apex (h) World Championship Soccer

Figure 2.15: Screenshots of the considered videos.

50

CHAPTER 2

Performance Characterization of
Low-Latency Adaptive Streaming
from Video Portals

“There is a crack, a crack in everything. That’s how the light gets in.”
—Leonard Cohen, 1992

In Chapter 2, a set of eight videos was used to evaluate the encoding overhead
of super-short segments and determine the impact of the proposed push-based ap-
proach on the startup time, video quality and end-to-end delay. In this chapter,
however, we consider video portals with hundreds or thousands of videos, either
standing on their own or accompanying news stories and articles. To stimulate
user engagement with the provided content, such as browsing between videos,
we propose a comprehensive framework for low-latency delivery of news-related
video content. Using a large dataset of a major Belgian news provider, contain-
ing millions of text- and video-based article requests, we show that the proposed
framework reduces the videos’ startup time in different mobile network scenar-
ios by more than 50%, thereby improving user interaction and browsing through
available content.s

* Kk k

52 CHAPTER 3

J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, and
F. De Turck

Published in IEEE Access, vol. 6, p. 43039-43055, 2018

Abstract News-based websites and portals provide significant amounts of
multimedia content to accompany news stories and articles. In this context,
HTTP adaptive streaming is generally used to deliver video over the best-
effort Internet, allowing smooth video playback and an acceptable Qual-
ity of Experience (QoE). To stimulate user engagement with the provided
content, such as browsing between videos, reducing the videos’ startup
time has become more and more important: while the current median
load time is in the order of seconds, research has shown that user wait-
ing times must remain below two seconds to achieve an acceptable QoE.
In this chapter, four complementary components are optimized and inte-
grated into a comprehensive framework for low-latency delivery of news-
related video content: (i) server-side encoding with short video segments,
(ii) HTTP /2 server push at the application layer, (iii) server-side user profil-
ing to identify relevant content for a given user, and (iv) client-side storage
to hold proactively delivered content. Using a large dataset of a major Bel-
gian news provider, containing millions of text- and video-based article re-
quests, we show that the proposed framework reduces the videos’ startup
time in different mobile network scenarios by more than 50%, thereby im-
proving user interaction and skimming available content.

3.1 Introduction

In recent years, news providers have started to produce significant
amounts of multimedia content to accompany news stories and articles.
News providers such as the New York Times' and the Washington Post?
now provide a large number of video-based news articles, containing indi-
vidual topics or full news broadcasts. To encourage consumers to use the
provided services, facile user interaction while browsing new content and
skimming videos is of the utmost importance. In this context, reducing the
videos’ startup time has become more and more important: while videos
generally take in the order of seconds to load, research has shown that user
waiting times must remain below two seconds to achieve acceptable Qual-
ity of Experience (QoE) [1].

lhttps: / /www.nytimes.com/
Zhttps:/ /www.washingtonpost.com/

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 53

Bitrat
thrate Bandwidth

t

Bitrate

Bitrate

Figure 3.1: The concept of HAS. At the server-side, the video is temporally seg-
mented and encoded at different quality levels. The client requests the
video segments at the most appropriate quality level, and plays them
out in linear order.

Nowadays, news content providers generally use HTTP adaptive
streaming (HAS) to deliver video content over the best-effort Internet. In
HAS, video is encoded at different quality levels and temporally divided
into multiple segments with a typical length of 2 to 30 seconds [2]. As
illustrated in Figure 3.1, an HAS client requests these video segments at
the most appropriate quality level, based on e.g., the available bandwidth
and the amount of buffered content. To this end, a client-based heuristic is
used which attempts to optimize the QoE perceived by the user, which de-
pends among others on the average video quality, the frequency of quality
changes and the occurrence of playout freezes [3]. The client stores the in-
coming segments in a buffer, before decoding the sequence in linear order
and playing out the video on the user’s device.

This approach generally enables smooth video playout, and therefore
results in a higher QoE than traditional video streaming techniques. Be-
cause of this, major players such as Microsoft, Apple and Adobe adopted
the adaptive streaming paradigm and proposed their own rate adapta-
tion heuristics. As most HAS solutions use the same architecture, the Mo-
tion Picture Expert Group (MPEG) proposed Dynamic Adaptive Streaming
over HTTP (DASH), a standard which defines the interfaces and protocol
data for HAS [4].

HAS is well-suited for video on demand (VoD) scenarios, and is there-
fore put to good use by content providers such as Netflix> and YouTube®.
The startup time in these types of scenarios is however in the order of sec-

Shttps:/ /netflix.com/
“https:/ /youtube.com/

54 CHAPTER 3

onds, with variations depending on the type of network connection. One
of the reasons for this is that a significant number of resources need to
be delivered before the video can start to play: the web page, the video
player, the video’s media presentation description (MPD) file, the video’s
(optional) initialization segment and the different video segments. Espe-
cially in mobile networks, where the available bandwidth is limited and
the network latency is relatively high, this will have a significant impact
on the video’s startup time. A second reason is found in the segment dura-
tion, which is typically in the order of one to ten seconds: longer segments
simply take longer to deliver, and thus result in higher video startup times.

Research has shown that reducing the startup delay in HAS is relevant,
although it cannot occur at the cost of playout freezes or a reduced video
quality: as users are used to some delay before the start of the playback,
they usually tolerate it if they intend to watch the video [5]. However,
when browsing through videos, i.e., when users start a larger number of
videos but only watch parts of it, initial delays should be low for optimal
acceptance [6]. To address this specific use case, a framework is presented
for low-latency delivery of news-related HAS content, in a VoD scenario.
This framework integrates four complementary optimizations in the con-
tent delivery chain:

1) Server-side encoding, to provide shorter video segments during the
video’s startup phase;

2) Changing the application layer protocol, using HTTP/2’s server
push to deliver resources back-to-back;

3a) Server-side user profiling to identify relevant content for each user;
3b) Client-side storage to hold proactively delivered content.

Each of these optimizations can be used separately, although they are
very complementary. HTTP/2 server push, for example, can be used to
deliver short video segments back-to-back, eliminating the need for indi-
vidual requests for each of the segments. Therefore, content delivery and
buffer rampup can happen more quickly, thus reducing the video’s startup
time. Prefetching news content can be done based on article recency (i.e.,
prefetch the n newest articles only), but also based on user profiling (i.e.,
prefetch based on determined user preferences), measured on an entirely
different timescale. Having the right content available allows to start the
video locally, thus eliminating the time needed to deliver the content over
the best-effort network.

Preliminary evaluations showed that the proposed framework is able
to significantly reduce the video startup time, albeit at the cost of limited

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 55

network overhead and additional complexity at the server- and client-side
[7]. In this chapter, we elaborate on each of the proposed optimizations in
detail, and present a large-scale and in-depth evaluation (i.e., thousands of
users, videos and video streaming sessions) on a dataset of deredactie.be’,
an important Belgian news provider.

The remainder of this chapter is structured as follows. In Section 3.2,
related work on low-latency video content delivery is discussed. The pro-
posed framework is presented in Section 3.3, elaborating on the advantages
of each of the optimizations. The experimental setup and results are pre-
sented in Section 3.4, before coming to final conclusions in Section 3.5.

3.2 Related Work

A large number of techniques have been proposed in literature to improve
the QoE of video streaming services. These techniques can be divided in
multiple ways (e.g., in client-based, server-based and network-based solu-
tions [2]). While a lot of research has recently be done on client-side rate
adaptation (e.g., BOLA and Pensieve [8, 9]), related work below mainly fo-
cuses on relevant research on low-latency end-to-end delivery on the one
hand, and client-side prefetching on the other.

3.2.1 Low-Latency End-to-End Delivery

Since a certain amount of data must be transferred before decoding and
playback can begin, startup delay is always present in HAS [2]. The mini-
mal achievable initial delay strongly depends on the available transmission
data rate and the encoder settings. Depending on the use case, the client
can start playout as soon as content is available, or wait until a minimum
amount of content is present. The advantage of the latter is that the buffer
filling is higher when playout starts, therefore reducing the risk of buffer
starvation. However, since most players start the stream at the lowest qual-
ity level, rebuffering events in the early stages of the video stream are less
likely to occur. The dash.js reference player uses a stalling threshold of 0.5
seconds by default, which is generally low enough to start playout as soon
as the first segment arrives.

Quite often, the initial delay and rebuffering time are trade-off factors:
reducing the startup delay at the expense of content buffering, may re-
sult in playback freezes. Hofifeld et al. showed that in a VoD scenario
for YouTube, most users tolerate an initial delay in the order of seconds, if

5 http://deredactie.be/

56 CHAPTER 3

they inted to watch the video [5]. When browsing through videos, how-
ever, initial delays should be low for optimal acceptance [6]. Especially in
the case of volatile and user-generated content, the startup delay should be
low in order to maximize user engagement and acceptance. Although the
focus in our evaluations is primarily on the observed video startup time,
final results will also be reported in terms of buffer starvation.

A straightforward approach to reduce the startup time in HAS, is lim-
iting the amount of data needed to start video playout. Therefore, the
adopted encoding scheme can play an important role in the QoE of video
streaming services. One possibility is to adopt the principle of scalable
video coding (SVC) in HAS. This reduces the encoding and storage over-
head, since each quality representation is constructed as an enhancement
of the lowest quality level [10]. Because an SVC-based client has an in-
creased number of decision points, it can cope better with highly variable
bandwidth. Although SVC reduces the footprint for storage, caching and
transport compared to a complete simulcast H.264/AVC system, it does
introduce an encoding overhead of about 10% per layer [11]. Furthermore,
since the client initially has no knowledge of the available bandwidth, most
players start playout at the lowest quality level; in this case, the adoption
of SVC does not impact the startup time. More recently, a number of stand-
alone HAS players have adopted H.265/HEVC, a video compression stan-
dard was developed to provide twice the compression efficiency of the pre-
vious standard, H.264/AVC [12]. In HEVC, coding units of up to 64 x 64
pixels are used instead of 16 x 16, and more intra-picture directions, finer
fractional motion vectors and larger transform blocks are used to achieve
this improvement in compression performance. Although its application
is increasing, most browsers offer no support for HEVC at the time of writ-
ing [13]. It is worth noting that a scalable version of the standard, SHVC,
exists as well.

In live streaming scenarios, advanced client-side rate adaptation
heuristics can be used in order to achieve an acceptable QoE when the
buffer size is small. Recently, Shuai et al. proposed a heuristic which al-
lows the client to stream video with stable buffer filling [14]. In the model
for the QoE, rebuffering events — including the one at startup — are penal-
ized by applying a suitable weight factor. In this way, high startup times
and stalling events are actively avoided. In the evaluation of the proposed
approach, results are however only shown in terms of the estimated QoE;
therefore, it is unclear how the video startup time is affected. Miller et al.
propose LOLYPOP, a rate adaptation heuristic for low-latency prediction-
based adaptation designed to operate with a transport latency of a few
seconds [15]. In their evaluation, a video streaming scenario is considered

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 57

in which the total delay (i.e., segment duration plus upper bound on trans-
port latency) equals merely 5 seconds. To achieve such a low value, LOLY-
POP leverages TCP throughput predictions on multiple time scales, from
1 to 10 seconds, along with estimations of the relative prediction error dis-
tributions. Using this approach, the authors are able to improve the mean
video quality by a factor of 3 compared to FESTIVE, a well-known rate
adaptation heuristic to improve fairness and stability in HAS [16]. Results
for the video startup time are however not considered in this chapter.

Although real-time streaming protocols are not applicable in the tar-
geted use case, we can use different protocols at the application layer. In
this context, the new HTTP/2 standard was published as an IETF RFC in
February 2015, mainly focusing on the reduction of latency in web deliv-
ery. Since then, research has shown the application of HTTP/2 can either
reduce or increase the load time [17-19]. In the context of video content
delivery, however, significant improvements can be achieved. Wei et al.
first explore how HTTP/2’s features can be used to improve HAS [20].
By reducing the segment duration from 5 to 1 second, they manage to re-
duce the camera-to-display delay with about 10 seconds. An increased
number of GET requests is avoided by pushing k segments after each re-
quest, using HTTP/2’s server push. Cherif et al. propose DASH fast start,
in which HTTP/2’s server push is used to reduce the startup delay in a
DASH streaming session [21]. The authors also propose a new approach
for video adaptation, in which WebSocket over HTTP /2 is used to estimate
the available bandwidth. In previous work, we proposed a full-push fea-
ture, in which segments are pushed from server to client until the client
specifies otherwise, or the connection is terminated. In contrast to these
works, we propose to combine HTTP/2’s server push with a hybrid seg-
ment duration scheme, resulting in smoother buffering and faster startup.

Optimizations can also be performed on the transport layer. In recent
work, Gatimu et al. showed that the Flexible Dual TCP-UDP Stream-
ing Protocol (FDSP), which combines the reliability of TCP with the low-
latency characteristics of UDP, can be used to reduce the video startup
time [22]. In the considered setup, FDSP delivers the more critical parts
of the video data via TCP and the rest via UDP. The authors show that this
approach results in significantly less rebuffering than TCP-based stream-
ing and a lower packet loss rate than UDP-based streaming. Although
results are promising, the evaluated approach does not map to traditional
HAS, in which segments are retrieved back-to-back and have to be fully
downloaded before playout can start.

When it comes to encoding, new real-time technologies such as Web
Real-Time Communication (WebRTC) have recently been introduced [23].

58 CHAPTER 3

Where HAS is generally used in VoD scenarios or live streaming scenar-
ios where the delay can be in the order of tens of seconds, such as sports
events, these technologies focus on collaborative real-time video streaming
communication where the delay should be in the order of a few hundreds
of milliseconds. Furthermore, they have been developed with a peer-to-
peer architecture in mind, where a small group of clients can directly com-
municate with each other. Since each sender needs to encode a separate
stream for each of the receivers, this approach suffers from scalability is-
sues when many participants are present at the same time. Although use-
ful in real-time communication, these technologies do not envision tradi-
tional VoD scenarios and are thus unsuitable to provide the required low-
latency aspects in HAS.

Recently, further improvements to HAS have been made, such as Server
and Network Assisted DASH (SAND) [24]. While the focus of this chapter
is on over-the-top video delivery only (i.e., delivery without control over
the network), SAND aims to further improve performance by enabling in-
network decisions. In the suggested approach, a bi-directional messaging
plane is used between the clients and other so-called DASH-Aware Net-
work Elements (DANESs), in order to carry both operational and assistance
information. This allows to trigger control mechanisms such as flow pri-
oritization, bandwidth reservation and video quality adaptation based on
the network’s and client’s current state. A large number of studies has been
conducted, showing that the SAND principle can significantly improve the
QoE in HAS [25, 26]. This concept however moves away from over-the-top
solutions, and is therefore not considered in this chapter.

3.2.2 Prefetching of Multimedia Content

To improve the QoE in video streaming, content can be brought closer
to the end user. Streaming providers have massively adopted the use of
Content Delivery Networks (CDN), reducing the load on the origin server
and serve the video with lower latency and increased bandwidth. General
caching strategies can be applied, taking into account characteristics such
as content popularity, user preferences, the client’s location, etc. In this re-
gard, a number of studies have shown significant improvements. As an
example, Krishnappa et al. exploit particular user behavior to improve the
caching efficiency of YouTube videos [27]. By rearranging the related video
list to give preference to cached videos, the cache hit rate is improved by a
factor of 5. Caching strategies can also be improved when future user re-
quests are known in advance. For example, binge-watching has become a
well-known phenomenon for video streaming services, meaning that users

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 59

tend to watch multiple episodes of the same TV show consecutively. As
shown by Claeys et al., this information can be used to estimate future
video segment requests and improve caching efficiency [28]. Apart from
being cached in a CDN, content can also be prefetched by the client. Kr-
ishnamoorthi et al., for instance, propose a scheme in which three policy
classes are applied to preload content for HAS [29]. The authors however
assume that the content provider has already established a list of relevant
content which should be prefetched. In this work, we also focus on how to
select this content at the server-side.

For this purpose, we will use techniques that have been proposed in the
context of recommender systems, where users and their consumed items
are projected in a low-dimensional vector space [30]. Users with similar
consumer characteristics will typically have vector representations that lie
close to each other in this space, while dissimilar user vectors are located
far apart. Matrix factorization, for instance, is an often used technique to
arrive at a vector space with such characteristics. It is typically applied to a
user-item rating matrix, while imposing that the scalar product between a
user and item vector is a good rating predictor. The problem with this ap-
proach, however, is that the user vectors are considered static, which is not
always ideal in dynamic scenarios in which many items are consumed one
after the other, such as songs, videos and news content. It has recently been
shown in literature, and real-life scenarios at Netflix and Spotify, that it is
often beneficial to explicitly consider the time aspect by modeling users in
a dynamic fashion [31-33]. In these systems, a user is typically represented
by aggregating item vectors across time. For example, in the work by Hi-
dasi et al. a recurrent neural network is used to process items one after the
other [34]; the output of this neural network is a set of recommended items
after processing a new item. The downside of this approach is that users
are not modeled explicitly in the same space as the items, and therefore
does not allow for direct user-item comparisons. In order to achieve this,
we can simply sum or average the consumed item vectors, through which
we remain in the same item space. We will further elaborate upon this in
the next section.

3.3 Proposed Framework

The proposed framework integrates four complementary optimizations in
the content delivery chain, as illustrated in Figure 3.2. First, we consider
the aspect of video encoding, using a shorter video segment duration to
reduce the playout delay. This optimization requires sufficient resources
at the server-side, in order to encode provided content both for multiple

60 CHAPTER 3

| 3.1. Server- side encoding | 3.2. Application layer protocol |
()
(- {/B @ A :}.
| 3.3. Server-side user proﬁhng | | 3.4. Cllent-51de storage |

Figure 3.2: The proposed HAS delivery framework for media-rich content from
news providers [7].

quality representations and for different segment durations. Second, we
focus on the applied application layer protocol, discussing the possibili-
ties of HTTP/2’s server push feature. This requires an HTTP/2-enabled
server, equipped with a custom request handle to push required resources
from server to client. Since most browsers nowadays have full support for
HTTP/2, no changes to the client are required. Third, we consider user
profiling as a way to predict user interest and interaction. To this end, the
server needs to monitor all incoming requests and keep track of several
content- and user-based characteristics. Fourth, client-side storage is con-
sidered to store content which is proactively delivered to the user, once it
is deemed of interest by the profiling component. This requires additional
complexity at the client-side, and is prone to bandwidth overhead when
the wrong content is prefetched. Below, we elaborate on each of these op-
timizations in detail.

3.3.1 Server-Side Encoding Using Hybrid Segment Dura-
tion

The first part of the proposed framework consists of server-side encoding,
and more specifically on the segment duration of the provided content. As
found in previous work, reducing the duration of video segments comes
with a number of advantages [35]. Most importantly, the short segments
require a lower download time, resulting in a reduced delivery time and
thus in faster startup. However, since every segment has to start with an
Instantaneous Decoder Refresh (IDR) frame, a higher bit rate is required
to achieve the same visual quality compared to segments of higher length.
This encoding overhead was analyzed for seven videos at multiple frames
per seconds (FPS) in previous work, showing that a segment duration of
1 second results in a bit rate overhead between 12.1 and 22.4% compared
to a segment duration of 8 seconds, and in an overhead between 28.7 and

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 61

ry r

Bit rate Bit rate |

Time
(a) Long segment duration scheme (b) Short segment duration scheme
A
Bit rate

il

(c) Hybrid segment duration scheme

Figure 3.3: Possible segment duration schemes in HAS. While traditional schemes
use a fixed segment duration, the hybrid scheme changes the segment
duration over time, smoothly ramping up the video player’s buffer.

49.9% for a segment duration of 250ms [35]. Moreover, since a unique
request is required to retrieve each single video segment, solutions with
low segment duration are susceptible to high round-trip times (RTT). This
problem mainly arises in mobile networks, where the RTT is in the order
of 100 ms, depending on the network carrier and the type of connection.
While traditional streaming solutions use a fixed segment duration in
the order of 2 to 30 seconds, we propose to use different segment durations
for the startup and steady-state phase of the video streaming session. This
allows us to both reduce the video startup time by using short video seg-
ments in the startup phase, and overcome the aforementioned issues by
switching to longer segment durations once the video is steadily playing.
Two approaches are possible: (i) initially start at the lowest segment du-
ration dq, switching to the highest segment duration d,, once a significant
amount of segments has been downloaded, and (ii) initially start at the
lowest segment duration dq, switching to d, ds, ... until a segment dura-
tion of d, is reached. The advantage of the latter is that the buffer is ramped
up smoothly, preventing possible freezes when switching from the lowest
to the highest segment duration when the buffer level is relatively low. A

62 CHAPTER 3

disadvantage to this approach is that multiple versions of the content need
to be available, each containing a different segment duration. However,
since the segment duration is changed only during the startup phase, only
the first part of the content needs to be encoded multiple times. Further-
more, since most players generally start playout at the lowest video bit
rate, it is sufficient to provide multiple segment durations for the lowest
quality representation only.

There are multiple ways to apply the proposed segment duration
scheme. One possible approach is to generate the MPD, which contains
relevant information on the available content (e.g., the video’s duration
and available quality representations), in such way that several parts of the
video are distinguished [36]. It is then possible to define different segment
durations for different quality representations and time intervals, making
the approach completely DASH-compliant. A second approach is to limit
the segment duration in the video player itself, for instance by tracking the
video playout progress and available quality representations.

It is worth noting that the proposed scheme can not only be applied
at startup, but each time the buffer filling drops below a certain thresh-
old: the player can recover more quickly, and thus reduce the total time
of stalling. In this case, however, the full video needs to be available in
different segment durations. This scheme is not adopted in this chapter.

3.3.2 Application Layer Optimizations Using HTTP/2’s
Server Push

At the start of an HAS video streaming session, a large number of files
need to be downloaded. In a stand-alone client, a request is first sent for
the video’s MPD file. Based on the contents of this file, the client pro-
ceeds to download the initialization segment (if any) and from then on,
requests video segments one by one. In a web-based context, the HTML
page and its required resources need to be fetched as well, including the
HAS player, JavaScript sources, CSS files, images, etc. All these resources
are requested over HTTP, which among others, allows to traverse firewall
and NAT devices, and reuse the existing delivery infrastructure. Retriev-
ing these resources one by one takes time, given RTT is lost for every re-
quest. Especially in mobile networks, where the latency is in the order of
tens to hundreds of milliseconds, this can have a significant impact on the
startup time.

When it comes to browser page loading, the total time can be reduced
by using up to six parallel HTTP/1.1 connections. This allows to retrieve
resources faster, since idle RTTs can be omitted. It is however infeasible to

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 63

Client Server Client Server Client Server Client Server
RTTI / RTTI """""""""" RTTI / RTTI T
T™ML o TML
i RTTI — % '
Rrr]| e RIT|| = o)
I .@) Sg, a2, 02 /m RTTI
=l =4, Si=1, 0= Sinit, &
RTTI / L T I Sl —
[Suis=—) RTTI T %
------ e 4/ S, 6010
RTTI m‘ Sie6, &2 a2 I (Se12, a4 47
b RTT 12,6
P e e e
_____ -8, 42, &
RIT — |
R
(a) HAS over HTTP/1.1 (b) HAS over HTTP/2

Figure 3.4: Sequence diagrams of the proposed hybrid segment duration schemes.
Using HTTP/1.1, each video segment requires a separate GET re-
quest. Using HTTP/2, one request allows to deliver multiple resources,
thereby reducing the video’s buffering and startup time.

use this approach in the case of HAS: during the startup phase, the client’s
browser does not know in advance which resources will be required next
(e.g., the download of the dash.s player cannot start before the HTML
source code is parsed), and once the video session has started, segments are
retrieved one by one to guarantee in-order delivery, and thus the (timely)
arrival of the most crucial segments first. An alternative way to deliver
required resources more quickly, would be to forward these without the
client requesting them. To this end, HTTP/2’s server push can be used.

In Figure 3.4a, the example scenario from Figure 3.3c is illustrated for
HTTP/1.1. Here, the HTML source code is downloaded first, and is parsed
by the browser. This code includes the dash.js script, which is in its turn
requested. Once the player is present, it initiates the download of the video
session’s MPD and parses the document. It finds out that an initialization
segment is required for each of the quality representations, and issues a
request for the one corresponding to the lowest quality. From then on,
segments are requested one by one, evaluating the available bandwidth
once each of the segments has been downloaded.

In 2015, the HTTP/2 standard was published as an IETF RFC. Its main
purpose is to reduce the latency in web delivery, using request/response
multiplexing, stream prioritization and server push. The latter can be used

64 CHAPTER 3

to push video segments from server to client, without the client sending a
GET request for the required resources. Pushing the content back-to-back
allows to eliminate idle RTT cycles, reducing buffering time and improving
bandwidth utilization.

In previous work, a stand-alone client was considered to evaluate the
use of HTTP/2’s server push feature [35]. In this context, we propose to
push resources related to the video streaming session only: once the man-
ifest is requested, video segments are continuously pushed to the client,
until an explicit stop request is sent or the connection with the client is ter-
minated. In this way, idle RTTs during content download are eliminated,
resulting in reduced delivery times and thus faster video startup.

In this work, we consider the browser-based dash.js reference player,
with the hybrid segment duration scheme presented above. As illustrated
in Figure 3.4b, HTTP/2 server push is now used to deliver the HTML
source code of a sample web page, the dash.js reference player embedded
within this page, the MPD, the initialization segment and the first k video
segments, corresponding to the first x seconds of the the video stream.
From then on, one GET request can be used to retrieve each x seconds of
video. Depending on the selected segment duration, the server can push
a different amount of segments, while the client can specify the desired
quality representation based on its rate adaptation heuristic. Similarly, this
approach results in the removal of idle RTTs, reducing the video’s startup
time and increasing the total throughput.

Although not applicable in the evaluation setup in Section 3.4, it is
worth noting that additional sources, such as images, scripts and CSS,
can be retrieved using HTTP/1.1 (potentially with multiple connections)
or by HTTP/2 (potentially with server push), or from the browser’s cache
if present.

3.3.3 Server-Side User and Content Profiling

A third optimization consists of server-side user and content profiling. Its
purpose is to build a profile for all platform users, determining their pref-
erences towards certain news content. Generally speaking, the purpose of
the profiling component is to select a subset of relevant, recent video con-
tent for any given user. This content can then be prefetched by the client,
effectively reducing the video startup delay at the time of request. In the
proposed framework, we thus want a means to determine such a subset.
To this end, for each of the users, we compare the performance of each of
the following recommendation strategies over a recent period (i.e., the last
n number of requests):

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 65

e Likely to consume most popular content - Certain video articles
have a higher probability of being requested than others. Research
has shown that this depends, among others, on the type of subject,
the location of the event and the objectivity of the title. Popular ar-
ticles are generally highlighted on (top of) the home page, and are
more often shared on social networks such as Facebook and Twitter.
If we want to consider a relevant subset of videos to prefetch, it thus
would make sense to consider the most popular content only. When
this profile is assigned, the number of requests issued within a cer-
tain time interval is considered to rank the available content. From
this list, the n most popular articles are considered of interest to the
user;

¢ Likely to consume most recent content - News content is typically
short-lived, i.e., its relevance decreases quickly over time [37]. News
articles and videos are only featured on (top of) the home page for a
limited amount of time only, and are quickly replaced by new data
and news topics. Furthermore, a significant amount of users prefer to
stay up-to-date by visiting news web sites multiple times a day, mak-
ing news older than a couple of hours less relevant. Therefore, when
this profile is assigned, all content is ranked according to the time of
publication. From this list, the n most recent articles are considered
of interest to the user;

¢ Likely to consume personalized content - Some users are interested
in particular news subjects and articles, and therefore consume spe-
cific videos only. For this type of users, we will, as traditionally done
in recommender systems, represent each user and video article by a
low-dimensional vector. To this end, we assume that every video has
associated textual metadata, and apply a natural language process-
ing model to represent each of the articles. This metadata can include,
but is not limited to, the author(s), title, summary and text-based
content of the news article. Based on previous work, word2vec is
selected to accomplish this [7, 38]. Word2vec learns low-dimensional
word vectors, also called word embeddings, by training a two-layer
neural networks to reconstruct linguisitic contexts of words in a large
text corpus. For each word in this corpus, a word embedding is
learned that is located in a low-dimensional space such that words
with a common context are positioned close to one another [38]. Since
word2vec operates on word level, we will represent each article by
the sum of the word vectors it contains. A user is represented by a
vector as well, which is initially an all-zeros vector. Each time a new

66 CHAPTER 3

article is requested by a user, the corresponding vector is updated by
summation of the user and article vector in an online fashion. This
approach allows us to create a unique vector for each user, building
a user profile over time. The relevance of an article a to a user u can
then be determined using the cosine similarity:

u-a

= — 3.1
Tal2lall2 6D

cos (u,a)

The higher this similarity, the higher the user’s preference towards
an article is assumed. When this profile is assigned, recent content
is considered and ranked according to the cosine similarity between
the user and article vectors. From this list, the n most similar articles
are considered of interest to the user. Note that this approach is prone
to the cold-start problem, since the user vector is initially set to zero
and is slowly built up for each user.

We propose to assign each user one of the aforementioned profiles, but
do it in such way that performance does not suffer from the cold-start prob-
lem and that a user’s preferences can change over time. To this end, each
user is initially assigned the popularity profile, where the most requested
articles are considered. Once a sufficient amount of requests has been is-
sued by the user, we allow the assigned profile to be changed through-
out time, using online evaluations of the user behavior and preferences
towards certain content. To determine the most appropriate category for a
given user, and therefore the best approach to rank the available content,
a sliding window is used over the user’s past n requests. Within this win-
dow, the position of each of the user’s requests is evaluated in the sorted
list generated by each of the three profiles. The user is then be mapped to
the profile which results in the lowest average position of the requests.

Using the average position for the last n requests as a metric, differences
between the three profiles can be small. This can result in a large number of
switches in the assigned profile, which should preferably be avoided. For
this reason, hysteresis is applied to only change the assigned profile when
the metric of a certain profile outperforms the currently assigned profile by
at least a fraction «.

The result of the proposed approach is a shortlist containing the most
relevant video articles for each of the users. As explained below, the con-
tent of this shortlist can be used to proactively deliver the content to the
user, anticipating future article requests.

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 67

3.3.4 Client-Side Storage

A final component of the proposed framework consists of client-side stor-
age, which is used to enable proactive delivery of relevant video content. If
the right content is sent, using such approach allows to significantly reduce
the video session’s startup time. Depending on the use case scenario, mul-
tiple options for content delivery and client-side storage are possible. In a
stand-alone application, a dedicated cache on the local device can be used.
Based on server recommendations, the application can retrieve content in
the background. Measure needs to be taken as not to use prefetching too
aggressively, as it introduces a risk of increasing battery drain and band-
width use. In web-based applications, control over client-side storage is
less evident. Recent versions of browsers such as Google Chrome allow
to prefetch web pages which are referred to in the current page. Pages are
prerendered in a hidden tab, and moved to the foreground upon request.
This can be extended as to provide support for HAS, retrieving the first
x seconds of embedded video content. Most browsers now also support
HTTP/2, storing pushed resources in the browser’s cache. This allows the
server to push additional resources upon a client’s incoming request, yet
care needs to be taken that prefetching does not interfere with the transfer
of more urgent resources (e.g., the current video being played out). For this
reason, the best approach is to only deliver additional resources once the
requested article page has been retrieved completely.

Regardless of how the content is delivered, it is important that the right
content is sent. Indeed, proactive delivery of non-relevant content results
in network overhead, since bandwidth is wasted on content which may
never be consumed. Therefore, we can apply the profiling detailed in Sec-
tion 3.3.3 to determine a shortlist of articles, and consider the top k articles
for prefetching. In our evaluations in Section 3.4, we investigate the impact
of this parameter (which corresponds to the cache size) on the startup time
(no requests need to be sent to the server in case of a cache hit) and the net-
work overhead. Note that only the first d,, seconds of video, corresponding
to the largest segment duration, are stored: as soon as video playout has
started, the remaining content is fetched from the server as in a traditional
streaming scenario.

3.4 Evaluation

In this section, we evaluate the impact of the proposed framework on the
video startup time. We first discuss the considered use case of a major Bel-
gian news provider, and present the experimental setup used to evaluate

68 CHAPTER 3

B 00% & 8 075 &
R VIOERIONE | THE GREAT WAR ESHME THE GREAT AR
WEWS | UFE | SPONTS | BRUSSEIS | ANTERP | FOUTES | CULRE | HEMTHLENVROWMENT | ECONOMY

-

-

Countdsun ‘o Brexit VRT discovers bow s
impacing st UK

Great War centenary: Original Eqg stands Countdown to Brexit: VRT discovers how G
among 600,000 victims it's impacting on the UK £
Great War centenary: Original Egg stands among 600,000
victims

Cadaves lase Flomish motarucy

*Jihadi John' accomplice jailed ~ VUB and Warwick defy Brexit
for 30 years rift

Figure 3.5: Screenshots of deredactie.be, homepage (left) and video zone (right).

results. We then present the most important results, discussing the advan-
tages and shortcomings of each of the proposed optimizations.

3.4.1 Use Case: deredactie.be

Deredactie.be is one of the major news websites in Belgium, hosted by the
Flemish Radio and Television Broadcasting Organization (VRT). In recent
years, its focus has shifted largely from simple text-based articles towards
multimedia-rich news reports. Because of this, the website is an excellent
use case for the proposed delivery framework. On the home page, users
are presented an overview of recently published content, containing a rele-
vant poster, a title and a short introduction on each of the news topics (Fig-
ure 3.5). In the “video zone”, a separate page, all videos published in the
last week are presented in order of publication (i.e., most recent first). The
website also contains references to other (news) sources, such as Sporza
(sports) and Canvas (culture).

In collaboration with VRT, Van Canneyt et al. were able to collect a data
set containing approximately 300 million website requests, issued between
April 2015 and January 2016 [37]. For every request to the website, among
others the requested URL, the referrer URL, the server’s and client’s local
time, and the client’s hashed IP and cookie ID were logged.

From the given dataset, all users and article requests were extracted.
The HTML and XML sources of the requested articles were retrieved, and
relevant information such as the title, summary and content was extracted.
All embedded video was retrieved as well, resulting in a total of 19437
videos. All data was used by the proposed framework, as detailed below.

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 69

Java Jetty dash.js
Server Client

. -

O
N e e

Figure 3.6: Experimental setup. Mininet is used to host a virtual network within
a Docker container. The dash.js player is used in the Google Chrome
browser, starting and playing different video streaming sessions from
the HTTP/2-enabled Jetty server.

3.4.2 Experimental Setup

In the remainder of this section, we evaluate the proposed framework un-
der realistic network conditions. To this end, a network setup is emulated
using Mininet®, where a client is connected to an HTTP/1.1- and HTTP/2-
enabled Jetty server (Figure 3.6). As for the mobile network scenario, both
3G and 4G network scenarios are considered; while 4G coverage in Bel-
gium is excellent, clients are still often forced onto 3G in areas with a lower
population density [39]. To emulate network conditions, traffic control is
used to set the network latency to 120 and 60ms for 3G and 4G respec-
tively, and to shape the available bandwidth of the client according to
bandwidth traces provided by Riiser et al. and van der Hooft et al. (see
Appendix A) [40, 41]. The client uses the Google Chrome browser in head-
less mode to start a video streaming session, using the reference dash.js
player. The open-source code of the Jetty server is slightly modified, al-
lowing it to push the required HTML and JavaScript resources, the MPD,
the initialization segment and the first 10 seconds of a given video upon
request. To allow seamless connection over HTTP/2, a Node.js proxy is
provided for each client. This proxy can retrieve content from the local
filesystem as well, and can therefore be used to measure startup times
for prefetched video. The complete setup has been wrapped in a docker
container, increasing portability and allowing parallel execution of video
streaming sessions. Experiments were carried out on five physical nodes
on the Virtual Wall”, with twelve docker containers running simultane-
ously on a hexa-core Intel(R) Xeon(R) CPU E5645 @ 2.40 GHz with 24 GB
of RAM. Below, results are shown for different scenarios, including an ad-
ditional optimization in each experiment.

6h’ctp:/ /mininet.org
7https: //doc.ilabt.imec.be/ilabt-documentation/

70 CHAPTER 3

bl
=)

R
&}

| |
)

|
% L |

5

v
IS

g
ox
T

[
[ee}
T

Relative encoding bit rate

=
T

1
Segment duration [s]

Figure 3.7: Encoding bit rate as a function of the segment duration, relative to the
bit rate for a segment duration of 10 seconds. Outliers for a segment
duration of 0.4 seconds go as high as 14.065, but are omitted in favor of
readability.

3.4.3 Short Segment Duration

Since shorter video segments require less data to be transferred from server
to client, the client should be able to start playout faster. As mentioned
above, this approach introduces an encoding overhead. In previous work,
we evaluated this overhead for shorter video segments on seven different
videos [41]. Given the extent of the presented dataset, we decided to eval-
uate the encoding overhead for all 19437 video articles published within
the time of logging. By default, deredactie.be provides its video content at
a frame rate of 25 FPS, a spatial resolution of 640 x 360 and a segment du-
ration of ten seconds. This content was re-encoded using AVC/H.264 with
the same frame rate and resolution, but with a segment duration ranging
from 400 ms to 10 seconds. To allow each segment to be decoded indepen-
dently, every segment starts with an IDR frame, and the Group of Pictures
(GOP) length is set to values ranging from 10 to 250 respectively. To realize
the same visual quality, the Constant Rate Factor (CRF) rate control in the
x264 encoder is enabled, with a CRF value of 25. This results in average
video bit rates of 423 and 231 kb /s for a segment duration of 400 ms and 10
seconds respectively.

Figure 3.7 shows a boxplot of the encoding overhead for different seg-
ment durations, relative to the bit rate of a segment duration of 10 seconds.
The obtained average video bit rates equal 423, 300, 261, 238 and 231 kb/s
for a segment duration of 0.4, 1, 2, 5 and 10 seconds respectively, or a rela-
tive overhead of 83.3, 30.4, 13.2 and 3.3% compared to a segment duration
of 10 seconds. Values for the overhead range from 1.035 (low overhead)

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 71

to 14.065 (significant overhead) for a segment duration of 0.4 seconds. The
former stems from videos with a lot of movement and scene switches, for
which the insertion of additional IDR frames has almost no impact on the
overall video bit rate (e.g., a report on the world record pillow fight), while
the latter stems from videos with hardly any movement at all (e.g., still
photos during a news broadcast). This shows that the encoding overhead
can be significant, and should be avoided whenever possible. Therefore,
applying a hybrid approach in which short segments are used at startup
and long segments in steady-state, is beneficial in terms of consumed band-
width and video quality.

In a first video streaming experiment, we evaluate the startup time for
different segment durations d;, where the required content is requested
over HTTP/1.1. The segment duration ranges from 0.4 to 10 seconds, at a
frame rate of 25 FPS. Figure 3.8 shows the boxplots for the startup time of
19437 video streaming sessions, one for each video in the dataset. Outliers,
corresponding to at most 7% of the data, are omitted in favor of readabil-
ity: some outliers reach values up to 38.4 seconds because the throughput
traces contain different periods of low throughput, where connection is
bad to non-existing.

In a 3G scenario, the observed gains are significant: the median startup
time is reduced from 4.0 to 3.1 seconds for a segment duration of 10 and
1 seconds respectively. Furthermore, variability is significantly lower, re-
ducing high startup times which generally impede the QoE the most: the
90% and 99% quantiles, for instance, are reduced from 8.4 to 5.9 seconds
and from 15.7 to 11.3 seconds. Results also show that the segment duration
cannot be reduced indefinitely: for a segment duration of 0.4 seconds, the
median startup time increases again to 3.3 seconds, and the 90% and 99%
quantiles to 6.1 and 11.4 seconds respectively.

In a 4G scenario, the gains are less outspoken: the median startup time
is reduced from 1.4 to 1.2 seconds for a segment duration of 10 and 1 sec-
onds respectively, while the 90% and 99% quantiles are reduced from 1.9
to 1.5 seconds and from 4.2 to 3.4 seconds. Because the throughput is sig-
nificantly higher, the importance of the video file size is simply reduced.
Relatively speaking, however, the observed gains are still significant: a re-
duction of the median startup time of 14.5% is achieved for 4G, compared
to 23.1% for 3G.

3.4.4 Short Segment Duration and Server Push

As explained in Section 3.3, the application of HTTP/2 server push al-
lows to avoid idle RTT cycles in the buffer rampup phase. In Figure 3.8,

72 CHAPTER 3

10 — : —
1 HTTP/1.1 : n
8t = urrePR2 . .
2 _ _ T ‘ :
| T | _ | |
E 67 (T I M
= N (. |
E‘ 4l ! ! |
<
7
2~ QH - . 1T
!
I ! !
o) c z L
041 2 5 10
Segment duration [s]
(a) 3G network
3.0 —— ‘
1 HTTP/1.1
2.4 +H 1 HTTP/2 i

—_
[ee}
T

Startup time [s]
©
M-
H-1
HO-
I —
|

3 & i o

o
=
T
!

e
=3

0.4 1 2 5 10
Segment duration [s]

(b) 4G network

Figure 3.8: Startup time as a function of the segment duration. Outliers, corre-
sponding to at most 7% of the data, are omitted in favor of readability.

the startup time of all video streaming sessions is compared between
HTTP/1.1 and HTTP/2. In a 3G scenario, where the latency is equal to
120 ms, the median startup time is reduced from 4.0 to 3.3 seconds (-17.5%)
and from 3.1 to 2.5 seconds (-19.3%) for a segment duration of 10 and 1
seconds respectively. In a 4G scenario, where the latency is equal to 60 ms,
the median startup time is reduced from 1.4 to 1.0 seconds (-28.6%) and
from 1.2 to 0.9 seconds (-25.0%) for a segment duration of 10 and 1seconds
respectively. These gains are a direct consequence of back-to-back delivery
of the required video resources. It is worth mentioning that the application
of HTTP/2 server push has no impact on variability: the reduction of the
startup time is linearly correlated to the network delay only.

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 73

3.4.5 User and Content Profiling

The application of user profiling is situated on a different timescale than
the actual video streaming. For this reason, we first show results for the
proposed user profiling strategies, before applying them in a video stream-
ing scenario. To enable user profiling, the title, summary and text con-
tent from each article published within the time of logging was extracted,
Dutch stopwords were eliminated and the resulting lower-case text was
used as input to train a word2vec-based model with 100 dimensions. Note
that all articles containing video, include at least a title and a brief sum-
mary; therefore, each article can be represented by the sum of its word
vectors.

To evaluate the accuracy of the resulting models, we replayed all article
requests issued by users who were active during at least half of the period
of logging (i.e., five months) and who, on average, requested at least one
video article per day. Eliminating page crawlers, this resulted in a pool of
5835 users, who together request a total of 1848 319 video articles. Similar
to articles, each user is represented by a 100-dimensional vector, which is
updated each time an article is requested.

Before each request, a sliding window over recently issued requests is
updated. Within this window, each of the three strategies (i.e., popular,
recency and word2vec) is evaluated based on the rank of the articles in
the sorted list, and a decision is taken to either stay on the current strat-
egy, or switch to an alternative one if this has shown to result in a better
performance. We performed an analysis of different parameter settings,
including the optimal window size and hysteresis fraction thereof.

A higher window size entails more information, and thus a better de-
cision regarding which category to assign to the user. However, using a
window size which is too large, users which are likely to switch to a dif-
ferent category remain at the (initially assigned) popular strategy too long,
resulting in lower performance. After careful consideration, a window size
of 100 requests was selected.

When changing the assigned profile based on the number of list hits
within the sliding window, differences in accuracy can be small. This can
result in a large number of switches in the assigned recommendation strat-
egy. To avoid this from happening, hysteresis is applied to only change
the strategy when the cache hit ratio of a certain approach outperforms the
currently assigned approach by at least a fraction « of the window size. As
illustrated in Figures 3.9a and 3.9b for an example user, using a value of
« = 0.05 is sufficient to reduce the number of otiose strategy switches.

Figure 3.10 shows results for the three strategies and for the combined
approach. On the x-axis the considered article list size (i.e., the number of

74 CHAPTER 3
User 1 ‘
User 2 Recent
User 3 : ‘

User 4
L 1 L L 1 1 >
0 100 200 300 400 500
Request [#]
(a) Switching behavior for four example users
1.0
3
Q
]
.2 0.8} 1
2 Recent
k=) " Word2vec
2 0.6f 7 1
= .
ks T Popular
=
S o2} 1
s
B~ 00 I I I I
0 100 200 300 400 500
Request [#]
(b) Accuracy within the sliding window for user 4
Figure 3.9: Category preference and switching for four different users (top) and the

accuracy in the sliding window for user 4 (bottom), for a list size of 16
articles and a window size of 100 requests. Because results for the recent
and word2vec profile overlap, a large number of switches can occur.

articles that the recommendation algorithm is able to select) is presented,
on the y-axis the relative number of requested articles which were present
in this list. As an example, using a list containing the sixteen most recent
articles at each point in time, 43.3% of requested articles were present in
the list. Compared to a static popularity strategy, applying the proposed
approach results in higher accuracy, although improvements are limited;
as an example, the accuracy increases from 0.4781 to 0.4794 (0.3%) and from
0.6629 to 0.6664 (0.5%) for a list size of eight and sixteen respectively. For
most users in this dataset, simply considering the most popular articles at

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 75

1.0 ‘ ‘ ‘
Popular +--+ Word2vec

SRR
K
X B

o
o0

H — Recent x---x Hybrid

o
=
T

=
S
T

Fraction of list hits

o
)
T

e
=]

Number of articles in sorted list

Figure 3.10: Relative number of list hits for the three different user profiles, and
the proposed hybrid approach with a window size of 100 requests and
a = 0.05.

each point in time, results in the best performance. This is because most
users tend to consume content which is readily available and presented on
(top of) the home page. For this reason, it is more difficult to build accurate
user profiles, or predict consumption behavior based on previous requests.

Figure 3.11 shows the relative number of users for which the profile is
changed over time (total), and the relative number of users for which ei-
ther the popular, recent or word2vec-based profile is selected most often
when switching. As can be observed, at most 10% of users is ever assigned
a different profile than the most popular one. The recency profile is pre-
ferred by at most 6% of users, and the word2vec-based profile by 2%. As
illustrated in Figure 3.12, however, changing the recommendation strategy
for these users does result in significant improvements.

As an example, for a list size of eight, the performance relative to a static
profile based on popularity, is improved by 12.5% and 11.6% for users who
are most often assigned the recency and word2vec-based strategy respec-
tively. These users have an outspoken preference towards certain topics
and TV programs, which, when taken into account, in some cases im-
prove performance by a factor of 2 and more. For these users, the pro-
posed hybrid profiling approach can thus be adopted to improve accuracy,
and therefore improve the list of content considered for prefetching when
client-side storage is enabled. It is worth noting that for lower list sizes,
switching the assigned profile can in some cases result in lower perfor-
mance: given the low number of considered articles, there is little certainty
about potential list hits.

76 CHAPTER 3

0.15 F—— ‘ ‘
Popular +-+ Word2vec
All g

0.12H =—= Recent LEREL

PR R T

e X
Lxe X

0.09

0.06 |

Fraction of users

0.03} <

0.00

Number of articles in sorted list

Relative number of users whose user strategy is changed over time.
Users are categorized based on the dominant user strategy (either pop-
ular, recent or word2vec-based).

Figure 3.11:

—
N

—_
[O%}
T

Popular

= Recent

+--+ Word2vec

Mo

x

All

—_
S}
T

—
—_
T

—_
(=]

T
}

}

}

|

!

Performance relative to popularity

e
o

Number of articles in sorted list

Figure 3.12: Performance for users whose recommendation strategy is changed
over time, relative to a static popularity strategy. Values lower than 1
can occur, since switching is not always beneficial (although one strat-
egy outperforms the others in the sliding window, it is not guaranteed
that this will also be the case in the requests to come).

3.4.6 Short Segment Duration, Server Push and Proactive
Prefetching

In a final set of experiments, we assume that client-side prefetching and
storage is possible as well. To this end, the proposed recommendation
scheme is adopted to rank the available content for the 5835 users in the
user pool. It is worth noting that any recommendation scheme could be
used here: the proposed optimizations are complementary, and can thus

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 77

be omitted or replaced by valid alternatives. Then, the full request log is
replayed for each user.

In practice, the client would prefetch relevant content during off-times.
In the case of a stand-alone application on a mobile device, prefetching can
be done in the background. In the web browser, this can be done based
on server suggestions, either when the current page has finished loading
or when the playing video has been retrieved. In our experimental setup,
it is however practically infeasible to recreate the full user session: only
requested article URLs are available, yet not the information on the played
out quality of video, the length of the session, the available throughput,
etc. For this reason, prefetching is not directly implemented: we simply
assume that the client has, at each point in time, stored the first d, = 10
seconds of content for each of the top n video-based articles. When the
client issues a request, the content is retrieved either from local storage
(i.e., through the proxy) if the content is available in this list, or from the
server if not.

We assume storage capacity is limited, so that previously stored content
is removed when the list of articles is updated (e.g., when new articles have
been published in the recency strategy, when a certain article generated
more requests in the last hour in the popularity strategy, or when the user
switches from one strategy to another, possibly resulting in a significantly
different set of articles). For instance, the client might be able to store the
top 8 video-based articles only, but not more.

The 5835 users have sent a total of 1.8 million requests to video-based
articles during the time of logging. Because of the time complexity, it is
infeasible to replay all these requests for each evaluated parameter config-
uration. For this reason, the startup times for each of the videos in Fig-
ure 3.8 are used to represent the average startup time of each user. Of
course, startup times are strongly dependent on the available bandwidth at
the time of buffering, and can thus differ severely between sessions. Since
the trace is started at a random point in time, however, the resulting val-
ues should be a close approximation of the expected startup time under
realistic network conditions.

Figure 3.13 shows the average startup time as a function of the number
of articles the client is able to prefetch. Naturally, the more articles the
client can prefetch, the lower the average video startup time will be. As an
example, the median startup time in a 3G network is reduced from 5.0 to
2.7 seconds (-45.9%) when the eight most relevant videos for each user are
prefetched with a segment duration of 10 seconds over HTTP/1.1. When
this number is increased to 32, the median startup time can be reduced
even further to 1.1 seconds (-78.0%). When a lower segment duration of

78

CHAPTER 3

[o)}

PN
T
[-
- - —

Startup time [s]
[\ w
-

—
T

1 HTTP/1.1-10s
3 HTTP2-1s

.

O L1l ! ! ! !
012 4 8 16 32
Number of prefetched articles
(a) 3G network
2.0 ‘
B 1 HTTP/1.1-10s
1.6 ééT [HTTP2-1s ||
- - T
212} - é i]
2oty 8 |
208} T B - S r
8 - - _
& = %
04} - 7
00 L ! ! ! !
012 4 8 16 32

Number of prefetched articles

(b) 4G network

Figure 3.13: Startup time as a function of the number of prefetched articles, using a
segment duration of 10 seconds over HTTP/1.1 or a segment duration
of 1 second over HTTP/2. Boxplots include the average startup time
for all 5835 considered users.

1 second is used and HTTP/2’s server push is enabled, the startup time
can be reduced from 3.1 to 1.7 (-43.5%) and 0.8 seconds (-74.1%) for eight
and 32 prefetched videos respectively. In a 4G scenario, the startup time
for a segment duration of 10 seconds over HTTP /1.1 is reduced from 1.6
to 1.0 (-37.7%) and 0.8 seconds (-64.6%) for eight and 32 prefetched videos
respectively, and from 1.0 to 0.7 (-31.8%) and 0.5 seconds (-54.0%) for a
segment duration of 1 second over HTTP /2.

Naturally, prefetching the content comes with a drawback: articles

which are never requested, inevitably result in bandwidth overhead. De-

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 79

W

1 231 kb/s
1 2358 kb/s

N

streaming without prefetching
w
Il

[\S)
T
|
—T+ —1
g
I

Consumed bandwidth relative to

F

(L E = Iz lé
012 4 8 16 32
Number of prefetched articles

(a) Overhead per video session

16 32
Number of prefetched articles

15
iy 1
& 12} '
= /A I
ol 9} I
=8 :
52 6f \ 1
23)
o=t |
§> 3t i g]
B |
0 %é $ " ‘ .
12 4 8

(b) Estimation of the relative overhead

Figure 3.14: Bandwidth overhead as a function of the number of prefetched articles.

pending on the network carrier and the type of subscription, this can be
detrimental to the user. In this context, Figure 3.14a shows the total over-
head per video streaming session as a function of the number of videos
the client is able to prefetch. When the eight most relevant videos are
prefetched, for instance, the median overhead amongst all users is 1.8 MB
per video session, while the 90% percentile equals 3.6 MB. As a reference,
downloading the home page or a general single text-based article with
JavaScript, CSS and images included, requires 3.2 and 1.9 MB respectively.
These numbers are in the same order of magnitude, and therefore, we con-
clude that a value of eight is an ideal number of videos to prefetch by the
client. Note that the required storage capacity is limited: the client only
needs to be able to store the MPDs and initialization segments of eight

80 CHAPTER 3

videos, along with 84, = 810 seconds = 80 seconds of content at the
lowest video quality.

Next to the absolute amount of wasted bandwidth, it would be interest-
ing to determine the bandwidth overhead relative to the bandwidth con-
sumed without prefetching. However, since the dataset does not include
requests for single video segments, it is not possible to extract the exact
time each user spends watching the content, nor what the total bandwidth
consumption was at the time. Furthermore, the total bandwidth usage
depends on all issued requests, including requests for the home page and
text-based article requests. As a rough estimation, we can however assume
that the user finishes each video, and that the user either streams the whole
session at the average bit rate of the lowest quality (i.e., 231 kb/s), or at the
average bandwidth in the provided 3G traces (i.e., 2358 kb/s). For each
user, we keep track of the requested video, and determine its length based
on the provided MPD files. Multiplying the total video length with the av-
erage bit rate results in the total bandwidth consumption for video content
- discarding other resources such as JS, CSS and images. As illustrated in
Figure 3.14b, the relative overhead differs significantly for the two exam-
ples. When the eight most relevant videos are prefetched, for instance, the
median overhead is 40.4% in the former case, and 4.0% in the latter. In the
end, the relative overhead strongly depends on the viewing behavior of
the user, the videos considered and the type of network conditions during
the video streaming session.

3.4.7 Impact on Buffer Starvation

Reducing the number of bytes to transfer is an efficient way to reduce the
video startup time. However, as mentioned previously in Section 3.3.1,
reducing the segment duration also results in lower buffer filling at the
start of the video playout. When the available bandwidth is insufficient
to provide the video at the lowest quality, or when the segment duration
is changed too abruptly, this can result in buffer starvation and therefore,
in playout freezes. To evaluate the impact of the proposed optimizations
on buffer starvation, the 13.636 videos in the dataset with a minimum
length of one minute, have been used to evaluate six different configu-
rations. Similar as in the previous evaluations, each video is started at
a random point in the provided throughput traces (but at the same time
for all configurations) and the first minute of content is played out com-
pletely. Because we are interested in the impact of the configurations only,
the content is played out at the lowest quality: this way, the applied rate
adaptation heuristics in the dash.js player do not come into play. Note that

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 81

1.0
2 0.8} _
=}
Q
&
£ 0.6 HTTP/1.1 -long |
© — = HTTP/1.1 - short
= 041 - = HTTP/1.1 - smooth [
s |\ i HTTP/2 - short
502 i/ HTTP/2 - smooth |

' Cache - long
00 2 L 1
0 5 10 15 20
Startup time [s]
(a) Startup time

1.00
2098]
=} - .
3
gooet — HTTP/.1-long |
v [- - HTTP/1.1 - short
£ 094t/ - = HTTP/1.1 - smooth |
g e HTTP/2 - short
5 0.92 71 """ HTTP/2 - smooth |

Cache - long
0()0 I I I
0 5 10 15 20

Freeze time [s]
(b) Freeze time

Figure 3.15: Cumulative distribution of the measured startup time and total freeze
time for different configurations for the considered 13 636 videos.

the stalling threshold in the player, defined as the amount of content (in
seconds) which should be left in the buffer in order to continue playout, is
set to 0 (i.e., play out as soon as content is available, as long as content is
available).

Figure 3.15 shows the cumulative distribution of the gains in measured
startup time (top) and the total freeze time observed during playout of the
first one minute of video (bottom), for six different configurations:

¢ HTTP/1.1 - long: a segment duration of 10 seconds;

¢ HTTP/1.1 - short: a segment duration of 1 second during the first 10
seconds, 10 seconds during the remainder of the stream;

82 CHAPTER 3

e HTTP/1.1 - smooth: a segment duration smoothly changing from
1 to 2, 5 and eventually 10 seconds (a change occurs after each 10
seconds);

e HTTP/2 - short: idem as for HTTP /1.1, but now with HTTP/2 server
push for shorter segments (k = 10);

e HTTP/2 - smooth: idem as for HTTP/1.1, but now with HTTP/2
server push for shorter segments (k = 10, 5, 2 respectively);

e Cache - HTTP/1.1: the first 10 seconds are retrieved from local stor-
age, the remainder of the session from the server.

Figure 3.15a shows the results which were previously obtained: the
startup time can be reduced significantly when the segment duration is
lowered, when HTTP/2 server push is applied and when caching is used.
Note that the "short” and "smooth" approaches result in the same startup
time, since both require the same resources to start video playout (includ-
ing a single one-second video segment).

Figure 3.15b shows the total freeze time observed during playout of the
first minute of content. When the default configuration is used, only 0.6%
of video streaming sessions suffers from playout freezes. When switching
from the cache to the local server, a new TCP connection has to be started,
which implies that the available bandwidth cannot immediately be used
yet. For this reason, it can take a while before the second segment arrives,
in cases of low bandwidth sometimes resulting in a playout freeze. When a
segment duration of 1 second is used for the first 10 seconds of content, re-
sults show that the client is indeed more prone to buffer starvation: when
using the "short" segment scheme, 9.5% of video streaming sessions results
in playout freezes. Adopting the "smooth" scheme, this number is reduced
to 6.1%. Applying HTTP/2 server push on top of that, a further reduc-
tion to 2.7% is achieved. It is worth noting that most rebuffering events do
not last longer than 500 ms, which is significantly smaller than the gains
in terms of startup time (a median reduction of 2.1 seconds, with outliers
higher than 15 seconds). Higher values occur only in cases where the avail-
able throughput is significantly lower than the bit rate for the lowest qual-
ity level, in which case no approach can achieve a desirable result: one can
argue that in the given use case, it can be better to start the stream under 10
seconds while temporarily suffering from rebuffering events, than starting
the stream in 10 seconds or more and risking abandonment by the user.

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 83

3.4.8 Summary

In the evaluations above, we showed that the proposed optimizations can
result in significantly shorter video startup times, which is beneficial when
browsing news content in a video web portal. In summary, the main re-
ductions are achieved by:

1. Using a shorter video segment duration: when the available band-
width is limited, this can result in reductions in the order of 10 to
25%. This optimization is straightforward to implement, as it re-
quires minor adaptations to the MPD and limited additional storage
at the server-side;

2. Using HTTP/2 on the application layer, making use of HTTP/2
server push: even when the network delay is limited to 120 ms, this
results in an additional reduction in the order of 15 to 25%. At the
server-side, this optimization requires a separate request handler to
push required resources. Since most browsers nowadays have full
support for HTTP/2, no changes are required at the client-side;

3. Using server-side user profiling and client-side storage to prefetch
(the first part of) possibly relevant videos: storing the eight most rel-
evant video articles, for instance, additional reductions in the order
of 45% can be achieved. This however comes at the cost of increased
bandwidth usage by the client. This optimization requires server-
side logging and analytics, content prefetching and client-side stor-
age, making it less straightforward to deploy.

All aforementioned optimizations are complementary: one can, for in-
stance, consider a scenario where a segment duration of 1 second is used,
HTTP/2 server push is enabled and up to eight articles are prefetched
on a per-user bases. Comparing results with the reference scenario for
deredactie.be, i.e., a segment duration of 10 seconds over HTTP /1.1 with-
out prefetching, the median startup time can be reduced from 5.0 to 1.7
seconds (-66.0%) in a 3G network scenario, and from 1.6 to 0.7 seconds
(-56.3%) in a 4G network scenario.

3.5 Conclusions

In this work, a novel framework for low-latency delivery of news-related
video content is presented. Its main components include server-side en-
coding, HTTP/2’s server push, user profiling and client-side storage for

84 CHAPTER 3

proactive content delivery. Through a relevant use case of a major Bel-
gian news provider, we showed that each of the proposed optimizations
can significantly reduce the median startup time of video streaming ses-
sions, by 10 to 25% using a shorter video segment duration, by 15 to 25%
using HTTP/2 server push and by 45% when the first 10 seconds of the
eight most relevant videos are stored at the client-side. Combining these
optimizations, the median startup time can be reduced by more than 50%
in both 3G and 4G mobile networks. These reductions allow the news
provider to improve the user’s Quality of Experience, encouraging low-
latency user interaction with the provided video content. In future work,
we will characterize the performance of the considered optimizations in
other use case scenarios, such as 360° video delivery for virtual reality.

References

[1] S.Egger, T. Ho3feld, R. Schatz, and M. Fiedler. Waiting Times in Quality
of Experience for Web-Based Services. In Proceedings of the International
Workshop on Quality of Multimedia Experience, 2012.

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoffeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys Tutorials, 17(1):469—-492, 2015.

[3] R. Mok, E. Chan, and R. Chang. Measuring the Quality of Experience
of HTTP Video Streaming. In Proceedings of the IFIP/IEEE Interna-
tional Symposium on Integrated Network Management, pages 485—
492, 2011.

[4] T.Stockhammer. Dynamic Adaptive Streaming over HTTP: Standards and
Design Principles. In Proceedings of the ACM Conference on Multime-
dia Systems, pages 133-144, 2011.

[5] T. Hofifeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and
C. Lorentzen. Initial Delay vs. Interruptions: Between the Devil and the
Deep Blue Sea. In Proceedings of the International Workshop on Qual-
ity of Multimedia Experience, pages 1-6, 2012.

[6] L. Chen, Y. Zhou, and D. M. Chiu. Video Browsing - A Study of User
Behavior in Online VoD Services. In Proceedings of the International
Conference on Computer Communication and Networks, pages 1-7,
2013.

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 85

[7] J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, and
E. De Turck. An HTTP/2 Push-Based Framework for Low-Latency Adap-
tive Streaming Through User Profiling. In Proceedings of the IEEE /IFIP
Network Operations and Management Symposium, 2018. Accepted
for publication.

[8] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. BOLA: Near-Optimal
Bitrate Adaptation for Online Videos. In Proceedings of the IEEE Inter-
national Conference on Computer Communications, pages 1-9, 2016.

[9] H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Stream-
ing with Pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 197-210. ACM, 2017.

[10] Y. Sanchez de la Fuente, T. Schierl, C. Hellge, T. Wiegand, D. Hong,
D. De Vleeschauwer, W. Van Leekwijck, and Y. Le Louédec. iDASH:
Improved Dynamic Adaptive Streaming over HTTP Using Scalable Video
Coding. In Proceedings of the ACM Conference on Multimedia Sys-
tems, pages 257-264. ACM, 2011.

[11] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 17(9):1103-1120, 2007.

[12] G.]J. Sullivan et al. Overview of the High Efficiency Video Coding (HEVC)
Standard. 1EEE Trans. on Circuits and Systems for Video Technology,
22(12):1649-1668, 2012.

[13] A. Deveria. Can [use HEVC?,2018. Available from: https://caniuse.
com/#search=HEVC.

[14] Y. Shuai and T. Herfet. On Stabilizing Buffer Dynamics for Adaptive Video
Streaming with a Small Buffering Delay. In Proceedings of the IEEE
Consumer Communications Networking Conference, pages 435440,
2017.

[15] K. Miller, A. Al-Tamimi, and A. Wolisz. QoE-Based Low-Delay Live
Streaming Using Throughput Predictions. ACM Transactions on Mul-
timedia Computing, Communications, and Applications, 13:4:1-4:24,
2016.

[16] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Sta-
bility in HTTP-Based Adaptive Video Streaming with Festive. IEEE/ ACM
Transactions on Networking, 22(1):326-340, 2014.

https://caniuse.com/#search=HEVC
https://caniuse.com/#search=HEVC

86 CHAPTER 3

[17] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan. To-
wards a SPDYler Mobile Web? In Proceedings of the ACM Conference
on Emerging Networking Experiments and Technologies, pages 303—
314. ACM, 2013.

[18] Y. Elkhatib, G. Tyson, and M. Welzl. Can SPDY Really Make the Web
Faster? In IFIP Networking Conference, pages 1-9. IEEE, 2014.

[19] X. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wether-
all. How Speedy is SPDY? In Proceedings of the USENIX Conference
on Networked Systems Design and Implementation, pages 387-399.
USENIX Association, 2014.

[20] S. Wei and V. Swaminathan. Low Latency Live Video Streaming over
HTTP 2.0. In Proceedings of the Network and Operating System Sup-
port on Digital Audio and Video Workshop, pages 37:37-37:42. ACM,
2014.

[21] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and Y. Fujimori. DASH Fast
Start Using HTTP/2. In Proceedings of the ACM Workshop on Net-

work and Operating Systems Support for Digital Audio and Video,
pages 25-30. ACM, 2015.

[22] K. Gatimu, A. Dhamodaran, T. Johnson, and B. Lee. Experimental
Study of Low-Latency HD VoD Streaming Using Flexible Dual TCP-UDP
Streaming Protocol. In Proceedings of the Consumer Communications
Networking Conference, pages 1-6, 2018.

[23] W3C/IETFE. Web Real-Time Communication (WebRTC), 2018. Available
from: https:/ /www.webrtc.org.

[24] ISO/ICE. Dynamic Sdaptive Streaming over HTTP (DASH) - Part 5:
Server and Network Assisted DASH (SAND), 2017.

[25] A.Bentaleb, A. C. Begen, and R. Zimmermann. SDNDASH: Improving
QoE of HTTP Adaptive Streaming Using Software Defined Networking. In
Proceedings of the ACM Multimedia Conference, pages 1296-1305.
ACM, 2016.

[26] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck.
Software-Defined Network-Based Prioritization to Avoid Video Freezes in
HTTP Adaptive Streaming. International Journal of Network Manage-
ment, 26(4):248-268, 2016.

https://www.webrtc.org

LOW-LATENCY ADAPTIVE STREAMING FROM VIDEO PORTALS 87

[27] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen. Cache-
Centric Video Recommendation: An Approach to Improve the Efficiency of
YouTube Caches. ACM Transactions on Multimedia Computing, Com-
munications and Applications, 11(4):48:1-48:20, 2015.

[28] M. Claeys, N. Bouten, D. De Vleeschauwer, W. Van Leekwijck, S. La-
tré, and F. De Turck. Cooperative Announcement-Based Caching for Video-
on-Demand Streaming. 1EEE Transactions on Network and Service
Management, 13(2):308-321, 2016.

[29] V. Krishnamoorthi, N. Carlsson, D. Eager, A. Mahanti, and N. Shah-
mehri. Bandwidth-aware Prefetching for Proactive Multi-video Preloading
and Improved HAS Performance. In Proceedings of the ACM Multime-
dia Conference, pages 551-560. ACM, 2015.

[30] Y. Koren, R. Bell, and C. Volonsky. Matrix Factorization Techniques for
Recommender Systems. Computer, 42(8):30-37, 2009.

[31] C.De Boom, R. Agrawal, S. Hansen, E. Kumar, R. Yon, C. Chen, T. De-
meester, and B. Dhoedt. Large-Scale User Modeling with Recurrent Neu-
ral Networks for Music Discovery on Multiple Time Scales. Multimedia
Tools and Applications, 2017.

[32] J. Basilico and Y. Raimond. Défa Vu: The Importance of Time and Causal-
ity in Recommender Systems. In Proceedings of the Conference on Rec-
ommender Systems, pages 342-342. ACM, 2017.

[33] T. Donkers, B. Loepp, and J. Ziegler. Sequential User-based Recurrent
Neural Network Recommendations. In Proceedings of the Conference on
Recommender Systems, pages 152-160. ACM, 2017.

[34] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based
Recommendations with Recurrent Neural Networks. Computing Research
Repository, abs/1511.06939, 2015.

[35] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
and F. De Turck. An HTTP/2 Push-Based Approach for Low-Latency Live
Streaming with Super-Short Segments. Journal of Network and Systems
Management, 26(1):51-78, 2018.

[36] 1. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE Multimedia, 18(4), 2011.

[37] S.Van Canneyt, B. Dhoedt, S. Schockaert, and T. Demeester. Knowledge
Extraction and Popularity Modeling Using Social Media. 2016.

88 CHAPTER 3

[38] T. Mikolov, K. Chen, G. Corrado, and]. Dean. Efficient Estimation
of Word Representations in Vector Space. In Proceedings of the Inter-
national Conference on Learning Representations Workshop, volume
2013, 2013.

[39] nperf. Cellular Data Networks in Belgium, 2018. Available from: https:
/ /www.nperf.com/en/map/BE/-/-/signal/.

[40] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen.
Video Streaming Using a Location-Based Bandwidth-Lookup Service for Bi-
trate Planning. ACM Transactions on Multimedia Computing, Com-
munications and Applications, 8(3):24:1-24:19, 2012.

[41] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Al-
face, T. Bostoen, and F. De Turck. HTTP/2-Based Adaptive Streaming
of HEVC Video Over 4G/LTE Networks. IEEE Communications Letters,
20(11):2177-2180, 2016.

https://www.nperf.com/en/map/BE/-/-/signal/
https://www.nperf.com/en/map/BE/-/-/signal/

Tile-Based Adaptive Streaming for
Virtual Reality Video

“Are you real?” - “If you can't tell, does it matter?”
—~Westworld, 2016

In Chapters 2 and 3, traditional video content is considered. Owver the last
years, however, the increasing popularity of head-mounted devices and 360° video
cameras has allowed content providers to provide virtual reality video streaming
over the Internet. In this regard, a two-dimensional representation of the immer-
sive content is typically used, combined with traditional streaming technigues.
Since only a limited part of the video (i.e., the viewport) is watched by the user,
such approach does not optimally use the available bandwidth. In this chapter,
we discuss the advantages of tile-based video, adapting the quality of each of the
resulting tiles to the network characteristics and user movement. We propose
a content-agnostic viewport prediction scheme based on unidirectional spherical
trajectories, and present two rate adaptation heuristics which take into account
the spatial dimension. Furthermore, we introduce a novel feedback loop within
the client’s viewport prediction and rate adaptation schemes, which allows us to
change quality decisions whilst downloading the required tiles for a given video
segment, and discuss the advantages of HTTP/2 server push for content delivery.

* Kk k

90 CHAPTER 4

J. van der Hooft, M. Torres Vega, S. Petrangeli, T. Wauters,
and F. De Turck

In revision for publication in ACM Transactions on Multimedia Com-
puting, Communications, and Applications, 2019

Abstract The increasing popularity of head-mounted devices and 360°
video cameras allows content providers to provide virtual reality (VR)
video streaming over the Internet, using a two-dimensional representa-
tion of the immersive content combined with traditional HTTP adaptive
streaming (HAS) techniques. However, since only a limited part of the
video (i.e., the viewport) is watched by the user, the available bandwidth
is not optimally used. Recent studies have shown the benefits of adap-
tive tile-based video streaming; rather than sending the whole 360° video
at once, the video is cut into temporal segments and spatial tiles, each of
which can be requested at a different quality level. This allows prioritiza-
tion of viewable video content, and thus results in an increased bandwidth
utilization. Given the early stages of research, there are still a number
of open challenges to unlock the full potential of adaptive tile-based VR
streaming. The aim of this work is to provide an answer to several of these
open research questions. Among others, we propose two tile-based rate
adaptation heuristics for equirectangular VR video, which use the great-
circle distance between the viewport center and the center of each of the
tiles to decide upon the most appropriate quality representation. We also
introduce a feedback loop in the quality decision process, which allows
the client to revise prior decisions based on more recent information on the
viewport location. Furthermore, we investigate the benefits of parallel TCP
connections and the use of HTTP/2 as an application layer optimization.
Through an extensive evaluation, we show that the proposed optimiza-
tions result in a significant improvement in terms of video quality (more
than twice the time spent on the highest quality layer), compared to non-
tiled HAS solutions.

41 Introduction

Over the last years, the popularity of virtual reality (VR) has increased sig-
nificantly. This is partly due to recent advancements in consumer elec-
tronics, which allow the user to enjoy a fully immersive experience using
low-cost head-mounted displays (HMD). Furthermore, well-known con-
tent providers such as YouTube! and Facebook? now allow to stream VR

https:/ /www.youtube.com
Zhttps:/ /www.facebook.com

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 91

video content. However, given today’s network capacity, streaming im-
mersive video at high resolution and a suitable frame rate is often not
a straightforward task. For this reason, the principles of HTTP adaptive
streaming (HAS) are often applied to deliver the immersive video over the
best-effort Internet.

In HAS, video is encoded at different quality levels and temporally di-
vided into multiple segments with a typical length of 2 to 30 seconds [1].
An HAS client requests these video segments at the most appropriate qual-
ity, based on e.g., the available bandwidth and the buffer size. To this end,
a rate adaptation heuristic attempts to optimize the Quality of Experience
(QoE) perceived by the user. This QoE depends, among others, on the av-
erage video quality, the frequency of quality changes and the occurrence of
playout freezes [2]. The client stores incoming segments in a buffer before
decoding the sequence in linear order and playing the video out on the
user’s device. These principles were standardized as the Dynamic Adap-
tive Streaming over HTTP (DASH) [3].

Nowadays, content providers often employ HAS to deliver 360° con-
tent in a similar manner as for traditional non-immersive video. To this
end, the content is first mapped on a two-dimensional representation, us-
ing e.g., equirectangular projection. The resulting video is then encoded at
multiple resolutions, temporally divided and made available for the client
to download during the video streaming session. Fixing the quality /reso-
lution for the whole video, however, results in suboptimal use of the avail-
able bandwidth: since the user has a limited view on the video when wear-
ing an HMD (referred to as the viewport) a significant part of the network
traffic is wasted on content which is not consumed. To overcome this is-
sue, an additional dimension can be inserted by also considering spatial
segmentation of the video. Using the HEVC/H.265 standard, for instance,
equirectangular content can be split into m X n tiles of the same resolution.
The client is able to request each tile at a different quality level, prioritizing
tiles within the viewport by assigning a higher video quality.

Although beneficial, this approach poses a number of new challenges.
First, the introduction of tiles induces an encoding overhead: a 16 x 16 tiling
scheme, for instance, requires a higher bit rate to achieve the same visual
quality than a 4 x4 tiling scheme. Careful consideration must thus be given
to the trade-off between the video’s granularity on the one hand, and the
required encoding/network resources on the other. Second, since a buffer
is used to store incoming segments, tile-based video streaming is prone to
user movements. Even when the considered buffer contains a mere 2 sec-
onds of video, the user could temporally perceive a lower quality when
moving around within the video scene. Therefore, accurate prediction of

92 CHAPTER 4

future viewport coordinates is of the utmost importance. Third, the client-
side rate adaptation heuristic needs to take into account the new spatial
dimension in the decision-taking process. This increases the heuristic’s
complexity, as it should take into account the perceived video quality and
avoid bulffer starvation. Fourth, since multiple HTTP GET requests are re-
quired, the approach is affected by network latency. This is especially true
for mobile networks, where round-trip times are in the order of 30-70 and
50-200 ms for 4G/LTE and 3G/HSPA(+) respectively [4, 5]. Finally, the in-
troduction of tiles makes it harder to evaluate the resulting video quality
within the viewport, impeding accurate quality assessment.

etln this work, we aim to address the above-mentioned challenges of
tile-based HAS for VR video, building further on preliminary research
efforts [6, 7]. The main contributions of this paper are threefold. First,
two rate adaptation heuristics for tile-based video quality assignment are
presented, prioritizing tiles according to their great-circle distance to the
viewport center. Using the proposed heuristics, the available bandwidth is
mostly assigned to tiles within the visible region of the user, resulting in a
higher overall video quality. Second, we introduce a novel feedback loop
which allows to change quality decisions whilst downloading the required
tiles for a given video segment. This enables the client to revise earlier de-
cisions, given newer information on the user’s focus. Third, we evaluate
the above components in a comprehensive framework for tile-based 360°
video, which includes viewport prediction and application layer optimiza-
tions for end-to-end delivery. This allows us not only to evaluate results
for the proposed heuristics and feedback mechanism, but also to assess the
impact of the different components on the overall video quality.

The remainder of this chapter is structured as follows. In Section 4.2,
the general HAS architecture for VR streaming is presented and state-of-
the-art solutions are discussed. Suggested approaches are detailed in Sec-
tion 4.3, elaborating on the advantages of each of our proposed optimiza-
tions. The experimental setup and evaluation results are presented in Sec-
tion 4.4, along with a discussion on lessons learned. Finally, conclusions
and future work are presented in Section 4.5.

4.2 State-of-the-Art and Challenges

Asillustrated in Figure 4.1, the HAS principle can be adopted for tile-based
VR video streaming. To this end, content is captured by a 360° camera, en-
coded at different qualities, temporally and spatially segmented and made
available on the server. At the client-side, a head-mounted device is used
to consume the immersive content, registering the user’s movement and

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 93

Bandwidth
vl

—
Bit rate Bit rate =

3

Q
Q .

. 1 i i ™

o w2 n 2 mq @ Tile LB B Time

ﬁl-——----_%ﬁ;_«g Q\‘G.

Figure 4.1: The HAS principle applied to VR video streaming.

regions of interest within the video. Based on the available bandwidth and
current or future viewport coordinates, a rate adaptation heuristic decides
at which video quality to download each of the tiles of the next video seg-
ment. The content is requested from the server, buffered in a client-side
buffer and finally played out on the user’s device. Below, we elaborate
on the five most relevant components for over-the-top video streaming: i)
(live) video capture and encoding; ii) viewport prediction; iii) tile-based
rate adaptation; iv) application layer optimizations; and v) video quality
evaluation.

4.2.1 Video Capture and Encoding

Tile-based encoding for VR video is often achieved through the HEVC
standard, implemented by encoders such as HEVC Test Model (HM3).
Many mapping schemes exist, including cubic, pyramid and dodecahe-
dron mappings [8]. As an example, Skupin et al. propose to use a cu-
bic projection consisting of 24 tiles, each of which is provided at two dif-
ferent resolutions [9]. Based on the user’s focus, the client can then de-
cide upon the most appropriate resolution for each of these tiles. Never-
theless, equirectangular mapping is most commonly used, in which the
sphere is mapped onto a rectangle. This results in stretching at the poles
of the sphere, which reduces the encoding efficiency and can result in an
increased bandwidth consumption. To overcome this, Budagavi et al. pro-
pose to gradually smoothen the quality of the polar parts of the video,
reducing the bit rate by 20% [10]. Using a similar starting point, Hosseini
et al. propose to use a different tiling structure altogether, using four cen-
tral and two polar tiles [11].

3 https:/ /hevc.hhi.fraunhofer.de/HM-doc/

94 CHAPTER 4

Other approaches for VR content encoding have been considered as
well. Team Pixvana, for instance, provides commercial solutions for field-
of-view adaptive streaming, in which thirty different versions of the video,
each focusing on a unique viewport, are created [12]. Similarly, Kuzyakov
et al. propose a pyramid mapping with thirty unique viewports, allowing
bit rate reductions of up to 80% compared to non-tiled video [13]. Zare
et al. consider twelve unique viewports, using a 12 x4 tiling scheme which
focuses on equatorial tiles only (i.e., polar tiles are always retrieved at the
lowest quality) [14]. The advantage of these encoding techniques is that
video segments can be requested as a whole, reducing the number of GET
requests and the impact of latency, while still allowing to allocate band-
width to the most important regions. However, they require significant
encoding efforts and additional storage space - up to five quality represen-
tations are provided for each viewport configuration - compared to tile-
based encoding. Although there are benefits to these approaches, they
limit the granularity of the quality decision-making. In this work, we will
therefore allow the client to request the most appropriate quality represen-
tation on a per-tile basis.

Regarding video encoding, it should be noted that MPEG has re-
cently standardized motion-constrained tile sets (MCTS) for viewport-
based transmission of 360° HEVC-encoded video [15]. Implementations
such as the one by Son et al. [16] now allow to extract and decode a limited
subset of tiles from a given video bitstream, rather than having to decode
the full video. Finally, it is worth mentioning that a scalable variant of
HEVC, SHVC, exists. By combining a scalable approach with tiling, yet
another dimension is created. As discussed by Taghavi Nasrabadi et al., a
layered approach to tile-based encoding reduces storage and bandwidth
requirements, and results in a lower amount of buffer starvations [17].
Scalable approaches are not commonly used, however, and given the large
amount of GET requests needed to retrieve the content, suffer from latency
in the network. Furthermore, an encoding overhead of about 10% is in-
troduced per quality layer. In this paper, we will therefore focus on non-
scalable encoding only.

In our evaluations, we will use the HEVC standard to tile the consid-
ered equirectangular video using an m x n tiling scheme. This approach
allows for more finegrained decision-making by the client, using the avail-
able throughput where it is needed. Using different tiling schemes, we will
evaluate the encoding overhead and the resulting video quality under sim-
ilar network conditions. Similar to related work, the Constant Rate Factor
(CREF) rate control will be used to differ between visual quality, and thus
resulting bit rates for different quality representations.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 95

4.2.2 Viewport Prediction

In a video streaming use case, content is requested from the server through
the best-effort Internet. In order to avoid playout freezes, the client is thus
equipped with a playout buffer. In practice, this buffer is kept as small
as possible, so that the video quality can be updated as fast as possible
when the user moves to another region within the immersive video. Still,
when a one to five seconds buffer is used, priority can potentially be given
to the wrong tiles if the user keeps on moving within the video scene.
For this reason, viewport prediction is an important means to tile-based
HAS: if the future position is accurately predicted, the client can compen-
sate for the user’s movements and download relevant parts of the video at
higher quality. In related work, a distinction can be made between content-
agnostic and content-aware viewport prediction.

Content-agnostic approaches take into account information on the
viewport only, in order to predict future movement. Petrangeli et al.
propose to use linear extrapolation of the user’s recent trajectory on the
equirectangular projection of the video [6]. Given the user’s most re-
cent position Pc and a position P, At, seconds ago, the user’s position At
seconds from now is estimated by P, + AA—ttp(Pc — Py). Qian et al. apply
(weighted) linear regression on the yaw, pitch and roll angles [18]. The
authors show that the prediction accuracy decreases for a higher Atf. Sim-
ilarly, Xu et al. use linear regression to prove that the variation of the pre-
diction error increases for a higher At [19].

Content-aware solutions take into account not only the location of the
viewport, but also information on the content itself, defining regions of
interest, moving objects and key frames within the video. Focusing on
tile-based VR streaming, Fan et al. use neural networks that concurrently
leverage sensor-related features (i.e., the viewport position) and content-
related features (i.e., image saliency and object motion maps) to predict the
future viewport position [20]. Sitzmann et al. observe a fixation bias in
immersive video, which is used to apply existing saliency predictors for
two-dimensional video to VR [21]. Hu et al. take the viewport prediction
process one step further, making the video move automatically according
to previous user behavior [22]. To this end, a deep learning-based agent
shifts the current viewing angle based on main object extraction. Simi-
lar approaches have been used to automatically align video cuts, perform
panorama synopsis or even saliency-based video compression.

Although there are benefits to content-aware solutions, a significant
amount of user data and processing efforts is required for new video con-
tent. Furthermore, these solutions introduce processing delays in live

96 CHAPTER 4

Figure 4.2: Viewport prediction using spherical walks. When the user moves from
point P; to P, in a certain amount of time (e.g., 100 ms), point P; is pre-
dicted by extending the current trajectory unidirectionally.

streaming scenarios. In this paper, we will use a content-agnostic approach
which has been proposed in previous work [7]. The considered scheme
considers the user’s movement in a brief interval only, taking note of the
current position and the position 100 ms in the past. Based on this infor-
mation, the current path on the surface of the sphere is extended unidi-
rectionally to predict the future user position (see Figure 4.2). In previous
work, a parameter sweep showed that following this trajectory for 400 ms
resulted in the highest prediction accuracy when a buffer size of 2 seconds
is used [7]. Since this buffer size is considered in this paper as well, the
same configurations will be used in our evaluations.

4.2.3 Tile-Based Rate Adaptation

Adding a spatial dimension increases the complexity of the rate adaptation
heuristic. Recently, a number of solutions have been proposed to address
this extension. Ghosh et al. present an Integer Linear Program (ILP) to
decide upon the most relevant quality representation of tiles, optimizing
a model for the QoE [23]. This approach however rests on a number of
assumptions, and, since ILPs are computationally expensive, is expected
not to run in real-time when a large number of tiles and/or quality repre-
sentations is considered. Zare et al. propose tile-based video streaming for
360° video, using two representations only: the original video, and a low-
quality representation generated by lowering the resolution of the original
video by half [24]. The client’s logic does not take into account the per-

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 97

0
Z;
Z Z Z

0 w2 2 & >

Z; Z, Z, Z,
Zs Zs Zs Z,

T

0 /2 n 3n/2 21

Figure 4.3: Illustration of the rate adaptation heuristic proposed by Hosseini and
Swaminathan [11].

ceived bandwidth, but rather adapts to the considered viewport only: tiles
within the viewport are requested at the highest quality, while all others
are requested at the lowest quality. Le Feuvre et al. propose a heuristic
based on fixed tile priorities, including uniform and center-based priority
schemes [25]. The authors do not consider viewport changes, however,
and evaluate results for a non-interactive environment only (segment du-
ration 10s). Hosseini et al. suggest a rate adaptation heuristic which is
based on three regions of priority: Z;, containing the center tile; Z,, con-
taining the surrounding tiles; and Z3, all others (see Figure 4.3) [11]. Ini-
tially, all tiles are assigned the lowest video quality. Then, zone per zone,
the quality of each tile is increased from the lowest to the highest level,
as long as the available bandwidth is not exceeded. Finally, the quality of
the last considered tile is increased to the highest quality supported by the
remaining bandwidth budget. While it is indeed recommended to assign
higher weights to tiles close to the current viewport location, the proposed
heuristic does not take into account the fact that some tiles contribute more
to the viewport than others. Furthermore, using a 3 x3 bounding box in an
equirectangular projection is not always representative of the user’s view-
port (e.g., when the user is looking to the zenit). Petrangeli et al. propose
a scheme based on center and polar zones [6]. Starting from a 4x4 tiling
scheme, the top and bottom row tiles are concatenated, and the tiles on the
second and third row are concatenated column-wise (see Figure 4.4). The
resulting six tiles are divided on a per-zone level, depending on the current
and predicted viewport position. Then, qualities to tiles are assigned zone
by zone. Using this approach allows to reduce the number of GET requests,
which is important in high-latency environments, but strongly reduces the
granularity of the video. Heuristics for other types of VR applications exist
as well, focusing for instance on rate adaptation for zoomable video [26].
In this paper, however, we will focus on regular VR video only.

98 CHAPTER 4

0
Z Z, Z,
Z Z V4
8 7 3 5
Z, Z, Zs
Zg Zg Zg
g 0 /2 m 3n/2 2n

Figure 4.4: Illustration of the rate adaptation heuristic proposed by Petrangeli
et al. [6].

4.2.4 Application Layer Optimization

The HTTP /1.1 protocol has been around since 1997, and is implemented
in all major Internet browsers [27]. Most HAS solutions use this proto-
col with request-response transactions to retrieve the required resources,
buffering fetched video segments and playing them out in linear order. In
traditional HAS, only one GET request is needed in order to retrieve the
next temporal part of the video; therefore, this approach is feasible as long
as the duration of the video segments is of a higher order than the latency
within the network. In VR-based HAS, however, multiple resources have
to be retrieved in order to play out one temporal video segment: a GET
request is required both for the base layer tile and for each of the spatial
video tiles. When a 4 x 4 tiling scheme is used, for instance, no less than 17
requests need to be issued by the client. Using a segment duration in the
order of 1s, even a minor network latency of 20 ms will significantly im-
pede the overall throughput between client and server, and will therefore
result in a lower video quality.

There are two ways to deal with this issue. First, an approach based on
multiple persistent TCP connections can be used (Figure 4.5c). Although
the HTTP/1.1 RFC originally specified that no more than two persistent
TCP connections should be used per server, this requirement was later
lifted [27]. Most browsers today (including Chrome, Firefox and Safari)
use up to six parallel TCP connections in order to reduce the page load
time, fetching required resources in parallel. This allows to increase the
overall throughput, and partly eliminates idle RTT cycles introduced by
network latency. Similarly, a VR-based HAS client can use multiple TCP
connections to download the different tiles in parallel, resulting in these
very same advantages.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 99

| Client | | Server | | Client | | Server |
Base Base
i Tile 1
Tlle 1 Tlle P
Tile 3 Tile 16
Tile 16
(a) HTTP/1.1 (b) HTTP/2
| Client | | Server | | Client | | Server |
——— ———
Base Tile 5
— —
Tile 6 .
Tile 11
— —
Tile 12
—

(c) HTTP/1.1 with six persistent TCP connections

Figure 4.5: Using multiple parallel TCP connections allows to increase the observed
throughput and reduce the impact of latency. HTTP/2 server push al-
lows to send resources back-to-back, eliminating the need for additional
GET requests. Note that push promise and window increase frames are
not shown for HTTP /2.

Second, the need for an excessive number of GET requests can be elim-
inated by using the server push feature of the HTTP/2 protocol (Fig-
ure 4.5b). HTTP/2 was standardized in 2015, introducing multiplex-
ing of requests and responses to partly avoid the head-of-line blocking
in HTTP/1.x*, header compression and prioritization of requests [28].
Because of its interesting features and its ability to reduce page load
times, most major browsers now have support for HTTP/2. According
to W3Techs, 32.7% of the top 10 million websites support HTTP/2 as of
January 2019 [29]. Wei et al. have shown that pushing shorter video seg-

41t is worth noting that not all head-of-line blocking can be avoided, since a single TCP
connection is used in HTTP /2.

100 CHAPTER 4

ments back-to-back, can reduce the video’s startup time and end-to-end
delay in HAS [30]. More recently, Petrangeli et al. showed that server push
can also be applied in the case of tile-based VR streaming, where the client
can request the server to push all tiles belonging to a single segment simul-
taneously [6]. In this work, we will use a custom request handler at the
server-side, allowing the client to define a list of quality levels for each of
the tiles to retrieve. The decisions of the applied rate adaptation heuristic
can thus be communicated to the server, which allows the client to retrieve
all tiles at the desired quality level.

4.2.5 Quality Evaluation

The ultimate goal of any video streaming optimization is to improve the
user experience or QoE. In regular HAS, many factors have shown to affect
the QoE: the video quality, the occurrence of playout freezes, the video’s
startup time, the end-to-end latency in live streaming, etc. [1]. When VR
content is considered, new factors appear. For instance, frequent switching
between different quality representations can result in lower QoE. This is
true not only on a temporal level, such as in regular HAS, but also on a
spatial level in tile-based solutions. Furthermore, the speed with which the
quality is adjusted when moving around plays a crucial role as well: if the
user has to wait several seconds before the quality is adjusted, the QoE will
be strongly affected. With regard to the video quality perceived within the
viewport, a number of evaluation metrics are being used in related work.
Some works report the average PSNR values for the obtained video [19,
31], or show results in terms of video bit rate [19, 31, 32]. Other works
consider the quality of the tile in the center of the viewport only, either
to average this quality over all segments, or to measure the time spent on
each layer [6]. Although the latter has shown to be an excellent evaluation
metric for regular HAS, it is uncertain whether it is directly applicable to
VR: the (potentially lower) video quality of surrounding tiles can have a
significant impact on the perceived quality in the center of the viewport.
Some works consider the video quality for a subset of tiles, where tiles are
weighted according to a predefined zone they are located in [33].

The above metrics do not take into account the location of the user’s
gaze within the viewport. As shown in results obtained by Rai et al.,
presented in Figure 4.6, the user’s eyes are rarely fixed to the center of
the viewport; rather, a peak is observed for angles between 12 and 20 de-
grees [34]. In previous work, we therefore proposed to weigh the quality of
each of the tiles within the viewport, taking into account the distribution of
the user’s gaze [35]. To this end, a density function is constructed based on

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 101

60 =40 —20 0 20 40 60
Longitude [deg]

Figure 4.6: Heatmap of the users’ gaze, relative to the center of the viewport [34].
Blue and red colors indicate a low and high frequency respectively.

Figure 4.7: Viewport sampling for n; = 10 and 1y = 50, based on the distribution
of the distance between the viewport center and the user’s gaze.

the heatmap in Figure 4.6 and a frequency histogram. Using uniform sam-
pling on the cumulative distribution, #1 circles of latitude are constructed,
each of which is uniformly sampled 7, times (see Figure 4.7). The over-
all video quality can then be expressed as the average video quality over
all n1 - ny points, where the latter is defined as the quality level (ranging
from 1 (lowest) to giuax (highest)), the average bit rate, the peak signal-to-
noise ratio (PSNR) or the structural similarity index (SSIM) of the tile to
which the considered point belongs. This removes the bias of focusing on

102 CHAPTER 4

<ry, q;>

| !

Video capture Download ‘<df’ 9| Rate adaptation | o0 Viewport

|
|
I
I
i
I
& encoding i queue heuristic prediction '%6? a
I
I
I
I
|
I

I | g — AVA
T |IEETT
3
HTTP/1.1 S’,)-q:j [T HEEN T |
‘ HTTP/2 Buffer

Figure 4.8: Required components for VR-based HAS.

the quality of the tile at the center of the viewport only, and therefore re-
flects more accurately the quality observed by the user. It is worth noting,
however, that this metric does not take into account switches in quality
between adjoining spatial regions, and does not take into account the fact
that the speed of the head movement has an influence on the perception of
the user. Such QoE model requires extensive subjective studies, which are
not considered in this work.

4.3 Proposed Framework

In the previous section, state-of-the-art for VR-based HAS was discussed,
along with new challenges and possible ways to tackle these. Below, we
present a number of novel approaches and optimizations for VR video
streaming. To make our contributions more clear, Figure 4.8 shows a
component-based version of the illustration in Figure 4.1. The following
components can be distinguished:

1. At the server-side, the video is captured, encoded and made avail-
able for the client. In this paper, we consider the traditional equirect-
angular projection for tile-based encoding, investigating the trade-off
between granularity and encoding overhead;

2. At the client-side, the HMD monitors the user’s viewport coordi-
nates, which are used by a viewport prediction algorithm to pre-
dict future coordinates. Based on previous research by Petrangeli
et al. [6], we propose a straightforward extension to the three-
dimensional space;

3. A rate adaptation heuristic decides upon the quality assigned to all
tiles belonging to the next video segment. We propose two new
heuristics based on the great-circle distance between the viewport
center and the center of each tile;

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 103

4. Decisions on the tiles” quality are forwarded to a download queue,
which requests all files from the server. While the rate adaptation
heuristic is typically consulted once for each segment, we introduce
a feedback loop which allows the client to partly update its decisions
once new estimations of the viewport coordinates are available;

5. Traditional HAS solutions typically use a single persistent TCP con-
nection between client and server, requesting files one by one. Intro-
ducing tile-based encoding however results in a significant amount
of GET requests for each video segment. We discuss the advantages
of multiple persistent connections and HTTP/2’s server push.

4.3.1 Tile-Based Rate Adaptation

In this paper, we propose two rate adaptation heuristics. A first heuristic,
based on uniform viewport quality (UVP), focuses strongly on the (pre-
dicted) viewport location, uniformly increasing the quality of each tile
whose center is within the viewport. A second heuristic, using a center
tile first (CTF) approach, increases the quality of the tiles to the highest
representation, in the order of decreasing distance between the center of
the tile and the viewport location.

4.3.1.1 Uniform Viewport Quality

The UVP heuristic attempts to increase the quality of all tiles within the
predicted viewport, one quality representation at a time. The choice for
a homogeneous quality is a deliberate one: the human eye is sensitive to
changes in the perceived quality, especially when changes occur within the
spatial domain (contrary to regular HAS, where changes in video quality
only occur in the temporal domain). In addition, this approach reduces the
sensitivity to viewport prediction errors: even when relatively high errors
are made, the resulting video quality in the center of the viewport should
still be similar to the quality in the previously predicted point.

The rate adaptation heuristic is presented in Algorithm 4.1. Given the
segment index s and the perceived bandwidth BW, this heuristic deter-
mines the most appropriate quality level for each of the video tiles. To this
end, it uses a Size-function, which determines the file size corresponding to
a given segment, tile and quality representation, and a Distance-function,
which calculates the great-circle distance between the center of the tile and
the given spherical coordinates. The algorithm is as follows. If the client
has just started buffering, all tiles are downloaded at the lowest quality
(lines 1-3). When enough segments have been retrieved, the total budget

104 CHAPTER 4

is calculated, based on the available bandwidth and the segment duration
dur (line 4). If the total file size of all tiles at the lowest quality exceeds
this budget, the lowest quality is selected for each tile (lines 5-7). Similarly,
if the total file size of all tiles at the highest quality does not exceed this
budget, the highest quality is selected for each tile (lines 8-9). If none of
these conditions is met, the heuristic will proceed to allocate the tile qual-
ities. First, the great-circle distance between the center of the viewport,
indicated by ¢, 6, and the center of each of the tiles is calculated (lines 10).
Then, tiles are divided according to whether or not the center is within the
viewport (i.e., the distance is lower than half the viewport size vp), and the
total number of bits for the current configuration (at the lowest quality) is
calculated (lines 11-13). Next, the heuristic attempts to increase the quality
of each tile within the viewport until either all tiles have the same qual-
ity, or the budget has been exceeded (lines 14-21). This process is repeated
until either the budget is exceeded or all the tiles within the viewport are
assigned the highest video quality. If there is still budget left, a similar pro-
cess starts for each of the remaining tiles. The computational complexity of
the considered rate adaptation heuristics is O(n log n + mn), where n is the
number of tiles and m is the number of available quality representations:
the tiles are sorted according to their distance to the center of the viewport,
and for each tile, up to m — 1 quality increases are considered.

Although we envision an equirectangular projection in this paper, it is
worth noting that the proposed rate adaptation heuristics can also be used
for other projections: as long as a distance metric for each of the tiles can
be defined, either by determining the distance to a single point (the center,
if it is defined), or to multiple points (e.g., on the edge of the tile), tiles
can be ranked and given priority accordingly. Furthermore, it is worth
noting that the file size of the tth tile for the sth segment at quality g can be
determined in a number of ways, depending on the considered use case. In
a live streaming scenario, the size of the tiles and segments is not known
in advance. One possibility is then to use the average bit rate of the tth
tile over all previously encoded segments. Alternatively, one can use the
average bit rate of the whole video, and estimate the file size of the tth
tile by using an appropriate weight indicator that takes into account the
applied tiling scheme. In a VoD scenario, the file size of each of the tiles is
known by the server. In such a scenario, the file size can be explicitly stated
in the MPD (an approach also used by Juluri et al. for regular HAS [36]).

4.3.1.2 Center Tile First

The CTF heuristic uses a more greedy approach, increasing the quality of
relevant tiles to the highest representation. A similar approach was pro-

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 105

Algorithm 4.1: First proposed rate adaptation heuristic, uniform
viewport quality (UVQ).

10
11
12
13
14
15
16
17
18

19

20

21

Input: m, n, the number of rows/columns
BW, the available bandwidth [b/s]
dur, the segment duration [s]
buf fer, the buffer size [s]
Ngua1, the number of quality representations
vp, the width of the viewport [deg]
¢, 0, the viewport coordinates
Output: qualities, specifying the quality representation of each tile
qualities < ones(m - n)
if s < buf fer/dur then
L return qualities

budget < BW - dur

tiles < [1;m - n]

if Y ycrites Size(s, t,1) > budget then
L return qualities

if Yorcrites Size(s, t, Ngyar) < budget then
L return qualities - 1y,

dists < [Distance(t, ¢,0),Vt € tiles]
tiles;, <— [t,Vt € tiles : dists[t] < vp/2]
tilesous < tiles \ tiles,
npirs < Y Size(s, t,1)
for tiles € [tiles;,, tilesy,:] do
forq € [2;n,,,] do
for t € Sort(tiles,distances) do
cost < Size(s,t,q) — Size(s,t,q — 1)
if ny;s + cost > budget then
L return qualities

Mpits < Npips + COSE
qualities[t] < g

posed by Hosseini and Swaminathan [11], but with a key difference: rather
than defining three priority zones and iterating over tiles zone by zone, we

106 CHAPTER 4

Algorithm 4.2: Second proposed rate adaptation heuristic, center
tile first (CTF). Only lines 11-21 are changed compared to Algo-
rithm 4.1.

11 Hpis < 3y Size(s, t,1)

12 fort € Sort(tiles,dists) do

13 | forq € [2;ng,,] do

14 cost < Size(s,t,q) — Size(s,t,q — 1)
15 if np;s + cost > budget then

16 L return qualities

17 Npits < Npits + COSE

18 qualities[t] < g

propose to sort the tiles according to the great-circle distance between the
viewport coordinates and the center of each tile. Then, the quality of the
tiles is increased to the highest representation, until no more bandwidth is
available. In Algorithm 4.2, we therefore calculate these distances and sort
the tiles (lines 10-12), and increase the video quality starting with the clos-
est tile. Each tile is assigned the highest quality, until no more bandwidth
budget is available. In this case, the quality of the last tile is increased to the
highest quality which still fits within the remaining budget. Compared to
UVP, this algorithm is more aggressive towards the center of the viewport:
the highest quality is immediately assigned, without taking into account
the remainder of the viewable footage.

4.3.2 Feedback Loop for Quality Reassignment

As discussed above, each of the required components for VR-based HAS
provide input to one another. Indeed, the client detects the coordinates
of the user’s viewport in the HMD; a viewport prediction algorithm pre-
dicts the coordinates of the user at the time of playout; the rate adaptation
heuristic makes a decision on the quality representation for each of the
tiles; a network module requests all content to the server. Although this
approach has significant advantages, it is prone to changes on the initial
conditions: the user might change its trajectory, or the download of certain
tiles might take longer than expected. Furthermore, the lower the time be-
tween the viewport prediction and the playout of the segment, the more
accurate the prediction is expected to be. For these reasons, we propose to
incorporate an additional feedback loop in the VR-based HAS scheme.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 107

Algorithm 4.3: Pseudocode for buffering with a feedback loop in
the tile-based VR player.
Input: m, n, the number of rows/columns

Nseq, the number of video segments
predictor, the viewport prediction algorithm
adapter, the rate adaptation heuristic

queue, the download queue

[y

tiles_all < [1;m - n]

N

fors € [1; 1] do

3 tiles < tiles_all

4 | while len(tiles) > 1 do

5 ¢, 0 < predictor.predict(s)

6 qualities, distances < adapter.adapt(s, ¢, 0, tiles)
7 queue.update(s, qualities, distances)

8 tiles < tiles_all \ queue.requested()

Algorithm 4.3 shows the proposed logic in its simplest form. As soon as
a segment is removed from the buffer and playout is started, the client can
start buffering the next segment. To this end, the viewport prediction algo-
rithm predicts the expected viewport coordinates ¢, 6 at the time of playout
of this segment, based on the client’s location history (line 5, <¢;, 8;> in Fig-
ure 4.8). This prediction is then fed to the rate adaptation heuristic, which
makes a decision on the quality of each of the tiles based on the viewport
coordinates, the observed throughput and the available quality represen-
tations. Its calculations and decisions (i.e., the quality g; and the distance
d; for each tile t) are forwarded to a download queue, which starts retriev-
ing the tiles that are furthest away from the currently predicted viewport
location (lines 6-7). This particular ordering is chosen because it allows the
client to first retrieve the tiles which are expected to have the least impact
on the final viewport, and it does not affect the chances of freezing (all
tiles need to be downloaded before playout of the next segments can start).
Whilst the downloading is taking place, the viewport coordinates of the
HMD are regularly updated, so that new predictions can be made. Using
the new viewport location, along with information of the download queue
(r1, whether or not tile t has already been requested) (line 8), the heuristic
reassigns the reduced bandwidth budget among all tiles which have not
yet been downloaded, and forces an update of the data in the download
queue. Initial decisions can thus be overruled by the client, in favor of tiles

108 CHAPTER 4

which are expected to be of higher importance than previously estimated.
It is important to note that tiles are only downloaded once: the quality of
previously requested tiles thus remains unchanged.

An example of the proposed solution is presented in Figure 4.9, where
the CTF heuristic is used with a 4x4 tiling scheme. Based on recent user
movement, the client predicts the viewport center two seconds in the fu-
ture. It then sorts the tiles according to the distance of the center of each of
the tiles to these viewport coordinates, and assigns each tile a given quality
level (Figure 4.9a). Subsequently, the client proceeds to request the tiles in
order, starting with the tiles which are furthest away. Whilst the second tile
is being downloaded, the user changes its trajectory, forcing the viewport
prediction algorithm to update its predicted coordinates. The rate adapta-
tion heuristic recalculates the assigned quality levels, keeping the quality
of the tiles which have already been requested unchanged (Figure 4.9b).
This procedure is repeated throughout the download process, as long as
there are at least two tiles which have not yet been requested by the client.

4.4 Evaluation and Discussion

To evaluate the proposed optimizations, a dataset provided by Wu et al.
was chosen [37]. This dataset contains traces for 48 unique users and
9 different VR videos, specifying the coordinates of the viewport center
throughout all video sessions with an average sampling rate of 47 Hz.
For reasons of time complexity, we selected three videos which show sig-
nificantly different features: Sandwich (an indoor performance of length
164.22s), Spotlight (an action movie of length 293.28s) and Surf (an en-
semble of surf clips made using a GoPro camera of length 205.72 s). Below,
we first discuss the experimental setup, the considered evaluation metrics
and the evaluation space. Then, we present results for each of the proposed
optimizations.

4.4.1 Experimental Setup

Each of the considered videos is encoded using the HM encoder®, apply-
ing a relevant and diverse set of tiling schemes at 4K resolution and 30 FPS.
The Group of Pictures (GOP) length is set to 32, resulting in a segment
duration of around 1.067 s. The CRF factor for the different quality repre-
sentations is set to 15, 20, 25, 30 and 35 respectively, resulting in the aver-
age bit rates specified in Table 4.1. Note that the Sandwich and Spotlight
video come at an original resolution of 3840 x 2160 (ratio 16:9), while the

5 https:/ /hevc.hhi.fraunhofer.de/HM-doc/

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO

109

14 10 9 13
i 0 n/2 T 3n/2 2n
¢
(a) Initial quality assignment
0
11 12
14 16
0 w2
13 15
9 10
n
0 w2 T 3n/2 2n
¢

(b) Updated quality assignment

Figure 4.9: An example of the presented quality reassignment scheme, with quality
representations ranging from lowest (light blue) to highest (dark blue).
Tile numbers indicate the tile’s index when sorting according to the
great-arc distance to the viewport center (lower is closer). The client
starts requesting the two tiles which are furthest away, until a new view-
port prediction is available. These tiles are stored in the buffer at the
previously requested quality (indicated in orange), while the quality of
the remaining tiles is changed according to the new viewport position
and the considered rate adaptation, using a revised bandwidth budget.

Surf video is provided at 3840 x 1920 (ratio 2:1). Both types of video were
rescaled to 4096 x 2304 and 4096 x 2048 respectively, so that tiles, whose
width and height is required to be a multitude of 64 by the HM encoder,
can be uniformly defined. Given the amount of movement in the GoPro
video, we observe significantly higher bit rates for the lowest video qual-
ity (e.g., 2.3Mb/s versus 1.1 and 1.3 Mb/s when no tiling is used). We also
observe that the impact of the tiling overhead is limited, up until the num-
ber of tiles reaches 16 x 12 or 16 x 16: comparing these schemes with no
tiling, an average encoding overhead of 1.3, 1.4, and 1.9Mb/s, or 127.4%,

110 CHAPTER 4

Java Jetty Node.js Python
Server Proxy Client

Figure 4.10: Experimental setup. Mininet is used to host a virtual network within
a Docker container. A Python VR player requests content from a Jetty
server or through a Node.js proxy with built-in support for HTTP/2.

112.5% and 85.3%, is observed for the lowest quality representation of the
Sandwich, Spotlight and Surf video respectively.

To evaluate the impact of the available bandwidth and network latency,
a network setup is emulated using Mininet®, where a client is connected
to an HTTP/2-enabled Jetty server’ (Figure 4.10). The open-source code of
the Java-based server is slightly modified, providing a custom request han-
dler for the pushing of tile-based video segments. The client is a headless
Python-based implementation. This client provides support for different
viewport prediction schemes, rate adaptation heuristics and quality met-
rics. A buffer size of two segments, or 2.133 s, is used in our evaluations.
The viewport size is set to 110°, similar to the VIVE head-mounted display
used by Wu et al. during data collection [37]. To allow seamless connec-
tion over HTTP/2, a Node.js proxy is provided which serves as a client to
the HTTP/2-enabled server, transparently forwarding the required push
request and handling incoming files as an intermediate for the VR client.
The complete setup is wrapped in a docker container, increasing portabil-
ity and allowing parallel execution of video streaming sessions. Experi-
ments are carried out on imec’s Virtual Wall®, with at most six docker con-
tainers running simultaneously on a hexacore Intel(R) Xeon(R) CPU E5645
@ 2.40GHz with 24 GB of RAM.

4.4.2 Evaluation Metrics

A number of evaluation metrics are considered in this paper. The viewport
prediction accuracy, on the one hand, is evaluated by considering the great-
circle distance between the predicted coordinates and the coordinates actu-
ally visited by the user. The video quality, on the other hand, is evaluated

6http: //mininet.org
"https:/ /www.eclipse.org/jetty /
8https: //doc.ilabt.imec.be/ilabt-documentation/

111

SL+¢C¥ V'1+87¢ VI+67¢ VI+7v7¢ VI+¢€¢ VI+¢€7¢ VI+¢€7¢ 13

6'C+99 6'CF+ 9 8CF 67 8CF 8V 8CF LY 8CF LY 8CF 9V 0€

9¢F 91l G9F00T ¥SF7L6 ¥aF 96 VaF a6 yaF+ 96 VaF76 °14

68F 68T L8FTLL L8F691T L8FLI9T L8F99T 98F99T 98FG9T 0T
0€L+06C 8CLF0LC LCLF99C LCLFV9C LTCLFE€9C 9CLF+T9C 9CL+72C9C €I jmg

V1I+47¢ VI+91 VI+CT CLF+VI1 ECLF+¢1 €CLF+¢1 €CLF+¢€1 13
8CF 0¥ LTF6C LTF 8T L'CF+97¢ L'CTF+97¢ LT+ 49T LT+ 9T 0€
(A A e+ a9 T'sF+¥¢ I'eF+T¢ T'sF1¢ I'sF1¢ I'sF1¢ 14
I'6F<¢cl 06F60I 06F80T 68F90L 68FC0I 68FS0L 68FF0L 0C
THLF9CC 0PI FCIT OFLFOIC 6€LF 80T 6€LFL0T 6€LFL0T 6€LF90C S spods

VO+7¥7¢ VOF+7¥1 VO+¢€l €0+ 71 €E0OFT1 €E0F+TT €E0OF+TT 13
L0F Ve L0F VT L0F €7 L0+ 7¢T¢ L0F1¢C L0F17¢C L0FT1¢C 0€
gL+ 69 V1+87¥ VI+LY VIF9¥ VIF9¥ VI+7¥ VI+¥v 14
CEFIIL TEFGO0L TEFFOL TEFECO0L CTEFTOL TEFTOL <TEFTOL 0T
99F+%¥¢€C 99+7¢ 99F17c 99+F61C G9F61C C9+8Ic G9+8IC GI YImpueg

91/TIx91 8/9%8 X8 Xy (2874 X¢ X1 IO O9pIA

Sandwich and Spotlight are assigned an 8 x6 and a 16 x12 tiling scheme,

while Surf is assigned an 8 x8 and a 16 x16 tiling scheme.

Table 4.1: Obtained bit rates [Mb/s] for the Sandwich, Spotlight and Surf videos.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO

112 CHAPTER 4

Table 4.2: Overview of parameter configurations.

Parameter Configurations

Tiling scheme 1x1,2x2,4%x2,4x4,8x4,8%x6/8,
16x12/16

Bandwidth [2; 24] Mb/s, 4G traces

Latency [0; 100] ms

Viewport prediction Current coordinates, spherical walk,

perfect prediction
Rate adaptation heuristic UVP vp = 110°, UVP vp = 360°, CTFE,
Petrangeli, Hosseini

Reordering No reassignment, reassignment (47 Hz)
HTTP version HTTP/1.1, HTTP/2
Persistent connections 1, min(#tiles, 6)

using three metrics. First, the average quality level of the tile correspond-
ing to the viewport center, between 1 (lowest quality) and 5 (highest qual-
ity). Second, the relative time spent on the highest quality layer for this
tile. While these two metrics are often used in related work, evaluating
the quality of the viewport center is not enough: the user can also move
her eyes within the viewport, resulting in a different perceived video qual-
ity. For this reason, we also use the weighted quality metric proposed in
previous work, with a total of n1 - np = 50 - 50 = 2500 samples drawn ac-
cording to the distribution of the user’s gaze [35]. Initial evaluations are
performed in a network with fixed bandwidth, but a final evaluation will
focus on highly variable, 4G/LTE bandwidth scenarios; for the latter, we
also mention the relative freeze time (i.e., the total freeze time divided by
the video length) induced by buffer starvation.

4.4.3 Evaluation Space

Given the number of videos, quality representations, tiling schemes and
optimizations proposed in Section 4.3, the evaluation space is significant.
Table 4.2 presents an overview of all considered parameter configurations,
which can be applied to each of the three videos and each of the 48 users.
For reasons of time complexity - each combination of parameters requires
at least 164 seconds for a single run - the most relevant combinations have
been selected for evaluation. Below, we first discuss simulated results for
viewport prediction. Then, emulated results regarding rate adaptation,
quality reassignment and application optimization are discussed in detail.
It is worth noting that, for comparison reasons, five rate adaptation heuris-
tics are evaluated: UVP with a viewport of 110° (HTC VIVE as used by Wu

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 113

S
S

— Sandwich

----- Spotlight

” -

W W
S
T

[SS 2\
S D
T T

Prediction error [deg]

—_—
S W O W
T

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time to predicted coordinates [s]

Figure 4.11: Average prediction error for the viewport center among all 48 users, as
a function of the time to the predicted coordinates.

et al. [37]), UVP with a viewport of 360° (uniform quality increases, since
all tiles fall within the viewport), CTF, the heuristic proposed by Petrangeli
et al. [6] and the one by Hosseini and Swaminathan [11].

4.4.4 Viewport Prediction

With regard to the proposed tile reordering and quality refinement scheme,
it is worth evaluating the prediction error as a function of the time to the
predicted coordinates. For this reason, we first evaluate the performance
of the proposed spherical viewport prediction scheme as a function of the
time to the predicted coordinates. Using simulation, the results in Fig-
ure 4.11 are obtained. As can be observed, the prediction error is, by
approximation, linearly dependent on the time to the prediction. There-
fore, the longer the client postpones its final decision on the quality of tiles
close to the viewport, the better this decision is expected to be. This is ex-
actly what the proposed tile reordering and quality recalculation scheme
attempts to do (Section 4.4.6). Below, we first show the impact of the tiling
schemes and the proposed rate adaptation heuristics, before showing the
impact of this approach.

4.4.5 Tiling and Rate Adaptation

Next, we evaluate the performance of tiling-based solutions and the pro-
posed rate adaptation heuristics. To evaluate the different configurations
under distinct network conditions, traffic control is used to fix the available
bandwidth between client and server to values between 2 and 24 Mb/s.
The former should result in the lowest video quality only, while the latter
is expected to provide the user with a reasonably high video quality.

114 CHAPTER 4

Sandwich

I =
2
—8x68 || B
£ --4x2 - - 16x12/16(| 2
" - - 4x4
i R sl
G
—
| =3
wn

Weighted video quality
— N W R L= N W R L= N W R W

4 6 8 1012 14 16 18 20 22 24

Figure 4.12: Weighted video quality as a function of the available bandwidth, for
different tiling schemes and UVP vpg,, = 110°. The content is re-
quested over HTTP/1.1 with negligible latency.

Figure 4.12 shows the weighted video quality as a function of the avail-
able bandwidth, for the three videos and five different tiling schemes, with
the UVP vp = 110° heuristic. When no tiling is applied (1x1), the view-
port quality is relatively low: valuable bandwidth is wasted to parts of the
video which are never consumed by the user. Results improve for the 2x2
and 4x2 tiling schemes, but better results are achieved through the 4x4,
8x4 and 8x6/8 tiling schemes. The 16x12/16 tiling scheme performs sig-
nificantly worse, especially for lower bandwidths. This can be attributed
to the significant encoding overhead on the one hand, and to the large
number of GET requests on the other. Overall, results reflect the trade-off
between a higher granularity and encoding overhead, with the 4x4, 8x4
and 8 x6/8 tiling schemes resulting in the highest viewport quality.

Next, we evaluate the proposed rate adaptation heuristics and compare
results both with the state-of-the-art and the theoretical optimum. Two
values for the vp parameter in Algorithm 4.1 are used: 110°, referred to
as UVP, and 360°, referred to as uniform tile quality (UTQ). Figure 4.13a
shows the weighted video quality as a function of the available bandwidth,
for the 4 x4 tiling scheme. We observe that UVP and CTF, which both take
into account the great-circle distance to the viewport center, outperform

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 115

the others by a significant margin. First, using UTQ distributes the avail-
able bandwidth to the whole video, negating the benefits of tile-based en-
coding. Second, compared to our approach, the heuristic proposed by Pe-
trangeli et al. is more conservative, since tiles belonging to the same zone
are requested at the same quality. Although this approach might reduce
the number of GET requests sent by the client - which is especially im-
portant in the presence of network latency - when tiles are concatenated,
the overall quality is significantly lower. Finally, the heuristic proposed by
Hosseini and Swaminathan only takes into account the zone to which each
tile belongs, giving the same priority and weight to tiles in the same zone.
This approach does not take into account the fact that the surface area of
some tiles contribute more to the viewport than others, which explains the
lower overall video quality. Results for the system are, however, still far
off from the theoretical optimum, which is achieved under perfect view-
port prediction and bandwidth estimation, zero delay between client and
server and no initial low-quality buffering. In this case, a multiple-choice
knapsack problem can be solved with the file size of each tile as the weight,
and the gains in terms of video quality as the value [38]. In Section 4.4.7,
we will further illustrate the impact of accurate viewport prediction and
latency on the resulting video quality.

Similar deductions can be made when evaluating the time spent on the
highest quality layer, which is reflected in Figure 4.13b. However, since
UVP assigns similar quality to tiles within the viewport, and CTF imme-
diately assigns the highest quality to the center tile, the latter leads to bet-
ter results. As an example, for the Spotlight video with a bandwidth of
8Mb/s, the relative time spent on the highest quality layer is 83.5% for
CTF, while this is 75.2%, 18.7%, 62.9% and 78.3% for UVP, UTQ, Petrangeli
and Hosseini, respectively.

4.4.6 Feedback Loop for Quality Reassignment

Having established that the proposed rate adaptation heuristics outper-
form other approaches, we next evaluate the impact of tile reordering and
quality reassignment. To this end, the feedback loop presented in Sec-
tion 4.3 was implemented in the Python player, with at least 20 ms between
succeeding rate adaptation evaluations (same order of magnitude as coor-
dinate sampling, at 47 Hz). Results for the weighted video quality and
the time spent on the highest quality layer are presented in Figure 4.14, for
three different tiling schemes, both with and without quality reassignment.
Evaluating the video quality, minor yet significant differences are observed
for the Surf video; as an example, the weighted video quality is increased

116

CHAPTER 4

Weighted video quality

1)

Time spent on highest quality layer (re

5F
4 S
3t =
5
2+ n
1k
SE
4t =
; 2
— UVP — Petrangeli é_
2t - - UTQ - - Hosseini 2]
T A CTF - Theoretical
SE
41
Gy
3t 3
n
21
1 L1 ! ! ! ! ! ! ! ! ! ! !
2 4 6 8 1012 14 16 18 20 22 24
Available bandwidth [Mb/s]
(a) Weighted video quality in the viewport
1.0F
0.8F 5
0.6 E
0.4} g
02} 7 «
0.0}
1.0F .
08F .7 =
0.6}~ - =
0.4+ — UVP — Petrangeli é
021 _ - - UTQ - - Hosseini ||@
- oo CTF -+ Theoretical
0.0 ‘
1.0 ‘
0.8
0.6 =
0.4 7z
02} .
0.0, L \

2 4 6 8101

2 14 16 18 20 22 24
Available bandwidth [Mb/s]

(b) Time spent on the highest quality layer

Figure 4.13: Results as a function of the available bandwidth, for 4x4 tiling. The
content is requested over HTTP /1.1 with negligible latency.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 117

Sandwich

Spotlight

S 2x2NR - 4x4 NR - 8x6/8 NR
— 2x2R — 4x4R — 8x6/8R

| 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T

Surf

Weighted video quality
— N W R L= NN W R = N W R W

2 4 6 8 1012 14 16 18 20 22 24
Available bandwidth [Mb/s]
(a) Weighted video quality in the viewport

1.0F
0.8}

)
o

04}
0.2}

0.0}
1.OF

0.8}
0.6}

0.4} 3
021 A 2x2NR -+ 4x4NR - 8x6/8 NR
(1)'8_;—2><2R —4><‘4R‘ — 8x6/8 R

Sandwich

Spotlight

0.8}

0.6}

0.4}

0.2}

2 4 6 8 1012 14 16 18 20 22 24
Available bandwidth [Mb/s]

(b) Time spent on the highest quality layer

Time spent on highest quality layer (rel.

Surf

Figure 4.14: Results for the UVP heuristic as a function of the available bandwidth,
both with (R) and without (NR) quality reassignment.

118 CHAPTER 4

0.24

x X x Increments X
020H... Decrements

0.16
0.12
0.08 -
0.04
0.00

T

Quality changes (rel.)

50

Average speed [deg/s]

Figure 4.15: The number of segments for which the quality of the central viewport
tile is incremented and decremented compared to the first quality as-
signment, relative to the total number of segments. The UVP heuristic
is used with an 8x6/8 tiling scheme for all three videos and all 48
users, streamed at 8 Mb/s.

from 3.97 to 4.07 and from 4.08 to 4.18 at 12Mb/s, for a 4x4 and an 8x8
tiling scheme respectively. For the other two videos, where the average
speed and prediction error are lower (Figure 4.11), differences are less out-
spoken. Evaluating the time spent on the highest quality layer, however,
an increase can be observed for all videos. Considering an 8x6/8 tiling
scheme, for instance, the time spent on the highest quality layer increases
from 85.1% to 87.8%, from 84.3% to 87.1% and from 63.5% to 68.5% for the
Sandwich, Spotlight and Surf video respectively. This is an immediate con-
sequence of postponed quality decisions, based on more accurate viewport
predictions.

Evidence of the quality increase relative to the user’s speed is presented
in Figure 4.15. Here, the number of segments for which the quality of the
central viewport tile has changed compared to the first quality assignment
are shown, relative to the total number of segments. From these results,
two important observations can be made. First, the number of quality
changes is linearly dependent on the average speed of movement within
the video streaming session. This behavior is expected, since decisions on
the quality are only changed by the client when the predicted viewport
coordinates change significantly. Second, both beneficial and detrimental
changes to the quality are issued: even when predictions are made later
in time, it is possible that the original prediction would have resulted in a
lower viewport prediction error. The order of magnitude however differs
by a factor 2.5, which results in an overall increase of the average video
quality.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 119

2x2

3 — HTTP/1.1-1 - HTTP/1.1 -6
- - HTTP/1.1 -4 HTTP/2 -1

4x4

SRRRRN PR

8x8

Weighted video quality
— N W R L= NN W R = N W R W

40 60 80 100
Network latency[ms]

Figure 4.16: Weighted video quality as a function of the network latency, for the
Surf video with different tiling schemes and UVP, and a bandwidth of
12Mb/s.

4.4.7 Application Layer Optimization

Next, both the bandwidth and the latency are changed using traffic control
(tc). Figure 4.16 shows the observed video quality as a function of the la-
tency for a bandwidth of 12Mb/s, using UVP and the proposed viewport
prediction approach. When a single persistent connection over HTTP /1.1
is used, the quality quickly decreases: this is an immediate consequence
of the idle RTT cycles lost to retrieve the tiles for each segment. Indeed,
17 requests are issued for each video segment when a 4 x4 tiling scheme
is used, resulting in an idle time of more than 500 ms when the network
latency is 30ms. Using multiple parallel persistent connections (one for
each tile, with a maximum of six), however, this effect can be partly mit-
igated. Indeed, when the number of requested resources is limited, the
quality is only mildly affected by network latency. For a higher number
of tiles, however, the quality quickly degrades as the latency increases. In
contrast, HTTP/2’s server push allows to deliver segments back-to-back,
eliminating the need for multiple GET requests. For this reason, the result-
ing quality is only slightly impacted by higher network latency.

120 CHAPTER 4

W
T
|

ESN
T
1

/J_l ~ —_AA /1\
! l +H /11\/1 L]
Tl
— I T T
.- 8x6-HTTP/1.1-1

Weighted video quality
W

2r ! — - 8x6-HTTP/1.1 - 6]
! 8x6 - HTTP/2 - 1

Wbt T

2 4 6 8 10 12 14 16 18 20

Segment number

(a) Proposed viewport prediction

W
T

355 oy oy =
J: L T I\ P I /I J_

I

I

y — Ix1-HTTP/I.1-1
<+ 8x6-HTTP/1.1 - 1

— - 8x6-HTTP/1.1-6[]
8x6 - HTTP/2 - 1

ESN
T

[\
T

Weighted video quality
(98

p—
T

|

6 8 10 12 14 16 18 20
Segment number

I
L.
4

(b) Perfect viewport prediction

Figure 4.17: Weighted video quality over time, for the Sandwich video and UVP
vp = 110°, with a bandwidth of 8Mb/s and a network latency of
60ms. Given the variable bit rate encoding, even with perfect predic-
tion a decreased visual quality can be observed when a scene switch
occurs after 15 seconds.

To assess the impact of the applied tiling and application layer opti-
mizations during streaming, we evaluated the performance for all users
during playout of the first twenty video segments. Results are shown in
Figure 4.17, for the Sandwich video and UVP, with a bandwidth of 8 Mb/s
and a network latency of 60ms (representative for 4G/LTE networks in
the USA [4]). When no tiling is applied, the video quality slowly ramps
up and stabilizes at the third quality representation. For an 8x6 tiling
scheme, the total latency is higher than the segment duration when a sin-

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 121

~
W

wW A
S W O

Throughput [Mb/s]
O

(=]

[T I e |
S L O W

—
W

Throughput [Mb/s]

! !

0 60 120 180 240 300 O 60 120 180 240 300
Time [s] Time [s]

Figure 4.18: Four 4G/LTE bandwidth traces, collected in Ghent, Belgium [39].
Transportation means, from left to right: bus, foot, train and tram.

gle HTTP/1.1 connection is used. This results in regular playout freezes,
forcing the client to stay at the lowest quality. Comparing HTTP /1.1 with
six persistent connections with HTTP/2, the latter results in a significantly
higher video quality. In terms of quality rampup, HTTP/1.1 is outper-
formed as well; this is because the estimated bandwidth for the former
only increases slowly, being more severely impacted by RTT cycles. Over-
all, we conclude that the use of HTTP/2 has a beneficial impact on the
perceived video quality in scenarios with higher network latency.

44.8 4G/LTE Scenario

As a final step, we evaluate the performance of the proposed rate adapta-
tion heuristics and the application layer optimizations in a mobile, 4G/LTE
network scenario. To this end, we use a set of 4G/LTE throughput traces,
collected in Ghent, Belgium between December 2015 and February 2016
(see Appendix A) [39]. Four relevant traces were selected, based on length
(at least three minutes) and bandwidth (ranges in the order of the ob-
served video bit rates). Figure 4.18 shows the available bandwidth over
time, for each of the traces and corresponding means of transport. In the
Mininet setup, tc is used to shape the network throughput between client
and server. Based on a recent OpenSignal measurement study in Belgium,
the network latency is set to 37 ms [5].

Table 4.3 shows results for a selection of most relevant configurations:
no tiling and 8 x 6/8 tiling, using both HTTP/1.1 and HTTP/2, with or

122 CHAPTER 4

Table 4.3: Emulation results for the CTF heuristic over 4G/LTE networks (latency
37ms), in terms of (sampled) quality in the viewport Qyp (1-5), the qual-
ity of the center tile Q. (1-5), the time spent on the highest layer T, and
the freeze time relative to the video duration FT. Different configura-
tions consider the tiling scheme T, the HTTP version H, the number of
persistent connections C and quality recalculation Q.

T H C Q[Qp Q T FT
1x1 1.1 1 0 | 411 411 0423 0.016
1x1 2 1 0| 405 405 0387 0.015

8x6/8 11 1 0 | 1.00 1.00 0.000 0915

8x6/8 11 6 0 | 453 457 0.884 0.014

8x6/8 11 6 1 | 456 461 089 0.015

8x6/8 2 1 0 | 461 464 0904 0.017
Sandwich

T H C Q[Qp Q T FT
1x1 1.1 1 0 | 435 435 0610 0.014
1x1 2 1 0 | 431 431 058 0.012

8x6/8 11 1 0 | 1.00 1.00 0.000 0.939

8x6/8 11 6 0 | 462 467 0912 0.014

8x6/8 11 6 1 | 465 469 0917 0.014

8x6/8 2 1 0 | 466 469 0921 0.015
Spotlight

T H C Q[Qyp Q T FT
1x1 1.1 1 0 |378 378 0359 0.014
1x1 2 1 0372 372 0330 0.012

8x6/8 11 1 0 | 1.00 1.00 0.000 1.561
8x6/8 11 6 0 | 416 424 0802 0.015
8x6/8 11 6 1 | 425 433 0826 0.015
8x6/8 2 1 0 | 436 442 0.850 0.017

Surf

without quality reassignment in case of the former. When no tiling is used,
the weighted video quality over all users ranges between 3.72 (Surf) and
4.35 (Spotlight), while the relative time spent on the highest layer ranges
from 33.0% to 61.0%. In this case, only one file is downloaded for each
temporal video segment, so that quality reassignments cannot be be con-
sidered.

When 8x6 or 88 tiling is considered, more interesting results are ob-
served. When a single persistent connection is used, the combined net-

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 123

work latency (approximately 49 and 65 times 37 ms, respectively) exceeds
the segment duration, resulting in the lowest video quality and the oc-
currence of playout freezes for each video segment. When six persistent
connections are employed, however, the impact of network latency can be
partly overcome, and the weighted video quality increases to values be-
tween 4.16 (Surf) and 4.62 (Spotlight). As far as quality reassignment goes,
both the video quality and the time spent on the highest layer are increased
when additional feedback between the viewport prediction module and
the download queue is introduced.

Finally, the application of HTTP /2 server push allows to further reduce
the impact of latency, by proactively delivering the tiles to the client. As
expected, this again results in an increase of the video quality and time
spent on the highest quality layer. For the Surf video, for instance, the
weighted video quality increases from 4.25 to 4.36, while the time spent on
the highest quality layer increases from 82.6% to 85.0%. It is worth noting
that even larger increases are observed for higher network latency, omitted
here due to space constraints.

Overall, the gains of tile-based HAS for VR video are significant: com-
paring the Surf video with no tiling over HTTP/1.1 with an 8x8 tiling
scheme with HTTP/2, the weighted and center video quality increases
from 3.78 to 4.36 and 4.42 respectively, while the relative time spent on
the highest quality layer increases from 35.9% to 85.0%.

449 General Conclusions

The above evaluations show that the application of a tile-based approach
for VR video streaming allows to significantly increase the video quality,
when the right viewport prediction, rate adaptation and application layer
optimizations are used. In summary, these are the lessons learned:

1. Video capture & encoding: The application of tile-based video en-
coding allows to increase the video quality of visible regions within
the immersive video. However, a trade-off exists between the gran-
ularity on the one hand, and an introduced encoding overhead on
the other. Upon evaluation, the best results are obtained for the 4 x4
and 8x6/8 tiling schemes: using 1x1 or 2x2 tiling results in ineffi-
cient bandwidth usage, while 16x12/16 tiling results in an encoding
overhead ranging from 1.3 to 2.8 Mb /s (85.3% to 127.4% for the low-
est quality representation) and an increased number of GET requests.
Comparing tile-based solutions with traditional encoding, the video
quality can be increased by more than 50% in certain scenarios;

124 CHAPTER 4

2. Viewport prediction: By modeling movement as a time-constrained
walk on a sphere, rather than using a two-dimensional representa-
tion on the equirectangular plane, the viewport prediction error can
be significantly reduced. Compared to an approach in which the
last-known location is used as prediction, reductions are consider-
ably smaller. Since our results indicate that optimal viewport pre-
diction allows for a considerable increase of the video quality (up to
20% in some cases), viewport prediction is a relevant topic for future
research;

3. Tile-based rate adaptation: The proposed rate adaptation heuristics
strongly focus on the user’s viewport, using the great-circle distance
to the viewport center as the predominant prioritization metric. Eval-
uation results show that the proposed heuristics outperform state-of-
the-art solutions: with gains up to 20%, UVP results in a higher video
quality for the viewport as a whole while CTF results in a higher
video quality in the center of the viewport in particular;

4. Quality reassignment: Using a more intelligent approach to deter-
mine the order in which tiles are downloaded, regular updates on the
viewport prediction can be used to redefine the quality assigned to
tiles which have not yet been retrieved. Therefore, the overall video
quality - and the video quality in the center of the viewport in partic-
ular - can be increased by 5 to 10% in some cases.

5. Application layer optimization: Network latency has a significant
impact on the download time and bandwidth utilization for tile-
based solutions. Using multiple persistent TCP connections, re-
duces this impact and results in a higher overall network through-
put. When HTTP/2 server push is applied, a single GET request to
the server suffices to retrieve all content, further reducing the impact
of latency and resulting in a higher video quality, with increases up
to 20% when a network latency of 60 ms is considered.

4.5 Conclusions and Future Work

In this chapter, we have identified important challenges for tile-based 360°
video streaming. Using an existing dataset of viewport traces, where the
movement of 48 users is tracked throughout immersive video sessions, we
have shown that the proposed content-agnostic viewport prediction ap-
proach is able to reduce the prediction error compared to other solutions.

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 125

Through emulation, we have proven that our novel tile-based rate adap-
tation heuristics outperform other heuristics in terms of video quality and
time spent per quality layer. We have also presented a feedback loop in
the quality decision process whilst downloading content, which allows a
further increase of the observed video quality. Finally, we have shown that
the application of HTTP/2 server push allows to counter negative effects
introduced by network latency, especially given the many GET requests re-
quired by tile-based solutions. Evaluating emulation results for a 4G/LTE
scenario, the time spent on the highest quality layer can be more than dou-
bled compared to non-tiled solutions.

In future work, we will perform a more extensive evaluation of the pro-
posed optimizations under highly variable network conditions. We will
also extend the proposed rate adaptation heuristics to take into account
probabilistic information on the viewport position, rather than a single pre-
dicted value. Finally, we plan to investigate the applicability of SHVC in
combination with updated viewport predictions, which could further im-
prove the video quality perceived by the user.

References

[1] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofifeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys Tutorials, 17(1):469-492, 2015.

[2] R. Mok, E. Chan, and R. Chang. Measuring the Quality of Experience
of HTTP Video Streaming. In Proceedings of the IFIP/IEEE Interna-
tional Symposium on Integrated Network Management, pages 485—
492, 2011.

[3] Information technology - Dynamic Adaptive Streaming over HTTP (DASH)
- Part 1: Media Presentation Description and Segment Formats. Technical
report, International Organization for Standardization, 2014.

[4] OpenSignal. State of Mobile Networks: USA (January 2018),
2018. Available from: https://opensignal.com/reports/2018/01/
usa/ state-of-the-mobile-network/.

[5] OpenSignal. State of Mobile Networks: Belgium (March 2018), 2018.
Available from: https:/ /opensignal.com/reports/2018/03/belgium/
state-of-the-mobile-network/.

[6] S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck. An
HTTP/2-Based Adaptive Streaming Framework for 360-Degree Virtual Re-

https://opensignal.com/reports/2018/01/usa/state-of-the-mobile-network/
https://opensignal.com/reports/2018/01/usa/state-of-the-mobile-network/
https://opensignal.com/reports/2018/03/belgium/state-of-the-mobile-network/
https://opensignal.com/reports/2018/03/belgium/state-of-the-mobile-network/

126 CHAPTER 4

ality Videos. In Proceedings of the ACM Multimedia Conference, pages
306-314, 2017.

[7] J. van der Hooft, M. Torres Vega, S. Petrangeli, T. Wauters, and
F. De Turck. Optimizing Adaptive Tile-Based Virtual Reality Video Stream-
ing. In Proceedings of the IFIP/IEEE International Symposium on In-
tegrated Network Management, 2019. Accepted for publication.

[8] M. Yu, H. Lakshman, and B. Girod. A Framework to Evaluate Omnidirec-
tional Video Coding Schemes. In Proceedings of the IEEE International
Symposium on Mixed and Augmented Reality, pages 31-36, 2015.

[9] R. Skupin, Y. Sanchez, D. Podborski, C. Hellge, and T. Schierl. HEVC
Tile-Based Streaming to Head-Mounted Displays. In Proceedings of the
IEEE Annual Consumer Communications Networking Conference,
pages 613-615, 2017.

[10] M. Budagavi, J. Furton, G. Jin, A. Saxena, J. Wilkinson, and A. Dick-
erson. 360 Degrees Video Coding Using Region Adaptive Smoothing. In
Proceedings of the IEEE International Conference on Image Process-
ing, pages 750-754, 2015.

[11] M. Hosseini and V. Swaminathan. Adaptive 360 VR Video Streaming:
Divide and Congquer! In Proceedings of the IEEE International Sympo-
sium on Multimedia, pages 107-110, 2016.

[12] T. Pixvana. An Intro to FOVAS: Field of View Adaptive Streaming
for Virtual Reality, 2016. Available from: https://pixvana.com/
intro-to-field-of-view-adaptive-streaming-for-vr/.

[13] E. Kuzyakov and D. Pio. Next-Generation Video En-
coding Techniques for 360 Video and VR, 2016. Avail-
able from: https:/ /code.fb.com/virtual-reality /

next-generation-video-encoding-techniques-for-360-video-and-vr/.

[14] A. Zare, A. Aminlou, and M. M. Hunnuksela. Virtual Reality Content
Streaming: Viewport-Dependent Projection and Tile-Based Techniques. In
Proceedings of the IEEE International Conference on Image Process-
ing, pages 1432-1436, 2017.

[15] Temporal MCTS Coding Constraints Implementation. Technical report,
Joint Collaborative Team on Video Coding, 2017.

[16] J. Son, D. Jang, and E. Ryu. Implementing Motion-Constrained Tile and
Viewport Extraction for VR Streaming. In Proceedings of the 28th ACM

https://pixvana.com/intro-to-field-of-view-adaptive-streaming-for-vr/
https://pixvana.com/intro-to-field-of-view-adaptive-streaming-for-vr/
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 127

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

SIGMM Workshop on Network and Operating Systems Support for
Digital Audio and Video, pages 61-66. ACM, 2018.

A. Taghavi Nasrabadi, A. Mahzari, J. D. Beshay, and R. Prakash. Adap-
tive 360-Degree Video Streaming Using Layered Video Coding. In Proceed-
ings of the IEEE Virtual Reality Conference, pages 347-348, 2017.

F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. Optimizing 360 Video
Delivery over Cellular Networks. In Proceedings of the Workshop on All
Things Cellular: Operations, Applications and Challenges, pages 1-6,
2016.

Z.Xu, X. Zhang, K. Zhang, and Z. Guo. Probabilistic Viewport Adaptive
Streaming for 360-Degree Videos. In Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, pages 1-5, 2018.

C. Fan,]. Lee, W. Lo, C. Huang, K. Chen, and C. Hsu. Fixation Pre-
diction for 360-Degree; Video Streaming in Head-Mounted Virtual Reality.
In Proceedings of the Workshop on Network and Operating Systems
Support for Digital Audio and Video, pages 67-72, 2017.

V. Sitzmann, A. Serrano, A. Pavel, M. Agrawala, D. Gutierrez, B. Ma-
sia, and G. Wetzstein. Saliency in VR: How Do People Explore Virtual
Environments? IEEE Transactions on Visualization and Computer
Graphics, 24(4):1633-1642, 2018.

H. Hu, Y. Lin, M. Liu, H. Cheng, Y. Chang, and M. Sun. Deep 360
Pilot: Learning a Deep Agent for Piloting through 360-Degree Sports Video.
Computing Research Repository, abs/1705.01759, 2017.

A. Ghosh, V. Aggarwal, and F. Qian. A Rate Adaptation Algorithm for
Tile-Vased 360-Degree Video Streaming. Computing Research Reposi-
tory, abs/1704.08215, 2017.

A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. HEVC-
Compliant Tile-Based Streaming of Panoramic Video for Virtual Reality Ap-
plications. In Proceedings of the ACM International Conference on
Multimedia, pages 601-605. ACM, 2016.

J. Le Feuvre and C. Concolato. Tiled-based Adaptive Streaming Using
MPEG-DASH. In Proceedings of the International Conference on Mul-
timedia Systems, pages 41:1-41:3, 2016.

L. D’Acunto,]. van den Berg, E. Thomas, and O. Niamut. Using MPEG
DASH SRD for Zoomable and Navigable Video. In Proceedings of the In-
ternational Conference on Multimedia Systems, pages 34:1-34:4, 2016.

128

CHAPTER 4

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing. RFC 7230, RFC Editor, 2014. Available from:
https:/ /www.rfc-editor.org /rfc/rfc7230.txt.

M. Belshe, G. Peon, and M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540, RFC Editor, 2015. Available from:
https:/ /www.rfc-editor.org /rfc/rfc7540.txt.

W3Techs. Usage of HTTP/2 for Websites, 2019. Available from: https:
/ /w3techs.com/technologies/details/ce-http2/all/all.

S. Wei and V. Swaminathan. Low Latency Live Video Streaming over
HTTP 2.0. In Proceedings of the Network and Operating System Sup-
port on Digital Audio and Video Workshop, pages 37:37-37:42, 2014.

L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360ProbDASH: Improving
QoE of 360 Video Streaming Using Tile-Based HTTP Adaptive Streaming.
In Proceedings of the ACM Multimedia Systems Conference, pages
315-323, 2017.

H. Ahmadi, O. Eltobgy, and M. Hefeeda. Adaptive Multicast Streaming
of Virtual Reality Content to Mobile Users. In Proceedings of the The-
matic Workshops of ACM Multimedia, pages 170-178, 2017.

R.I.T. da Costa Filho, M. C. Luizelli, M. Torres Vega,]. van der Hooft,
S. Petrangeli, T. Wauters, F. De Turck, and L. P. Gaspary. Predicting
the Performance of Virtual Reality Video Streaming in Mobile Networks. In
Proceedings of the ACM Multimedia Systems Conference, pages 270—
283, 2018.

Y. Rai, P. Le Callet, and P. Guillotel. Which Saliency Weighting for Omni
Directional Image Quality Assessment? In Proceedings of the Interna-

tional Conference on Quality of Multimedia Experience, pages 1-6,
2017.

J. van der Hooft, M. Torres Vega, S. Petrangeli, T. Wauters, and
E. De Turck. Quality Assessment for Adaptive Virtual Reality Video
Streaming: A Probabilistic Approach on the User’s Gaze. In Proceedings
of the International Workshop on Quality of Experience Management,
2019. Accepted for publication.

P. Juluri, V. Tamarapalli, and D. Medhi. SARA: Segment-Aware Rate
Adaptation Algorithm for Dynamic Adaptive Streaming over HTTP. In
Proceedings of the IEEE International Conference on Communication
Workshop, pages 1765-1770, 2015.

https://www.rfc-editor.org/rfc/rfc7230.txt
https://www.rfc-editor.org/rfc/rfc7540.txt
https://w3techs.com/technologies/details/ce-http2/all/all
https://w3techs.com/technologies/details/ce-http2/all/all

TILE-BASED ADAPTIVE STREAMING FOR VIRTUAL REALITY VIDEO 129

[37] C. Wu, Z. Tan, Z. Wang, and S. Yang. A Dataset for Exploring User
Behaviors in VR Spherical Video Streaming. In Proceedings of the ACM
Multimedia Systems Conference, pages 193-198, 2017.

[38] H. Kellerer, U. Pferschy, and D. Pisinger. The Multiple-Choice Knapsack
Problem, pages 317-347. Springer Berlin Heidelberg, 2004.

[39] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. Ron-
dao Alface, T. Bostoen, and F. De Turck. HTTP/2-Based Adaptive
Streaming of HEVC Video Over 4G/LTE Networks. IEEE Communica-
tions Letters, 20(11):2177-2180, 2016.

Addendum

The publication above does not define the characteristics of the videos used
to evaluate proposed framework. To illustrate the considered types of con-
tent, Figure 4.19 shows a screenshot of each of the three videos.

130 CHAPTER 4

(a) Sandwich

(b) Spotlight

(c) Surf

Figure 4.19: Screenshots of the considered videos.

Towards 6DoF HTTP Adaptive
Streaming Through Point Cloud
Compression

“Help me, Obi-Wan Kenobi. You're my only hope.”

—Star Wars: Episode IV - A New Hope, 1977

While 360° video solutions, discussed in Chapter 4, allow the user to freely
move her head, her location is fixed by the camera’s position within the scene.
Recent solutions attempt to realize 6DoF by capturing objects through a num-
ber of cameras positioned in different angles, and creating a point cloud which
consists of the location and RGB color of a significant number of points in the
three-dimensional space. In this chapter, we propose PCC-DASH, a standards-
compliant means for HTTP adaptive streaming of scenes comprising multiple, dy-
namic point cloud objects. We present rate adaptation heuristics which use infor-
mation on the user’s position and focus, the available bandwidth, and the client’s
buffer status to decide upon the most appropriate quality representation of each ob-
ject. Through an extensive evaluation, we discuss the advantages and drawbacks
of each solution. We argue that the optimal solution depends on the considered
scene and camera path, which opens interesting possibilities for future work.

* Kk k

132 CHAPTER 5

J. van der Hooft, T. Wauters, F. De Turck, C. Timmerer, and
H. Hellwagner

Submitted to ACM Multimedia, 2019

Abstract The increasing popularity of head-mounted devices and 360°
video cameras allows content providers to offer virtual reality video
streaming over the Internet, using a relevant representation of the immer-
sive content combined with traditional streaming techniques. While this
approach allows the user to freely move her head, her location is fixed
by the camera’s position within the scene. Recently, an increased interest
has been shown for free movement within immersive scenes, referred to
as six degrees of freedom. One way to realize this is by capturing objects
through a number of cameras positioned in different angles, and creating
a point cloud which consists of the location and RGB color of a significant
number of points in the three-dimensional space. Although the concept of
point clouds has been around for over two decades, it recently received in-
creased attention by ISO/IEC MPEG, issuing a call for proposals for point
cloud compression. As a result, dynamic point cloud objects can now be
compressed to bit rates in the order of 3 to 55Mb/s, allowing feasible de-
livery over today’s mobile networks. In this chapter, we propose PCC-DASH,
a standards-compliant means for HTTP adaptive streaming of scenes com-
prising multiple, dynamic point cloud objects. We present a number of rate
adaptation heuristics which use information on the user’s position and fo-
cus, the available bandwidth, and the client’s buffer status to decide upon
the most appropriate quality representation of each object. Through an ex-
tensive evaluation, we discuss the advantages and drawbacks of each solu-
tion. We argue that the optimal solution depends on the considered scene
and camera path, which opens interesting possibilities for future work.

5.1 Introduction

In recent years, delivery of immersive video has become more prominent
than ever. Recent technological advancements have resulted in affordable
head-mounted displays, allowing a broad range of users to enjoy virtual
reality (VR) content. Service providers such as Facebook! and YouTube?
were among the first to provide 360° video, using the principle of HTTP
adaptive streaming (HAS) to deliver the content to the user. In HAS, the
content is encoded using several quality representations, temporally seg-

Thttps:/ /www.facebook.com
Zhttps:/ /www.youtube.com

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 133

mented and stored on one or multiple servers within a content delivery
network. Based on the network conditions, the device characteristics, and
the user’s preferences, the client can then decide on the quality of each of
these segments [2]. Having the ability to adapt the video quality, this ap-
proach actively avoids buffer starvation, and therefore results in smoother
playback of the requested content and a higher Quality of Experience
(QoE) for the end user [3]. Protocols and interfaces for HAS are defined
by the Dynamic Adaptive Streaming over HTTP (DASH) standard [4, 5].

The introduction of 360° video provides the user with three-
dimensional freedom to move within an immersive world, allowing
changes in the yaw, roll, and pitch. However, the location of the user re-
mains fixed to the position of the camera within the scene. Recently, a num-
ber of efforts have been made to realize six degrees of freedom (6DoF). Two
types of solutions are generally considered: (i) image-based and (ii) volu-
metric media-based solutions. The former requires a representation of im-
ages at every different angle and tilt (e.g., light field video [6]). This results
in large storage and bandwidth requirements, since roughly every 0.3° dif-
ference in angle requires a new image in order to provide a smooth tran-
sition between images. Volumetric media-based solutions, however, store
objects as a collection of points. Capturing the geometry (x,y,z tuples)
and color (RGB values) of thousands of points, the object can be rendered
from any viewing angle [7]. This reduces storage and bandwidth costs, but
requires complex preprocessing (i.e., multiple camera angles and depths)
and rendering at the client-side. An example point cloud object is shown
in Figure 5.1.

With magnitudes of Gigabytes per second, bandwidth requirements for
uncompressed point cloud objects are significant. For this reason, a large
number of compression techniques have recently been proposed. While
prior studies generally focused on compression of static scenes through
kd-tree- and octree-based solutions (e.g., [8, 9]), newer efforts have shifted
focus to static, dynamic, and dynamically acquired scenarios [7]. The ref-
erence video point cloud encoder, which was recently introduced after a
call for proposals (CfP) was issued by ISO/IEC MPEG [1], achieves lossy
compression factors of 1:100 to 1:500. These compression rates bring the
video bit rate for a single point cloud object down to values between 3 and
55Mb/s, well in the range of the throughput achievable by today’s mobile
4G/LTE networks [10].

While the communication demand of compressed point cloud objects
meets today’s network capacity, the capacity of contemporary devices is
not sufficient to decode these compressed objects in real-time. Indeed, pre-
liminary tests on the dynamic objects in the MPEG CfP on a hexacore In-

134 CHAPTER 5

Figure 5.1: Dynamic point cloud object in MPEG’s dataset [1], showing the bound-
ing box, the bounding cube, and the yaw, pitch and roll circles corre-
sponding to the user’s movement.

tel(R) Xeon(R) CPU E5645 @ 2.40 GHz with 24 GB of RAM showed that the
content can only be decoded at 0.1 FPS. However, given the recent tech-
nological advancements, it can well be expected that future devices and
V-PCC techniques will be able to respect real-time constraints.

In the past, initial work has been done on adaptive streaming for single
point cloud objects [11]. However, no work has been done on the evalua-
tion of over-the-top rate adaptation for scenes consisting of multiple point
cloud objects. These complex scenes require careful consideration, taking
into account, among others, (i) the user’s location, (ii) the user’s focus,
(iii) the position and viewing angle of each object, (iv) the available rep-
resentations, (v) the perceived bandwidth and (vi) the status of the client’s
buffer. In this chapter, we propose and evaluate a number of rate adapta-
tion heuristics, collectively referred to as PCC-DASH, as one of the first steps
towards 6DoF HTTP adaptive streaming.

The contributions of this chapter are twofold. First, we propose a means
to generate scenes consisting of multiple point cloud objects, and stream
these in a standards-compliant way. This guarantees that our solution fol-
lows DASH recommendations and can eventually be adopted by existing
players such as the dash.js reference player [12]. Second, we propose a num-
ber of rate adaptation heuristics for streaming multi-object scenes, using
information on the user’s location and focus, the available bandwidth and
the buffer status. Through emulation, we show that the selected rate adap-
tation heuristic has a significant impact on the observed video quality.

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 135

The remainder of this chapter is structured as follows. Related work is
discussed in Section 5.2. The proposed approach for streaming of multi-
object scenes is presented in Section 5.3, focusing on DASH compliance
and relevant rate adaptation. The experimental setup and evaluation re-
sults are discussed in Section 5.4. Finally, conclusions are drawn and future
work is discussed in Section 5.5.

5.2 Related Work

5.2.1 Point Cloud Compression

Image-based solutions require a representation of images at every differ-
ent angle and tilt. Feasible compression rates can be obtained through
spatial reduction (i.e., reducing the resolution of each image) and angu-
lar reduction (i.e., reducing the number of images, mostly affecting users
with high movement) [6]. For volumetric media-based solutions, however,
other approaches are adopted. Most of these focus on static kd-tree- and
octree-based solutions. Notable examples of the former include Google’s
Draco [13] and the work by Devillers and Gandoin [14], while the latter
include the work of Schnabel and Klein [9], and Huang et al. [15]. Using
a more lightweight approach, Hosseini and Timmerer propose to sample
the octree-based representation of the point cloud to limit the amount of
data, using three different sampling schemes [11]. Krivokuca et al. propose
the adoption of volumetric functions for point cloud compression, using a
B-spline wavelet basis to code these functions representing both geome-
try and attributes [8]. Rather than storing the whole object, an octree of
wavelet coefficients of the volumetric functions is generated.

Since MPEG launched its CfP, alternative approaches for dynamic point
clouds have been suggested. Following an extensive evaluation of nine
submitted proposals, MPEG finally selected a reference encoder for video-
based point cloud compression (V-PCC) [7]. This encoder converts point
clouds into two separate video sequences, which capture the geometry
and texture information, and applies traditional video coding techniques
to compress the data. This reference encoder will be used to evaluate the
performance of the proposed rate adaptation heuristics in Section 5.3.

5.2.2 6DoF Video Streaming

Regarding image-based solutions, Wijnants et al. propose a DASH-
compliant framework for the delivery of light fields [16]. While this ap-
proach allows the user to move around and download content in an adap-
tive way, only static light fields are considered. Furthermore, only single

136 CHAPTER 5

objects are considered in this chapter. Daniel et al. propose SMFoLD, an
open streaming media standard for light field video [17]. This standard al-
lows compliant displays to receive a stream of three-dimensional frame
descriptions, and render scenes without the need for specialized head-
mounted devices. Kara et al. propose a framework for subjective eval-
uation of light field scenes, considering different spatial resolutions and
angular differences between images [6]. Similar to traditional video, the
authors show that quality switching is preferred over long stalling events.

Considering point cloud streaming, Hosseini and Timmerer are the first
to propose a DASH-compliant approach for single point cloud stream-
ing [11]. Using point cloud sampling, the authors discuss the merits of a
media presentation description (MPD), which contains the required meta-
data to request the content frame by frame. Using this approach, a number
of HTTP GET requests proportional to the frame rate and the number of
point cloud objects is required. This can be problematic, especially when
network latency is taken into account. In further work, Hosseini presents a
rate adaptation heuristic for multiple point cloud objects [18]. This heuris-
tic is however based on an undefined priority of importance coefficient for
each point cloud object, and its performance has not been evaluated. He
et al. consider view-dependent streaming of point cloud objects, using
cubic projection to create six two-dimensional images which can then be
compressed using traditional compression techniques [19]. The proposed
approach relies on a hybrid network (broadband and broadcast) and in-
network optimizations such as caching. Park et al. consider a utility-based
rate adaptation heuristic for volumetric media [20]. The proposed ap-
proach is both throughput- and buffer-aware, and allows for network and
user adaptability. The heuristic was evaluated using simulation, report-
ing considered utility metric values of each object rather than the resulting
visual quality. Qian et al. propose Nebula, a volumetric video streaming
system for mobile devices [21]. The authors present two rate adaptation
mechanisms, adapting the video quality to network conditions between
the client and a proxy, and this proxy and the server. However, the pro-
posed heuristics are not evaluated, and no results are reported.

5.3 PCC-DASH Approaches

In this section, we present our PCC-DASH approaches. We first discuss how
point cloud scenes can be generated from a collection of individual objects
in a DASH-compliant way. We then propose a means for rate adaptation,
using e.g., the visual area of the point cloud objects within the field of view
to differentiate among them.

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 137

5.3.1 DASH-Compliant Scene Generation

Similar to traditional video streaming, we propose to use an XML-
formatted MPD which contains the required metadata to stream the con-
tent. On the highest level, one or multiple periods are defined, each de-
scribing a part of the content with a start time and duration. Within a
period, adaptation sets are used to describe the different multimedia for-
mats, such as video, audio and subtitles. Each set contains one or multiple
representations, each with a unique spatial resolution, bit rate or codec for
the same content. The client’s rate adaptation heuristic can then choose
the most appropriate representation based on the network conditions, the
buffer filling, the device characteristics, and the user’s preferences.

In this work, we propose to use one adaptation set for each point
cloud object. Like in traditional DASH deployments, different represen-
tations are generated by means of different quantization values in the
point cloud compression phase. For each adaptation set, we propose addi-
tional attributes to assign a unique position and rotation within the three-
dimensional scene, specifying:

e xRot: rotation around the x-axis (rad);

* yRot: rotation around the y-axis (rad);

zRot: rotation around the z-axis (rad);

xOf f: offset on the x-axis;

yOff: offset on the y-axis;
* zOff: offset on the z-axis.

Defining these attributes allows to select and/or position the objects
within a scene, and thus to uniquely merge point cloud objects together.
An example MPD is presented in Listing 1, which shows two reference
point cloud objects available in multiple quality representations. While the
first object is left in its original position, the second object is turned 180°
and moved on the x-axis, so as to face the first object. The advantage of
this generic approach is that an unlimited amount of point cloud objects
can efficiently be merged together: point cloud objects can be used in mul-
tiple scenes, while only being stored on the server once. Since each object
comes with a number of predefined quality representations, the client can
differentiate between the different objects, and request the most appropri-
ate representation for each. Furthermore, it is worth noting that the above
approach can easily be extended to include static objects and backgrounds,
by defining additional adaptation sets. In this chapter, however, we will
focus on dynamic objects only.

138 CHAPTER 5

<?zml version='1.0'2?>
<MPD xmlns="urn:mpeg:dash:schema:mpd:2011"
< profiles="urn:mpeg:dash:profile:full:2011" minBufferTime="PT1S">
<BaseURL>https://www.example.com/</BaseURL>
<Period duration="PT120S5">
<AdaptationSet id="1" mimeType="application/mpegvpcc" xRot="0"
< yRot="0" zRot="0" x0ff="0" y0ff="0" z0ff="0">
<Representation id="1" bandwidth="2400000">
<SegmentTemplate media="loot/1/segment_$Number’,04u$.bin"
- duration="30" timescale="30" startNumber="1"/>
</Representation>
<Representation id="2" bandwidth="3620000">
<SegmentTemplate media="loot/2/segment_$Number’,04u$.bin"
<~ duration="30" timescale="30" startNumber="1"/>
</Representation>
<!-- further representations -->
</AdaptationSet>
<AdaptationSet id="2" mimeType="application/mpegvpcc" xRot="0"
— yRot="3.1416" zRot="0" x0£ff="2000" y0ff="0" z0ff="0">
<Representation id="1" bandwidth="3500000">
<SegmentTemplate
< media="redandblack/1/segment_$Numbery04u$.bin"
<~ duration="30" timescale="30" startNumber="1"/>
</Representation>
<!-- further representations -->
</AdaptationSet>
<!-- further adaptation sets -->
</Period>
<!-- further periods -->
</MPD>

Listing 1: An example DASH-compliant MPD, containing two unique point cloud
objects.

5.3.2 Multi Point Cloud Rate Adaptation

The goal of the rate adaptation heuristic is to make a decision on the qual-
ity representation for each of the required video components. While tradi-
tional video only requires a single decision for each of the temporal video
segments — not taking into account other components, such as audio and
subtitles — the considered use case requires a decision for each of the point
cloud objects within the video scene. Therefore, we propose first to rank
the objects according to certain properties, including for instance the visual
area of the object within the field of view. Then, the available bandwidth
can be allocated to the different objects based on certain heuristics. In

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 139

this context, we proposed and formulate three bit rate allocation schemes:
greedy, uniform, and hybrid.

An example rate adaptation heuristic is presented in Algorithm 5.1,
where the distance between the camera and each object is used to rank the
objects. Given the segment index and the perceived bandwidth, measured
by dividing the total file size by the total download time for all objects
in the last video segment, this heuristic determines the most appropriate
quality level for each of the point cloud objects in the next segment. To this
end, a Size-function is used, which determines the file size corresponding
to a given segment, point cloud object, and quality representation, as spec-
ified in the MPD. Initially, all objects are assigned the lowest quality 1 (line
1). If the client has just started playing, the quality is not improved in order
to fill the buffer as quickly as possible (lines 2-3). When enough segments
have been retrieved, the total budget is calculated, based on the available
bandwidth and the segment duration (line 4). If the total file size of all
objects at the lowest quality exceeds this budget, the lowest quality is se-
lected for each object (lines 5-7). If this condition is not met, the heuristic
proceeds with calculating the distance to each of the point cloud objects
(line 8). Then, starting with the closest object, the heuristic increases the
quality until no more bandwidth is available, or all objects have been as-
signed the highest quality (lines 9-15).

5.3.2.1 Point Cloud Ranking

Similar to the approach proposed by Hosseini [18], the above rate adap-
tation heuristic considers the Euclidean distance to each object in order to
distinguish between them (lines 8-9). However, this metric does not take
into account the true potential impact it has on the user’s field of view: a
close object in the user’s back does not affect the perceived quality, and the
size of the objects can differ significantly, making a distant object appear
larger than a closer one. To compare results, we consider the following
metrics for point cloud ranking:

1. Distance: the Euclidean distance between the object and the user’s
coordinates;

2. Ayis: an estimation of the object’s visible area. To this end, the bound-
ing box of each object is considered, and the area of the convex hull
within the field of view is calculated. The resulting value is 1 if the
object covers the whole field of view, while it is 0 if the object is not
visible. Note that the metric does not take into account objects block-
ing one another, and that the estimation of the visible area can be off
by a significant margin if the bounding box is sparsely filled.

140 CHAPTER 5

Algorithm 5.1: Example rate adaptation heuristic. The Euclidean
distance between the user and each object is used to rank the ob-
jects, after which the available bandwidth is allocated in a greedy
way.

Input: s, the segment number, starting at 1
objects, the point cloud objects
bandwidth, the perceived bandwidth [b/s]
duration, the segment duration |s]
buf fer, the buffer size [s]
N4ua1, the number of quality representations
x,Y,z, the user’s coordinates
Output: qualities, specifying the selected quality representation
1 qualities < [1,Ypc € objects]
2 % Initialize at lowest quality if s < buf fer/duration then
3 L return qualities

'S

budget < bandwidth - duration
Mpits <— cheahjects SiZE(S, pe, 1)
if ny;s > budget then

a1

=2}

t return qualities

N

@

dists + [(x — xpc)? + (¥ — Ypc)? + (z — zpc)%, Vpe € objects] for
pc € Sort(objects, dists) do

9 | forq € [2ngy] do

10 cost < Size(s, pc,q) — Size(s, pc,q — 1)
11 if np;s + cost > budget then

12 L break

13 Npits < Npits + COSE

14 qualities|pc| < q

15 return qualities

3. Apot: an estimation of the object’s potential visible area, if the user
would shift her focus to this object without changing position. This
metric can be advantageous when the user often moves her head,
especially if objects are close by.

4. A,;s/ bits: the visible area of the object, divided by the number of bits
required by the highest quality representation. This allows to priori-

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 141

tize smaller objects, which require less bandwidth to be streamed at
the highest quality.

A combination of metrics is possible as well, considering for instance
first the visual and then the potential visual area (Ayjs—pot). Such an ap-
proach will be covered in our evaluations in Section 5.5.

5.3.2.2 Bit Rate Allocation

Once the objects have been ranked, the available bandwidth can be al-
located to the different objects (lines 9-15). We propose three different
schemes:

1. Greedy bit rate allocation. As illustrated in Algorithm 5.1, the high-
est possible quality is given to the highest ranked point cloud object,
before moving onto the next. While this approach is useful when a
limited number of objects are in scope, it can significantly reduce the
perceived video quality when multiple objects are considered by the
user.

2. Uniform bit rate allocation. Starting with the highest ranked point
cloud object, the quality of the different objects is increased one rep-
resentation at a time. The advantage of this approach is that a simi-
lar quality is assigned to all objects, resulting in a smoother field of
view. On the downside, a significant amount of bandwidth might
be wasted by requesting high-quality objects which are never con-
sumed.

3. Hybrid bit rate allocation. In this approach, a distinction is made
between objects within and objects outside the field of view. First,
the quality of the former is improved uniformly until either the high-
est quality is assigned, or no more bandwidth remains. Only then
is the quality of the latter objects considered, improving the quality
representation one by one. This approach combines the advantages
of both previous approaches, and should mainly be beneficial when
the user targets a specific group of objects.

In the next section, the above approaches will be evaluated for different
point cloud scenes and camera paths.

5.4 Evaluation

To evaluate the proposed approaches, MPEG’s dataset of dynamic ob-
jects [22] was used to create scenes consisting of multiple point cloud ob-

142 CHAPTER 5

Table 5.1: Observed bit rates [Mb/s] for the four dynamic point cloud objects in the
MPEG dataset [22]. The terms “representation”, “geometry” and “tex-
ture” are abbreviated as “R”, “G” and “T”, respectively. Raw bit rates
[Gb/s] and the number of points per frame are presented as well.

R GQP TQP loot redandblack soldier longdress
1 32 42 2.40+£0.01 3.50£0.03 448 +£0.01 5.00 £0.03
2 28 37 3.62 +0.01 5.03 +0.04 7.14 £+ 0.01 8.65 + 0.05
3
4
5

24 32 5814+0.03 7.83+0.05 12.084+0.03 15.86+0.11

20 27 10.00£0.07 13.63£0.09 21.95+0.07 30.16=+0.21

16 22 18.00+£0.13 24724024 4035+0.14 53.51+0.37
Raw bit rate 4124010 376021 572£0.09 455+0.20
Points per frame 0.794M 0.727M 1.075M 0.834M

jects. Below, we first discuss the applied compression and scene gener-
ation, the experimental setup, the evaluation metrics and the evaluation
space, before presenting the obtained results.

5.4.1 Object Compression and Scene Generation

The four dynamic objects in the MPEG dataset were captured by either
31 or 32 surrounding cameras, at a frame rate of 30 FPS. In our evalua-
tion setup, these objects are used to generate scenes consisting of multiple
point cloud objects. To this end, the objects are first compressed using
the MPEG reference software®. Each object is encoded based on one of
five quantization parameter (QP) configurations, resulting in the bit rates
presented in Table 5.1. It is worth noting that each of the objects only
comes with 300 frames, or ten seconds of video. To obtain a more realistic
length for the video streaming sessions, the resulting footage is played out
twelve times, alternating between forward and backward movement as to
smoothly change the location of the objects. This results in a total video
length of 120 seconds, or two minutes.

Using the four dynamic objects, three different scenes are created, and a
unique camera trace, defining the user’s position and focus for each frame,
is generated for each of these. In a first scene (Scene 1), the objects are
placed in a circle, looking outwards. The camera moves around these ob-
jects, always focusing on the center of the circle. In a second scene (Scene 2),
the objects are placed on a single line, all looking straight ahead. The cam-
era moves on a parallel line, focusing on the objects under an angle of 45°.
Finally, in a third scene (Scene 3), the objects are placed on a 60° arc, looking
inward. The camera is initially positioned at the center of the correspond-
ing circle, moving closer to and back farther from a point cloud object,

Shttp:/ /mpegx.int-evry.fr/software/MPEG/PCC/TM/mpeg-pcc-tmc2

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 143

Figure 5.2: An example scene and camera path, where the four dynamic objects are
placed in a circle (Scene 1).

Figure 5.3: An example field of view corresponding to Scene 1.

before moving left or right towards the next one. As an illustration, Fig-
ure 5.2 shows the first scene and camera path, while Figure 5.3 shows an
example frame for the field of view.

5.4.2 Experimental Setup

To evaluate the impact of bandwidth and network latency on the result-
ing video streaming sessions, a network setup is emulated using Mininet,
where a client is connected to an HTTP/1.1-enabled Jetty server® (Fig-
ure 5.4). Using traffic control, the available bandwidth can be fixed to
certain values, or shaped according to one of three considered 4G/LTE
throughput traces (see Appendix A) [23]. An example trace is shown in
Figure 5.5. The client is a headless Python-based implementation which
provides support for different camera traces, rate adaptation heuristics and
quality metrics. The complete setup is wrapped in a Docker container,
increasing portability and allowing parallel execution of video streaming

4http: / /mininet.org
Shttps:/ /www.eclipse.org/jetty /

144 CHAPTER 5

Java Jetty = Python
Server Client

Figure 5.4: Experimental setup, using Mininet to host a virtual network within a
Docker container.

100

80 -

60

40

Throughput [Mb/s]

20 1

0 T T r T
0 30 60 90 120 150

Time [s]

Figure 5.5: An example 4G/LTE bandwidth trace [23].

sessions. Experiments are carried out on a virtualized computing infras-
tructure with Docker containers running on a hexacore Intel(R) Xeon(R)
CPU E5645 @ 2.40GHz with 24 GB of RAM.

Because the current decoder is unable to obtain real-time performance,
video streaming is split into an online and an offline phase. During the
online phase, the client downloads the encoded point cloud objects, using
the information in the MPD. Each time a segment has been downloaded,
the client evaluates the current playback time, and determines the camera’s
position and focus. Based on the available bandwidth and buffer status,
the objects in the next segment are requested at the quality chosen by the
rate adaptation heuristic. Decisions on the quality representation for each
of the point cloud objects are logged, which are used in the offline phase
to recreate the scenes using the decoded version of the retrieved objects.
To this end, the point cloud renderer by Technicolor® is used. This player
allows to load a predefined camera path, and record the resulting video in
RGB format.

Shttp:/ /mpegx.int-evry.fr/software/MPEG/PCC /mpeg-pcc-renderer

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 145

Table 5.2: Overview of parameter configurations.

Parameter Configurations

Bandwidth [20; 100] Mb/s, 4G/LTE traces
Latency 0,37 ms

Scene / camera path 1,2,3

Segment duration 1 second

Buffer size 1, 2, 4 seconds

Rate adaptation distance, Ayjs, Apot, Avis / bits
Bit rate allocation uniform, greedy, hybrid
Prediction most recent, clairvoyant

5.4.3 Evaluation Metrics

In this chapter, we are mainly interested in the impact of the rate adapta-
tion heuristics on the perceived video quality. MPEG’s CfP for point cloud
compression includes two evaluation metrics for point cloud objects, re-
ferred to as point-to-point and point-to-plane distortion metrics [1]. Al-
though useful to assess the quality of point cloud compression, these met-
rics do not reflect the video quality of the field of view observed by the
user. We thus decided to use weighted PSNR on the luminance compo-
nents, a well-known metric for two-dimensional video [24], to compare
the resulting field of view containing the decoded objects, with the same
field of view containing the original, raw point cloud objects. To this end,
the RGB frames rendered by the player are converted to YUV, and used as
input to calculate the weighted PSNR:

6- PSNRy + PSNR; + PSNRy
8

This allows to take into account the tradeoffs between luma and chroma
component fidelity. PSNR values are computed over the whole video, or
3600 frames, allowing us to use Bjontegaard Delta (BD) for both PSNR and
bit rate (BR) [25]: the former reports the expected difference in PSNR for
the same bit rate, while the latter reports the increase in bit rate (in per-
centage) required to achieve the same PSNR. In addition, we also consider
the frequency and duration of playout freezes when variable bandwidth
patterns are considered.

PSNRYUV =

(5.1)

5.4.4 Evaluation Space

Given the number of scenes and proposed rate adaptation heuristics, the
evaluation space is significant. Table 5.2 presents an overview of all consid-
ered parameter configurations, which include, among others, the segment

146 CHAPTER 5

4

-]

=

a0

E JE—

m 39 o ",4*

% “/‘/‘/,/

& 38 - Distance — — Apot - vis

E —Auvis —Ayjs/bits

S | ST Avic — pot eeeeeens i

= vis — pot Apot/bits

.%D 37 & e Apot Lowest
36 T T T T T T T T

20 30 40 50 60 70 80 90 160
Available bandwidth [Mb/s]

Figure 5.6: Weighted PSNR as a function of the available bandwidth, for scene 3
with different ranking methods, using a buffer size of two seconds,
greedy bit rate allocation and most recent prediction.

duration, the buffer size, and the rate adaptation heuristics. It is worth
noting that two straightforward approaches for viewport prediction are
considered: (i) most recent, in which the current user’s location and focus
(during playout) are used, and (i) clairvoyant, in which perfect predic-
tion is assumed, so that the user’s location and focus for the first frame
of the segment to request are known. For reasons of time complexity —
each combination of parameters requires at least 120 seconds for a single
run - the most relevant combinations have been selected for evaluation,
resulting in a total of 6750 video streaming sessions. Below, we first dis-
cuss results regarding rate adaptation, bit rate allocation, prediction of the
user’s movement, and the buffer size for constant bandwidth with negli-
gible latency. Then, we discuss results for variable bandwidth scenarios
based on collected 4G/LTE traces.

5.4.5 Evaluation Results

First, we investigate the application of different point cloud ranking meth-
ods on the resulting weighted PSNR. Figure 5.6 shows results as a function
of the available bandwidth, for scene 3 with a buffer size of two seconds,
greedy bit rate allocation and the most recent user position. For this partic-
ular scene and camera path, considering the visual surface of the different
objects results in the best performance. Since the user often zooms in and
out on a specific object, allocating the available bandwidth to this object
results in the highest visual quality. As indicated by results in Table 5.3,
however, this approach is not always recommended: compared to the dis-

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 147

Table 5.3: BD-BR for the weighted PSNR for greedy bit rate allocation and different
ranking methods, compared to the distance metric. A buffer size of two
seconds is considered.

Scene 1 Scene 2 Scene 3
Configuration PSNR BR PSNR BR PSNR BR
Distance 0.00 0.0 0.00 0.0 0.00 0.0
Apis 045 312 032 223 0.54 -25.5
Avis—pot -048 346 034 -23.1 050 -243
Apot -0.07 4.2 0.18 -15.0 -058 39.0
Apot—vis -0.07 4.0 019 -155 -058 398

Ays /Dbits -006 30 006 21 004 16
Apot /bits 004 22 005 07 -002 -01

4

=]

=

> 40 4

~

o~ 39

Z

7]

A~ 38

T

= Uniform

o0 e pesseees Greedy

g —-— Hybrid
36 T T T T T T T T

20 30 40 50 60 70 80 90 160
Available bandwidth [Mb/s]

Figure 5.7: Weighted PSNR as a function of the available bandwidth, for scene 3
with different bit rate allocation schemes, using the Ayjs—por ranking
method with a buffer size of two seconds and most recent prediction.

tance ranking, 31.2% more bandwidth is required in order to achieve a
similar visual quality. Indeed, as the camera is turning around the objects,
the closest object in the circle is the one which should be given the high-
est amount of bandwidth. Results further indicate that the potential visual
surface is not a good indicator, which could be attributed to the fact that the
considered camera paths do not include sudden quick head movements.
Next, Figure 5.7 shows results for the different rate allocation schemes,
for scene 3 with a buffer size of two seconds, the Ayjs_ ¢ ranking method
and most recent prediction. For this scene, the hybrid approach outper-
forms all others: dividing the available bandwidth among all visible ob-
jects, the highest PSNR values are observed. As shown in Table 5.4, how-
ever, this is not true for all scenes. Indeed, for scenes 1 and 2, uniform bit

148 CHAPTER 5

Table 5.4: BD-BR for the weighted PSNR for different bit rate allocation schemes
compared to uniform allocation, for the Ayjs—por ranking method with
most recent (MR) and clairvoyant (CV) prediction, for a buffer size of two
seconds.

Scene 1 Scene 2 Scene 3
Configuration PSNR BR PSNR BR PSNR BR

Uniform - MR 0.00 0.0 0.00 0.0 0.00 0.0
Greedy - MR 066 429 -027 169 0.31 -15.8
Hybrid - MR -047 275 -0.07 3.1 037 -18.9

Uniform - CV 0.00 0.0 0.00 0.0 0.00 0.0
Greedy - CV 0.08 -50 -0.11 6.5 0.64 -28.0
Hybrid - CV 0.16 -8.9 0.17 -9.6 0.66 -28.7

41

40

39 1

381

374

-=--BS4s-MR ----BS4s-CV
36 T T T T T T T T

Weighted PSNR YUV [dB]

20 30 40 50 60 70 80 90 160
Available bandwidth [Mb/s]

Figure 5.8: Weighted PSNR as a function of the available bandwidth, for scene 3
with different buffer sizes (BS), and most recent (MR) and clairvoy-
ant (CV) prediction. Hybrid bit rate allocation is considered with the
Aypis—pot Tanking method.

rate allocation leads to the best results. This is because the composition of
these scenes changes on a time scale lower than the buffer size: as a con-
sequence, the wrong objects are considered in the field of view (e.g., the
user might currently be looking at the longdress object in scene 3, but will
be focused on the soldier by the time the content at the end of the buffer is
played out). Indeed, considering clairvoyant prediction of the user’s posi-
tion and focus, the hybrid approach outperforms all other bit rate alloca-
tion schemes. Similar to the 3DoF use case, this illustrates the importance
of accurate viewport prediction.

The buffer size also has a significant impact on the video quality. To
illustrate this, Figure 5.8 shows results for scene 3, with hybrid bit rate allo-

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 149

Table 5.5: BD-BR for the weighted PSNR for different buffer sizes (BS) and most re-
cent (MR) and clairvoyant (CV) location prediction, compared to a buffer
size of one second and most recent prediction. Hybrid bit rate allocation
is considered with the Ayjs— por ranking method.

Scene 1 Scene 2 Scene 3
Configuration PSNR ~ BR PSNR BR PSNR BR

BS 1s - MR 0.00 0.0 0.00 0.0 0.00 0.0
BS 2s - MR -0.40 26.5 -0.15 9.2 -022 113
BS 4s - MR -1.08 1004 -046 314 -0.73 488

BS1s-CV 0.48 -22.5 0.16 -7.7 0.21 -9.5
BS2s-CV 0.44 -20.7 0.12 -6.1 0.15 -6.5
BS4s-CV 0.36 -17.2 0.04 -1.9 -0.02 1.1

cation and different buffer sizes. When most recent prediction is used, rela-
tively high differences are observed; this is a direct consequence of the fact
that a larger buffer introduces additional latency between the movement
of the user and the decision made by the rate adaptation heuristic. This
proposition is confirmed by the results for clairvoyant prediction, which
show that differences for the different buffer sizes are significantly smaller.
Still, since the buffer is ramped up with low-quality objects at the start of
the video streaming session, a lower buffer size results in higher PSNR
values. As shown in Table 5.5, these results are confirmed for all scenes.
Increasing the buffer size from one to four seconds, a bandwidth increase
between 31.4 and 100.4% is required to achieve the same visual quality,

while accurate prediction of the user’s position and focus allows to reduce
the bandwidth by 7.7 to 22.5%.

In a second set of experiments, three 4G/LTE traces are applied to eval-
uate the impact of the buffer size on the video quality and playout freezes.
Based on recent data provided by OpenSignal, the network latency was
set to 37 ms [26]. Results for a relevant subset of experiments are reported
in Table 5.6, showing the observed PSNR values, the number of freezes
and the total freeze time. Similarly as before, increasing the buffer size
results in a lower video quality. At the same time, however, the client’s
robustness against sudden changes in the available bandwidth increases:
while a buffer of one second, or one segment in this case, results in many
short playout freezes (e.g., 44 freezes with an average duration of 0.22s
for the first scene and bandwidth trace), a negligible amount of freezes are
observed for higher buffer sizes. This illustrates the trade-off between ac-
curate prediction on the one hand, and resilience to playout freezes on the
other hand.

CHAPTER 5

150

Table 5.6: Results for different 4G/LTE traces and buffer sizes. Hybrid bit rate al-

location is considered with the Ayjs—por ranking method. The resulting
PSNR is shown, along with the number of observed playout freezes, and

the total freeze time (TFT).

00 0 L0T8¢ 00 0 6IT6E 00 0 18T id €
00 0 ¥848¢ 00 0 LS76E 00 0 68€TY 4 €
gor 0S €6L6E 901 6% 16466 901 ¥ 1L6'Ch 13 €
00 0 €v6L8 00 0 8/8'8¢ 00 0 08S'T¥ id 14
T0 13 9zs8¢ 10 13 L61'6€ T0 T 961°Th 4 4
ver 09 061'6€ 0€l 09 €896 GTI 9 €86CF I 4
00 0 z€C8e 00 0 geo6e 00 0 SILTH i 13
00 0 /848 00 0 L6 00 0 L9€°TH 4 13
<6 9% €66 76 T 06L6E S6 a4 666TH 13 13
[s1141 sozav114# ¥WNSA [SI 1AL $9Z91g# ¥UNSJ [S]I1dL $9Z9a1i# ANSI [s]repmg odeiy
€ 9Uadg 7 dUadg 1 9uadg

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 151

5.4.6 Lessons Learned

The above evaluations confirm the impact of the considered rate adapta-
tion heuristics, viewport prediction, and buffer size on the observed video
quality and playout freezes for point cloud streaming. In summary, these
are the lessons learned:

¢ While some rate adaptation heuristics outperform others by a signif-
icant margin, there is no one-size-fits-all scheme: depending on the
considered content and user’s movement, different point cloud rank-
ing schemes can be used.

® The best results are obtained when the available bandwidth is uni-
formly distributed among visible objects. This approach however
requires accurate prediction of the user’s location and focus, in order
to correctly identify these objects.

¢ Increasing the buffer size results in lower interactivity, prediction ac-
curacy, and video quality. However, a larger buffer results in higher
resilience to playout freezes, which is an important factor in over-the-
top video streaming solutions.

e Although MPEG's reference encoder allows to significantly compress
dynamic point clouds, it cannot be run in real-time on contemporary
hardware. Further research efforts are needed to enable timely volu-
metric media compression.

5.5 Conclusions and Future Work

In this chapter, we focus on over-the-top delivery of volumetric media. We
present a DASH-compliant framework for point cloud streaming and pro-
pose different rate adaptation heuristics for scenes consisting of multiple,
dynamic point cloud objects. In our evaluations, we use MPEG’s dataset to
generate different scenes and camera paths and use the reference encoder
for point cloud compression. Results show that the optimal solution de-
pends on the considered scene and camera path and on the accuracy of the
predicted user’s location and focus. The impact of the buffer size is signif-
icant: a buffer of one segment results in higher accuracy and video quality
than longer buffers, but is highly susceptible to playout freezes.

In future work, we will focus on subjective evaluation of the proposed
PCC-DASH approaches. This will help identify the most important factors
contributing to the QoE for volumetric media streaming. We also plan to

152 CHAPTER 5

extend the current rate adaptation heuristics, taking into account the dis-
tance, the size, and the probability of point cloud objects being within the
field of view. Finally, we will apply HTTP/2’s server push to deliver re-
sources back-to-back.

References

[1] MPEG. MPEG 3DG and Requirements - Call for Proposals for Point Cloud
Compression V2,2017.

[2] A.Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann.
A Survey on Bitrate Adaptation Schemes for Streaming Media Over HTTP.
IEEE Communications Surveys Tutorials, 21(1):562-585, 2019.

[3] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofifeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys Tutorials, 17(1):469-492, 2015.

[4] T. Stockhammer. Dynamic Adaptive Streaming over HI'TP: Standards
and Design Principles. In Proceedings of the 2nd ACM Conference on
Multimedia Systems, pages 133-144, New York, 2011. ACM.

[5] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming over
the Internet. IEEE MultiMedia, 18(4):62-67, 2011.

[6] P. A. Kara, A. Cserkaszky, M. G. Martini, A. Barsi, L. Bokor, and
T. Balogh. Ewvaluation of the Concept of Dynamic Adaptive Streaming of
Light Field Video. IEEE Transactions on Broadcasting, 64(2):407-421,
2018.

[7] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, A. Chou,
R. A. Cohen, M. Krivokuéa, S. Lasserre, Z. Li, J. Llach, K. Mammou,
R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M. Tourapis,
and V. Zakharchenko. Emerging MPEG Standards for Point Cloud Com-
pression. Journal on Emerging and Selected Topics in Circuits and Sys-
tems, 9(1):133-148, 2018.

[8] M. Krivokuéa, M. Koroteev and P. A. Chou. A Volumetric Approach to
Point Cloud Compression, 2018. arXiv:1810.00484.

[9] R.Schnabel and R. Klein. Octree-Based Point-Cloud Compression. In Pro-
ceedings of the 3rd Eurographics/IEEE VGTC Conference on Point-
Based Graphics, pages 111-121, New York, 2006. ACM.

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 153

[10] OpenSignal. State of Mobile Networks: USA (January 2018),
2018. Available from: https://opensignal.com/reports/2018/01/
usa/state-of-the-mobile-network/.

[11] M. Hosseini and C. Timmerer. Dynamic Adaptive Point Cloud Streaming.
In Proceedings of the 23rd Packet Video Workshop, pages 1-7, New
York, 2018. ACM.

[12] K. Spiteri, R. Sitaraman, and D. Sparacio. From Theory to Practice: Im-
proving Bitrate Adaptation in the DASH Reference Player. In Proceedings
of the 9th ACM Multimedia Systems Conference, pages 123-137, New
York, 2018. ACM.

[13] Google. Google Draco. https:/ /github.com/google/draco, 2016.

[14] O. Devillers and P. Gandoin. Geometric Compression for Interactive
Transmission. In Proceedings of the 11th IEEE Visualization Confer-
ence, pages 319-326, New York, 2000. IEEE.

[15] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi. Octree-based Progressive
Geometry Coding of Point Clouds. In Proceedings of the 3rd Eurograph-
ics/IEEE VGTC Conference on Point-Based Graphics, pages 103-110,
Genéve, 2006. Eurographics Association.

[16] M. Wijnants, H. Lievens, N. Michiels, J. Put, P. Quax, and W. Lamotte.
Standards-Compliant HTTP Adaptive Streaming of Static Light Fields. In
Proceedings of the 24th ACM Symposium on Virtual Reality Software
and Technology, pages 4:1-4:12, New York, 2018. ACM.

[17] J. R. Daniel, B. Herndndez, C. E. Thomas, S. L. Kelley, P. G. Jones, and
C. Chinnock. Initial Work on Development of an Open Streaming Me-
dia Standard for Field of Light Displays (SMFoLD). Electronic Imaging,
2018(4):140-1-140-8, 2018.

[18] M. Hosseini. Adaptive Rate Allocation for View-Aware Point-Cloud
Streaming. Technical report, University of Illinois, 2017.

[19] L. He, W. Zhu, K. Zhang, and Y. Xu. View-Dependent Streaming of Dy-
namic Point Cloud over Hybrid Networks. In Advances in Multimedia
Information Processing, pages 50-58, New York, 2018. Springer.

[20] J. Park, P. A. Chou, and J. Hwang. Rate-Utility Optimized Streaming of
Volumetric Media for Augmented Reality. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 9(1):149-162, 2019.

https://opensignal.com/reports/2018/01/usa/state-of-the-mobile-network/
https://opensignal.com/reports/2018/01/usa/state-of-the-mobile-network/
https://github.com/google/draco

154 CHAPTER 5

[21] F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward Practical Vol-
umetric Video Streaming on Commodity Smartphones. In Proceedings of
the 20th International Workshop on Mobile Computing Systems and
Applications, pages 135-140, New York, NY, USA, 2019. ACM.

[22] E. d’Eon, T. Myers, B. Harrison, and P. A. Chou. ISO/IEC
JIC1/5C29 Joint WGI11/WG1 (MPEG/JPEG) input document
WGI1M40059/WG1M74006. 8i Voxelized Full Bodies - A Voxelized
Point Cloud Dataset, 2017.

[23] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. Ron-
dao Alface, T. Bostoen, and F. De Turck. HTTP/2-Based Adaptive
Streaming of HEVC Video Over 4G/LTE Networks. IEEE Communica-
tions Letters, 20(11):2177-2180, 2016.

[24] J. Ohm, G.]J. Sullivan, H. Scharz, T. K. Tan, and T. Wiegand. Compar-
ison of the Coding Efficiency of Video Coding Standards - Including High
Efficiency Video Coding (HEVC). IEEE Transactions on Circuits and Sys-
tems for Video Technology, 22(12):1669-1684, 2012.

[25] G. Bjentegaard. Calculation of Average PSNR Differences Between RD-
Curves, ITU-TVCEG-M33, 2001. Available from: http:/ /wftp3.itu.int/
av-arch/video-site/0104_Aus/VCEG-M33.doc.

[26] OpenSignal. State of Mobile Networks: Belgium (March 2018),
2018. Available from: https://www.opensignal.com/reports/2018/
03 /belgium /state-of-the-mobile-network/.

Addendum

To illustrate the impact of rate adaptation on the observed video quality,
two frames of the field of view are shown below. In Figure 5.9, an illus-
tration of scene 2 is considered. In this case, PSNR values between a scene
consisting of raw point point clouds objects, and a scene consisting of low
quality objects, are relatively high because of the user’s position and fo-
cus. In In Figure 5.10, where an illustration of scene 3 is considered, PSNR
values for the lowest quality are significantly lower.

http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M33.doc
http://wftp3.itu.int/av-arch/video-site/0104_Aus/VCEG-M33.doc
https://www.opensignal.com/reports/2018/03/belgium/state-of-the-mobile-network/
https://www.opensignal.com/reports/2018/03/belgium/state-of-the-mobile-network/

TOWARDS 6DOF HAS THROUGH POINT CLOUD COMPRESSION 155

(a) Raw video

(b) Lowest quality

Figure 5.9: Example field of view for scene 2.

156 CHAPTER 5

(a) Raw video

(b) Lowest quality

Figure 5.10: Example field of view for scene 3.

Conclusions and Future
Perspectives

“You mustn’t be afraid to dream a little bigger, darling.”
—Inception, 2010

In this dissertation, several approaches have been proposed for low-
latency delivery of adaptive video streaming services. In this chapter, we
review the challenges addressed in this dissertation and outline several
research directions arising in the field of multimedia delivery, which we
believe will become increasingly more important in the future.

6.1 Review of the Addressed Challenges

Table 6.1 presents the contributions of this dissertation to the considered
use cases. Below, we briefly summarize our most important findings.

Challenge #1: Allow low-latency interaction with the provided
content, both before and during video streaming.

Focusing on traditional two-dimensional video, the startup delay can
be considerably reduced when the segment duration is decreased. Us-
ing either a short segment duration or a hybrid segment duration scheme,
reductions between 31.2% (end-to-end delivery) and 66.0% (including

158 CHAPTER 6

Table 6.1: Contributions to the four use cases considered in this dissertation.

Low-Latency Personalization Adaptation
Traditional | Startup delay -31.2%,
video end-to-end delay -4 s
News-based | Startup delay -66.0%, | Prefetching strategies
video hybrid segments
360° video | Buffer size of 2s Viewport prediction | Quality +6.07%
error -25.8%
Volumetric | Buffer size of 2s Importance of PSNR, basis for
media viewport prediction | future work

prefetching) are obtained. Furthermore, more fine-grained temporal seg-
mentation allows us to use a smaller buffer, since resilience to bandwidth
variability is increased. This results in a lower end-to-end delay, with pos-
sible reductions of four seconds and more. Focusing on immersive video,
a small buffer size of two seconds is considered; this is necessary in or-
der to increase reaction times towards user movement. Evaluation results
show that this results in a significantly higher video quality, at the cost of
a slightly higher probability of running into playout freezes compared to a
buffer of e.g., four seconds, in a variable bandwidth scenario.

Challenge #2: Personalize the provided content and services to the
targeted end user.

In the context of news-based video portals, we proposed to use dif-
ferent prefetching strategies for news articles with video content. While
more than 90% of people were better of when the most popular content
was prefetched (i.e., , the content which is generally highlighted by the
news provider), a small part of users was better of prefetching either the
most recent content, or content which was redeemed of interest by an ap-
proach based on natural language processing of the metadata (i.e., , the
title, abstract and content of the corresponding news article). Prefetch-
ing results in a reduced startup delay, increasing interactivity. In the con-
text of 360° video, we proposed and applied an intuitive content-agnostic
viewport prediction scheme, and showed that it outperformed the scheme
proposed by Petrangeli et al. Reductions are lower when the suggested
scheme is compared to a prediction scheme in which the user is predicted
not to move, showing that further optimization is possible. Focusing on
immersive video with six degrees of freedom (6DoF), finally, we showed
that accurate viewport prediction has a significant impact on the resulting
video quality.

CONCLUSIONS AND FUTURE PERSPECTIVES 159

Challenge #3: Adapt the quality of the requested content to network
characteristics, user movement and the considered video content.

In terms of rate adaptation, we first focused on immersive media with
three degrees of freedom, in which the user can move her head and change
the yaw, pitch and roll. To avoid wasting bandwidth on unimportant re-
gions, spatial segmentation of the content was considered, allowing us
to prioritize tiles within the user’s field of view. To do so, we proposed
two rate adaptation heuristics which take into account the estimated band-
width, the user’s (predicted) viewport location and information on the con-
sidered content, in order to maximize the perceived quality. Comparing
the relative time spent on the highest quality layer for a specific configura-
tion, an increase is observed from 78.3 to 83.5% (+6.07%). Combining these
heuristics with a feedback loop or HTTP/2 server push, results were even
further improved. We later focused 6DoF video, in which point clouds
are used to capture and render three-dimensional objects. In this context,
we proposed a number of rate adaptation heuristics for scenes consisting
of multiple point cloud objects. Comparing these heuristics for different
scenes and camera traces, we found that, although some approaches out-
perform others in terms of PSNR, there is no one-size-fits-all. Related work
in this context did not exist, so our results form a basis for future work.

It is worth noting that, throughout this dissertation, objective metrics
for the video quality, freeze time and startup delay have been presented.
As mentioned in Chapter 1, however, the system should be evaluated in
terms of the QoE rather than the QoS. In this regard, subjective experi-
ments could help define the overall impact of different optimizations on
the user experience. This is especially true for the immersive video use
cases, where the video quality is both temporally and spatially changed
to adapt to network throughput and user movement. Care must be taken,
though, that the conditions and configurations of these subjective experi-
ments are well-defined, and that conclusions are statistically valid.

6.2 Future Perspectives of Media Delivery

In recent years, technological advancements have made it possible to con-
sider more challenging use cases for video streaming. This is apparent in
this dissertation as well, starting from traditional video and moving on to
immersive and volumetric media solutions. We believe that this trend will
continue to exist in the near future, which means that research in these
domains is of the utmost importance. While this work focuses on visu-
ally consuming the content only, it is worth noting that many researchers

160 CHAPTER 6

and developers envision scenarios in which the user can also interact with
the environment. Examples include interactive video-based games such as
Control Robots in Chernobyl, in which radio controlled cars are used to drive
and fight in a real-life setting [1], and remote surgery, in which a special-
ist is expected to perform operations remotely [2]. The latter task is more
critical by nature, however, and thus requires strong guarantees in terms
of latency, bandwidth and reliability. This is exactly what the so-called
Tactile Internet envisions: an Internet network that combines ultra low la-
tency with extremely high availability, reliability and security [3]. Below,
we briefly discuss three important research directions which we believe
will become increasingly more important in the near future.

Server- and Client-Side Optimizations

From an encoding point of view, further research is required to develop
adept encoding for immersive video with six degrees of freedom (6DoF).
Based on our evaluations concerning volumetric media, it is safe to say that
technology is not there yet: while point cloud objects can be captured, en-
coded and rendered on the user’s display, these steps are cumbersome and
cannot be executed in real-time. More advanced - or rather simplified — en-
coding schemes could provide a step in the right direction. Furthermore,
offloading tasks to a more resourceful cloud or fog infrastructure would in-
crease the computational capacity and could help deliver real-time results.

A number of client-side optimizations can be considered as well. First,
only limited work has been done on predicting 6DoF user movement,
while we have shown that accurate prediction is required to deliver high-
quality video quality to the end user. Further research should determine
how users interact with complex scenes consisting of multiple light field
or point cloud objects. Second, more elaborate rate adaptation heuristics
should be developed for this type of use cases, taking into account not
only the available bandwidth and the considered object bit rates, but also
the user’s history and preferences. Finally, it is worth mentioning that ac-
tions such as viewport prediction, rate adaptation and synchronization of
kinesthetic feedback can become too intensive for a lightweight client de-
vice to cope with. In such cases, being able to partially or totally migrate
these tasks to a cloud or fog infrastructure would again increase the com-
putational capacity of these low-cost devices, as well as saving battery [4].

Advanced Network Protocols

Throughout this work, HTTP/TCP solutions have been considered for
content delivery. It is, however, possible to adopt other protocols as well.

CONCLUSIONS AND FUTURE PERSPECTIVES 161

Some solutions revert to UDP, in order to improve latency at the cost of
reliability. As an example, the HTTP /3 protocol will soon be standardized
by the Internet Engineering Task Force (IETF) [5]. This protocol is based
on the Quick UDP Internet Connections (QUIC) protocol!, proposed by
Google in 2012 [6]. HTTP/3 establishes a number of multiplexed UDP
connections, resulting in independent delivery of multiple streams of data.
In contrast to HTTP /2, which uses a single TCP connection, this approach
avoids head-of-line-blocking if any of the TCP packets are delayed or lost.
Applying QUIC to the delivery of YouTube videos, Google reported a re-
duction of the rebuffering rate of 18.0% and 15.3% for desktop and mobile
users, respectively, compared to standard TCP [7]. We believe, however,
that the full potential of QUIC, and other network protocols in general, has
not yet been reached. More research is required to further improve content
delivery, focusing on those aspects which contribute most to the QoE.

Softwarized Networks

In this dissertation, we focused on end-to-end delivery of the provided
content and services only. Over the last years, however, in-network opti-
mizations gained a lot of attention. Network virtualization allows to map
virtual nodes on top of an existing physical network [8]. These nodes are
interconnected through virtual links, which are realized as a path through
the underlying network. This allows to define multiple networks on top
of an existing infrastructure, complying to possibly entirely different QoS
requirements. This principle can be combined with software-defined net-
works (SDN), in which the data layer is separated from the control layer;
while packets are sent on the former, their routing is softwarematically de-
fined by the latter [9]. This not only results in more flexibility, but also
allows to dynamically change virtual network topologies.

SDN-based approaches have recently been applied to HAS. As an ex-
ample, Petrangeli et al. propose to use SDN to prioritize packets when a
client is expected to experience buffer starvation in the near future [10]. In
doing so, requested segments can be delivered sooner, and playout freezes
can be avoided. The importance of these paradigms is further reflected in
extensions to the Dynamic Adaptive Streaming over HTTP (DASH), in the
form of Server and Network-Assisted DASH (SAND) [11]. SAND defines
a list of messages a DASH client and a SAND-enabled server can exchange,
allowing in-network optimizations during the video streaming session. We
believe that this concept will become increasingly more important for HAS,
and therefore, should gain more research attention in the future.

ETF’s use of the term QUIC is no longer an acronym, but rather the name of the protocol.

162

CHAPTER 6

References

(1]

(2]

(3]

(4]

[5]

6]

(7]

(8]

[9]

R. Games. Control Robots in Chernobyl, 2018. Available
from: https:/ /www.kickstarter.com/projects /remotegames/
game-with-remote-controlled-robots-over-internet.

Independent. Surgeon Performs World’s First Remote Operation
Using 5G Surgery on Animal in China, 2019. Available from:
https:/ /www.independent.co.uk/life-style/gadgets-and-tech/
news/5g-surgery-china-robotic-operation-a8732861.html.

G. Fettweis, H. Boche, T. Wiegand, E. Zielinski, H. Schotten, P. Merz,
et al. The Tactile Internet. Technical report, International Telecommuni-
cations Union, 2014. Available from: https://www.itu.int/dms_pub/
itu-t/oth/23/01/T23010000230001PDFE.pdf.

M. Torres Vega, T. Mehmli, J. van der Hooft, T. Wauters, and
E. De Turck. Enabling Virtual Reality for the Tactile Internet: Hurdles
and Opportunities. In Proceedings of the 14th International Conference
on Network and Service Management, pages 378-383, 2018.

Internet Engineering Task Force. Identifying our deliverables,
2018. Available from: https://mailarchive.ietf.org/arch/msg/quic/
RLRs4nB1IwFCZ_7k0iuz0ZBa35s.

Y. Cui, T. Li, C. Liu, X. Wang, and M. Kiihlewind. Innovating Transport
with QUIC: Design Approaches and Research Challenges. 1EEE Internet
Computing, 21(2):72-76, 2017.

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, et al.
The QUIC Transport Protocol: Design and Internet-Scale Deployment. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 183-196, New York, 2017. ACM.

N. M. Mosharaf Kabir Chowdhury and R. Boutaba. Network Virtual-
ization: State-of-the-Art and Research Challenges. IEEE Communications
Magazine, 4(7):20-26, 2009.

Open Networking Foundation. Software-Defined Networking: The
New Norm for Networks. Technical report, Open Networking Foun-
dation, 2012. Available from: https://www.opennetworking.
org/images/stories/downloads/sdn-resources/white-papers/
wp-sdn-newnorm.pdf.

https://www.kickstarter.com/projects/remotegames/game-with-remote-controlled-robots-over-internet
https://www.kickstarter.com/projects/remotegames/game-with-remote-controlled-robots-over-internet
https://www.independent.co.uk/life-style/gadgets-and-tech/news/5g-surgery-china-robotic-operation-a8732861.html
https://www.independent.co.uk/life-style/gadgets-and-tech/news/5g-surgery-china-robotic-operation-a8732861.html
https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf
https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf
https://mailarchive.ietf.org/arch/msg/quic/RLRs4nB1lwFCZ_7k0iuz0ZBa35s
https://mailarchive.ietf.org/arch/msg/quic/RLRs4nB1lwFCZ_7k0iuz0ZBa35s
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf

CONCLUSIONS AND FUTURE PERSPECTIVES 163

[10] S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen, and F. De Turck.
Software-Defined Network-Based Prioritization to Avoid Video Freezes in
HTTP Adaptive Streaming. Networks, 26(4):248-268, 2016.

[11] Information Technology - Dynamic Adaptive Streaming over HTTP
(DASH) - Part 5: Server and Network Assisted DASH. Technical report,
International Organization for Standardization, 2017.

164 APPENDIX

HTTP/2-Based Adaptive
Streaming of HEVC Video over
4G /LTE Networks

In HAS, the client can adapt the requested video quality to network changes, gen-
erally resulting in a smoother playback. Unfortunately, live streaming solutions
still often suffer from playout freezes and a large end-to-end delay. By reducing the
segment duration, the client can use a smaller temporal buffer and respond even
faster to network changes. However, since segments are requested subsequently,
this approach is susceptible to high round-trip times. In this chapter, we discuss
again the merits of an HTTP/2 push-based approach, and analyze the induced
bit rate overhead for HEVC-encoded video segments with a sub-second duration.
Through an extensive evaluation with the generated video content, we show that
the proposed approach results in a higher video quality and a lower freeze time, and
allows to reduce the live delay compared to traditional solutions over HTTP/1.1.
More importantly, however, we present the details of a measurement study on the
available bandwidth in real 4G/LTE networks. The results of this study have been
used in the evaluations of Chapters 3, 4, and 5.

* Kk k

166 APPENDIX A

J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems,
P. Rondao Alface, T. Bostoen, and F. De Turck

Published in IEEE Communications Letters, vol. 20, no. 11, p. 2177-2180,
2016

Abstract In HTTP adaptive streaming (HAS), video content is temporally
divided into multiple segments, each encoded at several quality levels. The
client can adapt the requested video quality to network changes, gener-
ally resulting in a smoother playback. Unfortunately, live streaming solu-
tions still often suffer from playout freezes and a large end-to-end delay.
By reducing the segment duration, the client can use a smaller tempo-
ral buffer and respond even faster to network changes. However, since
segments are requested subsequently, this approach is susceptible to high
round-trip times. In this letter, we discuss the merits of an HTTP/2 push-
based approach. We present the details of a measurement study on the
available bandwidth in real 4G/LTE networks, and analyze the induced
bit rate overhead for HEVC-encoded video segments with a sub-second
duration. Through an extensive evaluation with the generated video con-
tent, we show that the proposed approach results in a higher video quality
(+7.5%) and a lower freeze time (-50.4%), and allows to reduce the live de-
lay compared to traditional solutions over HTTP/1.1.

A.1 Introduction

Today, more than half of the Internet traffic is generated by video stream-
ing applications [1]. To meet increasing requirements, the concept of HTTP
adaptive streaming (HAS) has recently been introduced. As shown in Fig-
ure A.1, content is encoded at different quality levels and temporally di-
vided into segments with a typical length of 2 to 10 seconds. The client uses
a rate adaptation heuristic to decide upon the downloaded quality for each
segment, based on criteria such as the perceived bandwidth and the buffer
filling. The goal of this heuristic is to optimize the user’s Quality of Expe-
rience (QoE), which depends among others on the average video quality,
the frequency of quality changes and the occurrence of video freezes. Many
heuristics and solutions have been proposed in literature, but we refer to a
survey by Seufert et al. for an elaborate view on the matter [2].

Despite the many advantages of HAS, there are drawbacks as well.
First, playout freezes still occur in 27% of video sessions [3]. Especially in
environments with rapid bandwidth changes, the client may fail to adapt
to new network conditions. Furthermore, video content is generally en-

HTTP /2-BASED ADAPTIVE STREAMING OF HEVC VIDEO 167

Rate adaptation
heuristic

¢ Request (s,q)) T

Video | =00 @<C----=--=--""c--_. Video
encoding decoding
¢ C Internet ;I T
Video
S entation > Hacqoen TTTTIooTTIooC Buffer
5cgmcntat10n HAS Server Segment (s q HAS Client

Figure A.1: The concept of HTTP adaptive streaming.

coded at variable bit rate, with more bits assigned to scenes with rapid
motion. Therefore, it often takes significantly longer to download a seg-
ment than initially estimated, increasing the chances of buffer starvation.
Second, since segments of multiple seconds are typically used, the end-to-
end delay in current HAS deployments is in the order of tens of seconds.
This is detrimental for the QoE in live video streaming, where the delay
should be as low as possible [4].

One solution to these issues is the use of H.265/HEVC, a video com-
pression standard which was developed to provide twice the compression
efficiency of the previous standard, H.264/AVC [5]. In HEVC, coding units
of up to 64x64 pixels are used instead of 16x16, and more intra-picture di-
rections, finer fractional motion vectors and larger transform blocks are
used to achieve this improvement in compression performance. Reducing
the encoding bit rate has a significant impact on the QoE, as fewer data
needs to be transferred from server to client. Another solution is to use
segments with a sub-second duration. Shorter segments allow to limit the
maximum download time of individual segments and respond faster to
sudden changes in the available bandwidth. Furthermore, they allow to
use a smaller buffer, which results in a potential decrease of the end-to-
end delay in live streaming scenarios. Unfortunately, since every segment
has to start with an Instantaneous Decoder Refresh (IDR) frame, a higher
bit rate is required to achieve the same visual quality. Moreover, since a
unique request is required to retrieve every single video segment, solutions
with low segment duration are susceptible to high round-trip times (RTT).
This problem mainly arises in mobile networks, where the RTT varies from
33 to 857 ms, depending on the network carrier and the type of connec-
tion [6].

The contributions of this letter are threefold. First, we explain an ef-
fective means to eliminate RTT cycles in Section A.2, using the server
push feature of the recently standardized HTTP/2 protocol [7, 8]. This
approach allows to effectively use short video segments, achieving the ad-

168 APPENDIX A

vantages described above. Second we present the details of two measure-
ment studies in Section A.3. Particularly, we actively measured the avail-
able throughput in real 4G/LTE networks and performed an analysis of
the induced bit rate overhead for short, HEVC-encoded video segments.
Third, detailed results are presented in Section A.4 to characterize the gain
of the proposed push-based approach compared to state-of-the-art HAS
over HTTP/1.1. Final conclusions are drawn in Section A.5.

A.2 HTTP/2 Push-Based Approach

In HAS, a video session starts with the client sending a request for the
video’s media presentation description (MPD). This file contains informa-
tion regarding the video segments, such as the duration, resolution and
available bit rates. Based on the contents of the MPD, the client then re-
quests video segments subsequently, generally ramping up the buffer by
downloading segments at the lowest quality. After this startup phase, fur-
ther decisions regarding the video quality are made by the client. The main
drawback of this approach is that one RTT cycle is lost to download each
segment, which has a significant impact on the startup time and bandwidth
utilization in high-RTT networks. This behavior is illustrated in Figure A.2,
for the first phase of a live streaming session.

The HTTP/2 standard was published as an IETF RFC in February 2015,
mainly focusing on the reduction of latency in web delivery [7]. Recently,
a number of papers were published regarding the use of this new proto-
col in HAS. Wei et al. proposed a k-push approach, in which k segments
are sent per request [9]. In later work, the authors proposed to change the
parameter value of k dynamically based on network characteristics [10].
Focus in this research is mainly on reducing the live latency and the num-
ber of GET requests issued by the client, without considering the impact of
freezes or the encoding overhead introduced by shorter video segments.
In previous work, we proposed a scheme in which the base layer segments
for Scalable Video Coding (SVC) are pushed by the server, while enhance-
ment layers are pulled by the client [11]. Although a significant reduction
of the freeze time is achieved compared to AVC-based solutions, the encod-
ing overhead introduced by inter-layer dependencies makes it unfeasible
to provide more than three quality representations.

In the push-based approach [8], the server uses HTTP/2’s server push
to push m segments to the client as soon as the MPD request is received,
where m corresponds to the number of segments that fit into a preferred
buffer size defined by the client. Since state-of-the-art heuristics ramp up
the buffer by downloading segments at the lowest quality, it makes sense

HTTP /2-BASED ADAPTIVE STREAMING OF HEVC VIDEO 169

Sn-m+] N sn Sn+l
t T

7

’m/ nt

[Server |22
erver

2
RTT
Client
MPD 4q;
MPD Sn—m+1 Sn Sn +1 Su 2 Sn‘j
Server - - f }
r o r

n+l n+2 rr1+3 n+d

Figure A.2: An example live video scenario for HTTP/1.1 (top) and HTTP/2 (bot-
tom), where the client requests m available segments to ramp up the
buffer. If the last released segment has index #, the first segment to
play is n — m + 1. Note that r; denotes the release of segment i at the
server-side, while s; denotes its request for download by the client. Fur-
thermore, quality g; indicates that the server should change the quality
of pushed segments to j.

to push segments at this quality as well. As illustrated in Figure A.2, at
least one RTT cycle is gained in the reception of the first video segment,
and multiple RTT cycles are gained during the buffer rampup phase. Once
the MPD and the first m segments are sent, the server periodically pushes
a new segment to the client at the specified quality level. Every time a seg-
ment is received, the rate adaptation heuristic determines the most suit-
able video quality and if required, a request is sent to change the bit rate
of pushed segments. Since the first m segments are pushed back-to-back
when the MPD is requested, the proposed approach can significantly re-
duce the client’s startup delay in high-RTT networks. Short segments can
be used, as no RTT cycles are lost, further reducing the startup delay. Addi-
tionally, since a smaller buffer can be used, the approach allows to reduce
the total end-to-end delay as well.

Preliminary evaluations showed that it is important to limit the maxi-
mum number of segments in flight; if a large amount of high-quality seg-
ments are queued in the network, e.g. right after a bandwidth drop, buffer
starvation at the client-side is likely to occur. An appropriate rule of thumb
for the maximum number of segments k in flight is ceil (IETTgT) + 1, where
k is directly proportional to the ratio of the RTT and the segment duration
seg. Indeed, the higher this ratio, the more segments should be pushed
in order to bridge idle RTT cycles. In our experimental setup, it will be

sufficient to use k = 2.

170 APPENDIX A

A.3 Measurement Study

A.3.1 Available Bandwidth in 4G/LTE Networks

To evaluate the proposed approach, we decided to focus on 4G/LTE net-
works. In order to provide a realistic evaluation, we collected throughput
measurements in 4G networks within the city of Ghent, Belgium, in Jan-
uary and February 2016. We have built a dataset over multiple routes, mea-
suring the available bandwidth while downloading a large file over HTTP.
To guarantee appropriate download speeds, we hosted a dedicated server
in iLab.t’s Virtual Wall infrastructure!, connected through a 100 Mb /s Eth-
ernet connection. In this way, bandwidth and latency measurements in-
dicate the performance of the wireless 4G connection, with minimal inter-
ference from the wired network. As for the client, we developed an An-
droid application which logs all required information, running on a smart-
phone (Huawei P8 Lite) connected over 4G. Similar to the collection of 3G
throughput traces by Riiser et al. [12], several properties are logged, among
which the GPS coordinates, the number of bytes received since last data-
point and the number of milliseconds since last datapoint. From these last
two entries, the average throughput can be obtained.

We collected throughput logs for six types of transportation: foot, bi-
cycle, bus, tram, train and car?. As an example, Figure A.3 shows the
selected route in a car and the measured bandwidth over time. Lower
throughput values are observed when connectivity is limited, due to tun-
nels, large buildings and bad coverage in general. Also, the type of trans-
portation and the selected route have a strong impact on the available
bandwidth. As an example, the average throughput on a train around
the city was 22.8 Mb /s £ 14.6 Mb/s, while this was 33.9Mb/s = 15.8 Mb/s
in a car driving on the ring road. The measured bandwidth ranged from
0Mb /s (connection interrupted) through 111 Mb/s (higher than 100 Mb /s
because of network queuing), with an average of 30.3Mb/s +16.7Mb/s.
The complete dataset, which consists of 40 traces and covers 5 hours of
monitoring, has been made available online [13].

A.3.2 HEVC-Encoded Video

In this research, we decided to focus on HEVC because of its promising
compression efficiency. Since our intention is to use video segments with
a sub-second duration, it is important to analyze the induced encoding

1https: / /doc.ilabt.imec.be/ilabt-documentation/
2The authors would like to thank T. Baele and L. Timperman for their kind assistance
during the data collection.

HTTP /2-BASED ADAPTIVE STREAMING OF HEVC VIDEO 171

100

80

60

40

Throughput [Mb/s]

20

M

0 100 200 300 400
Time [s]

0

Figure A.3: A car travelling from north to south (left), along with the measured
throughput (right). When travelling from (1) to (2), large townhouses
on the right side impede the client’s connection. Arriving at (2), the
client switches to a new antenna with better coverage. Once an open
area is reached in (3) and a new antenna is again selected, throughput
improves significantly.

overhead. The considered video sequence in our analysis and evaluation
is Netflix’s El Fuente, which has a total length of 476 seconds and a frame
rate of 60 FPS. The video is encoded using HEVC, providing six quality
levels at nominal bit rates of 0.3, 1.0, 2.3, 5.2, 10.9 and 21.4Mb/s, with a
spatial resolution ranging from 540p to 2160p video. Using the x265 en-
coder?, the video is segmented using five segment durations: 133, 267, 500,
1000 and 2000ms. To allow each segment to be decoded independently,
every segment starts with an IDR frame and the Group of Pictures (GOP)
length is set to 8, 16, 30, 60 and 120 frames respectively. To assess the
impact of shorter GOP lengths on the compression performance, the en-
codings for different segment durations have been set to target the same
visual quality and allow a subsequent overhead in the achieved nominal
bit rate. To realize this, we have selected the Constant Rate Factor (CRF)
rate control implemented in the x265 encoder. The obtained encodings for
the same nominal rates but different segment durations, have the same
visual quality, measured in terms of Peak-Signal-to-Noise-Ratio (PSNR),
with deviations smaller than 0.233 dB. Compared to a GOP length of 120
frames, the average over-head is 6.3%, 9.2%, 29.3% and 60.5% for a GOP
length of 60, 30, 16 and 8 frames respectively. Figure A.4 shows the ob-
tained bit rates of the six quality representations, with a clear increase for
segments with a sub-second duration. In the next section, the proposed
approach will be evaluated for a segment duration of 500 ms. This allows

Shttp:/ /x265.0rg

172 APPENDIX A

40
—<— SD-0.3Mb/s FHD - 5.2 Mb/s
HD-1.0Mb/s --%- 4K-10.9 Mb/s
30 FHD - 2.3 Mb/s —— 4K - 21.4 Mb/s
=
=
=)
o 20 J
g
m S
10 I e S i G
8 16 30 60 120

GOP length

Figure A.4: Obtained video bit rates for the different quality representations and a
GOP length of 8, 16, 30, 60 and 120 frames.

to reduce the buffer size to the order of seconds and increase video quality
in high-RTT networks, while the overhead is limited to 9.2%.

As for the encoding time, using a multicore platform with Intel Core i7
CPUs and an Nvidia GTX 980 GPU, x265 with OpenCL acceleration was
able to encode the FHD content in real-time, with frame rates ranging from
63 FPS (GOP 8) to 68 FPS (GOP 120). For the 4K representations however,
frame rates ranged from 21 FPS (GOP 8) to 24 FPS (GOP 120). Faster soft-
ware HEVC encoders were reported recently to be able to encode 4K in
real-time on similar CPU platforms [14].

A.4 Evaluation

A.4.1 Experimental Setup

To allow a fair comparison of the proposed approach with traditional HAS,
a network topology is emulated using the Mininet framework®. It consists
of a single client, streaming the encoded video from a dedicated Jetty web
server’. A new request handler is defined, which processes the client’s
GET requests using a specific query to start the pushing of segments at
a given quality representation. The client is implemented on top of the
libdash library®, the official reference software of the MPEG-DASH stan-

dard. We provided support for HTTP/2 using the nghttp2 library’, and

4http: //mininet.org/

5 http:/ /www.eclipse.org/jetty /
Shttps:/ / github.com/bitmovin/libdash
7https: / /nghttp2.org/

HTTP /2-BASED ADAPTIVE STREAMING OF HEVC VIDEO 173

5
pap o UETEbg T
=
g
o 3r]
<%}
=
>
%20 1
4]
g
< 1 ---- HTTP/1.1-GOP 120 B
HTTP/1.1 - GOP 30
0 HTTP/2 - GOP 30

0 100 200 300 400
Round-trip time [ms]

Figure A.5: Impact of the RTT on the video quality, both for HTTP/1.1 and HTTP /2
with an initial buffer size of 10 seconds.

implemented the required logic to asynchronously handle pushed video
segments. Client-side rate adaptation is based on the FINEAS heuristic
by Petrangeli et al. [15]. This heuristic estimates the segments” download
time to achieve a target buffer filling level, resulting both in a higher video
quality and a lower amount of playout freezes compared to state-of-the-
art solutions. To avoid an excessive amount of quality switches for short
segments, the client is only allowed to increase the quality every 2s. The
collected 4G traces for same-type vehicles are merged together, in order to
obtain 30 unique bandwidth traces with a minimal length of 494 s and an
average bandwidth of 30.3Mb/s £ 16.8 Mb/s. Using traffic control com-
mand fc for traffic shaping, the client can stream 30 episodes of the video
with a different bandwidth pattern for every episode. A lower threshold
of 50kb/s is used, in order to guarantee correct packet scheduling with
tc. The bandwidth at the server-side is fixed at 100Mb/s, same as in the
measurement study.

A.4.2 Obtained Results

First, the performance of traditional HAS and the push-based approach
are evaluated for increasing values for the RTT, with an initial buffer size
of 10s. Note that when playout freezes occur, the buffer is expanded as
to hold all segments released at the server-side. Figure A.5 shows that for
HTTP/1.1, the video quality, averaged out over all segments - 0 for the
lowest quality level, 5 for the highest - drops significantly for higher RTTs,
regardless whether a segment duration of 2000 or 500 ms is used. The video
quality for the proposed approach over HTTP/2 is not impacted however,

174 APPENDIX A

6 50
—— Quality HTTP/1.1 ---- Freezes HTTP/1.1
Quality HTTP/2 Freezes HTTP/2

> 5f i P
2 40 2
= @
2, E
o 130 o
< 5l 5
2 é
& 120 o
2o s
[F) Tt
> (<]
<L 410 Z

0 L L L L 1 O

Buffer size [s]

Figure A.6: Impact of the buffer size on the video quality and freeze time, both for
HTTP/1.1 (GOP 120) and HTTP/2 (GOP 30) with an RTT of 300 ms.

because bandwidth utilization is maximized by actively pushing segments
from server to client. Short segments can thus effectively be used, which is
not true for traditional HAS over HTTP/1.1.

In a second set of experiments, performance is evaluated as a function
of the initial buffer size, for an RTT of 300 ms. Figure A.6 shows that, while
the video quality over HTTP/1.1 increases for larger values of the buffer
size, it is more or less constant for the push-based approach. Despite an
encoding overhead of 9.2%, the average quality is significantly higher be-
cause of better bandwidth utilization. As for the freeze time, a clear de-
crease is observed for higher buffer sizes, because a playout freeze is less
likely if more content can be buffered at the client-side. More importantly
however, the freeze time for the proposed approach is always lower than
for traditional HAS, because the client can respond faster to changes in the
available bandwidth or buffer fulling.

The most relevant results are summarized in Table A.1. For a stan-
dard buffer size of 10s, the proposed approach results in a significantly
higher video quality (47.5%), a lower freeze time (—50.4%) and a lower
startup delay (—25.0%) compared to traditional HAS. Focusing on a re-

Table A.1: Performance summary for an RTT of 300ms. Average values are re-
ported, along with the 95% confidence intervals.

HTTP Buffer [s] | Video quality | Quality switches | Freeze time [s] | Startup delay [s]
HTTP/1.1 10 4.919 +£0.132 49.633 £ 6.663 9.817 £4.988 2.408 £ 0.052
HTTP/1.1 6 4.754 4+ 0.140 64.333 £7.254 15.190 £ 5.204 2.405 £ 0.047
HTTP/2 10 5288 £0.111 52.067 £9.766 4.867 + 3.361 1.806 + 0.085
HTTP/2 6 5270 £0.117 60.233 £ 10.600 8.977 £ 4.363 1.799 + 0.084

HTTP /2-BASED ADAPTIVE STREAMING OF HEVC VIDEO 175

duction of the live delay, a smaller buffer size of 6 s with pull-based HAS
results in a significantly lower video quality (—3.4%) and a higher freeze
time (4-54.7%), compared to a buffer size of 10s. However, comparing
results for the push-based approach and a buffer size of 65s, with tradi-
tional HAS and a buffer size of 105, a higher video quality (4+7.1%) and a
lower startup delay (—25.3%) are obtained, while differences for the freeze
time are not statistically significant (two-tailed Wilcoxon signed-rank test,
p = 0.82). This shows that the proposed approach allows the client to
follow the live signal more closely, without losing performance on other
metrics.

A.5 Conclusions

In this letter, we discussed an HTTP/2 push-based approach for HTTP
adaptive streaming (HAS) which enables the use of video segments with a
sub-second duration in mobile, high round-trip time networks. We quanti-
fied the encoding overhead for short HEVC-encoded segments, and deter-
mined that the segment duration should not be lower than 500 ms to limit
the overhead to 9.2%. We also performed measurements for the available
bandwidth in real 4G/LTE networks within the city of Ghent, Belgium,
and created a dataset which has been made available online. Using the
encoded content and collected throughput traces in an extensive evalu-
ation, we showed that the presented approach results in a higher video
quality (47.5%) and a lower freeze time (—50.4%), and allows to reduce
the live delay compared to solutions over HTTP/1.1. Future work will fo-
cus on further improving the user’s QoE through HTTP /2 features such as
request/response multiplexing and stream prioritization, on reducing the
encoding overhead for short video segments and on adaptively changing
the segment duration based on network conditions.

References

[1] Sandvine Incorporated. Global Internet Phenomena Report. 2016.

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofifeld, and P. Tran-
Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming.
IEEE Communications Surveys Tutorials, 17(1):469-492, 2015.

[3] Conviva. Viewer Experience Report. 2015.

[4] T. Lohmar, T. Einarsson, P. Frojdh, F. Gabin, and M. Kampmann. Dy-
namic Adaptive HTTP Streaming of Live Content. In IEEE International

176 APPENDIX A

Symposium on a World of Wireless, Mobile and Multimedia Net-
works, pages 1-8, 2011.

[5] G.]. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of the High
Efficiency Video Coding (HEVC) Standard. IEEE Transactions on Circuits
and Systems for Video Technology, 22(12):1649-1668, 2012.

[6] OpenSignal. IConnect 4G Coverage Maps. 2014. Available from: http:
/ /opensignal.com/networks/usa/iconnect-4g-coverage/.

[7] M. Belshe, R. Peon, and M. Thomason. Hypertext Transfer Protocol Ver-
sion 2. Technical Report Internet-Draft, RFC Editor, 2015. Available
from: https:/ /datatracker.ietf.org/doc/draft-ietf-httpbis-http2/.

[8] R. Huysegems, J. van der Hooft, T. Bostoen, P. Rondao Alface, S. Pe-
trangeli, T. Wauters, and F. De Turck. HI'TP/2-Based Methods to Improve
the Live Experience of Adaptive Streaming. In ACM Multimedia Confer-
ence, pages 541-550, 2015.

[9] S. Wei and V. Swaminathan. Low Latency Live Video Streaming over
HTTP 2.0. In ACM Network and Operating System Support on Digital
Audio and Video Workshop, pages 37:37-37:42, 2014.

[10] M. Xiao, V. Swaminathan, S. Wei, and S. Chen. Evaluating and Improv-
ing Push-Based Video Streaming with HTTP/2. In ACM International
Workshop on Network and Operating Systems Support for Digital
Audio and Video, pages 3:1-3:6, 2016.

[11] J. van der Hooft, S. Petrangeli, N. Bouten, T. Wauters, R. Huysegems,
T. Bostoen, and F. De Turck. An HI'TP/2 Push-Based Approach for SVC
Adaptive Streaming. In IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 104-111, 2016.

[12] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute Path
Bandwidth Traces from 3G Networks: Analysis and Applications. In ACM
Conference on Multimedia Systems, pages 114-118, 2013.

[13] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. Ron-
dao Alface, T. Bostoen, and F. De Turck. 4G/LTE Bandwidth Logs. 2016.
Available from: https:/ /users.ugent.be/~jvdrhoof/dataset-4g/.

[14] T. K. Heng, W. Asano, T. Itoh, A. Tanizawa, J. Yamaguchi, T. Matsuo,
and T. Kodama. A Highly Parallelized H.265/HEV C Real-Time UHD Soft-
ware Encoder. In IEEE International Conference on Image Processing,
pages 1213-1217, 2014.

http://opensignal.com/networks/usa/iconnect-4g-coverage/
http://opensignal.com/networks/usa/iconnect-4g-coverage/
https://datatracker.ietf.org/doc/draft-ietf-httpbis-http2/
https://users.ugent.be/~jvdrhoof/dataset-4g/

HTTP /2-BASED ADAPTIVE STREAMING OF HEVC VIDEO 177

[15] S. Petrangeli,]J. Famaey, M. Claeys, S. Latré, and F. De Turck. QoE-
driven Rate Adaptation Heuristic for Fair Adaptive Video Streaming. ACM
Transactions on Multimedia Computing, Communications and Ap-
plications, 12(2):28:1-28:24, 2015.

	Title Page
	Dankwoord
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	A Brief History of Video Streaming
	Challenges for HTTP Adaptive Streaming
	Dissertation Outline
	Publications
	Publications in International Journals
	Publications in International Conferences

	References

	An HTTP/2 Push-Based Approach for Low-Latency Live Streaming with Super-Short Segments
	Introduction
	Related Work
	HTTP Adaptive Streaming
	The HTTP/2 Protocol
	HTTP/2 for Multimedia Delivery

	Push-Based Approach
	Full-Push Approach
	Full-Push Approach with Acknowledgments

	Segment duration and Encoding Overhead
	Evaluation and Discussion
	Experimental Setup
	Rate Adaptation Heuristics
	Evaluation Metrics
	Evaluation Results

	Conclusions and Future Work
	References
	Addendum

	Performance Characterization of Low-Latency Adaptive Streaming from Video Portals
	Introduction
	Related Work
	Low-Latency End-to-End Delivery
	Prefetching of Multimedia Content

	Proposed Framework
	Hybrid Segment Duration
	Application Layer Optimization
	Server-Side User and Content Profiling
	Client-Side Storage

	Evaluation
	Use Case: deredactie.be
	Experimental Setup
	Short Segment Duration
	Short Segment Duration and Server Push
	User and Content Profiling
	Proactive Prefetching
	Impact on Buffer Starvation
	Summary

	Conclusions
	References

	Tile-Based Adaptive Streaming for Virtual Reality Video
	Introduction
	State-of-the-Art and Challenges
	Video Capture and Encoding
	Viewport Prediction
	Tile-Based Rate Adaptation
	Application Layer Optimization
	Quality Evaluation

	Proposed Framework
	Tile-Based Rate Adaptation
	Feedback Loop for Quality Reassignment

	Evaluation and Discussion
	Experimental Setup
	Evaluation Metrics
	Evaluation Space
	Viewport Prediction
	Tiling and Rate Adaptation
	Feedback Loop for Quality Reassignment
	Application Layer Optimization
	4G/LTE Scenario
	General Conclusions

	Conclusions and Future Work
	References
	Addendum

	Towards 6DoF HTTP Adaptive Streaming Through Point Cloud Compression
	Introduction
	Related Work
	Point Cloud Compression
	6DoF Video Streaming

	PCC-DASH Approaches
	DASH-Compliant Scene Generation
	Multi Point Cloud Rate Adaptation

	Evaluation
	Object Compression and Scene Generation
	Experimental Setup
	Evaluation Metrics
	Evaluation Space
	Evaluation Results
	Lessons Learned

	Conclusions and Future Work
	References
	Addendum

	Conclusions and Future Perspectives
	Review of the Addressed Challenges
	Future Perspectives of Media Delivery
	References

	HTTP/2-Based Adaptive Streaming of HEVC Video over 4G/LTE Networks
	Introduction
	HTTP/2 Push-Based Approach
	Measurement Study
	Available Bandwidth in 4G/LTE Networks
	HEVC-Encoded Video

	Evaluation
	Experimental Setup
	Obtained Results

	Conclusions
	References

